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Abstract

In this paper we discuss the change in contact structures as their
supporting open book decompositions have their binding compo-
nents cabled. To facilitate this and applications we define the
notion of a rational open book decomposition that generalizes the
standard notion of open book decomposition and allows one to
more easily study surgeries on transverse knots. As a corollary
to our investigation we are able to show there are Stein fillable
contact structures supported by open books whose monodromies
cannot be written as a product of positive Dehn twists. We also
exhibit several monoids in the mapping class group of a surface
that have contact geometric significance.

1. Introduction

In [32] Giroux introduced a powerful new tool into contact geometry.
Specifically he demonstrated there is a one to one correspondence be-
tween contact structures up to isotopy and open book decompositions
up to positive stabilization. This Giroux correspondence is the basis for
many, if not most, of the advances in contact geometry recently. More-
over, the correspondence opens two central lines of enquiry. The first
is to see how properties of a contact structure are reflected in an open
book decomposition associated to it, and vice versa. The second is to
see how natural constructions on one side of this correspondence affect
the other. This paper addresses both these themes. It is primarily fo-
cused on studying how changes in an open book decomposition, namely
cabling of binding components, affect the supported contact structure.
In this study one is confronted with fibered links that are not the bind-
ings of open books. In order to deal with such objects we introduce the
notion of a rational open book decomposition and contact structures
compatible with them.
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While the heart of the paper involves studying the cabling proce-
dure and general fibered links, there are several interesting and unex-
pected corollaries dealing with the first theme mentioned above. The
first corollary involves showing that there are Stein fillable open books
that are supported by open books whose monodromies cannot be writ-
ten as products of positive Dehn twists. We construct such an open
book using our analysis of the behavior of monodromies under cabling.
As a second corollary we again use our study of monodromies under
cables to construct Stein cobordisms that can be used to construct geo-
metrically interesting monoids in the mapping class group of a surface.
We begin by discussing these corollaries.

1.1. Stein fillings and monodromy. One immediate and obvious ef-
fect of Giroux’s correspondence is a relationship between contact struc-
tures and mapping classes of surface automorphisms. More specifically
recall that if (B,π) is an open book decomposition of a 3-manifold M
that supports a contact structure ξ then one can describe the fibration
π : (M \B) → S1 as the mapping torus of a diffeomorphism φ : Σ → Σ,
where Σ is a fiber of π. The map φ is called the monodromy of (B,π).
We will frequently denote by M(B,π) or M(Σ,φ) the manifold defined by
the open book decomposition (B,π) = (Σ, φ) and by ξ(B,π) or ξ(Σ,φ) the
associated contact structure.

It has long been known, [1, 32, 41], that a contact 3-manifold (M, ξ)
is Stein fillable if and only if there is an open book decomposition (Σ, φ)
supporting it such that φ can be written as a composition of right handed
Dehn twists along curves in Σ. This gives a nice characterization of Stein
fillability in terms of monodromies, but it can sometimes be hard to use
in practice as one only knows there is some open book decomposition
for ξ that has monodromy with the given presentation. So this result
does not allow one to check Stein fillability using any open book de-
composition for ξ. While it seemed likely for a time that all open books
supporting a Stein fillable ξ might have monodromies given as a product
of right handed Dehn twists this turns out not to be the case.

Theorem 1.1. The tight contact manifolds (L(p, p−1), ξstd) for p ≥ 1
are Stein fillable but admit compatible open book decompositions whose
monodromy cannot be factored as a product of positive Dehn twists.

The examples above are all (2, 1)–cables of genus one open book de-
compositions, each of which is a Hopf stabilization of an annular open
book. The example L(1, 0) refers to S3. In this case, the open book has
as a binding the (2, 1)–cable of the right handed trefoil. This theorem
will be proven in Section 8. One has the following amusing corollary,
previously observed by Melvin-Morton, [42].

Corollary 1.2. The (2, 1)–cable of the right handed trefoil is not a
Hopf stabilization of the unknot.
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Of course there is necessarily some sequence of Hopf stabilizations
and destabilizations (even positive ones) that go from the unknot to the
(2, 1)–cable of the right handed trefoil knot by the Giroux correspon-
dence. Indeed the (2, 2)–cable of the right handed trefoil knot is a single
stabilization of the (2, 1)–cable as well as a sequence of stabilizations of
the unknot.

By different techniques, Wand has shown that there is an open book
supporting a tight contact structure on S1 × S2#S1 × S2 whose mon-
odromy cannot be factored as a product of positive Dehn twists, [54].

1.2. Stein cobordisms and monoids in the mapping class group.
Shortly after Giroux established his correspondence, observations were
made linking geometric properties of the contact structure to the mon-
odromy and certain monoids in the mapping class group of a compact
oriented surface with boundary. (We note that one must study monoids
in the mapping class group instead of subgroups, as there are usually se-
rious differences between the geometric properties of a contact structures
associated to an open book with a given monodromy diffeomorphism
and the open book whose monodromy is the inverse of this diffeomor-
phism.) There are two striking examples, Dehn+(Σ) and Veer+(Σ),
which are used to detect Stein fillability and tightness of the contact
structure, respectively. The monoid Dehn+(Σ) is the sub-monoid of
the oriented mapping class group Map+(Σ) generated by positive Dehn
twists about curves in Σ, and Veer+(Σ) is the sub-monoid of right veer-
ing diffeomorphisms defined in [36].

While it is shown in [36] that every open book (Σ, φ) compatible
with a tight contact structure has φ ∈ Veer+(Σ), [36] also shows there
may be (and for certain surfaces there are) monodromies in Veer+(Σ)
which correspond to overtwisted contact structures. Thus tight contact
structures are not characterized by having compatible open book decom-
positions with monodromy in Veer+(Σ). Similarly Theorem 1.1 shows
that Stein fillable contact structures are not characterized by having
compatible open book decompositions with monodromy in Dehn+(Σ).
However, we show that, at least in the Stein fillable case (and much
more generally) the set of monodromies compatible with Stein fillable
contact structures (for example) forms a closed monoid in the mapping
class group Map+(Σ). We begin by observing the following result whose
proof can be found in Section 8.

Theorem 1.3. Let φ1 and φ2 be two elements of Map+(Σ). There
is a Stein cobordism W from (M(Σ,φ1), ξ(Σ,φ1)) ⊔ (M(Σ,φ2), ξ(Σ,φ2)) to
(M(Σ,φ1◦φ2), ξ(Σ,φ1◦φ2)).

Recall W will be a Stein cobordism from (M, ξ) to (M ′, ξ′) if it is
a compact complex manifold and there is a strictly pluri-subharmonic
function ψ : W → [0, 1] such that M = ψ−1(0) and M ′ = ψ−1(1). In
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particularW can be endowed with a symplectic form such that (M, ξ) is
a concave boundary component of W and (M ′, ξ′) is a convex boundary
component. Upon announcing this theorem John Baldwin noticed that
his joint paper with Plamenevskaya [6] contains an implicit proof of
this result. He made this explicit in [4] and in addition observes the
following corollaries of this result.

Eliashberg proved that any Stein manifold/cobordism can be built
by attaching to a piece of the symplectization of a contact manifold a
collection of 4-dimensional 1-handles and 2-handles along Legendrian
knots with framings one less than the contact framing, see [10]. As
the attachment of 1-handles corresponds to (possibly self) connected
sums (even in the contact category) and attaching 2-handles as above
corresponds to Legendrian surgery we have the following immediate
corollary of Theorem 1.3.

Theorem 1.4. Let P be any property of contact structures which is
preserved under Legendrian surgery and (possibly self) connected sum.
Let MapP(Σ) ⊂ Map+(Σ) be the set of monodromies φ which give
open book decompositions compatible with contact structures satisfying
P. Then MapP(Σ) is closed under composition. Thus if the identity
map on Σ is in MapP(Σ) then MapP(Σ) is a monoid.

Using results from [10, 19, 47] we have the following corollary.

Corollary 1.5. For each of the properties P listed below, the set of
monodromies φ of open books (Σ, φ) compatible with contact structures
satisfying P forms a monoid in the mapping class group Map+(Σ):

1) non-vanishing Heegaard-Floer invariant,
2) Weakly fillable,
3) Strongly fillable,
4) Stein fillable.

Denote by HFH (Σ), Weak(Σ), Strong(Σ) and Stein(Σ), the corre-
sponding monoids in Map+(Σ).

