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Abstract
This paper is devoted to the theoretical and numerical investigation of the local
minimum problem in an inverse boundary value problem. We provide a mathe-
matical analysis for the objective function of the optimal transportation type in
the context of seismic full waveform inversion. In particular, we prove that the
gradient obtained using the adjoint-state method does not depend on the spe-
cific choice of the Kantorovich potentials. Moreover, our frequency analysis
results show a decreasing sensitivity of the reconstruction as the data misfit is
concentrated in the high-frequency part. This confirms previous observations in
many numerical experiments. We also propose a new method using the softplus
encoding, which maps the seismic data into probability measures and, therefore,
the Wasserstein metric can be applied. The softplus encoding retains the con-
vexity of the data misfit with respect to translations and provides a parameter to
tune the landscape of the objective function. The effectiveness of the proposed
method is demonstrated numerically on an inversion task with the benchmark
Marmousi model.
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1. Introduction

Seismic full waveform inversion (FWI) uses kinematic and dynamical information of the seis-
mic wavefield to build the subsurface velocity model, which accurately depicts the geological
structures. Mathematically, FWI is formulated as a nonlinear inverse problem matching mod-
eled data to the recorded field data [1]. It can be solved as a PDE-constrained optimization
problem, and a least-squares objective function is used for measuring the data misfit. The
objective function is minimized with respect to the model parameter, and the model update
is computed using the adjoint state method [2]. FWI can produce high-resolution models of
the subsurface compared to ray-based methods. However, FWI is often an ill-posed problem
due to the band-limited nature of the seismic data and the limitations of the acquisition
geometries.

The least-squares formulation of FWI, when the initial model is far from the true model
and the seismic data lack of low-frequency information, tends to produce many local minima.
That is the so-called cycle-skipping issue. The cause of this issue is that only the pointwise
amplitude difference is measured with the L2 norm, while the phase or travel-time informa-
tion embedded in the data is more critical for the inversion. Different approaches are pro-
posed to capture more accurate kinematic information, such as dynamic time warping and
convolution-based methods. This information is then used to optimize the objective function
or enlarge the true solution valley. In this direction, we mention the works in [3–7]. An alter-
native approach to reshape the objective function is to extend the parameter space [8, 9] or
use an auxiliary wavefield [10–12] in a non-physical way so that the data can be easily fitted.
Then, one can get the physical model back using an annihilator or gradually tightening the
PDE constraints.

Another approach involves the use of Wasserstein metrics. The Wasserstein distance and
optimal transportation (OT) theory were first brought up to seek the optimal cost of rearranging
one density into the other, where the transportation cost per unit mass is the Euclidean distance
or Manhattan distance. It can be traced back to the mass transport problem proposed by Monge
in 1780s and its relaxed formulation by Kantorovich in the 1940s. Since then, it has become a
classical subject in probability theory, economics, computer vision, optimization, and partial
differential equations.

Recently, the Wasserstein distance and its variants are proposed to replace the distance for
the objective function in FWI. The idea of using OT metrics for seismic inverse problems is
introduced in [13]. The successful applications are partly due to its Lagrangian nature that
focuses on the trajectory of individual masses. This makes the Wasserstein metric a vital tool
in capturing the variations of signals as a whole, such as translation (time-shift) and dilation.
However, Wasserstein metrics cannot be directly applied to the seismic inversion due to the
oscillatory and sign-change behavior of the seismic data. To overcome this difficulty, different
approaches have been proposed in the literature. The first category is to transfer the data to a
probability measure. In [13–19], linear, quadratic, exponential transforms, and a map that sep-
arates the data into its negative and positive parts, followed by normalization, are used to turn
data into a probability measure. These encoding methods have their drawbacks. For example,
the linear and exponential transforms introduce new masses everywhere and therefore destroy
the convexity with respect to large translation. The negative/positive separation method retains
the convexity, but it is sensitive to noise, and it creates numerical dispersion significantly. As for
the quadratic transform, there is still no report of its successful application in inverse medium
problems as far as we know. In [20], a graph-based transform is introduced, which maps the
data u(t) to a normalized Dirac measure, cδ({t, u(t)}), and the OT metric is calculated on the
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graph space. This approach extends the dimensionality of the space by one and cannot take
advantage of the closed-form solution of one-dimensional OT.

Another category is to relax the non-positiveness and equal-mass restrictions of the
Kantorovich–Rubinstein distance, the Wasserstein metric with cost function |x − y|. In
[20–22], the authors use a Kantorovich–Rubinstein norm defined on the space of Borel mea-
sures [23, 24], which restricts the supremum of ϕ’s in the Kantorovich–Rubinstein duality,

W1(μ, ν) = sup
‖ϕ‖Lip�1

∫
ϕd(μ− ν)

to functions satisfying 0 � ϕ � M for some given constant M. To obtain a computationally
feasible solver for the multi-dimensional case, a simultaneous-direction method of multipliers
is proposed [21]. The main drawback of the Kantorovich–Rubinstein approach is the loss of
convexity with respect to large translations [20]. In this direction, we also mention the works
using Ḣ−1 [25], unbalanced OT distances [26] and matching filters [27].

Among various strategies for mitigating the cycle-skipping issue in seismic inversion, using
OT-based objective functions has been demonstrated to be one of the most effective approaches.
However, these approaches have three points that require further investigation. First of all,
there is sufficient evidence that FWI has a strong path dependence. However, the Kantorovich
potential generally does not have uniqueness. Hence the associated model gradient obtained
using the adjoint-state method is not unique. Secondly, the inversion results depend crucially on
the appropriate underlying encoding method to transfer the seismogram to probability density
functions (PDFs). Last but not least, OT metrics mainly concern the cycle-skipping problem.
It thus tends to give smooth inversion results and lacks high-resolution details. In order to
delineate usage scenarios, frequency sensitivity analysis is crucial.

