

Jiaming Cui

Qifan Yang

Yuyan Zhao

Directed by Qing Yan

Nanjing Foreign Language School

August 2014

Estimation of OD matrix for traffic flow
with incomplete data

E21

Page - 104

2

Estimation of OD matrix for traffic
flow with incomplete data

August 2014

Abstract
This paper lays its focus on OD matrix for traffic flows. As an
important basis of traffic network planning and management, OD
matrix cannot be directly acquired in real world because of all
kinds of restrictions. We propose an algorithm that bases on
incomplete traffic data, combines real-world data with theoretical
model and estimates OD matrix. This paper obtains the prior
matrix by computation geometry, acquires sample matrix, and
applies Bayesian inference to acquire the trip production and trip
attraction of OD nodes. Based on above, we apply the gravity
model and use iteration to optimize the resulting OD matrix. The
RFID data in this passage comes from several monitoring stations
at Gulou district, Nanjing. With the help of Hash algorithm,
traffic analysis and program modeling, this integrated algorithm
can provide great insight for improvement in the estimation of
OD matrix.

Key words: OD Matrix; Bayesian inference; gravity model

E21

Page - 105

3

1 Introduction
1.1 Current Problems
Traffic is the basis of a well-functioning modern city. With the
accelerating process of urbanization, however, traffic congestion problem
is getting severer, and intelligent transportation system (ITS) is in
serious need. As basic data of ITS, the OD (Origin-Destination) matrix
and its estimation method play a primary role in optimizing urban traffic
management and control. The accuracy of OD matrix directly influences
the error magnitude of following steps and deserves our full attention.

In traffic planning, the most widely used source of OD matrix estimation
is still traffic flow detection, and the study of OD matrix still mainly
concentrates in backward estimation, using relatively complete data of
traffic volume and applying various models and algorithms to acquire
final OD matrix. However, with the application of technology such as
radio frequency identification (RFID), this expensive but accurate data
source has become the new basis of estimation of OD matrix.
Nevertheless, current RFID monitoring spots fail to cover most sections
of traffic network and the lack of RFID data is an obstacle of wide
application of such method.

1.2 Concepts
OD (Origin-Destination) Matrix is a table showing the trip distribution
between origins and destinations in a traffic network. The trip
distribution between node i and node j is the number of vehicles that goes
from i to j in unit time period. Within a certain region, OD nodes refer to
traffic nodes that can be origins or destinations, while the rest nodes are
not OD nodes. Number of vehicles entering the region from an OD node
in unit time is called the trip production of the node; number of vehicles
leaving the region from an OD node in unit time is called the trip
attraction of the node.

1.3 Estimation of OD Matrix
Traditional method of obtaining OD matrix is large-scale sampling
investigation, which costs considerable human and financial resources.
Meanwhile, the accuracy of OD matrix gained in such way is severely
compromised. Therefore, using appropriate model and data collected by
traffic monitoring equipment to estimate OD matrix becomes a valuable
topic.

E21

Page - 106

4

Backward estimation is another way to obtain OD matrix. The applied
algorithms include generalized least square (GLS) estimation, maximum
likelihood estimation, maximum entropy method, and Kalman filtering
estimation. GLS estimation is based on least squares principle, and takes
the weight matrix into consideration. With GLS, the error of prior matrix
directly hurts the accuracy of final OD matrix. Maximum likelihood
estimation has the most promising future, but the algorithm itself is too
complicated. Maximum entropy method has the advantages of simple
structure and convenient application, yet it has high requirements on
traffic flow information. Kalman filtering estimation can effectively
estimate time-dependent (dynamic) OD matrix, but filtering divergence
remains a problem.

This paper proposes an integrated algorithm that combines theoretical
model and real-world data, and uses incomplete RFID data to estimate
OD matrix. In the future of urban traffic development, this algorithm can
offer great assistance in analyzing RFID stations distribution and
estimating OD matrix from minimum traffic data.

2 Theoretical Model
2.1 Symbol Description

 tij : trip distribution between node i and node j

O

i
: trip production of node i

Dj : trip attraction of node j

Example of OD Matrix:
O/D 1 2 3 … n
1

 t11 t12 t13 …
 t1n

2
 t21 t22 t23 …

 t2n
3

 t31 t32 t33 …
 t3n

... … … … … …
n

 tn1 tn2 tn3 …
 tnn

 g(ij) : traffic resistance function, the resistance of human, vehicle, road
condition, etc. to traffic distribution

hij : minimum trip distance between node i and node j

E21

Page - 107

5

2.2 Ideal Assumptions
1. Assume that the chosen traffic region does not include a parking lot, so
that every vehicle that enters the region must leave it, or, the sum of trip
production equals the sum of trip attraction. Therefore, the model
satisfies two conservation premises:
I.

O
i
= t

ij
j

∑

II.