That the first category forms a monoid was first observed in [5] using
a comultiplication map in Heegaard Floer homology. (We note that
the comultiplication map can be defined using our Theorem 1.3.) The
other three monoids were previously unknown. It has long been known,
cf. [1, 41], that monodromies in Dehn+(Σ), the monoid generated by
all right-handed Dehn twists on Σ, give rise to Stein fillable contact
structures and so Dehn+(Σ) ⊂ Stein(Σ). Work of Honda-Kazez-Matić
[37] gives strong results on the fillability of ξ when the monodromy is
pseudo-Anosov. Wendl in [55] has very interesting results showing that
Strong(Σ) = Stein(Σ) = Dehn+(Σ) when Σ is a planar surface. We
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have the following sequences of inclusions:

Weak(Σ)

( (

Dehn+(Σ) ( Stein(Σ) ( Strong(Σ) 6⊂ 6⊃ Veer+(Σ).

( (

HFH (Σ)

The first inclusion is discussed above and the fact that it is strict follows
from Theorem 1.1. The second inclusion is well known and the fact
that the inclusion is strict follows from [26]. The inclusion Strong(Σ) ⊂
Weak(Σ) is obvious and the strictness of the inclusion was first observed
in [13]. It is known that neither HFH (Σ) nor Weak(Σ) is included in
the other, see [28, 29]. It was shown in [46] (cf. [27]) that Strong(Σ) ⊂
HFH (Σ) and the other two inclusions follow from [36] as it is well
known that a weakly fillable contact structure or one with non-vanishing
Heegaard Floer invariant is tight. The strictness follows as there are
right veering monodromies that support overtwisted contact structures
as noted above.

Remark 1.6. It is unknown whether the set of tight contact struc-
tures is closed under Legendrian surgery (although it is closed under
connected sum) and hence whether there is a tight monoid, though the
above theorem says that

tightness is preserved under Legendrian surgery
if and only if there is a tight monoid.

1.3. Rational open books and cabling. Given a fibered knot L
whose fiber is a Seifert surface in a manifoldM it is well known (and will
be proven below) that for pq 6= 0 the link obtained from the knot L by
a (p, q)–cable, denoted L(p,q), is also fibered. Thus if L is the connected
binding of an open book decomposition of M , its cable is too, and then
one might ask how their compatible contact structures are related to
each other.

However if L is a fibered link with more than one component, then
the (p, q)–cable of one component produces a link with fibration whose
fibers run along the other components p times rather than once. This
cabled open book is then not an honest open book.

In Section 2 we define the notion of a rational open book decomposition
that generalizes the notion of an open book decomposition. Roughly
speaking a rational open book decomposition of a manifold M is a
fibered link for which the fiber provides a rational null-homology of the
link. (The similar concept of a “nicely fibered” link has been previously
defined by Gay [24] when studying symplectic 2-handles.) When we
want to restrict to ordinary open books we use the adjective “integral”.
Generically, cabling one binding component of a rational open book (or
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just an integral open book as above) produces another rational open
book. These objects also naturally show up when studying surgery
problems as we will see below.

Throughout this paper when L is the binding of a (rational) open
book decomposition and we discuss cabling a component of the binding
L we really mean cabling the open book decomposition. This is an
important distinction as a given link can be the boundary of many open
book decompositions. Despite this distinction, our abuse of terminology
should not cause confusion as when we discuss a link L as a binding of
an open book decomposition we will always have a fixed open book
decomposition in mind.

One can define what it means for such an open book decomposition
to support a contact structure in direct analogy to what happens in the
usual case. The main observation now is the following.

Theorem 1.7. Let (L, π) be any rational open book decomposition of
M . Then there exists a unique contact structure ξ(L,π) that is supported
by (L, π).

With the notion of rational open book in hand we return to cabling
binding components of open book decompositions. Before we can state
our main theorem we briefly make a couple of definitions.

Given an oriented knot K let N be a tubular neighborhood of N . Let
µ be a meridional curve on T = ∂N oriented so that it positively links
K and λ some longitudinal curve on T , oriented so that it is isotopic,
in N , to K. A (p, q)-curve on T is an embedded curve, or collection of
curves, that represent the homology class p[λ] + q[µ] in H1(T ;Z). (We
notice that this convention for naming curves is different from what
is commonly used in contact geometry, but the same as is commonly
used in 3-manifold topology. See Subsection 4.2.2 for a more complete
discussion.) We will also use the terminology that q/p is the slope of this
curve. The (p, q)-cable of K is the (p, q)-curve on T and it is denoted
K(p,q). If K is a component of a link L then the (p, q)-cable of L along
K is the link obtained by replacing K in L by K(p,q). If Σ is a (rational)
Seifert surface for L then Σ ∩ T can be assumed to be a (collection of)
embedded curve(s) on T (oriented as ∂(Σ−N)) and hence there is some
integers r, s with r > 0 such that Σ ∩ T is isotopic to the (r, s)-curve
on T . We call (r, s), or s/r, the Seifert slope of Σ along K. We call
a (p, q)-cable, positive, respectively negative, if q/p > s/r, respectively
q/p < s/r. Observe that when the cable K(p,q) ⊂ T runs in the direction
of K (i.e. when p > 0), the cable is positive, respectively negative, if
and only if K(p,q) intersects Σ positively, respectively negatively.

Suppose T is a transverse curve in a contact manifold (M, ξ). If ξ′ is
obtained from ξ by performing a (half) Lutz twist on T then there will be
a knot in the core of the Lutz solid torus that is topologically isotopic to
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T . Around this core there will be a concentric torus whose characteristic
foliation is by meridional curves. On this torus, let T ′ = T(p,q) be the
(p, q)–cable of T relative to the framing used when defining the Lutz
twist. We call T ′ a (p, q)–Lutz cable of T . See Section 4.3 for a more
complete discussion of Lutz twists and cables.

To state our theorem we need the notion of exceptional cablings. We
briefly describe them here. Given a component K of a fibered link L
in M we say there are no exceptional cablings if the fiber Σ of the
fibration of M − L defines a longitude for K. Otherwise, choose a
longitude λ for K so that the Seifert slope s/r is between 0 and −1.
The end points of the shortest path in the Farey tessellation from −1
to s/r give the slopes of the exceptional cables of K. (Alternatively one
may reinterpret the exceptional cabling slopes as follows: In the plane
H1(T,R) = 〈[µ], [λ]〉 let C be the cone in the second quadrant between
the two lines through the origin and each of the points (−1, 1) and (s, r)
where r[λ] + s[µ] is the Seifert slope. Then q/p 6= s/r is the slope of
an exceptional cable if (q, p) is a lattice point on the boundary of the
convex hull of the integral lattice in C minus the origin. We leave the
equivalence of these definitions for the reader.) For more details and a
simple method to compute the exceptional cables see Subsection 4.2.3.
We note a few facts about exceptional cables. Any component of a
fibered link has a finite number of exceptional cablings, and these are
all easily computable from the link. The only exceptional cabling slope
of an integral open book is −1. Also, we define a rational unknot to be
a knot whose exterior is a solid torus (fibered by disks); as such, it is a
knot in a lens space.

Theorem 1.8. Let (L, π) be a rational open book decomposition sup-
porting the contact structure ξ on M . Order the components L1, . . . , Ln,
of L and for each component Li choose pairs of integers (pi, qi) such that
the slope qi

pi
is neither the meridional slope nor the Seifert slope of Li.

Assume all the pi have the same sign and set (p,q) = ((p1, q1), . . . ,
(pn, qn)). Then the contact structure ξ(p,q) associated to the (p,q)–cable
of (L, π) is

1) contactomorphic to ξ if the pi are positive and all the (pi, qi) with
pi 6= 1 are positive,

2) contactomorphic to −ξ if the pi are negative and all the (pi, qi)
with pi 6= −1 are positive,

3) virtually overtwisted or overtwisted if any of the (pi, qi) with pi 6=
±1 are negative and L is not a rational unknot having Seifert slope
s
r
with rq − ps = −1, and

4) overtwisted if any of the (pi, qi) with pi 6= ±1 are negative and
not an exceptional cabling and L is not a rational unknot having
Seifert slope s

r
with rq − ps = −1.
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Furthermore, in the last case, if Li1 , . . . , Lik are the components of L for
which (pi, qi) is negative then ξ(p,q) is contactomorphic to the contact
structure obtained from ξ (respectively −ξ) by performing Lutz twists
on Lij (respectively −Lij ) followed by a Lutz twist on the (pij , qij )–
Lutz cable of Lij (respectively −Lij) if the pi are positive (respectively
negative).