Our goal of the present paper is to provide a rigorous description of the gradient-based meth-
ods and proper encoding methods for the seismic inverse problem using OT. These findings
are essential for a rigorous interpretation of the numerical observations. Several objectives are
discussed in this paper. First, a rigorous proof is presented on the directional differentiability
of the transportation cost as a function in L2. We also perform a frequency sensitivity analysis
of the OT objective function using the Fourier series. Second, an encoding method using the
softplus function is introduced, and then it is proved that the gradient obtained using the adjoint
state method is well-defined and unique. Finally, by applying it to a simple convexity test and
an inverse problem on the benchmark Marmousi model, the feasibility of the proposed method
is demonstrated.

The paper is organized as follows. The necessary notations and properties of the quadratic
Wasserstein distance, especially the efficient solution in the unidimensional case, are discussed
in section 2. As shown in section 3, one only needs to change the adjoint source when switching
from L2 to other metrics in the objective function, and an adjoint source involving the first
Kantorovich potential and the gradient of the encoding map is used for the OT one. In section
4, we investigate the frequency sensitivity of OT and specify a low-frequency enhancement of
it; a rigorous proof of the directional differentiability and uniqueness of the gradient is also
presented. The desired properties of encoding methods and an effective approach using the
softplus function are illustrated in section 5. Two numerical examples are shown in section 6.
For completeness and reproducibility of the results, the pseudo-code of the proposed method
is presented in appendix A.
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2. The quadratic Wasserstein distance

This section introduces the quadratic Wasserstein distance used to measure the difference
between data. We begin with some standard notations and necessary properties.

2.1. Notation

Throughout this paper, we shall consider probability measures that are absolutely continuous
with respect to the Lebesgue measure and with a finite moment of order 2 on a simply connected
and compact domain in R

n. Hence, we identify the induced measure with its Radon–Nikodym
derivative with respect to the Lebesgue measure and write dμ(x) = μ(x)dx. The measure
and its Radon–Nikodym derivative will not be distinguished, as it should be clear from the
context. All the measures considered here are built from the solution to wave equations. The
regularity condition is clearly satisfied, and the limited-time/space measurement of the data
leads to the boundedness of the domain. When no ambiguity arises, we denote for brevity
by P the set of all absolutely continuous measures with a finite moment of order 2 on the
given domain.

In this work, we use Kantorovich’s formulation of OT and its dual form. The definition and
properties are summarized in the following. We refer readers to [23, 28, 29] for a more detailed
discussion.

Definition 2.1 (Kantorovich’s OT problem). Let μ, ν ∈ P . Minimize

I[γ] =
∫

1
2
|x − y|2 dγ(x, y) (1)

over the set of all coupling measures, which admit μ and ν as marginals on the first and second
factors respectively, i.e.∫

(ϕ(x) + ψ(y)) dγ(x, y) =
∫

ϕ dμ+

∫
ψ dν, (2)

for all measurable functions ϕ ∈ L1(dμ) and ψ ∈ L1(dν).

Theorem 2.1 (Kantorovich duality). The minimum of Kantorovich’s problem (1) is
equal to the supremum of∫

ϕ dμ+

∫
ψ dν (3)

over all pairs (ϕ,ψ) ∈ L1(dμ) × L1(dν) such that ϕ(x) + ψ(y) � 1
2 |x − y|2.

The supremum in theorem 2.1 is attainable and the Wasserstein distance between μ and ν
is defined as

W2(μ, ν) = min
γ

I[γ]1/2. (4)

For simplicity, we consider the second power of W2, which is the optimal total transportation
cost T (μ, ν) = W2

2 (μ, ν).

2.2. OT on the real line

The one-dimensional case is of particular interest, as its equivalent definition does not involve
solving a minimization problem. It can be solved explicitly and efficiently with a linear
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computational complexity from a computational point of view. From a theoretical point of
view, the 1D Wasserstein distance is strongly convex along the geodesic as a function of its
first argument. All high-dimensional ones are not even convex along the geodesic (see, e.g.
[30, example 9.1.5]). From the perspective of the seismic inverse problem, this leads us to
consider using the OT metric on the time variable combined with the least-squares on the
spatial variable, rather than the high-dimensional Wasserstein distances on the space-time
variable.

The following theorem states a solution to the Monge–Kantorovich problem on the real line
in terms of cumulative distribution functions.

Theorem 2.2 (OT theorem on R [23, 29]). Let p0, p1 ∈ P(R) be two probability mea-
sures on the real line. f0 and f1 are their cumulative distribution functions:

f k(x) =
∫ x

−∞
dpk, k = 0, 1.

The pseudo-inverse of a non-decreasing and right-continuous function f is defined by

f [−1](x) = inf{t ∈ R | f (t) > x}.

Then, there exists a unique non-decreasing map T : R→ R given by T(x) = f [−1]
0 ( f1(x))

such that p0(T(x)) = p1(x). The map T is optimal in the Monge–Kantorovich problem for the
quadratic cost function. Moreover, the value of the optimal transport cost is

W2(p0, p1) =

(∫ 1

0
( f [−1]

0 (s) − f [−1]
1 (s))2ds

)1/2

=

(∫ +∞

−∞
( f [−1]

0 ( f1(t)) − t)2 p1(t)dt

)1/2

. (5)

Remark 2.3. There are several aspects to be mentioned here regarding the optimal transport
map, T . First, if the two measures are atomless and strictly positive, and hence, the cumulative
distribution functions are continuous and strictly monotone, then one would have

T = f −1
0 ◦ f1.

