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Abstract We construct the Frobenius structure on a rigid connection BeǦ on

Gm for a split reductive group Ǧ introduced by Frenkel–Gross. These data
form a Ǧ-valued overconvergent F-isocrystal Be†

Ǧ
on Gm,Fp , which is the

p-adic companion of the Kloosterman Ǧ-local system KlǦ constructed by
Heinloth–Ngô–Yun. By studying the structure of the underlying differential
equation, we calculate the monodromy group of Be†

Ǧ
when Ǧ is almost simple

(which recovers the calculation of monodromy group of KlǦ due to Katz and
Heinloth–Ngô–Yun), and prove a conjecture of Heinloth–Ngô–Yun on the
functoriality between different Kloosterman Ǧ-local systems. We show that
the Frobenius Newton polygons of KlǦ are generically ordinary for every Ǧ

and are everywhere ordinary on |Gm,Fp | when Ǧ is classical or G2.
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1 Introduction

1.1 Bessel equations and Kloosterman sums

1.1.1. The classical Bessel differential equation (of rank n) with a parameter
λ

(
x
d

dx

)n
( f )− λnx · f = 0 (1.1.1.1)

has a unique solution which is holomorphic over the complex plane:
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Bessel F-isocrystals for reductive groups 999

∮
(S1)n−1

exp λ

(
z1 + · · · + zn−1 + x

z1 · · · zn−1
)

dz1 · · · dzn−1
(2π i)n−1z1 · · · zn−1

(1.1.1.2)

=
∑
r≥0

1

(r !)n (λ
nx)r .

One may reinterpret this fact using the language of algebraicD-modules as
follows. Let K be a field of characteristic zero. The Bessel equation (1.1.1.1)
can be converted to a connection Ben on the rank n trivial bundle on the
multiplicative group Gm,K

Ben : ∇ = d +

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1
λnx 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

dx

x
, (1.1.1.3)

whichwe call theBessel connection (of rank n). On the other hand,we consider
the following diagram

Gm G
n
m

addmult
A
1, (1.1.1.4)

where add (resp. mult) denotes the morphism of taking sum (resp. product) of
n coordinates of G

n
m , and define the Kloosterman D-module on Gm,K as

KldRn := Rn−1 mult!(add∗(Eλ)), (1.1.1.5)

where Eλ = (O
A
1
K
,∇ = d − λdx) is the exponential D-module on A

1
K .

With these notations, the fact that (1.1.1.2) is a solution of (1.1.1.1) reflects an
isomorphism of algebraic D-modules on Gm,K

Ben � KldRn .

Its differential Galois group was calculated by Katz [49].
1.1.2.There is a parallel theory in positive characteristic. Let p a prime number.
For every finite extension Fq/Fp and a ∈ F

×
q , the Kloosterman sum Kl(n; a)

in n-variables is defined by1

1 The sum (1.1.2.1) is slightly different from the standard definition by a factor (− 1√
q )

n−1.
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Kl(n; a) = (
−1√
q
)n−1 (1.1.2.1)

×
∑
zi∈F

×
q

exp

(
2π i

p
TrFq/Fp

(
z1 + · · · + zn−1 + a

z1 . . . zn−1
))

.

It admits a sheaf-theoretic interpretation due to Deligne [33]. Namely, the
analog of the exponential D-module in positive characteristic is the Artin–
Schreier sheaf ASψ on A

1
Fp

associated to a non-trivial character ψ : Fp →
Q�(μp)

×. In [33], Deligne defined the Kloosterman sheaf Kln on Gm,Fp as
below:

Kln = Rn−1 mult!(add∗(ASψ))

(
n − 1

2

)
, (1.1.2.2)

and showed that Kln is a local system of rank n and of weight 0 and that
the Frobenius trace of Kln is equal to the Kloosterman sum Kl(n;−) via an
embedding ι : Q�(μp) → C such that ιψ(x) = exp(2π i x/p) for x ∈ Fp. In
particular, this implies theWeil bound of theKloosterman sum |Kl(n; a)| ≤ n.

In [50, § 11], Katz calculated the (global) geometric and arithmetic mon-
odromy group of Kln as follow:

Ggeo(Kln) = Garith(Kln) =

⎧⎪⎪⎨
⎪⎪⎩

Spn n even,
SLn pn odd,
SOn p = 2, n odd, n 
= 7,
G2 p = 2, n = 7.

(1.1.2.3)

Surprisingly, the exceptional group G2 appears as the monodromy group.
1.1.3. In 70’s [40], Dwork and Sperber showed that there exists a Frobenius
structure on the Bessel connection (1.1.1.3) whose Frobenius traces give the
Kloosterman sum. Here a Frobenius structure is a horizontal isomorphism
between the Bessel connection and its pullback by the “Frobenius endomor-
phism” F : Gm,K → Gm,K over K defined by x �→ x p. Although the Bessel
connection is algebraic, such a horizontal isomorphism is not algebraic but of
p-adic analytic nature.
To explain their result, we recall the ring of p-adic analytic functions on P

1

overconvergent along {∞} [19]. We set K = Qp(μp), equipped with a p-adic
valuation |-| normalised by |p| = p−1, and denote by A† the ring of p-adic
analytic functions with a radius of convergence > 1:

A† =
{ +∞∑

n=0
anx

n | an ∈ K , ∃ ρ > 1, lim
n→+∞ |an|ρ

n = 0

}
. (1.1.3.1)
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Bessel F-isocrystals for reductive groups 1001

We take an algebraic closure K of K and fix an isomorphism ι : K →
C. There exists a unique element π of K satisfying π p−1 = −p, which
corresponds to the character exp 2π i(−p ) : Fp → C

× (cf. 2.1.1(i)).

Theorem 1.1.4 (Dwork, Sperber [40,71,72]) Let n be an integer prime to p
and set λ = −π as above. There exists a unique ϕ(x) ∈ GLn(A†) satisfying
the following properties.

(i) The matrix ϕ satisfies the differential equation:

x
dϕ

dx
ϕ−1 + ϕ

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1
λnx 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

ϕ−1 = p

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1
λnx p 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

.

That is, ϕ defines a horizontal isomorphism F∗(Ben)
∼−→ Ben.

(ii)Fora ∈ F
×
q ,wehave ιTr ϕa = Kl(n; a), whereϕa =∏deg(a)−1

i=0 ϕ(̃a pi ) ∈
GLn(K ) and ã ∈ K denotes the Teichmüller lifting of a.

(iii) If {α1, · · · , αn} denote the eigenvalues of ϕa, then we have |αi | =
p

n+1−2i
2 deg(a) after reordering αi .

The data (Ben, ϕ) form an overconvergent F-isocrystal on Gm,Fp (relative
to K ) [19], which we call the Bessel F-isocrystal (of rank n) and denote by
Be†n . By (ii), Be

†
n is the p-adic companion of the Kloosterman sheaf Kln in the

sense of [3,34].

1.2 Generalization for reductive groups

1.2.1. Recently, there are two generalizations of above results, from different
perspectives of the (geometric) Langlands program.Thefirst one is the general-
ization ofBessel equations byFrenkel andGross [42]. For each (split) reductive
group Ǧ over a field K of characteristic zero, Frenkel–Gross wrote down an
explicit Ǧ-connection BeǦ on Gm , which specializes to Ben when Ǧ = GLn .

We will call BeǦ the Bessel connection of Ǧ in this paper. Another one, due
to Heinloth, Ngô and Yun [47], is the generalization of the Kloosterman sums.
Namely, the authors explicitly constructed, for each (split) reductive group G
over the rational function field Fp(t), a Hecke eigenform of G, and defined
KlǦ as its Langlands parameter, which is an �-adic Ǧ-local system on Gm that

specializes to Kln if Ǧ = GLn . The authors called KlǦ the Kloosterman sheaf

of Ǧ.
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1002 D. Xu, X. Zhu

The original goals of our work are to prove a functoriality conjecture of
Heinloth–Ngô–Yun relating Kloosterman sheaves for different groups [47,
conjecture 7.3] and to study the arithmetic properties of exponential sums
associated to KlǦ . Although this conjecture is about �-adic sheaves, it seems
difficult to access it purely in the �-adic framework. Our approach is based
on our investigation of the p-adic aspects of the above story which unifies the
previous two generalizations. Our main results can be summarized as follows:

(i) We construct the Frobenius structure on BeǦ and obtain the Bessel F-

isocrystal Be†
Ǧ
of Ǧ, which is the p-adic companion ofKlǦ in appropriate

sense;
(ii) We calculate the monodromy group of Be†

Ǧ
and then deduce a complete

result on themonodromygroup ofKlǦ ; (Our approach is entirely different
and more conceptual compared to that of Katz (1.1.2.3) and of Heinloth–
Ngô–Yun [47].)

(iii) We prove the conjecture of Heinloth–Ngô–Yun on the functoriality of
Kloosterman sheaves, and therefore obtain identities between different
exponential sums associated to KlǦ ;

(iv) We show that the Frobenius Newton polygons of Be†
Ǧ

(and therefore

KlǦ) are generically ordinary and when Ǧ is classical or G2 they are
everywhere ordinary on |Gm,Fp |.

We discuss these results in more details in the sequel.
1.2.2. Let Ǧ be a split almost simple group over a field K of characteristic
zero. Fix a Borel subgroup B̌ ⊂ Ǧ, and a principal nilpotent element N in
b̌ = Lie(B̌). Let E denote a basis vector of the lowest root space in ǧ = Lie(Ǧ).
In [42], Frenkel and Gross considered a connection on the trivial Ǧ-bundle
over Gm :

BeǦ = d + N
dx

x
+ λh E dx,

where x is a coordinate of Gm , λ ∈ K is a parameter and h is the Coxeter
number of Ǧ. This connection is rigid and has a regular singularity at 0 and an
irregular singularity at∞. We regard it as a tensor functor from the category
of representations of Ǧ to the category of connections on the trivial bundles
over Gm .
1.2.3.LetG be a split almost simple group overFp(t)whose dual group is Ǧ. In
[47], Heinloth–Ngô–Yunwrote down a cuspidal Hecke eigenform f onG, and
defined the Kloosterman sheaf KlǦ for Ǧ as the Langlands parameter of f . We
recall their construction here under the assumption thatG is simply-connected.
If we fix opposite Iwahori subgroups I (0)op ⊂ G(O0) and I (0) ⊂ G(O∞) at
0,∞, and a non-degenerate character φ : I (1)/I (2) → Q(μp)

×, where I (i)
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Bessel F-isocrystals for reductive groups 1003

denotes the i th step in the Moy–Prasad filtration of I (0), then f is the unique
(up to scalar) non-zero function on G(Fp(t))\G(A) that is,

• invariant under G(Ox ) for every place x 
= 0,∞;
• invariant under I (0)op at 0;
• (I (1), φ)-equivariant at∞.

Then Heinloth–Ngô–Yun defined KlǦ : Rep(Ǧ) → LocSysm(Gm,Fp) as

a tensor functor from the category of representations of Ǧ (over Q�) to the
category of �-adic local systems on Gm,Fp , such that for every V ∈ Rep(Ǧ)

and every a ∈ |Gm,Fp |,
TV,a( f ) = Tr(Froba, (KlǦ,V )a) f,

where TV,a is the Hecke operator associated to (V, a). The actual construction
of KlǦ uses the geometric Langlands correspondence (see 4.1.9).

Our first main result is the existence of a Frobenius structure on Bessel
connections for reductive groups.

Theorem 1.2.4 (4.4.4, 5.3.2) Let K = Qp(μp), K an algebraic closure of
K and set λ = −π as in 1.1.4.
(i) There exists a unique ϕ(x) ∈ Ǧ(A†) satisfying the differential equation

x
dϕ

dx
ϕ−1 + Adϕ(N + λhx E) = p(N + λhx pE)

and such that via a (fixed) isomorphism K � Q�, for every a ∈ F
×
q and

V ∈ Rep(Ǧ)

Tr(ϕa, V ) = Tr(Froba, (KlǦ,V )a),

where ϕa = ∏deg(a)−1
i=0 ϕ(̃a pi ) ∈ Ǧ(K ) and ã ∈ K denotes the Teichmüller

lifting of a.
In particular, the analytification of the Bessel connection BeǦ on G

an
m,K is

overconvergent and underlies a tensor functor from Rep(Ǧ) to the category
of overconvergent F-isocrystals on Gm,Fp :

Be†
Ǧ
: Rep(Ǧ)→ F- Isoc†(Gm,Fp/K ),

which can be regarded as the p-adic companion of KlǦ .

(ii) Let ρ ∈ X•(Ť ) be the half sum of positive coroots. If Ǧ is of classical
type or G2, for every a ∈ |Gm,Fp |, the set of p-adic order of eigenvalues

of ϕa ∈ Ǧ(K ) (also known as the Frobenius slopes at a) is same as that of
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1004 D. Xu, X. Zhu

ρ(pdeg(a)) ∈ Ǧ(K ). If Ǧ is of other exceptional type, the same assertion holds
generically on |Gm,Fp |.
Remark 1.2.5 (i) For a Ǧ-valued overconvergent F-isocrystal on a smooth
variety X over Fp, we say its Newton polygon is ordinary at a if the Frobenius
slopes at a are given by ρ (in the above sense). We expect that the Newton
polygons of Be†

Ǧ
are always ordinary at each closed point of Gm,Fp .

(ii) V. Lafforgue [57] showed that ρ is the upper bound for the p-adic
valuations of Hecke eigenvalues of Hecke eigenforms (cf. 5.3.1 for a pre-
cise statement). Drinfeld and Kedlaya [38] proved an analogous result for the
Frobenius slopes of an indecomposable convergent F-isocrystal on a smooth
scheme.

1.2.6. Global monodromy groups. In [42, Cor. 9,10], Frenkel and Gross
calculate the differential Galois group Ggal of BeǦ over K , which we list in
the following table (up to central isogeny):

Ǧ Ggal

A2n A2n
A2n−1,Cn Cn
Bn, Dn+1(n ≥ 4) Bn
E7 E7
E8 E8
E6, F4 F4
B3, D4,G2 G2.

(1.2.6.1)

If Ggeo denotes the geometric monodromy group of Be†
Ǧ
over K , there exists

a canonical homomorphism

Ggeo → Ggal.

Theorem 1.2.7 (4.5.2) (i) If either Ǧ is not of type A2n, or p > 2, the above
morphism is an isomorphism.

(ii) If p = 2and Ǧ = SL2n+1, thenGgeo � SO2n+1 if n 
= 3andGgeo � G2
if n = 3.

(iii) The arithmetic monodromy group Garith of Be
†
Ǧ
is isomorphic to Ggeo.

In fact, the second part of the theorem follows from the first part and Theo-
rem 1.2.8(ii) below. By companion, this theorem allows us to recover Katz’s
result on the monodromy group of Kln (1.1.2.3) and Heinloth–Ngô–Yun’s
result on the monodromy group of KlǦ [47] (and remove the restriction of
the characteristic of k in loc. cit.) in a different way. For instance, the G2-
symmetry on Be†7 when p = 2 (1.1.2.3) appears naturally in our approach,
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Bessel F-isocrystals for reductive groups 1005

compared with Katz’ original approach via point counting. In addition, we
avoid difficult geometry related to quasi-minuscule and adjoint Schubert vari-
eties, as analyzed in [47].

We also have partial results about the local monodromy of Be†
Ǧ
(and KlǦ)

at∞ (see Corollary 4.5.9 and Remark 4.5.10 for details).
As an application of our p-adic theory, we prove a conjecture of Heinloth–

Ngô–Yun on certain functoriality between Kloosterman sheaves for different
groups [47, conjecture 7.3].

Theorem 1.2.8 (5.1.4, 5.2.10(ii)) (i) For Ǧ ′ ⊂ Ǧ appearing in the same line
in the left column of the above diagram, KlǦ is isomorphic to the push-out of

KlǦ ′ along Ǧ ′ → Ǧ.
(ii) If p = 2,KlSL2n+1 is the push-out ofKlSO2n+1 along SO2n+1 → SL2n+1.

1.2.9. The above theorem allows us to identify various exponential sums asso-
ciated to Kloosterman sheaves defined by different groups. Here are some
examples (see Corollary 5.2.11):

(i) When Ǧ = SO3 � PGL2, we have the following identity for a ∈ F
×
q :

(∑
x∈F

×
q

ψ(TrFq/Fp(x +
a

x
))

)2
− q (1.2.9.1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
x1,x2∈F

×
q

ψ

(
TrFq/Fp(x1 + x2 + a

x1x2
)

)
, p = 2,

1

G(ψ−1, ρ)
×∑x1x2x3=4ay,xi∈F

×
q
ψ

(
TrFq/Fp(x1 + x2 + x3 − y)

)
ρ(y), p > 2

where ψ(−) = exp 2π i
p (−), ρ denotes the quadratic character of F

×
q and

G(ψ−1, ρ) the associated Gauss sum. The identity is due to Carlitz [24] when
p = 2 and Katz [52, § 3] when p > 2. Our method is completely different
from these works.

One can obtain other identities between different exponential sums whose
sheaf-theoretic incarnations were considered [52].

(ii) For n ≥ 2, via the inclusion SO2n+1 → SO2n+2, for a ∈ F
×
q , we have
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1006 D. Xu, X. Zhu

∑
uv=a,u,v∈F×q

((∑
x∈F

×
q
ψ(Tr Fq/Fp(x + u

x ))
)2 − q

)

×
( ∑
xi∈F

×
q

ψ(Tr Fq/Fp(x1 + · · · + x2n−3 + v
x1···x2n−3 ))

)

= −1√
q

( ∑
xi∈F

×
q

ψ

(
Tr Fq/Fp(x1 + · · · + x2n + a x1+x2

x1x2···x2n )
)
−qn−1
)
.

1.3 Strategy of the proof and the organization of the article

1.3.1.Weoutline the strategy of proofs. Theorem1.2.4(i) follows by combining
following three ingredients:

(i) We first mimic Heinloth–Ngô–Yun’s construction to produce a Ǧ-valued
overconvergent F-isocrystal Klrig

Ǧ
on Gm,Fp and a Ǧ-bundle with connection

KldR
Ǧ

on Gm,K (Sect. 4.1). A key step is to develop the geometric Satake
equivalence for arithmetic D-modules, which we will discuss latter (1.3.5).
Certain proofs are parallel to the �-adic setting. We omit most of them and
repeat some only for the notation purposes.

(ii) Then we show that the overconvergent isocrystal Klrig
Ǧ

is isomorphic to

the analytification of the Ǧ-connection KldR
Ǧ

(Sect. 4.2) by comparing certain
relative de Rham cohomologies and relative rigid cohomologies.

(iii) We strengthen a result of the second author [80] to identify KldR
Ǧ

with
BeǦ (Sect. 4.3).

1.3.2. The local monodromy of Be†
Ǧ
at 0 is principal unipotent, which implies

that its geometric monodromy Ggeo contains a principal SL2. This puts strong
restrictions on the possible Dynkin diagrams of Ggeo (cf. 4.5.5 for a possible
list). A result of Baldassarri [14] (cf. [10] 3.2), which implies that the p-adic
slope of Be†

Ǧ
at ∞ is less or equal to the formal slope of BeǦ at ∞, allows

us to exclude the case Ggeo = PGL2 (or SL2) in most cases. Together with
certain symmetry on Be†

Ǧ
, this implies Theorem 1.2.7(i). We shall emphasize

that being able to directly bound the p-adic slope of Be†
Ǧ
at∞ is one of the

main advantages of our p-adic method over the �-adic methods used in [47].
1.3.3. The analogous functoriality (Theorem 1.2.8(i)) for Bessel connections
BeǦ follows from their definition. Then we deduce the corresponding functo-

riality between Be†
Ǧ
’s by Theorems 1.2.4(i) and 1.2.7(i). For Theorem 1.2.8(ii)

(and therefore Theorem 1.2.7(ii)), we construct an isomorphism between
the maximal slope quotients of Be†2n+1 and Be†SO2n+1,Std using a refinement
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Bessel F-isocrystals for reductive groups 1007

of Dwork’s congruences [39] in the 2-adic case. Then we conclude that
Be†2n+1 � Be†SO2n+1,Std by a recent theorem of Tsuzuki [74] (cf. appendix

A). Since Be†
Ǧ
is the p-adic companion of KlǦ , Theorem 1.2.8 follows.

1.3.4.By functoriality,we reduceTheorem1.2.4(ii) to the corresponding asser-
tion for (Frobenius) Newton polygon of Be†SLn,Std

and of Be†SO2n+1,Std, which

are isomorphic to Be†n and a hypergeometric overconvergent F-isocrystal [61]
respectively. Then the assertion follows from the results of Dwork, Sperber
and Wan [40,72,76].
1.3.5. As mentioned above, in order to carry through the first step of 1.3.1,
we need to establish a version of the geometric Satake equivalence for arith-
meticD-modules. This is based on the recent development of the six functors
formalism, weight theory and nearby/vanishing cycle functors for arithmetic
D-modules developed by Berthelot, Caro, Abe and etc [4–6,25,26].

To state our result, we introduce some notations. Let k be a finite field with
q = ps elements and K a finite extension of Qq . Suppose that there exists an
automorphism σ : K → K , which extends the lifting of the t-th Frobenius
automorphism of k to Qq for some integer t . Let G be a split reductive group
over k, Ǧ its Langlands dual group over K , GrG the affine Grassmannian of
G and L+G the positive loop group of G.

For a k-scheme X , let Hol(X/K ) be the category of holonomic arithmetic
D-modules on X and Hol(X/KF ) the category of objects of Hol(X/K )with a
Frobenius structure. They are the analogues of the category of �-adic sheaves
on Xk and the category of Weil sheaves on X respectively. We denote by
HolL+G(GrG /K ) (resp.HolL+G(GrG /KF )) the categoryof L+G-equivariant
objects in Hol(GrG /K ) (resp. Hol(GrG /KF )).

The geometric Satake equivalence (for geometric coefficients) states that
the category HolL+G(GrG /K ) is a neutral Tannakian category over K whose
Tannakian group is Ǧ (3.4.1). The Tannakian structure and the Frobenius
structure on HolL+G(GrG /KF ) allows us to define a homomorphism ι : Z →
Aut(Ǧ(K )) (3.4.3) and hence a semi-direct product Ǧ(K ) � Z.

Theorem 1.3.6 (i) (Geometric coefficients 3.4.1) There exists a natural equiv-
alence of monoidal categories between HolL+G(GrG /K ) and Rep(Ǧ).

(ii) (Arithmetic coefficients 3.4.7) There exists an equivalence of monoidal
categories between HolL+G(GrG /KF ) and the category Rep◦K ,σ (Ǧ(K )� Z)

of certain σ -semi-linear representations of Ǧ(K ) � Z (cf. 3.4.4).

Note that the formulation of the arithmetic coefficients geometric Satake
here is different from the corresponding arithmetic version the �-adic case
[69,79].

Although the strategy of the proof of this theorem is same as the �-adic case,
we need to establish some foundational results in the setting of arithmetic
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D-modules. We introduce a notion of universal local acyclicity (ULA) for
arithmeticD-modules and discuss its relation with the nearby/vanishing cycle
functors introduced by Abe-Caro and Abe [4,5] in Sect. 2.2.

Recall that there are motivic versions of geometric Satake [68,81]. The
above theorem can be regarded as their p-adic realization. (But as far as we
know, there is no general construction of the realization functor as we need so
the above theorem is not a formal consequence of loc. cit.) On the other hand,
there is a recent work of R. Cass [27] on the geometric Satake equivalence for
perverseFp-sheaves. It would be interesting to seewhether there is a version of
geometric Satake for some Zp-coefficient sheaf theory, which after inverting
p and mod p specializes to our version and Cass’ version respectively.
We hope our article will lead further investigation of the p-adic aspect of

the geometric Langlands program.
1.3.7. We briefly go over the organization of this article. Section 2 contains a
review of and some complements on the theory of arithmetic D-modules and
overconvergent (F-)isocrystals. In Sect. 3, we establish the geometric Satake
for arithmeticD-modules (Theorem 1.3.6). Sections 4.1–4.4 are devoted to the
proof of Theorem 1.2.4(i) (1.3.1). We calculate the monodromy group of Be†

Ǧ
in Sect. 4.5 (Theorem1.2.7 and 1.3.2). In Sect. 5.1,we prove the functoriality of
Bessel F-isocrystals and ofKloosterman sheaves (Theorem1.2.8(i) and 1.3.3).
In Sect. 5.2, we identify the Bessel F-isocrystals for classical groups with
certain hypergeometric differential equations studied by Katz and Miyatani
[51,61] and then deduce identities in 1.2.9. In the last Sect. 5.3, we study the
Frobenius Newton polygon of Be†

Ǧ
and prove Theorem 1.2.4(ii). Appendix

A is devoted to a proof of Theorem 1.2.8(ii) from the perspective of p-adic
differential equations.
1.3.8. Notation. In this article, we fix a prime number p. Let s be a positive
integer and set q = ps . Let k be a perfect field of characteristic p, k an
algebraic closure of k and R a complete discrete valuation ring with residue
field k. We set K = Frac(R). We fix an algebraic closure K of K . We assume
moreover that the s-th Frobenius endomorphism k

∼−→ k, x �→ xq lifts to an
automorphism σ : R ∼−→ R.

By a k-scheme (resp. R-scheme), we mean a separated scheme of finite type
over k (resp. over R).

We use the notation of arithmeticD-modules [20,21]. For a smooth formal
R-scheme X and a divisor Z of the special fiber of X, let OX,Q(†Z) (resp.
D†

X,Q
(†Z)) denote the sheaf of rings of functions (resp. differential operators)

on X with singularities overconvergent along Z [20, 4.2.4]. We omit (†Z) if
Z is empty. If we setU = Xk − Z , we denote OX,Q(†Z) (resp.D†

X,Q
(†Z)) by

OU (resp. D†
X,Q

(Z) (or D†
X,Q

(∞))) for short.
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2 Review and complements on arithmetic D-modules

2.1 Overconvergent (F-)isocrystals and arithmetic D-modules

2.1.1. Let X be a k-scheme. We denote by Isoc†(X/K ) (resp. F- Isoc†(X/K ))
the category of overconvergent isocrystals (resp. F-isocrystals) on X (relative
to K ) and refer to [19] for their definition. We denote by Isoc††(X/K ) the
thick full subcategory of Isoc†(X/K ) generated by those that can be endowed
with an s′-th Frobenius structure for some integer s′ divisible by s.

A typical example used in this paper is the Dwork F-isocrystal [18]. Let
k = Fp (i.e. s = 1), K = Qp(μp), R = OK and σ = id. We choose

π ∈ K such that π p−1 = −p and take a frame (P1
k, P̂

1
R) of X = A

1
k [6,

definition 1.1.1]. If x denotes a coordinate of A
1, the connection d + πdx on

O
A
1
k
forms an object of Isoc†(A1

k/K ) and is called Dwork isocrystal, denoted
by Aπ . Its Frobenius structure ϕ : F∗

A
1
k
(Aπ) → Aπ is the multiplication by

θπ(x) = exp(π(x − x p)), which is a section of O
A
1
k
.