Dj = tij

i
∑

2. Assume that during peak hour, every road in the region has similar
condition, that is, the degrees of comfort and safety and the traffic fee are
the same. In such cases, we can assume that the traffic resistance function
between two nodes only depends on the trip distance.

3. Work with idealized or simplified traffic region as shown in Figure 1.

Figure 1

In figure 1, nodes 1~8 are OD nodes; node 9 is not.

2.3 Sample Matrix and Prior Matrix
I．Method for obtaining sample matrix
Hash algorithm is applied to the automatic-classification process of
recorded vehicle data at stations.

When vehicles pass, RFID stations identify their information. Radio
Frequency Identification, abbreviated to RFID, is a non-contacting
automatic identifying technique. It recognizes target based on radio
frequency signal and gathers relevant data. No manual operation is
needed, and the system can work in hash conditions. The RFID
technique can distinguish object in high speed or multiple objects at one
time automatically.

1

2

3

4

5

6

7

8

9

E21

Page - 108

6

When the RFID tag reaches the magnetic field, it receives the radio
frequency signal and sends out product information inside the chip
relying on inducted current. After reading and decrypting the
information, the reader transfers the original data to the main frame to
analyze. At last, RFID tags with 24 digits formed by 0-9 and A-Z are
generated. Every vehicle has an exclusive RFID tag. When compared to
image recognition, RFID demonstrates its accuracy and flexibility.

The RFID tags are the original data of hashing process. Due to the
formation of 24 digits of 0-9 and A-Z, the RFID tag can be seen as a
number in base-37 and can be translated into a decimal number. The
number is modulo by 100003, a prime number about 10 times larger than
the total number of cars. At a result, the probability of conflicts
diminishes to 10%.

According to the traveling status of each recorded vehicle, mostly the
first and the last record, the fragmentary data can be deduced from road
condition analysis together with probability. The completed sample
matrix is obtained.

II. Method for obtaining prior matrix
In computation geometry, we use cross product of vectors to determine
whether two line segments intersect with each other.

Figure 2 line segments intersection conditions

Suppose there are two vectors
α x1,y1() β x2,y2() , then we can get the

cross product of α × β :

 α × β = x1y2 − x2y1

The sign（positive or negative）of the product indicates the relative

E21

Page - 109

7

position of the two vectors. As shown by Figure 2, we construct three
vectors from one of the endpoints of those segments to others. If the two
segments intersect, then the vector consists of one of the segments must
lie inside the other two vectors. If the two segments don’t overlap, then
there must exist a situation when the vector consists of one of the
segments doesn’t lie inside the other two vectors.

Adopting this method, we are able to decide if the segment between two
points intersects with the outline of a region, and thus determine whether
commuting form one point to another will pass certain location. After
obtaining the intersection, the specific path taken can be acquired
through stochastic simulation under certain probability.

Simulation program stochastically generates points around the target
region as gatherings of dense population. The program simulates the path
of a vehicle by generating its origin and destination and then find out if
the segments between the two points intersect with that region. If the
intersection exists, then we calculate the probability of every OD nodes
taken as origin and destination by analyzing the position of the
intersection. We then decide an O node and a D node for that vehicle. As
we run the program based on the map of the city to collect an amount of
data, a prior matrix that is relatively objective can be obtained.

2.4 Bayesian Inference
Bayesian Inference is a method of inference based on incomplete
information that obtains subjective probability of the unknown and
applies Bayes’ Rule to update the probability estimation. In backward
estimation of OD matrix, a commonly researched field, Bayesian
Inference, together with Monte Carlo method can be used in
time-dependent (dynamic) models. Inspired by it, this paper introduces
Bayesian Inference in the estimation of OD matrix with incomplete data
to optimize the probability.

The method is as follows:
In a traffic zone with n OD nodes, there are n rows in the matrix, noted

as r1,r2,...rn . Similarly, note the n columns as c1,c2,...cn .

Using the method stated in 2.3-II, we can obtain a prior matrix based on
subjective estimation and experience. Here, we first consider the situation

E21

Page - 110

8

for each row.

The trip production corresponding to r1,r2,...rn are notes as O1,O2,...On

respectively. Thus we establish a probability function of parameter ri
to be:

π r
i() = O

i

O
jj=1

n∑
= ε

i

 s.t.
εii=1

n∑ = 1

As stated in 2.3-I, we select the record of m cars randomly as samples and

obtain a sample matrix. Note the cars as x1,x2,...xm and get a joint

probability function with ri , noted as:

 P(x1,x2,...xm,ri)

According to Bayes’ Rule:

π ri | x1,x2,...xm()P(x1,x2,...xm) = P(x1,x2,...xm | ri)π ri() = P(x1,x2,...xm,ri)

Thus,

π ri | x1,x2,...xm() = P(x1,x2,...xm,ri)
P(x1,x2,...xm)

=
P(x1,x2,...xm | ri)π ri()

P(x1,x2,...xm | ri)π ri()i=1

n∑

in which,

 P(x1,x2,...xm | ri) represents the probability of the distribution of total
trip production to node i in sample matrix;

 π(ri) represents the probability of the distribution of total trip
production to node i in prior matrix;

 π(ri | x1,x2,...xm) represents the posterior probability, or the estimated
probability of the distribution of total trip production to node i.

