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A MATRIX LI-YAU-HAMILTON ESTIMATE FOR

KÄHLER-RICCI FLOW

Lei Ni

Abstract

In this paper we prove a new matrix Li-Yau-Hamilton (LYH)
estimate for Kähler-Ricci flow on manifolds with nonnegative bi-
sectional curvature. The form of this new LYH estimate is ob-
tained by the interpolation consideration originated in [Ch] by
Chow. This new inequality is shown to be connected with Perel-
man’s entropy formula through a family of differential equalities.
In the rest of the paper, we show several applications of this new
estimate and its corresponding estimate for linear heat equation.
These include a sharp heat kernel comparison theorem, general-
izing the earlier result of Li and Tian [LT], a manifold version
of Stoll’s theorem [St] on the characterization of ‘algebraic divi-
sors’, and a localized monotonicity formula for analytic subvari-
eties, which sharpens the Bishop volume comparison theorem.

Motivated by the connection between the heat kernel estimate
and the reduced volume monotonicity of Perelman [P], we prove
a sharp lower bound of the fundamental solution to the forward
conjugate heat equation, which in a certain sense dual to Perel-
man’s monotonicity of the reduced volume. As an application of
this new monotonicity formula, we show that the blow-down limit
of a certain type of long-time solution is a gradient expanding
soliton, generalizing an earlier result of Cao. We also illustrate
the connection between the new LYH estimate and the Hessian
comparison theorem of [FIN] on the forward reduced distance.
Localized monotonicity formulae on entropy and forward reduced
volume are also derived.

1. Introduction

In [LY], Peter Li and S.-T. Yau developed the fundamental gradi-
ent estimates for any positive solution u(x, t) to the Schrödinger equa-
tion, which in particular applies to u(x, t) satisfying the heat equation(

∂
∂t − ∆

)
u(x, t) = 0. On a complete Riemannian manifold M with Ricci

curvature bounded from below, they also show that one can derive a
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sharp form of the classical Harnack inequality (cf. [Mo]) out of their
gradient estimates. The gradient estimate of Li-Yau is equivalent to a
lower estimate on ∆ log u. Later in [H2], Richard Hamilton extended
the estimate of Li-Yau to the full matrix version of a sharp lower es-
timate on the Hessian of log u, under the stronger assumption that M
is Ricci parallel and of nonnegative sectional curvature. More recently,
in [CN], we observed that if M is a Kähler manifold with nonnegative
bisectional curvature, one can obtain a matrix version lower estimate
on the complex Hessian of log u without the assumption of Ricci be-
ing parallel. Following [NT1], in [CN] we called our estimate a LYH
estimate (which is also referred to as a differential Harnack inequality
in some earlier literatures). For Ricci flow there exists the fundamen-
tal work of Hamilton [H1] on the matrix LYH inequality for curvature
tensors. For a similar result for Kähler-Ricci flow, please see [C1]. See
also [CC1, CC2], [CH], [CK1], [NT1], etc, for the further develop-
ments related to LYH inequalities for Ricci/Kähler-Ricci flow, [A] and
references therein for the LYH estimates for other geometric flows. The
relation between LYH estimates and the monotonicity formulae was dis-
cussed in [N2, N4].

In this paper we shall prove a new LYH estimate for time dependent
Kähler metrics evolving by Kähler-Ricci flow. The new matrix inequal-
ity asserts that if (M, g(t)) is a complete solution to Kähler-Ricci flow
∂
∂tgαβ̄(x, t) = −Rαβ̄(x, t) with (bounded, in case M is non-compact)
nonnegative bisectional curvature, and if u is a positive solution to the
forward conjugate heat equation:

(
∂
∂t − ∆ −R

)
u(x, t) = 0, where R is

the scalar curvature, then

(1.1) uαβ̄ +
u

t
gαβ̄ + uRαβ̄ + uαVβ̄ + uβ̄Vα + uVαVβ̄ ≥ 0

for any (1, 0) vector field V . Here Rαβ̄(x, t) is the Ricci tensor of

(M, g(t)). We discover the above LYH estimate through an interpo-
lation consideration originated in [Ch]. Below we shall illustrate this
interpolation consideration further.

In [CH], Ben Chow and Richard Hamilton proved a linear trace LYH
inequality for the symmetric positive definite 2-tensors evolved by the
(time-dependent) Lichnerowicz heat equation, coupled with the Ricci
flow, whose complete solution metrics have a bounded non-negative cur-
vature operator. This result in particular generalizes the trace form of
Hamilton’s fundamental matrix LYH estimate [H1] on curvature ten-
sors, for solutions to Ricci flow. Later, in [Ch], Chow discovered an in-
teresting interpolation phenomenon. Namely he shows a family of LYH
estimates in the case of Riemann surfaces with positive curvature such
that this family connects Li-Yau’s estimate for the positive solutions to
a heat equation, with Chow-Hamilton’s linear trace estimate on the so-
lutions to the Lichnerowicz heat equation (coupled with the Ricci flow)
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in the case of Riemann surfaces. An interesting question is whether or
not this interpolation exists for high dimensional Ricci flow. Seeking the
analogue of such interpolation in high dimension turns out to be fruitful.
Even though the interpolation itself has not been found directly useful in
geometric problems, it does play a crucial role in discovering new (use-
ful) estimates. For example in [N4], such consideration led the author to
discover a LYH estimate for the Hermitian-Einstein flow (what proved
there is more general). This estimate of [N4] is one of the (crucial)
new ingredients in obtaining the (sharp) estimates on the dimension of
the spaces of holomorphic functions (sections of certain line bundles) of
the polynomial growth. (For more details, please see [N4].) The LYH
inequality of [N4] can be interpolated with the earlier one discovered
by L.-F. Tam and the author in [NT1]. Indeed, the interpolating esti-
mate proved in Theorem 1.3 of [N4] does provide a high dimensional
generalization of [Ch]. Contemplation on this successful generalization
further suggests that there may be a one-one correspondence, for the
LYH estimates, between the linear case and the (nonlinear) case with
Ricci flow. Seeking the linear correspondence of the LYH inequality for
Kähler-Ricci flow in [NT1] leads to the correct formulation of the LYH’s
inequality in [N4] for the linear case. On the other hand, seeking for the
nonlinear version of matrix LYH estimate of [CN] leads us to formulate
the correct form of the (nonlinear version) matrix LYH inequality in
this paper for the Kähler-Ricci flow. (Our naive ‘one-one corresponding
principle’ was also reinforced by the similarity on the entropy formulae
between the linear heat equation [N3] and Ricci flow case [P].) The
proof of this result is as usual through the tensor maximum principle
of Hamilton [H2]. It could not have been completed without generous
help from Ben Chow on a certain important step. We want to record
our gratitude to him here.

The new estimate (1.1) is sharp since it holds equality if and only
if on gradient expanding Kähler-Ricci solitons. Its proof also makes
use of the earlier LYH estimate of [C1]. The Riemannian version of
(1.1) suggests a new matrix differential inequality on curvature tensors,
which is different from Hamilton’s one in [H1]. Please see Section 6
for details. This new expression also vanishes identically on expanding
solitons. Unfortunately, we have not been able to verify these new
matrix estimates at this moment. (See Remark 6.4 for details.)

A little surprisingly, this new LYH estimate for the Kähler-Ricci flow
can be shown related with Perelman’s celebrated entropy formula for
the Ricci flow [P], at least for Kähler case. Again this is done through
the interpolation consideration explained above. Namely, one in fact
can obtain a family of pre-LYH equalities (a notion suggested to us by
Tom Ilmanen) such that at one end, the trace of this pre-LYH equality
gives the Perelman’s entropy formula after integrating on the manifold,
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and at the other end one obtains the LYH inequality of this paper by
applying the tensor maximum principle of Hamilton. At the midpoint
one obtains both the entropy formula of [N3] and the Li-Yau’s estimate
in [LY] for the linear heat equation. (The pre-LYH equalities were
proved earlier in [CLN] for the backward Ricci flow on Riemannian
manifolds soon after the proof of (1.1).) This connection between (1.1)
and Perelman’s entropy formula suggests that the new LYH estimate
proved here may be of some use or importance. Please see Section 4 for
the detailed exposition on this interpolation between Perelman’s entropy
formula and the new LYH estimate. One should also refer to the recent
beautiful survey [Ev1] and the stellar notes [Ev2] by Evans for the
relation between entropy and the Harnack estimates for the linear heat
equation (see also [N3] for a different connection). [Ev1] also contains
other applications of entropy consideration in the study of PDE.

The rest of the paper is on applications of this new estimate, as well
as the corresponding linear one of [CN]. The immediate consequences
include the monotonicity of a quantity called Nash’s entropy, a Perelman
type monotonicity (or Huisken type in the linear case) of the ‘reduced
volume of analytic subvarieties’ and a sharp form of Harnack estimate
for positive solutions to the forward conjugate heat equation. It also can
be applied to proved a sharp heat kernel comparison theorem for any
subvariety in complete Kähler manifolds with nonnegative bisectional
curvature. This in a sense generalizes a previous result [LT], in which
Peter Li and G. Tian proved the sharp comparison theorem on heat
kernels of algebraic manifolds, equipped with the induced Fubini-Study
metric (also called Bergmann metric in [LT]) from the ambient P

m.
More precisely, we proved the following result.

Let M be a complete Kähler manifold with nonnegative bisectional
curvature. Let H(x, y, t) be the fundamental solution of the heat equa-
tion. Let V ⊂ M be any complex subvariety of dimension s. Let
KV(x, y, t) be the fundamental solution of heat equation on V. Then

(1.2) KV(x, y, t) ≤ (πt)m−sH(x, y, t), for any x, y ∈ V.

The equality implies that V is totally geodesic.

A slightly more involved application is a localized monotonicity for-
mula and an elliptic ‘monotonicity principle’ for the analytic subvari-
eties. The latter leads to a manifold (curved/nonlinear) version of Stoll’s
characterization on ‘algebraic divisors’. This localization uses, substan-
tially, the beautiful ideas from the the study of mean curvature flow
discovered by Ecker in [E1] and [E2]. We give a brief sketch on these
results below.

Let V be a subvariety of complex dimension s as above. Denote by
AV,x0(ρ) the 2s-dimensional Hausdorff measure of V ∩ Bx0(ρ). Here
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Bx0(ρ) is the ball (inside M) of radius ρ centered at x0. The elliptic
‘monotonicity principle’ states the following:

There exists C = C(m, s) such that for any ρ′ ∈ (0, δ(s)ρ)

(1.3)
AV,x0(ρ

′)(ρ′)2(m−s)

Vx0(ρ
′)

≤ C(m, s)
AV,x0(ρ)ρ2(m−s)

Vx0(ρ)
.

Here δ(s) = 1√
2+4s

.

Notice that the above generalizes the monotonicity of [N4] from com-
plex hyper-surfaces defined by a holomorphic function to complex sub-
varieties of arbitrary codimension. The following consequence of (1.3)
is interesting to us.

Let Mm be a complete Kähler manifold with nonnegative holomorphic
bisectional curvature. Suppose that M contains a compact subvariety V
of complex dimension s. Then there exists C = C(m, s) > 0 such that
for δ(s)ρ ≥ ρ′ ≫ 1,

(1.4)
Vx0(ρ)

Vx0(ρ
′)

≤ C

(
ρ

ρ′

)2(m−s)

.

In particular,

lim sup
ρ→∞

Vx0(ρ)

ρ2(m−s)
< ∞.

The result sharpens the Bishop-Gromov volume comparison theorem
in the presence of compact subvarieties. When M is simply-connected
the result is in fact a consequence of the splitting theorem proved in
Theorem 0.4 of [NT2], via a completely different approach. However,
it is not clear that the result can be derived out of any previously known
result in the general case when M is not simply-connected. For an entire
analytic set V in C

m (of dimension s), one can define the Lelong number
at infinity (with respect to any fixed point x0) by

ν∞(V, x0) = lim sup
ρ→∞

(πρ2)(m−s)AV,x0(ρ)

Vx0(ρ)
.

Stoll showed that V is algebraic if and only if ν∞(V, x0) < ∞ for some
x0. The following result generalizes his result to analytic sets in curved
manifolds, for the codimension one case.

Let M be a complete Kähler manifold with nonnegative bisectional
curvature. Let V be an analytic divisor of M . Then V is defined by
a ‘polynomial function’ (holomorphic function of polynomial growth) if
and only if ν∞(V, x0) < ∞, for some x0 ∈ M .

Besides the above results via the local monotonicity formula, Section
5 also contains some other results, one of which generalizes the classical
transcendental Bézout estimate for codimension one analytic sets. (It
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has been known that the result is false for the high codimension case
[CS], even for the manifold M is the Euclidean spaces C

m.) More
precisely, we showed the following.

Let M be a complete noncompact Kähler manifold with non-negative
Ricci curvature. Let f ∈ O(M) be a holomorphic function of finite
order. Let Z(f) be the zero divisor of f . Then Ord (NZ(x0, r)) ≤
OrdH(f).

Here NZ(x0, r) is the Nevanlinna counting function. Please see Sec-
tion 5 for more details on the notations involved in the above result.
We find the connection between the parabolic approach, especially the
LYH estimate, and the classical Nevanlinna theory interesting and we
believe that the parabolic approach should be the most natural/effective
approach in extending sharp results from Euclidean spaces (linear) to
the curved complex manifolds (nonlinear, in a certain sense).

Finally, we discuss the relationship between the LYH inequality proved
in this paper and the previous computations in [FIN] on the reduced
distance and the reduced volume modelled on Ricci expanders (in [FIN]
we also call them forward reduced distance and forward reduced volume).
In particular, we prove a sharp lower bound on the heat kernel for the
time dependent metric evolving by Ricci flow, which, in a sense, is dual
to Perelman’s monotonicity of his reduced volume. We also illustrate
how one can view this result, and more importantly, Perelman’s mono-
tonicity of the reduced volume, as a nonlinear analogue of earlier work
of Cheeger-Yau [CY] and Li-Yau [LY] on the heat kernel estimates for
the heat equation/Schrödinger equation. (Quite remarkably, Perelman’s
result requires no curvature sign assumption, while all the pervious re-
sults require either the nonnegativity of the Ricci or the Ricci curvature
being bounded from below.) We also prove several localized monotonic-
ity formulae for Ricci flow on the forward reduced volume of [FIN] and
Perelman’s entropy, without any curvature sign assumptions. This again
follows the ideas of Ecker in [E2], where a localized version of Huisken’s
monotonicity formula is derived for the mean curvature flow. As an
application of the new monotonicity formula on the second forward re-
duced volume defined in this paper (which is slightly different from the
forward reduced volume of [FIN], but formally is the same as the reduced
volume of [P]), we prove that the blow-down limit, with respect to any

sequence of space-time points (xk, tk) with tk → ∞ and
r2
0(xk,x0)

tk
≤ C,

for some fixed point x0 ∈ M and C > 0 (where r0(x, y) is the distance
function with respect to the initial metric g(0)), of a so-called type III
κ-solution to Kähler-Ricci flow with bounded nonnegative bisectional
curvature must be a gradient expanding soliton. This is, in a certain
sense, dual to Perelman’s result in Section 11 of [P] on the blow-down
limit of certain type of ancient solutions. This result was proved for the
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sequence of specially chosen space-time points (maximum points of the
scalar curvature) earlier in [C2] and for the space time sequence of the
special form (x0, tk) in [CT2] very recently (independently). Note that
our approach works for both Ricci and Kähler-Ricci flow.

Here is how we organize this paper. In Section 2 we prove the inter-
polating version of the new LYH estimate, which in particular includes
(1.1). In Section 3 we derive some monotonicity formulae and the heat
kernel comparison theorems out of this new estimate. In Section 4 we
show the interpolation between the new LYH inequality of this paper
and Perelman’s entropy formula in [P]. In Section 5 we derive the lo-
calized monotonicity formula and prove the manifold version of Stoll’s
theorem. In Section 6, we discuss the relation between the new in-
equality and the work of [FIN], which motivates us to formulate a new
matrix LYH expression on curvature tensors of metrics evolving by Ricci
flow, and to show a sharp heat kernel lower bound estimate. In Sec-
tion 6, we also derive several localized monotonicity formulae, including
two entropy monotonicity formulae localizing the Perelman’s celebrated
entropy formula in [P].