There exists a unique nontrivial additive characterψ : Fp → K× satisfying
ψ(1) = 1 + π mod π2. For each x ∈ Fp, we denote by x̃ the Teichmüller
lifting of x in Qp. Then θπ (̃x) = ψ(x) [18, 1.4]. So the Frobenius trace
function of Aπ is equal to ψ ◦ TrFq/Fp(−). We also denote Aπ by Aψ , as
it plays a similar role of Artin–Schreier sheaf associated to ψ in the �-adic
theory.
2.1.2. Let us recall basic notions of p-adic coefficients used in [3]. Let L be
an extension of K in K and T = {k, R, K , L} the associated geometric base
tuple [3, 1.4.10, 2.4.14].

We will also work in the arithmetic setting (p-adic coefficients with Frobe-
nius structure). For this purpose, we need to assume that there exists an
automorphism L → L extending σ : K → K that we still denote by σ ,
and that there exists a sequence of finite extensions Mn of K in L satisfy-
ing σ(Mn) ⊂ Mn and ∪nMn = L . Then we obtain an arithmetic base tuple
TF = {k, R, K , L , s, σ } [3, 1.4.10, 2.4.14]. We set L0 = Lσ=1.

Let X be a k-scheme. There exists an L-linear (resp. L0-linear) triangu-
lated category D(X/L) (resp. D(X/LF )) relative to the geometric base tuple
T (resp. arithmetic base tuple TF ). This category is denoted by Db

hol(X/T) or
Db
hol(X/L) (resp. Db

hol(X/TF ) or Db
hol(X/LF )) in [3, 1.1.1, 2.1.16]. There

exists a holonomic t-structure on D(X/L�), whose heart is denoted by
Hol(X/L�), called category of holonomic modules. We denote by H∗ the
cohomological functor for holonomic t-structure.

The six functor formalism for D(X/L) (resp. D(X/LF )) has been estab-
lished recently. We refer to [5,6] and [3, 2.3] for details and to [3, 1.1.3] for a
summary. Here we only collect some notations.
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(i) Let f : X → Y be a morphism of k-schemes. For � ∈ {∅, F}, there
exist triangulated functors

f+, f! : D(X/L�)→ D(Y/L�), f +, f ! : D(Y/L�)→ D(X/L�),

such that ( f +, f+), ( f!, f !) are adjoint pairs.
(ii) The category D(X/L�) is a closed symmetric monoidal category,

namely it is equipped with a tensor product functor ⊗ and the unit object
LX = π+(L), where π : X → Spec(k) is the structure morphism and L is
the constant module in degree 0. The internal Hom functor H omX is a right
adjoint of ⊗.

(iii) There exists a duality functor DX = H omX (−, p!L) from D(X/L�)
to its opposite category [3, 1.1.4]. We set (−)⊗̃(−) = DX (DX (−)⊗DX (−)).
2.1.3. For any object M of D(X/L) and the structural morphism f : X →
Spec(k), we set

H∗(X,M ) = H∗ f+(M ), H∗c(X,M ) = H∗ f!(M ),

and call them cohomology groups, compact support cohomology groups of
M , respectively. Note that they are finite dimensional L-vector spaces. If M
is an object of D(X/LF ), then above cohomology groups are equipped with a
Frobenius structure.

Suppose that there exists a finite filtration of closed subschemes {Xi }i∈Z of
X , with closed immersions Xi+1 ↪→ Xi such that Xi = X for i small enough
and Xi = ∅ for i big enough. We deduce from the distinguished triangle [3,
1.1.3(10), 2.2.9] a spectral sequence (cf. [33] *2.5)

Ei j
1 = Hi+ j

c (Xi − Xi+1,M )⇒ Hi+ j
c (X,M ). (2.1.3.1)

2.1.4. Let X be a smooth k-scheme of dimension d : π0(X)→ N. There exists
a full subcategory Sm(X/L�) of Hol(X/L�)[−d] ⊂ D(X/L) consisting of
smooth objects [3, 1.1.3(12) and 2.4.15]. In general, we say a complex M ∈
D(X/L�) is smooth ifHi (M )[−d] belongs to Sm(X/L�) for every i .

When L = K , there exists an equivalence S̃p∗ between Sm(X/K ) (resp.
Sm(X/KF )) and Isoc††(X/K ) (resp. F- Isoc†(X/K )). In the following, we
identify these two categories by S̃p∗ and we use alternatively these two nota-
tions. Suppose X admits a smooth compactification X such that X possesses
a smooth lifting over R and that X − X is a divisor. If H∗rig(X,−) denotes the
rigid cohomology [19], we have canonical isomorphisms for any objectM of
Isoc††(X/K ) (resp. F- Isoc†(X/K )) [1, 5.9]:

H∗rig(X,M ) � H∗(X, S̃p∗(M )), H∗rig,c(X,M ) � H∗c(X, S̃p∗(M )),

(2.1.4.1)
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Bessel F-isocrystals for reductive groups 1011

as objects of VecK (resp. F- VecK ). In particular, we have H0(An, L) � L ,
Hi (An, L) = 0 for i 
= 0 and H2n

c (An, L) � L , Hi
c(A

n, L) = 0 for i 
= 2n.
2.1.5. Let X be a k-scheme. There exists a constructible t-structure (c-t-
structure in short) on D(X/L) (cf. [3] 1.3, 2.2.23). When X = Spec(k),
the constructible t-structure coincides with the holonomic one (2.1.3). If X a
smooth k-scheme, any object of Sm(X/L) is constructible.

The heart of c-t-structure is denoted by Con(X), called the category of
constructible modules. The cohomology functor of c-t-structure is denoted by
cH∗.

Let f : X → Y be a morphism between k-schemes. The functor f + is c-t-
exact and f+ is left c-t-exact. If i is a closed immersion, then i+ is c-t-exact.
If j is an open immersion, then j! is c-t-exact [3, 1.3.4].

Using constructible t-structure, we show an analogue of [16, 4.2.5] for arith-
metic D-modules.

Proposition 2.1.6 Let f : X → Y be a smooth morphism of k-schemes of
relative dimension d with geometrically connected fibers. Then the functor
f +[d] : Hol(Y/L�)→ Hol(X/L�) (for � ∈ {∅, F}) is fully faithful.
Lemma 2.1.7 Let M be an object of D≤0(X/L) and N an object of
D≥0(X/L). Then H omX (M ,N ) belongs to c D≥0(X/L) (2.1.5).

Proof We prove by induction on the dimension of X . The assertion is clear if
dim X = 0. To prove the assertion, we can reduce to the case whereM ,N ∈
Hol(X/L). Then there exists a dense smooth open subscheme j : U → X
such that M |U ,N |U are smooth. Let i : Z → X be the complement of U
and consider the triangle

i+i !H omX (M ,N )→H omX (M ,N )→ j+ j+H omX (M ,N )→ .

Since i !H omX (M ,N ) � H omX (i+M , i !N ) [3, 1.1.5], the first term
belongs to c D≥0(X/L) by induction hypotheses. Note that H omU (M |U ,

N |U ) � DU (M |U ⊗ DU (N |U )) is a smooth module and of constructible
degree 0. Then j+ j+H omX (M ,N ) belongs to c D≥0(X/L) and the asser-
tion follows. ��
2.1.8. Proof of Proposition 2.1.6. Since Frobenius pullback induces an equiv-
alence of categories, it suffices to show the assertion for Hol(−/L). Let
M ,N be two objects of Hol(Y/L). Since f is smooth, we deduce from
f !H omY (M ,N ) �H omX ( f +M , f !N ) [3, 1.1.5] an isomorphism

f +H omY (M ,N )
∼−→H omX ( f

+M , f +N ).
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By applying cH0 f+cH0(−) to the above isomorphism and Lemma 2.1.7, we
have

cH0 f+ f +
(cH0(H omY (M ,N ))

)
(2.1.8.1)

∼−→ cH0 f+cH0(H omX ( f
+M [d], f +N [d])).

We claim that for any constructible module F on Y , there is a canonical
isomorphism

F
∼−→ cH0 f+ f +F . (2.1.8.2)

Then, by Lemma 2.1.7, the proposition follows by applying H0(Y,−) to the
composition of (2.1.8.1) and (2.1.8.2).

By smooth base change, to prove (2.1.8.2), we can reduce to the case where
Y is a point. After extending the scalar L and the base field k (cf. [3] 1.4.11),
we may assume moreover that Y = Spec(k). In this case, the isomorphism
(2.1.8.2) follows from the geometrical connectedness of X . ��
2.1.9. Let u : Y → X be a locally closed immersion. We refer to [6, § 1.4] for
the intermediate extension functor u!+ : Hol(Y/L�) → Hol(X/L�). Recall
[6, 1.4.7] that ifM is irreducible, then u!+(M ) is the unique irreducible sub-
object ofH0(u+M ) (resp. irreducible quotient ofH0(u!M )) in Hol(X/L�).

Lemma 2.1.10 Let j : U → X be an open subscheme of X and i : Z → X
its complement.

(i) Given a holonomic module M on U, j!+(M ) is the unique extension
F of M to Hol(X/L�) such that i+F ∈ D≤−1(Z/L�) and that i !F ∈
D≥1(Z/L�).

(ii) If X is smooth and F is a smooth holonomic module on X, then
j!+(F |U ) � F .

Proof (i) Since j!, i+ are right exact [6, 1.3.2], H0i+(H0( j!(M ))) = 0. By
applying i+ to 0 → Ker(θ0j,M ) → H0( j!(M )) → j!+(M ) → 0, we obtain

i+( j!+(M )) ∈ D≤−1(Z/L). We prove i !F ∈ D≥1(Z/L) in a dual way.
Conversely, given such an extension F , we can prove that the adjunction

morphismH0 j!(M )→ F (resp.F → H0 j+(M )) is surjective (resp. injec-
tive) by the Berthelot–Kashiwara theorem [3, 1.1.3(10), 2.2.9]. Assertion (i)
follows.

(ii) The intermediate extension is stable under composition [6, 1.4.5]. Then
we can reduce to the case where Z is smooth over k. In this case, assertion (ii)
follows from (i) and [3, 2.4.15]. ��
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2.2 Universal local acyclicity and nearby/vanishing cycles

In the following, we write simply D(X) (resp. Hol(X)) for D(X/L�) (resp.
Hol(X/L�)).
2.2.1. Following Braverman–Gaitsgory [23, 5.1], we propose a notion of (uni-
versal) local acyclicity for arithmetic D-modules with respect to a morphism
to a smooth target.

For a smooth k-scheme X , we denote by dX : π0(X) → N the dimension
of X . Let g : X1 → X2 be a morphism of k-schemes and F ,F ′ two objects
of D(X2). We consider the composition

g!(g+(F )⊗ g!(F ′)) � F ⊗ g!(g!(F ′))→ F ⊗F ′

and its adjunction: g+(F )⊗ g!(F ′)→ g!(F ⊗F ′).
Now let S be a smooth k-scheme and f : X → S a morphism of k-schemes.

We set X1 = X , X2 = X × S,F ′ = LX2 and take g to be the graph of f . By

Poincaré duality, we have LX1(−dS)[−2dS] ∼−→ g!(LX2). Then, we obtain a
canonical morphism

g+(F )→ g!(F )(dS)[2dS].
By takingF to beM �N [6, 1.1.8, 1.3.3], we obtain a canonical morphism

M ⊗ f +(N )→ (M ⊗̃ f !(N ))(dS)[2dS]. (2.2.1.1)

Definition 2.2.2 Let S be a smooth k-scheme and f : X → S a morphism
of k-schemes. We say that an object M of D(X) is locally acyclic (LA) with
respect to f , if the morphism (2.2.1.1) is an isomorphism for any object N
of D(S). We say that M is universally locally acyclic (ULA) with respect to
f , if for any morphism of smooth k-schemes S′ → S, the+-inverse image of
M to X ×S S′ is locally acyclic with respect to X ×S S′ → S′.
Proposition 2.2.3 Keep the notation ofDefinition 2.2.2 and letM be an object
of D(X).

(i) Any object M of D(X) is ULA with respect to the structure morphism
X → Spec(k).
(ii) Let g : Y → X be a smooth (resp. smooth surjective) morphism. Then

g+(M ) on Y is LA with respect to f ◦ g if (resp. if and only if)M is LA with
respect to f .

(iii) If g : S → S′ is a smooth morphism of smooth k-schemes andM is LA
with respect to a morphism f : X → S, then M is LA with respect to g ◦ f .

(iv) Let h : Y → S be a morphism of finite type and g : X → Y a proper
S-morphism (resp. a closed immersion). Then g+(M ) is LA with respect to h
if (resp. if and only if)M is LA with respect to f .
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(v) If M is LA with respect to f , then so is its dual DX (M ).

Proof (i) Let S be a smooth k-scheme and N an object of D(S). We show
that the canonical morphism

(idX ×�)+(M � p+2 (N ))→ (idX ×�)!(M � p+2 (N ))(dS)[2dS]

is an isomorphism, where � : S → S × S is the diagonal map and p2 :
S× S → S is the projection in the second component. We can reduce to show
that the canonical morphism

N → �!(p+2 (N ))(2dS)[2dS]

is an isomorphism. After taking dual functor, the assertion follows from [3,
1.5.14].

The rest of the proposition follow from Poincaré duality, Berthelot–
Kashiwara theoremand smooth descent [3, 2.1.13].We left the proof to readers.

��
2.2.4. In a recent work [4], Abe formulated the nearby and vanishing cycle
functors for holonomic arithmetic D-modules, based on the unipotent nearby
and vanishing cycle functors introduced by himself and Caro [5].

Let f : X → A
1
k be a morphism of k-schemes. We denote by j : U =

f −1(Gm) → X the open immersion and by i : X0 = X − U → X its
complement. We first review the unipotent nearby cycle functor

�un
f : Hol(U )→ Hol(X0).

We set OGm = O
P̂
1
R,Q

(†{0,∞}) (see 1.3.8). For n ≥ 1, we define a free
OGm -module Logn of rank n

Logn = ⊕n−1
i=0OGm · log[i],

generated by the symbols log[i]. There exists a uniqueD†
P̂
1
R,Q

({0,∞})-module

structure on Logn defined for i ≥ 0 and g ∈ OGm by

∇∂t (g · log[i]) = ∂t (g) · log[i] +g

t
· log[i−1],

where t is the local coordinate of Gm and log[ j] = 0 for j < 0. There
exists a canonical Frobenius structure on Logn sending log[i] to qi log[i]. This
defines an overconvergent F-isocrystal on Gm and then a smooth object of
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Hol(Gm/KF ). We still denote by Logn the extension of scalars ιL/K (Logn) in
Hol(Gm).

We set Lognf = f + Logn ∈ Hol(U ) and define for F ∈ Hol(U ):2

�un
f (F ) = lim−→

n≥1
Ker( j!(F ⊗ Lognf )→ j+(F ⊗ Lognf )). (2.2.4.1)

This limit is representable in Hol(X0) by [5, lemma 2.4].
The vanishing cycle functor �un

f is defined in a similar way. The functors
�un

f ,�un
f are exact [5, 2.7] and extend to triangulated categories. There exists

a distinguished triangle i+[−1] → �un
f → �un

f
+1−→.

To define nearby and vanishing cycles functors over a strict henselian trait,
we consider Pro(k) the full subcategory of Noetherian schemes over k which
can be representable by a projective limit of a projective system of k-schemes
whose transitionmorphisms are affine and étale. The categoryPro(k) is closed
under henselization (resp. strict henselization) [4, 1.3]). Given an object X of
Pro(k), the triangulated category D(X) of arithmeticD-modules on X is well-
defined and one can extend the definition of cohomological functors to D(X)

(cf. [4] 1.4).
Let (S, s, η) be a strict henselian trait in Pro(k) and f : X → S a morphism

of finite type. In this setting, Abe defined the (unipotent) nearby and vanishing
cycles functors for f (cf. [4] 1.7, 1.8, 2.2)

� f , �
un
f ,� f ,�

un
f : Hol(X)→ Hol(Xs). (2.2.4.2)

Proposition 2.2.5 Keep the notation of Definition 2.2.2 and let D be a smooth
effective divisor in S, i : Z = f −1(D) → X the closed immersion and
j : U → X its complement. Let M be an object of D(X) such that it is LA
with respect to f and that M |U is holonomic.

(i) There exists canonical isomorphisms:

M � j!+(M |U ), i+M [−1] ∼−→ i !M (1)[1]. (2.2.5.1)

In particular,M and i+M [−1] are holonomic.
(ii) The holonomic module i+M [−1] is LA with respect to f ◦ i and f |Z :

Z → D.

Proof (i) By étale descent for holonomic modules [3, 2.1.13], we may assume
that there is a smooth morphism g : S → A

1 such that D = g−1(0). By
Proposition 2.2.3(iii), M is LA with respect to g ◦ f : X → A

1. Then we

2 We adopt the definition of [4], which is different from that of [5] by a Tate twist.
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can reduce to the case f : X → A
1 and Z = f −1(0). We will show that

�un
f (M ) = 0, i.e. the canonical morphism

i+M [−1] → �un
f (M ) (2.2.5.2)

is an isomorphism. We denote by j : Gm → A
1 the canonical morphism and

abusively by f the restriction f |U : U → Gm . By the projection formula, we
have

j!(M |U ⊗ f + Logn)
∼−→M ⊗ j! f + Logn �M ⊗ f + j ! Logn .

On the other hand, by the projection formula and the LA property of M , we
have

j+(M |U ⊗ ( f + Logn))
∼−→ j+(M |U ⊗̃( f ! Logn))(dX )[2dX ]
∼−→M ⊗̃( j+ f ! Logn)(dX )[2dX ]
� M ⊗ ( f + j+ Logn).

Via the above isomorphisms, the canonicalmorphism j!(M |U⊗( f + Logn))
→ j+(M |U ⊗ ( f + Logn)) coincides with the canonical morphism

M ⊗ ( f +( j ! Logn → j+ Logn)).

To prove that (2.2.5.2) is an isomorphism, we can reduce to the case where
f is the identity map of A

1 and M is the constant module LA1[1] on A
1. If

we denote by Nn the action induced by t∂t on the fiber (Logn)0 of Logn at 0
(called residue morphism in [6] 3.2.11), then Ker( j!(Logn) → j+(Logn)) is
isomorphic to Ker(Nn) (cf. [5] proof of lemma 2.4). The connection of Logn

has a maximal unipotent monodromy at 0. Then Ker(Nn) is one-dimensional
and transitionmapKer(Nn)→ Ker(Nn+1) is an isomorphism.Hence (2.2.5.2)
is an isomorphism in this case.

In particular i+M [−1] is holonomic. By Proposition 2.2.3(v) and the
commutation between nearby cycle and dual functors [5, 2.5], the second
isomorphism of (2.2.5.1) follows from (2.2.5.2):

�un
f (M ) � DX0�

un
f (DX (M ))(1)

∼−→ i !M (1)[1].

ThenwededuceM � j!+(M |U )by2.1.10.This finishes the proof of assertion
(i).

Assertion (ii) follows from the six functor formalism. We left the proof to
readers. ��
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Corollary 2.2.6 If an object M of D(X) is ULA with respect to f , then, for
any strict henselian trait T of Pro(k) and any morphism g : T → S, we have
�un

fT
(M |XT ) = 0 and � fT (M |XT ) = 0, where fT : XT → T is the base

change of f by g.

Proof By definition [4, 1.9], it suffices to show that the unipotent vanishing
cycle �un

fT
(M |XT ) vanishes.

There exists a smooth k-scheme S′, a smooth effective divisor D of S′ with
generic point ηD and a morphism h : S′ → S such that the strict henselization
of S′ at ηD is isomorphic to T and that g is induced by h. We denote by
fS′ : XS′ → S′ the base change of f by h. After shrinking S′, we may assume
that there exists a smooth morphism π : S′ → A

1
k with D = π−1(0).

By definition (cf. [4] 1.7-1.8), we reduce to show that�un
π◦ fS′ (M |XS′ ) = 0.

But this follows from Proposition 2.2.3(iii) and the proof of (2.2.5.2). Then
the assertion follows. ��
2.2.7. In 4.1, we will use the notion of holonomic modules over an algebraic
stack and apply cohomological functors of a schematicmorphism of algebraic
stacks, that we briefly explain in the following.

LetX be an algebraic stack of finite type over k. Let Hol(X) be the category
of holonomic modules on X [3, 2.1.16] and D(X) its derived version (corre-
sponds to the category Db

hol(X) in loc. cit). The dual functor DX is defined in
[3, 2.2]. Let f : X → Y be a schematic morphism, Y• → Y a simplicial
algebraic space presentation. By pullback, we obtain a simplicial presentation
X• → X and a Cartesian morphisms f• : X• → Y•. Then the constructions
of [3, 2.1.10 and 2.2.14] allow us to define cohomological functors:

f+ : D(X) � Db
hol(X•) � Db

hol(Y•) � D(Y) : f !.
Given an object M of D(X) and a morphism g : X → S to a smooth k-

scheme S,we sayM isULAwith respect to g if its+-pullback to a presentation
U → X is ULA with respect to U → S.

Suppose S is moreover a curve. Let s be a closed point of S and S(s) the strict
henselian at s. Since nearby/vanishing cycle functors commute with smooth
pullbacks, we can extend the definition of nearby/vanishing cycle functors for
g ×S S(s).

2.3 Complements on the local monodromy of an overconvergent
F-isocrystal on a curve

2.3.1. We denote by RK the Robba ring over K and by MC(RK /K ) (resp.
MC(R/K )) the category of∇-modules finitely presented overRK (resp. over
R = R⊗K K ).
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The full subcategory MCuni(R/K ) of MC(R/K ), consisting of unipotent
objects, is a Tannakian category over K and its Tannakian group is isomor-
phic to Ga [60, 4.1]. There is an equivalence between the category Vecnil

K
of finite dimensional K -vector space with a nilpotent endomorphism and
MCuni(R/K ), given by the functor (V0, N ) �→ (V0 ⊗K R,∇N ), where the
connection ∇N is defined by ∇N (v ⊗ 1) = Nv ⊗ dx/x .

We denote by K {x} the K -algebra of analytic functions on the open unit
disc |x | < 1, i.e.

K {x} =
⎧⎨
⎩
∑
n≥0

anx
n ∈ K �x�; |an|ρn → 0 (n →∞) ∀ρ ∈ [0, 1)

⎫⎬
⎭ .

(2.3.1.1)

Let �1
K {x}(log) be the free K {x}-module of rank 1 with basis dx/x and con-

sider the following canonical derivation d : K {x} → �1
K {x}(log), f �→

x f ′(x)dx/x . An unipotent object (M,∇) of MC(RK /K ) extends to a log ∇-
module (M log,∇ log) over K {x}. Then (M log|x=0, N = Res∇ log) is the object
of VecnilK associated to (M,∇). There exists a canonical isomorphism between
Coker(N ) and the solution space Sol(M):

Coker(N )
∼−→ Sol(M) = HomK {x}((M,∇), (K {x}, d))∇=0. (2.3.1.2)

If the connection ∇ is defined by a differential operator D, then Sol(M) is the
solution space of D.

Let I (resp. P) the inertia (resp.wild inertia) subgroupofGal(k((t))sep/k((t))).
The full subcategory MCF(R/K ) of MC(R/K ), consisting of objects admit-
ting a Frobenius structure, is a Tannakian category over K and its Tannakian
group is isomorphic to I × Ga [11, 3.4, 7.1.1]. The Ga-action is the same as
a nilpotent monodromy operator commuting with I -action. By a theorem of
Matsuda–Tsuzuki [60,73] (cf. [11] 7.1.2), the irregularity of an object M of
MCF(R/K ), defined by p-adic slopes [29], is equal to the Swan conductor of
the representation of I on a fiber of M .
2.3.2. Let X be a smooth curve over k, i : {x} → X a closed k-point and
j : U → X its complement. There exists a canonical functor defined by
restriction at x :

|x : Isoc††(U/K )→ MCF(RK /K ). (2.3.2.1)

We refer to [70] and [53, § 6] for the definition of log convergent (F-
)isocrystals on X with a log pole at x . Let E be an object of Isoc††(U/K )

(resp. F- Isoc†(U/K )). A log-extenbility criterion of Kedlaya [53, 6.3.2] says
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that if E |x is unipotent, then E extends to a log convergent isocrystal (resp.
F-isocrystal) E log on X with a log pole at x .
The fiber E log

x of E log at x is a K -vector space equipped with a nilpotent
operator. IfE moreover has aFrobenius structure, thenE log

x is a (ϕ, N )-module,
that is a K -vector space V equipped with a nilpotent operator N : V → V
and a σ -semilinear automorphism ϕ : V → V such that ϕ−1Nϕ = qN .

Proposition 2.3.3 Keep the above assumption. Let φ : S → X be the strict
henselization at x, E a smooth holonomic module on U and V the Ix × Ga-
representation associated to E |x . Then there exists a canonical isomorphism
of inclusion of K -vector spaces (resp. K -vector spaces with Frobenius struc-
ture):

(i+( j!+(E ))[−1] ↪→ �id(φ
+( j!+(E ))))

∼−→ (V Ix×Ga ↪→ V Ix ).

Proof We first prove the case where E |x is unipotent. We may assume there
exists a morphism f : X → A

1 étale outside {x} = f −1(0). As E |x is
unipotent, �id(φ

+( j!+(E ))) is calculated by �un
f (E ).

By [6, 3.4.19, cf. [5] 2.4(1)], we have a Frobenius equivariant isomorphism
of vector spaces:

Ker( j!(E ⊗ Lognf )→ j+(E ⊗ Lognf ))

� Ker(Nn : (E log ⊗ Lognf )x → (E log ⊗ Lognf )x ),

where Lognf defined in 2.2.4 and Nn = N
E
log
x
⊗ id+ id⊗NLognf,x

is the tensor

product of two nilpotent operators. In this case, the isomorphism �un
f (E )

∼−→
E
log
x follows from �un

f (E ) � lim−→n≥1 Ker(N
n) and [59, lemma 2.10]. The

assertion follows from isomorphisms

i+x ( j!+(E ))[−1] ∼−→ Ker( j!(E )→ j+(E )) � (E
log
x )N .

In general, by Kedlaya’s semistable reduction theorem [55], after shrinking
X , we may choose π : X ′ → X a proper map of smooth curves, finite étale
overU such that π+(E ) is unipotent at x ′ = π−1(x). Let j ′ : U ′ → X ′ (resp.
φ′ : S′ → X ′) be the base change of j (resp. φ) by π . Then Aut(U ′/U ) is
a quotient of Ix and φ′ is the strict henselization at x ′. By base change, we
obtain Ix -equivariant isomorphisms:

i+x ( j!+(π+π+(E )))
∼−→ i+x ′( j

′
!+(π

+(E ))),

�id(φ
+ j!+(π+π+(E )))

∼−→ �id(φ
′+ j ′!+(π

+(E ))).
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By taking Ix -invariants, we conclude the proposition from the unipotent case.
��

Corollary 2.3.4 LetM be a holonomic module on X which is smooth outside
x. If φ : S → X denotes the strict henselization at x and �id(φ

+(M )) = 0,
thenM is smooth.

Proof For simplicity, we may assume (X, x) = (A1, 0). Recall [4, 1.9] that

�id(φ
+(M )) = lim−→

S′∈Hen(S)
h+�un

id (h
+φ+(M )),

where h : S′ → S is taking over the category of henselian traits over S,
which are generically étale. The transition morphism in this inductive limit is
injective [4, 1.9] and then each term is zero.