Then adjust the posterior probability according to the conservation
premise

E21

Page - 111

9

π ri | x1,x2,...xm()i=1

n∑ = 1

Based on the average trip production of the traffic zone O,

O

i
=O × π r

i
| x1,x2,...xm()

We can obtain the estimated trip production of every node in the matrix.
Similarly, we can obtain the estimated trip attraction of each OD node.
The resulting one-dimension trip production table and trip attraction
table will be further utilized in gravity model.

2.5 Gravity Model
I. Gravity model is deduced from Newton’s famous Law of Universal
Gravitation. Its original form is,

t
ij
= α

O
i
D

j

h
ij

2

The conservation premises stated before show that,

t
ij
= αO

i
D

j
d

ij

−2

j

∑
j

∑ =O
i

t
ij
= αD

j
O

i
d

ij

−2

i

∑
i

∑ = D
j

However, there does not exist an α that satisfies both equations.
Therefore, we modify gravity model to the following

t
ij
= kO

i

α
D

j

β
g(c

ij
)

 k,α,β are parameters. Since we assumed that
g(cij) is only relevant to

distance between two nodes, we have

g(cij) =

1
hij

r

Therefore, known

O
i
,D

j
, gravity model can be used to estimate OD

matrix, with its formula

E21

Page - 112

10

t
ij
= k

O
i

α
D

j

β

h
ij

r

II. Accuracy of gravity model
The gravity model is simple and visual, but several disadvantages of
gravity model compromise the accuracy of its result. First, assuming the
traffic resistance function only depends on distance may result in error.
Second, to find the parameters, reference to historical data is preferred
and reasonable speculation is needed in cases without sufficient data.

Considering all these shortcomings of gravity model, we need to modify
its results in order to obtain final OD matrix. Notice the conservation
premises stated before,

t
ij
=O

i
, t

ij
= D

j
i

∑
j

∑

We can use the trip distribution results from gravity model to calculate
the trip production Oi

(0) and trip attraction

Dj

(0) , compare the error from

O

i
and

Dj , and adjust accordingly.

III. Optimization of results from gravity model
Let the trip distribution result between i and j from gravity model be

tij

(0)

t
ij

(0) =O
i

(0), t
ij

(0) = D
j

(0)

i

∑
j

∑

t
ij

(k) =O
i

(k), t
ij

(k) = D
j

(k)

i

∑
j

∑

Let

F

O
i

(k) =
O

i

O
i

(k)
,F

D
j

(k) =
D

j

D
j

(k) ,

0! k !m,tij

(m) being the final result for trip

distribution between i and j.

On one hand,

t
ij

(k+1)' =O
i
⋅

t
ij

(k)

t
ij

(k)

j

∑
=O

i

(k) ⋅ F
O

i

(k) ⋅
t
ij

(k)

t
ij

(k)

j

∑

E21

Page - 113

11

On the other hand,

tij
(k+1)'' = Dj ⋅

tij
(k)

tij
(k)

i
∑

= Dj
(k) ⋅ FDi

(k) ⋅
tij

(k)

tij
(k)

i
∑

Therefore, take the arithmetic mean of

tij

(k+1)' and

tij

(k+1)'' , we have

tij

(k+1) =
1
2
(tij

(k+1)' + tij
(k+1)'')

t
ij

(k+1) =
1
2
(O

i

(k) ⋅ F
O

i

(k) ⋅
t
ij

(k) ⋅ F
D

j

(k)

t
ij

(k) ⋅ F
D

j

(k)

j

∑
+D

j

(k) ⋅ F
D

j

(k) ⋅
t
ij

(k) ⋅ F
O

i

(k)

t
ij

(k) ⋅ F
O

i

(k)

i

∑
)

t
ij

(k+1) = t
ij

(k) ⋅ F
D

j

(k) ⋅ F
O

i

(k) ⋅
1
2
(

O
i

(k)

t
ij

(k) ⋅ F
D

j

(k)

j

∑
+

D
j

(k)

t
ij

(k) ⋅ F
O

i

(k)

i

∑
)

Let

G
O

i

(k) =
O

i

(k)

t
ij

(k) ⋅ F
D

j

(k)

j

∑
,G

D
j

(k) =
D

j

(k)

t
ij

(k) ⋅ F
O

i

(k)

i

∑
, we have

f (F

D
j

(k),F
O

i

(k)) = F
D

j

(k) ⋅ F
O

i

(k) ⋅
G

O
i

(k) +G
D

j

(k)

2

Therefore,

t
ij

(k) =O
i

(k), t
ij

(k) = D
j

(k)

i

∑
j

∑

F

O
i

(k) =
O

i

O
i

(k) ,FD
j

(k) =
D

j

D
j

(k)

t
ij

(k+1) = t
ij

(k) ⋅ f (F
D

j

(k),F
O

i

(k))

If after m times of iteration,

F

O
i

(m),F
D

j

(m) are close enough to 1, then

tij

(m) is

the trip distribution in final OD matrix, else the iteration process
continues.

