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Abstract

The Durfee conjecture, proposed in 1978, relates two important invari-
ants of isolated hypersurface singularities by a famous inequality; however,
the inequality in this conjecture is not sharp. In 1995, Yau announced his
conjecture which proposed a sharp inequality. The Yau conjecture charac-
terizes the conditions under which an affine hypersurface with an isoalted
singularity at the origin is a cone over a nonsingular projective hypersur-
face; in other words, the conjecture gives a coordinate-free characteriza-
tion of when a convergent power series is a homogeneous polynomial after
a biholomorphic change of variables. In this project, we prove that the
Yau conjecture holds for n = 5. As a consequence, we have proved that
5!pg ≤ µ−p(v), where p(v) = (v−1)5−v(v−1) . . . (v−4) and pg, µ, and v
are, respectively, the geometric genus, the Milnor number, and the multi-
plicity of the isolated singularity at the origin of a weighted homogeneous
polynomial. In the process, we have also defined yet another sharp upper
bound for the number of positive integral points within a 5-dimensional
simplex.
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1 Introduction
Let ∆n be an n-dimensional real right-angled simplex defined by the inequality

x1

a1
+
x2

a2
+ ...+

xn
an
≤ 1

where x1 ≥ 0, ... , xn ≥ 0 and a1 ≥ a2 ≥ ... ≥ an ≥ 1. Define Pn to be the
number of positive integral points in ∆n, as shown below:

Pn = #{(x1, x2, ..., xn) ∈ Z+|
x1

a1
+
x2

a2
+ ...+

xn
an
≤ 1}

Define Qn to be the number of nonnegative integral points in ∆n, as shown
below:

Qn = #{(x1, x2, ..., xn) ∈ Z+ ∪ {0}|
x1

a1
+
x2

a2
+ ...+

xn
an
≤ 1}

The problem of obtaining the numbers Pn and Qn has occupied mathemati-
cians for decades, simply because a sharp upper estimate of the former would
benefit those in singularity theory and a sharp upper estimate of the latter would
benefit those in number theory. Granville [Gr] has stated that an estimate of
Qn would help with finding large gaps between primes, and research done by
Xu and Yau [Xu-Ya] on the Durfee conjecture has shown that an estimate of
Pn does aid mathematicians in singularity theory. These two different numbers
are tied together through the equation

Pn(a1, a2, ..., an) = Qn(a1(1− a), a2(1− a), ..., an(1− a)),

where a = 1
a1

+ ... + 1
an

. A simple proof exists that allows one to state with
confidence that these two numbers are related, and so if one discovers a new
estimate for Pn, a new estimate for Qn will also be present.

In 1899, Pick [Pi] discovered a formula for Q2:

Q2 = area(4) +
|∂4∩ Zn |

2
+ 1

where ∂4 is the boundary of the simplex and |∂4∩ Zn | is the number of integral
points on the boundary. In 1951, Mordell [Mo] discovered the formula for Q3

using Dedekind sums, but the real breakthrough occurred when Ehrhart [Eh]
proved a polynomial of degree n could calculate the number of non-negative
lattice points in n-dimensional simplex. However, his formula is only effective
when the coefficients of every term are either known or able to be determined
from other facts provided. Starting in 1939, attempts were made to find lower
and upper bounds for Qn instead of a concrete equation. It was later discovered
by Lehmer [Le] that if a = a1 = a2 = ... = an,

Qn =
(

[a] + n

n

)
.
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From that formula, a definition for a sharp estimate Rn of Qn was reached. The
estimate is only sharp if

Rn|a1=...=an=a∈Z =
(

[a] + n

n

)
.

In other words, any upper or lower bound is only considered to be a sharp
estimate if equality is obtained if and only if a = a1 = a2 = ... = an ∈ Z.

The search for a sharp estimate also led mthematicians into singularity the-
ory, and Durfee [Du] formed his famous conjecture. The conjecture states that
for an isolated singularity (V, 0) defined by a weighted homogeneous polynomial
f(z0, z1, z2, ..., zn),

n!pg ≤ µ

where pg is the geometric genus of V , µ is the Milnor number, and equality holds
if and only if µ = 0. A polynomial f(z0, z1, z2, ..., zn) is a weighted homogeneous
polynomial of the type (w0, w1, w2, ..., wn), where w0, w1, w2, ... , wn are fixed
positive rational numbers, if f can be expressed as a linear combination of
monomials zi00 z

i1
1 ...z

in
n for which i0

w0
+ i1

w1
+ ... + in

wn
= 1. Furthermore, the

Milnor number µ [Mi-Or] is defined as (w0 − 1)(w1 − 1)...(wn − 1).
The next sharp estimate to be constructed was the GLY conjecture, formu-

lated by Lin, Yau, and Granville [Li-Ya 4]. It has two different parts: the sharp
estimate, which varies depending on n, and the rough estimate.

Conjecture 1. Let Pn = #{(x1, x2, ..., xn) ∈ Zn+; x1
a1

+ x2
a2

+ ...+ xn
an
≤ 1}, and

let n ≥ 3.
(1) If a1 ≥ a2 ≥ ... ≥ an ≥ n− 1, then the sharp GLY estimate holds.
(2) Rough estimate: If a1 ≥ a2 ≥ ... ≥ an > 1, then

n!Pn ≤ qn :=
n∏
i=1

(ai − 1).

The GLY conjecture was the first main step to proving the following conjec-
ture made by Yau in 1995 [Ya-Zh]:

Conjecture 2. Let f : (Cn, 0)→ (C, 0) be a weighted homogeneous polynomial
with an isolated singularity at the origin. Let µ, pg, and v be the Milnor number,
geometric genus and multiplicty of the singularity V = {z : f(z) = 0}, then

µ− p(v) ≥ n!pg,

where p(v) = (v − 1)n − v(v − 1)...(v − n+ 1), and equality holds if and only if
f is a homogeneous polynomial.