We choose a proper map π : X ′ → X such thatN := π+(M ) is unipotent
around x ′ = π−1(x) as in 2.3.3. Then,�un

π (N ) = �un
id (φ

′+(N )) (c.f. [4] 1.7,

1.8) vanish. Hence i+x (M )[−1] = i+x ′(N )[−1] ∼−→ �un
π (N ) are holonomic

and have the same rank as N by Proposition 2.3.3. By a dual argument, the
rank of i !x (M ) and M are the same. Then we conclude the assertion by [8]
lemma 4.1.4. ��
Remark 2.3.5 The above proofs follow a similar line of [3] lemma 2.4.11 and
are limited to the curve case. In [4] theorem 3.8, Abe proved an analogous
result of Corollary 2.3.4 for constructible modules on a k-variety.

2.4 (Co)specialization morphism for de Rham and rigid cohomologies

In this subsection, we review the specialization and cospecialization mor-
phisms between the de Rham and rigid cohomology following [15, § 1] and
show the compatibility of these two morphisms in Proposition 2.4.5. We also
study the specialization morphism in a relative setting. The results of this
subsection will be used in Sect. 4.2.
2.4.1. In this subsection, X denotes a smooth R-scheme of pure relative
dimension d and Xk (resp. XK ) its special (resp. generic) fiber. We use the
corresponding calligraphic letter X to denote the rigid analytic space X an

K
associated to XK and the corresponding gothic letter X to denote the p-
adic completion of X . We denote by Xrig the rigid generic fiber of X and
by ε : X → XK the canonical morphism of topoi.

Let (M,∇) be a coherent OXK -module endowed with an integrable con-
nection (relative to K ). We denote by (Man,∇an) its pullback to X along ε.
Then the canonical morphism ε−1(M ⊗OXK

�•
XK

)→ Man ⊗OX �•
X induces
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a morphism from algebraic de Rham cohomology to analytic de Rham coho-
mology

R�dR(XK , (M,∇)) = R�(XK ,M ⊗OXK
�•

XK
) (2.4.1.1)

→ R�(X ,Man ⊗OX �•
X ) = R�an(X , (Man,∇an)).

2.4.2. We assume that there exists a smooth proper R-scheme X and an open
immersion j : X → X . Let X be the p-adic completion of X . Then the two

rigid spaces X
rig

and X = X
an
K are isomorphic, and Xrig is the tube ]Xk[X of

Xk in X .
In particular, X is a strict neighborhood of Xrig in X

rig
. We denote by

Conn(XK ) (resp. Conn(X )) the category of coherent OXK -modules with an

integrable connection. For any strict neighborhood V of ]X [X inX
rig
, we refer

to [19, 2.1.1] for the definition of functor j† from the category Ab(V ) of
abelian sheaves on V to itself. We associate to Man a j†O

X
rig -module M† =

j†(Man), endowed with the corresponding connection. In this setting, we have
the following diagram:

Conn(XK )
(−)an

(−)†

Conn(X )
j†

Conn( j†O
X

rig)
|
Xrig

Conn(OXrig)

F- Isoc†(Xk/K ) Isoc††(Xk/K ) Isoc†(Xk/K )
|
Xrig

Isoc(Xk/K )

(2.4.2.1)

where Isoc(Xk/K ) denotes the category of convergent isocrystals on Xk/K
and the vertical arrows are fully faithful [19, 2.2.5, 2.2.7]. When Xk \ Xk is a
divisor, the functor |Xrig is exact and faithful [20, 4.3.10].
2.4.3. In the following, we assume moreover that the connection on M† is
overconvergent (i.e. it is isomorphic to an object of Isoc†(Xk/K )). The rigid
cohomology R�rig(Xk/K ,M†) can be calculated by

R�rig(Xk/K ,M†)
∼−→ R�(X ,M† ⊗OX �•

X ).

The adjoint morphism id→ j† induces a canonical morphism on X

Man ⊗OX �•
X → M† ⊗OX �•

X . (2.4.3.1)
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By composing with (2.4.1.1), we deduce a canonical morphism, denoted by
ρM and called specialization morphism for de Rham and rigid cohomologies:

ρM : R�dR(XK , (M,∇))→ R�rig(Xk/K ,M†). (2.4.3.2)

Let R�]Xk [ be the (derived) functor of local sections supported in the tube

]Xk[X onX (or onX ) [19, 2.1.6]. The rigid cohomologywith compact supports
and coefficients in M† is defined as:

R�rig,c(Xk/K ,M†) := R�(X ,R�]Xk [(M
an ⊗�•

X )).

The canonical morphism

R�]Xk [(M
an ⊗�•

X )→ Man ⊗�•
X (2.4.3.3)

and (2.4.3.1) induce a morphism

ιrig : R�rig,c(Xk/K ,M†)→ R�rig(Xk/K ,M†). (2.4.3.4)

Via (2.1.4.1), the canonical morphism H∗c(X, S̃p∗(M))→ H∗(X, S̃p∗(M)) is
compatible with ιrig.
2.4.4.We recall the definition of de Rham cohomology with compact supports
and coefficients in (M,∇) and the cospecialization morphism, following [15,
1.8] and [12, Appendix D.2].

Let I be the ideal sheaf of the reduced closed subscheme XK − XK in XK .
Take a coherent OXK

-module M extending M . The connection ∇ extends to

a connection on the pro-OXK
-module (I nM)n [12, D.2.12]. This allows us

to define the de Rham pro-complex I •M ⊗OXK
�•

XK
:= (I nM)n ⊗ �•

XK
.

The algebraic de Rham cohomology with compact supports and coefficients
in (M,∇) is defined as [12, D.2.16]

R�dR,c(XK , (M,∇)) := R�(XK ,R lim←− I •M ⊗�•
XK

)

� R lim←−R�(XK , I •M ⊗�•
XK

).

If jK denotes the open immersion XK → XK , we have a canonical
isomorphism j∗K (R lim←−(I •M ⊗ �•

XK
))

∼−→ M ⊗ �•
XK

. Then its adjoint

R lim←−(I •M ⊗�•
XK

)→ R jK∗(M ⊗�•
XK

) induces a canonical morphism:

ιdR : R�dR,c(XK , (M,∇))→ R�dR(XK , (M,∇)).
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By the rigid GAGA, there are canonical isomorphisms

R lim←−R�(XK , I •M ⊗�•
XK

)
∼−→ R lim←−R�(X , I •Man ⊗�•

X )

(2.4.4.1)
∼−→ R�(X ,R lim←− I •Man ⊗�•

X ).

We denote the right hand side byR�an,c(X , (Man,∇an)). Let jan be the inclu-
sion X → X . Similarly, there exists a canonical morphism

R lim←−(I •Man ⊗�•
X )→ R jan∗ (Man ⊗�•

X ), (2.4.4.2)

which induces a morphism on analytic de Rham cohomologies

ιan : R�an,c(X , (Man,∇an))→ R�an(X , (Man,∇an)).

Since (X , ](X − X)k[X) is an admissible covering of X , the canonical
morphisms

R�]Xk [(R jan∗ (E))→ R jan∗ (R�]Xk [(E)), (2.4.4.3)

R�]Xk [(E)→ R�]Xk [R jan∗ ( jan ∗(E))

are isomorphic for any complex of abelian sheaves E on X (resp. X ). Then
(2.4.4.2) induces an isomorphism

R�]Xk [(R lim←−(I •Man ⊗�•
X ))

∼−→ R�]Xk [(R jan∗ (Man ⊗�•
X )). (2.4.4.4)

The cospecialization morphism, denoted by ρc,M , is defined as the compo-
sition

ρ c ,M : R� rig , c (Xk/K ,M†)
(2.4.4.3)� R�(X ,R�]Xk [R j an∗ (M an ⊗�•

X ))

(2.4.4.4)� R�(X ,R�]Xk [(R lim←−(I •M an ⊗�•
X )))

→ R�(X ,R lim←−(I •M an ⊗�•
X ))

(= R� an , c (X , (M an ,∇ an )))

� R� dR , c (XK , (M,∇)).
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Proposition 2.4.5 With the above notation and assumption, the following dia-
gram is commutative:

R�rig,c(Xk/K ,M†)
ιrig

ρc,M

R�rig(Xk/K ,M†)

R�dR,c(XK , (M,∇))
ιdR

R�dR(XK , (M,∇)).

ρM

Proof The algebraic de Rham cohomology with compact supports is isomor-
phic to the analytic one (2.4.4.1). It suffices to show the following diagram is
commutative

R�rig,c(Xk/K ,M†)
ιrig

ρc,M

R�rig(Xk/K ,M†)

R�an,c(X , (Man,∇an))
ιan

R�an(X , (Man,∇an)).

(2.4.3.1)

(2.4.5.1)

The morphism R�rig,c(Xk/K ,M†) → R�an(X , (Man,∇an)) is induced by
the composition on X :

R�]Xk [(R lim←−(I •Man ⊗�•
X ))→ R lim←−(I •Man ⊗�•

X )

(2.4.4.2)−−−−−−→ R jan∗ (Man ⊗�•
X ).

The restriction of the above morphism to X coincides with the canonical
morphism (2.4.3.3), which induces ιrig (2.4.3.4). Then the commutativity of
(2.4.5.1) follows. ��
2.4.6. In the end, we present a generalization of the specialization morphism
(2.4.3.2) in a relative situation using the direct image of arithmeticD-modules.

Let f : X = Spec(B) → S = Spec(A) be a smooth morphism of affine
smooth R-schemes of relative dimension d and let (M,∇) be a coherentOXK -
module endowed with an integrable connection relative to K . Consider M as
a DXK -module. The direct image f dR+ (M) of D-modules is calculated by the
relative de Rham complex M ⊗�•

X/S . Since f is affine, the above complex is
calculated by

�(S, f dR+ (M)) � DRB/A(M,∇) = M → M ⊗B �1
B/A → · · · ,

where we denote abusively by M the global section �(XK ,M).
2.4.7.Weassumemoreover that f admits a good compactification, i.e. f can be
extended to a smooth morphism f : X → S of smooth projective R-schemes
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X , S such that Xk − Xk , Sk − Sk are ample divisors. We keep the notation of
2.4.2 and assume that M† = j†(Man) is overconvergent as in 2.4.3.We denote
abusively the D†

X,Q
(∞)-module Sp∗(M†) (2.1.4) by M†. The direct image of

M† along fk : Xk → Sk is calculated by a relative de Rham complex:

fk,+(M†)
∼−→ R f k,∗(Sp∗(M† ⊗OX �•

X /S)).

The above complex is a complex of overholonomic (and hence coherent)
D†

S,Q
(∞)-modules.

We set A† = �(S,OS), B† = �(X,OX ) and D†
S
(∞) = �(S,D†

S,Q
(∞))

(1.3.8). By D†-affinity [48, 5.3.3], the above complex is equivalent to a com-
plex of coherent D†

S
(∞)-modules:

R�(S, fk,+(M†)) � R�(X,Sp∗(M† ⊗OX �•
X /S))

� (M ⊗BK B†)⊗B �•
B/A.

We denote the complex in the second line by DR†
B/A(M

†), which is an A†-
linear complex. If we set DSK = �(SK ,DSK ), there exists a canonical DSK -
linear morphism, called the (relative) specialisation morphism

DRB/A(M,∇)→ DR†
B/A(M

†). (2.4.7.1)

2.5 Equivariant holonomic D-modules

In this subsection, we study the notion of equivariant holonomic D-modules
over a k-scheme (or an ind-scheme).
2.5.1. Let X → S be a morphism of k-schemes, H a smooth affine group
scheme over S and act : H ×S X → X an action of H on X . We denote by
pr2 : H ×S X → X the projection. A H -equivariant holonomic module on
X is a pair consisting of a holonomic module M on X and an isomorphism
θ : act+(M )

∼−→ pr+2 (M ) in D(H ×S X), satisfying:

(i) e+(θ) = id, where e : X → H ×S X is induced by the unit section of H ;
(ii) a cocycle condition on H ×S H ×S X .

Morphisms are defined in a natural way. We denote by HolH (X) the category
of H -equivariant holonomic modules on X , which is an abelian subcategory
of Hol(X).

Suppose that H has geometrically connected fibers over S and that [X/H ] is
represented by a separated scheme of finite type X over S. By smooth descent
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of holonomic modules [3, 2.1.13], the pullback functor along the canonical
morphism q : X → X induces an equivalence of categories:

q+[dH ] : Hol(X)
∼−→ HolH (X). (2.5.1.1)

Using Proposition 2.1.6 and repeating the argument of [79, A.1.2], we deduce
that the canonical functor HolH (X)→ Hol(X) is fully faithful.
2.5.2. Let Y be a separated S-scheme of finite type and � : E → Y an H -
torsor over S with trivial action of H on Y . We denote by Y ×̃S X the quotient
of E ×S X by the diagonal action of H .

Let M be a holonomic module on Y and N an H -equivariant holonomic
module on X . Assume that M �S N is a holonomic module on Y ×S X
(Note that it is true if the base S = Spec(k)). Then (�+M [dim H ])�S N is
holonomic on E ×S X and is H -equivariant by construction. By (2.5.1.1), it
descends to a holonomic module on Y ×̃S X , denoted by M �̃SN and called
the twisted external product of M and N .
2.5.3. Let X � lim−→i∈I Xi be an ind-scheme over k [79, definition 0.3.4]. For a
transition morphism ϕ : Xi → X j , the functor ϕ+ : D(Xi )→ D(X j ) is exact
and fully faithful. We define a triangulated category D(X ) as the 2-inductive
limit

D(X ) = lim−→
i∈I

D(Xi ).

The definition is independent of the choice of a ind-presentation of X . Since
ϕ+ is exact, D(X ) is also equipped with a t-structure, whose heart is denoted
by Hol(X ). Note that Hol(X ) coincides with the full abelian subcategory
lim−→i∈I Hol(Xi ) of D(X ).

Given a morphism f = ( fi )i∈I : X = lim−→ Xi → S to a k-scheme S, the
cohomology functors fi,!’s and fi,+’s allow us to define f!, f+ : D(X ) →
D(S). If S is smooth, in view of Proposition 2.2.3(iv), we can define the notion
of LA (resp. ULA) with respect to f for objects of D(X ).
2.5.4. Let X = lim−→i∈I Xi be an ind-scheme and f : X → S a morphism
to a k-scheme. Let (Hj ) j∈J be a projective system of smooth affine S-group
schemes with geometrically connected fibers, whose transition morphisms are
quotient. We set H = lim←− j∈J Hj and assume that there exists an action of

H on f : X → S such that it stabilizes each subfunctor f |Xi and that the
H -action factors through a quotient Hji on Xi → S for each i ∈ I . Then we
define the category HolH (X ) of H -equivariant holonomic modules on X as
in [79, A.1.4]. Let Y = lim−→i∈I Yi an ind-scheme over S and � : E → Y an
H -torsor. Let M be an object of Hol(Y) supported in Yl and N an object
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of HolH (X ) supported in Xi . We can define an ind-scheme Y×̃SX and the
twisted product M �̃SN in Hol(Y×̃SX ) as in [79, A.1.4].

2.6 Hyperbolic localization for arithmetic D-modules

2.6.1. Let X be a quasi-projective k-scheme such that X⊗k k is connected and
normal. We suppose that there exists an action μ : Gm × X → X of the torus
Gm over k. Following [37], we denote by X0 the closed subscheme of fixed
points of X [37, 1.3] by X+ (resp. X−) the attractor (resp. repeller) of X [37,
1.4, 1.8]. We have a commutative diagram

X+
π g

X0
f

f ′
X

X−
π ′ g′

where f, f ′ are closed immersions and are sections of π, π ′, respectively, the
restriction of g (resp. g′) to each connected component of X+ (resp. X−) is a
locally closed immersion [37, 1.6.8].

We define hyperbolic localization functors (−)!+, (−)+! : D(X)→ D(X0),
for F ∈ D(X) by:

F !+ = f !(g+(F )), F+! = f ′+(g′!(F )).

We say an object F of D(X) is weakly equivariant if there exists an isomor-
phism μ+(F ) � L [−1]� F for some smooth module L on Gm .

Theorem 2.6.2 (Braden [22]) (i) There exists a canonical morphism ιF :
F+! → F !+, which is an isomorphism if F is weakly equivariant.

(ii) The canonical morphisms π! → f !, π ′+ → f ′+ induce morphisms

π!g+F → F !+, π ′+g′!F → F+!,

which are isomorphisms if F is weakly equivariant.

Braden’s original proof only relies on the six functor formalism of �-adic
sheaves. We can apply the same argument and obtain the above theorem in the
arithmetic D-modules setting.

123



1028 D. Xu, X. Zhu

3 Geometric Satake equivalence for arithmetic D-modules

In this section, we establish the geometric Satake equivalence for arithmetic
D-modules.

We assume that k is a finite field with q = ps elements and keep the
notation in § 2. We work with holonomic modules (resp. complexes) over the
geometric base tuple T = {k, R, K , L} and we omit /L from the notations
Hol(−/L),D(−/L) for simplicity. We take an arithmetic base tuple TF =
{k, R, K , L , s, idL} and an isomorphism K � C to apply the theory ofweights
and the decomposition theorem [6].

Let G be a split reductive group over k and T the abstract Cartan of G. We
denote by X

• = X
•(T ) the weight lattice and by X• = X•(T ) the coweight

lattice. Let � ⊂ X
• (resp. �∨ ⊂ X•) the set of roots (resp. coroots). Let

�+ ⊂ � be the set of positive roots and X•(T )+ ⊂ X•(T ) the semi-group of
dominant coweights, determined by a choice of B. (But they are independent
of the choice of B.) Given λ,μ ∈ X•(T ), we define λ ≤ μ if μ− λ is a non-
negative integral linear combinations of simple coroots and λ < μ if λ ≤ μ

and λ 
= μ. This defines a partial order onX•(T ) (and onX•(T )+). We denote
by ρ ∈ X

•(T )⊗Q the half sum of all positive roots.

3.1 The Satake category

3.1.1.Recall that the loopgroup LG (resp.positive loopgroup L+G) is the fpqc
sheaf on the category of k-algebras associated to the functor R �→ G(R((t)))
(resp. R �→ G(R�t�)). Then L+G is a subsheaf of LG and the affine Grass-
mannian GrG is the fpqc-quotient GrG = LG/L+G, which is represented by
an ind-projective ind-scheme over k. We write simply Gr instead of GrG , if
there is no confusion.

For any dominant coweightμ ∈ X•(T )+, we denote byGrμ the correspond-
ing (L+G)-orbit in Gr, which is smooth quasi-projective over k of dimension
2ρ(μ) [79, 2.1.5]. Let Gr≤μ be the reduced closure of Grμ in Gr, which is
equal to ∪λ≤μ Grλ. Let jμ : Grμ → Gr≤μ be the open inclusion. We have an
ind-presentation Grred � lim−→μ∈X•(T )+ Gr≤μ. Since we will work with holo-
nomic modules, we can replace Gr by its reduced ind-subscheme [3, 1.1.3
lemma], and omit the subscript red to simplify the notation.

For i ≥ 0, let Gi be the i-th jet group defined by the functor R �→
G(R[t]/t i+1). Then Gi is representable by a smooth geometrically connected
affine group scheme over k and we have L+G � lim←−i

Gi . If we consider the

left action of L+G on Gr, then the action on Gr≤μ factors throughGi for some
i . We can define the category of (L+G)-equivariant holonomic modules on
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Gr (2.5.4), denoted as SatG and called Satake category. It is a full subcategory
of Hol(Gr) (2.5.1).

Proposition 3.1.2 The category SatG is semisimple with simple objects
ICμ := jμ,!+(LGrμ[2ρ(μ)]) (2.1.9).
Lemma 3.1.3 For μ ∈ X•(T )+, the category Sm(Grμ) (2.1.4) is semisimple
with simple object LGrμ .

Proof The (L+G)-orbit Grμ is geometrically connected and satisfies π ét
1 (Grμ

⊗kk) � {1} (cf. [67] proof of proposition 4.1). Every irreducible object M
of Sm(Grμ) has a Frobenius structure with finite determinant [2, 6.1]. By
the companion theorem for overconvergent F-isocrystals over a smooth k-
scheme [7, 4.2] and Čebotarev density [3, A.4], we deduce thatM � LGrμ in
Sm(Grμ). Alternatively, one can show aweaker statement that LGrμ is the only
L+G-equivariant irreducible object of Sm(Grμ) using a similar argument of
the proof of (2.5.1.1).

To show the semisimplicity, it suffices to show that H1(Grμ, L) = 0. There
exists a morphism π : Grμ → G/Pμ realizing Grμ as an affine bundle over
the partial flag varietyG/Pμ, where Pμ is the parabolic subgroup containing B
and associated with {α ∈ �, (α, μ) = 0}. In view of the cohomology of affine
spaces (2.1.4), the cohomology Hi (Grμ, L) is isomorphic to Hi (G/Pμ, L).
Since the partial flag variety admits a stratification of affine spaces, we deduce
that Hi (G/Pμ, L) = 0 if i is odd by (2.1.3.1). Then the assertion follows. ��

We prove the following parity result by the same argument of [44] A.7 (cf.
[13] §4.2 for a detailed exposition) in the �-adic case using the decomposition
theorem [6, 4.3.1, 4.3.6], spectral sequence (2.1.3.1) and the parity of the
compact support p-adic cohomology of affine spaces (2.1.4).

Lemma 3.1.4 The constructible module cHi (ICμ) vanishes unless i ≡
dim(Grμ) (mod 2).

3.1.5. Proof of Proposition 3.1.2. We follow the same line as in the �-adic case
(cf. [44] prop. 1). By 2.1.9(i), holonomic modules ICμ are irreducible objects
of SatG . Let E be an irreducible object of SatG . There exists an (L+G)-orbit
Grμ such thatE |Grμ is a non-zero smooth object. By 2.1.6 and 3.1.3, we deduce
that E is isomorphic to ICμ.

To prove the semisimplicity, it suffices to show that for λ,μ ∈ X•(T )+, we
have

Ext1Hol(Gr)(ICλ, ICμ) = HomD(Gr)(ICλ, ICμ[1]) = 0. (3.1.5.1)

(i) In the case λ = μ, (3.1.5.1) follows from Ext1Hol(Grμ)(LGrμ, LGrμ) =
H1(Grμ, L) = 0 (Lemma 3.1.3).
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(ii) Then we consider the case either λ < μ or μ < λ. Since the dual
functor D induces an anti-equivalence, we may assume thatμ < λ. We denote
by i : Gr≤μ → Gr≤λ the closed immersion and we have

HomD(Gr)(ICλ, i+ ICμ[1]) � HomD(Gr≤μ)(i
+ ICλ, ICμ[1]).

Note that i+ ICλ has cohomological degrees ≤ −1 (2.1.10(i)). Each (L+G)-
equivariant holonomic module H j (i+ ICλ |Grμ) is smooth and hence is con-
stant (3.1.3). If there exists a non-zero morphism g : i+ ICλ → ICμ[1], then
it would induce a non-zero morphism h : H−1(i+ ICλ |Grμ)→ LGrμ[2ρ(μ)].
Given a closed point x ofGrμ, the restriction of the fiber functor i+x [− dimGrμ]
to smooth objects is exact [3, 2.4.15]. Then the fiber i+x (H−1(i+ ICλ |Grμ)) is
isomorphic to H−1+dimGrμ(i+x ICλ). If H−1(i+ ICλ |Grμ) is non-zero, then it
contradicts to 3.1.4 as i+x is c-t-exact. The equality (3.1.5.1) in this case follows.

(iii) In the case λ � μ and μ � λ, we prove (3.1.5.1) by base change in the
same way as in [13, 4.3]. ��
3.1.6.We refer to [79, 1.2.12, 1.2.13] for the definition of the twisted product
Gr ×̃Gr and of the convolution morphismm : Gr ×̃Gr → Gr. The morphism
m is ind-proper and (L+G)-equivariant with respect to the left (L+G)-actions.

Given two objects A1,A2 of SatG , we denote by A1�̃A2 their external
twisted product on Gr ×̃Gr (see 2.5.2 and 2.5.4), and define the convolution
product by

A1 �A2 = m+(A1�̃A2). (3.1.6.1)

Wewill show thatA1�A2 is an object of SatG and that � defines a symmetric
monoidal structure on SatG . To do it, we will interpret the convolution product
as the specialization of a fusion product on Beilinson–DrinfeldGrassmannians
in the next subsection.

3.2 Fusion product

3.2.1. Let X be the affine line A
1
k , n an integer ≥ 1 and Xn the n-folded

self product of X over k. We denote by qn : GrG,Xn → Xn the Beilinson–
Drinfeld Grassmannian associated to G over Xn [17], cf. [79, § 3]. If there is
no confusion, we will write simply GrXn instead of GrG,Xn .

We refer to [79, 3.1] the definition of global loop groups (L+G)Xn and
(LG)Xn over Xn . There exists a canonical isomorphism of fpqc-sheaves
(LG)Xn/(L+G)Xn

∼−→ GrG,Xn . We consider the left action of (L+G)Xn on
GrG,Xn over Xn and denote by Hol(L+G)Xn

(GrXn ) the category of (L+G)Xn -
equivariant holonomic modules on GrXn (2.5.4).
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There exists an isomorphism GrX � Gr×X . Given a holonomic module
A on Gr, the holonomic module AX = A � LX [1] is ULA with respect
to q : GrX → X (2.5.3). If A is moreover (L+G)-equivariant, then AX is
(L+G)X -equivariant. By Proposition 2.1.6, we obtain a fully faithful functor

ι : D(Gr)→ D(GrX ), A �→ AX . (3.2.1.1)

We denote the essential image of SatG via ι by SatX , which is a full subcategory
of Hol(L+G)X (GrX ).

To define the fusion product on SatX , we will use the factorization structure
of Beilinson–Drinfeld Grassmannians. LetU be complement of� : X → X2.
Then there exists a canonical isomorphism, called the factorization isomor-
phism [79, 3.2.1(iii)]

c : GrX2 ×X2U
∼−→ (GrX ×GrX )×X2 U. (3.2.1.2)

The involution σ : X2 → X2, (x, y) �→ (y, x), induces an involution�(σ) :
GrX2 → GrX2 .
3.2.2. The morphism m (3.1.6) also admits a globalization. We refer to [79,
3.1.21] for the definition of convolution Grassmannian GrX ×̃GrX and con-
volution morphism m : GrX ×̃GrX → GrX2 over X2.

Using a (L+G)X -torsor E → GrX ×X [79, 3.1.22], one can identify
GrX ×̃GrX with the twisted product (GrX ×X)×̃X GrX (2.5.4). In summary,
we have the following diagram over X2

GrX ×GrX = (GrX ×X)×X GrX ← E×X GrX → GrX ×̃GrX
m−→ GrX2 .

(3.2.2.1)

LetA1,A2 be two objects of SatX . Note that (A1� LX )�X A2 � A1�A2
is holonomic. We denote by A1�̃A2 the twisted product of A1 � LX and A2
on GrX ×̃GrX (2.5.4).

Proposition 3.2.3 (i) There exists a canonical isomorphism of holonomic
modules on GrX2:

m+(A1�̃A2) � j!+(A1 � A2|U ). (3.2.3.1)

The left hand side, denoted by A1 � A2, is ULA with respect to q2 : GrX2 →
X2.
(ii) There exists a canonical isomorphism of holonomic modules on GrX :

�+[−1](A1 � A2)
∼−→ �![1](A1 � A2).
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We denote one of the above module by A1 � A2 and call it fusion product of
A1,A2. This holonomic module is ULA with respect to q : GrX → X.

