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Abstract: This research, initiated by a problem excerpted from Baidu, one of the most famous
internet search engines in China, explores two types of movements, “converging curve” and
“tracing curve” named by this research group, which really act in a regular pattern. In the research,
by applying scores of mathematical methods, we found that the key to converging curves is to spot
the invariant elements from the changeful motions. For tracing curves, we adopt estimating
equations to get the solution. Due to the limit of time and the relevant knowledge of the research
group, many unexpected problems constantly appeared which are quite far beyond our ability. Yet
we still tried to apply some promising mathematical thoughts, and have achieved some exciting
results. In the process of discovering and rediscovering, we did not succeed in finding a perfect
solution to the problem. After all, as a group of middle school students fascinated by mathematics,
creating and discovering more are the greatest delight of us all.
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1. Introduction

While surfing in the website “Baidu”, we found lots of interesting mathematical problems. By
chance, we found a problem in the web ( http://tieba.baidu.com/f?kz=70699687 ), which said:

Four snails, marked A, B, C and D, lie on the four vertices of a square (Fig.1-1).
Assume the length of each side is L. Also assume A moves to B, B moves to C, C
moves to D, D moves to A, and they all move at the speed of v in uniform motion. Find

the distances they cover when they meet each other.

A @ L

B
@

¢

D <@ C

Figure 1-1
This problem seems to be quite complicated, since every snail’s action is determined by that of
the next one. That is to say, their velocities and moving directions are varying all along until they
finally get together. After a rough simulation, we discovered that all these traces were a helix
joining the vertex to the center of the square. We call them “the converging curves”, which can be

defined as follows.

Given n points, denote the points by &,(1<i<n, ieZ),andlet & movestoa,,.

Specially, wheni =N let &; moves toa,. The trace of each point is called the

“converging curve”; the traces of the n points are called the “converging curve group”.
The point where that all points finally get together is called the “converging point”.

Figure 1-2 is the trace of the “converging curves group” made by the computer.


http://tieba.baidu.com/f?kz=70699687
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Figure 1-2
Yet, it is not easy to get the movement information about the actions of the snails from the
“converging curve”. Obviously every snail is affected by another one. Therefore, it seems to be
difficult to compute the length of each “converging curve” directly.

Figure 1-3

But, if we observe the situation from another perspective, things are different. For Snail A, it’s
quite clear that the Snail B is just in front (figure 1-3 is what snail A sees). Wherever B moves to,
A would just follow it. That is to say, B is locked as a target by A. Because of this, the distance
between A and B is always shrinking. As the four snails start from the four vertices of a square,
their directions of speeds are always perpendicular to each other. Hence the motion of B has no
effect on the distance between them, and it only affects the direction of the speed of A. Thus the
relative speed between every pair of snails is:

Vi =v

That is to say, Snail A is getting closer and closer to Snail B with the velocity of v. At the initial
time, all four snails are separated from each other by the length of L. Therefore, the time that one
snail spends to arrive at its target snail’s position is:

t==
v

Since S =Vt, we can get:
s=L

By far, the original problem is solved properly. However, the situation is only confined to
squares. What would the results be under other circumstances? We find research behind this
problem interesting and invaluable. This research intends to explore more moving situations other
than the square. Specifically, this study attempts to answer the following questions:
1. Can the same method used in the square situation be applied to solve the moving track

problem in a general regular polygon?



2. If at the beginning, the four snails are at the vertices of a rectangle or a rhombus is it possible
for them to gather at the same time?

3. If a snail moves straightly with constant velocity, another snail constantly traces it from a
given distance away with the same velocity, what will the trace equation be?

The first two questions are extensions of the original problem, while the third is a
transformational one. In this paper, we will also study the above three problems and its
applications. We can build up the link between it and the application, such as applying the solution
to the equation of the locus of tracking missiles.

In this study, the Geometer’s Sketchpad V4.06 was used to draw relevant figures.