E21

Page - 114

12

With the help of Pascal, we are able to generate the final OD matrix.

3 Application of the Model
3.1 Sample Choice
We chose a region in downtown Nanjing, as shown in figure 3 below. The
region has 7 OD nodes, which are noted in the figure.

Figure 3

The region chosen in this paper is relatively geometric and suits the
idealized example in Figure 1. Moreover, the region is located in
downtown Nanjing and usually has a lot of traffic. Thus, it is an optimal
choice and provides valuable insight for general cases.

It should be noted that Xinjiekou is not in the region. Because Xinjiekou
is the very center of Nanjing, it has significantly large traffic flow but no
RFID station. Therefore, it is not included in the region for the sake of
accuracy of our result and reference value to general cases.

3.2 Data Collection
This paper collected RFID data from thirty monitoring stations at Gulou
district, Nanjing from 8:00 to 9:00 a.m. during 19th-22nd August 2014.
The selected stations noted as A1,A2,...A30 locate around an “L”-shaped
region which consists of Zhujiang Road, Changjiang Road, East
Zhongshan Road and Zhongshan Road, North Hongwu Road and North
Taiping Road. While most stations lie inside the area, some distribute

E21

Page - 115

13

outside, serving as auxiliaries. Details are as follow:

Figure 4

E21

Page - 116

14

As shown by Figure 4, data from stations A9,A14,A16,A22,A25 are missing
due to the machine fault.

At any crossing, there must exist four monitoring stations in order to
obtain complete trip production and attraction of that node. However,
there is only one crossing (crossing No. 1) among the seven in the selected
area that satisfies the requirement for complete data. Thus, the data
collected are as incomplete as expected.

Considering that the complete information of all vehicles may not be
recorded during the one-hour time interval, we further analyze data
collected from the first and last five minutes. If a car only appears once on
the record, which takes place during the first or last five minutes, we
consider the path of that vehicle not completely recorded and thus delete
that piece of information.

3.3 Prior Matrix
The seven OD nodes mark an “L”-shaped region in the map (as shown in
Figure 5). Measure the distances between each node, and we get a table
of coordinate of each node (as shown in Table 1). The coordinate of
Xinjiekou is (400, 400).

We stochastically generate 80-100 points in a 1000*1000 region around
the “L”-shaped chosen region, randomly choose a starting point and an
ending point each time, and see if the line segment between the two
points intersects with the “L”-shaped region. Using method stated in
2.3-II, we can obtain a prior matrix as shown in Table 2.

 x coordinate y coordinate
1 400 682
2 550 660
3 733 626
4 400 533
5 702 448
6 509.5 392
7 695 377
8 497.5 519

 Table 1 Figure 5

1 2 3

4
8

5

6 7
Xinjiekou

E21

Page - 117

15

 1 2 3 4 5 6 7
1 0 374 108 322 138 245 103
2 239 0 147 145 172 327 122
3 292 239 0 123 205 183 159
4 217 83 132 0 488 77 151
5 135 231 249 330 0 270 79
6 135 255 120 220 199 0 335
7 177 140 548 161 101 124 0

 Table 2

3.4 Sample Matrix
By studying records, especially the first and last records of each vehicle
passing this region, we are able to analyze the possible routes for each
vehicle, as shown in Table 3. Further calculation results in sample matrix
shown in Table 4.

Considering that most vehicles do not normally take detours in the center
of the city, we ignore the possibility of vehicles turning backwards in our
analysis.

 Single Record Multiple Records

First recorded at the station Last recorded at the station

A1 No enter Impossible
If recorded at A10 then 50% exit

from 6, 50% exit from 4; If recorded
at A17 then exit from 7

A2 5% enter from 7, 95% no
enter

50% no enter, 30% enter
from 6, 20% enter from 7

If recorded at A4 then no enter; If
recorded at A24 then exit from 4

A3 67% enter from 2 exit from
1, 33% no enter Impossible Exit from 1

A4 No enter 67% enter from 6, 33% enter
from 4 Impossible

A5 No enter Impossible
If recorded at A18 then exit from 6;
If recorded at A3 then exit from 1;
If recorded at A24 then exit from 4

A6 Enter from 2; 33% exit from
4; 67% exit from 6 Enter from 2 33% exit from 4, 67% exit from 6

A7 Enter from 4; Exit from 2 Enter from 4 Enter from 2
A8 Enter from 6; Exit from 4 Enter from 6 Enter from 7; Exit from 4
A9 - - -