Acknowledgement. The special thanks go to B. Chow since his contri-
bution is crucial to some results in this paper. He generously encouraged
the author to publish the results alone even though it should really be a
joint paper. The author would also like to thank H.-D. Cao, T. Ilmanen,
P. Li and J. Wang for helpful discussions; K. Ecker, L.-F. Tam, H. Wu
for their interests.

2. A new matrix LYH inequality for Kähler-Ricci flow

Let Mm be a complete Kähler manifold of complex dimension m. Let
(M, g(t)) be a solution to Kähler-Ricci flow:

(2.1)
∂

∂t
gαβ̄(x, t) = −Rαβ̄(x, t).

Here Rαβ̄(x, t) is the Ricci tensor of the metric gαβ̄(x, t). Let u be a
positive solution to the forward conjugate heat equation:

(2.2)

(
∂

∂t
− ∆

)
u(x, t) = R(x, t)u(x, t).

Here R(x, t) is the scalar curvature. We shall prove the following new
matrix LYH/differential Harnack inequality.

Theorem 2.1. Let (M, g(t)) be a solution defined on M × [0, T ] (for
some T > 0) to (2.1) with nonnegative bisectional curvature. In the
case that M is complete noncompact, assume further that the bisectional
curvature is bounded on M × [0, T ]. Let u be a positive solution to (2.2).
Then

(2.3) uαβ̄ +
u

t
gαβ̄ + uRαβ̄ + uαVβ̄ + uβ̄Vα + uVαVβ̄ ≥ 0
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for any (1, 0) vector field V .

The assumption that (M, g(t)) has bounded nonnegative bisectional
curvature can be replaced by one that (M, g(0)) has nonnegative bisec-
tional curvature and (M, g(t)) has bounded curvature, thanks to the
result of [B], [M2] and [Sh2]. The same applies to other results of
this paper. We state the result under the stronger assumption just for
simplicity.

Recall that in [CN] the authors proved that on a Kähler manifold
(M, gαβ̄(x)) with the nonnegative bisectional curvature, for any positive

solution u to the heat equation
(

∂
∂t − ∆

)
u = 0, one has the matrix LYH

inequality:

(2.4) uαβ̄ +
u

t
gαβ̄ + uαVβ̄ + uβ̄Vα + uVαVβ̄ ≥ 0.

Hence one can think (2.3) is the nonlinear version of (2.4). Moreover,
we shall show that there exists a linear interpolation between these two
inequalities. The similar interpolation was established in [Ch] originally
for the Li-Yau’s gradient estimates for the heat equation and Hamilton’s
differential Harnack for the Ricci flow in the case of surfaces. We shall
show such interpolation between the matrix differential inequalities (2.3)
and (2.4) for any dimensions. In [N4] we have shown another family of
LYH inequalities which also serves as a high dimensional generalization
of [Ch].

Let us first set up the notations. For any ǫ > 0, we consider the
Kähler-Ricci flow:

(2.5)
∂

∂t
gαβ̄(x, t) = −ǫRαβ̄(x, t).

Consider the positive solution u to the parabolic equation:

(2.6)

(
∂

∂t
− ∆

)
u(x, t) = ǫR(x, t)u(x, t).

We shall call (2.6) forward conjugate heat equation, which is the ad-
joint of the backward heat equation

(
∂
∂t + ∆

)
v = 0. We shall prove the

following interpolation theorem.

Theorem 2.2 (Chow-Ni ). Assume that the complete solution
(M, g(t)) (defined on M × [0, T ] for some T > 0) to (2.5) has nonneg-
ative bisectional curvature. In the case that M is noncompact, assume
further that the bisectional curvature of g(t) is uniformly bounded on
M × [0, T ]. Let u be a positive solution to (2.6). Then

(2.7) uαβ̄ +
u

t
gαβ̄ + ǫuRαβ̄ + uαVβ̄ + uβ̄Vα + uVαVβ̄ ≥ 0

for any (1, 0) vector field V .
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It is easy to see that Theorem 2.2, serving an interpolation between
(2.3) and (2.4), implies Theorem 2.1 and the earlier result (2.4) for the
linear heat equation. Therefore, we only need to prove Theorem 2.2.
The proof consists of the following several lemmas.

Lemma 2.3.

(2.8) (R)αβ̄ = ∆Rαβ̄ + Rαβ̄γδ̄Rδ̄γ − Rαp̄Rpβ̄ .

Here Rαβ̄γδ̄ is curvature tensor in terms of holomorphic coordinates.

Proof. The second Bianchi identity yields

Rαβ̄ = (Rγγ̄),αβ̄ = Rαγ̄,γβ̄(2.9)

= Rαγ̄,β̄γ − Rpγ̄γβ̄Rαp̄ + Rαp̄γβ̄Rpγ̄

= Rαβ̄,γ̄γ − Rpβ̄Rαp̄ + Rαp̄γβ̄Rpγ̄ .

The commutator formula gives that

Rαβ̄,γ̄γ = Rαβ̄,γγ̄ − Rpβ̄γγ̄Rαp̄ + Rαp̄γγ̄Rpβ̄(2.10)

= Rαβ̄,γγ̄ − Rpβ̄Rαp̄ + Rαp̄Rpβ̄ .

The lemma now follows from the definition ∆Rαβ̄ = 1
2

(
Rαβ̄,γγ̄ +Rαβ̄,γ̄γ

)
.

q.e.d.

Lemma 2.4. Let u(x, t) be a solution to (2.6). Then

(2.11)

(
∂

∂t
− ∆

)
uαβ̄ = Rαβ̄γδ̄uγ̄δ −

1

2

(
Rαp̄upβ̄ + Rpβ̄uαp̄

)
+ ǫ(Ru)αβ̄ .

Proof. Differentiate (2.6) we have

(2.12) (ut)γδ̄ = Rβᾱγδ̄uαβ̄ + gαβ̄uαβ̄γδ̄ + ǫ(Ru)γδ̄.

By definition ∆uαβ̄ = 1
2

(
uαβ̄,γγ̄ + uαβ̄,γ̄γ

)
, with respect to a normal co-

ordinate centered at any fixed point. We need to calculate the difference
between the partial derivative uαβ̄γδ̄ and the covariant derivative uαβ̄,γδ̄.
Direct computations show that, in a normal coordinate centered at any
fixed point,

(2.13) uγδ̄,αβ̄ = uγδ̄αβ̄ + usδ̄Rαβ̄γs̄.

Using the fact that

(2.14) uγδ̄,αᾱ = uγδ̄,ᾱα + Rγp̄upδ̄ − Rpδ̄uγp̄

and (2.13) we have

∆uγδ̄ =
1

2
(uγδ̄,αᾱ + uγδ̄,ᾱα)(2.15)

= uγδ̄αᾱ +
1

2

(
Rγp̄upδ̄ + Rpδ̄uγp̄

)
.

Combining the above with (2.12), we conclude that uαβ̄ satisfies (2.11).
q.e.d.
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The direct calculations give the following lemma.

Lemma 2.5. Let (M, g(t)) be a solution to (2.5). Let u(x, t) be a
positive solution to (2.6). Then

(
∂

∂t
− ∆

) (uαuβ̄

u

)
(2.16)

= ǫ
(Ru)αuβ̄

u
+ ǫ

(Ru)β̄uα

u
− ǫ(Ru)

uαuβ̄

u2

−
uαs̄uβ̄s + uαsuβ̄s̄

u

− 2
uαuβ̄ |us|2

u
− 1

2

Rαs̄usuβ̄ + Rsβ̄us̄uα

u

+
uαsus̄uβ̄ + uβ̄suαus̄ + uαs̄uβ̄us + uβ̄s̄uαus

u2
.

(2.17)

(
∂

∂t
− ∆

) (u

t
gαβ̄

)
(x, t) = ǫ

Ru

t
gαβ̄ − u

t2
gαβ̄ − ǫ

u

t
Rαβ̄ .

(
∂

∂t
− ∆

) (
ǫuRαβ̄

)
(2.18)

= ǫ2RuRαβ̄ + ǫu
(
Rαβ̄γδ̄Rγ̄δ − Rαp̄Rpβ̄

)

· ǫ
(
∇su∇s̄Rαβ̄ + ∇s̄u∇sRαβ̄

)

+ (ǫ2 − ǫ)u
(
Rαβ̄γδ̄Rγ̄δ − Rαp̄Rpβ̄ + ∆Rαβ̄

)
.

Proof. The proof is straightforward computation. In the derivation
of (2.16), a commutator formula has been used. In the derivation of
(2.18) we have used

∂

∂t
Rαβ̄ = ǫ

(
Rαβ̄γδ̄Rγ̄δ − Rαp̄Rpβ̄ + ∆Rαβ̄

)
.

q.e.d.

We also need the following result, which is an easy consequence of
Cao’s differential Harnack inequality for the Kähler-Ricci flow [C1].

Lemma 2.6. Let (M, g(t)) be a complete solution to (2.5) with non-
negative bisectional curvature. In the case that M is noncompact we
further assume that the bisectional curvature is bounded. Let u(x, t) be
a positive solution to (2.6). Then

Ỹαβ̄ := ∆Rαβ̄ + Rαβ̄γδ̄Rγ̄δ −
(∇su

ǫu
∇s̄Rαβ̄ +

∇s̄u

ǫu
∇sRαβ̄

)
(2.19)

+Rαβ̄γδ̄

∇γ̄u

ǫu

∇δu

ǫu
+

Rαβ̄

ǫt
≥ 0.

Once we have Lemma 2.3–2.6 we can give the proof of Theorem 2.2.
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Proof of Theorem 2.2. Let

Nαβ̄ = uαβ̄ +
u

t
gαβ̄ −

uαuβ̄

u
,

and let

Ñαβ̄ = Nαβ̄ + ǫuRαβ̄ .

By taking the minimizing vector in (2.7), one can see that the claimed

inequality in Theorem 2.2 is equivalent to the assertion that Ñαβ̄ ≥
0. When M is noncompact, the maximum principle (either for scalar
functions or for tensors) is false in general. It only holds under certain
growth conditions for the noncompact manifolds. We shall first prove
the theorem for the relatively easier case when M is compact.

Compact case. By Lemma 2.3–2.5, we have that
(

∂

∂t
− ∆

)
Ñαβ̄

= Rαβ̄γδ̄uγ̄δ −
1

2

(
Rαp̄upβ̄ + Rpβ̄uαp̄

)
+ ǫ(Ru)αβ̄

− ǫ
(Ru)αuβ̄

u
− ǫ

(Ru)β̄uα

u
+ ǫ(Ru)

uαuβ̄

u2

+
uαs̄uβ̄s + uαsuβ̄s̄

u

+ 2
uαuβ̄ |us|2

u
+

1

2

Rαs̄usuβ̄ + Rsβ̄us̄uα

u

−
uαsus̄uβ̄ + uβ̄suαus̄ + uαs̄uβ̄us + uβ̄s̄uαus

u2

+ ǫ
Ru

t
gαβ̄ − u

t2
gαβ̄ − ǫ

u

t
Rαβ̄

+ ǫ2RuRαβ̄ + ǫu
(
Rαβ̄γδ̄Rγ̄δ − Rαp̄Rpβ̄

)

− ǫ
(
∇su∇s̄Rαβ̄ + ∇s̄u∇sRαβ̄

)

+ (ǫ2 − ǫ)u
(
Rαβ̄γδ̄Rγ̄δ − Rαp̄Rpβ̄ + ∆Rαβ̄

)
.

Regrouping terms yields
(

∂

∂t
− ∆

)
Ñαβ̄(2.20)

= Rαβ̄γδ̄Ñγ̄δ −
1

2

(
Rαp̄Ñpβ̄ + Rpβ̄Ñαp̄

)
− 2

t
Ñαβ̄

+
1

u
Nαp̄Npβ̄ +

1

u

(
uαp −

uαup

u

) (
up̄β̄ −

up̄uβ̄

u

)

+ ǫRÑαβ̄ − uǫ2Rαp̄Rpβ̄ + ǫ2uỸαβ̄
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where Ỹαβ̄ is the tensor defined in Lemma (2.6). Since Lemma 2.6

implies that Ỹαβ̄ ≥ 0, (2.20) then implies that
(

∂

∂t
− ∆

)
Ñαβ̄(2.21)

= Rαβ̄γδ̄Ñγ̄δ −
1

2

(
Rαp̄Ñpβ̄ + Rpβ̄Ñαp̄

)

+
1

2u
Ñαp̄

(
Npβ̄ − ǫuRpβ̄

)
+

1

2u
(Nαp̄ − ǫuRαp̄) Ñpβ̄

+ ǫ2uỸαβ̄ +
1

u

(
uαp −

uαup

u

) (
up̄β̄ −

up̄uβ̄

u

)

+

(
ǫR− 2

t

)
Ñαβ̄

≥ Rαβ̄γδ̄Ñγ̄δ −
1

2

(
Rαp̄Ñpβ̄ + Rpβ̄Ñαp̄

)

+
1

2u
Ñαp̄

(
Npβ̄ − ǫuRpβ̄

)
+

1

2u
(Nαp̄ − ǫuRαp̄) Ñpβ̄

+

(
ǫR− 2

t

)
Ñαβ̄ .

Using the observation that the right hand side of (2.21) satisfies the null-
vector condition of the tensor maximum principle of Hamilton [H2], we
have proved the case with M being compact.

Noncompact case. We have to evoke the tensor maximum principle
of [N5]. Some integral estimates on up to second derivatives of u are
needed. First recall the fundamental derivative estimate of Shi. For
gαβ̄(x, t), a solution to (2.5) on M × [0, T ] with bounded (in space-time)
nonnegative bisectional curvature, there exist Ak > 0 such that

(2.22) ‖∇kRαβ̄γδ̄‖2 ≤ Ak

tk

on M × [0, T ]. The estimate (2.22) is proved in [Sh1]. For the sake
of simplicity, we will show the matrix differential Harnack inequality
Theorem 2.2 for the case ǫ = 1 under the estimates (2.22). In fact,
what we need is (2.22) for k ≤ 2. It is clear that we only need to prove
the theorem for sufficient small T since one can iterate the process.
For the proof we also need the perturbation trick from [NT1] (see also
[CN]). Namely we first shift t by 2δ, where δ is a small positive number.
After the shifting we can have estimates on u, |∇u| and |uαβ̄|. The goal
is to show that there exists a constant b > 0 such that

(2.23)

∫ T

δ

∫

M
exp(−b(r2

0(x) + 1))

(
1

u
+

|∇u|2
u

+ |uαβ̄ |2
)

dµ dt < ∞.

Here r0(x) = r0(o, x) is the distance to x from a fixed point o ∈ M with
respect to the initial metric. We need the estimate (2.23) to apply the
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tensor maximum principle from [N5] (see also [NT2] for the original
time-independent version).

In order to get control on u (or 1
u) first we need the following Harnack

inequality of Guenther [Gu].

Theorem 2.7 (Guenther). Let (M, g(t)) be a solution to Ricci flow
satisfying (2.22). Let u be a positive solution to the forward conjugate
heat equation

(
∂
∂t − ∆

)
u = Ru. Then for sufficiently small T (only

depending on Ak) there exist α, B1 > 0 only depending on Ak such that

(2.24) u(x1, t1) ≤ u(x2, t2)

(
t2
t1

)n
2

exp

(
r2(x1, x2, t1)

α(t2 − t1)
+ B1(t2 − t1)

)

for any T ≥ t2 > t1 > 0. Here r(x1, x2, t1) denotes the the distance
between x1 and x2 with respect to the metric at t = t1.