Remark 1.9. Notice the exceptions for rational unknots in the above
theorem. They are the only bindings of rational open books with disk
pages. This allows them to have non-trivial cables (in particular nega-
tive, non-exceptional cables) that are again rational unknots. See Ex-
ample 2.3 (2) and Remark 4.8.

Remark 1.10. Observe that in the above theorem if pi = 1, then
the component Li is effectively not cabled and the Seifert slope of the
page on that component remains the same (though the multiplicity with
which a page meets that component may increase). To cable just a
subset of the binding components of an open book where all the pi are
positive, simply do (1, 1)–cables on the components that are to be left
unaltered.

Remark 1.11. We will see in the proof of this theorem that the
operation of cabling a binding component of an open book affects the
contact structure by removing a standard neighborhood of the binding
and replacing it with a solid torus having a possibly different contact
structure. When the cabling is positive the replaced contact structure
is the same as the original contact structure but when the cabling is
exceptional it is a virtually overtwisted contact structure (leading to
the delicate issue of when gluing two tight contact structures along a
compressible torus yields a tight contact structure). When the cabling
is sufficiently negative the replaced contact structure is overtwisted.

Some of the results in this theorem regarding when cabling preserves
tightness or induces overtwistedness have been obtained by Ishikawa,
[38].

The statement is much cleaner in the case of integral open book
decompositions with connected binding. In particular, since a pair of
integers (p, q) is positive precisely when pq > 0 and negative when pq < 0
for integral open books, we have the following result.

Corollary 1.12. Let (L, π) be an integral open book decomposition
with connected binding supporting ξ on M . Let (p, q), |p| > 1, q 6= 0,
be a pair of integers. Then the contact structure ξ(p,q) supported by the
integral open book with binding L(p,q) is

1) contactomorphic to ξ if pq > 0 and p > 0,
2) contactomorphic to −ξ if pq > 0 and p < 0,
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3) contactomorphic to ξ#ξ(1−|p|)(2g+|q|−1) if pq < 0 and p > 0 and L
is not the unknot with q = −1, and

4) contactomorphic to −(ξ#ξ(1−|p|)(2g+|q|−1)) if pq < 0 and p < 0 and
L is not the unknot with q = 1

where g is the genus of the knot L and ξn is the overtwisted contact
structure on S3 with Hopf invariant n. If p = ±1 then L(p,q) = ±L and
ξ(p,q) is contactomorphic to ±ξ.

Remark 1.13. We note that Corollary 1.12 recovers a result of Hed-
den [34] when the ambient manifold M is S3.

Remark 1.14. Notice the exceptions for the unknot in S3 in the
above corollary. Because the unknot is the only binding for an integral
open book with disk pages, each (p,±1)–cables of the unknot is still an
unknot (for any p). This is the only integrally fibered knot with this
property.

There are negative cables of binding components of open books that
support tight contact structures. In addition, when tightness is pre-
served by a negative cable the contact structure can change, unlike in
the case of positive cables. In particular we have the following two
results.

Proposition 1.15. Let (L, π) be a rational unknot in a lens space
M . Then all exceptional cables of L support a tight contact structure on
M . If L is not the unknot in S3 then the contact structures supported by
the cabled knots types do not have to be the same as the one supported
by L. Moreover, the exact contact structures can be determined.

We can also see that tightness can be preserved when negatively ca-
bling a link that is not a rational unknot.

Proposition 1.16. There are negative cables of rational open books
other than rational unknots which remain tight (in fact, fillable). In
particular, the (2,-1)–cable of a very general family of (3,-1)–open books
are Stein fillable.

Very general here means that there are no restriction on genus, and
no restrictions on the monodromy other than it being suitably posi-
tive at the boundary. For a more precise formulation of this result see
Section 8.3.

There are conditions on a fibered link that imply that negative ca-
bling with the exceptional cabling slopes will never yield tight contact
structures (and hence all negative cables yield overtwisted structures).

Proposition 1.17. If (L, π) is a rational open book decomposition
of M that has a component L′ ⊂ L that is contained in a solid torus S
with convex boundary having dividing slope greater than or equal to any
longitudinal slope that is non-negative with respect to the page of the
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open book, then all exceptional cables along L′ will support overtwisted
contact structures.

Moreover, any negative (p, q)–cabling where p and q are not relatively
prime will yield an overtwisted contact structure.

Notice that for any integral open book, except the unknot in S3,
one can always find a solid torus neighborhood of a binding component
with convex boundary having dividing slope 0 with respect to the page
framing. Hence this proposition gives an indication as to why one cannot
have exceptional slopes when considering integral open books.

Rational open book decompositions can be difficult to work with, so
in Section 5 we show how to use the above cabling operations to resolve
a rational open book decomposition. That is we give a construction
that takes a rational open book decomposition and produces an honest
open book decomposition that supports the same contact structure.

It is useful to understand the monodromy of a cable in terms of the
monodromy of the original fibered link. In particular our corollaries
discussed above are based on this. So in Section 7 we discuss how to
compute the monodromy of certain positive “homogeneous” cables of
open book decompositions. Given an integral open book decomposition
with binding L we give an explicit description of the monodromy of the
integral open book decomposition obtained from L by (p, 1)–cabling
each binding component of L. From this one can obtain a presentation
for the (p, q)–cables of L by positive stabilizations.

1.4. Surgery and open book decompositions. In Section 6 we ob-
serve that Dehn surgery on binding components of open books nat-
urally yield induced rational open books. These rational open books
may then be resolved to integral open books. Thus we have a procedure
for constructing integral open books for manifolds obtained from Dehn
surgeries.

Recall that a surgery on a transversal knot K is called admissible
if the surgery coefficient is smaller than the slope of the characteristic
foliation on the boundary of a standard neighborhood of a transverse
knot. Gay shows there is a natural contact structure on a manifold
obtained from admissible surgery on a transverse knot and, in the case
of integral surgeries, there is a symplectic cobordism from the original
manifold to the surgered one, [24]. This leads to the following result
which can be thought of as a generalization of a result of Gay to the
case of rational open books.

Theorem 1.18. Let (L, π) be an open book decomposition for (M, ξ)
and K one of the binding components. The induced open book for any
admissible surgery on K that is negative with respect to the framing on
K given by a page of (L, π) supports the contact structure obtained from
the admissible surgery on the surgered manifold.
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This result, and generalizations to rational open books, follows im-
mediately from Lemmas 6.1 and 6.2.

We also discuss in Section 6 how to put any transverse knot in the
binding of an open book decomposition so that we can apply the above
theorem to construct open books for contact structures obtained via
admissible surgeries.

Acknowledgments. The authors thank Vincent Colin, Emmanuel
Giroux, and Paolo Lisca for useful discussions during the preparation
of this paper and Burak Ozbagci and the referees for helpful comments
on a first draft of the paper.

2. Rational open book decompositions and contact
structures.

We begin by establishing some notation for curves on the boundary
of a neighborhood of knot. A standard neighborhood of a knot K is
a solid torus NK = S1 × D2. Let µ be a meridian, the boundary of a
meridional disk {pt} ×D2; let λ be a longitude or framing curve, that
is a curve on ∂N that is isotopic in NK to the core of the solid torus.
We can choose the product structure so that λ is S1 × {pt}.

Fix an orientation on K. Orient µ as the boundary of the meridional
disk {pt} × D2 where {pt} × D2 is oriented so that it has positive in-
tersection with K. Orient λ so that λ and K are isotopic as oriented
knots in NK . Together ([λ], [µ]) forms a basis for H1(∂NK ;Z). With
respect to this longitude-meridian basis, a pair of integers (p, q) 6= (0, 0)
defines a collection K(p,q) of coherently oriented essential simple closed
curves on ∂NK representing the homology class p[λ] + q[µ]. If p and q
are relatively prime then a (p, q)–curve is a single curve. If p and q are
not relatively prime then a (p, q)–curve is gcd(p, q) mutually disjoint
copies of the (p/gcd(p, q), q/gcd(p, q)) curve on ∂NK .

The slope of a (p, q)–curve and of its homology class p[λ] + q[µ] is q
p
.