Second, from the explicit form of T, we conclude that the regularity of T is one degree higher
than that of the measures. Higher regularity leads to a smoother effect. This has been observed
in the numerical experiments. Third, the form of T implies that a monotone rearrangement of
p0 gives the solution to the transportation problem onto p1. This leads to the algorithm with
computational cost O(N ) for computing the transportation cost and its first variation. Please
refer to appendix A for more details. Fourth, the transportation map T is optimal not only for
the quadratic cost, but also for all cost functions in the form of c(x, y) = h(y − x) with h being
a convex function. In particular, the OT cost associated with the cost function c(x, y) = |x − y|
is

W1(p0, p1) =
∫ 1

0

∣∣∣ f [−1]
0 (s) − f [−1]

1 (s)
∣∣∣ ds =

∫ +∞

−∞
| f0(x) − f1(x)| dx.
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Finally, the first variation of the transportation cost is given by

∂W2
2 (p0, p1)
∂p0

= ( f [−1]
1 ( f0(t)) − t)2 +

∫ 1

t
2
∂ f [−1]

1 (x)
∂x

∣∣∣∣∣
x= f0(s)

×
(

f [−1]
1 ( f0(s)) − s

)
p0(s)ds. (6)

To simplify the calculation and avoid the differentiation, which may cause some numerical
error, the second term in the above formula can be rewritten as

2
∫ 1

f [−1]
1 ( f0(t))

(
s − f [−1]

0 ( f1(s))
)

ds. (7)

Here the inverse function theorem is applied.

3. Full waveform inversion

In this section, we first briefly review the theory of FWI and the adjoint state method. Then,
an analog of the adjoint wavefield using transportation distance is developed. The differentia-
bility and uniqueness will be analyzed in subsequent sections. In section 6, it will be used in
conjunction with the softplus encoding method to perform numerical experiments.

We start with the acoustic wave equation in the time domain governed by(
m(x)

∂2

∂t2
−∇ ·

(
1

ρ(x)
∇
))

u(x, t) = f (x, t), (8)

where m is the reciprocal of the bulk modulus, ρ is the density, and u and f stand for the
pressure wavefield and source term, respectively. We symbolize the relationship between
the model parameters and the observed wavefield by an operator F, which is also referred
to as the forward operator,

F(m, ρ, f ) = u|Γ. (9)

Γ stands for the receiver geometry, which is usually a portion of a surface or a collection of
discrete points.

The goal of the inverse problem is to reconstruct the model parameters from the measured
data. Usually, the inverse problem is posed as a nonlinear least-squares optimization problem,

min
m,ρ, f

J (m) =
1
2
‖F(m, ρ, f )− d‖2

2, (10)

whereJ is the misfit function and ‖ · ‖2 is the L2 norm. That is, to choose the model parameters
such that the correspondingly simulated waveform yields the minimum difference away from
the measured data in the L2 sense. For simplicity, we assume the density ρ and source term f
are known in this work. Hence we omit the explicit dependence on ρ, f in (9) and (10) in the
following sections.

3.1. Adjoint state method

Modern techniques for seismic inverse problems involve using data with sizes ranging from
gigabytes to terabytes or even petabytes. The adjoint state method plays a significant role in
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the computational aspect of large-scale optimization problems. For completeness, a simple
description is included here in a general setting. For more details on this topic, please refer
to [2].

Suppose the misfit function is J (u(m)), where u and m stand for the state variable and model
parameter, respectively. u and m satisfy the state equation Φ(m, u(m)) = 0. For the gradient-
based method, the total derivative δJ /δm needs to be computed to assess the sensitivity of the
misfit function to the model parameter. The gradient δJ /δm is simply

δJ
δm

=

〈
δJ
δu

,
δu
δm

〉
, (11)

where the inner product acts in the space of u, and δu/δm is a linear operator acting on perturba-
tions on m and returning perturbations on u. In the context of FWI, the difficulty of numerically
evaluating δJ /δm lies in the evaluation of the wavefield perturbation δu for all possible model
perturbation δm. The adjoint state method answers the question, ‘how to efficiently calculate
δJ /δm without evaluating δu/δm explicitly?’

Let us define the adjoint state variable v as the solution of the adjoint state equation,(
∂Φ

∂u

)∗
v =

δJ
δu

. (12)

From the state equation, we know that

∂Φ

∂u
δu
δm

+
∂Φ

∂m
= 0. (13)

It follows that

δJ
δm

=

〈
δJ
δu

,
δu
δm

〉

=

〈(
∂Φ

∂u

)∗
v,

δu
δm

〉

=

〈
v,

∂Φ

∂u
δu
δm

〉

=

〈
v,−∂Φ

∂m

〉
. (14)

In the above identities, we omit the explicit dependence of the inner products on the associated
spaces for simplicity. Indeed, from this formulation, one observes that as long as the wavefield
u is still the intermediate in the construction of the data misfit functionJ , only the adjoint state
variable v depends on the specific form of J . Furthermore, only the adjoint source term δJ

δu
needs to be modified for different misfit functions as long as it is of the form J = J (u(m)).

In the conventional FWI with least-squares misfit function

J =
1
2
‖u − d‖2

2, u = F(m),

we have that

δJ
δu

= u − d.

7
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Applying the adjoint state method gives

δJ
δm

=

〈
v,−∂Φ

∂m

〉
, (15)

where the adjoint state variable v solves the adjoint state equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
m(x)

∂2

∂t2
−∇ ·

(
1

ρ(x)
∇
))

v(x, t) = u − d,

v(x, T) = 0,

∂tv(x, T) = 0.