A10
60% no enter; 20% enter
from 7 exit from 5; 20%
enter from 7 exit from 3

If recorded by A1 or A19
then no enter, else enter

from 7
50% exit from 4, 50% exit from 6

A11 No enter
If recorded by A26 then no
enter, else 50% enter from 6,

50% enter from 4
Impossible

A12 Impossible Impossible Exit from 2

E21

Page - 118

16

A13
Enter from 4; 50% exit from
5, 25% exit from 3, 25 %

exit from 7
Enter from 4 50% exit from 5, 25% exit from 3,

25 % exit from 7

A14 - - -

A15

60% enter from 5, 20%
enter from 3, 20% enter
from 7; 67% exit from 4,

33% exit from 6

20% enter from 3, 20% enter
from 7, 20% enter from 5 Impossible

A16 - - -

A17 50%no enter, 50% enter
from 7

If recorded by A1 or A19
then no enter; If recorded by
28 then enter from 7, exit

from 3

50% exit from 4, 50% exit from 6

A18 No enter 75% no enter, 25% enter
from 4 exit from 1 50% exit from 6, 50% exit from 7

A19 No enter Impossible Exit from 7

A20
20% enter from 3， 30%
enter from 5，50% enter

from 7

70% enter from 7, 15% enter
from 5, 10% enter from 3 Impossible

A21 Impossible Enter from 4 Impossible
A22 - - -
A23 Impossible Impossible Exit form 1

A24 Enter from 1, 67% exit from
4, 33% exit from 6 Enter from 1 Exit from 4

A25 - - -

A26 No enter Impossible
If recorded by A4 then no enter; If
recorded by A24 then enter from 1,

exit from 4

A27 Enter from 2, 33% exit from
5, 67% exit from 7 Enter from 2 42% exit from 3, 25% exit from 5,

33% exit from 7
A28 Enter from 7 Impossible Exit from 3

A29
42% enter from 3, 25%
enter from 5, 33% enter

from 7; Exit from 2

50% enter from 3, 20% enter
from 5, 30% enter from 7 Impossible

A30 Enter from 1; Exit from 2 Enter from 1 Exit from 2
Table 3

O/D 1 2 3 4 5 6 7

1 0 135 188 303 190 192 206
2 131 0 222 304 143 272 208
3 92 218 0 102 221 318 227
4 306 229 125 0 222 162 119
5 116 114 205 226 0 220 275
6 210 287 355 164 191 0 157
7 304 302 245 116 171 107 0

Table 4

E21

Page - 119

17

3.5 Final Matrix
By Bayes Inference, we have trip production and trip attraction of each
OD node in Table 5.

 1 2 3 4 5 6 7
O 1274 1200 1151 1087 1217 1403 1268
D 1125 1380 1420 1285 1205 1266 919

Table 5

In gravity model, let α =1.152, β =1.152, k=0.15, r=0.5. Through
iteration, we have the final matrix in Table 6.
O/D 1 2 3 4 5 6 7

1 0 308 239 305 115 153 88
2 202 0 338 220 126 178 81
3 143 331 0 183 188 154 104
4 190 252 221 0 133 198 71
5 114 195 302 194 0 161 196
6 179 259 232 297 170 0 197
7 115 177 261 187 266 194 0

Table 6

4 Conclusions and Outlook
This paper proposes a new method to estimate OD matrix for traffic flow
that is based on incomplete RFID data. We acquire the prior matrix by
computation geometry, generate a sample matrix according to traffic
analysis and optimize the trip production and attraction between each
OD node using Bayesian Inference. By applying gravity model to the
one-dimension trip production table and trip attraction table and
repeating iteration, we obtain an estimated OD matrix in theory. In
application, we collect sample RFID data in several monitoring stations
at Gulou district, Nanjing in August 2014. Utilizing Hash algorithm,
traffic analysis and program modeling, we are able to achieve
considerable improvement in the estimation of OD matrix.

Unlike the traditional method of obtaining OD matrix or backward
estimation, this paper offers a method that makes full use of the
incomplete data and integrates various algorithms to estimate OD matrix.
Surely, this method can provide significant reference in RFID station
distribution planning, cost saving and accuracy improvement as

E21

Page - 120

18

intelligent transportation system develops.

Yet there are still plenty to improve: This paper idealizes the traffic
region and simplifies the commuting condition. In future study, we can
take traffic fee, safety and other factors into consideration when
establishing traffic resistance function of gravity model.