This is chosen so that the meridian µ has slope ∞, the chosen framing
curve λ has slope 0, and every longitude has integral slope. This choice
of convention for the slope is further discussed in Section 3.

2.1. Rational open book decompositions. A rational open book de-
composition for a manifold M is a pair (L, π) consisting of an oriented
link L in M and a fibration π : (M \ L) → S1 such that no compo-
nent of π−1(θ) is meridional for any θ ∈ S1. In other words, if N is a
small tubular neighborhood of L then no component of ∂N ∩ π−1(θ) is
a meridian of a component of L. We note that a rational open book can
differ from an honest open book in two ways:

(⋆) a component of ∂N ∩ π−1(θ) does not have to be a longitude to a
component of L, and
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(⋆⋆) a component of ∂N intersected with π−1(θ) does not have to be
connected.

In particular, if L is a knot then it is rationally null-homologous. This
indicates the reason for the name “rational open book”. As usual π−1(θ)
is called a page of the open book for any θ ∈ S1 and L is called the
binding of the open book. We will usually put the word “rational” in
front of “open book” when referring to the above concept. Sometimes to
emphasize that we are referring to the original meaning of “open book”
we will use the phrase “honest open book” or “integral open book”.

We note that just as for honest open books, one may describe rational
open books using their monodromy map. That is, given (L, π) a rational
open book for M , the fibration π : (M \ L) → S1 is a mapping torus of

a diffeomorphism φ : Σ → Σ where Σ = (π−1(θ)) for some θ ∈ S1. We
call φ the monodromy of the open book. For an honest open book one
demands that φ is the identity in a neighborhood of the boundary, but
for rational open books we allow φ to be the identity in a neighborhood
of the boundary, to be a rigid rotation in either direction (of order less
than 2π), or to identify the neighborhood of one boundary with another.
In particular we require that some power of φ is the identity on each
boundary component.

2.2. Torus knots and other examples of rational open books.
In this subsection we discuss various basic examples and constructions
of rational open book decompositions.

2.2.1. Torus knots in lens spaces. Torus knots in lens spaces provide
a fundamental class of rational open books. Fix an oriented longitude-
meridian basis ([γ], [α]) for the boundary T of an oriented solid torus
Uα (viewing Uα as a standard neighborhood of a knot as above). With
respect to this basis, let β be a simple closed curve on T of slope s

r
for

coprime integers 0 ≤ s < r. Attaching another solid torus Uβ to Uα
along T so that β is a meridian of Uβ forms the lens space −L(r, s). For
coprime integers k and l we define the (k, l)–torus knot in −L(r, s) to

be the simple closed curve on T of slope l
k
and denote it as T

(r,s)
(k,l) or

simply T(k,l) when the ambient lens space is understood. If k 6= 0 then
we may orient T(k,l) so that it is homologous to k · γ in Uα. (If k = 0,
then the torus knot is the meridian of Uα so it bounds an embedded
disk and the two orientations yield isotopic knots.) If ±(k, l) = (0, 1)

or (r, s), then T
(r,s)
(k,l) is a meridian of Uα or Uβ, respectively, and hence

bounds a disk. We say such torus knots are trivial.

Remark 2.1. We use the lens space conventions most common to
4-manifold, contact and symplectic topologists and opposite that used
by most 3-manifold topologists. With this convention, L(r, s) is given
by − r

s
surgery on the unknot, rather than r

s
.
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Lemma 2.2. The non-trivial torus knot T
(r,s)
(k,l) in the lens space

−L(r, s) is the binding of a rational open book. The page of the open

book Σ
(r,s)
(k,l) is a surface of Euler characteristic

|k|+ |ks− lr| − |k(ks − lr)|
gcd(r, k)

and
gcd(r, k2)

gcd(r, k)

boundary components. Moreover, as an element of H1(−L(r, s);Z) the

knot T
(r,s)
(k,l) has order

r

gcd(r, k)
.

Notice that this implies that the total boundary of a fiber in a fibration

of the complement of T
(r,s)
(k,l) wraps r

gcd(r,k) times around T
(r,s)
(k,l) and each

boundary component of the fiber wraps r
gcd(r,k2)

times around T
(r,s)
(k,l) .

Proof. Consider the torus knot T(k,l) in −L(r, s). The exterior of
T(k,l), (−L(r, s) \ NT(k,l)), may be viewed as the union of Uα and Uβ
glued together along the complementary annulus T \(T ∩NT(k,l)). When
T(k,l) is non-trivial then this annulus is essential in each Uα and Uβ and
hence the exterior of T(k,l) is a small Seifert fiber space over the disk
with two exceptional fibers. Thus there exists a fibration π : (−L(r, s) \
NT(k,l)) → S1. This fibration can be seen as a (multi-section) of the
Seifert fibration or can be constructed directly as we do below. No
component of ∂NT(k,l) ∩ π−1(θ) is a meridian since that would imply

that [T(k,l)] has infinite order in H1(−L(r, s);Z) = Z/rZ.

In direct analogy with torus knots in S3, a fiber Σ
(r,s)
(k,l) of π : (−L(r, s)\

NT(k,l)) → S1 may be viewed as the union of |ks−lr|
gcd(r,k) meridional disks

of Uα and |k|
gcd(r,k) meridional disks of Uβ joined together by |k(ks−lr)|

gcd(r,k)

bands in T × (−ǫ, ǫ)−NT(k,l) . The number of disks is due to

(x, y, z) =

(
ks− lr

gcd(r, k)
,

k

gcd(r, k)
,

r

gcd(r, k)

)

giving the “smallest” non-trivial integral solution to x[α]+y[β] = z[T(k,l)]
in H1(T ;Z). The number of bands then may be seen as resulting

from T
(r,s)
(k,l) intersecting α minimally |k| times and using |ks−lr|

gcd(r,k) merid-

ional disks of Uα. The surface Σ
(r,s)
(k,l) is verified to be a fiber of a fi-

bration by either direct inspection or using Gabai’s sutured manifold
theory [23]: the complement in the Heegaard torus T of T(k,l) and

the bands of the surface Σ
(r,s)
(k,l) give rise to a complete set of product
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disks for a sutured manifold decomposition of the sutured manifold

(M \ (Σ
(r,s)
(k,l) × I), ∂(M \ (Σ

(r,s)
(k,l) × I))) where M = −L(r, s) \ N

T
(r,s)
(k,l)

is the torus knot exterior. Thus the fiber has Euler characteristic
|k|+|ks−lr|−|k(ks−lr)|

gcd(r,k) .

From this description we may also calculate that the fiber Σ
(r,s)
(k,l)

has gcd(r,k2)
gcd(r,k) boundary components as follows. The order of [T

(r,s)
(k,l) ] in

H1(−L(r, s);Z) gives the number of times ∂Σ
(r,s)
(k,l) intersects its meridian

µ. The number of bands joining the meridional disks in the construction

of Σ
(r,s)
(k,l) gives the number of times its boundary intersects λ. Therefore

the homology class of ∂Σ
(r,s)
(k,l) in H1(∂NT(k,l) ;Z) is

k(ks−lr)
gcd(r,k) [µ]+

k
gcd(r,k) [λ]

with respect to the meridian µ of T
(r,s)
(k,l) and longitude λ induced from

T . Thus ∂Σ
(r,s)
(k,l) has

gcd

(
k

gcd(r, k)
,
k(ks − lr)

gcd(r, k)

)
=

gcd(r, k2)

gcd(r, k)

components. (Obtaining this equality makes use of the facts that
gcd(r, s) = 1 and gcd(k, l) = 1.) q.e.d.

Example 2.3. Let N be a small tubular neighborhood of the non-

trivial torus knot T
(r,s)
(k,l) . Let π be the fibration of its exterior −L(r, s)\N .

The following examples illustrate how a rational open book may differ
from an honest open book by just one of properties (⋆) and (⋆⋆) or both.

1) The torus knot T
(r,s)
(1,n), for any integer n, has disk pages with

∂N ∩π−1(θ) connected and running r times longitudinally on ∂N .

Indeed, T
(r,s)
(1,n) is isotopic to the core of Uα and its exterior is a

solid torus. The fibration π : (−L(r, s)\T(1,n)) → S1 may be iden-
tified with the fibration of Uβ by meridional disks. These knots
are called rational unknots.

(Note that the only rational unknot that is also a trivial knot
is the standard unknot in S3. In contrast to trivial knots in other
manifolds, it is the binding of an open book.)