2. The Extension of the Converging Curves and
Their Equations

2.1 The Extension of the Converging Curves

As discussed in the introduction, the distance that every snail covers until it meets another one
in the square equals to the side length of the square. It seems complicated locomotion can be
presented with such a simple outcome. However, new problems arise. If two snails move to each
other on a line at the same velocity, undoubtedly the distance that each snail covers is:

5= (2.1.1)

Then it is natural to ask the question for the three-snail case: what is the distance if there are
L
three snails? Is the value L orz ? What about other situations? It seems that we have to further

modify this equation.
Now let’s consider the three-snail case, at the beginning, we have a profile as shown in figure
2-1-1

Figure 2-1-1
Later, the motions of three snails begin to change. Since speed is a vector, the relative speeds of
three snails are affected by the angle of their speeds, which are determined at the very beginning.
In the whole process, the three snails keep in the vertices of a regular triangle as shown in figure



2-1-2. In fact, since a regular triangle has a property of rotational symmetry. If we rotate the three
snails by 60< we find that A becomes B, B becomes C, and C becomes A. But except the change
of their names, there is no difference in other properties, including their moving directions and
their velocities. So the traces would not change, either. In that case, the distances between the
snails and their target will remain the same, and it proves that the snails will be still at the vertices
of a regular triangle.

Figure 2-1-2
Now let’s consider the two of them, as shown in figure 2-1-3.

120°

Figure 2-1-3
It is true that the angle of their speeds is always 120°, so the gathering time is not decided by
a snail, but by both of them. In the three-snail case, the relative speed is:

v =v(l+ cosg) (2.1.2)
So the gathering time is:
fo L (2.1.3)
V4
v+ cosg)

It is not difficult to extend the equation to the general regular polygon. Since the inner angle of
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an n regular polygon is 7, then the relative speed between two adjacent snails is:

v’ =v(l+cos n ) (2.1.4)

So the gathering time is:
L
t= (2.1.5)
n-2
v(L+ cos m)
n

Since S =Vt, the distance that a single snail covers can be presented as:
L
S=——— (neZ and n>2) (2.1.6)
1+cos!—“n
n

From formula 2.1.6, we can find that n can not be 0 or 1. It shows that when there is no snail or
only one, the problem has no meaning. When n goes to be positive infinite, that is, when there are
infinite snails, the distance and angle between their speeds tend to be 0. As their velocities are the
same, this implies that they would never get together.

From the above discussion, we know that every snail’s movement is affected by the other one,
but how? So we need to study the movement of the snails. We also want to know that what the
converging curve is. Is it evolvent, or something unknown? In analytic geometry, many curves can
be presented by a curtain equation. So is it possible to present the trace by a kind of equation? In
order to solve these problems, we need to do some research about the equation of the converging
curve.

2.2 The Converging Curve Equation of General Regular

Polygons

It seems difficult to show the equation of the converging curve of a general regular polygon,
but there is still something invariant. The velocities are invariant, so are the angles.

Figure 2-2-1



Take the converging curve of regular triangle as an example. Previous discussion found that the
formation of these points resembled the initial pattern, which means the angles of their speeds are
invariant.

Supposed that the inner angle of the pattern is @, the length of the side is L, the velocity of
every point is v, and the time is t. We divide the time into k parts, (k — o0) and denote every part
by At (At —0) . Italso generates many extremely tiny curved triangles. Then it’s possible to
find out the related equation (see Fig. 2-2-1).

We enlarge a part of the above figure as follows (see Fig. 2-2-2)

v At 1+c058)

2-2-2

It can be seen that as the time At tends to 0, the four angles tends to 90°, arc  AA, can be

presented by the segments AA; and AA;, segments A1D;and A;D, approach the two associated

AD,

1~1

arcs, Z1can be presented by

, therefore, we have the following equation:

3 VAtsin 6
L —VvAt(1+ cosd)

3 VAtsin 6
L — 2vAt(1+ cos @)

Similarly:

3 VAtsin 6
L —kvAt(1+ cos®)




Choose a coordinate with A as the origin and AC as the positive direction of x-axis as shown in
figure 2-2-3.
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Figure 2-2-3
Segment AB, A1B1, and A2B2 (Fig. 2-2-3) can be presented by:
VAt cos &

