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Abstract 

The traditional kaleidoscope uses the prism as a basic unit. Through the 

reflections of the mirrors on the inner surfaces of a prism, we can see many symmetric 

axles and patterns. However, traditional kaleidoscope only presents two-dimensional 

images.  

The three-dimensional kaleidoscope we designed uses the pyramid as a basic 

unit. We can see three-dimensional images via mirror faces on the inner surfaces of 

the pyramid. Our examination shows that not all pyramids are able to show 

three-dimensional images but only pyramids with specific angles do.  

The kaleidoscope we designed differs from the traditional kaleidoscope in the 

following ways:  

①Our three-dimensional kaleidoscope not only shows three-dimensional space, 

but also shows it through two-dimensional planes. 

②Our three-dimensional kaleidoscope is based on three kinds of pyramid: 

three-sided pyramid (tetrahedron), four-sided pyramid (square pyramid) and 

five-sided pyramid (pentagonal pyramid). Each kind of pyramid has its own charm in 

showing its reflected images.  

③Each kind of pyramid is separated from its entire geometry. However, it can 

present the whole view of the geometry after mirrored.  

Our exploration shows that two dimensional and three dimensional worlds can 

change into one another under specific conditions. Perhaps before long we can 

discover more dimensions and explain the relationships between each kind of 

dimension.   

This treatise mainly involves the principles of Euclidean Geometry and 

Projective Geometry. 
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1. Foreword 

Since the invention of the traditional 

kaleidoscope by English physicist David 

Brewster in 1816, its fascinating, 

omniform view has enriched the childhood 

life of generations of people including my 

parents. We can see a lot of symmetric 

axles from a simply designed kaleidoscope,  

and the mirrored patterns are governed by 

specific geometric principles. This has led 

us to our experimental effort to create a tridimensional kaleidoscope. Since a 

two-dimensional world can be so colorful, why not tridimensionize it and build a 

tridimensional kaleidoscope to further enhance the view? 

There are many branches of geometry in mathematics, and our treatise mainly 

applies the knowledge of Projective geometry and Euclidean Geometry to the study of 

pyramids enclosed by two dimensional shapes and the views formed by the reflected 

patterns.   

The traditional kaleidoscope presents two dimensional images. Since its major 
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component is a deltoid prism enclosed by rectangular mirrors, can we simply change 

the prism into a pyramid to produce tridimensional images? The answer is no. This is 

because a three-sided pyramid enclosed by three rectangular triangles only presents a 

vertical view of an icosahedron. Besides, a square pyramid enclosed by four isosceles 

triangles with top angles of 45°shows a vertical view of a solid figure of 26 faces. 

(Refer to figures below) 

In other words, the results are not tridimensional geometric models. Only through 

pyramids (including three-sided, four-sided and five-sided pyramids) enclosed by 

triangles with specific top angles can we see perspective geometric models that are 

truly tridimensional. 

Our study of tridimensional kaleidoscope starts from pyramids. Applying 

principles of Projective Geometry, we explore the relationship between solid 

geometry and perspective.  

Euclidean Geometry, starting from two dimensional shapes, attains relationships 

such as location, magnitude and ratio among points, lines, faces and angles through 

logical inference. It also extends from the demonstration of equality and similarity of 

two dimensional shapes to that of the spacial relationships such as the magnitude of 

solid geometries and elements like dual.  

Now let’s start from three dimensional spaces and research the tridimensional 

geometric projections on two dimensional planes in light of principles of Projective 

Geometry, and then represent the tridimensional geometries on two dimensional 
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planes. In Projective Geometry, two parallel lines meet at one point that is infinitely 

far from us. The point is called the infinite point. The locus of this infinite point is an 

infinitely far line. In the study of perspective, this point is called the vanishing point, 

while the line is called the vanishing line. Lines passing through a vanishing point 

are parallel to one another.  

For instance, when you draw a cube on a two dimensional plane, you see that 

parallel lines focus on the vanishing point. The cube drawn can be regarded as a 

square frustum laid on its side. To compare the characteristics of a square pyramid 

with those of the original cube, and then find the variables and invariables of the 

two--that is one of the fundamental purposes of Projective Geometric research. 

(Figure below is the perspective of a cube) 

It was this square frustum that enlightened us, so to speak, and led us to begin 

with pyramids, not prisms, in our attempt to search for the key to the tridimensional 

kaleidoscope. 