(16)

For the FWI with quadratic Wasserstein norm and proper encoding, the data misfit function
is defined as

J = W2
2 (ũ, d̃), u = F(m), ũ = D(u), d̃ = D(d), (17)

where D is the encoding operation from seismic data to equal-mass non-negative measures. It
follows that

δJ
δu

=

〈
dW2

2 (ũ, d̃)
dũ

,
dD(u)

du

〉
= D′[u]∗(ϕ), (18)

where ϕ is the Kantorovich potential of W2
2 (ũ, d̃) associated with ũ. Then, applying the adjoint

state method, we obtain that

dJ
dm

=

〈
v,−∂Φ

∂m

〉
, (19)

where the adjoint state variable v solves the adjoint state equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
m(x)

∂2

∂t2
−∇ ·

(
1

ρ(x)
∇
))

v(x, t) = D′[u]∗(ϕ),

v(x, T) = 0,

∂tv(x, T) = 0.

(20)

4. Wasserstein metric from a seismic inverse problem perspective

In this section, we discuss the features of the quadratic Wasserstein metric from a seismic
inverse problem perspective. We start by investigating the frequency sensitivity of T . It is
proved that T emphasizes the low-frequency components not only locally in the linearization
regime but also in a global sense. This also reveals that the sensitivity of the solution is minor
in highly oscillating data. Next, we present the rigorous definition of a set, says D, in which
the optimization is performed. We show the Euclidean differentiability of the transportation
cost and that the gradient is unique up to an additive constant for any element in D. This set
will be used as a desirable image domain to design the encoding mapping.

8
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4.1. Frequency sensitivity of W2

A long-standing view in seismic inversion starts with low-frequency data, which contain large-
scale, kinematically relevant components of the velocity model. The low-to-high frequency-
continuation schemes [31–35] help FWI mitigate the cycle-skipping issue, i.e. the local min-
imum problem. At the same time, an overly detailed frequency division will slow down the
entire inversion process significantly. As is well known, the quadratic Wasserstein distance
W2(μ, ·) is asymptotically equivalent to a weighted Ḣ−1(dμ), where Ḣ−1 denotes the dual space
of the space of zero-mean H1 function. It is also well known that L2 measures different fre-
quency components equally, and Ḣ−1 attenuates them with a polynomial weight of order |k|−1.
The following theorem shows a non-asymptotically similar behavior of W2 and Ḣ−1.

Theorem 4.1. Assume that μ0,μ1 ∈ P(S1), where S1 stands for the unit circle, and

μ1 = μ0 +
∑

k∈Z+
(ak cos(kθ) + bk sin(kθ)) . (21)

Note that the 0-frequency amplitude vanishes since
∫

dμ0 =
∫

dμ1. If

ν = μ0 −
∑

k∈Z+

(
(ak cos)−(kθ) + (bk sin)−(kθ)

)
, (22)

is a non-negative measure on S1, then

W2
2 (μ0,μ1) �

∑
k∈Z+

2π2

k2

(
|ak|+ |bk|

)
. (23)

Here, f− stands for the negative part of the Radon measure f.

Proof. We shall find at least one (a priori not optimal) transport plan from μ0 to μ1 by
rearranging only |ak| or |bk| mass within an arc of length 2π/k. Let

Dk =
{

(θ,ϕ) ∈ S1 × S1|ϕ =
(
θ +

π

k

)
mod 2π

}
, k ∈ Z

+,

and D∞ be the diagonal {(θ, θ)} in S1 × S1. Consider the following coupling:

κ = δ(D∞)ν +
∑

k∈Z+
δ(dk)

(
(ak cos)+(kθ) + (bk sin)+(kθ)

)
. (24)

This coupling keeps an amount of mass in place, which is shared between μ0 and μ1, and
transport the rest within one corresponding period. It follows that κ has marginals μ0 and μ1

and is an admissible transport plan. This means that

W2
2 (μ0,μ1) �

∫
S1×S1

c(θ,ϕ)dκ(θ,ϕ) =
2π2

k2

(
|ak|+ |bk|

)
, (25)

where the cost function c(θ,ϕ) = min(|θ − ϕ|2, (2π − |θ − ϕ|)2) is associated with the
geodesic distance along the circle. �

Remark 4.2. In the proof of theorem 4.1, we use a constructive approach rather than the
explicit solution of the 1D OT. The result holds true for high-dimensional domains with bound-
aries. The proof needs to be modified concerning boundary treatment, and the corresponding

9
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weight is |k|−2. It is also worth mentioning that W2 is not very sensitive to oscillations and
offers a natural weighting that emphasizes low-frequency differences. Therefore, the primary
motivation for using W2 is to solve large-scale errors instead of pursuing high-resolution
imaging.

4.2. Gradient of quadratic Wasserstein distance

The seismic inverse problem is that of solving for model functions in a nonlinear system.
Considering the large scale of the system, the commonly used approach is to formulate the
inverse problem as an optimization problem and solve it with gradient-based methods. A
brief discussion of the directional differentiability properties of the quadratic Wasserstein dis-
tance along certain directions is presented here. We start by extending Jν(μ) = T (μ, ν) to a
functional on L2.