5 References
[1] 汪成亮，张晨，黄文龙.面向车联网的高速路 OD矩阵估计模型. 西南
交通大学学报 2013.12
[2] 黎华林.增长系数法与 Fratar法的类比分析. 中国水运 2007.07
[3] 孙剑, 冯羽. 基于车辆自动识别技术的动态 OD 矩阵估计新方法
2013.09
[4] 郝光, 岳辉, 王翠红, 马倩玉. 动态 OD 矩阵推算模型及算法应用
2006.08
[5] 徐锦强, 林宇洪, 丁艺. 基于 Fratar 模型的交通分布预测系统设计
2011.06
[6] Mapbox地图赏析
http://chiangbt.github.io/webcontent/Mapboxmap.html
[7] Anders Peterson. The Origin–Destination Matrix Estimation Problem
— Analysis and Computations May, 2007

（1）
program DataGen;
 type point = record
 x, y:real;
 end;
 var od:array[1..7, 1..7] of longint;
 sod:array[1..7, 1..2] of longint;
 g:array[1..100] of point;
 ng, i, j, co, cd, num, numo, numd, cars:longint;
 cp1, cp2, cp3, cp4, cp5, cp6, cp7, cp8, st, ed, tp:point;
 function cp(p0, p1, p2:point):real;
 begin
 cp:=((p2.x - p0.x) * (p1.y - p0.y) -
 (p1.x - p0.x) * (p2.y - p0.y));
 end;
 function dir(d:real):integer;
 begin
 if d < 0 then
 dir:=-1
 else
 if d > 0 then
 dir:=1
 else
 dir:=0;

 end;
 function cc(p0, p1, p2, p3:point):boolean;
 begin
 if (dir(cp(p2, p0, p1)) <> dir(cp(p3, p0, p1))) and
 (dir(cp(p0, p2, p3)) <> dir(cp(p1, p2, p3))) then
 cc:=true
 else
 cc:=false;
 end;
 function rst(var p1, p2:point; a, b:integer):point;
 var p:integer;
 begin
 p:=random(3);
 if p = 2 then
 begin
 rst:=p2;
 num:=b
 end
 else
 begin
 rst:=p1;
 num:=a
 end
 end;

E21

Page - 121

 begin
 writeln('Input the total number of cars:');
 readln(cars);
 assign(output, 'data.out');
 rewrite(output);
 randomize;
 for i:=1 to 8 do
 for j:=1 to 8 do
 od[i, j]:=0;
 for i:=1 to 8 do
 for j:=1 to 2 do
 sod[i, j]:=0;
 cp1.x:=497.5; cp1.y:=519;
 cp2.x:=400; cp2.y:=682;
 cp3.x:=733; cp3.y:=626;
 cp4.x:=695; cp4.y:=377;
 cp5.x:=400; cp5.y:=533;
 cp6.x:=550; cp6.y:=660;
 cp7.x:=702; cp7.y:=448;
 cp8.x:=509.5; cp8.y:=392;
 ng:=trunc(random(20) + 80);
 for i:=1 to ng do
 begin
 repeat
 g[i].x:=random * 1000;
 g[i].y:=random * 1000
 until not ((g[i].x >= 300) and (g[i].x <= 700) and
 (g[i].y >= 300) and (g[i].y <= 700));
 end;
 {g[1].x:=320;
 g[1].y:=200;
 g[2].x:=800;
 g[2].y:=500;}
 i:=0;
 while i < Cars do
 begin
 co:=random(ng) + 1;
 cd:=random(ng) + 1;
 {co:=1; cd:=2;}
 st.x:=-1;
 if (co <> cd) then
 begin
 if cc(cp5, cp2, g[co], g[cd]) then
 st:=rst(cp5, cp2, 1, 4)
 else
 if cc(cp1, cp5, g[co], g[cd]) then
 st:=rst(cp5, cp5, 4, 4)
 else
 if cc(cp2, cp3, g[co], g[cd]) then
 if cc(cp2, cp6, g[co], g[cd]) then
 st:=rst(cp2, cp6, 1, 2)
 else
 st:=rst(cp3, cp6, 2, 3)
 else
 if cc(cp3, cp4, g[co], g[cd]) then
 if cc(cp3, cp7, g[co], g[cd]) then
 st:=rst(cp3, cp7, 3, 5)

 else
 st:=rst(cp4, cp7, 5, 7)
 else
 if cc(cp4, cp8, g[co], g[cd]) then
 st:=rst(cp4, cp8, 7, 6)
 else
 if cc(cp8, cp1, g[co], g[cd]) then
 st:=rst(cp8, cp8, 6, 6);
 if st.x = -1 then continue;
 numo:=num;
 if cc(cp4, cp8, g[co], g[cd]) then
 st:=rst(cp4, cp8, 7, 6)
 else
 if cc(cp8, cp1, g[co], g[cd]) then
 st:=rst(cp8, cp8, 6, 6)
 else
 if cc(cp3, cp4, g[co], g[cd]) then
 if cc(cp3, cp7, g[co], g[cd]) then
 ed:=rst(cp3, cp7, 3, 5)
 else
 ed:=rst(cp4, cp7, 5, 7)
 else
 if cc(cp2, cp3, g[co], g[cd]) then
 if cc(cp2, cp6, g[co], g[cd]) then
 ed:=rst(cp2, cp6, 1, 2)
 else
 ed:=rst(cp3, cp6, 2, 3)
 else
 if cc(cp5, cp2, g[co], g[cd]) then
 st:=rst(cp5, cp2, 1, 4)
 else
 if cc(cp1, cp5, g[co], g[cd])then
 st:=rst(cp5, cp5, 4, 4);
 numd:=num;
 if (random(2) = 1) then
 begin
 tp:=st;
 st:=ed;
 ed:=tp;
 num:=numo;
 numo:=numd;
 numd:=num;
 end;
 inc(od[numo, numd]);
 inc(i);
 end;
 end;
 for i:=1 to 7 do
 begin
 for j:=1 to 7 do
 begin
 inc(sod[i, 1], od[i, j]);
 inc(sod[j, 2], od[i, j]);
 write(od[i, j]:4, ' ')
 end;
 writeln
 end;