 

2. Mathematical model establishment 

Through the deep research on specular reflection and the five kinds of Plato solids, 

we finished making tridimensional kaleidoscopes, or basic units with mirror faces 

inside, that presented Plato solids with perspective by a series of calculation and 
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repeated practices.  

We found that the patterns in a tridimensional kaleidoscope are based on the number 

and the top angles of isosceles triangular mirror faces that enclose a basic unit. We 

define these top angles as A-C angles for more convenient demonstration. They are 

the breakthrough points for us to calculate the requisites for the formation of solids 

using mathematical knowledge such as the Pythagorean theorem and cosine theorem. 

Finally we saw five kinds of solid geometries through tridimensional kaleidoscopes.  

Basing on five fundamental geometric models, we extended our treatise, hoping to 

find more kinds of solids that could be reflected in mirrors so that the world in 

tridimensional kaleidoscope would be more copious. This idea led us to reflect solid 

figures of 30, 60 and 90 faces through calculation. 

From the research above, we arrived at a conclusion: any tridimensional 

kaleidoscope mentioned above can be enclosed by triangles (including isosceles 

triangles and scalene triangles) with specific value of top angles. Besides, we 

conclude the requisites for the formation of tridimensional kaleidoscopes: 

① All the apexes of the solid reflected should be on a same circumball. 

② The apex of a basic unit overlaps the center of the circumball. 

③ The solid reflected must be enclosed by only one kind of polygons. 

Since the way in which different tridimensional kaleidoscopes are calculated 

varies, we cannot temporarily find a theoretical equation to be used in calculation for 

all kinds of tridimensional kaleidoscopes. However, after calculating dihedral angles 

and A-C angles of the five kinds of Plato solids, we found equal and complementary 

relationships among them. This opened a window for us to study on the relationships 

among different solids in the future. 

 

2. 1 From traditional to tridimensional 

If you have ever taken a traditional kaleidoscope apart, you’ll know that it 

consists of three mirrors vertical to the base, standing at an angle of 60°to each other. 

Each mirror has two images in the other two mirrors, and these two images are also 

able to reflect patterns. In this way, we’ll get an infinite number of rectangular mirror 
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faces, with an infinite number of symmetric patterns that are reflectd in an orderly 

manner in the mirrors. 

If we tilt one end of the mirrors backwards, making the three-sided prism more 

like a pyramid, the view presented will not be a plane any more, but will curve like a 

ball. The symmetric patterns become out of shape. Angles (dihedral angles) emerge 

between two images. Now the view we see is closer to being tridimensional. 

In Euclidean Geometry, there are five kinds of Plato Solids: tetrahedron, 

hexahedron, octahedron, dodecahedron and icosahedron. Basic faces of tetrahedron, 

octahedron and icosahedron are all regular triangles.  

When we used three regular triangles to make a baseless three-sided pyramid, 

and then added mirrors inside, we saw a polyhedron that we thought to be a regular 

icosahedron. However, this supposition also raised the following questions: 

1. As mentioned above, three kinds of Plato Solids (tetrahedron, octahedron and 

icosahedron) take regular triangles as basic faces, so why did we only see the 

icosahedron? What should we do so that a tetrahedron and an octahedron can be 

presented? 

2. When we used 20 three-sided pyramids enclosed by regular triangles as basic 

units to make an icosahedron, we found there was some unfilled space left. That 

means 20 basic units like these can not be pieced together to form an icosahedron.  

To look for an answer, we went back to “The Elements.”  This time, we tried to 

find the requisites for each type of polyhedron to be presented in mirrors through 

calculation, not congecture. 

 

2.2 Requisites Calculation 

Through the experiment of tilting deltoid prismatic mirrors, we found that the 

degree of tilt exerts an effect on the form of polyhedron. It is the top angle of 

triangular mirrors that determines the degree of tilt. Generally speaking, when the 

number of mirrors that enclose a pyramid is fixed, the bigger the top angle, the 

greater the inclination will be. 

Thus, we need to calculate the exact value of this top angle in order to find the 
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corresponding solid that can be tridimensionally presented.  

If we put a Plato solid into a ball, making this solid inscribe to the ball, then the 

center of this solid will overlap the center of its circumball. Divide this solid through 

the center. For instance, a tetrahedron can be divided into 4 three-sided pyramids. In 

this way we get several basic units that can be pieced together to form this solid. 