Roughly speaking, the optimization is performed using linearization in a vector space, and,
instead of the L2-norm, the total transportation cost is used as the objective function. As a result,
this suggests that it is necessary to extend the functional from the probability space to the L2

space. With a slight abuse of notation, we extend the functional to T : L2 × L2 → [0,+∞] by

T (μ, ν) =

{
W2

2 (μ, ν), ifμ, ν ∈ P ,

+∞, otherwise.
(26)

Next, we introduce a subset U ⊂ P , which is, in some sense, served as the ‘interior’ of P .
Then, a short discussion is presented on the differentiability properties of the transportation
cost T (μ, ν) over U , see [23, 29] for more detail and more general cases. Discussion in this
section paves the way to data encoding and minimization of the misfit between seismic data in
the transportation sense.

Let Σ be the Borel σ-algebra on the given bounded domain in R
n and

U =

{
μ ∈ P | ∃r > 0 s.t.

∫
χA dμ � r

∫
χA dx, ∀ A ∈ Σ

}
. (27)

Theorem 4.3. Let T : L2 × L2 → [0,+∞] be the extended transportation cost. Consider
the functional γ → T (γ, ν) for a fixed measure ν ∈ P . If μ ∈ U , then

∂T (γ, ν)
∂γ

(μ) = ϕ, (28)

where ϕ is the Kantorovich potential associated with μ and is unique up to additive constants.

Proof. For some fixed γ ∈ U , consider the sequence {μt � μ+ t(γ − μ)} converging to μ
in the sense of

lim
t→0

T (μt,μ) = 0. (29)

By the triangle inequality on W2, one gets

lim
t→0

T (μt, ν) − T (μ, ν) = 0, ∀ ν ∈ P . (30)

Let (ϕ,ψ) be an optimizing pair in the Kantorovich dual formulation, i.e.

T (μ, ν) =
∫

ϕ dμ+

∫
ψ dν, (31)

10
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and we additionally assume that
∫
ϕ(x)dx = 0, thus making the unique determination of (ϕ,ψ).

The sub-differentiability of T (·, ν) follows from the fact that (ϕ,ψ) is optimal for T (μ, ν), and
is not necessarily optimal for T (μt, ν),

T (μt, ν) − T (μ, ν) �
(∫

ϕ dμt +

∫
ψ dν

)
−
(∫

ϕ dμ+

∫
ψ dν

)

= t
∫

ϕd(γ − μ). (32)

For the other part of the differentiability, we denote a subsequence realizing the limit
superior of T (μt, ν) by {μtk}, i.e.

lim
k→+∞

T (μtk , ν) = lim sup
t→0

T (μt, ν), (33)

and let (ϕk,ψk) be an optimizing pair for T (μtk , ν). Additionally, we assume
∫
ϕk(x)dx = 0.

Thus, the uniqueness of ϕk follows by the dμk-uniqueness of ∇ϕk and the fact that μk ∈ U is
positive. Then, we conclude from the suboptimality of (ϕk,ψk) for T (μ, ν) that

T (μtk , ν) − T (μ, ν) �
(∫

ϕk dμtk +

∫
ψk dν

)
−
(∫

ϕk dμ+

∫
ψk dν

)

= tk

∫
ϕkd(γ − μ). (34)

From the stability of the optimal transference mapping and Brenier’s theorem [23], we know
ϕk ⇀ ϕ. Hence

lim
t→0

T (μt, ν) − T (μ, ν)
t

=

∫
ϕd(γ − μ). (35)

The uniqueness of ϕ up to additive constants follows by noting that ∇ϕ is dμ-unique and μ is
positive everywhere.

�

Remark 4.4 (On the strictly positive range of the encoding mapping). Usually,
functions differing only on a measure-null set are not distinguished. In the inverse problem
context, one compares two encoded data and does not expect them to be invisible to each other.
The definition of U originates from the idea that any two elements of U should be absolutely
continuous to each other and the observation U + εξ ⊂ U for small ε and bounded mean-zero
perturbation ξ. On the other hand, the positiveness of μ is required to ensure that the derivative
ϕ is unique up to additive constants over the whole domain. In the next section, this uniqueness
will be used to show the associated gradient for the velocity model is unique, and therefore,
the adjoint state method is well defined. Last but not least, the uniform lower bound r in the
definition of U is to give more space for the line search in the optimization.

5. Encoding methods

In this section, we investigate the criterion for selecting a proper encoding method to transfer
the non-Wasserstein-measurable seismic data into PDFs. A simple but quite useful strategy
using the softplus function is presented, and some useful properties are examined. Our goal is
to make the data misfit measurable using the Wasserstein distance and efficiently calculate the

11
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associated gradient. In this perspective, we suggest the following strategies to choose encoding
map D:

(a) The range of D is contained in U ;
(b) D is differentiable and invertible;
(c) D is a pointwise mapping, i.e. (D ◦ u)(x) = D(u(x)).

The first point guarantees the existence and uniqueness (up to an additive constant) of the
first variation of the transportation cost. The second one makes the mapping compatible with
quasi-Newton type methods. The third point is purely for the sake of efficiency. Usually, to
match the mass of the encoded data, a normalization procedure is involved, and it is hard to
ensure the invertibility of the encoding map. A common solution for this issue is to keep the
total mass aside and use it when need to invert the encoding map. Therefore, only the mass
distribution will be used to calculate the data misfit. For example, one can map u to (ũ/〈ũ〉, 〈ũ〉)
with ũ = log(1 + exp(u)), and use the first element only for the misfit calculation; the second
element is needed when inverting the map. In the following sections, encoding mappings that
meet the above three conditions will be referred to as regular mappings.

5.1. Uniqueness of the gradient in the adjoint state method

According to theorem 4.3, for any μ ∈ U , the first variation of the transportation cost exists
and is unique almost everywhere up to additive constants. Apparently, for all regular encoding
maps, one expects that the gradient dJ /dm in the adjoint state method does not depend on the
particular choice of the Kantorovich potential ϕ. The following theorem presents a rigorous
proof of this result.