This conjecture is a sharp estimate that holds without the restriction of the
sharp GLY estimate, a1 ≥ a2 ≥ ... ≥ an ≥ n−1, and it also has some important
applications in geometry.
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The Yau conjecture was already proven for the cases n = 3 [Xu-Ya] and
n = 4 [Li-Ya 3]. In this paper, we aim to prove the Yau conjecture for n = 5,
which is stated below.

Theorem 3. Let f : (C5, 0) → (C, 0) be a weighted homogeneous polynomial
with an isolated singularity at the origin. Let µ, pg, and v be the Milnor number,
geometric genus and multiplicty of the singularity V = {z : f(z) = 0}, then

µ− p(v) ≥ 5!pg,

where p(v) = (v − 1)5 − v(v − 1)...(v − 4), and equality holds if and only if f is
a homogeneous polynomial.

According to [Li-Ya 3], proving our Main Theorem, above, is akin to prov-
ing the following theorem about the number of integral points within a five-
dimensional simplex.

Theorem 4. Let a ≥ b ≥ c ≥ d ≥ e ≥ 2 be real numbers and let P5 be the
number of positive integral solutions of xa + y

b + z
c + v

d + w
e ≤ 1; i.e.

P5 = #{(v, w, x, y, z) ∈ Z5
+ : xa + y

b + z
c + v

d + w
e ≤ 1}. Define

µ = (a− 1)(b− 1)(c− 1)(d− 1)(e− 1). Then,

5!P5 ≤ µ− (5v4 − 25v3 + 40v2 − 19v − 1),

where v is the multiplicity - calculated by v = e, if e is an integer, or by v =
[e] + 1, if e is not an integer, where [e] is the integral part of e - and equality
holds if and only if a = b = c = d = e are all integers.

In order to do this, we will split up the proof into three main cases, depending
on the value of e, and utilize the GLY conjecture, in each case. Case I covers
e ≥ 4, while cases II and III cover 3 ≤ e < 4 and 2 ≤ e < 3 respectively.

2 Proof of the Main Theorem

2.1 CASE IA
We will first analyze the case that occurs when e = 4.

Proposition 5. Let a ≥ b ≥ c ≥ d ≥ 4 be real numbers and let e = 4. Consider
x
a + y

b + z
c + v

d + w
e ≤ 1. Let P5 be the number of positive integral solutions of

the above inequality; i.e. P5 = #{(x, y, z, v, w) ∈ Z5
+ : xa + y

b + z
c + v

d + w
e ≤ 1}.

Then,

120P5 ≤ −15a+
385ab

24
− 135abc

32
+

245abcd
128

− 135abd
32

+
385ac

24

− 135acd
32

− 15b+
385bc

24
− 135bcd

32
− 15c
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We can slice the five-dimensional simplex into the hyperplanes, w = 1, w =
2, ..., w = e. The inequality above is derived from summing up the four-
dimensional GLY conjecture estimates from level w = 1 to w = e = 4. Before
we go any further, we should note the interesting properties of P4 that the
lemma below points out.

Lemma 6. Let a ≥ b ≥ c ≥ d ≥ 1 be real numbers and let
P4 = #{(x, y, z, w) ∈ Z4

+ : xa + y
b + z

c + w
d ≤ 1}. Then, the following statements

hold,
(1) if b ≤ 3, then P4 = 0
(2) if c ≤ 2, then P4 = 0.

The theorem below is basically the Yau conjecture for n = 5 with the prop-
erty e = 4.

Theorem 7. Let a ≥ b ≥ c ≥ d ≥ 4 be real numbers and let e = 4. Consider
x
a + y

b + z
c + v

d + w
e ≤ 1. Let P5 be the number of positive integral solutions of

x
a + y

b + z
c + v

d + w
e ≤ 1; i.e.

P5 = #{(v, w, x, y, z) ∈ Z5
+ : xa + y

b + z
c + v

d + w
e ≤ 1}. Define

µ = (a− 1)(b− 1)(c− 1)(d− 1)(e− 1). Then,

120P5 ≤ µ−(5v4−25v3+40v2−19v−1)|v=e=4 = −240−3a−3b+3ab−3c+3ac
+ 3bc− 3abc− 3d+ 3ad+ 3bd− 3abd+ 3cd− 3acd− 3bcd+ 3abcd

Let ∆1 be the different between the R.H.S. of Theorem 7 and Proposition
5. Because the GLY conjecture already holds as an effective estimate for the
number of integral points in an n-dimensional simplex, we only need to prove
that the Yau estimate is larger than the GLY estimate for n = 5.

∆1 = −240 + 12a− 384ab
24

+
135abc

32
− 245abcd

128
+

135abd
32

− 385ac
24

+
135acd

32
− 385bc

24
+

135bcd
32

+ 12b+ 3ab+ 12c+ 3ac+ 3bc− 3abc− 3d

+ 3ad+ 3bd− 3abd+ 3cd− 3acd− 3bcd+ 3abcd

Let A = a
d , B = b

d , and C = c
d .

∆1 = −240+12Ad−385
24

ABd2−385
24

ACd2−385
24

BCd2+
135
32

ABCd3+
135
32

ABd3

+
135
32

BCd3+
135
32

ACd3− 245
128

ABCd4+12Bd+3ABd2+12Cd+3ACd2+3BCd2

−3ABCd3−3d+3Ad2 +3Bd2 +3Cd2−3ABd2−3ACd2−3BCd2 +3ABCd4
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By taking the derivative of this function with respect to A, B, and C, one
variable at a time, we found that the following values are all positive: ∂

∂A∆1,
∂
∂B∆1, and ∂

∂C∆1. The actual process of calculating these partial derivatives
was quite a bit of work; we had to ensure that ∂3∆1

∂A∂B∂C ,
∂2∆1
∂A∂B , ∂2∆1

∂A∂C , and
∂2∆1
∂B∂C

were all positive before we could proceed. This method of calculating the partial
derivative with respect to all the variables and then the partial derivative of the
function with respect to one less variable for each step will now be called the
“partial differentiation test”. All of our calculations throughout this entire paper
can be found at: http://sites.google.com/site/theyauconjecture/.