E21

Page - 122

 writeln;
 num:=0;
 for i:=1 to 7 do
 begin
 write(sod[i, 1]:4, ' ');
 inc(num, sod[i, 1])
 end;
 writeln(num:4);
 num:=0;
 for i:=1 to 7 do
 begin
 write(sod[i, 2]:4, ' ');
 inc(num, sod[i, 2])
 end;
 writeln(num:4);
 close(output);
 end.
(2) program dataanal;
 const largepri = 100003;
 sumrfid = 30;
 matchnum:array[1..sumrfid] of integer = (6330, 6437, 6293,
6264, 6265, 6431, 6432, 6434, 6438, 6332, 6331, 6430,
 6424, 6255,
6423, 6439, 6260, 6261, 6258, 6259, 6237, 6238, 6235, 6236,
 2762, 6242,
6290, 6288, 6289, 6292);
 bnum = 7;
 type link = ^node;
 node = record
 time, place:integer;
 next:link;
 end;
 platestr = string[24];
 var st1, st2, st3, st4, st5:array[1..sumrfid + 1] of integer;
 data1:array[1..500, 1..3] of integer;
 data2, data4:array[1..500, 1..2] of longint;
 data3, data5:array[1..500, 1..2] of longint;
 hash:array[0..largepri - 1] of link;
 hashstr:array[0..largepri - 1] of platestr;
 occur1:array[1..sumrfid] of longint;
 od:array[0..bnum, 0..bnum] of longint;
 sumin:array[0..bnum] of longint;
 sumout:array[0..bnum] of longint;
 tin, tout:longint;
 function find(var num:longint):longint;
 var i, ans:longint;
 begin
 ans:=0;
 for i:=1 to 30 do
 if matchnum[i] = num then
 begin
 ans:=i;
 break
 end;
 if ans <> 0 then find:=ans else find:=9
 end;
 procedure addhash(var num, time:longint; var plate:platestr);

 var i, h, mul, cur:longint;
 p:link;
 begin
 h:=0; mul:=1;
 for i:=1 to 24 do
 begin
 if plate[i] in ['0'..'9'] then
 cur:=ord(plate[i]) - 48
 else
 cur:=ord(plate[i]) - 55;
 h:=(h + cur * mul) mod largepri;
 mul:=(mul * 37) mod largepri
 end;
 while (hash[h] <> nil) and (hashstr[h] <> plate) do
 h:=(h + 1) mod largepri;
 new(p);
 p^.time:=time;
 p^.place:=num;
 p^.next:=hash[h];
 hash[h]:=p;
 hashstr[h]:=plate
 end;
 procedure init;
 var i, j, p1, p2, p3, p4, p5, tot, sum:longint;
 tmp:real;
 ch:char;
 begin
 randomize;
 for i:=0 to largepri - 1 do
 begin
 hash[i]:=nil;
 hashstr[i]:=''
 end;
 for i:=1 to bnum do
 for j:=1 to bnum do
 od[i, j]:=0;
 for i:=1 to bnum do
 begin
 sumin[i]:=0;
 sumout[i]:=0
 end;
 for i:=1 to sumrfid do
 occur1[i]:=0;
 assign(input, 'consts.txt');
 reset(input);
 p1:=1; p2:=1; p3:=1; p4:=1; p5:=1;
 for i:=1 to sumrfid do
 begin
 st1[i]:=p1;
 st2[i]:=p2;
 st3[i]:=p3;
 st4[i]:=p4;
 st5[i]:=p5;
 sum:=0;
 while sum < 100 do
 begin
 read(tmp);