Theorem 5.1. Let m be a parameter model and u the data associated with m as in (8). For
any fixed ν ∈ U , the value of

d
dm

T (D(u(m)), ν) (36)

does not depend on the particular law by which the Kantorovich potential ϕ is chosen,
provided that D is differentiable.

Proof. Let m0, m1 be the first variations of T obtained with the particular choice of the Kan-
torovich potential, say ϕ0 and ϕ1, respectively. Recall from the adjoint state method (19) and
(20), that mk’s are of the form

mk =

∫ T

0
vk∂

2
t u dt, k = 1, 2, (37)

where u is the background wavefield, and vk solves the adjoint wave equation with D′[u]∗(ϕk)
as the right-hand side:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(
m(x)

∂2

∂t2
−Δ

)
vk(x, t) = D′[u]∗(ϕk),

vk(x, T) = 0,

∂tvk(x, T) = 0.

(38)

By theorem 4.3, we find that

ϕ0 − ϕ1 = c (39)

12
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for some constant c. We claim that∫
Ω

(m0 − m1)hm dx = 0, ∀ hm ∈ L2. (40)

To prove this, we consider an auxiliary wavefield hu that solves the wave equation with−hm∂
2
t u

as the right-hand side:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
m(x)

∂2

∂t2
−Δ

)
hu(x, t) = −hm∂

2
t u,

hu(x, 0) = 0,

∂thu(x, 0) = 0.

(41)

Then, it follows that∫
Ω

(m0 − m1)hm dx =

∫
Rn

(∫ T

0
(v0 − v1)∂2

t u dt

)
hm dx

= −
∫
Rn

∫ T

0
(v0 − v1)

(
m(x)

∂2

∂t2
−Δ

)
hu(x, t)dt dx

= −
∫
Rn

∫ T

0
hu

(
D′[u]∗ϕ0 − D′[u]∗ϕ1

)
dt dx

= −
∫
Rn

∫ T

0
cD′[u](hu)dt dx

= 0. (42)

In the above derivation, the first equality is from (37); substituting for hm∂
2
t u using (41), we

obtain the second equality; the third equality employs (38) and integration by parts twice; then,
we use the definition of the adjoint operator and (39) to conclude the proof. �

5.2. Encoding with softplus function

We now turn to the formulation of an encoding map using the softplus function. The Logistic
function is defined as

f (x) =
L

1 + e−β(x−x0)
,

where x0 is the value of the sigmoid’s midpoint, L is the curve’s maximum value, and β is the
steepness of the curve. The standard logistic function is the one with parameters (β = 1, x0 =
0, L = 1), which yields

f (x) =
ex

ex + 1
=

1
1 + e−x

.

The logistic function is useful since it can take any real number, whereas the output always
takes values between zero and one and hence is interpretable as a probability density function.
In practice, due to the nature of the exponential function e−x , it is often sufficient to compute the
standard logistic function for x over a small range of real numbers, such as a range contained in
[−5, 5]. The anti-derivative of the logistic function f (x) = log(1 + ex) is widely used in logistic

13
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Figure 1. Softplus function and projection to the positive part.

regression, which is used in various areas, including machine learning and social sciences. The
output also takes a positive value. Its derivative shows that the variance for negative input value
is small. The graph of the function (figure 1) shows that the behavior of f (x) is flat when x < 0
and is similar to y = x when x is large.

We use the following operation

ũ(t) =
1
|β| log(1 + eβu(t)) (43)

composited with the normalization

ũ → ũ
〈ũ〉

to encode the seismic data into PDFs, where 〈·〉 denotes the averaging operation. It is easy to
check that

lim
β→+∞

ũ = u+ � max(u, 0) and lim
β→−∞

ũ = u− � max(−u, 0), (44)

and the convergence is uniform. The above asymptotic behavior is an important advantage
of this encoding procedure. One can expect the Wasserstein distance of the functions pro-
cessed using this differentiable encoding method to show similar behavior as the one using
u+ while the smoothness preserved. According to the stability of the optimal transport plans
[28, corollary 5.23], we can identify the convex functional on the seismic data u by check-
ing its convexity on u+ and u−. In practice, large β can be chosen for better convexity
in the objective function, but care should be taken to avoid the gradient-vanishing problem
and overflow errors.

5.3. Convexity of the encoded data

We conclude this section by examining convexity under different measurement methods. The
primary motivation for using the OT metric in the seismic inversion is to exploit its convex-
ity to the translation and dilation, which are the primary data mismatch types. In [14], it is
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Figure 2. arg minp
(
(1 − α)‖p− p0‖2

2 + α‖p− p1‖2
2

)
.

proved that the quadratic Wasserstein distance is convex with respect to translation and dila-
tion, even in the case of a mixture of the two. In general, this convexity cannot be preserved after
encoding. Roughly speaking, the encoding map can be interpreted as a procedure to generate
non-negative functions from seismic data via adding/removing mass pointwise. After encod-
ing, the endpoint, t = 0, T, can be a source or sink of mass. Hence the transportation cost is no
longer convex to the translation and dilation.

Using the properties in (44) and [14, theorems 2.1–2.3], one can easily show that the
encoded data using softplus function bears the asymptotic convexity when the pre-encoding
data has compact support. Figures 2–4 present the interpolations of a Ricker wavelet p0(t)
and its translation p1(t) = p0(t − 0.6) in L2, W2 with linear encoding method, and W2 with
softplus encoding, respectively. Unsurprisingly, the L2 one calculates the interpolation in a
pointwise manner; the encoding method using added constants shows a phenomenon of local
transportation; by contrast, the one using softplus function accurately captures the translation
information. The exponential encoding method [15], p̃(t) = eαp(t), can also retains the transla-
tion convexity with a large α, but a large α also leads to an overflow issue and it does not have
an asymptotic behavior as α→±∞.