2) Similarly, the torus knot T
(r,s)
(t,u) , for any (t, u) such that ru− ts =

±1, is a rational unknot. It is isotopic to the core of Uβ and so its

exterior is a solid torus too. Observe that T
(1,0)
(p,1) , the (p, 1)–torus

knot in S3, is an unknot.

3) The torus knot T
(4,1)
(2,1) has annular pages. Hence ∂N ∩ π−1(θ) has

two components. Since the knot has order 2, each of these com-
ponents is a longitude.
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4) The torus knot T
(8,1)
(2,1) has twice-punctured torus pages. Again

∂N ∩ π−1(θ) has two components. But since the knot has order
4, each of these components run twice longitudinally on ∂N .

The entire above discussion may be extended to the torus links T
(r,s)
(k,l)

where gcd(k, l) 6= 1. They give examples of rational open books, as long
as no component is a trivial knot.

2.2.2. Rational open books produced by Dehn surgery. Given
an honest open book decomposition (L, π) for a manifold M , let γ̄ =
(γ1, . . . , γn) where γi is a slope on the boundary of a small tubular
neighborhood NLi

of Li, the i
th component of L. Fix a θ ∈ S1. Assume

• γi is not isotopic on ∂NLi
to ∂NLi

∩ π−1(θ) for any i = 1, . . . , n,
and

• there exists some i for which γi minimally intersects ∂NLi
∩π−1(θ)

more than once.

Then the Dehn surgered manifold M ′ = ML(γ̄) has a rational open
book decomposition (L′, π′) where L′ is the link in M ′ obtained from
the cores of the Dehn surgery solid tori, and π′ : (M ′ \ L′) → S1 is the
same fibration as π since M ′ \L′ =M \L. The two properties imposed
upon γ̄ ensure that (L′, π′) is a rational open book but not an honest
open book. (If one ignored the second property then one still obtains a
rational open book, but it might in fact be an honest open book.)

Example 2.4. Let K be a fibered knot in S3 with fibration π : (S3 \
K) → S1. Then the surgered manifold S3

K(q/p) with q/p 6= 0 admits
an open book decomposition (K ′, π) where K ′ is the core of the surgery
solid torus. This is an honest open book decomposition if p = ±1 and
a rational open book decomposition otherwise.

In particular, any knot in S3 with a Dehn surgery yielding a lens
space is known to be fibered [48], [45]. Thus they confer a rational
open book decomposition upon the resulting lens space.

2.2.3. Grid number one knots in lens spaces. The known non-
torus knots in lens spaces admitting a Dehn surgery yielding S3 all have
grid number one (see [7], [3]). Indeed all grid number one knots in lens
spaces that represent a generator of H1(L(r, s);Z) have fibered exterior
[48] and hence are the bindings of rational open books. Grid number
one knots that do not represent a generator of H1(L(r, s);Z) are not
always fibered. This may be easily observed through several straight-
forward calculations of their knot Floer homology, [3], [45]. Also, this
is explicitly catalogued for grid number one knots with once-punctured
torus rational Seifert surfaces in [2].

2.3. Inducing contact structures from rational open book de-
compositions. Generalizing a definition of Giroux, we say a rational
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open book (L, π) for M supports a contact structure ξ if there is a
contact form α for ξ such that

1) α(v) > 0 for all positively pointing tangent vectors v ∈ TL, and
2) dα is a volume form when restricted to each page of the open book.

The existence part of the proof of Theorem 1.7 is a small modification
of Thurston and Winkelnkemper’s original proof for honest open books
[51], cf [17]. Uniqueness readily follows as in [32] with the appropriate
definition of “support” given above.

Proof of Theorem 1.7. Observe

Mφ = Σφ ∪ψ


 ∐

|∂Σφ|
S1 ×D2


 ,

where Σφ is the mapping torus of φ, and ψ is a diffeomorphism used to
glue the solid tori to Σφ. Note we use |∂Σφ| rather than |∂Σ| because the
monodromy φ may permute the components of ∂Σ. (See Subsection 2.1
for a discussion of the monodromy of rational open books.)

We first construct a contact structure on Σφ. Let λ be a 1–form on
Σ such that dλ is a volume form on Σ and λ = s dθ in the coordinates
(s, θ) ∈ [−1,−1 + ǫ]× S1 near each boundary component of Σ for some
sufficiently small ǫ > 0. (Here s = −1+ ǫ corresponds to ∂Σ). Consider
the 1–form

λ(t,x) = tλx + (1− t)(φ∗λ)x

on Σ× [0, 1] where (x, t) ∈ Σ× [0, 1] and set

αK = λ(t,x) +Kdt.

For sufficiently large K this form is a contact form and it is clear that
this form descends to a contact form on the mapping torus Σφ. (For
details on the existence of λ or the above construction see [17, 51].)

We now want to extend this form over the solid tori neighborhood of
the binding. To this end consider the map ψ that glues the solid tori
to the mapping torus. Using coordinates (ϕ, (r, ϑ)) on S1 × D2 where
D2 is the unit disk in the R2 with polar coordinates and coordinates
(s, θ, t) as above on the component of N(∂Σφ) at hand, we have

ψ : S1 ×N(∂D2) → N(∂Σφ)

(ϕ, r, ϑ) 7→ (−r, pϕ + qϑ,−qϕ+ pϑ).

This is a map defined near the boundary of S1 × D2 where N(∂D2)
contains the annulus r ∈ [1 − ǫ, 1]. Pulling back the contact form αK
using this map gives

αψ = −r(p dϕ+ q dϑ) +K(−q dϕ+ p dϑ)

= (−rp−Kq) dϕ+ (−rq + pK) dϑ.
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We now need to extend αψ over all of S1 ×D2. We will extend using a
form of the form

f(r) dϕ+ g(r) dϑ.

This form is a contact form if and only if f(r)g′(r)−f ′(r)g(r) > 0. Near
∂S1 ×D2, αψ is defined with f(r) = −rp− qK and g(r) = −rq + pK.
Near the core of S1 ×D2 we would like f(r) = 1 and g(r) = r2. One
may easily extend f(r) and g(r) so that αψ is a contact form on the
solid torus. Moreover, it is easy to check that f(r) and g(r) can be
chosen so that dαψ is non-zero on the extension of the pages to the core
of the solid torus.

For uniqueness suppose that α1 and α2 are contact forms for two
contact structures supported by (L, π). Consider the form π∗dθ on M −
L, where θ is the angular coordinate on S1. Let f :M → R be a function
of the distance to L that is 1 outside a neighborhood of L, vanishes
to order 2 on L and increasing in between. Now set η to be f π∗dθ
extended to be 0 over L. This is a global 1–form on M that acts like
“dt” above, outside a neighborhood of L. Then for any positive K the
form Kη+αi is a contact form for a contact structure isotopic to kerαi.
For K sufficiently large the family of forms K dt+ (tα1 + (1− t)α2) on
M \N are all contact forms. From this one easily constructs the isotopy
between the contact structures. For more details see [17]. q.e.d.

2.4. Stabilization. For later use in the paper we recall the notion of
stabilizing an honest open book decomposition. The intrinsic definition
is as follows. If (L, π) is an open book decomposition supporting ξ on
M then choose an arc α properly embedded in a page of the open book
and perform a Murasugi sum of (L, π) with the negative Hopf link (this
is an open book for S3 supporting the tight contact structure) along
α. More specifically choose an arc β in a page of the Hopf link open
book and identify a neighborhood of α with a neighborhood of β so
that the pages are plumbed together. This results in a new open book
(Lα, πα) supporting ξ on M. See [17]. The open book decomposition
(Lα, πα) is said to be obtained from (L, π) by positive stabilization along
α. An open book decomposition can be described via its monodromy
presentation. That is the complement of an open neighborhood of L is
a surface bundle over S1 and hence there is some diffeomorphism φ of
a fiber Σ of π that fixes the boundary of Σ so that the complement of
a neighborhood of L in M is diffeomorphic to

Σ× [0, 1]/ ∼,
where (1, x) ∼ (0, φ(x)). If we add the relation (t, x) ∼ (t′, x) for all
x ∈ ∂Σ then we get back M. So the pair (Σ, φ) will be called the
monodromy presentation of the open book decomposition ofM. In terms
of the monodromy presentation (Σ, φ) of the open book (L, π) we can
describe a positive stabilization as follows. Again fix an arc α properly
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embedded in Σ. Let Σα be the surface obtained from Σ by attaching a
1-handle along ∂α ⊂ ∂Σ. Let φα = φ◦Dα′ where α′ is the simple closed
curve α union the core of the 1-handle and Dα′ is a right handed Dehn
twist along α′. The open book decomposition (Σα, φα) also supports ξ
on M and is called the positive stabilization of (Σ, φ) along α.