From our partial derivatives, we can conclude that ∆1 is an increasing func-
tion of A, B, and C for A ≥ B ≥ C ≥ 1 and d ≥ 4. Our next step is to evaluate
the function at the minimum.

∆1|A=B=C=1 = 1200

Evaluated at the minimum, ∆1 = 1200 > 0, so we can conclude that ∆1 ≥ 0 for
a ≥ b ≥ c ≥ d ≥ 4 and e = 4. Therefore, the Yau conjecture is an accurate upper
bound of the number of integral points within the simplex on the hyperplane
v = e = 4.

2.2 CASE IB
We will now analyze the case that occurs when e > 4. We must also keep in
mind the hypothesis that the non-integral portion of e, β, has to be either e

a ,
e
b ,

e
c , or

e
d . This is important because 41 becomes negative for certain values

of a, b, c, d, and e, such as when a = b = c = d = e = 4(41 = −501) or
a = b = c = d = e = 4.25(41 = −377.737), indicating that the above proofs no
longer hold. A lemma is needed to show that β is a ratio of the weights, which
lemma 8 does for us below.

Lemma 8. Let f(x, y, z, v, w) : (C5, 0) → (C, 0) be a weighted homogeneous
polynomial with an isolated singularity at the origin. Define wt(n) as the weight
of the variable n in the polynomial. Assume that wt(x) ≥ wt(y) ≥ wt(z) ≥
wt(v) ≥ wt(w) ≥ 2, where wt(x), wt(y), wt(z), wt(v), and wt(w) are all rational
numbers. If wt(w) is not an integer, then [wt(w)] = wt(x)

wt(w) ,
wt(y)
wt(w) ,

wt(z)
wt(w) , or

wt(v)
wt(w) , where [wt(w)] is the fractional part of wt(w).

The following proposition is obtained by from the GLY conjecture.

Proposition 9. Let a ≥ b ≥ c ≥ d ≥ e ≥ 4 be real numbers and let P5

be the number of positive integral solutions of x
a + y

b + z
c + v

d + w
e ≤ 1; i.e.

P5 = #{(x, y, z, v, w) ∈ Z5
+ : x

a + y
b + z

c + v
d + w

e ≤ 1}. Suppose e is not an
integer and e = [e] + β, where β is either e

a ,
e
b ,

e
c , or

e
d .
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120P5 ≤ 5a+5b+5c−55
6
ab−55

6
ac−55

6
bc+

15
4
abc+

15
4
abd+

15
4
acd+

15
4
bcd−5ae−5be

−5ce+
55
9
abe+

55
9
abe+

55
9
ace−15

8
bce−15

8
abde−15

8
acde−15

8
bcde−5

2
abcd+abcde

−abcd
6e2

+
55ab
18e

+
55ac
18e

+
55bc
18e
−15abc

8e
−15abd

8e
−15acd

8e
−15bcd

8e
+

5abcd
3e

+
abcdβ

6e4
−55abβ

18e2

− 55acβ
18e2

− 55bcβ
18e2

+
5aβ
e

+
5bβ
e

+
5cβ
e

+
15abcβ2

8e3
+

15abdβ2

8e3
+

15acdβ2

8e3
+

15bcdβ2

8e3

−55abβ2

6e2
−55acβ2

6e2
−55bcβ2

6e2
+

5aβ2

e
+

5bβ2

e
+

5cβ2

e
−5abcdβ3

3e4
+

15abcβ3

4e3
+

15abdβ3

4e3

+
15acdβ3

4e3
+

15bcdβ3

4e3
−55abβ3

9e2
−55acβ3

9e2
−55bcβ3

9e2
−5abcdβ4

2e4
+

15abcβ4

8e3
+

15abdβ4

8e3

+
15acdβ4

8e3
+

15bcdβ4

8e3
− abcdβ5

e4

We can slive the five-dimensional simplex into the hyperplanes, w = 1,
w = 2, ..., w = e− β− 1. The inequality above is derived from summing up the
four-dimensional GLY conjecture estimates from level w = 1 to w = e− β − 1.

Theorem 10. Let a ≥ b ≥ c ≥ d ≥ e ≥ 4 be real numbers. Consider x
a + y

b +
z
c + v

d + w
e ≤ 1. Let P5 be the number of positive integral solutions of the above

inequality; i.e. P5 = #{(v, w, x, y, z) ∈ Z5
+ : xa + y

b + z
c + v

d + w
e ≤ 1}. Suppose

e is not an integer and e = [e] + β where β is either e
a ,

e
b ,

e
c , or e

d . Define
µ = (a− 1)(b− 1)(c− 1)(d− 1)(e− 1). Then,

120P5 ≤ µ−(5v4−25v3+40v2−19v−1)|v=e−β+1 = abcde−(abcd+abce+abde
+ acde+ bcde) + (abc+ abd+ abe+ acd+ ace+ ade+ bcd+ bce+ bde+ cde)

−(ab+ac+ad+ae+bc+bd+be+cd+ce+de)+(a+b+c+d+e)−1−5e4 +5e3

+5e2−6e−1+β(20e3−15e2−10e+6)−β2(30e2+15e+5)+β3(20e−5)−5β4+1

Let ∆2 be the difference between the R.H.S. of Theorem 10 and Proposition
9. Because the GLY conjecture already holds as an efective estimate for the
number of integral points in an n-dimensional simplex, we only need to prove
that the Yau estimate is larger than the GLY estaimte for n = 5.
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∆2 = −1−4a−4b−4c+d−ad−bd−cd+4ae+4be+4ce−de+ade+bde+cde