The result above was proved in [Gu] through a gradient estimate of
Li-Yau type on compact manifold. Since one can apply the localization
techniques as on page 161 of [LY] (see also page 647 of [NT1], [Sh1] )
one can easily generalize the gradient estimate of [Gu], thus the above
Harnack estimate to complete noncompact case. From (2.24), one can
deduce that for small δ there exists a constant b2, B2 > 0, where b2 =
b2(Ak, δ) and B2 = B2(u(o, δ

4), u(o, T − δ
4), Ak, δ) such that

(2.25)

(
1

u
+ u

)
(x, t) ≤ B2 exp(b2(r

2
0(x) + 1))

for (x, t) ∈ M × [ δ
2 , T − δ

2 ].
Observe that we have the following two equations.

(2.26)

(
∂

∂t
− ∆

)
u2 = Ru2 − |∇u|2

and
(2.27)(

∂

∂t
− ∆

)
|∇u|2 = −|uαβ̄ |2 − |uαβ|2 + 〈∇(Ru),∇u〉 + 〈∇u,∇(Ru)〉.

The desired estimate (2.23) follows from (2.26), (2.27) by the argument
through integration by parts as in Lemma 3.1 of [CN]. Once we have
established the estimate (2.23) we can apply the perturbation argument
as in [NT1] (see also [CN]) together with the tensor maximum principle
in Theorem 2.1 of [NT2] (see also Theorem 2.1 in [N5] for the Ricci
flow case) to conclude the proof of the matrix LYH estimate (2.7) for the
complete noncompact case. Note that Theorem 2.7 only provides the
estimate for short time. But we can iterate the argument to prove the
result for all time. An alternative is that once one has the upper bound
estimate at some earlier time one can also make use of the heat kernel
estimate in [N5] for the time dependent heat operator (and uniqueness



316 LEI NI

of the positive solution) to get estimates of the positive solution for the
later time. We also should remark that the matrix LYH (2.7) gives a
sharp Harnack (which is more precise, compared with Theorem 2.7).
Please see Corollary 3.8 in the next section. However, we do need the
rough estimate in the proof to apply the tensor maximum principle.
q.e.d.

Corollary 2.8. Let u(x, t) be a positive solution to (2.6). Then

(2.28) ∆ log u + ǫR +
m

t
≥ 0.

If the equality holds for some (x0, t0) with t0 > 0, then (M, g(t)) is
an expanding Kähler-Ricci soliton, for the case ǫ > 0, and (M, g) is
isometric to C

m, for the case ǫ = 0.

Proof. Let

Q = ∆ log u + ǫR +
m

t

and Q = gαβ̄Ỹαβ̄ . Since Ñαβ̄ ≥ 0 and Q = gαβ̄Ñαβ̄ we have that

Ñαβ̄(x0, t0) = 0. By the strong maximum principle we know that Ñαβ̄ ≡
0 for all t < t0. Ñαβ̄ ≡ 0 is nothing but the equation in the definition
of the gradient expanding soliton.

For the case ǫ = 0, we apply the same line of argument. In this case
we have Q ≡ 0 since Ñαβ̄ = Nαβ̄ ≡ 0, for t ≤ t0. Now from the equation

0 =

(
∂

∂t
− ∆

)
t2Q

= t2Rαβ̄(log u)ᾱ(log u)β +
t2

u

(
uαp −

uαup

u

)(
up̄ᾱ − up̄uᾱ

u

)

+
t2

u
Nαp̄Npᾱ ≥ 0

we have that (log u)αβ ≡ 0 too. From the definition of Nαβ̄ we then
have

(log u)αβ̄ =
1

t
gαβ̄

and

(log u)αβ = 0,

from which it is easy to see that (M, g) is flat and in fact isometric to
C

m, since the curvature (see, for example, page 117 of [KM]) can be
written as

Rαβ̄γδ̄ = − ∂4(tf)

∂zα∂zβ̄∂zγ∂zδ̄
+ gpq̄

(
∂3(tf)

∂zq̄∂zα∂zγ

) (
∂3(tf)

∂zp∂zβ̄∂zδ̄

)

and log u is a convex function. q.e.d.
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Remark 2.9. The ǫ = 0 case in the above Corollary 2.8 is just the
original Li-Yau’s estimate [LY], which holds with nonnegativity of the
Ricci curvature. The assertion that the equality implies the manifold is
isometric to R

n is implicit in the proofs of [LY] and is proved explicitly
in [N3] for Riemannian manifolds with nonnegative Ricci curvature. It
would be interesting to see if Corollary 2.8 is true, for ǫ > 0, on any
complete solution to the Kähler-Ricci/Ricci flow without assumptions
on the sign of the curvature.

When the manifold is compact, we known that, by passing to its
universal cover, it is a product of C

k with compact Hermitian symmetric
spaces. Without loss of generality we can assume that the first Chern
class c1(M) is a positive multiple of the Kähler class. Then the Kähler-
Ricci flow will have singularity, say at t = 1, and the normalized flow
has long time existence. The re-scaling is given by ĝ = 1

1−tg and the

re-parametrization is given by s = − log(1− t). Therefore, Theorem 2.2
has the following equivalent form.

Theorem 2.10. Let M be a compact Kähler manifold as above. Let
g(x, t) be a solution to (2.1), and let u(x, t) be a positive solution to (2.2).
Assume that ĝ(x, s) is the solution to the normalized Kähler Ricci flow.
Then

(2.29) (log u)αβ̄ + R̂αβ̄ +
1

es − 1
ĝαβ̄ ≥ 0.

Here R̂αβ̄ is the Ricci tensor of ĝ.

3. Monotonicity formulae

In this section we derive some monotonicity formulae as a direct corol-
lary of the matrix Li-Yau-Hamilton estimate, as well as its trace, proved
in the last section. In order to make the argument unified for both
cases with and without Ricci flow, we work with the interpolation ver-
sion (2.7). Let (M, g(t)) be the solution to the Ricci flow (2.5) and let
u(x, t) be the positive solution to (2.6).

The first result is the monotonicity of the partition function (also
called Nash’s entropy in [FIN]) defined by

(3.1) Ñ (g, u, t) = −
∫

M
u log u dv − m log(πt) − m.

Simple computation shows that

(3.2)
dÑ
dt

=

∫

M

(
−∆ log u − ǫR− m

t

)
u dµt ≤ 0.

Here dµt is the volume element of g(t). The following result is a direct
consequence of Corollary 2.8.
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Proposition 3.1. Let (M, g(t)) be a solution to (2.5) with nonnega-
tive bisectional curvature. Let H(x, y, t) be the fundamental solution to
(2.6). Then

d

dt
Ñ (g, u, t) ≤ 0

for any positive solution u to (2.6) and

−
∫

M
H log H dµt − m log(πt) ≤ m

with the equality holds for some positive t if and only if the manifold is
an expanding gradient soliton (isometric to C

m in the case ǫ = 0).

For the fixed Riemannian metric case the above was proved earlier
in [N2] for the manifold with only nonnegative Ricci curvature. We
believe that the result should hold for Ricci flow even without assump-
tions. But at this moment we can only prove it for Kähler-Ricci flow
through the matrix LYH inequality, which assumes the nonnegativity
of the bisectional curvature. The result above gives a characterization
of expanding solitons using the partition function. The similar formu-
lation for the shrinking solitons also works for the partition functions
related to Perelman’s entropy formula [P]. Namely, consider the back-
ward Ricci flow ∂

∂τ gij = 2Rij on M × [0, τ0], where M is a Riemannian
manifold of real dimension n. Let u(x, τ) be a solution to the backward
adjoint heat equation

(3.3)

(
∂

∂τ
− ∆ + R

)
u(x, τ) = 0.

Similarly one can define

(3.4) Ñ (g, u, τ) = −
∫

M
u log u dµτ − n

2
log(4πτ) − n

2
.

In Proposition 1.2 of [P], Perelman proved that

(3.5)
dÑ
dτ

=

∫

M

(
−∆ log u + R− n

2τ

)
u dµτ ≤ 0.

The dual version of Proposition 3.1 is stated as follows.

Proposition 3.2. Let H(x, y, τ) be the fundamental solution to the
adjoint heat equation. Then

−
∫

M
H log H dµτ − n

2
log(4πτ) ≤ n

2

with equality holds (or in (3.5)) for some positive τ if and only if
(M, gij(τ)) is a gradient shrinking soliton.
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Proof. Since we do not have Corollary 2.8 in this case we need other
arguments. In fact, tracing the equality case of the proof of Proposition
1.2 of [P] we have that Rij − ∇i∇j log H is diagonal. Namely Rij −
∇i∇j log H = R−∆ log H

n gij . On the other hand, the equality in (3.5)

further implies that Rij −∇i∇j log H = 1
2τ gij . q.e.d.

In [N2], the relation between the value of Ñ (t) (as well as the linear
entropy functional, also denoted by W) as t → ∞ and the asymptotic
volume ratio at infinity (also called the ‘cone angle’) was proved for the
linear heat equation. The similar relation, between the κ-constant in
the κ-non-collapsing of volume defined in [P] and the large time limit of

the partition function Ñ (g, u, τ) (as well as the entropy functional W)
should also be true for ancient solutions to Ricci flow.

Another application of Theorem 2.2 is an entropy monotonicity for
the ancient solutions. Let (M, g(t)) be an ancient solution to (2.5) and
let u be a positive solution to (2.6), both defined on M × (−∞, 0].
Theorem 2.2 implies that

(log u)αβ̄ + Rαβ̄ ≥ 0.

From this one can easily see that

N (g, u, t) := −
∫

M
u log u dµt

is monotone non-increasing.
If M is compact, one can obtain such u by taking limit of solutions

with initial data at t = −k as in [FIN] (where the immortal solu-
tion is studied). More precisely, let uk(x, t) be a solution to (2.6) with
u(x,−k) = 1

V (−k) . Letting k → ∞, one can extract a limit u∞ > 0

(since
∫
M uk ≡ 1 and uk > 0) which is defined on (−∞, 0]. In this case∫

M u∞ dv = 1. Applying the Jensen’s inequality one has that

N (g, u∞, t) ≤ log V (t).

The right hand side is another monotone non-increasing quantity along
the flow. When M is complete noncompact one can obtain such a
u similarly by solving uk(x, t) with initial condition at t = −k and
anchoring uk(o,−1) = 1, where o ∈ M is a fixed point. In fact one
can even get uk integrable by taking it to be scalar multiple of the
fundamental solution (with initial data being the delta function at t =
−k).

As the other application considered in this section, we shall derive the
heat kernel comparison theorem and Huisken type ([Hu], [E2]) mono-
tonicity formula for the analytic subvarieties in M . We start with the
case ǫ = 0 since the results seem to be more useful at this moment.

Theorem 3.3. Let M be a complete Kähler manifold with nonnega-
tive bisectional curvature. Let H(x, y, t) be the fundamental solution of
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the heat equation. Let V ⊂ M be any complex subvariety of dimension
s. Let KV(x, y, t) be the fundamental solution of heat equation on V.
Then

(i)

(3.6) KV(x, y, t) ≤ (πt)m−sH(x, y, t), for any x, y ∈ V.

If the equality holds, then V is totally geodesic. Furthermore, if M̃
is the universal cover of M with covering map π and Ṽ = π−1(V),

then M̃ = M̃1 × C
k for some Kähler manifold M̃1 which does

not contain any Euclidean factors, with k ≥ m − s. Moreover
Ṽ = M̃1 × C

l with l < k.
(ii)

(3.7)
d

dt

∫

V
(πt)m−sH(x, y, t) dAV(y) ≥ 0, for any x ∈ M.

Similarly, if the equality holds for some x ∈ M at some positive
time t, then M̃ = M̃1 × C

k with k ≥ m − s.

Proof. For any smooth point y ∈ V, choose a complex coordinate
(z1 · · · , zm) such that (z1, · · · , zs) for a coordinate for V near y. Let
i, j, k, · · · be the index of the coordinate functions of V and a, b, c, · · ·
be the index of coordinate function in the normal directions. Then we
compute

(
∆

(y)
V − ∂

∂t

) (
(πt)m−sH(x, y, t)

)
(3.8)

=

(
∆M − gab̄∇a∇b̄ −

∂

∂t

) (
tm−sH(x, y, t)

)

= (πt)m−s

(
∆MH − Ht − gab̄∇a∇b̄H − m − s

t
H

)

= (πt)m−s

(
−∇a∇b̄H +

∇aH∇b̄H

H
− 1

t
Hgab̄

)
gab̄

− (πt)m−s |∇⊥H|2
H

.

By Theorem 2.2 we have that
(

∆
(y)
V − ∂

∂t

) (
(πt)m−sH(x, y, t)

)
≤ 0.

Notice that for x ∈ V, limt→0(πt)m−sH(x, y, t)|V = δx(y). This proves
that (3.6) by the maximum principle, (3.7) by the integrating (3.8) on
V. (For the case V is singular, one can refer to [LT] for the justification
on the validity of the integration by parts.)

If the equality holds in (3.6) then (πt)m−sH(x, y, t) satisfies the heat
equation. Hence equality holds in (3.8) for any x, y ∈ V. This implies
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that

(3.9) |∇⊥ log H|2 ≡ 0, for x, y ∈ V, t > 0,

which implies that < ∇r2(x, y), ν >= 0 for any x, y ∈ V, and any
normal direction ν. Here r(x, y) is the distance function between x and
y and we have used the fact that limt→0 −t log H(x, y, t) = r2(x, y). See
[CLY1], for example. This implies that for any smooth point x ∈ V,
any minimizing geodesic starting from x lies totally inside V. More
precisely, let γv(s) be a short minimizing geodesic emitting from x with
γ′

v(0) = v such that v ∈ TxV. Denote by h be the distance function
from V. Then

d

ds
h(γv(s)) = 2Re〈∇h, γ′

v(s)〉

=
1

s
2Re〈∇h, sγ′

v(s)〉

=
1

s
Re〈∇h,∇r2(x, γv(s))〉 = 0.

Here ∇h = ∇αh ∂
∂zα and γ′

v(s) = dzα(s)
ds

∂
∂zα . Therefore, V is totally

geodesic. This in particular shows that there are no singular points
in V, which rules out the possibility that V is a union of several to-
tally geodesic submanifolds with singular intersections (in which case
the heat kernel comparison (3.6) has strictly inequality). Moreover, by
lifting the computation to the universal cover we can assume that M
is simply-connected. Then the manifold M splits by Theorem 0.1 of
[NT2], more precisely, Theorem 2.1 and Corollary 2.1 of [NT2], since

Nαβ̄ = ∇α∇β̄H − ∇αH∇β̄H

H + 1
t Hgαβ̄ ≥ 0 and its null space is at least of

m− s dimension, by (3.8), for any x, y ∈ V and t > 0. Notice that Nαβ̄

does not satisfies the linear Lichnerowicz heat equation. However, the
inequality (2.21), satisfied by Nαβ̄ (since ǫ = 0), is enough for the argu-

ment in the proof of Corollary 2.1 of [NT2]. Then M = M1 ×M2 such
that the tangent space of M2 consists of the null space of Nαβ̄ . That

the factor M2 is isometric to C
m−s follows from the same argument as

in the proof of Corollary 2.8, since −∇a∇b̄H +
∇aH∇b̄H

H − 1
t Hgab̄ ≡ 0.

(One can also use Corollary 1.3 of [N2] on p. 331.) More precisely, if
we write a point x ∈ M as x = (x1, x2) according to the splitting, we
can write the heat kernel H(x, y, t) = H1(x1, y1, t)H2(x2, y2, t). Then
on M2 we have that (log H2(x2, y2))αβ̄ + 1

t gαβ̄ = 0 by the definition of
the splitting. Therefore one can apply Corollary 2.8 to conclude that
M2 = C

k. If (3.7) holds equality for some x ∈ M , it implies that the
right hand side of (3.8) is zero. Then the argument above also applies.
Note that we may not have V totally geodesic since x may be a singular
point. q.e.d.
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Remark 3.4.

(1) In the case V is not smooth, the existence of K(x, y, t) was justi-
fied in the work of Li and Tian [LT]. They also obtained a sim-
ilar upper bound estimate as (3.6) for the special case M = P

m

(equipped with the Fubini-Study metric) using a very different
method. Their method produces better upper bound for the spe-
cial case M = P

m. Our estimate here works for general Kähler
manifolds with nonnegative bisectional curvature.