3. Cables of open books

Refer to the beginning of Section 2 for our conventions about curves
on the boundary of a standard neighborhood of a knot. Given a (framed,
oriented) knot K in a manifold M , replacing K with the curve K(p,q)

on ∂NK forms the (p, q)–cable of K, so long as p 6= 0. Note K(0,q) is
just a collection of meridians of K. Each (1, q)–cable of K is isotopic to
K in NK as an oriented curve, and each (−1, q)–cable of K is isotopic
to −K. Mind that the curves K(p,q) and K(−p,−q) differ by a reversal of
orientation.

If L is an oriented link with n components we can order the compo-
nents, choose n pairs of integers (pi, qi), and then (pi, qi)–cable the ith

component of L. This will be denoted L(p,q) where (p,q) is the n-tuple
of pairs ((p1, q1), . . . , (pn, qn)). If L is the binding of an honest open
book then each component of L has a natural framing coming from a
page of the open book. Throughout this paper we assume this framing
is used when discussing the bindings of an integral open book. If L is
the binding of a rational open book then the pages might not induce a
framing on L.

In this case one must simply choose a framing for each component.
Given a choice of framing, a page of the rational open book approaches a
component K of L as a cone on an (r, s)–curve for some r > 0 and s. (In
other words, the page intersects a neighborhood N of K in the obvious
collection of annuli each with one boundary component a component
of a (r, s)–curve on ∂N and the other boundary component wrapping
r/gcd(r, s) times around K.) In either case, the slope s

r
at which a

page encounters the standard neighborhood of a binding component is
called the Seifert slope for that component. For binding components
of an integral open book using its natural framing, the Seifert slope
corresponds to 0. Moreover, regardless of what framing is used, the
Seifert slope of an integral open book is integral.

The Seifert slope and the meridian partition the remaining slopes on
∂N into positive and negative. Relative to the Seifert slope s

r
, a pair

of integers (p, q) with p 6= 0 defines a slope q
p
that is positive if q

p
> s

r

and is negative if q
p
< s

r
. We also say the pair of integers and the curve

on ∂N it represents are positive or negative accordingly. In particular,
this permits us to speak of a (p, q)–cable as being positive or negative.
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Given an open book, a cabling of its binding components naturally
produces another open book — except when a component is cabled
along its Seifert slope (or its meridional slope).

Lemma 3.1. Let (L, π) be a (rational) open book decomposition for
a 3–manifold M. For each component Li, i = 1, . . . , n, of L, let (pi, qi)
be a pair of integers for which qi/pi is neither the Seifert slope nor
meridional slope of Li, and all the pi have the same sign, and then
set (p,q) = ((p1, q1), . . . , (pn, qn)). The link L(p,q) is the binding of a
rational open book for M , and this open book is naturally induced from
the open book (L, π). If the pi’s all have the same magnitude and (L, π)
is an honest open book then L(p,q) is the binding of an honest open book.

Proof. There are several ways to prove this statement. A simple way
that will be useful in what follows is to notice that the (p, q) torus knot
T(p,q) sits on a standardly embedded torus T ⊂ S3 that bounds solid

tori V0 and V1 such that S3 = V0 ∪ V1. It is well known that T(p,q) is

the binding of an open book for S3. Moreover it is easily checked that
if C is the core of V1, say, then C intersects the pages of this open
book transversely and it intersects each page in p points. (We view
T(p,q) as a (p, q)–curve on the boundary of V0.) Thus the complement

of a small tubular neighborhood of C is a solid torus S(p,q) = D2 ×
S1 containing T(p,q) such that the open book structure on S3 gives a

fibration S(p,q) \T(p,q) → S1. This fibration induces a fibration of ∂S(p,q)
by curves {pt} × S1 and the preimage of any point in S1 intersected
with ∂S(p,q) is p curves.

Suppose the knot K is the binding of an honest open book, N is a
small tubular neighborhood of K and π : M \ N → S1 is the fibration
of the complement of N. Letting fp : S

1 → S1 be the p-fold covering
map one sees that S(p,q) may be glued to M \ N to recover M and so

that the fibration fp ◦ π : M \ N → S1 and S(p,q) \ T(p,q) → S1 glue
together to give an open book decomposition of M with binding K(p,q).
In the case of an open book (L, π) with multiple binding components
it is clear that if all the pi have the same magnitude then the same
construction yields an open book structure with binding L(p,q). If the
pi have different magnitudes then let p be the least common multiple of
the pi. Now using the fibration fp ◦π on the complement of a neighbor-
hood of the binding, one easily sees a rational open book structure with
binding L(p,q). Notice that in this construction we have not been paying
attention to the orientation on the page. Taking page orientations into
account forces all the signs on the pi to be the same. (The construction
really deals with the case when all the pi were positive. For the negative
case, reverse the orientation on L.)

The rational open book case can be similarly considered. Specifically
for binding components with multiplicity one (that is one boundary
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component of a page contains the binding component) we begin with
the torus knots in lens spaces from Examples 2.2.1 above. Using the

same argument for T
(r,s)
(k,l) , the (k, l)–torus link in the lens space L(r, s),

one can construct a solid torus S
(r,s)
(k,l) containing T

(r,s)
(k,l) that can be used

to (k, l)–cable a binding component for which a page approaches as a
cone on an (r, s)–curve. If a binding component has higher multiplicity

then we compose the fibration of the complement of T
(r,s)
(k,l) in the solid

torus with a covering map of the circle. q.e.d.

Remark 3.2. Observe that the open book constructed for the cable
L(p,q) above may be obtained by a sequence of cablings, cabling one
component of L at a time in any order.

Remark 3.3. Notice that the ((2, 1), (3, 1))–cable of the positive
Hopf link is a (non-integral) rational open book for S3. Its page wraps
along the first component with multiplicity 3 and the second with mul-
tiplicity 2.

The following relationship between the (p, q)–cable of a fibered knot
and its (p,±1)–cable (cf. [44, Figure 4.2]) will be particularly useful in
the proof of Theorem 1.8 for integral open books.

Lemma 3.4. Let L be a fibered knot in a manifold. The cable L(p,q)

is obtained from L(p,sgn(q)) by (|p| − 1)(|q| − 1) negative, respectively
positive, stabilizations when pq < 0, respectively pq > 0, where sgn(q)
is +1 if q > 0 and −1 if q < 0. Equivalently, L(p,q) is obtained from

L(p,sgn(q)) by Murasugi summing with the (p, q)–torus link T(p,q) in S
3.

Proof. In the left hand side of Figure 1 we show how to go from
a (p, 1)–cable of a knot to the (p, q)–cable. The horizontal sheets are
copies of the Seifert surface for L. To go from the top to the bottom
pictures in the figure one simply attaches (|p| − 1)(|q| − 1) bands with a
right handed twist. It is easy to see that this corresponds to a positive
stabilization of the open book. For the second statement notice that
the two shaded disks on the right hand side of Figure 1 are Murasugi
summing disks that show the (p, q)–cable of L is the Murasugi sum of
the (p, 1)–cable and the (p, q)–torus link. Similar arguments work for
(p, q)–cables when q < 0. q.e.d.

4. The proof of Theorem 1.8

In this section we give the proof of Theorem 1.8. We break this proof
into a few parts for clarity. In Subsection 4.1 we show that positive
cablings of open books preserve the supported contact structures, parts
(1) and (2) of the theorem. As these are the main results needed for
all our applications, the reader primarily interested in the applications
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Figure 1. Left: the top picture is the (3, 1)–cable of L
and the bottom picture is the (3, 4)–cable of L. Right:
the top picture is the (3, 1)–cable of L with a Mura-
sugi summing disk shaded and the bottom picture is the
(3, 4)–torus knot with a Murasugi summing disk shaded.

only needs to read the first subsection; though, the surprising rich and
subtle structure of negative cables is interesting in its own right. In
Subsection 4.2 we show that all non-exceptional negative cablings of
open books support overtwisted contact structures. In Subsection 4.3 we
show how the homotopy class of the plane field of the contact structure
supported by a negative cabling may be induced by Lutz twists. Finally
in Subsection 4.4 we pull these together to prove the theorem and its
corollary, as well as several propositions about exceptional cables.