+
49
6
ab+

49
6
ac+

49
6
bc− 11

4
abc− 11

4
abd− 11

4
acd− 11

4
bcd− 5e+ 5e2 + 5e3− 5e4

+
3
2
abcd+

7
8
abce+

7
8
abde+

7
8
acde+

7
8
bcde+

abcd

6e3
− 55ab

18e
− 55ac

18e
− 55bc

18e

+
15abd

8e
+

15acd
8e

+
15bcd

8e
− 5abcd

3e
+ 6β − abcdβ

6e4
+

55abβ
18e2

+
55acβ
18e2

+
55bcβ
18e2

− 5aβ
e
− 5bβ

e
− 5cβ

e
− 10eβ − 15e2β + 20e3β + 5β2 − 15abcβ2

8e3
− 15abdβ2

8e3

− 15acdβ2

8e3
− 15bcdβ2

8e3
+

55abβ2

6e2
+

55acβ2

6e2
+

55bcβ2

6e2
− 5aβ2

e
− 5bβ2

e

− 5cβ2

e
+ 15eβ2 − 30e2β2 − 5β3 +

5abcdβ3

3e4
− 15abcβ3

4e3
− 15abdβ3

4e3

− 15acdβ3

4e3
− 15bcdβ3

4e3
+

55abβ3

9e2
+

55acβ3

9e2
+

55bcβ3

9e2
+ 20eβ3 − 5β4

+
5abcdβ4

2e4
− 15abcβ4

8e3
− 15abdβ4

8e3
− 15acdβ4

8e3
− 15bcdβ4

8e3
+
abcdβ5

e4

We will consider the following four cases: Case (a) β = e
d , Case (b) β = e

c , Case
(c) β = e

b , and Case (d) β = e
a .

2.2.1 Case (a): β = e
d

At level w = e − β − 1, xa + y
b + z

c + v
d + e−β−1

e ≤ 1. If d = e, then β = 1 and
e = [e] + β is an integer. Hence, a ≥ b ≥ c ≥ d > e. Let A = a

e , B = b
e , C = c

e ,
and D = d

e , with β = e
d = 1

D , and A ≥ B ≥ C ≥ D > 1. Then, ∆2 can be
written as
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∆2 = −1−4Ae−4Be−4Ce+De−5e+
1
6
ABCDe− 55

18
ABe− 55

18
ACe− 55

18
BCe

+
15
8
ABCe2+

15
8
ABDe2+

15
8
ACDe2+

15
8
BCDe2+

49
6
ABe2+

49
6
ACe2+

49
6
BCe2

−ADe2−BDe2−CDe2+4Ae2+4Be2+4Ce2−De2+5e2−5
3
ABCDe3−11

4
ABCe3

−11
4
ABDe3−11

4
ACDe3−11

4
BCDe3−46

9
ABe3−46

9
ACe3−46

9
BCe3+ADe3+BDe3

+CDe3 +5e3 +
3
2
ABCDe4 +

7
8
ABCe4 +

7
8
ABDe4 +

7
8
ACDe4 +

7
8
BCDe4−5e4

− 1
6
ABC− 5A

D
− 5B
D
− 5C
D
− 10e

D
− 15e2

D
+

20e3

D
+

6
D

+
55AB
18D

+
55BC
18D

+
55AC
18D

− 15AB
8D

− 15AC
8D

− 15BC
8D

+
5
D2
− 15ABC

8D2
+

55AB
6D2

+
55AC
6D2

+
55BC
6D2

− 5A
D2
− 5B
D2

− 5C
D2

+
15e
D3
− 30e2

D2
− 15AB

4D2
− 15AC

4D2
− 15BC

4D2
+

5ABC
3D2

− 5
D3
− 15ABC

4D3
+

55AB
9D3

+
55AC
9D3

+
55BC
9D3

+
20e
D3

+
5ABC
2D3

−15AB
8D3

−15AC
8D3

−15BC
8D3

− 5
D4
−15ABC

8D4
+
ABC

D4

Once again, we used partial differentiation to complete our proof. The calcula-
tions can be found on the website.

By taking the derivative of this function with respect to A, B, C, and D, one
variable at a time, we found that the following values are all positive: ∂

∂A∆2,
∂
∂B∆2, ∂

∂C∆2, and ∂
∂D∆2. Thus, we can conclude that ∆2 is an increasing

function of A, B, C, and D for A ≥ B ≥ C ≥ D ≥ 1 and e ≥ 4.

∆2|A=B=C=D=1,e=4 = 0

Evaluated at the minimum, ∆2 = 0, so we can conclude that ∆2 > 0 for
a ≥ b ≥ c ≥ d ≥ e > 4.

2.2.2 Case (b): β = e
c

If c = e, then β = 1 and e = [e] + β is an integer. Hence, a ≥ b ≥ c > e. Let
A = a

e , B = b
e , C = c

e , and D = d
e , with β = e

c = 1
C . Then, ∆2 can be written

as
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∆2 = −6−4Ae−4Be−4Ce+De−ADe2−BDe2−CDe2+4Ae2+4Be2+4Ce2−De2

+ADe3+BDe3+CDe3+
49
6
ABe2+

49
6
ACe2+

49
6
BCe2−11

4
ABCe3−11

4
ABDe3

−11
4
ACDe3−11

4
BCDe3−5e+5e2+5e3−5e4+

3
2
ABCDe4+

7
8
ABCe4+

7
8
ABDe4

+
7
8
ACDe4+

7
8
BCDe4+

1
6
ABCDe−55

18
ABe−55

18
ACe−55

18
BCe+

15
8
ABDe2+

15
8
ACDe2

+
15
8
BCDe2−5

3
ABCDe3+

6
C
−ABD

6
+

55AB
18C

+
55A
18

+
55B
18
−5A
C
−5B
C
−10e
C
−15e2

C

+
20e3

C
+

5
C2
−15AB

8C
−15ABD

8C2
−15AD

8C
−15BD

8C
+

55AB
6C2

+
55A
6C

+
55B
C
−5A
C2
−5B
C2

− 5
C

+
15e
C2
−30e2

C2
− 5
C3

+
5ABD
C2

−15AB
4C2

−15ABD
5C3

−15AD
4C2

−15BD
4C2

+
55AB
9C3

+
55A
9C2

+
55B
9C2

+
20e
C3
− 5
C4

+
5ABD

2C3
− 15AB

8C3
− 15ABD

8C4
− 15AD

8C3
− 15BD

8C3
+
ABD

C4

By taking the derivative of this function with respect to A, B, C, and D, one
variable at a time, we found that ∆2 is an increasing function of A, B, and
D for A ≥ B ≥ C ≥ D ≥ 1 and e ≥ 4. We can also prove that ∆2 is an
increasing function of C for A ≥ B ≥ C ≥ D ≥ 1 and e > 5, but not for
A ≥ B ≥ C ≥ D ≥ 1 and e ≥ 4. Thus, we will need to consider the following
two subcases:

Case (b1): 4 < e < 5: We will prove Theorem 4 directly in this subcase.
Case (b2): e > 5: ∂∆2

∂C in this subcase.