(2) The similar heat kernel comparison was first proved in [CLY2] for
minimal submanifolds in space forms by a quite different method.
(The method of [LT] is closely related to that of [CLY2].) The
result in Theorem 3.3 is more general than [CLY2] in the sense
that it holds for any Kähler manifolds with nonnegative sectional
curvature instead of space forms. However, it is also more restric-
tive since it only applies to analytic subvarieties (which are known
to be area-minimizing).

(3) In part (ii) of Theorem 3.3, the manifold M̃1 may not be Ṽ. This
could happen, for example, in the case M = C

m and V is a union
of two hyper-planes and x lies on the intersection subvariety. If
we further assume that equality holds for all smooth points x ∈ V,
we do have the same conclusion as part (i).

(4) The monotonicity (3.7) is enough for applications in [N4]. Namely,
one can prove the comparison results on the dimensions of polyno-
mial growth holomorphic function spaces obtained in [N4], using
(3.7) instead of the other LYH inequality proved therein. In fact,
one can derive the results in [N4] through the following corollary,
which is a special case of Theorem 3.3 (or Corollary 3.8) of [N4].
It is, however, enough for the applications considered in [N4].

Corollary 3.5. Let f be a holomorphic function. Let V = Z(f), the
zero locus of f . Denote

(3.10) w(x, t) =

∫

M
H(x, y, t)∆ log |f |2(y) dµ(y).

Then

(3.11) tw(x, t) = (πt)

∫

V
H(x, y, t) dAV(y).

Moreover

(3.12)
∂

∂t
(tw(x, t)) ≥ 0.

If the equality holds for some point x ∈ M and some positive time t,
then the universal cover (of M) M̃ splits at least a factor of C.

Proof. Notice that ∆ = gαβ̄ ∂
∂zα∂zβ̄ , which differs by a factor of 4

from [N4]. Let f be a holomorphic function defined on M . Here we do
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require some growth condition on f . For example, it is sufficient if f is
of polynomial growth or is of finite order in the sense of Hadamard (see
(3.1) of [N4] for precise definition). We can write

v(x, t) =

∫

M
H(x, y, t) log |f |2(y) dµ(y)

as a solution to the heat equation with initial value log |f |2(y). The
requirement on f is to make such a representation formula of v(x, t)
meaningful. If w(x, t) (we abuse the notation here) is defined to be
∂
∂tv(x, t) as in [N4], then it is a solution to the heat equation with

initial data ∆ log |f |2. By the definition of w(x, t) in (3.10) it is easy
to see that w(x, t) is also a solution to the heat equation with initial
data given by the measure ∆ log |f |2. Hence w(x, t) = ∂

∂tv(x, t). By the
Poincaré-Lelong formula we know that

(πt)

∫

M
H(x, y, t)

(√
−1

2π
∂∂̄ log |f |2(y)

)
∧ ωm−1

(m − 1)!

= (πt)

∫

V
H(x, y, t) dAV(y).

On the other hand, the direct calculation shows that the left hand side
of the above equation is equal to

t

∫

M
H(x, y, t)∆ log |f |2(y)

ωm

m!
= t

∫

M
H(x, y, t)∆ log |f |2(y) dµ(y)

= tw(x, t).

This proves the first statement of the corollary. The monotonicity (3.12)
is just a special case (ii) of Theorem 3.3. The proof above also shows
that w(x, t) has the same meaning as in Lemma 3.1 and Theorem 3.1,
Theorem 4.1 of [N4]. q.e.d.

The case with Ricci flow, namely ǫ = 1, can be formulated similarly.
In order to make it precise we have to explain some notations. For time-
dependent metrics deformed by the Kähler-Ricci flow equation (2.1), we
call H(x, t; y, t0) (with t ≥ t0) a fundamental solution to the forward
conjugate heat equation. If it satisfies (2.2) (with respect to x) and
limt→t0 H(x, t; y, t0) = δy(x), it is easy to see that (2.2) is conjugate to

the backward heat equation ( ∂
∂t + ∆)v(x, t) = 0. Therefore if we denote

by H∗(x, t; y, t0) (with t ≤ t0) the fundamental solution to ∂
∂t +∆, then

a well-known duality asserts that H(x, t; y, t0) = H∗(y, t0; x, t). From
this it is easy to see that for any solution u(x, t) to the forward conjugate
heat equation we have the representation formula:

u(x, t) =

∫

M
u(y, 0)H∗(y, 0; x, t) dµ0(y) =

∫

M
H(x, t; y, 0)u(y, 0) dµ0(y).
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For most of our discussion we assume that t0 = 0 as above and we also
just write H(x, t; y, 0) as H(x, y, t). Adapting the notation from the
proof of Theorem 3.3, the restricted Ricci flow equation on a subvariety
V is ∂

∂tgij̄ = −2Rij̄ . Let RV = gij̄Rij̄ . Then the restricted forward
conjugate heat equation is

(3.13)

(
∂

∂t
− ∆V

)
v(x, t) = RV(x, t)v(x, t).

We denote by KV(x, y, t) (here again we assume t0 = 0 and use
KV(x, y, t) instead of KV(x, t; y, 0)) the fundamental solution of the
restricted forward conjugate heat equation. We have the following com-
parison and monotonicity result.

Theorem 3.6. Let M be a complete Kähler manifold with bounded
nonnegative bisectional curvature. Let H(x, y, t) be a fundamental solu-
tion to the forward conjugate heat equation on M . Let V be a complex
subvariety of M of dimension s. Let KV(x, y, t) be the fundamental so-
lution to the restricted forward conjugate heat equation (with respect to
the induced metrics) on V. Then we have (3.6) and (3.7). Moreover,
the equality (for positive t), in either case, implies that the universal

cover (of M) M̃ has the splitting M̃ = M̃1 ×E
k, where E

k is a gradient
expanding Kähler-Ricci soliton of dimension k ≥ m − s.

Remark 3.7. One can think of (3.7) as a dual version of Perel-
man’s monotonicity of the reduced volume since the reduced volume
in the Section 7 of [P] is, in a sense, a ‘weighted volume’ of M (with
weight being the fundamental solution (to the backward conjugate heat
equation) of a ‘potentially infinite dimensional manifold’ restricted to
M , as explained in Section 6 of [P]), while here the monotonicity is
on the ‘weighted volume’ of complex submanifolds with weight being
the fundamental solution (of the forward conjugate heat equation) of
M restricted to the submanifold. The reduced volume monotonicity of
Perelman has important applications in the study of Ricci flow. We
expect that (3.7) will have some applications in understanding the re-
lation between Kähler-Ricci flow and the complex geometry of analytic
subvarieties.

Taking the trace of the matrix estimate in Theorem 2.2 and integrat-
ing along the space-time path as in [LY], we can have the following
Harnack estimates for the positive solutions to the forward conjugate
heat equation. This gives a sharp version of the previous mentioned
rough estimate of [Gu].

Corollary 3.8. Let (M, g(t)) be a solution to Ricci flow (2.1) and
u(x, t) be a positive solution to (2.2). Then

|∇u|2
u2

− ut

u
+

m

t
≥ 0
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and for any t2 > t1,

(3.14) u(x2, t2)t
m
2 ≥ u(x1, t1)t

m
1 exp

(
− inf

γ

∫ t2

t1

|γ′(t)|2 dt

)
.

Here γ(t) is a path with γ(t1) = x1 and γ(t2) = x2.

Note that we do not have the factor 4 due to our choice of ∆ and
that the gradient |∇f |2 is defined to be gαβ̄fαfβ̄ . Here |γ′(t)|2 =

gαβ̄
dzα

dt
dzβ̄

dt . We list this consequence here since it implies the mono-

tonicity of tmu(x, t).
Finally we should point out that, as in [H3], the matrix LYH in-

equality also implies the monotonicity of the weighted energy of a holo-
morphic mappings from M (into any Kähler manifolds), as well as the
monotonicity of the weighted energy for Hermitian-Einstein flow on any
holomorphic vector bundle over M . For example, if F is a holomorphic
mapping from M (into say another Kähler manifold N), then we have
that

(3.15)
d

dt

(
(T − t)

∫

M
|∂F |2H(x, t; x0, T ) dµ

)
≤ 0

where |∂F |2 = gαβ̄hij̄ F i
α F j̄

β̄
, H(x, t; x0, T ) is the fundamental solution

to the backward heat equation satisfying ( ∂
∂t + ∆)H(x, t; x0, T ) =

δ(x0,T )(x, t). Dually we also have that

(3.16)
d

dt

(
t

∫

M
|∂F |2H(x, t; x0, 0) dµ

)
≥ 0

where H(x, t; x0, 0) is the fundamental solution of the heat equation
centered at (x0, 0).

4. Interpolation between Perelman’s entropy formula and the

new LYH inequality

The purpose of this section is two-folded. First we give a different
proof of Theorem 2.2. The second purpose is to show that a by-product
of this second proof also implies Perelman’s monotonicity of entropy, as
well as the energy. The computation in this section has its real version.
See [CLN] for more details. The main computation is summarized in
equation (4.7) below, which is called a pre-LYH equality. The equa-
tion (4.7) can also be viewed as a matrix version of Perelman’s entropy
monotonicity formula. In a sense, one can think that the matrix LYH
inequality proved in Section 2 is dual to Perelman’s entropy formula in
Section 3 of [P].



326 LEI NI

Consider the Kähler-Ricci flow:

(4.1)
∂

∂τ
gαβ̄ = ǫRαβ̄

where ǫ is a parameter and the conjugate heat equation:

(4.2)

(
∂

∂τ
− ∆ + ǫR

)
u(x, τ) = 0.

When ǫ < 0, (4.1) is a forward Ricci flow equation and (4.2) becomes
a forward conjugate heat equation. The equations look different from
those in Section 2 since in this section the case of ǫ < 0 corresponds to
the forward Ricci flow and the case of ǫ > 0 corresponds to the back-
ward Ricci flow. For example ǫ = 1 is exactly the setting for Perelman’s
entropy and energy monotonicity. Notice that (4.2) becomes the back-
ward conjugate heat equation for ǫ = 1. For the positive solution u(x, τ)
we define the (1, 1) tensor Zαβ̄ by

Zαβ̄ = −(log u)αβ̄ + ǫRαβ̄ .

Let ∆L denote the Lichnerowicz Laplacian on (1, 1) tensors, which is
defined by

∆Lηαβ̄ = ∆ηαβ̄ + Rαβ̄γδ̄ηγ̄δ −
1

2

(
Rαp̄ηpβ̄ + ηαp̄Rpβ̄

)

for any Hermitian symmetric (1.1) tensor ηαβ̄ . It is known, see for

example [C1], that

(
∂

∂τ
− ∆L

)
Rαβ̄ = −(1 + ǫ)∆LRαβ̄ .

The direct calculation as in [NT1] Lemma 2.1, shows that

Lemma 4.1. For any C2-function f(x, τ)

(4.3)

(
∂

∂τ
− ∆L

)
fαβ̄ =

[(
∂

∂τ
− ∆

)
f

]

αβ̄

.

Remark 4.2. A result similar to Lemma 4.1 holds for Ricci flow on
Riemannian manifolds. (See [CLN] for details.)

Now with the help of Lemmas 4.1 and 2.3, using the equation

(
∂

∂τ
− ∆L

)
(log u) = −ǫR + |∇ log u|2
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we can compute
(

∂

∂τ
− ∆L

)
Zαβ̄(4.4)

=
(
ǫR− |∇ log u|2

)
αβ̄

− ǫ(1 + ǫ)∆LRαβ̄

= ǫ(R)αβ̄ −
(
gγδ̄(log u)γ(log u)δ̄

)
αβ̄

− ǫ(1 + ǫ)∆LRαβ̄

= −Rαβ̄γδ̄(log u)γ̄(log u)δ − (log u)αγ(log u)γ̄β̄

− (log u)αγ̄(log u)γβ̄ −
[
(log u)αβ̄

]
γ
(log u)γ̄

−
[
(log u)αβ̄

]
γ̄
(log u)γ − ǫ2∆LRαβ̄ .

Hence
(

∂

∂τ
− ∆L

)
Zαβ̄(4.5)

= −ǫ2
(

∆Rαβ̄ + Rαβ̄γδ̄Rγ̄δ + ∇γRαβ̄

(
1

ǫ
∇γ̄ log u

)

+∇γ̄Rαβ̄

(
1

ǫ
∇γ log u

)
+ Rαβ̄γδ̄

(
1

ǫ
∇γ̄ log u

) (
1

ǫ
∇δ log u

))

+ ǫ2Rαγ̄Rγβ̄ − (log u)αγ(log u)γ̄β̄ − (log u)αγ̄(log u)γβ̄

+ ∇γ(Zαβ̄)∇γ̄ log u + ∇γ̄(Zαβ̄)∇γ log u.

Regrouping terms yields
(

∂

∂τ
− ∆L

)
Zαβ̄(4.6)

= −ǫ2
(

∆Rαβ̄ + Rαβ̄γδ̄Rγ̄δ + ∇γRαβ̄

(
1

ǫ
∇γ̄ log u

)

+ ∇γ̄Rαβ̄(
1

ǫ
∇γ log u) + Rαβ̄γδ̄

(
1

ǫ
∇γ̄ log u

) (
1

ǫ
∇δ log u

))

− (log u)αγ(log u)γ̄β̄ + ∇γ(Zαβ̄)∇γ̄ log u + ∇γ̄(Zαβ̄)∇γ log u

+
1

2
Zαγ̄

(
ǫRγβ̄ + (log u)γβ̄

)
+

1

2
(ǫRαγ̄ + (log u)αγ̄) Zγβ̄ .

Let

Z̃αβ̄ = Zαβ̄ − 1

τ
gαβ̄

and

Yαβ̄ = ∆Rαβ̄ + Rαβ̄γδ̄Rγ̄δ + ∇γRαβ̄

(
1

ǫ
∇γ̄ log u

)

+ ∇γ̄Rαβ̄

(
1

ǫ
∇γ log u

)
+ Rαβ̄γδ̄

(
1

ǫ
∇γ̄ log u

) (
1

ǫ
∇δ log u

)
.
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Notice that Ỹαβ̄ , defined after (2.20) in Section 2, is related to Yαβ̄

above through the equation Ỹαβ̄ = Yαβ̄ − Rαβ̄

ǫτ (remember that −ǫ here

corresponding to ǫ in Section 2). From (4.6), we can derive the equation

for Z̃αβ̄ as follows.

Lemma 4.3 (Chow-Ni).
(

∂

∂τ
− ∆L

)
Z̃αβ̄ =

(
∂

∂τ
− ∆L

)
Zαβ̄ +

1

τ2
gαβ̄ − 1

τ
ǫRαβ̄(4.7)

= −
(
ǫ2Yαβ̄ − ǫ

τ
Rαβ̄

)
− (log u)αγ(log u)γ̄β̄

+ ∇γ(Z̃αβ̄)∇γ̄ log u + ∇γ̄(Z̃αβ̄)∇γ log u

+
1

2
Z̃αγ̄

(
ǫRγβ̄ + (log u)γβ̄

)

+
1

2
(ǫRαγ̄ + (log u)αγ̄) Z̃γβ̄ − 1

τ
Z̃αβ̄ .

Notice that Z̃αβ̄ = 1
uÑαβ̄ . With some labor one can check that (2.21)

and (4.7) are equivalent. Namely one can derive one from the other,
keeping in mind that −ǫ here corresponds ǫ in Section 2. One can also
write (4.7) as

(
∂

∂τ
− ∆L

)
Z̃αβ̄ =

(
∂

∂τ
− ∆L

)
Zαβ̄ +

1

τ2
gαβ̄ − 1

τ
ǫRαβ̄(4.8)

= −
(
ǫ2Yαβ̄ − ǫ

τ
Rαβ̄

)
− (log u)αγ(log u)γ̄β̄

+ ∇γ(Z̃αβ̄)∇γ̄ log u + ∇γ̄(Z̃αβ̄)∇γ log u

+
1

2
Z̃αγ̄

(
ǫRγβ̄ + (log u)γβ̄ − 1

τ
gγβ̄

)

+
1

2

(
ǫRαγ̄ + (log u)αγ̄ − 1

τ
gαγ̄

)
Z̃γβ̄ .