6. Numerical examples

In this section, the properties of our proposed algorithm are illustrated through two numeri-
cal experiments. We first use simple structural models to investigate the relationship between
the convexity of the misfit function and the encoding parameter β. The numerical experiment
indicates that one can tune β to alleviate the local minima problem. Then, an inversion is per-
formed on the 2D benchmark Marmousi model [36] to demonstrate the effectiveness of our
method. To take advantage of the 1D explicit solution and avoid confusion on transportation
over different units (time and space), instead of multiple-dimensional OT, we employ a trace-
by-trace strategy to compute the objective function and the adjoint source. That is, we use the
objective function

J (u(x, t), d(x, t)) =
∫

T (u(x, t), d(x, t))dx.
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Figure 3. arg minp

(
(1 − α)T

(
p, p0+c

〈p0+c〉

)
+ αT

(
p, p1+c

〈p1+c〉

))
.

Figure 4. arg minp ((1 − α)T (p,D(p0)) + αT (p,D(p1))) , D(p) = log(1+ep)
〈log(1+ep)〉 .

6.1. The landscape of objective functions

We start our study of numerical experiments with a numerical investigation of the landscape
of the misfit function. The experiment is performed on a family of 2D models with two feature
variables. The receivers are uniformly distributed at an interval of 40 m over the top surface
with 16.85 km length, and a point source is located in the center of the receivers. We use the
following formula to build the velocity models:

v(x, z) =

{
1500, when z < 50,

v0 + αz, when z � 50.
(45)

A band-pass filter at 3–18 Hz is applied to the source function and the data to imitate the actual
exploration seismic data. The reference data is obtained with velocity model constructed with
v0 = 2000 m s−1 and α = 0.7 s−1. Figure 5 shows the misfit functions as functions of v0 and
α. For better comparison, we normalize the misfit using its maximum value.
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Figure 5. Comparison of landscapes.

The landscape using L2 metric is shown in figure 5(a). Due to the high nonlinearity of the
inverse problem and limited acquisition geometry, there are many local minima even for this
simple-structured model. Once the background velocity is too far from the true model, the
gradient of the misfit function will not update the model or even update it incorrectly. To arrive
at the global minimum using a gradient-based descent method, one needs to start from an initial
model within the same basin as the global minimum.

We further investigate the applicability of convexifying the W2 misfit using encoding param-
eter β. This experimental setting provides a perfect scenario for the quadratic Wasserstein
metric, since the number of the seismic events stays the same. Actually, it is easy to prove the
asymptotic convexity of the objective function rigorously. Therefore, our goal is to eliminate
the local minima by tuning β. Figures 5(b)–(d) displays the landscapes with gradually increas-
ing β. It demonstrates that the larger β, the less local minima. It is also interesting to note that
W2 misfit functions are smoother than the L2 one, which is associated with the fact that the
regularity of the OT map is one degree higher than that of the seismic data.
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Figure 6. Velocity models in the numerical experiment with Marmousi model.

Figure 7. Data and model error.

6.2. Inversion on the Marmousi model

In the following experiments, we use the Marmousi benchmark model [36]. The true velocity
model is shown in figure 6(a). A 921 × 301 grid is used to represent an approximately 9.2
km × 3 km area. In both L2 and W2 cases, a heavily smoothed model from the true one,
as shown in figure 6(b), is used as the initial model for the iterative gradient-based descent
method (figure 7).

In this experiment, a perfectly matched layer absorbing boundary condition is applied to the
domain boundaries except for the top free surface. The synthetic data is generated with an array
of equally spaced 201 sources at depth 8 m and 461 receivers at depth 12 m distributed over
the model’s top surface. The source signature is the Ricker wavelet with a center frequency of
10 Hz, and the recording time is 4.5 s. A 3–18 Hz band-pass filter is applied to the source and
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Figure 8. The single shot data generated with the corresponding models at x = 4.6 km.
From left to right: true, initial, W2-softplus, L2, W2-linear and W2-exp.

the data to imitate the actual seismic data in geophysical exploration. For the modeling and
inversion, we use Devito [37] to solve the acoustic wave equation and the associated adjoint
state equation. The numerical solution is obtained with a finite-difference scheme, which is
forth-order accurate in space and second-order in time. We employ the limited-memory BFGS
method with box constraints [38] implemented in SciPy [39] for the optimization. All the
numerical experiments stop when the decrease of the objective function meets the stopping
criteria,

Jk − Jk+1

max(Jk,Jk+1, 1)
< 10−5.

Besides the proposed method, we also implement W2 inversion with the linear [14] and expo-
nential [15] encoding methods for comparison. The inversions using L2 and W2 with linear,
exponential and softplus encoding stop after 20, 11, 17 and 27 iterations, respectively. The
reconstruction results are displayed in figure 6, and the associated data are shown in figure
8. Due to the significant difference between the initial and true models, the least-squares for-
mulation suffers from a cycle-skipping issue. The inversion using L2 metric terminates with
an incorrect velocity model. The W2-linear one also stops early because of the local trans-
portation issue; the problem of the exponential one is mainly in numerical aspects. The main-
stream FWI solvers are all implemented using the single-precision floating-point accuracy for
feasible memory usage, which prevents us from using large scaling parameters to improve
convexity. At the same time, the softplus one can avoid the overflow issue by using spline
approximations.