Case (b1): 4 < e < 5
In this case, e = 4 + β, 0 < β = e

c < 1. Also note that cβ = 4 + β, and
c = 1+ 4

β = e
e−4 > 5. Hence, we only need to consider a ≥ b ≥ c > 5, d ≥ e > 4,

and e = 4 + β. We can also see that at level w = 4, the defining inequality of
the simplex becomes

x

a( β
4+β )

+
y

b( β
4+β )

+
z

c( β
4+β )

+
v

d( β
4+β )

≤ 1

Because cβ = 4 + β, the denominator of the third term becomes 1, and we end
up with an inequality with no positive solutions. Thus, we only need to consider
the levels w = 1, w = 2, and w = 3 in computing P5. Let L1 be the number of
positive integral solutions at level w = 1. It is bound by the following inequality,

24L1 ≤ abcd(
3 + β

4 + β
)4 − 3

2
(abc+ abd+ acd+ bcd)(

3 + β

4 + β
)3

+
11
3

(ab+ ac+ bc)(
3 + β

4 + β
)2 − 2(a+ b+ c)(

3 + β

4 + β
)
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as defined by the following theorem, coming directly from Theorem 2.3 in [Li-Ya
3].

Theorem 11. Let a ≥ b ≥ c ≥ d ≥ 3 be real numbers. Consider the inequality
x
a + y

b + z
c + w

d ≤ 1. Let P4 be the number of positive integral solutions of the
above inequality; i.e. P4 = #{(x, y, z, w) ∈ Z4

+ : xa + y
b + z

c + w
d ≤ 1}. Then,

24P4 ≤ abcd−
3
2

(abc+ abd+ acd+ bcd) +
11
3

(ab+ ac+ bc)− 2(a+ b+ c),

with equality if and only if a = b = c = d are all integers.

Next, let L2 be the number of positive lattice points at level w = 2; it
satisfies

24L2 ≤ abcd(
2 + β

4 + β
)4 − 3

2
(abc+ abd+ acd+ bcd)(

2 + β

4 + β
)3

+
11
3

(ab+ ac+ bc)(
2 + β

4 + β
)2 − 2(a+ b+ c)(

2 + β

4 + β
)

L3, the number of positive integral solutions at level w = 3, satisfies

24L3 ≤ abcd(
1 + β

4 + β
)4 − 3

2
(abc+ abd+ acd+ bcd)(

1 + β

4 + β
)3

+
11
3

(ab+ ac+ bc)(
1 + β

4 + β
)2 − 2(a+ b+ c)(

1 + β

4 + β
)

If we take a look at Theorem 4 again, we find that since e = 4 + β and
v = e− β + 1 = 5, the R.H.S. of the Yau conjecture becomes

µ− (5v4 − 25v3 + 40v2 − 19v − 1) = (a− 1)(b− 1)(c− 1)(d− 1)(3 + β)− 904

Define ∆3 as following:

∆3 = [(a− 1)(b− 1)(c− 1)(d− 1)(3 + β)− 904]

− 5[abcd(
3 + β

4 + β
)4 − 3

2
(abc+ abd+ acd+ bcd)(

3 + β

4 + β
)3

+
11
3

(ab+ ac+ bc)(
3 + β

4 + β
)2 − 2(a+ b+ c)(

3 + β

4 + β
)]

− 5[abcd(
2 + β

4 + β
)4 − 3

2
(abc+ abd+ acd+ bcd)(

2 + β

4 + β
)3

+
11
3

(ab+ ac+ bc)(
2 + β

4 + β
)2 − 2(a+ b+ c)(

2 + β

4 + β
)]

− 5[abcd(
1 + β

4 + β
)4 − 3

2
(abc+ abd+ acd+ bcd)(

1 + β

4 + β
)3

+
11
3

(ab+ ac+ bc)(
1 + β

4 + β
)2 − 2(a+ b+ c)(

1 + β

4 + β
)]
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Note that β = 4
c−1 and β + 4 = 4c

c−1 . Therefore, ∆3 becomes

∆3 =
1

384c3
(−4540abc−400ac2−400bc2−6100abc2−341760c3−3844abc3+4608c4

−5008ac4−5008bc4+468abc4+885abd+1620acd+1620bcd+1320abcd+2700ac2d

+ 2700bc2d+ 1170abc2d+ 384c3d+ 2316ac3d+ 2316bc3d+ 624abc3d+ 1152c4d

+ 468ac4d− 2656ac3 − 2656bc3 + 468bc4d+ 417abc4d) =
1

384c3
∆4

Now all we have to do is partial differentiate to ensure that ∆4 is positive
throughout the domain, and we find that ∆4 is an increasing function with
respect to a, b, c, and d for a ≥ b ≥ c ≥ d ≥ e > 4.

∆4|a=b=c=1+ 4
β ,d=e=4+β = 192(−1+β)(4+β)3(−712−750β−1238β2+105β3)

β6

> 0

Evaluated at the minimum, ∆4 > 0, so we can conclude that ∆4 > 0 for
a ≥ b ≥ c > 5, d ≥ e > 4.

Case (b2): e > 5
In this range

∂∆2

∂C
> 0 for A ≥ 1, B ≥ 1, D ≥ 1, e > 5

Therefore ∆2 is an increasing function of A, B, C, and D for A ≥ B ≥ C ≥
D ≥ 1 and e > 5.

Finally, combining the results of cases (b1) and (b2) and knowing that ∆2 =
0 at the minimum, we can conclude that ∆2 > 0 for a ≥ b ≥ c ≥ d ≥ e > 4,
where e = [e] + e

c .