Proof (i) The holonomic moduleA1 �A2 on GrX ×GrX is the inverse image
of a holonomic module on Gr×Gr and hence is ULA with respect to the
projection GrX ×GrX → X2. Recall that A1�̃A2 is constructed by descent
along a quotient by a smooth group scheme over X (2.5.4, 3.2.2.1). Hence it
is ULA with respect to the projection to X2 by Proposition 2.2.3(iii). Since
m is ind-proper, then m+(A1�̃A2) is ULA with respect to q2 : GrX2 → X2.
Since m|U is an isomorphism [79, 3.1.23], under (3.2.1.2) we have

A1�̃A2|U = A1 � A2|U ,

which is holonomic. Then we deduce the isomorphism (3.2.3.1) from Propo-
sition 2.2.5(i).

Assertion (ii) follows from Proposition 2.2.5. ��
By repeating the argument of [79, lemma 5.4.6, remark 5.4.7], we obtain

the following corollary.

Corollary 3.2.4 Let A1,A2 be two objects of SatG.
(i) There exists a canonical isomorphism on GrX (3.1.6.1)

(A1 �A2)X � A1,X � A2,X .

(ii) The convolution productA1 �A2 is still holonomic and belongs to SatG.
The category SatG equipped with the bifunctor � and the unit object IC0 forms
a monoidal category.

3.3 Hypercohomology functor and semi-infinite orbits

Proposition 3.3.1 The hypercohomology functor H∗, defined by

H∗ : SatG → VecL , A �→
⊕
n∈Z

Hn(Gr,A), (3.3.1.1)

is exact and monoidal.

Proof Since SatG is semisimple (3.1.2), H∗ is exact. Let A be an object of
SatG and π : Gr → Spec(k) the structure morphism. By the Künneth formula
[3, 1.1.7], there exists a canonical isomorphism

q+(AX )[−1] � π+(A) � LX . (3.3.1.2)
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The monoidal property of H∗ follows from Corollary 3.2.4(i), (3.3.1.2) and
the following lemma ��
Lemma 3.3.2 Given two objects A1,A2 of SatX , there exists a canonical
isomorphism

q+(A1 � A2)[−1] � (q+(A1)[−1])⊗ (q+(A2)[−1]).

Proof It suffices to construct a canonical isomorphism

q2+(A1 � A2) � q+(A1) � q+(A2). (3.3.2.1)

By (3.2.3.1) and the Künneth formula [3, 1.1.7], such an isomorphism exists
on U = X2 −�(X).

Let τ : X2 → X be the morphism sending (x, y) to x − y. Both sides
of (3.3.2.1) are ULA with respect to τ by Propositions 2.2.3 and 3.2.3. By
Proposition 2.2.5, we deduce a canonical isomorphism on X

�!(q2+(A1 � A2)
) � �!(q+(A1) � q+(A2)

)
.

Then the isomorphism (3.3.2.1) follows from the distinguished triangle
�+�! → id→ j+ j+ →. ��
Remark 3.3.3 For objects A1,A2 of SatG , we have

H∗(A1 �A2) � H∗(A1)⊗ H∗(A2).

The above proof also applies to arithmetic D-modules with Frobenius
structures. If A1,A2 are equipped with Frobenius structures, the above iso-
morphism is compatible with Frobenius structures.

3.3.4. In the following, we study the p-adic cohomology of objects of SatG
on semi-infinite orbits of GrG following Mirković and Vilonen [62]. Let Bop

be the opposite Borel subgroup. The inclusion B, Bop → G and projections
B, Bop → T induce morphisms

GrT
π←− GrB

i−→ GrG, GrT
π ′←− GrBop

i ′−→ GrG .

Via i , each connected component of GrB is locally closed in GrG .
The affine Grassmannian GrT is discrete, whose k-points are given by Lλ =

tλT (k�t�)/T (k�t�) ∈ GrT (k), λ ∈ X•(T ). For λ ∈ X•(T ), we denote by Sλ
(resp. Tλ) the ind-subscheme i(π−1(Lλ)) (resp. i ′(π ′−1(Lλ)) of GrG . The
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union S≤λ = ∪λ′≤λSλ′ is closed in GrG and Sλ is open and dense in S≤λ. We
set cohomology functors H∗c(Sλ,−) and H∗Tλ(GrG,−) to be

H∗c(Sλ,−) = H∗((π!i+(−))λ), H∗Tλ(GrG,−) = H∗(π ′+i ′!(−))λ).

Proposition 3.3.5 (i) For any object A of SatG, there exists a functorial iso-
morphism

Hi
c(Sλ,A) � Hi

Tλ(GrG,A).

Both sides vanish if i 
= 2ρ(λ).
(ii) For μ ∈ X•(T )+, the dimension of H2ρ(λ)

c (Sλ, ICμ) is equal to the
number of geometrically irreducible components of Sλ ∩ GrG,μ. If we set
ICμ = jμ,!+(LGrμ[2ρ(μ)]) as an object of D(Gr, LF ), then the Frobenius

acts on H2ρ(λ)
c (Sλ, ICμ) by multiplication by qρ(λ+μ).

(iii) For any integer i , there exists a functorial isomorphism

Hi (GrG,A) �
⊕

λ∈X•(T )

Hi
c(Sλ,A).

(iv) The hypercohomology functor H∗ (3.3.1.1) is faithful.

If we consider the action of Gm on GrG induced by 2ρ̌, GrB (resp. GrBop ,
GrT ) is the attractor (resp. repeller, resp. closed subscheme of fixed points) of
GrG (cf. 2.6.1). When the intersection Sλ ∩ GrG,μ is non-empty, it has pure
dimension ρ(λ+ μ). Then the proposition can be proved in the same way as
in [62, 3.5, 3.6] by Braden’s theorem (2.6.2). The faithfulness of H∗ follows
from the calculation of cohomologies (ii,iii).

Proposition 3.3.6 Given two objectsA1,A2 of SatG, there exists a canonical
isomorphism

H2ρ(λ)
c (Sλ,A1 �A2) �

⊕
λ1+λ2=λ

H2ρ(λ1)
c (Sλ1,A1)⊗ H2ρ(λ2)

c (Sλ2,A2).

(3.3.6.1)

Proof We consider the action of Gm on GrG,Xn induced by 2ρ̌, which is
compatible with the action of Gm on GrG on each fiber of x ∈ |Xn|. We
denote the connected components of Gr+G,Xn (resp. Gr−G,Xn ), parametrized by
λ ∈ X•(T ), by Sλ(Xn) (resp. Tλ(Xn)) (cf. [62] 6.4). The fiber of Sλ(X2) (resp.
Tλ(X2)) at x = (x, x) ∈ �(X) ⊂ X2 is isomorphic to Sλ (resp. Tλ) and its
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fiber at x = (x, y) ∈ X2 −�(X) is isomorphic to
∏

λ1+λ2=λ Sλ1 × Sλ2 (resp.∏
λ1+λ2=λ Tλ1 × Tλ2). Consider the following diagram of ind-schemes:

Sλ(X2)
j

iλ

S≤λ(X2)
iλ GrG,X2

q2
X2 (3.3.6.2)

Let A1,A2 be two objects of SatG , A1,X ,A2,X their extensions to GrG,X
(3.2.1.1) andB = A1,X �A2,X . For i ∈ Z, we define the constructible module
Li

λ(A1,A2) on X2 to be

Li
λ(A1,A2) = cHi (q2+(iλ,!(i+λ B))) � cHi (q2+(i ′λ,+(i ′!λB))),

where the second isomorphism follows from Braden’s theorem (2.6.2). By
3.3.5, Li

λ(A1,A2) vanishes unless i = 2ρ(λ) and the stalk of L2ρ(λ)
λ (A1,A2)

at a k-point (x1, x2) of X2 is isomorphic to

L2ρ(λ)
λ (A1,A2)(x1,x2) (3.3.6.3)

�
{
H2ρ(λ)
c (Sλ,A1 �A2) if x1 = x2,⊕
λ1+λ2=λ H

2ρ(λ1)
c (Sλ1,A1)⊗ H2ρ(λ2)

c (Sλ1,A2) if x1 
= x2.

The adjunction morphisms id → iλ,+i
+
λ and j! j+ → id (3.3.6.2) induce

canonical morphisms

cH2ρ(λ)(q2+(A1,X � A2,X )) � cH2ρ(λ)((q2 ◦ iλ)+i+λ B)
∼←− L2ρ(λ)

λ (A1,A2),

(3.3.6.4)

where the first arrow is an epimorphism and the second arrow is an
isomorphism in view of the calculation of their fibers (3.3.5). By apply-
ing a dual argument to Tλ(X2), we obtain a section L2ρ(λ)

λ (A1,A2) →
cH2ρ(λ)(q2+(A1,X � A2,X )) of (3.3.6.4). In view of Proposition 3.3.5, we
deduce a decomposition

cHi (q2+(A1,X � A2,X )) �
⊕

2ρ(λ)=i
Li

λ(A1,A2).

The left side is a constant module with value Hi (Gr,A1 � A2) by (3.3.1.2,
3.3.2.1). Then each summand Li

λ(A1,A2) is also constant and fibers of
Li

λ(A1,A2) (3.3.6.3) are isomorphic. The proposition follows. ��
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3.4 Tannakian structure and the Langlands dual group

Theorem 3.4.1 (i) The monoidal category (SatG, IC0, ∗), equipped with the
constraints c defined below and the functor H∗ (3.3.1.1), forms a neutral
Tannakian category over L.

(ii) The Tannakian group G̃ = Aut⊗H∗ of the Tannakian category SatG is
a connected reductive group scheme over L. If T is a maximal torus of G, then
T̃ is a maximal torus of G̃.

(iii) The reductive group G̃ is the Langlands dual group of G over L. More
precisely, the root datum of G̃ with respect to T̃ is dual to that of (G, T ).

Weprove Theorem3.4.1 in the sameway as in [79, 5.2.9, § 5.3] using Propo-
sitions 3.3.5 and 3.3.6. We briefly review the construction of the constrains c
in the following.

The permutation σ : {1, 2} → {1, 2} induces an involution�(σ) : GrX2 →
GrX2 over the involution σ : X2 → X2, (x, y) �→ (y, x) (3.2.1). Let
A1,A2 be two objects of SatG .We deduce from the factorization isomorphism
(3.2.1.2) and (3.2.3.1) a canonical isomorphism �(σ)+(A1,X � A2,X )

∼−→
A2,X � A1,X . Taking its fiber at (x, x), we obtain a canonical isomorphism
c′A1,A2

: A1 ∗A2 � A2 ∗A1.
We modify c′A1,A2

by a sign as follows (see [62] after Remark 6.2). The

morphism p : X•(T ) → Z/2Z, μ �→ (−1)2ρ(μ) defines a Z/2Z-grading on
simple objects of SatG . Given two simple objects A1,A2 of SatG , we define
a new constraint cA1,A2 = (−1)p(A1)p(A2)c′A1,A2

.
Since SatG is semisimple, the definition of cA1,A2 extends to any pair

(A1,A2) of objects of SatG . Proposition 3.3.5 and the same argument of [79,
proposition 5.2.6] allow us to deduce the following commutative diagram

H∗(A1 ∗A2)
cA1,A2

�
H∗(A2 ∗A1)

�

H∗(A1)⊗ H∗(A2)
cVec H∗(A2)⊗ H∗(A1),

where the isomorphism cVec is the usual commutativity constraint on vector
spaces, i.e cVec(v ⊗ w) = w ⊗ v.
3.4.2. For our applications of the geometric Satake equivalence for arithmetic
D-modules, it is important to consider the Frobenius structure on the Satake
category. In the following, we study the full Langlands dual group constructed
by the Satake category equipped with Frobenius structures.

We suppose that the geometric base tuple {k, R, K , L} underlies to an arith-
metic base tuple {k, R, K , L , t, σ } (2.1.2), where t is an integer (which may
be different from the degree s of k over Fp).
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The t-th Frobenius pullback functor F∗Gr = F+Gr /k ◦ σ ∗ : Hol(Gr /L) ∼−→
Hol(Gr /L) [3, 1.1.3 remark] induces a σ -semi-linear equivalence of tensor
categories F∗Gr : SatG

∼−→ SatG . We denote by F- SatG the category of pairs

(X, ϕ) consisting of anobject X ofSatG and aFrobenius structureϕ : F∗GrX
∼−→

X . Morphisms are morphisms of SatG compatible with ϕ (cf. [3] 1.4.6). We
will show that F- SatG is a Tannakian category.
3.4.3. We first study some general constructions in the Tannakian formalism
following [69].

For n ∈ Z, we denote abusively by σ n the equivalence of categories
(−)⊗L ,σ n L : VecL ∼−→ VecL .

Let (C, ω) be a neutralized Tannakian over L . We suppose that, for each
n ∈ Z, there exists a σ n-semi-linear equivalence of tensor categories

τn : C → C

and an isomorphism of tensor functors αn : ω ◦ τn
∼−→ σ n ◦ ω. For any pair

n,m ∈ Z, we suppose moreover that there exists an isomorphism of tensor
functors ε : τm ◦ τn � τm+n such that

(id ◦αn) ◦ (αm ◦ id) = αm+n ◦ ω(ε) : ω ◦ τm ◦ τn � σm+n ◦ ω.

Since ω is faithful, such an isomorphism ε is unique.
Let H be the Tannakian group of (C, ω). The above structure defines a

homomorphism

ι : Z → Aut(H(L)), (3.4.3.1)

by letting ι(n) send h : ω → ω toω
α−1n−−→ σ−n◦ω◦τn h◦id−−→ σ−n◦ω◦τn αn−→ ω.

We define the categoryCZ ofZ-equivariant objects inC as follows.An object
(X, {cn}n∈Z) consists of an object X of C and isomorphisms cn : τn(X)

∼−→
X satisfying cocycle conditions cn+m = cn ◦ τn(cm). A morphism between
(X, {cn}n∈Z) and (X ′, {c′n}n∈Z) is a morphism of C compatible with cn, c′n .
3.4.4. Let � be an abstract group and ϕ : � → Z a homomorphism. We say
an action of � on an L-vector space V is σ -semi-linear (with respect to ϕ) if it
is additive and satisfies γ (av) = σϕ(γ )(a)γ (v) for γ ∈ �, a ∈ L and v ∈ V .
We denote by RepL ,σ (�) the category of σ -semi-linear representations of �
on finite dimensional L-vector spaces.

We denote by H(L) � Z the semi-direct product of H(L) and Z via ι

(3.4.3.1). The short exact sequence 1 → H(L) → H(L) � Z → Z → 1
allows us to define the category RepL ,σ (H(L) � Z).
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Proposition 3.4.5 Keep the assumption and notation as above.
(i) The category CZ is a Tannakian category over L0 = Lσ=1 neutralized

by ω over L [36, § 3].
(ii) Suppose that the Tannakian group H of (C, ω) is a split reductive group

over L. Then ω induces an equivalence of tensor categories

CZ ∼−→ Rep◦L ,σ (H(L) � Z),

whereRep◦L ,σ (H(L)�Z) is the full subcategory ofRepL ,σ (H(L)�Z) (3.4.4)
consisting of representations whose restriction to H(L) is algebraic.

Proof (i) We define a monoidal structure on CZ by letting

(X, {cn})⊗ (X ′, {c′n}) = (X ′′, {c′′n}),

where X ′′ = X ⊗ X ′ and c′′n is the composition τn(X ′′) � τn(X) ⊗
τn(X ′)

cn⊗c′n−−−→ X⊗X ′. This defines a structure of symmetricmonoidal category
on CZ.

We apply [35, 2.5] to show that (CZ,⊗) is rigid. Given an object (X, {cn}) of
CZ, we denote by X∨ be the dual of X in C and thenwe have τn(X∨) � τn(X)∨.
For each n, we have an isomorphism

c∨n : X∨ ∼−→ (τn(X))∨ � τn(X
∨).

In view of [36, 1.6.5], the evaluation and coevaluation morphisms of X and of
τn(X) are compatible via τn . So (X∨, {(c∨n )−1}) is the dual of (X, {cn}) in CZ,
as the evaluation and the coevaluation morphisms of (X, {cn}) in CZ satisfying
the axiom of [35, 2.1.2]. Hence CZ is a rigid abelian tensor category.

Since τn is σ n-semi-linear, we have End(idCZ) � L0. The forgetful tensor
functor CZ → C is exact and faithful. Hence the fiber functor ω of C defines a
fiber functor ω : CZ → VecL [36, 3.1]. Then the assertion follows from [35,
1.10–1.13], see also [36, footnote 12].

(ii) It suffices to construct an equivalence of tensor categories

� : RepL(H)Z
∼−→ Rep◦L ,σ (H(L) � Z). (3.4.5.1)

Let ((V, ρ), {cn}) be an object ofRepL(H)Z. Then we define a representation
(V, ρ̃) of Rep◦L ,σ (H(L) � Z), for any element (h, n) ∈ H(L) � Z, by letting
ρ̃(h, n) to be the composition

σ n(ω(V, ρ))
α−1n−−→ ω(τn(V, ρ))

h◦id−−→ ω(τn(V, ρ))
cn−→ ω(V, ρ). (3.4.5.2)
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Using the cocycle condition, one checks that (3.4.5.2) defines a representation.
Then we obtain the functor � (3.4.5.1). The natural functor RepL(H) →
RepL(H(L)), ρ �→ ρ(L), is fully faithful. In view of (3.4.5.2), we deduce
that� is fully faithful. We leave the verification of the essential surjectivity to
readers. ��
3.4.6. The Frobenius pullback functor F∗Gr = F+Gr /k ◦ σ ∗ : SatG ∼−→ SatG
satisfies H∗ ◦F∗Gr � σ ◦H∗. We take for every integer n the tensor equivalence
τn on SatG to be |n|-th composition of F∗Gr (or a quasi-inverse of F∗Gr if n < 0)
(3.4.3). These functors satisfy the assumption of 3.4.3. With the notation of
3.4.3, F- SatG is equivalent to the category SatZG . In this case, we obtain the
following result by 3.4.5.

Theorem 3.4.7 (i) The category F- SatG is a Tannakian category over L0,
neutralized by the fiber functorH∗ over L. If t = s and σ = idL , then F- SatG
is a neutral Tannakian category.

(ii) There exists a canonical equivalence of tensor categories

F- SatG
∼−→ Rep◦L ,σ (Ǧ(L) � Z),

compatible with fiber functors.

3.4.8. We work with the arithmetic tuple TF = {k, R, K , L , s, idL} and we
suppose there exists a square-root p1/2 of p in L . This allows to define half
Tate twist functor (n2 ) for n ∈ Z by sending each object M ∈ D(X/LF ),
equipped with the Frobenius structure �, to (M , p−sn/2 ·�).

For μ ∈ X•(T ), we denote by ICWeil
μ = jμ,!+(LGrμ)[2ρ(μ)](ρ(μ)) the

holonomic module in F- SatG with weight 0, and by S the full subcategory of
F- SatG consisting of direct sums of ICWeil

μ ’s.
The categoryS is closedunder the convolutionon F- SatG , i.e. ICWeil

λ � ICWeil
μ

is isomorphic to a direct sum of ICWeil
ν . Indeed, by Proposition 3.3.5(ii),

the Frobenius acts on the total cohomology H∗(ICWeil
μ ) by a diagonalizable

automorphism with eigenvalues qn/2, n ∈ Z. Since H∗ is compatible with
Frobenius structure (3.3.3), so is the Frobenius action on H∗(ICWeil

λ � ICWeil
μ ).

We have a decomposition ICλ � ICμ � ⊕ ICν . Then the claim follows from
the fact that the the action of Frobenius on cohomology determines the iso-
morphism class of an object of F- SatG whose underlying holonomic module
is isomorphic to a direct sum of ICν’s.

The canonical functor F- SatG → SatG induces an equivalence of tensor
categories S ∼−→ SatG . In particular, we obtain equivalences of tensor cate-
gories

Sat : RepL(Ǧ) � SatG � S. (3.4.8.1)
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3.4.9.We briefly review the action of outer automorphism group of G on SatG
(resp. on S).

Let (C, ω) be a Tannakian category over L and H the associated Tannakian
group.We denote by Aut⊗(C, ω) the set of isomorphism classes of pairs (τ, α)
of a tensor equivalence τ : C ∼−→ C and an isomorphism of functors α :
ω

∼−→ ω ◦ τ . This set has a natural group structure. A similar construction
as in 3.4.3 defines a canonical morphism Aut⊗(C, ω) → Aut(H), which is
an isomorphism [47, lemma B.1]. We apply this to the Satake category S
(or SatG) equipped with the fiber functor H∗. The action of Aut(G) on GrG
induces an action on (S,H∗), and therefore an action of Aut(G) on Ǧ, i.e. a
homomorphism ι : Aut(G)→ Aut(Ǧ).

Lemma 3.4.10 There is a natural pinning (B̌, Ť , N ) of Ǧ such that that map
ι factors as Aut(G) � Out(G)

∼−→ Aut†(Ǧ, B̌, Ť , N ) ⊂ Aut(Ǧ).

The lemma can be shown in the same way as in [47, lemma B.2] or [69,
lemma A.6]). In particular, for σ ∈ Aut(G) and V ∈ Rep(Ǧ), we have
σ ∗ Sat(V ) � Sat(ι(σ )V ).

4 Bessel F-isocrystals for reductive groups

In this section, we construct Bessel F-isocrystals for reductive groups and
calculate their monodromy groups. We use notations from 1.3.8, with k being
a finite field of q = ps elements. We assume moreover that there exists an
element π ∈ K satisfying π p−1 = −p and a square root of p in K . We fix an
arithmetic base tuple {k = Fq , R, K , L , s, idL} (2.1.2) and an isomorphism
K � C (in order to talk about weight).
Wefix {0,∞} ⊂ P

1 (over somebase thatwewill specify in each subsection),
and set X = P

1 − {0,∞}. Although X � Gm , it is more convenient to regard
it as a curve with a simply transitive Gm-action.

Throughout this section, let G be a split reductive group (over some base).
We fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. Let U ⊂ B be
the unipotent radical of B, andU op ⊂ Bop the opposite Borel and its unipotent
radical. Let Tad ⊂ Bad ⊂ Gad denote the quotients of T ⊂ B ⊂ G by the
center Z(G) of G. We denote by (Ǧ, B̌, Ť ) the Langlands dual group of G
over L , constructed by the geometric Satake equivalence (3.4).

4.1 Kloosterman F-isocrystals for reductive groups

In this subsection,we follow themethod ofHeinloth–Ngô–Yun [47] to produce
overconvergent F-isocrystals on X via the geometric Langlands correspon-
dence.
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Bessel F-isocrystals for reductive groups 1041

We work with schemes over k. We will consider with both geometric coef-
ficients and arithmetic coefficients, but for simplicity, we omit L� from the
notation Hol(−/L�),D(−/L�) and L from RepL(−).
4.1.1. Let G = G × P

1. For a coordinate x on P
1, so y = x−1 is a local

coordinate around∞, we denote by

I (0) = {g ∈ G(k�y�) | g(0) ∈ B} the Iwahori subgroup,

I (1) = {g ∈ G(k�y�) | g(0) ∈ U } the unipotent radical of I (0),

Z(G)(1) = {g ∈ Z(G)(k�y�) | g(0) ≡ 1 mod y},
I (2) = Z(G)(1)[I (1), I (1)],

I (i)op ⊂ G(k�x�) the analogous groups obtained by opposite Borel subgroup.

If G is semisimple, I (2) = [I (1), I (1)]. On the other hand, if G is a torus,
then I (2) = I (1). (So our definition of I (2) is slightly different from [47] 1.2
when G is not semisimple, but for G = GLn coincides with the one in [47]
3.1.) These groups are independent of the choice of x .

By abuse of notations, we use the same notations for the corresponding
(ind)-group schemes over k. Then

I (1)/I (2) �
⊕

α affine simple

Uα,

where Uα(k) ⊂ G(k�s�) is the root subgroup corresponding to α. We also
write

� = NG(k((x)))(I (0)
op)/I (0)op,

which is regarded as a discrete group over k.
We denote by G(m, n) the group scheme over P

1 such that [47, 1.2]

G(m, n)|X = G × X,

G(m, n)(O0) = I (m)op ⊂ G(O0),G(m, n)(O∞) = I (n) ⊂ G(O∞).

We denote by BunG(m,n) the moduli stack of G(m, n)-bundles on P
1. Let

Bun0G(m,n) denote its connected component containing the trivial G(m, n)-
bundle � : Spec(k) → BunG(m,n). For each γ ∈ �, there is a canonical
isomorphism Hkγ : BunG(0,n) � BunG(0,n) given by the Hecke modification
of G(0, n)-bundles at 0 ∈ P

1 corresponding to γ [47, Corollary 1.2]. This
induces a canonical bijection between� and the set of connected components
of BunG(0,n) (and therefore all BunG(m,n)). Let Bun

γ

G(m,n) denote the connected
component corresponding to γ under the bijection. For γ ∈ �, let iγ =
Hkγ (�) : Spec(k)→ BunγG(0,n).
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There is also the action of I (1)/I (2) on BunG(0,2) by modifying G(0, 2)-
bundles at∞. Let

j : �× I (1)/I (2)→ BunG(0,2), (4.1.1.1)

be the open immersion of the big cell, defined by applying the action of
I (1)/I (2) × � to the trivial G(0, 2)-bundle [47, Corollary 1.3]. Let jγ :
I (1)/I (2)→ BunγG(0,2) denote its restriction to the component corresponding
to γ .
4.1.2. The stack of Hecke modifications HeckeXG(m,n) of G(m, n)-torsors (over
X ) classifies quadruples (E1,E2, x, β), where Ei ∈ BunG(m,n), x ∈ X and

β : E1|X−x
∼−→ E2|X−x . There exist natural morphisms

BunG(m,n) HeckeXG(m,n)

pr1 pr2 BunG(m,n)×X, (4.1.2.1)

where pr1 (resp. pr2) sends (E1,E2, x, β) to E1 (resp. (E2, x)).
Following [47], we denote by GR the Beilinson–Drinfeld Grassmannian of

G(m, n) with modifications on X . Note that GR � GrG,X � GrG ×X and
therefore is independent of (m, n). There exists a smooth atlas � : U →
BunG(m,n) such that [47, remark 4.1]

U ×BunG(m,n),pr1 Hecke
X
G(m,n) � U × GR, (4.1.2.2)

(U × X)×(BunG(m,n)×X),pr2 Hecke
X
G(m,n) � U × GR .

For V ∈ Rep(Ǧ), we associate a holonomic module Sat(V ) on GrG by
the geometric Satake equivalence (3.4.8.1). We denote abusively by ICV the
holonomic module on HeckeXG(m,n) defined by smooth descent of KU×X �
Sat(V ) on U × X × GrG (supported in a subscheme U × X × GrG,V ). Then
ICV is supported in a substack HeckeXG(m,n),V of HeckeXG(m,n).

The geometric Hecke operators is defined as a functor

Hk : Rep(Ǧ)× D(BunG(m,n))→ D(BunG(m,n)×X),

(V,M ) �→ HkV (M ) := pr2,!
(
pr+1,V (M )⊗ ICV

)
.

Herepr1,V : HeckeXG(m,n),V → BunG(m,n) andpr2 |HeckeXG(m,n),V
: HeckeXG(m,n),V

→ BunG(m,n)×X are schematic (4.1.2.2), which allows us to apply cohomo-
logical functors of pr1,V , pr2 (2.2.7).