We present a vertical slice at x = 3 km in figure 9(a). By contrast, the L2 metric produces
low-velocity artifacts, which is strong evidence of cycle-skipping. Hot spots of slowness errors
are shown in figure 9. The inversion with the proposed method correctly reconstructs the area
swept by the diving waves. Some finer structures in the deeper region, mainly reflectors, can
be improved using further iterations with a L2 metric. The analysis in theorem 4.1 suggests
that L2 should be better for the inversion of details when it does not suffer from the cycle-
skipping issue anymore. One can switch to L2 metric once the cycle-skipping problem is
overcome.

A fine-tuning procedure is usually not required for selecting β. A heuristic rule is to choose
β to ensure that the total mass of the positive part is 50% greater than the total mass of the
negative part after encoding if one wants to enhance the positive part, and vice versa. In this
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Figure 9. Vertical slices and relative slowness difference (m − mtrue)/mtrue.

way, we can avoid local transportation and retain the translation convexity.A simple calculation
shows that for the Ricker source wavelets with a maximum value of 1, the appropriate choice
of β is 2.0, which is used in all inversion tasks.

7. Conclusion

We investigated the properties of the objective function for FWI using the quadratic Wasser-
stein metric and proper encoding methods. We rigorously prove that the quantity dJ /dm,
obtained using the adjoint state method, does not depend on the particular choice of the Kan-
torovich potential if one chooses the encoding method properly. In particular, transportation
metric with softplus encoding has asymptotic convexity concerning time-shift and dilation. It
helps one extract time-shift information more accurately, thus provides the velocity model with
appropriate large-scale changes, and mitigates the cycle-skipping problem.

For efficiency, we use a trace-by-trace approach in this work. FWI is a very computationally
intensive task, and we do not want to add too much computational cost to it. One-dimensional
OT has a closed-form solution and can be solved with linear complexity. Our approach only
adds negligible cost to FWI (less than 0.1%).

Another point that should be stressed is that, based on the result in theorem 4.1, the trans-
portation type objective function enhances low-frequency information as Ḣ−1 does. Thus, W2

is more appropriate when the initial model is far from the true model. Once the cycle-skipping
issue is fixed, it is better to switch to a L2 metric for fast high-resolution reconstruction.

In two numerical examples, we show the feasibility of the proposed method. The first one
uses two-parameter models to illustrate how the softplus encoding parameter recasts the land-
scape of the objective function. In the second example, we demonstrate the accuracy and
efficiency of our method when applied to synthetic data generated by the Marmousi model.
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We realize that a subtle choice of encoding parameter is not required. A heuristic rule is pro-
vided to choose β that will fit most cases. It is worth mentioning that some examples with field
data show that either the positive or the negative part only is not enough due to ambiguity on
the source wavelet. In this case, a sign-switch β can be applied to emphasizing positive and
negative in an alternating fashion to improve the robustness of the proposed method.

As we mainly focus on applying the transportation metric on seismic data, optimization
techniques only involving first-order derivatives are adopted. The Wasserstein metric with
softplus encoding can be extended to be suitable for Newton’s method or other second-order
algorithms. Moreover, other than treating T (·, ν) as a function defined on L2 and considering
only the differential formulation in Euclidean sense, another natural strategy is to use Otto’s
calculus [28, chapter 15] and consider optimization using gradient flows in the Wasserstein
space. We will investigate these approaches in future works.
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Appendix A. Algorithm

See (algorithm 1).

Algorithm 1. Calculation of T (p0, p1) and ∂
∂p1

T (p0, p1).

1: procedure Pseudo-inverse( f 0, f 1, t) � Calculation of f −1
0 ( f1(t))

2: m ← 1
3: for k ← 1, N do
4: f̃ = f1(tk)
5: while f0(tm) < f̃ do m ← m + 1
6: if m = 1 then ϕ(tk) ← tm

7: else if m = N and f (tm) < f̃ then ϕ(tk) ← tm

8: else α← f̃ − f (tm−1)
f (tm)− f (tm−1)

9: ϕ(tk) ← (1 − α)tm−1 + αtm � The function ϕ is f −1
0 ( f1(t))

10: procedure T (p0, p1, t) � Calculation of T (p0, p1)
11: for k ← 1, N do
12: f 0(tk) ← f 0(tk−1) + p0(tk), f 1(tk) ← f 1(tk−1) + p1(tk)
13: ϕ← Pseudo-inverse( f 0, f 1, t), w← 0 � The function ϕ is f −1

0 ( f1(t))
14: for k ← 1, N do
15: w ← w + p1(tk) (ϕ(tk) − tk)2 � The value of T (p0, p1) is w
16: procedure gradient(p0, p1, t) � Calculation of ∂

∂p1
T (p0, p1)

17: for k ← 1, N do
18: f 0(tk) ← f 0(tk−1) + p0(tk), f 1(tk) ← f 1(tk−1) + p1(tk)
19: ϕ0 ← Pseudo-inverse( f 0, f 1, t) � ϕ0 equals f −1

0 ( f1(t))
20: ϕ1 ← Pseudo-inverse( f 1, f 0, t) � ϕ1 equals f −1

1 ( f0(t))
21: ξ ← Integration(ϕ0,ϕ1, t) � ξ(t) equals∫ 1

f−1
0 ( f1(t))

(
s − f −1

1 ( f0(s))
)

ds

22: for k ← 1, N do
23: ζ(tk) ← (ϕ0(tk) − tk)2 + 2ξ(tk) � ζ equals ∂

∂p1
T (p0, p1)
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