2.2.3 Case (c): β = e
b

If b = e, then β = 1 and e = [e] + β is an integer. Hence, a ≥ b > e. Let A = a
e ,

B = b
e , C = c

e , and D = d
e , with β = e

b = 1
B . Then, ∆2 can be rewritten in

terms of A, B, C, and .
To check that ∆2 is positive throughout the domain, we used the partial

differentiation test once again. By taking the derivative of this function with
respect to A, B, C, and D, one variable at a time, we found that ∆2 is an
increasing function of A, C, and D for A ≥ B ≥ C ≥ D ≥ 1 and e ≥ 4. We
can also prove that ∆2 is an increasing function of B for A ≥ B ≥ C ≥ D ≥ 1
and e > 5, but not for A ≥ B ≥ C ≥ D ≥ 1 and e ≥ 4. Thus, we will need to
consider the following two subcases, as we did in Case (b):

Case (c1): 4 < e < 5: We will prove Theorem 4 directly in this subcase.
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Case (c2): e > 5: ∂∆2
∂B in this subcase.

Case (c1): 4 < e < 5
In this case, e = 4 + β, 0 < β = e

b < 1. Also note that bβ = 4 + β, and
b = 1+ 4

β = e
e−4 > 5. Hence, we only need to consider a ≥ b > 5, c ≥ d ≥ e > 4,

and e = 4 + β. We can also see that at level w = 4, the defining inequality of
the simplex becomes

x

a( β
4+β )

+
y

b( β
4+β )

+
z

c( β
4+β )

+
v

d( β
4+β )

≤ 1

Because bβ = 4 + β, the denominator of the second term becomes 1, and we
end up with an inequality with no positive solutions. Thus, we only need to
consider the levels w = 1, w = 2, and w = 3 in computing P5. Define L1, L2,
and L3 in the same way that we did before in subcase (b1) of case (b).

If we take a look at Theorem 4 again, we find that since e = 4 + β and
v = e− β + 1 = 5, the R.H.S. of the Yau conjecture becomes

µ− (5v4 − 25v3 + 40v2 − 19v − 1) = (a− 1)(b− 1)(c− 1)(d− 1)(3 + β)− 904

Define ∆3 as following:

∆3 = [(a− 1)(b− 1)(c− 1)(d− 1)(3 + β)− 904]

− 5[abcd(
3 + β

4 + β
)4 − 3

2
(abc+ abd+ acd+ bcd)(

3 + β

4 + β
)3

+
11
3

(ab+ ac+ bc)(
3 + β

4 + β
)2 − 2(a+ b+ c)(

3 + β

4 + β
)]

− 5[abcd(
2 + β

4 + β
)4 − 3

2
(abc+ abd+ acd+ bcd)(

2 + β

4 + β
)3

+
11
3

(ab+ ac+ bc)(
2 + β

4 + β
)2 − 2(a+ b+ c)(

2 + β

4 + β
)]

− 5[abcd(
1 + β

4 + β
)4 − 3

2
(abc+ abd+ acd+ bcd)(

1 + β

4 + β
)3

+
11
3

(ab+ ac+ bc)(
1 + β

4 + β
)2 − 2(a+ b+ c)(

1 + β

4 + β
)]

Note that β = 4
b−1 and β + 4 = 4b

b−1 . Therefore, ∆3 becomes

∆3 =
1

384b3
(−400ab2−341760b3−2656ab3+4608b4−5008ab4−4540abc−400b2c

−6100ab2c−2656b3c−3844ab3c−5008b4c+468ab4c−4540abd+11120b2d−6100ab2d

+8864b3d−3844ab3d−5008b4d+468ab4d+885acd−4540bcd+1320abcd−6100b2cd

+ 1170ab2cd− 3844b3cd+ 624ab3cd+ 468b4cd+ 417ab4cd− 6160bd2 − 8800b2d2

− 6160b3d2 + 4860d3 + 8100bd3 + 8100b2d3 + 4860b3d3) =
1

384b3
∆4
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Now all we have to do is partial differentiate to ensure that ∆4 is positive
throughout the domain. We found that ∆4 is an increasing function with respect
to a, b, c, and d for a ≥ b ≥ c ≥ d ≥ e > 4.

∆4|a=b=1+ 4
β ,c=d=e=4+β = 64(4+β)3(1352−1468β−3710β2+3696β3+1950β4+405β5)

β5

> 0

Evaluated at the minimum, ∆4 > 0, so we can conclude that ∆4 > 0 for
a ≥ b > 5, c ≥ d ≥ e > 4.

Case (c2): e > 5
In this range

∂∆2

∂B
> 0 for A ≥ 1, C ≥ 1, D ≥ 1, e > 5

Therefore ∆2 is an increasing function of A, B, C, and D for A ≥ B ≥ C ≥
D ≥ 1 and e > 5.

Finally, combining the results of cases (b1) and (b2) and knowing that ∆2 =
0 at the minimum, we can conclude that ∆2 > 0 for a ≥ b ≥ c ≥ d ≥ e > 4,
where e = [e] + e

b .

2.2.4 Case (d): β = e
a

At level w = e − β − 1, xa + y
b + z

c + v
d + e−β−1

e ≤ 1. If a = e, then β = 1 and
e = [e] + β is an integer. Hence, a > e. Let A = a

e , B = b
e , C = c

e , and D = d
e ,

with β = e
a = 1

A . Then, ∆2 can be rewritten in terms of A, B, C, and D. The,
use the partial differentiation test to check that ∆2 is positive throughout the
domain; the work can be found on the website. We found that ∆2 is increasing
with respect to A, B, C, and D. Thus, we can conclude that ∆2 is an increasing
function of A, B, C, and D for A ≥ B ≥ C ≥ D ≥ 1 and e ≥ 4.

∆2|A=B=C=D=1 = 0

Evaluated at the minimum, ∆2 = 0, so we can conclude that ∆2 > 0 for
a ≥ b ≥ c ≥ d ≥ e > 4.