Every basic unit is enclosed by three isosceles triangles. Different basic units will be 

obtained when we divide different solids, and the kind of isosceles triangles we get 

will vary, depending on the solid.  So we have simplified the problem to find out 

this isosceles triangle, which will in turn give us the basic units and the solids.  

There is a fairly easy way to calculate this isosceles triangle—by first finding out 

its top angle. Let’s name it A-C angle. A stands for the arris of a polyhedron while C 

stands for the center of the circumball.  

The degree of A-C angle can determine the formation of solids we see in mirrors. 

When we calculate A-C angles of different solids, it’s important to find the center 

of circumballs first to find the location of A-C angles. Link the center to two adjacent 

apexes of a solid. The angle between these two segments is A-C angle. Here we list 

the calculation of A-C angles for all five kinds of Plato solids. 

Regular Octahedron: 

An octahedron is enclosed by eight regular 

triangles. We can divide it into 8 three-sided 

pyramidal basic units as described above. 

Since an octahedron is up-down symmetric, we 

only need to use the upper part. 

Figure at right shows the upper part of an 

octahedron. In the square pyramid P-ABCD, P 

is the apex and ABCD is the base.  

Assume that AC and BD intersect at O. It’s 

not hard to see that O is the center of the circumball of octahedron. Link OP, then 

∠POA, ∠POB, ∠POC and ∠POD φ≜  are all A-C angles of the octahedron. Since 
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OP is perpendicular to the ABCD plane, the 

A-C angle is 90°. 

That means the pyramid enclosed by three 

isosceles right triangular mirror faces can 

present a regular octahedron. In addition, this 

gives us the surface development of this 

pyramid. As we can see, the top angle of each 

triangle, and also the A-C angle of octahedron, 

is 90°. 

 

Regular Hexahedron: 

The calculation for hexahedron differs from that for octahedron because the 

cosine theorem is used this time. 

Figure on the right shows a cube whose 

apexes are A, B, C, D, A’, B’, C’ and D’.O is the 

intersection of segments AC’ and B’D. Besides, 

it is the center of the circumball of this cube.  

∠B’OC’ φ≜  is the A-C angle. 

If the side length of the cube is x, then 

A′C′= 2 x，AC′= 3 x 

OC’=
1

'
2

AC =
3

2
x  

Thus, in △B’OC’, using cosine theorem and we get 

Cos∅ =

2 2

2

3
( ) 2

2

3
2 ( )

2

x x

x

× −

×

=
1

3
  

so ∅ =arcos
1

3
=70.529° 
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Therefore, in order to present a cube, we need four isosceles triangular mirror 

faces with the top angle of 70.529°. 

 

Regular Tetrahedron: 

In the figure at left, P-ABC is a tetrahedron. Assume PH is perpendicular to the 

ABC plane at the point H. Find a point O on PH to 

make OP=OA=OB=OC. Link AH. ∠POB φ≜  is 

the A-C angle. 

Assume AP=x, OP=y.  

Then PH= 2 2
AP AH− = 2 21

3
x x− =

6

3
x  

Since PH=OP+OH, 

 and OH=
2 2

OA AH− = 2 21

3
y x−  

so 
6

3
x = y + 2 21

3
y x− ，and x =

2 6

3
y  

In the triangle AOP, use the cosine theorem to get 

Cosφ =
1

3
− ，so φ ≈109.471°  

Thus, in order to see tetrahedron in pyramidal 

mirrors, we need three isosceles triangular mirror faces 

whose top angles are 109.471°. 

In this development, the top angle of each triangle, or 

the A-C angle of tetrahedron, is 109.471°. 

 

Regular Dodecahedron 

The calculation for dodecahedron is more complex. We must first calculate its 

dihedral angle in order to calculate A-C angle. Step 1 is the calculation for dihedral 

angle, and step 2 is the calculation for A-C angle. 
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Step 1: The figure below is a vertical view of regular dodecahedron with a top 

pentagon and five slant pentagons.  

Choose one of the slant pentagons and mark the five apexes with A, B, C, D, and 

E. Both AF and FG are perpendicular to CD at point F. So ∠AFG θ≜  is the 

dihedral angle. If we know the side lengths of △AFG, the value of θ  can be 

calculated.  

This figure shows the ABCDE pentagon in the previous figure. Link AC. 

Assume the side length of each pentagon is x, and 

AC is y. y=2xSin54°. 