VAt cos(6 — A1)

VAtcos(6 — £L1—- £2)
The rest may be deduced by analogy:
VAtcos[@ — A1— /2 —---— Z(k -1)]

Since the x-coordinate of A is 0, the x-coordinates of Al and A2 are:
VAt cos &

VAt cos @ + VAt cos(8 — /1)

Finally the x-coordinate of Ak is:

k-1

lim VAt oS 6 +VALCOS(6) — £1) + VAL COS(6) — L1~ £2) + -+ + VAL cOS(6) - > Zi)

At— i=1

Similarly, we can deal with the y-coordinate as shown in figure 2-2-4.
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Figure 2-2-4
In figure 2-2-4, the length of Segment A1B, A2B1, and A3B2 can be presented as:
VAtsin €

VAtsin( @ — /1)

VAtsin( @ — £1— £2)
The rest may be deduced by analogy:
VAtsin[@ — 21— /22 —---— Z(k -1)]

Since the y-coordinate of A is 0, we know that the y-coordinate of Al and A2 are
VAtsin &

VAtsin @+ VAtsin( @ — /1)
Finally the y-coordinate of Ak is:

k-1
litmovAtsin 6+ VAtsin( 0 — £1) + vAtsin(@ — £1— £2) + --- + VAtsIn( 8 — Zzi)

- i=1
Then the equation of such a converging curve is:

k-1

= lim VAtcos 0+ VAt cos(6 - £1) + VAt Cos(0 — L1 £2) + -+ + VAL cos(6—>_ Zi)
- i=1
k-1

y = lim VAtsin 0+ VAtsin( 0 — £1) + VAtsin( 6 — £1— £2) + -+ +VAtsin( 0-> Zi)

i=1
t
At:E(k—mo) kez*

(n-2)
n

T



Now we have obtained the converging curve’s equation in an n regular polygon. However, it
still has a long way to go to the most general situation. This is because shails only move in a
general regular polygon. In the following, we will discuss the patterns of a general rectangle and a
general rhombus.

3. The Possibility of Same-time Converging in
General Rectangles & General Rhombuses

3.1 The General Rectangle Pattern

With the converging curve equation of a general regular polygon, we tried to figure the
equations of general rectangle and a general rhombus, but found the case different.

Enlightened by the original problem, we found that in a general rectangle, four snails would
never gather at the same time if their velocities are the same. Two of them will gather beforehand,
and form two groups to gather in a linear way as shown in figure 3-1-1.

Figure 3-1-1
Then, by splitting the process of the whole motion, we found that, with the same velocity, the
angle between the speeds of each pair of adjacent snails keep changing (Fig. 3-1-2) This means
that their time of gathering can not be displayed by the formula obtained previously.

10



Figure 3-1-2

In this case, how to let the four snails get together at the same time is critical. Now that the key
is to keep the angle a right angle, we suspect that when the speed can match along with the length
of a rectangle, they can gather at the same time. For example in Fig. 3-1-3, A traces B, B traces C,
C traces D, D traces A, then the ratio of their velocities is AB:BC:CD:DA.

A B

Figure 3-1-3

Unexpectedly, the simulation revealed that the angles of their speeds were constantly changing.
Such variation leads to the change of their relative speed. A simple result was not found. Some
other ratios were also tried in order to find out some rules, but satisfactory results were not
obtained. It seems that four points would never gather at the same time

Then we conjectured that it’s impossible for the four points to gather at the same time if their
ratio of velocities is invariant.

In the process of the motion, the slopes of the line joining two points are varying, but the angle
will be a right angle sometime. That is to say, four points form a whole new rectangle which the
ratio of the neighboring side is different from the original one. Through magnifying the new
rectangle and continue the motion, we found that the four points would still form a new rectangle
sometime. If a ratio of two velocities which allows the points gathering at the same time, the ratio
must fit the new situation. But the new rectangle has different ratio of the neighboring side, and
one ratio of velocities cannot be adopted in various new rectangles.

The key is to prove that in the situation of constant velocity, the angle will not be always a right
angle. Because the angle determines their relative speed, which can keep the rate of the shrinking
of distance invariant.