2.3 CASE IIA
We will now analyze the case that occurs when e = 3.

Proposition 12. Let a ≥ b ≥ c ≥ d ≥ 3 be real numbers and let e = 3. Consider
x
a + y

b + z
c + v

d + w
e ≤ 1. Let P5 be the number of positive integral solutions of

the above inequality; i.e. P5 = #{(x, y, z, v, w) ∈ Z5
+ : xa + y

b + z
c + v

d + w
e ≤ 1}.

Then,

120P5 ≤ −10(a+ b+ c) +
275
27

(ab+ac+ bc) +
85
81
abcd− 5

2
(abc+abd+acd+ bcd)
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We can slice the five-dimensional simplex into the hyperplanes, w = 1, w =
2, ..., w = e. The inequality above is derived from summing up the four-
dimensional GLY conjecture estimates from level w = 1 to w = e = 3.

Theorem 13. Let a ≥ b ≥ c ≥ d ≥ 3 be real numbers and let e = 3. Consider
x
a + y

b + z
c + v

d + w
e ≤ 1. Let P5 be the number of positive integral solutions of

the above inequality; i.e. P5 = #{(x, y, z, v, w) ∈ Z5
+ : xa + y

b + z
c + v

d + w
e ≤ 1}.

Then,

120P5 ≤ µ− (5v4 − 25v3 + 40v2 − 19v − 1)|v=e=3 = −30− 2a− 2b
+ 2ab− 2c+ 2ac+ 2bc− 2abc− 2d+ 2ad+ 2bd− 2abd+ 2cd− 2acd

− 2bcd+ 2abcd

We can use the same procedure we used in Case IA to prove that Theorem
13 is true - by showing that the R.H.S. of Theorem 13 is greater than the L.H.S.
of Proposition 12. The resulting calculations from the partial differentiation
test can be found on the website, but in summary of our findings, we found that
the difference between the two is positive throughout the domain. Therefore,
the Yau conjecture is an accurate upper bound of the number of integral points
within the simplex on the hyperplane v = e = 3.

2.4 CASE IIB
We should consider next the case that occurs when e is in the interval (3, 4).
Theorem 14 below sums up what we are trying to prove.

Theorem 14. Let a ≥ b ≥ c ≥ d ≥ e ≥ 3 be real numbers. Consider x
a + y

b +
z
c + v

d + w
e ≤ 1. Let P5 be the number of positive integral solutions of the above

inequality; i.e. P5 = #{(v, w, x, y, z) ∈ Z5
+ : xa + y

b + z
c + v

d + w
e ≤ 1}. Suppose

e is not an integer and e = [e] + β where β is either e
a ,

e
b ,

e
c , or e

d . Define
µ = (a− 1)(b− 1)(c− 1)(d− 1)(e− 1). Then,

120P5 ≤ µ−(5v4−25v3+40v2−19v−1)|v=e−β+1 = abcde−(abcd+abce+abde
+ acde+ bcde) + (abc+ abd+ abe+ acd+ ace+ ade+ bcd+ bce+ bde+ cde)

−(ab+ac+ad+ae+bc+bd+be+cd+ce+de)+(a+b+c+d+e)−1−5e4 +5e3

+5e2−6e−1+β(20e3−15e2−10e+6)−β2(30e2+15e+5)+β3(20e−5)−5β4+1

The proof entails only the case when e is in the interval (3, 4) and can be
divided into four subcases: Case (a) β = e

a , Case (b) β = e
b , Case (c) β = e

c ,
and Case (d) β = e

d .

In the interest of keeping this paper within a reasonable length, the full proof
has been omitted from this report and uploaded to the website. In summary of
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our findings, we proved each subcase through methods similar to the ones we
used in Case IB, but we also applied Lemma 6 when problems were encountered
in the proof of subcases (a), (b), and (c).

2.5 CASE IIIA
This section covers the case that occurs when e = 2.

Up until this point, we have been using the sharp GLY estimate to help prove
the Yau estimates hold. However, the sharp conjecture is for n-dimensional real
right-angled simplices with an ≥ n− 1, where an is the set of the weights. For
Case III, the weights (a, b, c, d, and e) can be less than 3, so we can no longer
compare the five-dimensional Yau estimate to the sum of the 4-dimensional
sharp GLY esimates. We can, however, use the rough GLY estimate, which is
restated below as a theorem.

Theorem 15. Let Pn = #{(x1, x2, ..., xn) ∈ Zn+ : x1
a1

+ ...+ xn
an
≤ 1}. Let n ≥ 3.

Then, if a1 ≥ a2 ≥ ... ≥ an > 1,

n!Pn < qn :=
n∏
i=1

(a1 − 1).

The proposition below comes directly from Theorem 15.

Proposition 16. Let a ≥ b ≥ c ≥ d ≥ 2 be real numbers and let e = 2. Let
P5 = #{(v, w, x, y, z) ∈ Z5

+ : xa + y
b + z

c + v
d + w

e ≤ 1}. Then,

120P5 ≤ 5(
a

2
− 1)(

b

2
− 1)(

c

2
− 1)(

d

2
− 1).

We can slice the five-dimensional simplex into the hyperplanes w = 1, w = 2,
... , w = e. At w = 2, the inequality becomes x

a + y
b + z

c + v
d + 2

2 ≤ 1, and there
are no positive solutions. Thus, the inequality above is derived from taking
the four-dimensional rough GLY conjecture estimate for level w = 1. We can
only use the rough GLY conjecture for this case because the weights are not
necessarily greater than 3.

Theorem 16 below sums up what we are trying to prove.

Theorem 17. Let a ≥ b ≥ c ≥ d ≥ 2 be real numbers and let e = 2. Consider
x
a + y

b + z
c + v

d + w
e ≤ 1. Let P5 be the number of positive integral solutions of

the above inequality; i.e. P5 = #{(v, w, x, y, z) ∈ Z5
+ : xa + y

b + z
c + v

d + w
e ≤ 1}.