We call a tensor functor

E : Rep(Ǧ)→ Sm(X/L) (resp. Sm(X/LF )), V �→ EV
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Ǧ-valued overconvergent isocrystal (resp. F-isocrystal) E on X . A Hecke
eigen-module with eigenvalue E is a holonomic module M on BunG(m,n)

together with isomorphisms HkV (M )
∼−→M � EV , V ∈ Rep(Ǧ), which are

compatible with tensor structure on Rep(Ǧ) and composition of Hecke oper-
ator. We refer to [17, 5.4.2] for the precise definition and detailed discussions.
4.1.3. We take a non-trivial additive character ψ : Fp → K× and denote by
π ∈ K the associated element satisfying π p−1 = −p (2.1.1). Let Aψ be the
Dwork F-isocrystal on A

1 (2.1.1).
We fix a generic linear function φ of I (1)/I (2), that is, a homomorphism

φ : I (1)/I (2) → A
1 of algebraic group over k whose restriction to each Uα

is an isomorphism

φα := φ|Uα : Uα � A
1. (4.1.3.1)

Let Aψφ = φ+(Aψ). (Note that our notation is slightly abusive as this sheaf
depends only on the character ψ ◦ trk/Fp ◦ φ of I (1)/I (2) as a p-group). We
denote by Hol(BunG(0,2))I (1)/I (2),Aψφ the category of holonomic modules on
BunG(0,2) which are (I (1)/I (2),Aψφ)-equivariant.

By repeating the argument of [47, 2.3], we obtain a parallel result for holo-
nomic modules.

Lemma 4.1.4 [47, 2.3] (i)The canonicalmorphism jγ,!(Aψφ)
∼−→ jγ,+(Aψφ)

is an isomorphism.
(ii) The functor

Hol(X)→ Hol(BunγG(0,2)×X)I (1)/I (2),Aψφ , M �→ jγ,!(Aψφ) � M

is an equivalence of categories, with a quasi-inverse given by

N �→ (iγ × idX )
+(N ) � (iγ × idX )

!(N ).

We denote by Aψφ the object of Hol(BunG(0,2))I (1),Aψφ defined by
( jγ,!(Aψφ)[dim BunG(0,2)])γ∈�.
Theorem 4.1.5 (i) For (m, n) = (0, 2), the holonomic module Aψφ (4.1.4)
is a Hecke eigen-module with Hecke eigenvalue a Ǧ-valued overconvergent
F-isocrystal

Klrig
Ǧ
(ψφ) : Rep(Ǧ)→ Sm(X/LF ). (4.1.5.1)

(ii) For every representation V of Ǧ, Klrig
Ǧ,V

(ψφ) is pure of weight zero.
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If ψ (resp. ψ and φ) is clear from the context, we simply write Klrig
Ǧ
(ψφ)

by Klrig
Ǧ
(φ) (resp. Klrig

Ǧ
). In the remainder of this section, we skecth the proof

of the above theorem by repeating the strategy in the �-adic case, following
[47]. Using [6, 1.3.13] and the cleanness of Aψφ (4.1.4), one can show the
holonomicity.

Lemma 4.1.6 [47, 4.1] For every V ∈ Rep(Ǧ), the complexHkV (Aψφ)[1] is
holonomic.

Proof of 4.1.5 (i) The action of I (1)/I (2) on BunG(0,2) extends to an action
on the diagram (4.1.2.1). For each γ ∈ �, HkV (Aψφ)|BunγG(0,2)×X is

(I (1)/I (2),Aψφ)-equivariant. By 4.1.4, for each γ ∈ �, we have

HkV (Aψφ)|BunγG(0,2)×X � Aγ
ψφ � Eγ

V ,

where Eγ

V [1] is a holonomic module on X . By the same argument as in [47,
4.2], we show that Eγ

V is canonically isomorphic to E0
V . So we will drop the

index γ in the following.
Since ICV is ULA with respect to the projection GR→ X (3.2.1), we have

�(ICV ) = 0 (2.2.6). Since taking vanishing cycle functor commutes with
smooth pull-back and proper push-forward [4, 2.6], we deduce that

Aψφ � �(EV ) � �(Aψφ � EV ) � pr2,!(�(pr+1,V (Aψφ)⊗ ICV ))

� pr2,!(pr+1,V (Aψφ)⊗�(ICV )) = 0.

By Corollary 2.3.4, EV is smooth. Then assertion (i) follows.
(ii) In the following, we present a concrete way to calculate the Hecke

eigenvalue.
We denote by � ∈ BunG(0,2) the base point corresponding to the trivial

bundle G(0, 2). The base change of convolution diagram (4.1.2.1) to � × X
can be written as

BunG(0,2) GR
p1 p2

X. (4.1.6.1)

We denote by GRV ⊂ GR � Gr×X the support of Sat(V ) � LX , by GR◦
the inverse image of the big cell j (I (1)/I (2) × �) by p1, and by GR◦V =
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GRV ∩GR◦. Consider the following diagram:

GR◦V
p◦1,V

j ′

p◦2

GRV

p1,V p2

A
1 I (1)/I (2)×�

φ j
BunG(0,2) X.

(4.1.6.2)

The argument of [47, § 4.1-4.2] shows that the following canonical mor-
phism is an isomorphism

p◦2,!(p
◦,+
1,V (Aψφ)⊗ ICV |GR◦) ∼−→ p◦2,+(p

◦,+
1,V (Aψφ)⊗ ICV |GR◦). (4.1.6.3)

The overconvergent F-isocrystal EV can be calculated by one of the above
pushforward and is therefore pure of weight zero. In particular, Theo-
rem 4.1.5(ii) follows. ��
4.1.7. There is the following “trivial” functoriality between Kloosterman F-
isocrystals. We fix ψ . Let G ′ → G be a homomorphism of reductive groups
inducing the same adjoint quotient G ′ad

∼−→ Gad. Then it induces an iso-
morphism I ′(1)/I ′(2) � I (1)/I (2), and therefore we can abusively use the
notation φ to denote the “same” linear functions on these spaces under the
identification. On the other hand, it induces a homomorphism of dual groups
Ǧ → Ǧ ′ and therefore a tensor functor Res : Rep(Ǧ ′)→ Rep(Ǧ) by restric-
tions. Then Klrig

Ǧ ′ is the push-out of Klrig
Ǧ

along Ǧ → Ǧ ′. Concretely, this
means that there is a canonical isomorphism of tensor functors (we omit both
ψ and φ from the notations)

Klrig
Ǧ ′ � Klrig

Ǧ
◦Res : Rep(Ǧ ′)→ Sm(X/LF )

This allows use to reduce certain questions of Klrig
Ǧ

to the case when Ǧ is
simply-connected. We also obtain the following exceptional isomorphisms
(due to coincidences of Dynkin diagrams in low rank cases)

Klrig
SL2,Sym2 � KlrigSO3,Std

, Klrig
Sp4,ker(∧2→1) � KlrigSO5,Std

(4.1.7.1)

KlrigSO4,Std
� KlrigSL2× SL2,Std�Std, KlrigSO6,Std

� Klrig
SL4,∧2, (4.1.7.2)
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where 1 denotes the trivial representation, Std the standard representation,
Sym• and ∧• the symmetric powers and wedge powers of the standard repre-
sentation.
4.1.8. There is a natural action of Gm on X ⊂ P

1. On the other hand,
the group of automorphisms Aut(G, B, T ) acts on G(m, n). It follows that
Gm×Aut(G, B, T ) acts on (4.1.2.1), and therefore on (4.1.6.1). It also acts on
I (1)/I (2)×� as group automorphisms such that the open embedding (4.1.1.1)
isGm×Aut(G, B, T )-equivariant. Recall that the natural action of Aut(G) on
theSatake category induces a homomorphism ι : Aut(G)→ Aut(Ǧ, B̌, Ť , N )

(3.4.10). Given δ = (a, σ ) ∈ (Gm×Aut(G, B, T ))(k) and V ∈ Rep(Ǧ), then
there is a canonical isomorphism

Klrig
Ǧ,V

(ψ(φ ◦ δ)) � a+Klrig
Ǧ,ι(σ−1)V (ψφ), (4.1.8.1)

given by the composition

p2,!(p+1,V ( j!(φ ◦ δ)+Aψ)⊗ ICV ) � p2,!(δ+ p+1,V ( j!φ
+Aψ)⊗ ICV )

� a+ p2,!(p+1,V ( j!φ
+Aψ)⊗ (δ−1)+ ICV )

� a+ p2,!(p+1,V ( j!φ
+Aψ)⊗ (ICι(σ−1)V )).

In particular, given t ∈ Tad(k) ⊂ Aut(G, B, T ), the element δ = (1, t)
induces an isomorphism

Klrig
Ǧ
(ψ(φ ◦ δ)) � Klrig

Ǧ
(ψφ). (4.1.8.2)

That is, Klrig
Ǧ
(ψφ) depends only on the Tad-orbit of φ. On the other hand, let a

be an element ofGm(k),ψa the additive character defined byψa(−) = ψ(a−),
ta ∈ Tad the unique element such that α(ta) = a for every simple root α of
G and h the Coxeter number of G. By applying δ = (ah, ta) in (4.1.8.1), we
deduce that

Klrig
Ǧ
(ψaφ) � Klrig

Ǧ
(ψ(φ ◦ δ)) � (ah)+Klrig

Ǧ
(ψφ). (4.1.8.3)

In addition, given a generic linear function φ of I (1)/I (2), the collection
{φα} from (4.1.3.1) for those α being simple roots of G, provide a pinning of
(G, B, T ), and therefore induces a splitting Out(G) → Aut(G, B, T ). If G
is almost simple, not of type A2n , then every element σ ∈ Out(G) fixes the
remaining φα . IfG is of type A2n , the unique non-trivial element σ0 ∈ Out(G)

send the remaining φα to −φα . Therefore, if either Ǧ is almost simple not of
type A2n , or if p = 2, then for every σ ∈ Out(G), we have φ ◦ (1, σ ) = φ
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Bessel F-isocrystals for reductive groups 1047

and a canonical isomorphism

Klrig
Ǧ,V

(ψφ) � Klrig
Ǧ,ι(σ−1)V (ψφ),

compatible with the tensor structures. On the other hand, if G is almost simple
of A2n and if p > 2, then the element δ = (−1, σ0) induces a canonical
isomorphism (4.1.8.1)

Klrig
Ǧ,V

(ψφ) � (−1)+Klrig
Ǧ,V∨(ψφ), (4.1.8.4)

where V∨ denotes the dual representation of V , compatible with the tensor
structures.
4.1.9. Let � be a prime different from p. We take an isomorphism ι : K � Q�.
Using the �-adic Artin–Schreier sheaf ASψ on A

1
k associated to ψ , Heinloth,

Ngô and Yun construct a �-adic Ǧ local system

Klét,�
Ǧ

(ψφ) : Rep(Ǧ)→ LocSysm(X). (4.1.9.1)

By the trace formula [41], [6, 4.3.9] and Gabber–Fujiwara’s �-independence
[6, 4.3.11], the Frobenius traces of Klét,�

Ǧ,V
(ψφ) and of Klrig

Ǧ,V
(ψφ) at each

closed point of Xk coincide via ι.
4.1.10. There is a variant of Heinloth–Ngô–Yun’s construction using algebraic
D-modules instead of �-adic sheaves to produce a Ǧ-connection on XK in zero
characteristic [47, 2.6], as all the geometric objects used in the construction
has analogues over K . Namely, we replace the Artin–Schreier sheaf ASψ on
A
1
k by the exponential D-module Eλ = K 〈x, ∂x 〉/(∂x − λ) with parameter

λ ∈ K on A
1
K . Then we have a tensor functor

KldR
Ǧ

(λφ) : Rep(Ǧ)→ Conn(XK ).

Here we identify homomorphisms φ : I (1)/I (2) → A
1 of algebraic group

over K with HomK (Lie I (1)/I (2), K ) via differentiation, so λφ is regarded
as a linear function on Lie(I (1)/I (2)).

4.2 Comparison between KldR
Ǧ

and Klrig
Ǧ

In this subsection, we work with schemes over R and we keep the notation of
4.1. We say a linear function φ : I (1)/I (2) → A

1 over R is generic, if it is
generic modulo the maximal ideal of R. We take such a function φ and we
denote abusively its base change to k (resp. K ) by φ. The following theorem
is our main result of this subsection.
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1048 D. Xu, X. Zhu

Theorem 4.2.1 We set L = K. For every representation V of Ǧ, there exists
a canonical isomorphism of OX -modules (1.3.8) with connection (2.4.2)

ιV : (KldRǦ,V
(−πφ))†

∼−→ Klrig
Ǧ,V

(φ), (4.2.1.1)

compatible with tensor structures.

Remark 4.2.2 There is a variant of the construction of KldR
Ǧ

(λφ) (resp.

Klrig
Ǧ
(ψφ)) with multiplicative characters: Kummer D-modules (resp. Kum-

mer isocrystals), which slightly generalizes Aψφ (cf. [47] remark 2.5). In this
setting, one can also compare de Rham and p-adic local systems as above by
the same argument, if the corresponding multiplicative characters match.

4.2.3.Wefirst consider the case where V is associated to aminuscule coweight
λ. In this case, Grλ is isomorphic to a partial flag variety and is smooth and
projective, and ICV is isomorphic to KGrλ[dimGrλ] supported on GRV �
Grλ×X . We show the above theorem by comparing the relative twisted de
Rham cohomologies and the relative twisted rigid cohomologies along the
morphism

p◦2 : GR◦V → X

in (4.1.6.2). To do so, we first show that the associated de Rham and rigid
cohomologies at each fiber of X are isomorphic.

We regard (4.1.6.2) as a diagram of schemes over R. We denote M :=
p◦,+1,V ◦φ+(E−π)[dimGrλ], which is a line bundle with connection on GR◦V,K .
The bundle with connection M† on (GR◦V,K )an (cf. 2.4.2) is overconvergent

and underlies to the arithmeticD-module p◦,+1,V ◦φ+(Aψ)[dimGrλ] on GR◦V,k ,
denoted by M .

Lemma 4.2.4 Let s be a point of X (R). If Ms (resp. Ms) denotes the +-
pullback of M (resp.M ) along the fiber at s, then the specialisation morphism
(2.4.3.2)

H∗dR((GR◦V,s)K ,Ms)→ H∗rig((GR◦V,s)k,Ms) (4.2.4.1)

is an isomorphism. Moreover, these cohomology groups vanish except for the
middle degree 0.

Proof We set Y = GR◦V,s and we write M (resp. M ) instead of Ms (resp.
Ms). Since Y admits a smooth compactification Grλ whose boundary is a
divisor, we can calculate above cohomology groups by direct image of cor-
responding algebraic (resp. arithmetic) D-modules (2.1.4). Note that KldR

Ǧ,V
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Bessel F-isocrystals for reductive groups 1049

(resp. Klrig
Ǧ,V

) is a bundle with connection (resp. overconvergent F-isocrystal)

of rank dim V . By the base change, cohomology groups in (4.2.4.1) vanish
except for the middle degree and have dimension dim V in the middle degree.
By (4.1.6.3), the canonical morphism ιrig : H∗rig,c(Yk,M ) → H∗rig(Yk,M ) is
an isomorphism. In viewof Proposition 2.4.5, we deduce that the specialisation
morphism (4.2.4.1) is surjective. Then the assertion follows. ��
4.2.5. Proof of Theorem 4.2.1 in the minuscule case. Now we use the rela-
tive specialization morphism (2.4.7.1) to compare (KldR

Ǧ,V
)† and Klrig

Ǧ,V
. Let

GrP1 → P
1 be the Beilinson–Drinfeld Grassmannian of G over P

1 and
� : Grλ,P1 → P

1 the closed subscheme associated to λ. Note that � is a
locally trivial fibration over P

1 with smooth projective fibers Grλ and defines
a good compactification of p◦2 in the sense of 2.4.7.

We take again the notation of 2.4.7 for the smooth R-morphism p◦2. We set
A = �(X,OX ), AK = A[ 1p ], A0 = Â[ 1p ] the ring of analytic functions on X̂ rig

and A† = �(P1
k,OX ). We have inclusions AK ⊂ A† ⊂ A0. If DXK denotes

the ring of algebraic differential operators on XK , there exists a canonical
DXK -linear specialization morphism (2.4.7.1)

�(XK ,KldR
Ǧ,V

)→ �(Xk,Kl
rig

Ǧ,V
),

where the left (resp. right) hand side is coherent over AK (resp. A†). The above
morphism induces a horizontal A†-linear morphism

ιV : �(XK ,KldR
Ǧ,V

)⊗AK A† → �(Xk,Kl
rig

Ǧ,V
),

which gives rise to the morphism (4.2.1.1). Recall that the homomorphism
A† → A0 is faithfully flat [20, 4.3.10)]. To prove ιV is an isomorphism, it
suffices to show that the induced horizontal A0-linear morphism:

ιV ⊗A† A0 : �(XK ,KldR
Ǧ,V

)⊗AK A0 → �(Xk,Kl
rig

Ǧ,V
)⊗A† A0 (4.2.5.1)

is an isomorphism. Let Â → R be a continuous homomorphism and s :
A → R the associated R-point of Gm . By base change and [3, 2.4.15], the
fiber ι ⊗A† K coincides with the morphism (4.2.4.1) associated to the point
s ∈ X (R) and is an isomorphism (4.2.4). Since both sides of (4.2.5.1) are
coherent A0-modules, the morphism ιV ⊗A† A0 is an isomorphism and the
assertion follows. ��
4.2.6.Next, we consider the case where V is associated to the quasi-minuscule
coweight λ. In this case, Gr≤λ contains a smooth open subscheme Grλ whose
complement is isomorphic to Spec(R), and admits a desingularisation G̃r≤λ
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(cf. [63] § 7). We take an isomorphism GRV � X × Gr≤λ and set GR◦◦V =
GR◦V ∩(X × Grλ) to be the smooth locus of GR◦V (4.1.6.2). We denote by
j : GR◦◦V → GR◦V the open immersion and by

τ = p◦2 ◦ j : GR◦◦V → X (4.2.6.1)

the canonical morphism, which admits a good compactification G̃r≤λ×P
1 →

P
1 in the sense of 2.4.7. Indeed, GR◦V ↪→ X × Gr≤λ is defined by the

nonvanishing of sections of some line bundles [47, remark 4.2] and so is
GR◦◦V ↪→ X × Grλ. Since G̃r≤λ → Gr≤λ is the blowup outside Grλ, then
GR◦◦V ↪→ X × G̃r≤λ is the comoplement of some ample divisors. Hence,
GR◦◦V is affine and so is τ .

Let M be the line bundle with connection p+1 (E−π)[dimGrλ]|GR◦◦V,K
and

M the smooth arithmeticD-module p+1 (Aψ)[dimGrλ]|GR◦◦V,k
. The holonomic

module ICV is constant on GR◦◦V . Then we deduce that

j!+(M) � p+1 (E−π)⊗ ICV |GR◦V,K
, j!+(M ) � p+1 (Aψ)⊗ ICV |GR◦V,k

.

Note that j!+(M)[1], j!+(M )[1] are holonomic.

Lemma 4.2.7 (i) The complex τk,+(M )[1] (resp. τK ,+(M)[1]) is holonomic.
(ii) Let s be a point of X (k). We choose a lifting in X (R) and still denote it

by s. If we denote by Ms (resp.Ms) the+-pullback of M (resp.M ) along the
fiber at s, then the specialisation morphism (2.4.3.2)

H∗dR((GR◦◦V,s)K ,Ms)→ H∗rig((GR◦◦V,s)k,Ms)

induces an isomorphism

H0
dR((GR

◦
V,s)K , j!+(Ms))

∼−→ H0
rig((GR

◦
V,s)k, j!+(Ms)). (4.2.7.1)

Proof (i) Let i : Z → GR◦V be the complement of GR◦◦V in GR◦V , which is
isomorphic to X . Consider the distinguished triangle on GR◦≤λ,k

j!+(M )[1] → j+(M )[1] → C → .

By2.1.10,C � i !( j!+(M ))[2]has degree≥ 0 and is supported on Z . Applying
p◦2,+ to the above triangle, we obtain

p◦2,+( j!+(M ))[1] → τ+(M )[1] → p◦2,+(C)→,

where the first term is holonomic (cf. 4.1.6), and the second term has cohomo-
logical degrees ≤ 0 because τ is affine and the last term has cohomological
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degrees ≥ 0 since p◦2|Z is the identity. Then we deduce that each term in the
above triangle is holonomic.

(ii) We set Y = GR◦V,s , U = GR◦◦V,s and we write simply M (resp. M )
instead of Ms (resp. Ms). By applying the argument (resp. a dual argu-
ment) of (i), we deduce that the canonical morphism of cohomology groups
H0
rig(Yk, j!+(M )) → H0

rig(Uk,M ) is injective. (resp. H0
rig,c(Uk,M ) →

H0
rig,c(Yk, j!+(M )) is surjective). In summary, we have a sequence whose

composition is the canonical morphism ιrig:

H0
rig,c(Uk,M ) � H0

rig,c(Yk, j!+(M ))
∼−→ H0

rig(Yk, j!+(M )) ↪→ H0
rig(Uk,M ),

(4.2.7.2)

where the middle isomorphism is due to the cleanness (4.1.6.3).
We construct an analogue sequence of (4.2.7.2) for de Rham cohomology

of M on UK . These two sequences fit into a commutative diagram (2.4.5)

H0
dR,c(UK ,M) H0

dR,c(YK , j!+(M))
∼

H0
dR(YK , j!+(M)) H0

dR(UK ,M)

ρM

H0
rig,c(Uk ,M )

ρM,c

H0
rig,c(Yk , j!+(M ))

∼
H0
rig(Yk , j!+(M )) H0

rig(Uk ,M )

(4.2.7.3)

Let E be the image of H0
rig,c(Uk,M )→ H0

dR(YK , j!+(M)). Then the special-

isation morphism ρM sends E surjectively to the subspace H0
rig(Yk, j!+(M )).

Since dim E ≤ dimH0
dR(YK , j!+(M)) = dimH0

rig(Yk, j!+(M )), we deduce

that E = H0
dR(YK , j!+(M)) and that ρM induces an isomorphism (4.2.7.1). ��

4.2.8. Proof of Theorem 4.2.1 in the quasi-minuscule case. By 4.2.7(i), we
have a diagram of DXK -modules

�(XK ,KldR
Ǧ,V

) �(XK , τK ,+(M))

�(Xk,Kl
rig

Ǧ,V
) �(Xk, τk,+(M ))

where the vertical arrow is the relative specialization morphism (2.4.7.1). Let
U be an open dense subscheme of Xk such that τk,+(M )|U is smooth, U the
corresponding formal open subscheme of X̂ and Z = P

1
k \U .

By 4.2.7, (4.2.7.3) and the same argument of 4.2.5, the above diagram
induces an injectivemorphism ofOU -modules with connection (KldR

Ǧ,V
)†⊗OX
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OU → τ+(M ) ⊗OX OU and then induces an isomorphism of OU -modules
with connection:

(KldR
Ǧ,V

)† ⊗OX OU
∼−→ Klrig

Ǧ,V
⊗OXOU . (4.2.8.1)

In particular, the left hand side is overconvergent along Z . Since the con-
vergency of an OX̂ rig -module with connection can be checked by restricting
to a dense open subscheme of Xk [64, 2.16], the OX̂ rig -module with connec-
tion (KldR

Ǧ,V
)†|X̂ rig is convergent. Then we deduce that the OX -module with

connection (KldR
Ǧ,V

)† is overconvergent along {0,∞}. The restriction functor

Isoc†(Xk/K ) → Isoc†(U/K ) is fully faithful (cf. [53] 6.3.2). Then the iso-
morphism (4.2.8.1) gives rise to an isomorphism (4.2.1.1) and the assertion
follows. ��
4.2.9. In the end,we show the general case of Theorem4.2.1. Let V1, . . . , Vn be
minuscule and quasi-minuscule representations of Ǧ. Then we have a decom-
position of representations

V1 ⊗ V2 ⊗ · · · ⊗ Vn �
⊕

W∈Rep(Ǧ)

mWW,

where mW denotes the multiplicity of W . Each representation W of Rep(Ǧ)

appears as a summand of the above decomposition for some minuscule and
quasi-minuscule representations V1, . . . , Vn .

Then we obtain the associated decomposition of bundles with connection
on XK and of overconvergent F-isocrystals on XK respectively:

n⊗
i=1

KldR
Ǧ,Vi

�
⊕

W∈Rep(Ǧ)

mW KldR
Ǧ,W

,

n⊗
i=1

Klrig
Ǧ,Vi

�
⊕

W∈Rep(Ǧ)

mW Klrig
Ǧ,W

.

(4.2.9.1)

Theorem 4.2.1 in the minuscule and quasi-minuscule cases provides an
isomorphism of overconvergent isocrystals

(⊗n
i=1 Kl

dR
Ǧ,Vi

)†
∼−→ ⊗n

i=1 Kl
rig

Ǧ,Vi
. (4.2.9.2)

By [19, 2.2.7(iii)], the connection on left hand side, restricted on each com-
ponent (KldR

Ǧ,W
)†, is overconvergent. We denote abusively the associated

overconvergent isocrystal on Xk by (KldR
Ǧ,W

)†.
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The isomorphism (4.2.9.2) induces a commutative diagram

EndRep(Ǧ)
(
⊗n

i=1 Vi )
KldR

Ǧ
Klrig

Ǧ

EndConn(XK )(
⊗n

i=1 KldRǦ,Vi
) EndSm(Xk/K )(

⊗n
i=1 Kl

rig

Ǧ,Vi
)

(4.2.9.3)

Indeed, choose a k-point s of Xk and a lift s̃ to X (K ). The isomorphism
(4.2.9.2) induces an isomorphism between fibers (KldR

Ǧ,Vi
)̃s and (Klrig

Ǧ,Vi
)s . The

composition of the functor KldR
Ǧ

(resp. Klrig
Ǧ
) with the fiber functor at s̃ (resp.

s) is the forgetful functor Rep(Ǧ) → VecK . Since fiber functors are faithful,
we deduce the commutativity of (4.2.9.3) by considering their fibers.

If e denotes the idempotent of EndRep(Ǧ)
(⊗n

i=1Vi ) corresponding to a sum-
mand W , then its image via left (resp. right) vertical arrow is the idempotent
corresponding to KldR

Ǧ,W
(resp. Klrig

Ǧ,W
) (4.2.9.1. By (4.2.9.2) and (4.2.9.3), we

deduce a canonical isomorphism of overconvergent isocrystals on Xk

ιW : (KldR
Ǧ,W

)†
∼−→ Klrig

Ǧ,W
.

One verifies that the above isomorphism is independent of the choice of
idempotent e and then of the choice of minuscule representations {Vi }ni=1.
Isomorphisms ιW are compatible with tensor structures due to (4.2.9.2). Now
Theorem 4.2.1 follows. ��

4.3 Comparison between KldR
Ǧ

and BeǦ

In this subsection, we recall the Bessel connection BeǦ(ξ̌ ) of Ǧ on X con-
structed by Frenkel and Gross [42] and identify it with KldR

Ǧ
(φ) (4.1.10).