The following is a verification of our conjecture.

11
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Figure 3-1-4
As figure 3-1-4 shows, in rectangle ABCD, there's another rectangle A’ B’ C’ D’ whose vertices

are located at the side of the bigger rectangle. Consider the smaller one at the moment when four

points are just about to move. Let the speed of B be k times as that of A, AB is L, BC is L, then
we have:

AA" = VAt (3.1.D
BB’ = kvAt (3.1.2)
Since At tendsto 0, we have:
A'B' =L —VAt (3.1.3)
B'C’'=L"—kvAt (3.1.4)
And then:
/BAB! = KVAL (3.15)
L — VAt
scBicr = VAL (3.1.6)
L — kvAt

Since ZA' B’ C’ should be kept as a right angle, the rotating angle between the four snails'
speeds should be equal:

kvAt VAt
= (3.1.7
L -vAt L'—kvAt
At the next moment, there is:
A'B" =L —2vAt (3.1.8
B"C" =L"—2kvAt (3.1.9
Then:
kvAt VAL
= (3.1.10)
L-2vAt L'—2kvAt

Combine these two equations, and the following conclusion can be drawn:
k2VAt = VAt (3.1.11)

12



The equation presents that if the velocities are equal, the angle can always be right angle. Put
3.1.11 into 3.1.10, there is:
L=L' (3.1.12)
That is to say, only when the rectangle is a square and the velocities are the same, can the angle
be a right angle. That means in a general rectangle, if the velocity is invariant, then it’s impossible
for the four points to converge at a same time.

3.2 General Rhombus Pattern

We have discussed the general rectangle case in the previous section, and will study the general
rhombus case in this section. The four sides of a rhombus are the same in length, and it seems to
us that it is not necessary to adjust the velocities. So we conjectured that in the process of the
converging movement, the angle of their speeds would be invariant. And hence the same method
can still be used to work out the time needed.

—_—

) —
e /

Figure 3-2-1
However, the computer modeling failed to produce results to support our conjecture. During
the moving process, the angle is varying all the time (Fig. 3-2-1). In fact, during the converging
process of rectangle, there is a time when the four points approximately form a rhombus pattern.
(Fig. 3-2-2)

Figure 3-2-2
In this case, is it also impossible for the four points to converge spontaneously if their
velocities are invariant? The following is the proof.

13



Figure 3-2-3
As displayed in the figure 3-2-3, in rhombus ABCD, let £ ABC be 6. There is another rhombus
A’ B’ C’ D’, whose vertices are located on the sides of the bigger rhombus. Let them be the
positions of the four points for an extremely short period of time after they start. We suppose that
the speed of Snail B is k times as fast as that of Snail A, and then we have:
AA'" = VAL (3.2.1)
BB’ = kvAt (3.2.2)
Assume the length of the rhombus is L. Since the angle of their speeds is not a right angle and
considering the effect of the angle, we have:
A'B’' = L — VAt —kvAt cos & (3.2.3)
B'C’ = L —kvAt + VAt cos @ (3.2.4)
Then:
kvAtsin 0

/BA'B’ = (3.2.5)
L — vAt — kvAtcos @

JCB'C' — VAtsin 6

= (3.2.6)

L — kvAt + vAtcosé

Since we require that the four points remain the shape of a rhombus during the movement, and
the angle of their speeds cannot vary, we have:

A'B'=B'C’ (3.2.7)
/BA'B' = ZCBC' (3.2.8)
Then the result is:
k VAt = VAt (3.2.9)

L —VvAt —kvAtcos@= L—kvAt+VvAtcosd  (3.2.10)
Put formula 3.2.9 into formula 3.2.10, there is:
coséd =0 (3.2.11)
That is to say, the angle must be 90< and hence the rhombus must be a square, which makes it
possible for the four snails to get together at a same time.

14



The example of rectangle and rhombus shows that the difference of both the side and the angle
will make our equation inapplicable. The equation can just be used at the regular polygon
situation.