For ǫ < 0, applying Lemma 2.6, the result of [C1], we know that
ǫ2Yαβ̄ − ǫ

τ Rαβ̄ ≥ 0 under the assumption that M is a complete Kähler
manifold with bounded nonnegative holomorphic bisectional curvature.
Hence the tensor maximum principle and (4.8) imply that Z̃αβ̄ ≤ 0,

which is equivalent to the statement of Theorem 2.2. Namely, (4.7)
does lead to another proof of Theorem 2.2.

Even though the computations (4.7) and (2.21) are essentially equiva-
lent, (4.7) has the advantage that when ǫ = 1 it also implies Perelman’s
energy/entropy monotonicity formulae. The following is a more detailed

computation of this claim. Let f = − log u, Z = gαβ̄Zαβ̄ . Tracing (4.6)
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gives

(
∂

∂τ
− ∆

)
Z = −ǫRᾱβZαβ̄ − ǫ2gαβ̄Yαβ̄ − (f)αγ(f)γ̄ᾱ −∇γZ∇γ̄f

(4.9)

−∇γ̄Z∇γf + Zαβ̄(ǫRβᾱ − fβᾱ)

and

gαβ̄Yαβ̄ = ∆R+Rαβ̄Rᾱβ−∇γR(
1

ǫ
∇γ̄f)−(

1

ǫ
∇γf)∇γ̄R+Rαβ̄(

1

ǫ
fᾱ)(

1

ǫ
fβ).

The following observation of Chow is also useful.

Lemma 4.4 (Chow). In the case ǫ = 1, we have that

(4.10)

∫

M

(
gαβ̄Yαβ̄

)
u dµ =

∫

M

(
Rαβ̄(Rᾱβ + fᾱβ)

)
u dµ.

Proof. The claim follows from the integration by parts and the second
Bianchi identity Rγ = Rγᾱ,α. q.e.d.

Remark 4.5. Please refer to [CLN] for the Riemannian version of
the above identity.

Recall the definition of energy F .

F(g, u, τ) =

∫

M

( |∇u|2
u

+ Ru

)
dµ.

Then (4.9) (with ǫ = 1) and Lemma 4.4 imply the the following result.

Proposition 4.6 (Perelman).

(4.11)
d

dτ
F(g, u, τ) = −

∫

M

(
|Rαβ̄ + fαβ̄ |2 + |fαβ |2

)
u dµ.

Note that this is nothing but the energy monotonicity formula of
Perelman in Section 1 of [P]. Below we show in more detail that it
follows from (4.9).

Proof of Proposition 4.6. Let ǫ = 1 in (4.9) and we have that
(4.12)(

∂

∂τ
− ∆

)
Z = −gαβ̄Yαβ̄−(f)αγ(f)γ̄ᾱ−∇γZ∇γ̄f−∇γ̄Z∇γf−Zαβ̄fβᾱ.

Now the result follows from direct computation of

d

dτ
F(g, u, τ) =

d

dτ

∫

M
Zu dµ

by applying Lemma 4.4. q.e.d.
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Similarly, if we trace (4.7) and denote Z̃ = gαβ̄Z̃αβ̄ , we have that
(

∂

∂τ
− ∆

)
Z̃ = −ǫRᾱβZ̃αβ̄ − ǫ2gαβ̄Yαβ̄ +

ǫ

τ
R− (f)αγ(f)γ̄ᾱ(4.13)

−∇γZ̃∇γ̄f −∇γ̄Z̃∇γf

+ Z̃αβ̄(ǫRβᾱ − fβᾱ) − 1

τ
Z̃.

For ǫ = 1, integration by parts as before gives

(4.14)
d

dτ

∫

M
Z̃u dµτ = −

∫

M

(
|Z̃αβ̄ |2 + |fαβ |2

)
u dµτ − 2

τ

∫

M
Z̃u dµτ .

The above equation is equivalent to Perelman’s entropy monotonicity
formula due to the following consideration. Let

Ñ (g, u, τ) := −
∫

M
u log u dµτ − m log(πτ) − m.

Then Perelman’s entropy

W(g, u, τ) =

∫

M

[
τ(2∆f̄ − |∇f̄ |2 + R + f̄ − 2m

]
u dµτ ,

where f̄ = − log u − m log(πτ), can be expressed as

(4.15) W(g, u, τ) =
d

dτ
(τÑ ) = τ

∫

M
Z̃u dµτ + Ñ .

Therefore

d

dτ
W = τ

d

dτ

∫

M
Z̃u dµτ + 2

∫

M
Z̃u dµτ(4.16)

= −τ

∫

M

(
|Z̃αβ̄ |2 + |fαβ |2

)
u dµτ

which is nothing but the entropy formula of Perelman in [P] Section 3.
As pointed out in [P], there exists a statistical mechanics analogy of

Perelman’s entropy. If we identify the quantities above with the notation
of [Ev2], Chapter I and VII, τ is the temperature; −Ñ defined above
is the log of the distribution function in [Ev2]; −W is the entropy S in

[Ev2]; τÑ is the free energy F ; ∂Ñ
∂( 1

τ
)

is the energy E in [Ev2] (which is

nonnegative by Proposition 1.2 of [P]) and the first equation of (4.15)
is just the well-known equation S = −∂F

∂τ from thermodynamics. The
negation of the right hand side of (4.16), measuring the deviation from
a shrinking soliton, is the heat capacity of [Ev2], after multiplying it by
2τ . The entropy formula (4.16) implies the concavity of S in E, one of
the defining properties for the entropy. This analogy also holds for the
solution to the heat equation with respect to a fixed Riemannian metric
with nonnegative Ricci curvature [N3].
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Remark 4.7.

(1) For the case of ǫ = 0, a computation similar to the above gives
the monotonicity formula in [N3]. The strange thing is that one
can not get a nice monotonicity formula in the case ǫ 6= −1 or
0. Namely, the interpolation formula (4.6)/(4.7) does not give
nice interpolation for energy/entropy after integration on M . One
can view (4.6)/(4.7) as a matrix version of the energy/entropy
monotonicity formula for ǫ > 0. This partially answers one of the
questions raised in the end of [N3] (still not satisfactory though).
On the other hand, when ǫ < 0, one can not get entropy mono-
tonicity out of (4.7). Instead we have a pointwise LYH inequality.
However, for ǫ = 0, both entropy and the differential Harnack fol-
lows from (4.6) (see [N3]). The above discussion indicates that
our new matrix LYH inequality is dual to the entropy monotonic-
ity of Perelman in some sense and there may perhaps be certain
profound duality behind the scene.

(2) Another puzzling point is that so far we have not been able to
verify a matrix LYH inequality analogue to Theorem 2.2 for the
Ricci flow on Riemannian manifolds, even though the above com-
putation (4.7) holds for ǫ > 0 for the Ricci flow on Riemannian
manifolds (which was carried out first in [CLN]). In short, the
interpolation between positive and negative ǫ by now only works
in Kähler category. The validity of the Riemannian case is pend-
ing on the verification of a new matrix LYH estimate similar to
Hamilton’s famous work [H1]. Please see Remark 6.4 for further
details.

5. A local monotonicity formula and its applications

This section is inspired by the works of Ecker [E1], [E2]. Let M
be a complete Kähler manifold with nonnegative bisectional curvature
(unless specified otherwise). In this section we study the localization of
the previous established monotonicity (in Section 3) for a fixed Kähler
metric. (We leave the Kähler-Ricci flow case to a later discussion.) In
[E1], the localized monotonicity formula is proved for mean curvature
flow in Euclidean spaces. Since we are dealing with curved spaces here,
we need some extra ingredients, which include Theorem 3.3 of Section 3,
the complex Hessian comparison theorem on distance functions proved
recently in [LW] (see also [CN]), and the well-known heat kernel esti-
mates of Li-Yau on complete Riemannian manifolds with nonnegative
Ricci curvature, which states that

C−1(n)

Vx(
√

t)
exp

(
−r2(x, y)

3t

)
≤ H(x, y, t) ≤ C(n)

Vx(
√

t)
exp

(
−r2(x, y)

5t

)
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for some C(n) > 0, where n is the real dimension of the manifold con-
sidered. As applications we prove an elliptic ‘monotonicity principle’ for
complex subvarieties in M . It can then be applied to prove a manifold
version of Stoll’s theorem.

Before we prove a localized version of Theorem 3.3, we need to in-
troduce some functions (notations). Let V be an analytic subvariety (of
M) of complex dimension s. For simplicity of notation, let H(x, y, τ)
be the fundamental solution of the heat equation

(
∂
∂τ − ∆

)
u(x, τ) = 0.

When x, y ∈ V, we denote (πτ)m−sH(x, y, τ) by HV(x, y, τ). For any

fixed (x0, t0) with x0 ∈ V, we denote HV(x0, y, t0 − t) by Ĥ(x0,t0),V(y, t).
For any ρ > 0, we also introduce a cut-off function

(5.1) ϕ(x0,t0),ρ(y, t) =

(
1 − r2(x0, y) + s(t − t0)

ρ2

)

+

where f+(x) = max(f, 0) for any function f , and r(x0, y) is the distance
function (of M) from x0 to y. It is easy to see that ϕ(x0,t0),ρ is supported

in Bx0(
√

ρ2 − s(t − t0)).
The following simple lemma is useful.

Lemma 5.1. On V,

(5.2)

(
∂

∂t
− ∆V

)
ϕ(x0,t0),ρ(y, t) ≤ 0.

Here ∆V denotes the Laplacian operator with respect to the induced
Kähler metric on V (strictly speaking the only regular part of V).

Proof. For any y ∈ V, choose a complex coordinate (z1 · · · , zm) as
in the proof of Theorem 3.3. Namely zα = 0 on V for any α > s. We
also use the index convention as in the proof of Theorem 3.3. Namely,
1 ≤ i, j, k, · · · ≤ s and s+1 ≤ a, b, c, · · · ≤ m. Direct computation shows
that

(
∂

∂t
− ∆V

) (
s(t − t0) + r2

x0
(y)

)
= s − gij̄

(
r2
ij̄

)

≥ s − gij̄gij̄

≥ 0.

Here we have used the Hessian comparison theorem on the distance
functions proved in [LW] (see also [CN] Corollary 1.1). q.e.d.

The following is a localized version of part (ii) of Theorem 3.3.

Proposition 5.2. Let

(5.3) EV,x0,t0,t1(t) =

∫

V
ϕ(x0,t1),ρ(y, t) Ĥ(x0,t0),V(y, t) dAV .
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When in the right context we also briefly denote it by EV , then

(5.4)
d

dt
EV(t) ≤ −

∫

V
|∇⊥ log Ĥ(x0,t0),V |2ϕ(x0,t1),ρĤ(x0,t0),V dAV .

Proof. The computation (3.8) implies that

(5.5)

(
∂

∂t
+ ∆V

)
Ĥ(x0,t0),V ≤ −|∇⊥ log Ĥ(x0,t0),V |2Ĥ(x0,t0),V .

By Lemma 5.1 we have that

d

dt
EV(t) =

∫

V

(
∂

∂t
ϕ(x0,t1),ρ

)
Ĥ(x0,t0),V + ϕ(x0,t1),ρ

∂

∂t
Ĥ(x0,t0),V dAV

=

∫

V

((
∂

∂t
− ∆V

)
ϕ(x0,t1),ρ

)
Ĥ(x0,t0),VdAV

+

∫

V
ϕ(x0,t1),ρ

((
∂

∂t
+ ∆V

)
Ĥ(x0,t0),V

)
dAV

+

∫

V
(∆Vϕ(x0,t1),ρ)Ĥ(x0,t0),V − ϕ(x0,t1),ρ

(
∆VĤ(x0,t0),V

)
dAV

≤ −
∫

V
|∇⊥ log Ĥ(x0,t0),V |2ϕ(x0,t1),ρĤ(x0,t0),V dAV .

Here we have used the observation that∫

∂(V∩Bx0(
√

ρ2+s(t0−t)))
Ĥ(x0,t0),V〈∇Vϕ(x0,t1),ρ, ν〉 dS ≤ 0

where ν is the unit out-normal of ∂(V ∩Bx0(
√

ρ2 + s(t1 − t))) in V and

dS is the area integral of ∂(V ∩ Bx0(
√

ρ2 + s(t1 − t))).
In the above proof we have pretended that ϕ(x0,t0),ρ(y, t) is a smooth

function with differential inequality (5.2). But in general it is only a
Lipschitz function satisfying (5.2) in the sense of distribution. To make
the argument rigorous we can introduce a cut-off function as in [E1].
For any ǫ > 0, let ζǫ(w) ∈ C1(R) be a function satisfying 0 ≤ ζǫ ≤ 1,
ζǫ(w) = 1 if w ≥ −n log(1− ǫ), ζǫ(w) = 0 if w ≤ 0 and |ζ ′ǫ| ≤ 2

−n log(1−ǫ) .

Hence |ζ ′ǫ(w)|w ≤ 2 on [0,−n log(1 − ǫ)] and ζ ′ǫ(w) = 0 for all other
w. We may also assume that ζ ′ǫ ≥ 0. Let ηǫ = ζǫ(ϕ(x0,t1),ρ). From the
construction of ζǫ we have that |ζ ′ǫ(ϕ(x0,t1),ρ)|ϕ(x0,t1),ρ ≤ 2. It then is
easy to see that ∫

V
ϕ(x0,t1),ρĤ(x0,t0),V

∂ηǫ

∂t
→ 0

as ǫ → 0. Similarly, as ǫ → 0,∫

V
ϕ(x0,t1),ρ|∇Ĥ(x0,t0),V ||∇ηǫ| → 0.

Now let

EV,ǫ(t) =

∫

M
ϕ(x0,t1),ρĤ(x0,t0),Vηǫ dAV .
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Then

d

dt
EV,ǫ(t)

=

∫

V

(
∂

∂t
ϕ(x0,t1),ρ

)
Ĥ(x0,t0),Vηǫ

+ ϕ(x0,t1),ρηǫ

(
∂

∂t
Ĥ(x0,t0),V

)
dAV +

∫

V
ϕ(x0,t1),ρĤ(x0,t0),V

∂ηǫ

∂t
dAV

=

∫

V

(
∂

∂t
ϕ(x0,t1),ρ

)
ηǫĤ(x0,t0),V +

〈
∇Vϕ(x0,t1),ρ,∇V

(
ηǫĤ(x0,t0),V

)〉

+

∫

V
ϕ(x0,t1),ρηǫ

((
∂

∂t
+ ∆V

)
Ĥ(x0,t0),V

)

−
∫

V
〈∇Vϕ(x0,t1),ρ,∇Vηǫ〉Ĥ(x0,t0),V − 〈∇Vϕ(x0,t1),ρ,∇VĤ(x0,t0),V〉ηǫ

−
∫

V
ϕ(x0,t1),ρηǫ

(
∆VĤ(x0,t0),V

)
+ ϕ(x0,t1),ρĤ(x0,t0),V

∂ηǫ

∂t

≤ −
∫

V
|∇⊥ log Ĥ(x0,t0),V |2ϕ(x0,t1),ρĤ(x0,t0),V dAV

−
∫

V
〈∇Vϕ(x0,t1),ρ,∇Vηǫ〉Ĥ(x0,t0),V + 〈∇Vηǫ,∇VĤ(x0,t0),V〉ϕ(x0,t1),ρ

+

∫

V
ϕ(x0,t1),ρĤ(x0,t0),V

∂ηǫ

∂t
.

Observing that

−〈∇Vϕ(x0,t1),ρ,∇Vηǫ〉Ĥ(x0,t0),V = −|∇ϕ(x0,t1),ρ|2ζ ′(ϕ(x0,t1),ρ) ≤ 0

and the last two terms, in the above estimate of d
dtEV,ǫ(t), tend to zero

as ǫ → 0, we have the claimed monotonicity by taking ǫ → 0. q.e.d.

We denote the 2s-dimensional Hausdorff measure of set V∩Bx0(ρ) by
AV,x0(ρ). As a consequence we have the following elliptic ‘monotonicity
principle’ (can be viewed a Bishop-Lelong lemma on manifolds).