We work with schemes over K . Let (ǧ, b̌, ť) denote the Lie algebras of
(Ǧ, B̌, Ť ) over K .
4.3.1. Let AK denote the ring of algebraic functions of X . There exists a
grading on the affine Lie algebra ǧaff := ǧ⊗ AK , which on ǧ-part is given by
Ad ρ(Gm), and on AK -part is given by the ȟ-multiple of the grading induced
by the natural action of Gm on X . Here as before ρ ∈ X

•(T )⊗ Q is the half
sum of positive roots of G (and therefore is a cocharacter of Ǧad), and ȟ is the
Coxeter number of Ǧ.
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Let ǧaff(1) ⊂ ǧaff be the subspace of degree 1. Then

ǧaff(1) =
⊕

α̌ affine simple

ǧaff,α̌,

where ǧaff,α̌ is the root subspace corresponding to the affine simple root α̌ of
ǧaff . Let ξ̌ ∈ ǧaff(1) be a generic element, by which we mean each of its α̌-
component ξ̌α̌ 
= 0. In [42], Frenkel and Gross defined a ǧ-valued connection
on the trivial Ǧ-bundle on X by the following formula:

BeǦ(ξ̌ ) = d + ξ̌
dx

x
. (4.3.1.1)

Here x is a coordinate of X∪{0} � A
1. Note that dxx itself is independent of the

choice of the coordinate x , and is a generator of the module of log differentials
on X ∪ {0} with logarithmic pole at 0.

We may write N = ∑α̌ ξ̌α̌ , where the sum is taken over simple roots of
ǧ (instead of ǧaff ). This is a principal nilpotent element of ǧ. The remaining
affine root subspaces are of the form x ǧ−θ̌i

, where x is a coordinate as above

and θ̌i is the highest root of the simple factor ǧi of ǧ. So we may write the sum
of the remaining affine root vectors as xE for some E ∈ ∑ ǧ−θ̌i

. Then the
connection can be written as

BeǦ(ξ̌ ) = d + (N + xE)
dx

x
, (4.3.1.2)

which is the form as used in [42]. This connection is regular singular with
a principal unipotent monodromy at 0 and has an irregular singularity at∞,
with maximal formal slope 1/ȟ [42, §5].

We regard BeǦ(ξ̌ ) as a tensor functor from the category Rep(Ǧ) of rep-

resentations of Ǧ to the category Conn(X) of bundles with connection on
X .
4.3.2. We will identify KldR

Ǧ
(λφ) and BeǦ(ξ̌ ) as Ǧ-bundles with integrable

connections on X . For this purpose, we need to discuss how these connections
depend on parameters. We identify the dual space g∗aff of gaff := g⊗ AK with
g∗ ⊗ ωX via the canonical residue pairing

(g⊗ AK )⊗ (g∗ ⊗ ωX )→ K , (ξ ⊗ f, ξ̌ ⊗ g) = (ξ, ξ̌ )Resx=∞ f g
dx

x
.
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Recall that λφ is a linear function Lie(I (1)/I (2)) → K . We identify
HomK (Lie I (1)/I (2), K ) with

g∗aff(1) =
⊕

α affine simple

g∗α.

where g∗α ⊂ g∗aff is the dual of the root subspace corresponding to α.
By (4.1.8.2) (applied to the D-module setting), KldR

Ǧ
(λφ) depends only on

the Tad-orbit of the functional λφ. In addition, Tad-orbits of generic linear func-
tions on Lie(I (1)/I (2)) are parameterized by the GIT quotient g∗aff(1)//Tad.

On the other hand, the group Gm × Aut(Ǧ, B̌, Ť ) acts on ǧaff preserving
the grading. For δ̌ = (a, σ̌ ), a gauge transform implies that the analogue of
(4.1.8.1) holds, namely

BeǦ,V (δ̌(ξ̌ )) � a+ BeǦ,σ̌V (ξ̌ ). (4.3.2.1)

It follows that the analogue of (4.1.8.2) and of (4.1.8.3) also hold for Bessel
connections. In particular, BeǦ(ξ̌ ) only depends on the Ťad-orbit of ξ̌ . Again,

Ťad-orbits of generic ξ̌ are parameterized by the GIT quotient ǧaff(1)//Ťad.
Here is the main theorem of this subsection. When Ǧ is of adjoint type, a

weaker version of this theorem was the main result of [80].

Theorem 4.3.3 There exists a canonical isomorphism of affine schemes

g∗aff(1)//T
∼−→ ǧaff(1)//Ť , (4.3.3.1)

such that if the Tad-orbit through λφ and the Ťad-orbit through ξ̌ match under
this isomorphism, then

KldR
Ǧ

(λφ) � BeǦ(ξ̌ )

as Ǧ-bundles with connection on X.

4.3.4.We first explain the isomorphism (4.3.3.1). Let ωX denote the canonical
bundle on X and by abuse of notation, we sometimes also use it to denote
the space of its global sections. Via the open embedding jγ : I (1)/I (2) ↪→
BunγG(0,2), we identify I (1)/I (2)×g∗aff(1)with T ∗ Bun

γ

G(0,2) | jγ (I (1)/I (2)). The
Hitchin map (e.g. see [17] Sect. 2, and [80])

hcl : T ∗ BunγG(0,2) → Hitch(X) := �(X, c∗ ×Gm ωX )

induces a closed embedding hcl : g∗aff(1)//T ↪→ Hitch(X), where c∗ := g∗//G
is the GIT quotient of g∗ by the adjoint action ofG, equipped with aGm-action
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induced by the natural Gm-action on g∗. (For an explicit description of the
image of the map when g is simple, see the discussions before [80] lemma
18).

On the other hand, there exists a canonical morphism

ǧaff(1)
dx

x
⊂ ǧ⊗ ωX → �(X, č×Gm ωX )

where č := ǧ//Ǧ, which also induces a closed embedding ǧaff(1)//Ť →
�(X, č ×Gm ωX ). The identification (Lie T )∗ = Lie Ť induces a canonical
isomorphism c∗ ∼−→ č. One checks easily that there is a unique isomorphism
g∗aff(1)//T

∼−→ ǧaff(1)//Ť that fits into the following commutative diagram

g∗aff(1)//T
∼

ǧaff(1)//Ť

�(X, c∗ ×Gm ωX )
∼

�(X, č×Gm ωX )

where the bottom isomorphism is induced by c∗ ∼−→ č.
In the case G and Ǧ are almost simple, unveiling the definition, we see that

λφ and ξ̌ match to each other if the following holds: Let r be the rank ofG and
Ǧ. Recall that the ring of invariant polynomials on g∗ (resp. ǧ) has a generator
Pr (resp. P̌r ), homogeneous of degree h = ȟ. We choose them to match each
other as functions on c∗ � č. Then λφ matches ξ̌ if and only if

λh Pr (φ) = Pr (λφ) = P̌r (ξ̌ ). (4.3.4.1)

This condition is independent of the choice of Pr and P̌r (as soon as theymatch
to each other).

For concrete computations, it is convenient to fix a coordinate x ∈ A
1 ⊂ P

1,
and a pinning N =∑

α̌∈�̌ ξ̌α̌ of (Ǧ, B̌, Ť ). Then we may rewrite (4.3.3.1) as
an isomorphism

g∗aff(1)//T � ǧaff(1)//Ť � N + x
∑
i

ǧ−θ̌i
� x
∑
i

ǧ−θ̌i
. (4.3.4.2)

4.3.5.WeproveTheorem4.3.3 byquantizing (4.3.3.1) and applying theGalois-
to-automorphic direction of geometric Langlands correspondence. By descent,
it suffices to prove the theorem after base change from K to K . So we assume
that all the geometric objects below are defined over K , and omit the subscript.
Let Ǧad denote the adjoint group of Ǧ.
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We denote byOpǧ(X) the ind-affine scheme of Ǧad-opers on X [17, 3.1.11].
We consider the subscheme of Opǧ := Opǧ(P

1)
(0,�(0)),(∞,1/ȟ) ⊂ Opǧ(X),

which is the moduli of Ǧad-opers on X which are

• regular singular with principal unipotent monodromy at 0;
• possibly irregular of maximal formal slope ≤ 1/ȟ at∞.

See the discussions before [80, lemma 20] (where slightly different notations
were used). In this case, the action of�(X, č×GmωX ) onOpǧ(X) induces a free

and transitive action of x
∑

i ǧ−θ̌i
� ǧaff(1)//Ť (4.3.4.2) on Opǧ. In particular,

FunOpǧ has a natural filtration whose associated graded is (Funǧaff(1))
Ť .

On the other hand, the space Opǧ has a distinguished point, corresponding

to the Ǧad-oper that is tame at both 0 and∞. Therefore, we obtain a canonical
isomorphism x

∑
i ǧ−θ̌i

∈ ǧaff(1)//Ť � Opǧ(X). Explicitly, this isomorphism

sends xE ∈ x
∑

i ǧ−θ̌i
to the connection d + (N + xE)dxx on the trivial Ǧ-

bundle which has a natural oper form. Now the quantization of (4.3.3.1) gives
a canonical isomorphism of filtered algebras [80, lemma 21]

U (Lie I (1)/I (2))T � FunOpǧ,

whose associated graded gives back to (4.3.3.1). Here U (V ) is the universal
enveloping algebra of V = Lie I (1)/I (2), equipped with the usual filtration.
As V is abelian, it is also canonically isomorphic to (FunV ∗)T . Putting all the
above isomorphisms together, we obtain the following commutative diagram

(Fung∗aff(1))T
∼

∼

(Funǧaff(1))Ť

∼

U (Lie I (1)/I (2))T ∼ FunOpǧ

Together with the main result of [80], we obtain the proof of Theorem 4.3.3
in the case when Ǧ = Ǧad.
4.3.6.Next, we explain how to extend it to allow G to be a general semisimple
group.

One approach is to generalize the work of [17] to allow certain level struc-
tures, as what [80] did for simply-connected groups. In this approach, onemust
deal with the subtle question of the construction of “square root” of the canon-
ical bundle on the moduli of G-bundles. In our special case, we have another
short and direct approach, using the isomorphism KldR

Ǧad
(λφ) � BeǦad

(ξ̌ ) just

established.
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First, we claim that up to isomorphism, there exists a unique de Rham Ǧ-
local system on X , which induces BeǦad

(ξ̌ ), and has unipotent monodromy at

0. Indeed, any two such de Rham Ǧ-local systems differ by a de Rham Ž -local
system on X ∪ {0} � A

1 (i.e. one is obtained from the other by twisting a de
Rham Ž -local system). As Ž is a finite group, the wild part of the differential
Galois group at∞ of this local system must be trivial, and therefore this local
system itself is trivial.

Now since both KldR
Ǧ

(λφ) and BeǦ(ξ̌ ) have the property as in the claim (to

see that KldR
Ǧ

(λφ) has unipotent monodromy at 0, one uses the same argument
as [47] theorem 1 (2)), they must be isomorphic. ��

4.4 Bessel F-isocrystals for reductive groups

In this subsection, we construct Bessel F-isocrystals for reductive groups, by
putting the above ingredients together. We keep the notation of 4.2.
4.4.1. We take a non-trivial additive character ψ : Fp → K× and a generic
linear function φ : I (1)/I (2)→ A

1 over R (4.2). We set λ = −π ∈ K corre-
sponding toψ (as in 2.1.1). Let ξ̌ ∈ ǧaff(1)match−πφ under the isomorphism
(4.3.3.1).

We write BeǦ(ξ̌ ) more explicitly as follows. Choose a coordinate x of

X ∪{0} over R, and a pinning N =∑
α̌∈�̌ ξ̌α̌ of (Ǧ, B̌, Ť ). By (4.3.4.2), there

is a unique element E = Eφ ∈∑i ǧ−θ̌i
such that

KldR
Ǧ

(1 · φ) � d + (N + xE)
dx

x
, (4.4.1.1)

By (4.3.4.1), we deduce that

KldR
Ǧ

(−πφ) � d + (N + (−π)hx E)
dx

x
= BeǦ(ξ̌ ).

Nowwe can define the object appearing in the title of the paper. Let Be†
Ǧ
(ξ̌ )

denote the composition of BeǦ(ξ̌ ) : Rep(Ǧ) → Conn(XK ) with the (−)†-
functor from (2.4.2.1). By Theorem 4.2.1, a choice of above isomorphism
endows Be†

Ǧ
(ξ̌ ) with a Frobenius structure, i.e. a lifting of Be†

Ǧ
(ξ̌ ) as a func-

tor Rep(Ǧ) → F- Isoc†(Xk/K ), or alternatively, an isomorphism of tensor
functors

ϕ : F∗Xk
◦ Be†

Ǧ
(ξ̌ )

∼−→ Be†
Ǧ
(ξ̌ ) : Rep(Ǧ)→ Isoc†(Xk/K ),
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where F∗Xk
: Isoc†(Xk/K ) → Isoc†(Xk/K ) denotes the s-th Frobenius pull-

back functor. From the calculation of the differential Galois group of BeǦ in
[42] coro. 9, coro. 10 (see (1.2.6.1)) that the automorphism group of BeǦ is

ZG(K ). Therefore, the Frobenius structure on Be†
Ǧ
(ξ̌ ) is independent of the

choice of the isomorphism BeǦ(ξ̌ ) � KldR
Ǧ

(λφ). We use (Be†
Ǧ
(ξ̌ ), ϕ) (or sim-

ply Be†
Ǧ
(ξ̌ ) if there is no confusion) to denote the Ǧ-valued overconvergent

F-isocrystal

(Be†
Ǧ
(ξ̌ ), ϕ) : Rep(Ǧ)→ F- Isoc†(Xk/K ), (4.4.1.2)

which we call the Bessel F-isocrystal of Ǧ.
4.4.2. For each representation ρ : Ǧ → GL(V ), the restriction of Be†

Ǧ,V
(ξ̌ ) at

0 defines an object Be†
Ǧ,V

(ξ̌ )|0 of MC(RK /K ) (2.3.1) equipped with a Frobe-

nius structure and is therefore is solvable at 1 [54, 12.6.1]. By (4.3.1.1), the
p-adic exponents of Be†

Ǧ,V
(ξ̌ )|0 are 0. Then it is equivalent to the connection

d + dρ(N ) over the Robba ring by [54, 13.7.1]. Hence, Be†
Ǧ,V

(ξ̌ )|0 satisfies
the Robba condition (i.e. it has zero p-adic slope [29]) and is unipotent.

We denote by F- Isoclog,uni
(
(A1

k, 0)/K
)
the category of log convergent F-

isocrystals on A
1
k with a log pole at 0 relative to K and nilpotent residue, and

are overconvergent along∞ (2.3.2). By [53, 6.3.2], this category is equivalent
to the full subcategory of F- Isoc†(Xk/K ) consisting of objects which are
unipotent at 0. Then the Ǧ-valued overconvergent F-isocrystal (Be†

Ǧ
(ξ̌ ), ϕ)

(4.4.1.2) factors through:

(Be†
Ǧ
(ξ̌ ), ϕ) : Rep(Ǧ)→ F- Isoclog,uni

(
(A1

k, 0)/K
)
.

4.4.3.Here is amore concrete description of theFrobenius structure onBe†
Ǧ
(ξ̌ ).

Note that its underlying bundles of Be†
Ǧ,V

(ξ̌ ) are freeO
A
1
k
-modules (1.3.8). If

we set A† = �(P1
k,OA

1
k
) (1.1.3.1), by the Tannakian formalism, the Frobenius

structure on Be†
Ǧ
(ξ̌ ) is equivalent to an element ϕ ∈ Ǧ(A†) satisfying

x
dϕ

dx
ϕ−1 + Adϕ(N + (−π)hx E) = q(N + (−π)hxq E). (4.4.3.1)

Given a point a ∈ |A1
k | and ã : A† → K its Teichmüller lifting, we denote by

ϕa =∏deg(a)−1
i=0 ϕ(̃aq

i
). When a 
= 0, the Frobenius trace of (Be†

Ǧ
(ξ̌ ), ϕ) at a
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can be calculated by the trace of ϕa . Now we rephrase the above discussions
as follows, which is the first main result of our article.

Theorem 4.4.4 There is a unique element ϕ ∈ Ǧ(A†) satisfying the differen-
tial equation (4.4.3.1) such that via a (fixed) isomorphism K � Q�, for every
a ∈ |X | and V ∈ Rep(Ǧ)

Tr(ϕa, V ) = Tr(Froba,Kl
ét,�
Ǧ,V,ā

(ψφ)).

When a = 0, we can describe ϕ0 more precisely.

Proposition 4.4.5 Let 2ρ be the sum of positive coroots in X•(Ť ). Then ϕ0 =
2ρ(

√
q) in the semisimple conjugacy classes Conjss(Ǧ(K )) of Ǧ(K ).

Proof The Frobenius endomorphism ϕ0 at 0 satisfies ϕ−10 Nϕ0 = qN (4.3.1).
Since N is principal nilpotent and Adρ(q) N = q−1N , we deduce that ϕ0 =
ερ(q) in Conjss(Ǧ(K )) for some element ε in the center ZǦ(K ).

To show ε = id, it suffices to investigateFrobenius eigenvalues of�(Be†
Ǧ,V

)

(2.3.3) for V ∈ Rep(Ǧ), which is same as those of �(Klét,�
Ǧ,V

) by 4.1.10

and Gabber–Fujiwara’s �-independence [3, 4.3.11]. By a result of Görtz and
Haines [45], the i-th graded piece of the weight filtration of�(Klét,�

Ǧ,V
) has the

same dimension as the dimension of H2i (GrG, ICV ) and is equipped with a
Frobenius action by ×qi (cf. [47] 4.3). Then we deduce that ε = id. ��

4.5 Monodromy groups

4.5.1. In this subsection, we keep the notation of 4.4 and we take L to be K .
We drop φψ from the notation.

We denote by 〈Be†
Ǧ
〉 (resp. 〈Be†

Ǧ
, ϕ〉, resp. 〈BeǦ〉) the full subcategory

of Sm(Xk/K ) (resp. Sm(Xk/K F ), resp. Conn(XK )) whose objects are all
the sub-quotients of objects Be†

Ǧ,V
(resp. (Be†

Ǧ,V
, ϕ), resp. BeǦ,V ) for V ∈

Rep(Ǧ). Then 〈Be†
Ǧ
〉 (resp. 〈Be†

Ǧ
, ϕ〉, resp. 〈BeǦ〉) forms a Tannakian cate-

gory over K and we denote by Ggeo (resp. Garith, resp. Ggal) the associated
Tannakian group (with respect to a fiber functor ω, but is independent of the
choice of the fiber functor up to isomorphism [35]). The tensor functors on
the left side of the following diagrams induce closed immersions of algebraic
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groups on the right side

〈Be†
Ǧ
, ϕ〉 Garith

〈Be†
Ǧ
〉 Rep(Ǧ) Ggeo Ǧ

〈BeǦ〉 Ggal

In [42, Cor. 9, 10], Frenkel and Gross showed that the differential Galois
group Ggal of the Ǧ-connection BeǦ : Rep(Ǧ)→ Conn(XK ) is a connected

closed subgroup of Ǧ and explicitly calculated it when Ǧ is almost simple (cf.
(1.2.6.1)). The main theorem of this subsection is as follows.

Theorem 4.5.2 Let G be a split almost simple group over R and Ǧ its Lang-
lands dual group over K . We denote by � the outer automorphism group of
Ǧ and by Out(ǧ) the outer automorphism group of ǧ.

(i) If Ǧ is not of type A2n or char(k) > 2, then Ggeo → Ggal is an isomor-
phism. In particular,

• Ggeo
∼−→ Ǧ�,◦, if Ǧ is not type A2n (n ≥ 2) or B3 or D2n (n ≥ 2) with

� 
= Out(ǧ).
• Ggeo = Ǧ, if Ǧ is of type A2n,

• Ggeo
∼−→ G2, if Ǧ is of type B3 or of type D4.

• Ggeo
∼−→ Spin4n−1 if Ǧ is of type D2n with � � {1} (n ≥ 3).

(ii) If Ǧ = SL2n+1 and char(k) = 2, thenGgeo(Be
†
SL2n+1) = Ggeo(Be

†
SO2n+1).

In particular,

• Ggeo
∼−→ SO2n+1, if n 
= 3,

• Ggeo
∼−→ G2, if n = 3.

In particular, Ggeo 
= Ggal in this case.
(iii) The map Ggeo → Garith is always an isomorphism.

4.5.3.We first study the local monodromy at 0 and∞.
In view of 4.4.2, the restriction functor at 0 (2.3.2.1) induces

Rep(Ǧ)→ 〈Be†
Ǧ
〉 |0−→ MCuni(R/K )

∼−→ Vecnil
K
,
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sending ρ : Ǧ → GL(V ) to (V, dρ(N )) ∈ Vecnil
K
. Then, it induces closed

immersions of Tannakian groups

Ga → Ggeo → Ǧ, (4.5.3.1)

whose composition sends 1 ∈ K � Lie(Ga) to N ∈ ǧ.

Lemma 4.5.4 The restriction functor |∞ : 〈Be†
Ǧ
〉 → MCF(R/K ) (2.3.2.1)

at∞ ∈ P
1
k induces a homomorphism I∞ × Ga → Ggeo which is non-trivial

on P∞.

Proof If the image P∞ in Ǧgeo were trivial, by the Grothendieck–Ogg–

Shafarevich formula, Klét,�
Ǧ

would also be tame at 0,∞. Then the associated

�-adic representation π1(Xk) → Ǧ would factor through the tame quotient

π tame
1 (Xk), which is isomorphic to I tame∞ as X � Gm . Since Kl

ét,�
Ǧ,V

is pure of

weight zero for every V ∈ Rep(Ǧ), the geometric monodromy group of KlǦ
would be semisimple and then finite. This contradicts to fact that Klét,�

Ǧ
has a

principal unipotent monodromy at 0 [47, Thm. 1]. ��

4.5.5. Since every overconvergent F-isocrystal Be†
Ǧ,V

is pure of weight 0 and

is therefore geometrically semi-simple [6, 4.3.1], the neutral component G◦geo
is semi-simple [31]. Therefore, (4.5.3.1) implies that it contains a principal
unipotent element and hence its projection to the adjoint group Ǧad of Ǧ
contains a principal PGL2. Then it is almost simple and its Lie algebra appears
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in one of the following chains:

sl2 sp2n sl2n

sl2n+1

sl2 so2n+1

so2n+2
sl7

sl2 g2 so7

so8

sl2 f4 e6

sl2 e7

sl2 e8

Lemma 4.5.6 If Ǧ is not of type A1, and not of type A2 when p = 2, the
image Ggeo → Ǧad cannot be contained in a principal PGL2 of Ǧad.

Proof The image of the wild inertia group P∞ (resp. I∞) in PGL2 is a finite
p-group (resp. a solvable group). In view of the all possible finite groups
contained in PGL2, there are two possibilities:

(a) the image of P∞ is contained in Gm ⊂ PGL2;
(b) p = 2 and the image of I∞ (resp. P∞) is isomorphic to the alternating

group A4 (resp. the group Z/2Z× Z/2Z).
To prove the lemma, we follow a similar argument of [47, 6.8], but with

the quasi-minuscule representation replaced by the adjoint representation Ad.
In any case, by a result of Baldassarri [14] (cf. [10] 3.2), the maximal p-adic
slope of Be†

Ǧ,Ad
is less or equal to the maximal formal slope 1/ȟ of BeǦ,Ad

(4.3.1). Let r be the rank of Ǧ and h the Coxeter number of Ǧ. Then we deduce
that

Irr∞(Be†
Ǧ,Ad

) ≤ rank Ad

ȟ
= ȟ + 1

ȟ
r < r + 1, (4.5.6.1)
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and hence Irr∞(Be†
Ǧ,Ad

) ≤ r .

On the other hand, we have a decomposition Ad � ⊕r
i=1S2�i as represen-

tations of principal PGL2, where {�1 + 1, . . . , �r + 1} is the set of exponents
of ǧ.

Case (a). Since Irr∞(Be†
Ǧ
) 
= 0, the image of P∞ in PGL2 contains μp and

the image of I∞ is contained in N (Gm). By a similar argument of [47, 6.8], we
deduce Irr∞(S2�) ≥ �−$�/p% ≥ 1. Under our assumption, maxi {�i , p} > 2,
so there is least one i such that �i − $�i/p% > 1. Then Irr∞(Be†

Ǧ,Ad
) > r .

Contradiction!
Case (b). Recall that there are four irreducible representations of A4: id, two

non-trivial one dimensional representation V ′1, V
′′
1 , the standard representation

V3. Via the inclusion A4 → PGL2, we have

S2 � V3, S4 � V ′1 ⊕ V
′′
1 ⊕ V3, S6 � id⊕V⊕23 ,

S8 � id⊕V ′1 ⊕ V
′′
1 ⊕ V⊕23 ,

S10 � V ′1 ⊕ V
′′
1 ⊕ V⊕33 , S12 � id⊕2⊕V ′1 ⊕ V

′′
1 ⊕ V⊕33 ,

S14 � id⊕V ′1 ⊕ V
′′
1 ⊕ V⊕43 .

In particular, we have Irr∞(S2�) ≥ 2 for � = 3, 4, 5, 6, 7. In general, I∞
acts non-trivially on S2n and we have Irr∞(S2�) ≥ 1. Then we deduce that
Irr∞(Ad) ≥ r(G)+ 1. Contradiction! ��
4.5.7.Proof of Theorem 4.5.2. By the “trivial” functoriality (4.1.7), it is enough
to prove the theorem when Ǧ is simply-connected, so that Ǧ� is connected.

(a) The case where Ǧ is not of type A2n . In view of lemma 4.5.6, and
the calculation of Ggal (1.2.6.1), we deduce that G◦geo → Ggeo → Ggal are

isomorphisms. Using 4.1.8, we see Garith ⊂ Ǧ� . This implies that Garith =
Ggeo unless Ǧ is of type B3. In this last case, if Ǧ = Spin7, and Garith ⊂
G2 × Z(Ǧ). Taking into account of the Frobenius at 0 (4.4.5), we see that
Garith = Ggeo.

(b) The case where Ǧ is of type A2n and p > 2. It suffices to exclude that
Ggeo is contained in SO2n+1. Suppose it is true by contrast. Let σ0 be the
generator of � and δ̌ = (−1, σ0) in Gm × Aut(G, B, T ). Then we deduce
isomorphisms of overconvergent isocrystals on Xk

Be†SL2n+1,Std(ξ̌ ) � (−1)+ Be†SL2n+1,Std∨(ξ̌ ) � (−1)+ Be†SL2n+1,Std(ξ̌ ),

where the first isomorphism follows from (4.1.8.4), and the second one is due to
Std∨ � Std as representations of SO2n+1. Since char k > 2, this isomorphism
provides a “descent datum” so that Be†SL2n+1,Std(ξ̌ ) descends to Gm/μ2. It
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follows that its Swan conductor at∞ is at least two, if non-zero. On the other
hand, using Lemma 4.5.4 and the result of Baldassarri [14] (cf. [10] 3.2) again,
the Swan conductor of Be†SL2n+1,Std(ξ̌ ) at∞ is 1, contradiction!

(c) The case where Ǧ is of type A2n and p = 2. In appendix (A1), we will
identify Be†SO2n+1,Std with Be

†
SL2n+1,Std. Then we reduce to the case (a). ��

Weend this section by some corollaries of our calculation of themonodromy
groups.

Corollary 4.5.8 Assume that Ǧ is almost simple. The monodromy groups
G�

geo,G
�
arith of the Klét,�

Ǧ
(ψφ) over Q� (4.1.9.1) are calculated as in Theo-

rem 4.5.2.