Since a cabling of a link may be done one component at a time,
we focus our attention on cabling just one binding component of an
open book. To this end, throughout this section let (L, π) be a rational
open book for M with binding components L1 = K,L2, . . . , Ln and
supporting the contact structure ξ. Consider the (p, q)–cable of (L, π)
— that is, taking the (p, q)–cable of K and not cabling the remaining
components of L. We will use K(p,q) to denote only the (p, q)–cable of
K while L(p,q) is the entire cabled link K(p,q) ∪ L2 ∪ · · · ∪ Ln.

Assume a page of (L, π) approaches K as an (r, s) curve, having
chosen a framing of K such that 0 ≤ s < r. Assuming the (p, q)–cabling
slope is neither the trivial slope nor the Seifert slope, then the cabled
open book supports a contact structure ξ(p,q).

4.1. Compatibility of positive cablings. For simplicity, we first ar-
gue in the case that (L, π) is an integral open book. Thereafter the case
of a rational open book is a straightforward generalization.

Lemma 4.1. Let (L, π) be an integral open book compatible with ξ.
If (p, q) is a positive slope and p > 0 then the cabled open book L(p,q) is
also compatible with ξ.
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Proof. Recall in the proof of Lemma 3.1 we replaced a small neigh-
borhood N of a binding component K of L with S(p,q) = S3 \N ′ where
N ′ was a neighborhood of the unknotted curve C intersecting a fiber of
the fibration of the (p, q)–torus link in p points (see that proof for nota-
tion). The contact structure on N = D2

ǫ × S1, with D2
ǫ being the disk

of radius ǫ in R2, can be assumed to be given in coordinates ((r, θ), φ)
by f(r) dθ+ dφ, where f(r) = r2 near 0 and f(r) ≫ 0 near ǫ. Similarly
the contact structure on N ′ = D2

ǫ′ × S1 in the coordinates ((r, θ), φ) is
given by g(r) dθ + dφ where g(r) = r2 near 0 and 0 < g(r) ≪ ǫ′ near ǫ′.

Claim 4.2. The contact structure on S(p,q) = S3 \ N ′ is contacto-
morphic to the one on N for the appropriate choice of ǫ.

Proof. To see this we examine the contact structure on S(p,q). Let

S3 = {(z1, z2) ∈ C2 | p|z1|2 + q|z2|2 = 1}.
As S3 is transverse to the radial vector field on C2 we see that r1 dθ1 +
r2 dθ2 restricts to a contact form on S3 giving the standard tight contact
structure, where zj = rje

iθj . One may easily check that there are two
closed unknotted trajectories C0, C1 to the Reeb field corresponding
to {zj = 0} for j = 0, 1. In addition, C0 ∪ C1 is a Hopf link with
complement fibered by (p, q)–torus knots which are orbits of the flow of
the Reeb vector field. One may also check that if we fix one of these
fibers T(p,q) then S

3 \T(p,q) is fibered by surfaces transverse to the Reeb
trajectories. This shows that the standard tight contact structure is
supported by the open book with binding T(p,q). Moreover, we see that
C1 is an unknot that intersects the pages of this open book p-times;
in particular, C1 is C from the proof of Lemma 3.1 (and Lemma 4.1
above) and thus C is a transverse unknot with self-intersection −1. The
complement of a neighborhood of such an unknot in S3 is easily seen
to be contactomorphic to the one on N , since they are both universally
tight and the neighborhoods can be chosen so that they have the same
characteristic foliation on their boundaries, see [31, 35]. q.e.d.

Claim 4.3. The contact structure on M resulting from gluing S(p,q)
in place of N is supported by the image of T(p,q) in M , that is by the
(p, q)–cable of the original binding.

Proof. Break M into three regions M \N ′′, where N ′′ is a neighbor-
hood of K slightly larger than N but with contact structure still given
by a form as described above, S(p,q) and a region T 2 × [0, 1] = N ′′ \N .
If α is a contact form for the original contact structure and α′ is a con-
tact form supported by T(p,q) on S

3 then it is clear by construction that
α|M\N ′′ is “supported” by the new open book on M \N ′′ and α′|S(p,q)

is

“supported” by the new open book on S(p,q). We need to extend α|M\N ′′

and α′|S(p,q)
to N ′′ \N . This is easily accomplished as at the end of the
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proof Theorem 1.7 above. More specifically, in coordinates (θ, φ, t) on
T 2× [0, 1] = N ′′ \N we notice the above forms α|M\N ′′ and α′|S(p,q)

near

∂(N ′′ \N) can be assumed to be of the form f(t) dθ+ g(t) dφ. One now
extends the functions f(t) and g(t) across [0, 1] so they are compatible
with the fibration of N ′′ \N given by constant φ’s. q.e.d.

By Claim 4.2, gluing S(p,q) in place of N does not change the contact
structure on M . Then by Claim 4.3, the open book L(p,q) supports the
original contact structure. q.e.d.

Lemma 4.4. Let (L, π) be a rational open book compatible with ξ.
If (p, q) is positive and p > 0 then the cabled open book L(p,q) is also
compatible with ξ.

Proof. Recall we think of the lens space −L(r, s) as being obtained
by gluing V1 = S1 ×D2 to V0 = S1 ×D2 so that {pt} × ∂D2 maps to
the (r, s)–curve in the boundary of V0. We denote the core of Vi by Ci.

Moreover T
(r,s)
(p,q) is the (p, q)–curve on the boundary of a neighborhood

of C0 in V0.
In the proof of Lemma 3.1 we replaced a small neighborhood N of

a binding component K of L with S
(r,s)
(p,q) = −L(r, s) \ N ′ where N ′

was a neighborhood of the unknotted curve C1 intersecting a fiber of

the fibration of T
(r,s)
(p,q) in r/gcd(p, r) points. The contact structure on

N = D2
ǫ×S1, withD2

ǫ being the disk of radius ǫ in R2, can be assumed to
be given in coordinates ((r, θ), φ) by f(r) dθ+ dφ, where f(r) = r2 near
0 and f(r) ≫ 0 near ǫ. Similarly the contact structure on N ′ = D2

ǫ′ ×S1

in the coordinates ((r, θ), φ) is given by g(r) dθ + dφ where g(r) = r2

near 0 and 0 < g(r) ≪ ǫ′ near ǫ′.

Claim 4.5. The contact structure on S
(r,s)
(p,q) = −L(r, s) \ N ′ is con-

tactomorphic to the one on N for the appropriate choice of ǫ.

Proof. We begin by recalling that −L(r, s) = L(r, r − s) can be con-
structed from the unit sphere S3 in C2, with coordinates (z1, z2), as

follows. Let g = e
2πi
r and define the Zr action on S3 by g · (z1, z2) =

(gz1, g
(r−s)z2). Then −L(r, s) is the quotient of S3 under this action.

Notice that T
(r,s)
(p,q) can be thought of as a (multiple) of a fiber in a Seifert

fibration of −L(r, s). More precisely, −L(r, s) \ (C0 ∪ C1) is diffeomor-

phic to T 2 × R and can be fibered by T
(r,s)
(p,q) curves in such a way that

this extends to a Seifert fibration of −L(r, s) with singular fibers C0

and C1. There is a positive integer n such that nT
(r,s)
(p,q) lifts to a closed

curve in S3 that sits on a standardly embedded torus. Thus it lifts to
a (multiple) of a torus knot which we denote by T(p′,q′). Moreover, one

may now easily check that the Seifert fibration of S3 by T(p′,q′) curves
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covers the given Seifert fibration of −L(r, s). Moreover, there is a Hopf
link C ′

0 ∪ C ′
1 in S3 that covers C0 ∪ C1 in −L(r, s). We also note that

the condition that T
(r,s)
(p,q) is a positive torus knot in −L(r, s) implies that

T(p′,q′) is a positive torus knot in S3.