Since ∠ABC=108°， 

Then ∠BCA=36°，∠ACD=108°-36°=72° 

Obviously, AF=ySin72°=2xSin54°Sin72° 

 

Look back to the vertical view of dodecahedron. Link CG, GH, HI and IA to get a 

new pentagon ACGHI. The ACGHI plane is parallel to the plane pantagon at top is 

in. Link AG, then AG=2ySin54°= 22 54xSin ° 

Thus, in △AFG, AF=2xSin54°Sin72°and AG= 22 54xSin °. Use the cosine 

theorem and get 
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Cosθ =
2 2

2

2

2

AF AG

AF

⋅ −
=

2 2 2

2

2 (2 54 72 ) (4 54 )

2 (2 54 72 )

xSin Sin xSin

xSin Sin

⋅ ° ° − °

× ° °
≈ 0.45−  

So θ =arcos-0.45≈116.565° 

 

Step 2: 

In the figure at right there are 

two basic units of dodecahedron in 

the first figure. Point P is the center 

of its circumball. ∠BPC φ≜  is the 

A-C angle we want to know. 

Assume O to be the center of 

pentagon ABCDE. Since ∠OFG is 

the dihedral angle of dodecahedron, 

then ∠OFP=
1

2
OFG∠ =

2

θ
=58.283°(FP should be perpendicular to CD. We 

didn’t mark it because of the limitation of view 

point.) 

The pentagon ABCDE is shown in the figure on 

the left. 

Link OC,  because OCD=54∠ °， 

so OF= tan 54
2

x
°  

In △CPF, FP=CFcot
1

2
BPC∠  =

1

2 2

x
Cot BPC=∠

2 2

x
Cot

φ
 

Since OF= tan 54
2

x
° , and FP=

2 2

x
Cot

φ
 

then OF= tan 54
2

x
°Cos

2

θ
 

=
OF

FP
=

tan 54
2

2 2

x

x
Cot

φ

°
= tan 54 tan

2

φ
°  

Thus, tan
2

φ
= 2

tan 54

Cos
θ

°
≈0.382  

212



φ ≈41.810°  

Therefore, in order to present a dodecahedron, we need five isosceles triangular 

mirror faces with the top angles of 41.810°. 

In the surface development, the top angle of each triangle, also the A-C angle of 

dodecahedron, is 41.810°. 

 

Regular Icosahedron 

Two methods can be used to calculate A-C angle of an icosahedron.  

1
st
 method: 

The figure on the right shows a concave icosahedron made of 20 basic units. 

△ABC is one of the faces of an 

icosahedron. P is the center of the 

circumball of icosahedron. O is a point 

on segment AP. BO and OC are 

perpendicular to AP at O. ∠BPA φ≜  is 

the A-C angle we want to know. 

Since BO AP⊥ , OC AP⊥ , 

Then AP is perpendicular to the BOC 

plane 

The figure on the lower left shows 

part of the vertical view of this icosahedron with the top center point A. Because AP 

is perpendicular to the BOC plane, △ABC is the vertical view of △BOC. Therefore, 

∠BOC=∠BAC=72° 

Look back to the first figure. We assume the side 

length of regular icosahedron to be x and OB to be y. 

In the △BOC, according to the cosine theorem,  

72Cos °=
2 2

2

2

2

y x

y

−
, so y=0.851x 
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Because Sin BAO=∠
OB

AB
=

y

x
=0.851 

So BAO∠ ≈58.281°  

In the △ABP, φ =180 2 BAO° − ∠ ≈63.435°  

 

2
nd

 method: 

As we know, if we connect the two pairs of opposite sides of a regular 

icosahedron, we’ll get a rectangular. The 

ratio of its length and width is the golden 

proportion. Choose one of the three 

rectangles ABCD, and let its two diagonals 

intersect at O, then O is the center of the 

circumball, and AOB is the A∠ -C angle of 

this icosahedron. Since we know the ratio 

of the width and length is 0.618, and we 

assume AD=x, 

Then AO= 2 21
(0.618 )

2
x x+ ≈0.809x  

Using the cosine theorem in AOB, it△ ’s not hard to conclude that 

∠AOB=63.435°.The result is same to 

what we’ve got in the first method. 

In this surface development, the top 

angle of each triangles, also the A-C 

angle of an icosahedron, is 63.435°. 