Note that this gives a different proof of the main result of [47] theorem 3.

Proof The monodromy group G�
arith (resp. Garith) can be calculated by that of

Klét,�
Ǧ,V

(resp. Be†
Ǧ,V

) for a faithful representation V of Ǧ. The semisimplifi-

cation of Klét,�
Ǧ,V

and Be†
Ǧ,V

are semi-simple and have same Frobenius traces.

Then by [32, 4.1.1, 4.3.2], there exists a surjective morphism G�
arith � Garith.

Since they are both closed subgroups of Ǧ, they must be isomorphic to each
other and the assertion follows. ��

Corollary 4.5.9 Assume that Ǧ is almost simple. Let Ad be the adjoint rep-
resentation of Ǧ.

(i)We have Hi (P1, j!+(Be†Ǧ,Ad
)) = 0 for all i .

(ii) We have Irr∞(Be†
Ǧ,Ad

) = r(Ǧ), the rank of Ǧ. In addition, AdI∞ = 0,

and the nilpotent monodromy operator N∞ = 0 (4.5.3). Therefore, the local
Galois representation I∞ → Ǧ is a simple wild parameter in the sense of
Gross–Reeder [46, § 6].

Proof The corresponding assertions for the algebraic connection BeǦ,Ad are

proved in [42, §14]. Set E = Be†
Ǧ,Ad

, which is self dual. We have H0(X,E ) =
AdGgeo = 0 and H2(X,E ) = 0 by D†-affinity. We obtain Hi

c(X,E ) = 0
for i = 0, 2 by the Poincaré duality. By the Grothendieck–Ogg–Shafarevich
formula and (4.5.6.1), we have

H1
c(X,E ) = Irr∞(E ) ≤ r(Ǧ).
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Let j : X → P
1 be the inclusion. The distinguished triangle j!(E ) →

j!+(E )→ i+0 j!+(E )⊕ i+∞ j!+(E )→ induces a long exact sequence:

0→ H0(P1, j!+(E ))→ i+0 j!+(E )⊕ i+∞ j!+(E )
d−→ H1

c(X,E )→ (4.5.9.1)

H1(P1, j!+(E ))→ 0→ H2
c(X,E ) = 0→ H2(P1, j!+(E ))→ 0.

By the Poincaré duality, we conclude that Hi (P1, j!+(E )) = 0 for i = 0, 2.
For x ∈ {0,∞}, the restriction of E at x gives rise to an action of the inertia

group Ix on Ad and a commuting nilpotent monodromy operatorNx : Ad→
Ad (2.3.1). By Proposition 2.3.3, we have:

i+x ( j!+(E )) � AdIx ,Nx := Ker(Nx : AdIx → AdIx ).

The Bessel isocrystal is unipotent at 0 with N0 = [−, N ] (4.4.2). We have
AdI0,N0 = AdN , which has dimension r(Ǧ). Then themorphism d in (4.5.9.1)
is both injective and surjective. We deduce that

AdI∞,N∞ = 0, H1(P1, j!+(E )) = 0.

SinceN∞ is still a nilpotent operator on AdI∞ , we conclude assertions (i) and
(ii). ��
Remark 4.5.10 (i) By Corollary 4.5.8 and the same arguments, we recover
[47] prop. 5.3 on the analogous statements for KlǦ (and remove the restriction
of the characteristic of k in loc. cit.).

(ii) It follows from [46] prop. 5.6 that when p does not divide the order  W
of Weyl group, the only non-zero break of Be†

Ǧ,Ad
(and KlǦ) at ∞ is 1/ȟ.

Indeed, the local Galois representation I∞ → Ǧ is described explicitly in [46]
prop. 5.6 and § 6.2.

(iii) It is expected that the description in (ii) of the local monodromy of Be†
Ǧ

(and KlǦ) at∞ should hold when (p, ȟ) = 1. When Ǧ = GLn , this is indeed

the case. For Kln , this was proved by Fu andWan [43, Theorem 1.1]. For Be†n ,
this can be shown by studying the solutions of Bessel differential equation
(1.1.1.1) at∞. We omit details and refer to [65, 6.7] for a treatment in the case
when n = 2.

(iv) Using Theorem 4.5.2 (ii), which will be proved in the Appendix A1, we
see that when p = 2 and n is an odd integer, the associated local Galois repre-
sentation of Be†SOn

at∞ coincides with the simple wild parameter constructed
by Gross–Reeder [46] § 6.3. In particular, the image of the inertia group I∞ in
the case Ǧ = SO3 is isomorphic to A4. Together with Be

†
SO3,Std

� Be†
SL2,Sym2
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(4.1.7.1), this allows us to recover André’s result on the local monodromy
group of Be†2 at∞ in the case p = 2 [10, § 7, 8].

5 Applications

In this section, we give some applications of our study of Bessel F-isocrystals
for reductive groups.

5.1 Functoriality of Bessel F-isocrystals

Wemay ask all possible Frobenius structure onBe†
Ǧ
(ξ̌ ) (not necessarily the one

from 4.4.1), i.e. all possible isomorphisms of tensor functors ϕ : F∗X ◦Be†Ǧ
∼−→

Be†
Ǧ
.

Lemma 5.1.1 The Frobenius structure on Be†
Ǧ
(ξ̌ ) is unique up to an element

in the center ZǦ(K ) of Ǧ.

Proof Given two Frobenius structuresϕ1, ϕ2, u := ϕ2◦ϕ−11 is an isomorphism

of tensor functorsBe†
Ǧ
(ξ̌ )

∼−→ Be†
Ǧ
(ξ̌ ). Ifω denotes a fiber functor of 〈Be†

Ǧ
(ξ̌ )〉,

then ω ◦ u is an element in Ǧ(K ) commuting with Ggeo(K ) by the Tannakian
formalism. Then the assertion follows from ZǦ(Ggeo) = ZǦ . ��
5.1.2. Let G,G ′ be two split, almost simple groups over R whose Langlands
dual groups Ǧ ′ ⊂ Ǧ over K appear in the same line in the left column of
the (1.2.6.1). Up to conjugation, we can assume that the inclusion Ǧ ′ ⊂ Ǧ
preserves the pinning. Then it induces a natural inclusion ǧ′aff(1) ⊂ ǧaff(1). Let
φ′ be a generic linear function ofG ′ over R (4.4.1) and ξ̌ the generic element in
ǧ′aff(1) corresponding to−πφ′ (4.3.3.1). Note that ξ̌ is also a generic element
in ǧaff(1).

Proposition 5.1.3 (i) There exists a generic linear function φ of G over R
such that −πφ matches ξ̌ ∈ ǧaff(1) under the isomorphism (4.3.3.1).

(ii) Let (Be†
Ǧ ′(ξ̌ ), ϕ

′) (resp. (Be†
Ǧ
(ξ̌ ), ϕ)) be the Bessel F-isocrystal of Ǧ ′

(resp. Ǧ) constructed by φ′ (resp. φ) in 4.4.1. Then (Be†
Ǧ
(ξ̌ ), ϕ) is the push-out

of (Be†
Ǧ ′(ξ̌ ), ϕ

′).

Proof (i) Let φ be the generic linear function of G over K such that −πφ

corresponds to ξ̌ under the isomorphism (4.3.3.1). We will show that φ is
naturally integral.
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By construction, BeǦ(ξ̌ ) is the push-out of BeǦ ′(ξ̌ ). In particular, for

V ∈ Rep(Ǧ), the connection (BeǦ,V (ξ̌ ))
† has a Frobenius structure and is

overconvergent. Let χ be a generic linear function ofG over R and η̌ ∈ ǧaff(1)
the corresponding generic element. Then there exists an element c ∈ K× such
that we can rewrite two Bessel connections for the adjoint representation of Ǧ
as follow (4.3.1.2):

BeǦ,Ad(η̌) = d + (N + xE)
dx

x
, BeǦ,Ad(ξ̌ ) = d + (N + cxE)

dx

x
.

Via (4.3.3.1), it suffices to show that c ∈ R×.
Both the above two connections admit Frobenius structures and decompose

in the categories Conn(XK ), Sm(Xk/K ) and Sm(Xk/K F ) in the same way
Theorem 4.5.2. Let V be a non-trivial irreducible component of Ad inRep(Ǧ ′)
and V (η̌), V (ξ̌ ) the corresponding overconvergent F-isocrystal. Since V (η̌)|0
is unipotent, if {ei } denotes a basis of V , there exists a solution

u : ei �→ fi (x) ∈ Sol(V (η̌)|0) (2.3.1.2)

whose convergence domain is the open unit disc of radius 1. Then uc : ei �→
fi (cx) belongs to Sol(V (ξ̌ )|0) and has the same convergent radius. If c is not a
p-adic unit, then V (η̌) (or V (ξ̌ )) admits the trivial overconvergent isocrystal on
Xk as a quotient, which contracts to their irreducibility. The assertion follows.
(ii) By (i), the Ǧ-valued overconvergent isocrystal Be†

Ǧ
(ξ̌ ) is the push-

out of Be†
Ǧ ′(ξ̌ ). It remains to identify two Frobenius structures on Ǧ-valued

overconvergent isocrystals Be†
Ǧ
(ξ̌ ) � Be†

Ǧ ′(ξ̌ )×Ǧ ′ Ǧ, which are different by

an element ε in the center ZǦ(K ) by (5.1.1). Taking account of the extension
of Frobenius structures to 0 (4.4.5), we deduce that ε = id and the assertion
follows. ��

Now we can prove the following conjecture of Heinloth–Ngô–Yun [47,
conjecture 7.3].

Theorem 5.1.4 We keep the notation of 5.1.2 and fix a non-trivial additive
character ψ . Assume that Ǧ ′ ⊂ Ǧ over Q� appear in the same line in the left
column of the (1.2.6.1). For every generic linear function φ′ of G ′ over k, there
is a generic linear function φ of G over k such that Klét,�

Ǧ
(ψφ) is isomorphic

to the push-out of Klét,�
Ǧ ′ (ψφ′) along Ǧ ′ ⊂ Ǧ as �-adic Ǧ-local systems on

Xk.

Proof By the “trivial” functoriality (4.1.7), we may assume that Ǧ is simply
connected. We lift φ to be a generic linear function of G ′ over R and take φ′

123



Bessel F-isocrystals for reductive groups 1069

as in 5.1.3. We need to show that Klét,�
Ǧ

(ψφ) � Klét,�
Ǧ ′ (ψφ′)×Ǧ ′ Ǧ as Ǧ-local

systems. It follows from Theorem 4.4.4 and Proposition 5.1.3 that for every
representation V ∈ Rep(Ǧ), regarded as a representation of Ǧ ′, and every
a ∈ |Xk |, we have

Tr(Froba|Klét,�Ǧ,V,ā
) = Tr(Froba|Klét,�Ǧ ′,V,ā

).

Note that if� is the group of pinned automorphisms of Ǧ, the closed embed-
ding Ǧ� → Ǧ induces a surjective homomorphism of K-rings K (Rep(Ǧ))⊗
Q� → K (Rep(Ǧ�)) ⊗ Q�. Then the homomorphism K (Rep(Ǧ)) ⊗ Q� →
K (Rep(Ggeo))⊗Q� is also surjective. It follows that if we replace V by any
representationW of Ggeo (⊂ Ǧ ′ ⊂ Ǧ), the above equality holds. This implies

that Frobenius conjugacy classes of Klét,�
Ǧ

and of Klét,�
Ǧ ′ have the same image in

Ggeo//Ggeo. Therefore, for a faithful representation W of Ggeo, two represen-

tations Klét,�
Ǧ

,Klét,�
Ǧ ′ : π1(Xk, x)→ Ggeo(Q�) are conjugated in GL(W ) by an

element g, which induces an automorphism of Ggeo. It fixes every Frobenius
conjugacy class and therefore fixes Ggeo//Ggeo. Then g must be inner. That is
these two representations are conjugate in Ggeo and the assertion follows. ��

5.2 Bessel F-isocrystals for classical groups

5.2.1.TheKloosterman sheaf and the Bessel F-isocrystal for (G = GLn, Ǧ =
GLn) have been extensively studied. As usual, let In denote the identity matrix
and Ei j denote the n × n-matrix with the (i, j)-entry 1 and all other entries
0. We choose the standard Borel B of the upper triangular matrices and the
standard torus T of the diagonal matrices. We choose a coordinate x of A

1.
Then there is a canonical isomorphism

G
n
a � I (1)/I (2), (a1, . . . , an) �→ In +

n−1∑
i=1

ai Ei,i+1 + anx
−1En,1.

We choose φ : G
n
a → Ga to be the addition map. Under the isomorphism

(4.3.3.1) and (4.3.4.1), φ corresponds to ξ̌ = N + Edx (4.4.1.1) with

N =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...
...
. . .

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

, E =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
0 0 0 . . . 0
...
...
. . .

. . .
...

0 0 0 . . . 0
1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

. (5.2.1.1)
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On the other hand, by4.1.7 and [47, §3],wehaveKlétSLn,Std
� KlétGLn,Std

� Klétn .
Therefore, the Kloosterman connection is isomorphic to the classical Bessel
connection (1.1.1, 1.1.4)

KldRSLn,Std(λφ) � Ben, KlrigSLn,Std
(φ) � Be†n .

Recall that the connection Ben corresponds to the Bessel differential equation
(1.1.1.1).
5.2.2. Consider

G = SO2n+1, Ǧ = Sp2n = {A ∈ SL2n | AJ AT = J },
where J is the anti-diagonal matrix with Ji j = (−1)iδi,2n+1− j . Then matrices
(N , E) as in (5.2.1.1) are in ǧ and BeǦ(ξ̌ ) is given by the same formula as
GL2n case. Then we deduce an isomorphism of overconvergent F-isocrystals
Be†Sp2n,Std(ξ̌ ) � Be†2n by (5.1.3).
5.2.3. Consider

G = SO2n Ǧ = SO2n = {A ∈ SL2n, AJ A
T = J },

where J is the anti-diagonal matrix with Ji j = (−1)max{i, j}δi,2n+1− j . There
exists a canonical isomorphism

G
n+1
a � I (1)/I (2),

(a1, . . . , an+1) �→ I2n +
n−1∑
i=1

(Ei,i+1 + E2n−i,2n−i+1)

+(En−1,n+1 + En,n+2)+ x−1(E1,2n−1 + E2,2n).

Then we take φ : G
n+1
a → Ga to be the addition map. When n ≥ 3, under the

isomorphism (4.3.3.1) and (4.3.4.1), λφ corresponds to ξ̌ = N + λ2n−2Ex
(4.4.1.1) with
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N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . . . . . . . 0
...
. . .

. . . . . .
...

...
. . . 0 1 1 0 . . . 0

. . . 0 0 1
...

0 1
...

0 0
. . .

...

0 0
. . . 1

0 0 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . . . . . . . 0
...
. . .

. . . . . .
...

...
. . . 0 0 0 0 . . . 0

. . . 0 0 0
...

0 0
...

0 0
. . .

...

1 0
. . . 0

0 1 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.2.3.1)

The corresponding Bessel connection is written as

BeSO2n,Std(ξ̌ ) = d + (N + λ2n−2Ex)dx
x

.

If e1, . . . , e2n denote a basis for the above connection matrix, the restriction of
the above connection to the subbundle generated by en − en+1 is trivial. The
other horizontal subbundle, generated by en + en+1 and other basis vectors, is
isomorphic to theBessel connectionBeSO2n−1,Std(ξ̌ ) discussed below (5.2.6.4).
5.2.4. In [58], T. Lam and N. Templier identified the diagram (4.1.6.2) with the
Laudau–Ginzburg model for quadrics [66] and used it to calculate the asso-
ciated Kloosterman D-modules. We briefly recall this construction following
[66, § 3]. Let Q2n−2 = G/P be the (2n − 2)-dimensional quadric and let
(p0 : · · · : pn−1 : p′n−1 : pn : · · · : p2n−2) be the Plücker coordinates of
Q2n−2 satisfying

pn−1 p′n−1 − pn−2 pn + · · · + (−1)n−1 p0 p2n−2 = 0. (5.2.4.1)

Consider the open subscheme

Q◦2n−2 = Q2n−2 − D,

with the complement D = D0+D1+· · ·+Dn−1+D′n−1, where Di is defined
by

D0 := {p0 = 0},

D� :=
{

�∑
k=0

(−1)k p�−k p2n−2−�+k = 0

}
for 1 ≤ � ≤ n − 3

Dn−2 := {p2n−2 = 0}, Dn−1 := {pn−1 = 0}, D′n−1 :=
{
p′n−1 = 0

}
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The divisor D is anti-canonical in Q2n−2. For simplicity, we set

δ� =
�∑

k=0
(−1)k p�−k p2n−2−�+k, for 0 ≤ � ≤ n − 3.

If x denotes a coordinate of Gm , we define a regular function W : Q◦2n−2 ×
Gm → A

1 to be

W (pi : p′n−1; x) =
p1
p0
+

n−3∑
�=1

p�+1 p2n−2−�

δ�
+ pn

pn−1
+ pn

p′n−1
+ x

p1
p2n−2

.

(5.2.4.2)

The Kloosterman overconvergent F-isocrystal and connection are calcu-
lated by

KlrigSO2n,Std
(φ) � pr2,!(W ∗(Aψ))[2(n − 1)](n − 1),

KldRSO2n,Std(λφ) � pr2,!(W ∗(Eλ))[2(n − 1)].

We deduce that the Frobenius trace KlSO2n,Std of Kl
rig
SO2n,Std

(φ) is defined for
a ∈ F

×
q by

KlSO2n ,Std(a) =
1

qn−1
∑

(pi ,p′n−1)∈Q◦2n−2(Fq )
ψ

(
TrFq/Fp

(
p1
p0
+

n−3∑
�=1

p�+1 p2n−2−�

δ�

(5.2.4.3)

+ pn
pn−1

+ pn
p′n−1

+ a
p1

p2n−2

))
.

Proposition 5.2.5 (i) When n = 2, we have KlSO4,Std(a) = Kl(2; a)2.
(ii)When n ≥ 3, we can simplify above sum as

KlSO2n,Std(a) (5.2.5.1)

= 1

qn−1

( ∑
xi∈F

×
q

ψ

(
TrFq/Fp(x1+ · · ·+x2n−2+a x1+x2

x1 . . . x2n−2
)

)
+(q−1)qn−2

)
.

Proof Assertion (i) is easy to prove and is left to readers. It also follows from
(4.1.7.2).

(ii) The equality follows from subdividing the sum (5.2.4.3) into the fol-
lowing parts:
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(a) Case pn, pn+1, . . . , p2n−3 
= 0: we replace pi , p′n−1 by xi , yi ∈ F
×
q as

follows:

pk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if k = 0,
x1 . . . xk−1 (xk + yk) if 1 ≤ k ≤ n − 2,
x1 . . . xn−2xn−1 if k = n − 1,
x1 . . . xn−2xn−1yn−1 if k = n,
x1 . . . xn−2xn−1yn−1yn−2 . . . y2n−1−k, otherwise ,

p′n−1 = x1 . . . xn−2yn−1.

Then the sum (5.2.4.3) becomes the toric exponential sum in (5.2.5.1).
(b) Case pn = 0 and p2n−2−� 
= 0 for some � ∈ {1, . . . , n − 3}:

we assume � is maximal. By dividing p′n−1, we consider the affine coordi-
nates p0, . . . , p2n−2 and we replace pn−1 by the equation (5.2.4.1). Since
pn, . . . , p2n−2−�−1 = 0, p�+1 can be taken in Fq regardless of the condition
δ� 
= 0. Thenwe have

∑
p�+1∈Fq

ψ(
p�+1 p2n−2−�

δ�
) = 0 and that the sum (5.2.4.3)

equals to zero in this case.
(c) Case pn = pn+1 = · · · = p2n−3 = 0: it is easy to show that the sum

(5.2.4.3) equals to q−1
q , which is the constant part of (5.2.5.1). ��

5.2.6. Consider

G = Sp2n, Ǧ = SO2n+1 = {A ∈ SL2n+1 | AJ AT = J },

where J is the anti-diagonal matrix with Ji j = (−1)iδi,2n+2− j . There exists a
canonical isomorphism

G
n+1
a � I (1)/I (2),

(a1, . . . , an+1) �→ I2n +
n−1∑
i=1

(Ei,i+1 + E2n−i,2n−i+1)+ En−1,n + x−1E2n,1.

Then we take φ : G
n+1
a → Ga to be the addition map. Under isomorphisms

(4.3.3.1) and (4.3.4.1), λφ corresponds to ξ̌ = N + λ2nEx (4.4.1.1) with N
as in (5.2.1.1), which belongs to ǧ, and
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E =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . . . . 0
...
...

...

0 0 . . .

2 0 . . . . . . 0
0 2 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

∈ ǧ. (5.2.6.1)

Then we can write the Bessel connection as

KldRSO2n+1,Std(λφ) � BeSO2n+1,Std(ξ̌ ) = d + (N + λ2nEx)
dx

x
.

After taking a gauge transformation by the matrix

⎛
⎜⎜⎜⎜⎝

1 0 . . . . . . 0
0 1 . . . . . . 0
. . . . . . . . . . . . . . .

0 . . . . . . . . . . . .

2λ2nx 0 . . . 0 1

⎞
⎟⎟⎟⎟⎠ .

we obtain the scalar differential equation associated to BeSO2n+1,Std(ξ̌ ):

(x
d

dx
)2n+1 − λ2nx(4x

d

dx
+ 2) = 0. (5.2.6.2)

When n ≥ 2, we can rewrite ξ̌ as

ξ̌ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0

0
. . .

. . . 0
... 0

√
2 0

...
... 0 0

√
2

...
... 0 0 0

. . . 0
0 . . . 1
0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ λ2n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . . . . 0
...

...
...

...
...

...
...

0 . . . 0
1 0 . . . . . . 0
0 1 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x, (5.2.6.3)

where
√
2 is a square root of 2 in K and appears in positions (n, n + 1) and

(n + 1, n + 2). Via the natural inclusion so2n+1 → so2n+2 the above element
ξ̌ ∈ (so2n+1)aff(1) corresponds to ξ̌ ∈ (so2n+2)aff(1) defined in (5.2.3.1).
The standard (2n+ 2)-dimensional representation of so2n+2 decomposes as a
direct sum of the trivial representation and the standard (2n+ 1)-dimensional
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representation of so2n+1 as representations of so2n+1. Then we obtain decom-
positions of Bessel connections and Bessel F-isocrystals by Proposition 5.1.3

BeSO2n+2,Std(ξ̌ ) � BeSO2n+1,Std(ξ̌ )⊕ (OGm,K , d), (5.2.6.4)

Be†SO2n+2,Std(ξ̌ ) � Be†SO2n+1,Std(ξ̌ )⊕ (OGm , d).

In the remaining of this subsection, we omit ξ̌ from the notation.

Remark 5.2.7 The fact that matrix E in (5.2.6.1) takes value 2 in its non-zero
entries is delicate. On the one hand, it comes from the calculation of invari-
ant polynomials. On the other hand, it ensures the existence of a Frobenius
structure on the differential equation (5.2.6.2) with parameter λ = −π . For
instance, for every prime number p, the convergence domain of the unique
solution of (5.2.6.2) (λ = −π ) at 0 :

F(x) =
∑
r≥0

(2r − 1)!!
(r !)2n+1 (2π2n)r xr ,

is the open unit disc of radius 1. In particular, F(x) belongs to K {x} (2.3.1.1)
and it justifies (2.3.1.2).

5.2.8. The equation (5.2.6.2) is closely related to the hypergeometric differ-
ential equations and hypergeometric F-isocrystals studied by Katz [51] and
Miyatani [61]. We briefly recall them in the following.

Let n > m be two non-negative integers, π ∈ K associated to ψ (2.1.1)
and β = (β1, . . . , βm) a sequence of elements of 1

q−1Z − Z. We denote by
Hypπ(n, β) the p-adic hypergeometric differential operator on Gm

Hypπ(n, β) = (x
d

dx
)n − (−1)n+mpπn−mx

m∏
i=1

(x
d

dx
− β j ). (5.2.8.1)

We denote by H ypπ(n, β) the D
†
P̂1,Q

({0,∞})-module

H ypπ(n, β) = D†
P̂1,Q

({0,∞})/(D†
P̂1,Q

({0,∞})Hypπ(n, β)).

In [61], Miyatani showed thatH ypπ(n, β) underlies to a pure overconver-
gent F-isocrystal on Gm,k of rank n and weight n+m − 1. Moreover, the the
overconvergent isocrystalH ypπ(n, β) is irreducible and admits a unique (up
to a scalar) Frobenius structure.
5.2.9. Normalised Hypergeometric sum. The overconvergent F-isocrystal
H ypπ(n, β) has a maximal unipotent monodromy at zero. If N0 denotes
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this monodromy action, then the space (H ypπ(n, β)|0)N0 of N0-invariants

is one-dimensional on which Frobk acts as α = (−1)m∏m
j=1 G(ψ−1, ρ−1j )

(cf. [52] 2.6.1 for a proof in the �-adic case), where G(ψ−1, ρ−1j ) denotes the

Gauss sum associated to ψ−1 and ρ−1j , and ρi is defined for ξ ∈ k× and ξ̃ the

Teichmüller lifting of ξ , by ρi (ξ) = ξ̃ (q−1)βi .
Any lifting F0 in the decomposition group D0 at 0 of the Frobenius automor-

phism has eigenvalues set {α, qα, . . . , q2nα} (cf. [50] 7.0.7). After twisting a
geometrically constant rank one overconvergent F-isocrystal, we denote by
H̃ ypψ(n, ρ) the normalised hypergeometric F-isocrystal whose the Frobe-
nius eigenvalues at 0 is {q−(n−1)/2, . . . , q(n−1)/2}. Then by [61, proposition
4.1.6], its Frobenius trace function, called the normalised hypergeometric sum
H̃ψ(n, ρ) is defined for a ∈ F

×
q by

H̃ ψ(n, ρ)(a)

= 1

(−√q)n−1
∏m

j=1 G(ψ−1, ρ−1j )

×
(∑

ψ

(
Tr k′/Fp(

n∑
i=1

xi −
m∑
j=1

y j )

)
·

m∏
j=1

ρ−1j (Nm k′/k(y j ))

)
,

where the sum take over (x1, . . . , xn, y1, . . . , ym) ∈ (k′×)m+n satisfying∏n
i=1 xi = a

∏m
j=1 y j .

When m = 0, we have H̃ ypψ(n,∅) = Be†n (1.1.4).

Proposition 5.2.10 (i) When p > 2, there exists an isomorphism of overcon-
vergent F-isocrystals (5.2.9)

Be†SO2n+1,Std � [x �→ 4x]+H̃ ypψ(2n + 1, ρ), (5.2.10.1)

where ρ denotes the quadratic character of k×.
(ii) When p = 2, there exists an isomorphism of overconvergent F-

isocrystals Be†SO2n+1,Std � Be†2n+1. In particular, the SL2n+1-overconvergent
F-isocrystals Be†SL2n+1 is the push-out of Be

†
SO2n+1 along SO2n+1 → SL2n+1.

Proof (i) If we rescale x by x �→ 1
4 x , the differential equation (5.2.6.2) turns

to the hypergeometric differential equation Hypψ(2n + 1; ρ) associated to ρ

(5.2.8.1). Frobenius structures on two sides of (5.2.10.1) are of weight zero and
have Frobenius eigenvalues {q−n, . . . , q−1, 0, q, . . . , qn} at 0 (4.4.5, 5.2.9).
Then these two Frobenius structures coincide by 5.2.8 and the isomorphism
(5.2.10.1) follows.