E21

Page - 123

 tmp:=tmp * 100;
 sum:=sum + trunc(tmp + 0.5);
 data1[p1, 1]:=sum;
 read(data1[p1, 2], data1[p1, 3]);
 inc(p1)
 end;
 read(ch);
 read(tot);
 for j:=1 to tot do
 begin
 read(data2[p2, 1], data2[p2, 2]);
 inc(p2)
 end;
 sum:=0;
 while sum < 100 do
 begin
 read(tmp);
 tmp:=tmp * 100;
 sum:=sum + trunc(tmp + 0.5);
 data3[p3, 1]:=sum;
 read(data3[p3, 2]);
 inc(p3)
 end;
 read(ch);
 read(tot);
 for j:=1 to tot do
 begin
 read(data4[p4, 1], data4[p4, 2]);
 inc(p4)
 end;
 sum:=0;
 while sum < 100 do
 begin
 read(tmp);
 tmp:=tmp * 100;
 sum:=sum + trunc(tmp + 0.5);
 data5[p5, 1]:=sum;
 read(data5[p5, 2]);
 inc(p5)
 end
 end;
 st1[31]:=p1 + 1; st2[31]:=p2 + 1;
 st3[31]:=p3 + 1; st4[31]:=p4 + 1;
 st5[31]:=p5 + 1
 end;
 procedure main;
 var curnum, i, j, k, curt, st, ed, len, rand, last:longint;
 plate:platestr;
 ch, ch2:char;
 p, q:link;
 f:boolean;
 sec:array[1..1000] of integer;
 begin
 assign(input, 'data.in');
 reset(input);
 j:=0;
 while not eof do

 begin
 inc(j);
 curnum:=0;
 read(ch);
 while ch in ['0'..'9'] do
 begin
 curnum:=curnum * 10 + ord(ch) - 48;
 read(ch)
 end;
 curnum:=find(curnum);
 if curnum = 13 then
 begin
 curnum:=curnum;
 end;
 read(ch2);
 read(ch);
 read(ch);
 curt:=ord(ch) - 48;
 read(ch);
 curt:=curt * 10 + ord(ch) - 48;
 curt:=curt + (ord(ch2) - 56) * 60;
 read(ch);
 read(ch);
 curt:=curt * 6 + ord(ch) - 48;
 read(ch);
 curt:=curt * 10 + ord(ch) - 48;
 read(ch);
 plate:='';
 for i:=1 to 24 do
 begin
 read(ch);
 plate:=plate + ch
 end;
 read(ch);
 read(ch);
 addhash(curnum, curt, plate);
 end;
 tin:=0; tout:=0;
 for i:=0 to largepri - 1 do
 begin
 p:=hash[i];
 while p <> nil do
 begin
 if i > 96371 then
 begin
 p:=p;
 end;
 len:=1; q:=p;
 sec[len]:=q^.place;
 last:=q^.time;
 while q^.next <> nil do
 begin
 q:=q^.next;
 if last - q^.time > 600 then break;
 inc(len);
 sec[len]:=q^.place;
 last:=q^.time

E21

Page - 124

 end;
 if len = 1 then
 begin
 rand:=trunc(random * 100);
 j:=st1[sec[1]];
 while data1[j, 1] < rand do inc(j);
 st:=data1[j, 2];
 ed:=data1[j, 3];
 inc(od[st, ed]);
 inc(sumin[st])
 end
 else
 begin
 f:=false;
 for j:=st2[sec[len]] to st2[sec[len] + 1] - 1 do
 begin
 for k:=1 to len - 1 do
 if sec[k] = data2[j, 1] then
 begin
 f:=true;
 break
 end;
 if f then st:=data2[j, 2]
 end;
 if not f then
 begin
 rand:=trunc(random * 100);
 j:=st3[sec[len]];
 while data3[j, 1] < rand do inc(j);
 st:=data3[j, 2];
 end;
 f:=false;
 for j:=st4[sec[1]] to st4[sec[1] + 1] - 1 do
 begin
 for k:=2 to len do
 if sec[k] = data4[j, 1] then
 begin
 f:=true;
 break
 end;
 if f then ed:=data4[j, 2]
 end;
 if not f then
 begin
 rand:=trunc(random * 100);
 j:=st5[sec[1]];
 while data5[j, 1] < rand do inc(j);
 ed:=data5[j, 2];
 end;
 end;
 if (st = 1) and (ed = 1) then
 begin
 st:=st;
 end;
 inc(od[st, ed]);
 inc(sumin[st]);

 inc(sumout[ed]);

 if (st + ed <> 0) then
 begin
 inc(tin);
 inc(tout);
 end;
 if p = q then inc(occur1[p^.place]);
 p:=q^.next
 end;
 end;
 close(input)
 end;
 procedure print;
 var i, j:longint;
 begin
 assign(output, 'analyze.out');
 rewrite(output);
 for i:=0 to bnum do
 begin
 for j:=0 to bnum do
 write(od[i, j]:5);
 writeln
 end;
 writeln;
 for i:=0 to bnum do
 write(sumin[i]:5);
 writeln(' ', tin:5);
 for i:=0 to bnum do
 write(sumout[i]:5);
 writeln(' ', tout:5);
 writeln;
 for i:=1 to sumrfid do
 write(occur1[i]:5);
 writeln;
 close(output)
 end;
 begin
 init;
 main;
 print;
 end.

E21

Page - 125