Corollary 5.3 (Monotonicity principle). Let δ(s) = 1√
2+4s

. There

exists C = C(m, s) such that for any ρ′ ∈ (0, δ(s)ρ)

(5.6)
AV,x0(ρ

′)(ρ′)2(m−s)

Vx0(ρ
′)

≤ C(m, s)
AV,x0(ρ)ρ2(m−s)

Vx0(ρ)
.

Proof. The proof follows essentially the argument of Proposition 3.5
in [E2], applying Proposition 5.2 with t1 = t0 − δ2(s)ρ2 and t0 replaced
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by t0 + ρ′2. Using the heat kernel upper bound of Li-Yau we have that

Ĥ(x0,t0+ρ′2),V(y, t0 − δ2(s)ρ2)(5.7)

≤
(
π(δ2(s)ρ2 + ρ′2)

)m−s C(m)

Vx0(
√

ρ′2 + δ2(s)ρ2)

≤ C(m, s)

(
πρ2

)m−s

Vx0(δ(s)ρ)

≤ C(m, s)

(
πρ2

)m−s

Vx0(ρ)
.

Here we have used the Bishop volume comparison in the last inequality.
Notice that ϕ(x0,t1),ρ(x, t0 − δ2(s)ρ2) ≤ 1 and supported inside Bxo(ρ).
Hence (5.7) implies that

(5.8) EV(t0 − δ2(s)ρ2) ≤ C(m, s)
AV,x0(ρ)ρ2(m−s)

Vx0(ρ)
.

By Proposition 5.2 we know that

(5.9) EV(t0 − δ2(s)ρ2) ≥ EV(t0 − ρ′2).

On the other hand, by Li-Yau’s heat kernel lower bound we also have
that, for all y ∈ Bx0(ρ

′),

Ĥ(x0,t0+ρ′2),V(y, t0 − ρ′2)(5.10)

≥
(
π(2ρ′2)

)m−s C(m)

Vx0(
√

2ρ′)
exp

(
−r2(x0, y)

6ρ′2

)

≥ C(m, s)

(
πρ′2

)m−s

Vx0(ρ
′)

.

Again we have used the Bishop volume comparison theorem. Notice
that for y ∈ Bx0(ρ

′)

ϕ(x0,t1),ρ(y, t0 − ρ′2) ≥ 1 − ρ′2 + s(δ2(s)ρ2 + ρ′2)
ρ2

(5.11)

≥ 1 − δ2(s)(1 + 2s)

=
1

2
.

Combining (5.10), (5.11) we have that

(5.12) EV(t0 − ρ′2) ≥ C(m, s)
ρ′2(m−s)AV,x0(ρ

′)
Vx0(ρ

′)
.

Combining (5.8), (5.9) and (5.12) we complete the proof. q.e.d.
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Remark 5.4. In Proposition 3.1.1 of [M1], a (considerably weaker)
comparison on the relative volumes (in the spirit of Corollary 5.3) was
first established for the zero divisors of holomorphic functions of poly-
nomial growth, under further assumptions on M being of maximum
volume growth and of quadratic curvature decay, using a very different
method.

The following consequence of Corollary 5.3 is somewhat surprising.
The result sharpens the Bishop-Gromov volume comparison theorem in
the presence of compact subvarieties.

Corollary 5.5. Let Mm be a complete Kähler manifold with non-
negative holomorphic bisectional curvature. Suppose that M contains
a compact subvariety V of complex dimension s. Then there exists
C = C(m, s) > 0 such that for δ(s)ρ ≥ ρ′ ≫ 1,

Vx0(ρ)

Vx0(ρ
′)

≤ C

(
ρ

ρ′

)2(m−s)

.

In particular,

lim sup
ρ→∞

Vx0(ρ)

ρ2(m−s)
< ∞.

By application of the above ‘monotonicity principle’ we can have an-
other proof of Theorem 3.1 of [N4]. In fact the new proof gives a char-
acterization of divisors defined by holomorphic functions of polynomial
growth (also called ‘polynomial functions’ according to the notation in
[W2]).

Theorem 5.6. Let M be a complete Kähler manifold with nonneg-
ative bisectional curvature. Let V be an analytic divisor of M . Define
the Lelong number (elliptic) at infinity of V by

(5.13) ν∞(V) = sup
x0∈M

lim sup
ρ→∞

πρ2AV,x0(ρ)

Vx0(ρ)
.

Assume further that H1(M,O∗) = 0. Then V is defined by a polynomial
function if and only if ν∞(V) < ∞. Moreover, if V = Z(f) for some
f ∈ Pd(M) (the space of holomorphic functions of polynomial growth
with degree at most d) then there exists a C(m) such that for any x0 ∈
M , the Lelong number ν(x0,V) at x0 is bounded by

(5.14) ν(x0,V) ≤ C(m)ν∞(V)

and

(5.15) ν∞(V) ≤ C(m) d.

Proof. Notice that (5.14) follows from Corollary 5.3 directly. First
assume that V is the zero divisor of a polynomial function f (∈ Pd(M)
for some d). We shall show (5.15), which certainly implies that ν∞(V) <
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∞. We follow the notation in Section 3 of [N4] (also Section 3 of this
paper). Let v(x, t) =

∫
M H(x, y, t)∆ log |f |2 dvy and w(x, t) = ∂

∂tv(x, t).
By Corollary 3.5 we know that

tw(x, t) = (πt)

∫

V
H(x, y, t) dAV .

By Li-Yau’s lower bound estimate on heat kernel we have that

tw(x, t) ≥ C(m)
πtAV,x(

√
t)

Vx(
√

t)
.

Then (5.15) follows from (3.13) of [N4].
Now we assume that ν∞(V) < ∞ and we prove that V is the divisor

of a polynomial function. First, by the solution to Cousin problem II
(directly from the vanishing of the cohomology H1(M,O∗)) we know
that there exists a holomorphic function f such that Z(f) = V. First
we apply Theorem 3.1 of [N1], a ‘moment type estimate’ to estimate
tw(x, t) from above. Note that w(x, t) =

∫
V H(x, y, t) dAV(y) is well-

defined due to the assumption that ν∞(V) < ∞. By Corollary 3.5 we
know that

w(x, t) =

∫

M
H(x, y, t)∆ log |f |2 dµ(y).

Applying the ‘moment type estimate’, Theorem 3.1 of [N1], we have
that

(5.16) tw(x, t) ≤ C(m)ν∞(V).

Now we define v(x, t) =
∫ t
0 w(x, τ) dτ + log |f |2(x). Then (5.16) implies

that v(x, t) ≤ C(m)ν∞(V) log(t + 1) + log |f |2(x) for t ≫ 1. (Here x is
chosen so that x ∈ M \ V.) One can also check that v(x, t) is a solution
to the heat equation

(
∂
∂t − ∆

)
v(x, t) = 0 with v(x, 0) = log |f |2(x).

Now again we apply the ‘moment type estimate’, Theorem 3.1 of [N1],
and we have that∫

Bx(r)
log |f |2(y) dµ(y) ≤ C(m, x)ν∞(V) log(r + 1).

Now applying the mean-value inequality of Li-Schoen [LS] to the sub-
harmonic function log |f |2 we conclude that f is of polynomial growth.

q.e.d.

Remark 5.7.

(1) From the proof it is easy to see that one only needs ν(V, x0) < ∞
for some x0 to conclude that the defining function f is a ‘polyno-
mial function’. Here

ν(V, x0) := lim sup
r→∞

πρ2AV,x0(ρ)

Vx0(ρ)
.
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We do not have to worry that in the proof x may be on V since
the finiteness of ν(V, x0) implies the finiteness of ν(V, x) for any
x ∈ M .

(2) In [St] (see also [Ru] for the codimension one case), Stoll proved
that an analytic divisor V in M = C

m is algebraic if and only if
ν∞(V) < ∞. The result was later generalized to the case M being
an affine algebraic variety in [GK]. In fact, in [St] the result was
proved for any analytic sets of C

m. It is desirable to generalize
our result to the high codimension case.

(3) The assumption on vanishing of the cohomology in the above the-
orem is satisfied, for example, when M is Stein (cf. Theorem 5.5.2
of [Ho]).

In [N4], the author developed a parabolic approach to compare the
vanishing order of a holomorphic function, at any fixed point, with the
growth order at infinity. The method is sharp and effective. It turns out
that the parabolic method there is also related to the Nevanlinna theory
for several complex variables. In order to illustrate this connection we
need to recall some basic notations from the Nevanlinna theory (cf.
[G, W1]).

We say that a function s : R+ → R+ has finite order if

Ord (s) := lim sup
r→∞

log s(r)

log r
< ∞.

For a f ∈ O(M), the space of holomorphic functions, we define the
order of f in sense of Hadamard by

Ord H(f) = Ord (log(A(r)))

where A(r) = supx∈Bo(r) |f |(x) with o ∈ M being a fixed point. Fol-

lowing [G, St] for any analytic subvariety of complex dimension s we
define

nV(x0, r) =
Ax0(r)(πr2)m−s

Vx0(r)

and

NV(x0, r) =

∫ r

0
(nV(x0, τ) − nV(x0, 0))

dτ

τ
+ nV(x0, 0) log r.

NV(x0, r) (nV(x0, r)) is called the counting function since for m = 1
and V being the zeros of a holomorphic function, it simply counts the
number of zeros in B(x0, r). If x0 does not lie in V one has NV(x0, r) =∫ r
0 nV(x0, τ)dτ

τ . One can view the estimate (5.15) as bounding the count-
ing function by the growth order, a Nevanlinna type inequality. The fol-
lowing result is a further generalization of (5.15), whose correspondence
in the Euclidean space is known as the transcendental Bézout estimate.
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Corollary 5.8. Let M be a complete noncompact Kähler manifold
with non-negative Ricci curvature. Let f ∈ O(M) be a holomorphic
function of finite order. Let Z(f) be the zero divisor of f . Then

(5.17) Ord (NZ(x0, r)) ≤ Ord H(f).

Proof. The proof follows the same line of argument as the proof of
Theorem 5.6. We leave it to the interested readers. q.e.d.

We found the connection between the parabolic equations (as well as
the related differential Harnack inequality) and the Nevanlinna theory
quite interesting.

6. The heat kernel and the reduced volumes

In this section we consider the fundamental solution H(y, t; x, t0) to
the forward conjugate heat equation for a family of metrics deformed
by Kähler-Ricci/Ricci flow (2.1). We shall prove a sharp lower
bound on H(y, t; x, t0). In [N5] we derived an estimate for the funda-
mental solution of the time-dependent heat equation itself (instead of
(2.2)). The estimate there is only valid for short time intervals. In [Gu],
a rough lower bound was obtained through the earlier mentioned Har-
nack inequality, Theorem 2.7. Notice that the result in [Gu] is not sharp
and the result in [N5] is only sharp in the exponents. In this section we
show a sharp lower bound for the fundamental solution to the forward
conjugate heat equation in the case that M is either a complete Rie-
mannian bounded nonnegative curvature operator or a complete Kähler
manifold with bounded nonnegative bisectional curvature. For the sake
of simplicity we only state the result for the Kähler-Ricci flow and leave
the Riemannian analogue to the interested readers. Before we state our
result we need to recall some notations and computations from [FIN]
(which follow closely the computation in [P]). For simplicity we assume
that t0 = 0.

Let g(t) be a complete solution to Kähler-Ricci flow on Mm × [0, T ]
(where m = dimC(M) and n = 2m). Fix x0 and let γ be a path (x(η), η)
joining (x0, 0) to (y, t). Following [P] (see also [LY, FIN]) we define

(6.1) L+(γ) =

∫ t

0

√
η

(
R + 4|γ′(η)|2

)
dη.

Let X = γ′(t) = dzα(t)
dt

∂
∂zα and let Y be a variational vector field along

γ. Here |γ′(t)|2 = gαβ̄
dzα(t)

dt
dzβ̄(t)

dt . Using L+ as energy we can define the

L+-geodesics and we denote L+(y, t) to be the length of the shortest
geodesic jointing (x0, 0) to (y, t). We also define

ℓ+(y, t; x0, 0) :=
1

2
√

t
L+(y, t).
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Following the first and second variation calculation of [P] (see also
[FIN]) we have that

|∇ℓ+|2 = −R +
ℓ+

t
+

K

t3/2
,(6.2)

∂ℓ+

∂t
= R− K

2t3/2
− ℓ+

t
,(6.3)

∆ℓ+ ≤ R +
n

2t
− K

2t3/2
.(6.4)

Here

K :=

∫ t

0
η3/2H(X) dη,

where H(X) := ∂R/∂t + 2〈∇R, X〉 + 2〈X,∇R〉 + 4Ric(X, X) + R/t is
exactly the traced LYH differential Harnack expression in [C1] applying
to the (1, 0) vector field 2X.

Theorem 6.1. Let (Mm, g(t)) be a complete solution to a Kähler-
Ricci (Ricci) flow with bounded nonnegative bisectional curvature (curva-
ture operator). Let H(y, t; x0, 0) be the fundamental solution to the for-
ward conjugate heat equation centered at (x0, 0). Then

ũ(y, t) :=
1

(πt)m
exp (−ℓ+(y, t; x0, 0))

satisfies

(6.5)

(
∂

∂t
− ∆ −R

)
ũ(y, t) ≤ 0.

In particular,

(6.6) ũ(y, t; x0, 0) ≤ H(y, t; x0, 0)

and

θ̃
(x0,0)
+ (t) :=

∫

M
ũ(y, t) dµt(y)

is monotone decreasing. Moreover, the equality in (6.5), or (6.6) implies
that M is a gradient expanding soliton.

Proof. First (6.2)–(6.4) implies that
(

∂

∂t
− ∆ −R

) (
1

(πt)m
exp (−ℓ+(y, t))

)

= −K

t
3
2

(
1

(πt)m
exp (−ℓ+(y, t))

)
≤ 0.

Here we have used the fact that K ≥ 0 under the assumption that M has
bounded non-negative bisectional curvature. Also, if the equality holds
it implies that K ≡ 0. This further implies that M is an expanding
soliton from the computation in [FIN]. In order to prove (6.6) one just
needs to apply the maximum principle (cf. [NT2, N5]) and notice that
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limt→0
1

(πt)m exp(−ℓ+(y, t)) = δx0(y). The equality case follows from the

analysis on the equality case in [FIN]. q.e.d.

Remark 6.2. In [CY], Cheeger and Yau proved that for complete
manifolds with nonnegative Ricci curvature, the heat kernel H(x, y, t)
has the lower bound estimate

H̄(r(x, y), t) :=
1

(4πt)
n
2

exp

(
−r2(x, y)

4t

)
≤ H(x, y, t)

by showing that the transplant of the Euclidean heat kernel H̄(r(x, y), t)
is a sub-solution to the heat equation. (Here r(x, y) is the distance
function as before.) Recall that in [P], Perelman first discovered that
there is a similar result for the backward Ricci flow, even without any
curvature sign assumptions (this is the astonishing part of Perelman’s
work). Namely he proved, for ∂

∂τ gij = 2Rij , that one can define the
reduced distance ℓ(y, τ) (formally by the same expression as ℓ+) and
that

(6.7)

(
∂

∂τ
− ∆ + R

)
ū(y, τ) ≤ 0

where

ū(y, τ) :=
1

(4πτ)
n
2

exp(−ℓ(y, τ)).

Perelman further showed (in Corollary 9.5 of [P]) that ū gives a lower
bound for the fundamental solution to the backward conjugate heat equa-
tion

(
∂
∂τ − ∆ + R

)
u(y, τ) = 0. One should also refer to Theorem 4.3

in [LY] for a precedence of Perelman’s second variation computation
in [P] Section 7. Thus both Perelman’s monotonicity of the reduced
volume and Theorem 6.1 above can be viewed as a nonlinear analogue
of the earlier work of Cheeger-Yau in [CY] and Li-Yau in [LY].

Tracing the computation of [FIN] we also have the following esti-
mates for ũ(x, t).