(ii) We will prove the assertion in Appendix A. ��
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Corollary 5.2.11 (i) The Frobenius trace functionKlSO2n+1,Std ofBe
†
SO2n+1,Std

is equal to

KlSO2n+1,Std(a) =
∑

x,y∈k×,xy=a
KlSO3,Std(x)Kl(2n − 2; y)

=
{
Kl(2n + 1; a), p = 2,
H̃ψ(2n + 1; ρ)(4a), p > 2.

(ii)We have an identity of exponential sums (5.2.5.1)

KlSO2n+2,Std(a)− 1 = KlSO2n+1,Std(a).

Proof (i) Let � denote the (multiplicative) convolution of arithmetic D-
modules [61, 2.1.1]. By the convolution interpretation of hypergeometric
overconvergent F-isocrystals [61, Main theorem (ii) and 3.3.3], we deduce
an isomorphism of overconvergent F-isocrystals

Be†SO2n+1,Std � Be†SO3,Std
�Be†2n−2 .

Then the first equality follows. The second one follows from 5.2.10(i–ii).
(ii) It follows from Proposition 5.2.5 and (5.2.6.4). ��
In particular, by (4.1.7.1) and Corollary 5.2.11(i), we obtain (1.2.9.1). Using

the trivial functoriality 4.1.7 and the exceptional isomorphism for groups of
low ranks (4.1.7.1, 4.1.7.2), one can similarly obtain other identities between
exponential sums, whose sheaf-theoretic incarnations were obtained by Katz
[52].

5.3 Frobenius slopes of Bessel F-isocrystals

5.3.1We first recall the definition of the Newton polygon of a conjugacy class
in Ǧ(K ). Let X•(Ť )+ be the set of dominant coweights of Ǧ and X•(Ť )+

R
the

positive Weyl chamber, equipped with the following partial order ≤: μ ≤ λ

if λ− μ can be written as a linear combination of positive coroots of Ǧ with
coefficients in R+. We identify (X•(Ť )⊗Z R)/W and X•(Ť )+

R
. Recall that ρ

denotes the half sum of positive roots of G

ρ = 1

2

∑
α∈�+

α ∈ X
•(T ) = X•(Ť ).

Let v : K → Q ∪ {∞} be the p-adic order, normalised by v(q) = 1. It
induces a homomorphism of groups v : Ť (K )→ X•(Ť )⊗Z R. By identifying
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1078 D. Xu, X. Zhu

Ť (K )/W and the set of semisimple conjugacy classes Conjss(Ǧ(K )) in Ǧ(K ),
we deduce a homomorphism:

NP : Conjss(Ǧ(K )) = Ť (K )/W → (X•(Ť )⊗Z R)/W = X•(Ť )+
R
.

When Ǧ = GLn , NP is equivalent to the classical p-adic Newton polygon (cf.
[57] § 1).

Theorem 5.3.2 Let x ∈ |A1
k | be a closed point and ϕx ∈ Ǧ(K ) the Frobenius

automorphism of (Be†
Ǧ
, ϕ) at x (4.4.3). Let v be the p-adic order normalised

by v(qdeg(x)) = 1 and NP defined as above.
(i) Except for finitely many closed points of |A1

k |, we have NP(ϕx ) = ρ.

(ii) Suppose that Ǧ is of type An, Bn,Cn, Dn or G2, then we haveNP(ϕx ) =
ρ for every x ∈ |A1

k |.

Proof (i) In [57, 2.1], V. Lafforgue shows that the Newton polygon of the
Hecke eigenvalue of a cuspidal function is ≤ ρ. In particular, we deduce that
NP(ϕx ) ≤ ρ for all x ∈ |Gm,k |. By 4.4.5, we have NP(ϕ0) = NP(ρ(q)) = ρ.
That is the Newton polygon achieves the upper bound ρ at 0. We take a finite
set of tensor generators {V1, . . . , Vn} of Rep(Ǧ). Then the assertion follows
by applying Grothendieck–Katz’ theorem (cf. [30] 1.6) to log convergent F-
isocrystals Be†

Ǧ,Vi
.

(ii) (a) The case where Ǧ is of type An,Cn . By functoriality (5.1.3), we
reduce to study the Frobenius slope of Bessel F-isocrystal Be†n of rank n
(1.1.4). In this case, the assertion follows from the work of Dwork, Sperber
and Wan [40,72,76].

(b) The case where Ǧ is of type Bn, Dn,G2. By functoriality (5.1.3), we
reduce to show that the Frobenius slope set of Be†SO2n+1,Std at each closed point
is equal to {−n,−n + 1, . . . , n}. If p = 2, it follows from 5.2.10(ii) and the
case (a). If p > 2, in view of 5.2.9 and 5.2.10(i), it follows from the following
lemma. ��

Lemma 5.3.3 The Frobenius slope set of H ypψ(2n + 1; ρ) (5.2.8) at each
closed point is equal to

{
1

2
,
3

2
, . . . , 2n + 1

2

}
.

Proof We deduce this fact from Wan’s results on Frobenius slope of certain
toric exponential sums [76,77].
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For a ∈ F
×
q and a divisor d of p − 1, consider the following Laurent

polynomial in Fq [x±1 , . . . , x±2n+1]

fd(x1, . . . , x2n+1) = x1 + · · · + x2n − xd2n+1 +
axd2n+1

x1x2 . . . x2n
.

For m ≥ 1, we denote by Sm( fd) the exponential sum associated a Laurent
polynomial:

Sm( fd) =
∑

xi∈F
×
qm

ψ

(
TrFqm /Fp fd(x1, . . . , x2n+1)

)
.

Then we have an identity

Sm( f2) = Sm( f1)+
∑

x1...x2n+1=ay
xi∈F

×
qm

ψ

(
TrFqm /Fp(x1 + · · · + x2n+1 − y)

)

(5.3.3.1)

· ρ−1(NmFqm/Fq
(y)
)
,

where the last term is the Frobenius trace of H ypψ(2n + 1; ρ).
The L-function associated to these exponential sums is a rational function:

L( fd , T ) = exp

(∑
m≥1

Sm( fd)
Tm

m

)
.

We denote by �( fd) the convex closure in R
2n+1 generated by the origin

and lattices defined by exponents appeared in fd : {(0, . . . , 0), (1, . . . , 0), . . . ,
(0, . . . , 1, 0), (0, . . . , 0, d), (−1, . . . ,−1, d)}. Thepolyhedron�( fd) is (2n+
1)-dimensional and has volume d

2n! . The Laurent polynomials fd is non-
degenerate (cf. [77] Def. 1.1). After Adolphson–Sperber [9], the L-function
L( fd , T ) is a polynomial of degree d(2n + 1).

We denote by NP( fd) the (Frobenius) Newton polygon associated to L-
functions L( fd , T ) (cf. [77] 1.1) and by HP( fd) the Hodge polygon defined
in term of the polyhedron �( fd) (cf. [77] 1.2). The (multi-)set of slopes of
HP( fd) is

{
0,

1

d
,
2

d
, . . . , 2n + d − 1

d

}
. (5.3.3.2)
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The Newton polygon lies above the Hodge polygon [9]. A Laurent polyno-
mial is called ordinary if these two polygons coincide. Let δ be a co-dimension
1 face of � which does not contain the origin and f δd the restriction of fd to
δ which is also non-degenerate. The Laurent polynomial f δd is diagonal in the
sense of [77, § 2]. If V1, . . . , V2n+1 denote the vertex of δ written as column
vectors, the set S(δ) of solutions of

(V1, . . . , V2n+1)

⎛
⎜⎝

r1
...

r2n+1

⎞
⎟⎠ ≡ 0 (mod 1), ri rational, 0 ≤ ri < 1,

forms an abelian group of order d (cf. [77] 2.1). Since d is a divisor of p− 1,
we deduce that for each δ, f δd is ordinary by [77, Cor. 2.6]. By Wan’s criterion
for the ordinariness [76] (cf. [77] Thm. 3.1), fd is ordinary.

In view of (5.3.3.1) and the slope sets of HP( f1),HP( f2) (5.3.3.2), the
assertion follows. ��
Acknowledgements We would like to thank Benedict Gross, Shun Ohkubo, Daqing Wan,
Liang Xiao and Zhiwei Yun for valuable discussions. We are also grateful to an anonymous
referee for his/her careful reading and valuable comments. X. Z. is partially supported by the
National Science Foundation under agreement Nos. DMS-1902239 and a Simons Fellowship.

Appendix A. A 2-adic proof of Carlitz’s identity and its generalization

As mentioned in introduction, Carlitz [24] proved the following identity
between Kloosterman sums:

Kl(3; a) = Kl(2; a)2 − 1, ∀ a ∈ F
×
2s .

In this appendix, we reprove and generalize this identity by establishing an
isomorphism between two Bessel F-isocrystals Be†2n+1 and Be

†
SO2n+1,Std. The

following is a restatement of Proposition 5.2.10(ii).

Proposition A1 There exists an isomorphism between following two overcov-
ergent F-isocrystals on Gm,F2:

Be†2n+1 :
(
x
d

dx

)2n+1
+ 22n+1x = 0, (A11)

Be†SO2n+1,Std :
(
x
d

dx

)2n+1
− 22n+1x

(
2x

d

dx
+ 1

)
= 0.

Our strategy is first to show that their maximal slope quotient convergent
F-isocrystals are isomorphic. Then we conclude the proposition by a dual
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version of a minimal slope conjecture (proposed by Kedlaya [56] and recently
proved by Tsuzuki [74]) that we briefly recall in the following.

Let X be a smooth k-scheme and M † an overconvergent F-isocrystal on
X/K .We denote the associated convergent F-isocrystal on X/K byM .When
the (Frobenius) Newton polygons ofM are constant on X ,M admits a (dual)
slope filtration, that is a decreasing filtration

M =M 0
� M 1

� M 2
� · · · � M r−1

� M r = 0 (A12)

of convergent F-isocrystals on X/K such that

• M i/M i+1 is isoclinic of slope si and
• s0 > s1 > · · · > sr−1.

Theorem A2 (Tsuzuki, [74] theorem 1.3) Let X be a smooth connected
curve over k. Let M †,N † be two irreducible overconvergent F-isocrystals
such that the corresponding convergent F-isocrystalsM ,N admit the slope
filtrations {M i }, {N i } respectively. Suppose there exists an isomorphism
h : N /N 1 ∼−→ M /M 1 of convergent F-isocrystals between the maximal
slope quotients. Then there exists a unique isomorphism g† : N † ∼−→ M †

of overconvergent F-isocrystals, which is compatible with h as morphisms of
convergent F-isocrystals.

A3 Following Dwork’s strategy [39, § 1-3], we study the maximal slope quo-
tients of Be†2n+1 and of Be

†
SO2n+1,Std in terms of their unique solutions at 0.

In the following, we assume k = Fp. We first recall Dwork’s congruences
and show a refinement of his result in the 2-adic case. Consider for every
i ≥ 0, a map B(i)(−) : Z≥0 → K× and the following congruence relation for
0 ≤ a < p and n,m, s ∈ Z≥0:

(a) B(i)(0) is a p-adic unit for all i ≥ 0,

(b)
B(i)(a + np)

B(i+1)(n)
∈ R for all i ≥ 0,

(c)
B(i)(a + np + mps+1)

B(i+1)(n + mps)
≡ B(i)(a + np)

B(i+1)(n)
mod ps+1 for all i ≥ 0.

(c’) When p = 2,
B(i)(a + n2+ m2s+1)

B(i+1)(n + m2s)
≡ u(i, s,m)

B(i)(a + n2)

B(i+1)(n)
mod 2s+1 for all i ≥ 0, where u(i, s,m) = 1 if s 
= 1 and u(i, 1,m) = 1
or −1 depending on i and m.
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If conditions (a–c) (or (a,b,c’)) are satisfied, then B(i)(n) ∈ R for all i, n ≥ 0.
We set

F (i)(x) =
∞∑
j=0

B(i)( j)x j ∈ K �x�,

F (i)
m,s(x) =

(m+1)ps−1∑
j=mps

B(i)( j)x j ∈ K [x], s ≥ 0.

We write F (i)
0,s by F (i)

s for simplicity.

Theorem A4 (i) [39, theorem 2] If conditions (a–c) are satisfied, then

F (0)(x)F (1)
m,s(x

p) ≡ F (0)
m,s+1(x)F

(1)(x p) mod ps+1B(s+1)(m)�x�.
(A41)

(i′) If conditions (a,b,c′) are satisfied (in particular p = 2), then

F (0)(x)F (1)
m,s(x

2) ≡ F (0)
m,s+1(x)F

(1)(x2) mod 2s B(s+1)(m)�x�. (A42)

(ii) [39, theorem3]Under the assumption of (i) or (i’) and supposemoreover
that

(d) B(i)(0) = 1 for i ≥ 0.
(e) B(i+r) = B(i) for all i ≥ 0 and some fixed r ≥ 1.

Let U be the open subscheme of A
1
k defined by F (i)

1 (x) 
= 0, for i =
0, 1, . . . , r − 1. Then the limit

f (x) = lim
s→∞ F (0)

s+1(x)/F
(1)
s (x p) (A43)

defines a global function on the formal open subscheme U of Â
1
R associated

to U, which takes p-adic unit value at each rigid point of Urig.

We prove assertion (i’) in the end (A11). We briefly explain Dwork’s result
(ii) in the language of formal schemes. The assumption implies that F (i)

s 
= 0
on U (cf. [39] 3.4). For s ≥ 1, the congruences (A41) or (A42) imply that

F (0)
s+1(x)/F

(1)
s (x p) = F (0)

s (x)/F (1)
s−1(x

p) ∈ �(U,OU/p
s−1OU).

This allows us to use (A43) to define a global function f of OU.
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A5 Let F(x) = ∑ j≥0 B( j)x j be a formal power series in R�x�. We say F

satisfies Dwork’s congruences if by setting B(i)( j) = B( j) for every i ≥ 0,
conditions of Theorem A4(ii) are satisfied.

We take such a function F and then we obtain a function f ∈ �(U,OU)

coinciding with F(x)/F(x p) in K {x} (2.3.1.1) (i.e. the open unit disc). More-
over, by [39, lemma 3.4(ii)], there exists a function η ∈ �(U,OU) coinciding
with F ′(x)/F(x) in K {x} defined by

η(x) ≡ F ′s+1(x)/Fs+1(x) mod ps .

The functions f (x) and η(x) satisfy a differential equation:

f ′(x)
f (x)

+ px p−1η(x p) = η(x).

Note that f (0) = F(0)/F(0) = 1. Then we deduce that the following corol-
lary.

Corollary A6 The connection d−η on the trivial bundleOUrig and the function
f form a unit-root convergent F-isocrystal EF on U/K, whose Frobenius
eigenvalue at 0 is 1.

A7.LetM † be an overconvergent F-isocrystal onGm,k over K of rank r whose
underlying bundle is trivial and the connection is defined by a differential
equation:

P(δ) = δr + prδ
r−1 + · · · + p1 = 0,

where δ = x d
dx , pi ∈ �(Â1

R,OÂ
1
R
)[ 1p ]. We assume moreover that M † is

unipotent at 0 with a maximal unipotent local monodromy. ThenM † extends
to a log convergent F-isocrystal M log on (A1, 0) and its Frobenius slopes at
0 are

s0 > s1 = s0 − 1 > · · · > sr−1 = s0 − (r − 1).

Note that M † is indecomposable in F- Isoc†(Gm,k/K ) and so is M in
F- Isoc(Gm,k/K ). Then byDrinfeld–Kedlaya’s theorem on the generic Frobe-
nius slopes [38], we deduce property (i):

(i) The generic Frobenius slopes (mult-)set is {s0, . . . , sr−1} with si =
s0 − (i − 1).

(ii) In view of (2.3.1.2), the differential equation D = 0 admits a unique
solution at 0:

F(x) =
∑
n≥0

A(n)xn ∈ K {x}, with A(0) = 1.
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Proposition A8 Suppose the function F(x) satisfies Dwork’s congruences
(A5) and let EF be the associated unit-root convergent F-isocrystal on U ⊂
A
1
k . Then
(i) There exists an epimorphism of log convergent isocrystals M log → EF

on (U, 0).
(ii) As convergent isocrystals, EF coincides with the maximal slope quotient

M log/M log,1 of M log (A12).

Proof (i)We set A = �(U,OU)[ 1p ].We claim that there exists a decomposition
of differential operators:

P(δ) = Q(δ)(δ − xη), Q(δ) = δr−1 + qr−1δr−2 + · · · + q1, qi ∈ A.
(A81)

Indeed, by the Euclidean algorithm [54, 5.5.2], there exists r ∈ A such that
P = Q(δ − xη)+ r . By evaluating the above identity at F (in the ring K {x}
containing A), we obtain

P(δ)(F) = 0 = Q(δ)(δ − xη)(F)+ r F = r F.

Then we deduce r = 0 and (A81) follows.
Let e1, . . . , er be a basis of M such that ∇δ(ei ) = ei+1, 1 ≤ i ≤ r − 1

and ∇δ(er ) = −(prer + · · · + p1e1). We consider a free OUrig -module with
a log connection N with a basis f1, . . . , fr−1 and the connection defined
by ∇δ( fi ) = fi+1, ∇δ( fr−1) = −(qr−1 fr−1 + · · · + q1 f1). By (A81), the
morphism f1 �→ e2− xηe1 induces a horizontal monomorphismN →M log

whose cokernel is isomorphic to EF .
(ii) Note that Pic(Urig) � Pic(U ) [75, 3.7.4] is trivial. Then the rank one

convergent isocrystalM log/M log,1 can be represented as a connection d − λ

on the trivial bundle OUrig .
Since M log has a maximal unipotent at 0, the rank one quotient of the

restriction M log|0 of M log at the open unit disc around 0 is unique (2.3.1).
In particular, d − λ kills the unique solution F of P(δ) = 0. By analytic
continuation, we have λ = η and the assertion follows. ��
Remark A9 Theunique solution F(x)belongs to the ring K �x�0 = R�x�⊗RK
of bounded functions on open unit disc, which is a subring of K {x}. Assertion
(ii) can be viewed as an example ofDwork–Chiarellotto–Tsuzuki conjecture on
the comparison between the log-growth filtration (of solutions) and Frobenius
slope filtration [28]. This conjecture was recently proved by Ohkubo [65].

Proof of Proposition A1 We set k = F2 and apply the above discussions to
overconvergent F-isocrystals M † = Be†2n+1 and N † = Be†SO2n+1,Std on
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Gm,F2/K (A11). Their unique solutions at 0 are:

F(x) =
∑
r≥0

(−2)(2n+1)r
(r !)2n+1 xr , G(x) =

∑
r≥0

2(2n+1)r (2r − 1)!!
(r !)2n+1 xr .

In the following lemma, we show that F and G satisfy Dwork’s congru-
ences and that the associated maximal slope quotients EF and EG (A8) are
isomorphic. Then Proposition A1 follows from theorem A2 and the following
lemma. ��
Lemma A10 (i) The functions F(x) and G(x) satisfy Dwork’s congruences
(A5) and define unit-root convergent F-isocrystals EF and EG on A

1
k respec-

tively.
(ii) The function F(x)/G(x) extends to a global function of Â1

R and induces

an isomorphism EG
∼−→ EF .

Proof (i) Conditions (a,b,d,e) are easy to verified. The coefficients of F(x)
(resp. G(x)) satisfy condition (c’) (resp. (c)), that is

(−2)(2n+1)(a+�2+m2s+1)/((a + �2+ m2s+1)!)2n+1
(−2)(2n+1)(�+m2s)/((�+ m2s)!)2n+1

≡ u(s,m)
(−2)(2n+1)(a+�2)/((a + �2)!)2n+1

(−2)(2n+1)�/(�!)2n+1 mod 2s+1,

where u(1,m) = (−1)m and u(s,m) = 1 if s 
= 1, and

(2(a + �2+ m2s+1)− 1)!!2(2n+1)(a+�2+m2s+1)/((a + �2+ m2s+1)!)2n+1
(2(�+ m2s)− 1)!!2(2n+1)(�+m2s)/((�+ m2s)!)2n+1

≡ (2(a + �2)− 1)!!2(2n+1)(a+�2)/((a + �2)!)2n+1
(2�− 1)!!2(2n+1)�/(�!)2n+1 mod 2s+1.

Since F1(x) ≡ G1(x) ≡ 1 mod 2, the F-isocrystals EF ,EG are defined over
A
1
k .

(ii) We set B(0)(r) = (−2)(2n+1)r
(r !)2n+1 and B(1)(r) = 2(2n+1)r (2r−1)!!

(r !)2n+1 and B(i+2) =
B(i). Then these sequences satisfy conditions (a,b,c’,d,e). For condition (c’),
the constants u(i, 1,m) are given by

u(0, 1,m) = 1, u(1, 1,m) = (−1)m, u(i + 2, 1,m) = u(i, 1,m).

Since F1(x) ≡ G1(x) ≡ 1 mod 2, F(x)/G(x2) extends to a global function
of O

Â
1
R
by Theorem A4 and so is F(x)/G(x). Then the assertion follows. ��
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A11 Proof of Theorem A4(i’). We prove assertion (i’) by modifying the
argument of [39, theorem 2]. Note that condition (c’) implies the following
congruence relation:

B(i)(a + n2+ m2s+1)
B(i+1)(n + m2s)

≡ B(i)(a + n2)

B(i+1)(n)
mod 2s . (A111)

When n < 0, we set B(i)(n) = 0. We set A = B(0), B = B(1) and for
a ∈ {0, 1}, j, N ∈ Z, we set

Ua( j, N ) = A(a + 2(N − j))B( j)− B(N − j)A(a + 2 j),

Ha(m, s, N ) =
(m+1)2s−1∑

j=m2s
Ua( j, N ).

Then the assertion is equivalent to

Ha(m, s, N ) ≡ 0 mod 2s B(s+1)(m), for s ≥ 0,m ≥ 0, N ≥ 0. (A112)

By condition (b), we have A(a + 2m)/B(m) ∈ R and hence

Ua(m, N ) ≡ 0 mod B(m).

Then equation (A112) for s = 0 follows from the fact that Ha(m, 0, N ) =
Ua(m, N ).

We now prove by induction on s. We write the induction hypothesis

αs : Ha(m, u, N ) ≡ 0 mod 2u B(u+1)(m), for u ∈ [0, s),m, N ≥ 0.

We may assume αs for fixed s ≥ 1. The main step is to show for 0 ≤ t ≤ s
that

βt,s : v(s, t,m)Ha(m, s, N + m2s)

≡
2s−t−1∑
j=0

B(t+1)( j + m2s−t )Ha( j, t, N )/B(t+1)( j) mod 2s B(s+1)(m),

where v(s, t,m) = 1 or −1 depending on s, t,m.
We list some elementary facts (cf. [39, 2.5–2.7])

T∑
m=0

Ha(m, s, N ) = 0 if (T + 1)2s > N (A113)
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Ha(m, s, N ) = Ha(2m, s − 1, N )+ Ha(1+ 2m, s − 1, N ) if s ≥ 1
(A114)

B(t) (i + m2s
) ≡ 0 mod B(s+t)(m) if 0 ≤ i ≤ 2s − 1, s, t ≥ 0. (A115)

We first prove β0,s . We have

Ha
(
m, s, N + m2s

) =
2s−1∑
j=0

Ua
(
j + m2s, N + m2s

)
, (A116)

Ua
(
j + m2s, N + m2s

)
= A(a + 2(N − j))B( j + m2s)− B(N − j)A

(
a + 2 j + m2s+1

)
.

By (A111), we have

A
(
a + 2 j + m2s+1

) = A(a + 2 j)B( j + m2s)/B( j)+ X j2
s B( j + m2s),

where X j ∈ R. Then the right hand side of (A116) is

B
(
j + m2s

) (
Ua( j, N )/B( j)− 2s X j B(N − j)

)
.

Since Ua( j, N ) = Ha( j, 0, N ), we obtain

Ha
(
m, s, N + m2s

) =
2s−1∑
j=0

B
(
j + m2s

)
Ha( j, 0, N )/B( j)

−2s
2s−1∑
j=0

X j B
(
j + m2s

)
B(N − j).

Since X j B(N− j) ∈ R, it follows from (A115) (B = B(1)) that the second sum
is congruent to zero modulo 2s B(s+1)(m). This proves β0,s with v(s, 0,m) =
1.

With s fixed, s ≥ 1, t fixed, 0 ≤ t ≤ s − 1, we show that βt,s together with
αs imply βt+1,s . To do this we put j = μ + 2i in the right side of βt,s and
write it in the form

1∑
μ=0

2s−t−1∑
i=0

B(t+1) (μ+ 2i + m2s−i
)
Ha(μ+ 2i, t, N )/B(t+1)(μ+ 2i).
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By condition (c’), we have,

B(t+1) (μ+ 2i + m2s−t
)

= u(t + 1, s − t − 1,m)
(
B(t+1)(μ+ 2i)B(t+2) (i + m2s−t−1

)
/B(t+2)(i)

)

+Xi,μ2
s−t B(t+2) (i + m2s−t−1

)
,

where Xi,μ ∈ R. Thus the general term in the above double sum is

u(t + 1, s − t − 1,m)

(
B(t+2)(i + m2s−t−1)Ha(μ+ 2i, t, N )/B(t+2)(i)

)
+ Yi,μ,

where the error term:

Yi,μ = Xi,μ2
s−t B(t+2) (i + m2s−t−1

)
Ha(μ+ 2i, t, N )/B(t+1)(μ+ 2i).

For this error term, since t < s, we can apply αs to conclude that

Yi,μ ≡ 0 mod B(t+2)(i + m2s−t−1)2s .

Then we can use (A115) to conclude that

Yi,μ ≡ 0 mod 2s B(s+1)(m).

After modulo 2s B(s+1)(m), the right side of βt,s is equal to

u(t + 1, s − t − 1,m)

1∑
μ=0

2s−t−1−1∑
i=0

B(t+2) (i + m2s−t−1
)

×Ha(μ+ 2i, t, N )/B(t+2)(i).

By reversing the order of summation and using (A114), the above sum is the
same as

u(t + 1, s − t − 1,m)

2s−t−1−1∑
i=0

B(t+2) (i + m2s−t−1
)

×Ha(i, t + 1, N )/B(t+2)(i),

which proves βt+1,s . In particular, we obtain βs,s , which states

v(s, s,m)Ha(m, s, N + m2s) (A117)

≡ B(s+1)(m)Ha(0, s, N )/B(s+1)(0) mod 2s B(s+1)(m).
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We now consider the statement (with s fixed before)

γN : Ha(0, s, N ) ≡ 0 mod 2s .

We know that γN is true for N < 0. Let N ′ (if it exists) be the minimal value
of N for which γN ′ fails. For m ≥ 1, since B(s+1)(0) is a unit, we have by
(A117)

Ha(m, s, N ′) ≡ v(s, s,m)B(s+1)(m)Ha(0, s, N
′ − m2s)/B(s+1)(0)

≡ 0 mod 2s .

Applying this to (A113), we obtain that

Ha(0, s, N
′) ≡ 0 mod 2s .

Thus γN is valid for all N and Eq. (A117) implies αs+1. This proves assertion
(i′). ��
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