However, our probing did not stop at this point. A question came to our mind. Is there a
function of the velocities, which can make the points gather at the same time in general rectangle
or rhombus? We found that if being viewed from a certain viewing angle and direction, the square
will be like figure 3-2-4, which is a rectangle, or a rhombus. And the trace of converging curve
would be like this.

3-2-4

In this case, the speed of every point at each time can be divided into horizontal direction and
vertical direction. Since the length of the rectangle is the same as the side of the original square,
the speeds at the horizontal direction is the same as before; and the wide of the rectangle comes
from the side of the square shrinking at a certain ratio, the speeds in the vertical direction also
need to shrink in a certain ratio. In this way, by adjusting the velocities according to the direction,
it is possible to find out the function of the velocities which can make the points converge at the
same time.

4. Equation of Tracing Curve

B
Y

Figure 4-1
Our thoughts brought us further to some special cases. As trying to study the scatter-case, we

15



separated the following case from it:
Assume that Snail A is moving towards the vegetable C. Snail B, knowing that the
vegetables contain pesticides, tracks A with the same velocity (Fig. 4-1). Then, what
will the trace of Snail B be like?

Figure 4-2

By modeling the situation above (Fig.4-2), we got the trail of Snail B, which is called the
“tracing curve”.

In this section we will give the equation of tracing curve in some special cases.

A simple solution appeared in our mind at the first glimpse. If the vegetable is not infinite far
away from Snail A, Snail A will not be caught up by Snail B before it reaches the vegetable and
will be poisoned, because their velocities are the same. Compared with the trace of Snail A, the
speed direction of Snail B will be gradually parallel to the path of Snail A. That means no matter
how far the vegetable is from Snail A, the speed of Snail B will finally be almost the same as that
of Snail A, hence in this case, it is impossible for Snail B to catch up with Snail A.

We still tried to depict Snail B’s moving path, which we named as the “tracing curve”. By
figuring out the equation, we might know how and when Snail B could catch up with Snail A.

However, the differential methods for tracing curves are much more complicated than those for
converging curves. For converging curves, the invariant angle is the key to figure out the
converging equation. But for tracing curves, as we can see in figure 4-3, the angles of their speeds
keep varying (£1>22). It is very difficult to find out the regulation. We’ve tried several
methods, for instance the method of similar triangles, but eventually what we’ve got are a huge
stack of formulas which are extremely difficult to express clearly.

16



Figure 4-3

As our mathematic tools are so limited, we decided to model and figure out the approximate
equation of the path. We start from a special case, assuming that B is 10 units far from A, and
figure out the approximate equation in this case. Then we tried to add the original distance in order
to make our equation more general.

Nevertheless, the tracing curve is very strange. We failed to find a function whose argument
can be 0, with its slope not existing at that point, and the function tending to 0 as the increase of its
argument, like figure 4-2.

We could only try some other way. The experiments showed that the differential equation of the
tracing curve is easier to figure out, it tends to negative infinity when the argument tends to 0, and
it is 0 when the argument tends to positive infinity. We could easily associate it with the inverse
proportion function. So we conjecture that, the equation of the differential equation is:

y' :—E(x >0)
X

From figure 4-4, we can see that the estimated function clings to the real path of the differential
equation of the tracing curve. But the function begins to disengage from the after part. Compared
with the real path, it seems too slow to press close to the x-axis.

17
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Figure 4-4

Now, we should find out the regulation, and then correct our estimated function
As figure 4-4 shows, our estimated function must “turn up” at the latter part, and it demands us
to add a function which tends to be 0. And in the more latter part, it demands that the added

function has less and less effect. The estimated equation can keep close to the real one in this way.

We assume that the estimated function must be added with a function like the figure 4-5

Figure 4-5
This function seems familiar to us, which are the normal distribution curve. However, the right
part of it has changed a bit, so we rebuilt the parameter in the normal distribution curve, and

finally got a better result. The function is:
(10 1, U
'=—+210
X X
From the improved curve (Fig. 4-6), we could see that the estimated function did improve a lot
but it is still not good enough. It starts to break from the path when x is larger than 2, which is not
what we want. So it still needs some more modification. We tried to change the function at some

points, and then we found that it is the coefficient of — in the second part that controls the
X

degree that the function “turns up”. That is, if the coefficient of — is less than 1, the function
X

18



will “turn up”, otherwise, if the coefficient is more than 1, the function will “turn down”. In order
to let the function “turn up”, we changed the coefficient to a constant less than 1.