Proposition 6.3. Assume that (M, g(t)) is a Kähler-Ricci flow with
bounded nonnegative bisectional curvature on M × [0, T ). Let ũ(x, t) be
as in Theorem 5.1. Then

(6.8) log(ũ)αβ̄ + Rαβ̄ +
1

t
gαβ̄ ≥ 0.

The equality holds if and only if (M, g(t)) is an expanding Kähler-Ricci
solution.

Notice that (6.8) is equivalent to the estimate (2.3) on u(x, t), any
positive solution to the forward conjugate heat equation. On the other
hand, ũ(x, t) is only a sub-solution to the forward conjugate heat equa-
tion.
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Remark 6.4. In Corollary 2.1 of [FIN], we showed that under the
assumption of bounded nonnegative curvature operator there exists ex-
actly the same estimate as (6.8) (simply without the bars). This suggests
that one may have an estimate similar to Theorem 2.2 for the Riemann-
ian case on positive solution u of the forward conjugate heat equation.
Indeed, this can be shown if we can prove, under the assumption of M
having bounded nonnegative curvature operator, that

Yij := ∇i∇jR− 2∇kRij∇k(log u) + 2Rikjl∇k(log u)∇l(log u)

+RikRjk +
1

t
Rij ≥ 0.(6.9)

This claim is based on the following computation. Note that Yij ≡ 0
on gradient expanding solitons and its trace is the same as the trace of
Hamilton’s matrix LYH expression in [H1].

Lemma 6.5. Let

Z̃ij = Rij + (log u)ij +
1

2t
gij .

Then
(

∂

∂t
− ∆L

)
Z̃ij = Yij + 2∇kZ̃ij∇k(log u)(6.10)

+ Z̃ik

(
log(u)jk − Rjk − 1

2t
gjk

)

+

(
log(u)ik − Rik − 1

2t
gik

)
Z̃jk

where ∆Lηij = ∆ηij + 2Rikjlηkl − Rikηkj − Rikηik is the Lichnerowicz
operator acting on the symmetric 2-tensor ηij.

The above computation was first carried out in [CLN] for the back-
ward Ricci flow, with Yij being replaced by Hamilton’s matrix Harnack
expression for shrinkers. Notice also that the matrix Harnack expres-
sion Yij and Hamilton’s expression for Ricci expanders are the same if
the manifold is Kähler.

One can obtain some upper bound on the heat kernel H(x, y, t, 0)
using the Harnack inequality proved in Corollary 3.8 and the fact that∫
M H(x, y, t, 0) dµt = 1. But the result is not as satisfactory as for

the fixed metric case of Li-Yau. Hence we shall leave this to a later
investigation. On the other hand, the localization techniques of Ecker
can be applied to the reduced volume for the Ricci expanders (defined
in [FIN]) to obtain the monotonicity of a localized reduced volume
without assuming bisectional curvature (nor curvature operator) being
nonnegative. Recall that in [FIN], the authors proved that, if M is a
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closed manifold, the forward reduced volume

θ
(x0,0)
+ (t) :=

∫

M
û(x, t) dµt

is monotone non-increasing, where û(x, t) = eℓ+(x,t)

(πt)m . (We call θ̃
(x0,0)
+ ,

defined in Theorem 6.1, the second forward reduced volume.) Here we
define û for the Kähler case to be coherent with our previous discus-
sions. This monotonicity has a severe restriction since the reduced vol-

ume θ
(x0,0)
+ (t) is only meaningful when M is compact. We shall show

the monotonicity of a localized reduced volume, which is well-defined
on complete manifolds, to compensate such restriction. In order to put

the result in its general form we denote by ℓ
(x0,t0)
+ the forward reduced

distance with respect to (x0, t0) if one replaces the reference point (x0, 0)

with (x0, t0). Correspondingly we denote by û(x0,t0) and θ
(x0,t0)
+ , the re-

duced volume function and the reduced volume with respect to (x0, t0),
respectively. Let

L̄
(x1,t1)
+ = (t − t1)ℓ

(x1,t1)
+

and

ϕ
(x1,t1)
t2,ρ (x, t) =

(
1 − L̄

(x1,t1)
+ (x, t) + m(t − t2)

ρ2

)

+

.

Then (6.2)–(6.4) imply that

(6.11)

(
∂

∂t
+ ∆ −R

)
û(x0,t0)(x, t) ≤ 0

and

(6.12)

(
∂

∂t
− ∆

)
ϕ

(x1,t1)
t2,ρ (x, t) ≤ 0.

Notice that if R is uniformly bounded from below, ϕ
(x1,t1)
t2,ρ (x, t) is com-

pactly supported. We then have the following localized monotonicity of
the reduced volume.

Proposition 6.6.

(6.13)
d

dt
θ
(x0,t0)
+,ϕ (t) ≤ 0

where

(6.14) θ
(x0,t0)
+,ϕ (t) =

∫

M
ϕ

(x1,t1)
t2,ρ (x, t)û(x0,t0)(x, t) dµt.

It turns out that one can construct another sub-solution to the heat
equation with compact support, similar to ϕ

(x1,t1)
t2,ρ (x, t) defined above,

through Perelman’s reduced distance ℓ(x1,t1)(x, τ), with τ = t1−t. (Note

that ℓ(x1,t1)(x, t1 − t) is only defined for t ≤ t1. Please refer to [P]
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Section 7 for the detailed discussions.) Here we use (x1, t1) to spec-
ify the reference space-time point with respect to which the reduced
distance is defined. Recall that from [P] Section 7, L̄(x1,t1)(x, t) :=

(t1 − t)ℓ(x1,t1)(x, t1 − t) (again we do not have the factor 4 since we are
in the Kähler setting) satisfies the differential inequality:

(
− ∂

∂t
+ ∆

)
L̄(x1,t1)(x, t) ≤ m.

Then in the case R is bounded from below, we may define a compact
supported function

ψ
(x1,t1)
t2,ρ (x, t) :=

(
1 − L̄(x1,t1)(x, t) + m(t − t2)

ρ2

)

+

.

It is easy to see that

(6.15)

(
∂

∂t
− ∆

)
ψ

(x1,t1)
t2,ρ (x, t) ≤ 0.

This gives another localization on the forward reduced volume.

Proposition 6.7.

(6.16)
d

dt
θ
(x0,t0)
+,ψ (t) ≤ 0

where

(6.17) θ
(x0,t0)
+,ϕ (t) =

∫

M
ψ

(x1,t1)
t2,ρ (x, t)û(x0,t0)(x, t) dµt.

The similar idea can also be applied to Perelman’s entropy. Let
(x0, t0) be a fixed space-time point. Let τ = t0 − t and u(x, τ) be the
fundamental solution of the backward conjugate heat equation ∂

∂τ −∆+R
centered at (x0, t0). Write u = e−f

(πτ)m and define

v =
(
τ

(
2∆f − |∇f |2 + R

)
+ f − 2m

)
u.

Then it was proved in [P] that
(6.18)(

∂

∂τ
− ∆ + R

)
v = −τ

(
|Rαβ̄ + ∇α∇β̄f − 1

τ
gαβ̄ |2 + |∇α∇βf |2

)
u

and v ≤ 0. Applying (6.12) or (6.15) we can have the following local
monotonicity formulae.

Proposition 6.8.

d

dt

(∫

M
−vϕ

(x1,t1)
t2,ρ dµt

)
(6.19)

≤ −
∫

M
τ

(
|Rαβ̄ + ∇α∇β̄f − 1

τ
gαβ̄ |2 + |∇α∇βf |2

)
uϕ

(x1,t1)
t2,ρ dµt
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and

d

dt

(∫

M
−vψ

(x1,t1)
t2,ρ dµt

)
(6.20)

≤ −
∫

M
τ

(
|Rαβ̄ + ∇α∇β̄f − 1

τ
gαβ̄ |2 + |∇α∇βf |2

)
uψ

(x1,t1)
t2,ρ dµt.

Proof. The proof is just direct computations and integration by parts,
using (6.12), (6.15) and (6.18). q.e.d.

There is no difference for the Riemannian cases. The formulae are
exactly the same except some factors caused by the different definitions
of the Laplacian and gradient operators.

In the derivation of Propositions 6.6, 6.7 and 6.8 we have pretended
that all functions involved are smooth. In general this may not be the

case. For example, we only know that ϕ
(x1,t1)
t2,ρ and ψ

(x1,t1)
t2,ρ are Lipschitz

and satisfy the claimed differential inequality in the sense of distribu-
tions (cf. [Ye]). However, we can follow the earlier proof of Proposition
5.2 to make the derivation rigorous. This approximation argument can
also be found in Section 2 of [E1]. We leave the detailed rigorous proof
to the interested readers.

We conclude this section by an application of Theorem 6.1 to the
study of the large time behavior of Kähler-Ricci flow. Let (Mm, g0)
be a complete Kähler manifold with bounded nonnegative holomorphic
bisectional curvature. If we further assume that (M, g0) has maximum
volume growth, namely for any x, Vx(r) (the volume of the ball B(x, r))
is bounded from below by δr2m for some positive constant δ, in [N6]
we proved that the Kähler-Ricci flow (2.1) has a long time solution
with the initial data g(x, 0) = g0(x). Moreover, there exists a constant
A = A(M) > 0 such that t ≫ 1,

(6.21) tR(x, t) ≤ A.

Applying Theorem 6.1 to this situation we can show the following result.

Corollary 6.9. Let (M, g0) be a complete Kähler manifold as above.
Let g(x, t) be a long time solution to Kähler-Ricci flow as above. For

any (xj , tj) with tj → ∞ and
r2
0(xj ,x0)

tj
≤ C for some fixed point x0 ∈ M

and C > 0 (where r0(x, y) is the distance function with respect to
the initial metric g(0)), define gj(t) = 1

tj
g(tjt). Then the pointed se-

quence (M, xj , gj(x, t)) sub-sequentially converges to a gradient expand-
ing Kähler-Ricci soliton (M∞, x∞, g∞(t)).

Proof. For any t, denote by Bt(x, r) the ball of radius r with respect
to g(t), and by Vt(x, r) the volume of this ball (with respect to g(t)). By
Theorem 2.2 of [NT3], we know that Vt(x, r) ≥ δr2m. Together with
(6.21) we have the injectivity radius bounded from below uniformly
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for gj(t). Therefore, by Hamilton’s compactness theorem, (M, xj , gj(t))
sub-sequentially converges to (M∞, x∞, g∞(t)), a solution to Kähler-
Ricci flow defined on M∞ × (0,∞). The only thing we need to prove
is that (M∞, g∞(t)) is an expanding soliton. It is easy to see that
(M∞, g∞) also has bounded nonnegative bisectional curvature and the
maximum volume growth. By Corollary 1 of [N6], we know that M∞
is topologically R

2m. The fact that it is an expanding soliton follows
from the monotonicity consideration. Let us adapt the notations from
Theorem 6.1. Let (x0, 0) be the fixed reference point, with respect to
which we defined the forward reduced distance function ℓ+(x, t), then the
second forward reduced volume function ũ(x, t) and the second forward

reduced volume θ̃+(t). By the proof of Theorem 6.1 we have that

d

dt
θ̃+(t) = −

∫

M

K

t3/2
ũ dµt,

from which we can conclude that

θ̃+(tj) − θ̃+(2tj) =

∫ 2tj

tj

1

t3/2

∫

M
Kũ dµt dt.

Since θ̃+(tj) − θ̃+(2tj) → 0 as j → ∞,
∫ 2tj

tj

1

t3/2

∫

M
Kũ dµt dt → 0.

Taking limit we have that on (M∞, g∞(t))
∫ 2

1

1

t3/2

∫

M∞

Kũ∞ dµt dt = 0.

Here ũj(y, t) = e−ℓ+(y,tjt)

(πt)m and ũ∞ = e
−ℓ

(∞)
+ (y,t)

(πt)m with ℓ
(∞)
+ (y, t) being the

limit of ℓ+(y, tjt). By the assumption on xj , it is easy to check that
ℓ(xj , tjt) ≤ C for some C independent of j, hence ũ∞ > 0 at least
somewhere on M∞. (Strictly speaking one has to check that 1

t
1/2
j

K(tjt)

stay bounded in finite balls centered at xj with respect to gj , which
can be verified by the derivative estimates of Shi.) The conclusion now
follows from [C2] (see also Theorem 4.1 of [N2] for a short proof) since
K = 0 implies that the linear trace LYH quantity H achieves its mini-
mum (zero) somewhere. q.e.d.

Remark 6.10.

(1) Corollary 6.9 simply says that the blow-down limit of a Type III
solution is an expanding soliton. The result is in some sense dual
to Proposition 11.2 of [P]. It is also similar to the mean curvature
flow result of [Hu]. The maximum volume growth assumption can
be weakened to a certain κ-noncollapsing condition in terms of the
lower bound of θ̃+(t).
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(2) It has been proved in [CT1] (see also [CT2] for more recent excit-
ing progresses towards the uniformization problem) that a gradient
expanding Kähler-Ricci soliton must be biholomorphic to C

m.
(3) One can have a similar result for the Riemannian case, replacing

the nonnegativity of the bisectional curvature by the nonnegativity
of the curvature operator.

7. Appendix: A parabolic relative volume comparison

theorem

Recall that Cheeger and Yau proved that on a complete Riemannian
manifold with nonnegative Ricci curvature, the heat kernel H(x, y, τ)
(the fundamental solution of the operator

(
∂
∂τ − ∆

)
) has the lower es-

timate

(7.1) H(x, y, τ) ≥ 1

(4πτ)
n
2

exp

(
−r2(x, y)

4τ

)

where r(x, y) is the distant function on the manifold. This fact can be
derived out of the maximum principle and the differential inequality

(
∂

∂τ
− ∆

) (
1

(4πτ)
n
2

exp

(
−r2(x, y)

4τ

))
≤ 0.

Integrating on the manifold M , this differential inequality also implies
the monotonicity (monotone non-increasing) of the integral

(7.2) Ṽ (x0, τ) :=

∫

M

1

(4πτ)
n
2

exp

(
−r2(x0, y)

4τ

)
.

In [P], Perelman discovered a striking analogue of this comparison result
for the Ricci flow geometry. More precisely, he introduced a length
function, called the reduced distance,

ℓx0,g(τ)(y, τ̄) := inf
γ

1

2
√

τ

∫ τ̄

0

√
τ

(
|γ′(τ)|2 + R(γ(τ), τ)

)
dτ

for all γ(τ) with γ(0) = x0, γ(τ̄) = y (in the right context, we often omit
the subscript x0, g(τ)), and a functional, called the reduced volume,

(7.3) Ṽg(τ)(x0, τ) :=

∫

M

1

(4πτ)
n
2

exp (−ℓ(y, τ))

with respect to a solution gij(x, τ) to the backward Ricci flow

∂

∂τ
gij = 2Rij

on M × [0, a]. Perelman proved further that Ṽg(τ)(x0, τ) is monotone
non-increasing in τ . In fact, he showed this monotonicity result via a
space-time relative comparison result and used it to give a more flexible
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proof of the κ-noncollapsing on the solution to Ricci flow, defined on
M × [0, T ], for any given finite time T with given initial data.

In [P], Perelman also discovered a more rigid monotone quantity,
the entropy functional. These two functionals can be related through a
differential inequality of LYH type. One can refer to [CLN] for an ex-
position on this relation. The entropy is stronger but less flexible. The
entropy monotonicity has its analogue for the positive solutions to a
linear heat equation on a fixed Riemannian manifold with non-negative
Ricci curvature. This was derived in [N3], where the author also ob-
served that the entropy defined on a complete Riemannian manifold M
with non-negative Ricci curvature is related to the volume growth of
the manifold. More precisely, let

(7.4) W(f, τ) :=

∫

M

(
τ |∇f |2 + f − n

) e−f

(4πτ)
n
2

dµ

for any τ > 0 and C1 function f with
∫
M

e−f

(4πτ)
n
2

dµ = 1. If u(x, τ) =

e−f

(4πτ)
n
2

is a solution to the heat equation, it was proved in [N3] that

W(f, τ) is monotone non-increasing in τ . Moreover, it was shown that

lim
τ→∞

W(f, τ) = log
(

lim
τ→∞

Ṽx0(τ)
)

if u(x, τ) is a fundamental solution originated at x0. In fact,

lim
τ→∞

Ṽx0(τ) = lim
r→∞

Vx0(r)

ωnrn

where Vx0(r) is the volume of a ball of radius r, which is independent
of x0. (The limit on the right hand side above is also called the cone
angle at infinity).