 

 

2.3 Conclusions and Implications 

Based upon the above discussion, we can draw the following conclusions 

regarding the nature and characteristics of the tridimensional kaleidoscope: 

The geometr① ic images presented in a tridimensional kaleidoscope are 

trimensional. 
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The two dimensional shapes enclosed by mirror faces (eg. a triangle enclosed ②

by mirror faces in a tetrahedron and a square enclosed by mirror faces in a square 

pyramid) can not only be triangles, but also squares and pentagons. However, in a 

traditional kaleidoscope, we won’t achieve ideal reflectional results if we replace the 

3-sided prism with 4-sided and 5-sided prisms. Therefore, by comparison, the forms 

of tridimensional kaleidoscope are more diverse and copious. 

③The tridimensional kaleidoscope takes a pyramid separated from the solid as a 

basic unit. It is only part of the solid. After reflection, however, this part can 

represent the entire solid. 

Perhaps after seeing all the calculations and discusion, you’ll find they are not so 

complicated after all. What I have used is indeed the mathematical knowledge I’ve 

learnt in senior high school. The mathematical principles for designing a 

tridimensional kaleidoscope are not difficult. Nevertheless the tridimensional 

kaleidoscope deserves our research. 

As we have mentioned, before we calculated all the A-C angles we needed to 

know, we had seen a polyhedron from a 3-sided pyramid enclosed by three regular 

triangular mirror faces, and we thought it might be an icosahedron. However, after 

we finished calculating, we found that the degree of A-C angle was 3.435°more than 

60°, the degree of the top angle of a regular triangle. So we used three isosceles 

triangular mirror faces with top angles of 63.435°to make a 3-sided pyramid, and 

found that the polyhedron we saw was similar to that we saw in a regular 3-sided 

pyramid. But the amazing thing was that it wasn’t a vertical view of an icosahedron, 

but an icosahedron in perspective. (Shown in figures below) 
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We’ve already known that 20 basic units enclosed by three regular triangles each 

can not construct a regular icosahedron. But if we change the top angle into 

63.435°,the basic units can form a complete icosahedron. So we made the other basic 

units according to our results of calculation, and found that the polyhedrons mirrored 

were also perspective in nature. That is to say, if the results of calculation are precise, 

polyhedrons we see in mirrors will be tridimensional. 

Perspective paintings appeared during Renaissance. What the perspective 

paintings, and the theories proposed by French mathematicians Desargues, Pascal 

and Poncelet, have in common, is that they all intended to represent tridimensional 

objects on a two dimensional plane just like taking photos. However, pyramids made 

of mirror faces are doing just the opposite. They produce images in mirrors and make 

us see tridimensional space that is originally non-existent through two dimensional 

planes. The “photo” of a triangle can be a tetrahedron, an octahedron or an 

icosahedron. At the same time, we can see “photos” like hexahedron and 

dodecahedron through a square and a pentagon respectively. 

For these reasons, our research is especially meaningful. We succeeded in seeing 

a solid through a plane and an entirety through a part via mirror faces. We believe it 

is not the only way to show three dimensions through two dimensions. But it is a 

new vision that helps us to deepen our understanding of the world we are familiar 

with; and it encourages us to open our mind, to be courageous in our search for truth, 

and to find new horizons in our future study. We are living in a multi-dimensional 

universe. Since the two-dimensional world and tridimensional world are mutually 

convertible, maybe in the future, we can discover more dimensions, explain the 

relationships between the different dimensions, and greatly enrich our knowledge of 

the objective world.  

 

3 Studies on other data & Conjectures on relationships among different 

polyhedrons 

At the same time we calculated A-C angles of different Plato Solids, we also 

calculated dihedral angles. We tabled these data below. 
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We find that their dihedral angles and A-C angles are relative to each other.  

Dihedral angle of tetrahedron = A -C angle of hexahedron—→dihedral angle of 

hexahedron = A-C angle of octahedron—→dihedral angle of octahedron = A-C 

angle of tetrahedron; 

Besides, 

Dihedral angle of dodecahedron + A-C angle of icosahedron = 180° 

A-C angle of dodecahedron + dihedral angle of icosahedron = 180° 

The reasons for these rules are unknown at this point. However, there should be 

relationships among different solid geometric objects. Plato solids of Euclidean 

Geometry had demonstrated the dual relationships among hexahedron, octahedron, 

dodecahedron and icosahedron. Maybe the equal or complementary relationship 

among angles described in the table above is a kind of demonstration of duality 

principle in Projective Geometry. 
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Appendix: Photos of Tridimensional Kaleidoscopes  
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