Figure 4-6
As we can see, the new function is closer to the real one. But it still has a problem which
cannot be ignored, i.e., its value is not 0. This contradicts with our real function. So we could
change the estimated function like:

10 1, 8

y=—"+—-10 “
X ax

Obviously, our main working changes from whole to local, thatis a.

By trying various constants between 0 and 1, we found that every different estimated function
will has a crossover point with the real one, though it is not so close to the real function. (see Fig.
4-7).
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Figure 4-7
In that case, we experimented many times, and got the crossover points of the estimated

function and the real one, then drew (X,a) in the coordinates. We could estimate the relation
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between a and X in this way (see Fig. 4-8).
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Figure 4-8

The four points on the x-axis seem very regular, we can quickly figure out its approximate
function which is:

= +0.1
g(x) = 015 —

As figure 4-9 shows:

10+
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Figure 4-9
This expression is applicable to a, because it tends to be 0.1. When a equals to 0.1, the
estimation function tends to be 0. We then changed the estimation function, and obtained the
differential coefficient expression for the tracing curves as:

~(x—10)
Y'=—E+ : 1 10 “
X (——5+0.2)x
0.15x°
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From figure 4-10 we could see, it really matches our demands.

20

10

4-10

-10 1
foo=s—+
X 1
( —+0.1 )x
0.15.x=

Therefore, we can study the equation by using this method, try more origin distance, get
different values of @, and then relate it with L in order to form functions. In this way, our formula

can have better generality.

So we conducted more experiments. Letting L be denote different integers, we observed how

a would change (see Fig. 4-11).
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Then, we used the same method to find out the equation of the tracing curve whose original

distance was 10, marked the point (L,a) (see Fig. 4-12). We discovered that the points were

approximately on an inverse proportion function, and then we estimated that the function is:
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Figure 4-12

Next, we added this parameter, and finally got the function of the differential equation of the
tracing curve which is:

L 102Lx S
y'=-—+(=5 ;)L
X 1002 +114/2x

The parameter L in this formula means original distance.

We give L different value and experimented many times. We have to admit that as L becomes
bigger, the error becomes obvious, but in the area from 1 to 20, the estimated function is proper.
Then, if integrate the differential function, we could obtain the function of the tracing curve, and

could add the parameter of time in order to study the location of the tracing point when its target
reaches the destination.

5. Conclusions

This research explored two types of movements, “converging curve” and “tracing curve”. In
this study, we found that:

1. by extending the original question to the case of right polygon, we can figure out the equation

of the converging curve;

the four points cannot converge at the same time in the cases of rectangle and rhombus;

and despite the failure to get a precise equation for the tracing curve, by using the method of
modeling, we could find out a proper function of its differential equation.

In this paper, we discussed about movements, and in the real world, everything is moving. We
believe that the findings of this research would be helpful to solve some problems. For example, in
modern military and some other industries, similar tracing technology might be applied. The
function we got might not be very precise, but might be applicable in certain areas. For the
converging curve, we think it could play an important role in studying the movements of irregular
colony. So it can be used to study the distribution of population density, and to discuss the relevant
best scheme.

This research was also embedded with some mathematical thoughts and methods which, during
the exploration, widened our ways of thinking and deepened our understanding of skills in
mathematic research such as using the invariant elements, argument by contradiction, differential
methods, and so on. Mathematics is not only a subject to solve, but also one to discover problems.
During the whole process of this research, we fully enjoyed the happiness of discovering and the
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splendor of nature. The questions we discovered are more than those we solved, and this added to
our enthusiasm with the mathematics knowledge we are going to learn. Due to the limitation of
our time and knowledge, this research is just a preliminary exploration. We believe in the future,
when time and knowledge permit, we will bring out more inspiring findings.
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