Define µ = (a− 1)(b− 1)(c− 1)(d− 1)(e− 1). Then,

120P5 ≤ µ− (5v4 − 25v3 + 40v2 − 19v − 1)|v=e=2 = −a− b+ ab

− c+ ac+ bc− abc− d+ ad+ bd− abd+ cd− acd− bcd+ abcd

From here, we proceed in a similar fashion as we did in all of the other
subcases; we apply the partial differentiation test on the difference between the
R.H.S. of Theorem 17 and the R.H.S. of Proposition 16.
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2.6 CASE IIIB
This section covers the case when e is in the interval (2, 3).

The proof here is a mix between the methodology seen in Case IIB and Case
IIIA. There are four subcases; however, the rough GLY conjecture is used in
lieu of the sharper estimate. The calculations can be found on the website. In
summary of our findings, we found that the Yau conjecture is indeed an accurate
upper bound of the number of positive integral points when e is in the interval
(2, 3), thus concluding our proof of Theorem 4 and the Main Theorem.

Theorem 18 below sums up what we are trying to prove.

Theorem 18. Let a ≥ b ≥ c ≥ d ≥ e ≥ 2 be real numbers. Consider x
a + y

b +
z
c + v

d + w
e ≤ 1. Let P5 be the number of positive integral solutions of the above

inequality; i.e. P5 = #{(x, y, z, v, w) ∈ Zn+ : xa + y
b + z

c + v
d + w

e ≤ 1}. Suppose
e is not an integer and e = [e] + β where β is either e

a ,
e
b ,

e
c , or e

d . Define
µ = (a− 1)(b− 1)(c− 1)(d− 1)(e− 1). Then,

120P5 ≤ µ− (5v4 − 25v3 + 40v2 − 19v + 1)|v=e−β+1 =
abcde− (abcd+ abce+ abde+ acde+ bcde) + (abc+ abd+ abe+ acd+ ace+ ade

+bcd+bce+bde+cde)−(ab+ac+ad+ae+bc+bd+be+cd+ce+de)+(a+b+

c+d+e)−1−5e4+5e3+5e2−6e−1+β(20e3−15e2−10e+6)−β2(30e2+15e+5)

+ β3(20e− 5)− 5β4 + 1

We will utilize the rough GLY estimate to aid with the proof. The proof
entails only the case when e is in the interval (2,3) and can be divided into four
subcases: Case (a) β = e

a , Case (b) β = e
b , Case (c) β = e

c , and Case (d) β = e
d .

2.6.1 Case (a): β = e
a

In this case, e = 2 + β, where 0 < β = e
a < 1. Also note that aβ = 2 + β,

and a = 1 + 2
β = e

e−2 > 3. We can also see that at level w = 2, the defining
inequality of the simplex becomes

x

a( β
2+β )

+
y

b( β
2+β )

+
z

c( β
2+β )

+
v

d( β
2+β )

≤ 1.

Since aβ = 2 + β, the denominator of the first term, a( β
2+β ), becomes 1, and

the inequality becomes one that has no positive integral solutions. Thus, we
can see that we only need to consider the level w = 1 in computing P5. Let L1

be the number of positive integral solutions at level w = 1. It is bound by the
following inequality as defined in Theorem 15,

24L1 ≤ (a(
1 + β

2 + β
)− 1)(b(

1 + β

2 + β
)− 1)(c(

1 + β

2 + β
)− 1)(d(

1 + β

2 + β
)− 1).
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Next, we should establish the minimum values of a, b, c, and d. We al-
ready know that a has to be greater than 3. In consideration of Lemma 6, the
denominator of the second term, b( 1+β

2+β ), has to be greater than 3, and the de-
nominator of the third term, c( 1+β

2+β ), has to be greater than 2. Thus, we obtain
the inequalities b( 1+β

2+β ) > 3 and c( 1+β
2+β ) > 2. Those two restraints lead to the

minimums b > 3 + 3
1+β and c > 2 + 2

1+β .
If we take a look at Theorem 4 again, we find that since e = 2 + β and

v = e− β + 1 = 3, the R.H.S. of the Yau conjecture becomes

µ− (5v4 − 25v3 + 40v2 − 19v − 1)− (a− 1)(b− 1)(c− 1)(d− 1)(1 + β)− 32.

Define ∆2 as following:

∆2 = [(a− 1)(b− 1)(c− 1)(d− 1)(1 + β)− 32]−

5[(a(
1 + β

2 + β
)− 1)(b(

1 + β

2 + β
)− 1)(c(

1 + β

2 + β
)− 1)(d(

1 + β

2 + β
)− 1)]

Note that β = 2
a−1 and β + 2 = 2a

a−1 . Therefore, ∆2 becomes

∆2 =
1

16a3
(−568a3+24a4+20a2b+16a3b−4a4b+20a2c+16a3c−4a4c−10abc

−10a2bc−6a3bc−6a4bc+20a2d+16a3d−4a4d−10abd−10a2bd−6a3bd−6a4bd

−10acd−10a2cd−6a3cd−6a4cd+5bcd+10abcd+6a3bcd+11a4bcd) =
1

48a3
∆3

Now all we have to do is partial differentiate to ensure that ∆3 is positive
throughout the domain.

In the interest of keeping this paper within a reasonable length, the rest of
the proof has been omitted from this report and uploaded to the website. In
summary of our findings, we proved the remaining subcases through methods
similar to the ones we used in Case (a) of Case IIIB.

3 Discussion
As a result of this investigation, we have successfully proved the Yau conjecture
for n = 5. The Yau conjecture is more efficient than the GLY conjecture as a
method of obtaining an upper bound for the number of integral points within
a 5-dimensional simplex because it does not require a1 ≥ a2 ≥ ... ≥ an ≥
n− 1. Furthermore, the Yau conjecture has numerous applications in the fields
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of number theory, applied mathmeatics, algebraic geometry, and singularity
theory.

The next logical step to take after the complete proof of the Yau conjecture
for n = 5 would be to prove the conjecture for the general case n using mathe-
matical induction. This would propel the mathematical community another step
closer to classifying affine varieties as cones over projective nonsingular varieties,
something mathematicians have been trying to do since Durfee formulated his
famous conjecture.

Other future work includes exploring the geometric applications of the Yau
conjecture, proofreading my work for typos or errors, and beginning the induc-
tion proof of the Yau conjecture for all n.
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