Motivated by this close connection between the Ricci flow geometry
for a family of metrics and the Riemannian geometry of a fixed Rie-
mannian metric, it is natural to seek a localized version of the above
mentioned Cheeger-Yau’s result on the monotonicity of the reduced vol-
ume Ṽx0(τ). In fact, a local version of the heat kernel comparison was
also carried out in the paper of [CY] from a PDE point of view. How-
ever, Perelman’s localization in the case of Ricci flow geometry is along
the line of comparison geometry, and very much different from Cheeger-
Yau’s localization by considering the Dirichlet or Neumann boundary
value problem for the heat equation. This leads us to formulate a dif-
ferent relative (local) volume comparison theorem in this section, which
is the linear analogue of Perelman’s formulation for Ricci flow. It can
be viewed as a parabolic version of the (classical) relative volume com-
parison theorem in the standard Riemannian geometry. The interested
readers may want to compare these two results in more detail. The
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relation between the classical relative volume comparison theorem and
the new one here is very similar to the one between the monotonicity
formula for the minimal submanifolds in R

n and Huisken’s monotonicity
for mean curvature flow in R

n (as well as Ecker’s localized version).
In order to state our result, let us first fix some notations. It is

our hope that the exposition below is detailed enough to be helpful in
understanding [P] better. Fix a point x0 ∈ M . Let γ(τ) (0 ≤ τ ≤ τ̄)
be a curve parameterized by the time variable τ with γ(0) = x0. Here
we imagine that we have a time function τ , with which some parabolic
equation is associated. Define the L-length by

(7.5) L(γ)(τ̄) =

∫ τ̄

0

√
τ |γ′(τ)|2 dτ.

We can define the L-geodesic to be the curve which is the critical point
of L(γ). The simple computation shows that the first variation of L is
given by

(7.6) δL(γ) = 2
√

τ̄〈Y, X〉(τ̄) − 2

∫ τ̄

0

√
τ

(
〈∇XX +

1

2τ
X, Y 〉

)
dτ,

where Y is the variational vector field, from which one can write down
the L-geodesic equation. It is an easy matter to see that γ is a L-geodesic
if and only if γ(σ) with σ = 2

√
τ is a geodesic. In other words, a L-

geodesic is a geodesic after certain re-parametrization. Here we insist all
curves are parameterized by the ‘time’-variable τ . One can check that
for any v ∈ Tx0M there exists a L-geodesic γ(τ) such d

dσ (γ(σ)) |σ=0 = v.
Notice that the variable σ scales in the same manner as the distance
function on M . So it is more convenient to work with σ.

We then define the L-exponential map by

L expv(σ̄) := γv(σ̄)

if γv(σ) is a L-geodesic satisfying that

lim
σ→0

d

dσ
(γv(σ)) = v.

It is also illuminating to go one dimensional higher by considering

the manifold M̃ = M × [0, 2
√

T ] and the space-time exponential map
ẽxp(ṽa) = (L exp va

a
(a), a), where ṽa = (va, a). Denote va

a simply by v1

and (v1, 1) by ṽ1. Also let γ̃ṽa(η) = ẽxp(ηṽa). It is easy to see that

γ̃ṽa(η) = γ̃ṽ1(ηa).

This shows that
dẽxp|(0,0) = identity.

Computing the second variation of L(γ) gives that

(7.7) δ2L(γ) = 2
√

τ̄〈∇Y Y, X〉+
∫ τ̄

0
2
√

τ
(
|∇XY |2 − R(X, Y, X, Y )

)
dτ
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where Y is a given variational vector field. Let (y, σ̄) = (L expv(σ̄), σ̄).
Consider the variation which is generated by (w, 0). Namely consider
the family

U(s, σ) = (L expv+sw(σ), σ) = ẽxp((σ(v + sw), σ)).

Direct calculation shows that

DU

∂σ
(0, 0) = (v, 1),

DU

∂s
(0, 0) = 0

and that the Jacobi field J̃w(σ) = (Jw(σ), 0) is given by

DU

∂s

∣∣∣
s=0

(σ) = dẽxp((σw, 0))

with the initial velocity

∇ ∂
∂σ

(
DU

∂s
|s=0

)
(0) = (w, 0).

(One can define the Jacobi operator to be the linear second order oper-
ator associated with the quadratic form in the right-hand side of (7.7).
One calls a vector field along γ a L-Jacobi field if it satisfies the Jacobi
equation. It is easy to show that the variational vector field of a family
of L-geodesics satisfies the Jacobi equation as in the standard Riemann-
ian geometry. In fact, the L-Jacobi field turns out to be just the regular
Jacobi-field after re-parametrization.) This shows that

(7.8) (dL exp)w(σ) = Jw(σ)

and

(7.9) dẽxp((σw, 0)) = J̃w(σ).

Now we can conclude that (y, σ) is a regular value of the map ẽxp (and

y is a regular value of L exp(·)(σ)) if and only if that any Jacobi field J̃
with initial condition as above does not vanish at σ. We can introduce
the concept of a conjugate point (with respect to x0) as in the classical
case. We can define the set

D(σ̄) ⊆ Tx0M

to be the collection of vectors v such that (L expv(σ), σ) is a L-geodesic
along which there is no conjugate point up to σ̄. Similarly we can define
the set

C(σ̄) ⊆ Tx0M

to be the collection of vectors v such that (Lv(σ), σ) is a minimizing
L-geodesic up to σ̄. One can see easily that D(σ) and C(σ) decrease
(as sets) as σ increases. For any measurable subset A ⊆ Tx0M we can
define

DA(σ) = A ∩ D(σ) and CA(σ) = A ∩ C(σ).
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Following [P] we also introduce the ℓ-‘distance’ function.

ℓx0(y, τ̄) =
1

2
√

τ̄
Lx0(y, τ̄), where Lx0(y, τ̄) = inf

γ
L(γ)).

Here our ℓ is defined for a fixed background metric. We also omit the
subscript x0 in the context where the meaning is clear. The very same
consideration as in [P], as well as in the standard Riemannian geometry,
shows that

(7.10) |∇ℓ|2 =
1

τ̄
ℓ

(7.11) ℓτ = −1

τ̄
ℓ

and

(7.12) ∆ℓ ≤ n

2τ̄
− 1

τ̄
3
2

∫ τ̄

0
τ

3
2 Ric(X, X) dτ

where X = γ′(τ) with γ(τ), 0 ≤ τ ≤ τ̄ being the minimizing L-geodesic
joining x0 to y. Putting (7.10)–(7.12) together, one obtains a new proof
of the result of Cheeger-Yau, which asserts that if M has nonnegative
Ricci curvature, then

(7.13)

(
∂

∂τ
− ∆

) (
e−ℓ(y,τ)

(4πτ)
n
2

)
≤ 0.

Namely e−ℓ(y,τ)

(4πτ)
n
2

is a sub-solution of the heat equation. In particular,

d

dτ

∫

M

e−ℓ(y,τ)

(4πτ)
n
2

dµ ≤ 0.

Using the above geometric consideration, one can think of the above
result of Cheeger-Yau as a parabolic volume comparison with the re-

spect to the positive measure e−ℓ(y,τ)

(4πτ)
n
2

dµ. Recall that the well-known

Bishop-Gromov volume comparison states that if M has nonnegative
Ricci curvature

d

dr

(
1

rn−1

∫

Sx0 (r)
dA

)
≤ 0

where Sx0(r) denotes the boundary of the geodesic ball centered at x0

with radius r, dA is the induced area measure. The by-now standard
relative volume comparison can be formulated in a way similar to the
above. Let A be a measurable subset of Sn−1 ⊂ Tx0M . One can de-
fine CA(r) to be the collection of vectors rv with v ∈ A such that the
geodesic expx0

(sv) is minimizing for s ≤ r, where expx0
(·) is the (clas-

sical) exponential map. Then the classical relative volume comparison
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theorem (cf. [Gr]) asserts that if M has nonnegative Ricci curvature,

d

dr

(
1

rn−1

∫

exp(CA(r))
dA

)
≤ 0.

The following is a parabolic version of such a relative volume comparison
theorem parallel to Perelman’s work on Ricci flow geometry.

Theorem 7.1. Assume that M has nonnegative Ricci curvature.
Then

(7.14)
d

dτ

∫

L expCA(τ)(τ)

e−ℓ(y,τ)

(4πτ)
n
2

dµ ≤ 0.

Proof. The proof follows a similar argument as in [P]. Using the
notation in the above discussion, first we observe that

∫

L expCA(τ)(τ)

e−ℓ(y,τ)

(4πτ)
n
2

dµ =

∫

CA(τ)

e−ℓ(y,τ)

(4πτ)
n
2

J(τ) dµ0,

where J(τ) is the Jacobian of L exp(·)(τ). Since CA(τ) is decreasing in
τ , it suffices to show that

(7.15)
d

dτ

(
e−ℓ(y,τ)

(4πτ)
n
2

J(τ)

)
≤ 0.

This follows from (7.10)–(7.11), the fact that

d

dτ
e−ℓ =

(
− ℓ

τ̄
+ 〈∇ℓ, X〉(τ̄)

)
e−ℓ = 0

(since ∇ℓ(τ̄) = X), and the claim that

d

dτ
log J(τ̄) ≤ n

2τ̄
− 1

τ̄

∫ τ̄

0
τ

3
2 Ric(X, X) dτ.

The estimate (7.15) follows exactly the same proof as in [P], via the
second variation formula (7.7) and its consequence on the Hessian com-
parison:

Hess(L)(Ȳ , Ȳ ) ≤
∫ τ̄

0
2
√

τ
(
|∇XY |2 − R(X, Y, X, Y )

)
dτ

where Y (τ) is a vector field along the minimizing L-geodesic γ(τ) joining
x0 to y with γ(τ̄) = y, satisfying Y (τ̄) = Ȳ and

∇XY − 1

2τ
Y = 0.

q.e.d.
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Better comparison between Theorem 7.1 and the classical relative

volume comparison can be seen by replacing M̃ with M , M ×{a} with
Sx0(a). Notice that in [P], one does need such a result (not just the

global version on the monotonicity of Ṽg(τ)(x0, τ)) to prove the non-
collapsing result on finite time solution to Ricci flow. This and the
potential application to the study of Riemannian geometry of our linear
version, justify the spelling out of this result in spite of its simplicity.

Remark 7.2. One can formulate a similar parabolic version of the
volume comparison result for the case Ric(M) ≥ −(n − 1)K. We leave
that to the interested readers.

In [N3], we showed that the lower bound on the entropy inf0≤τ≤T µ(τ)
(please see [N3] for definition) implies the non-collapsing of volume of a
ball of radius r for r2 ≤ T . This corresponds (but is considerably easier
than) to the κ-non-collapsing result of Perelman on the solutions to
Ricci flow, via the monotonicity of entropy functional. Using Theorem
7.1, one can have the following consequence, which is just the linear
version of Perelman’s second proof on the κ-non-collapsing result.

Lemma 7.3. Let M be a complete Riemannian manifold with non-
negative Ricci curvature. Assume that B(x0, r) is κ-collapsed in the
sense that

(7.16) V (x0, r) ≤ κrn.

Then there exists C = C(n) > 0 such that

(7.17) Ṽ (κ
1
n r2) ≤ C

(√
κ + exp

(
− 1

8κ
1
n

))
.

Namely, the smallness of the relative volume V (x0,r)
rn is equivalent to the

smallness of the ‘reduced volume’ Ṽ (r2).

Notice that the lemma can also be proved by direct computations and
the Bishop volume comparison theorem, without using Theorem 7.1 (cf.
[CLN] for details).

Finally we present here a second variation formula for Perelman’s L-
length, which is slightly different from the original one stated in [P].
The hope is that this new form will be easier to use. Recall that for
the backward Ricci flow ∂

∂τ gij = 2Rij on M × [0, T ], for any path γ(τ)
joining (x0, 0) to (y, τ̄), Perelman defined the L-length

L(γ) =

∫ τ̄

0

√
τ

(
|γ′|2 + R

)
d τ.
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The first variation computation gives that for any variational vector
field Y ,

δY (L(γ)) = 2
(√

τ〈Y, X〉
)
|τ̄0

− 2

∫ τ̄

0

√
τ

〈
∇XX − 1

2
∇R + 2Rc(X) +

1

2τ
X, Y

〉
dτ.

Here X = γ′ and Rc is the (1, 1) tensor obtained from the Ricci tensor
by lifting.

Let γ(τ, y, w) be variation of γ(τ) of two parameters with the varia-
tional vector fields Y and W . The second variation computation gives

δ2
Y,W (L(γ)) =

[
2
√

τ (〈∇W Y, X〉 + 〈Y,∇XW 〉)
]
|τ̄0 − 2

∫ τ̄

0

√
τ〈J (W ), Y 〉

+ 〈∇XX − 1

2
∇R + 2Rc(X) +

1

2τ
X,∇W Y 〉 dτ.

Here J (W ) is the Jacobi operator given by

J (W ) = ∇X∇XW + R(X, W )X − 1

2
∇W∇R + 2 (∇W Rc) (X)

+ 2Rc(∇XW ) +
1

2τ
∇XW.

In the case γ is a L-geodesic the last term in the second variation formula
vanishes. We then have

δ2
Y,W (L(γ)) =

[
2
√

τ (〈∇W Y, X〉 + 〈Y,∇XW 〉)
]
|τ̄0(7.18)

− 2

∫ τ̄

0

√
τ〈J (W ), Y 〉 dτ.

It is desirable to write J (W ) in a better form. To do that we define a
operator Dτ on any vector Y as DτY = d

dτ Y + Rc(Y ). Direct compu-
tation shows that

(7.19) J (W ) = DτDτW +
1

2τ
DτW + R̃m(W )

where

R̃m(W ) = −∂Rc

∂τ
(W ) − 1

2
∇W∇R− Rc(Rc(W )) + R(X, W )X(7.20)

− 1

2τ
Rc(W ) + 2(∇W Rc)(X) − 2(∇XRc)(W )

+ (〈(∇·Rc)(X), W 〉)∗ − (∇W Rc)(X).

Here (〈 (∇· Rc) (X), W 〉)∗ is the dual vector of the one form

〈(∇·Rc)(X), W 〉. It is easy to check that R̃m(W ) is self-adjoint and

more importantly, 〈R̃m(W ), W 〉 is nothing but Hamilton’s differential
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Harnack expression for the shrinkers, which can be viewed as a space-
time curvature by [CC1]. By integration by parts we have that

δ2
Y,W (L(γ)) =

[
2
√

τ (〈∇W Y, X〉 − 〈Rc(Y ), W 〉)
]
|τ̄0(7.21)

+ 2

∫ τ̄

0

√
τ

(
〈DτW, DτY 〉 − 〈R̃m(W ), Y 〉

)
dτ.

The last integration above can be called the index form, whose Euler-
Lagrange equation is just J (W ) = 0. Using the easily-proved fact that
the Jacobi field minimizes the index form if there is no conjugate point
along γ, one can recover the key estimate (7.9) of [P] (see also [To]).
Similar consideration can be applied to the steady reduced distance (an
expression suggested to us by Ilmanen). Define

L0(γ) =

∫ τ̄

0

(
|γ′|2 + R

)
dτ.

If γ is a L0-geodesic we have that

δ2
Y,W

(
L0(γ)

)
= 2 (〈∇W Y, X〉 − 〈Rc(Y ), W 〉) |τ̄0(7.22)

+ 2

∫ τ̄

0

(
〈DτW, DτY 〉 − 〈R̃m

0
(W ), Y 〉

)
dτ

where R̃m
0
(W ) = R̃m(W ) + 1

2τ Rc(W ), which is Hamilton’s matrix
Harnack expression for steady solitons.
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