We now represent S3 as

S3 = {(z1, z2) ∈ C2 | p′|z1|2 + q′|z2|2 = 1}.
As S3 is transverse to the radial vector field on C2 we see that r1 dθ1 +
r2 dθ2 restricts to a contact form on S3 giving the standard tight contact
structure, where zj = rje

iθj . The action above clearly preserves this S3

and hence gives a model for the universal cover of −L(r, s). One may
easily check that there are two closed unknotted trajectories C ′

0, C
′
1 to

the Reeb field corresponding to {zj = 0} for j = 1, 2. In addition,
the complement of the Hopf link C ′

0 ∪ C ′
1 is fibered by (p′, q′)–torus

knots which are orbits of the flow of the Reeb vector field. As the form
r1 dθ1+r2 dθ2 is equivarient with respect to the Zr action above it is clear
that the 1–form and Reeb vector field descend to −L(r, s). This gives a
Reeb vector field for a contact structure on −L(r, s) whose orbits consist
of C0, C1 and T

(r,s)
(p,q) curves. We also note that the fibers of the fibration

π : (−L(r, s) \ T (r,s)
(p,q)) → S1 can be made positively transverse to the

Seifert fibration of −L(r, s)\T (r,s)
(p,q) by Reeb orbits. (One way to see this

is to notice that a fiber of π is incompressible in −L(r, s)\T (r,s)
(p,q) and thus

can be made “horizontal” or “vertical”. As it cannot be vertical, it must
be horizontal, that is transverse to the fibers. Moreover, homologically
we can see that it is positive transverse. It is now easy to make the other
fibers of π transverse.) This shows that the universally tight contact
structure on −L(r, s) = L(r, r − s) constructed above is supported by

the open book with binding T
(r,s)
(p,q) . Moreover, we see that C1 intersects

the pages of this open book r/gcd(p, r) times. The complement of C1

is an open solid torus that is covered by the open solid torus in S3

that is the complement of an unknot with self-linking −1, and thus is
universally tight. The complement of such an unknot in S3 is easily
seen to be contactomorphic to the one on N , since N can be chosen so
that the characteristic foliation is arbitrarily close to the pages slope,
see [31, 35]. q.e.d.

Claim 4.6. The contact structure on M resulting from gluing S
(r,s)
(p,q)

in place of N is supported by the image of T
(r,s)
(p,q) in M , that is by the

(p, q)–cable of the original binding.

Proof. With the work done above, this proof is nearly identical to the
proof of Claim 4.3 and is left to the reader. q.e.d.
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By Claim 4.5, gluing S(p,q) in place of N does not change the contact
structure on M . Then by Claim 4.6, the open book L(p,q) supports the
original contact structure. q.e.d.

4.2. Most negative cables are overtwisted. In this section we con-
sider when a negatively cabled open book necessarily supports an over-
twisted contact structure. One would expect that any non-trivial, neg-
atively cabled open book supports an overtwisted contact structure ex-
cept when both the original open book and the cabled open book have
disk pages. (Note that the rational unknots in lens spaces provide ra-
tional open books that necessarily support a universally tight contact
structure.) We show this holds for integral open books in Lemma 4.7.
One may use a similar, but more complicated analysis to show that suf-
ficiently negative cables of rational open books are overtwisted, but to
understand when they are not overtwisted a much more delicate argu-
ment is needed. The argument is presented in Lemma 4.9. We observe
that the case for integral open books follows from our more detailed
analysis, but we present our argument in this case separately as it is
particularly easy and likely to be the most interesting to many readers.

Lemma 4.7. Statement (4) of Theorem 1.8 is true for integral open
books.

Proof. We first assume L is the connected binding of an integral open
book (where (r, s) = (1, 0)), and take p > 1 and q < 0. The case with
p < 0 is similar. The case of more components clearly follows from the
argument below. By Lemma 3.4, the open book for the cable L(p,q)

(with p > 1 and q < 0) may be obtained as a Murasugi sum of the
cable L(p,−1) and the (p, q)–torus link. Thus the contact structure ξ(p,q)
is contactomorphic to ξ(p,−1)#ξ

′
(p,q), where ξ

′
(p,q) is the contact structure

on S3 supported by the (p, q)–torus link. Hence we are left to show
ξ(p,−1) is overtwisted.

Recall the notion of right veering from [36]. Given an open book
decomposition of a manifold (Σ, φ) we say a properly embedded arc
γ : [0, 1] → Σ on Σ is right veering if either φ(γ) and γ are isotopic rel
end points or when φ(γ) has been isotoped, rel endpoints, to intersect
γ transversely and minimally, the (inward pointing) tangent vector of
φ(γ) at γ(i) followed by the (inward pointing) tangent vector of γ at
γ(i) form an oriented basis for Tγ(i)Σ, i = 0, 1. We say the open book is
right veering if all properly embedded arcs on a page are right veering.
The main result of [36] is that if a contact structure is tight then any
open book supporting it will be right veering.

We shall see ξ(p,−1) is overtwisted by finding an arc on the open book
for L(p,−1) that is not right veering. To this end notice that if Σ is a

page of the open book associated to T(p,−1) in S3 (notice that Σ is a
disk) the monodromy for T(p,−1) preserves Σ∩C, where C is the unknot



26 K.L. BAKER, J. B.ETNYRE & J.VANHORN-MORRIS

used in the construction above (and Lemma 3.1). More precisely, we
can think of Σ ∩ C as p points sitting equally spaced on a circle about
the center of the disk Σ and the monodromy rotates this circle clockwise
by 2π

p
. Let γ be an arc in Σ that separates Σ ∩ C into two non-empty

sets. Denote the page of the open book for L(p,−1) by Σ′ and notice that
Σ′ is obtained by removing disjoint disks about each point in Σ∩C and
gluing copies of the page of L in their places. One easily sees that if the
page of L is not a disk then γ on Σ′ is not right veering and thus ξ(p,−1)

is overtwisted. q.e.d.

4.2.1. Relative open books. In order to analyze negative cables of
rational open books we need to recall the notion of a relative open book
from [52]. A relative open book decomposition for a manifold M with
torus boundary components is a pair (L, π) where L is an oriented link
in M and π : (M − L) → S1 is a locally trivial fibration such that the
closure of each fiber approaches each component of L as a longitude.
Notice that the fibration induces a fibration of each torus boundary
component of M by circles. We say a contact structure ξ is compatible
with (L, π) if there is a contact form α for ξ that is positive on vectors
tangent to L in the direction of the orientation of L, dα is a positive
volume form on each page of the open book and the characteristic foli-
ation of ξ on each boundary component of M agrees with the foliation
of by circles induced by π. A slight generalization of this allows for the
characteristic foliation on the boundary and the foliation induced by π
to differ but then the characteristic foliation should be linear and the
Reeb vector field for α should leave the boundary invariant and be pos-
itively transverse to both the characteristic foliation and the foliation
given by π.

One may easily check, see Proposition 3.0.7 in [52], that two bound-
ary components of a relative open book can be glued together by an
orientation reversing diffeomorphisms that preserves the fibration on
the boundary components being glued. There is a natural (possibly
still relative) open book on the manifold obtained by the gluing, and
it supports the natural contact structure obtained via the gluing. A
slight generalization of this will allow us to glue relative open books
and adapted contact structures along torus boundary components us-
ing diffeomorphisms that preserve both the characteristic foliations and
foliations by the pages of the open book.

4.2.2. A few words about slope conventions. We will need to use
the classification of tight contact structures on solid tori and T 2 × [0, 1]
from [35]. Unfortunately, as mentioned earlier, the convention used
there (and in much of contact geometry) for denoting curves on tori
and their slopes does not agree with the one used in this paper (see
the introduction) and in the Dehn surgery literature. Given a pair of
oriented curves µ and λ forming a positive basis for T 2, the convention
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used by Honda has a (p, q)–curve representing p[µ] + q[λ] with slope
q/p whereas our convention (used by Rolfsen for cables [50]) has a
(p, q)–curve representing p[λ] + q[µ] with slope denoted q/p as well.
We will use Rolfsen’s convention. To translate to Honda’s convention,
take the reciprocal of the slopes and then swap the letters. Thus in
translation, a q/p slope is again a q/p slope, but 0 and ±∞ are swapped
and inequalities flip.

Following Rolfsen’s convention, assuming our curves always have ho-
mology class with positive [λ] coefficient, we have the benefit of working
with slopes from −∞ to ∞ where a slope q/p is positive with respect
to a slope s/r if q/p > s/r. It does cause µ to have slope ∞ and λ to
have slope 0 (and any other longitude to have integral slope), but this
is common when viewing µ as a meridian of a solid torus. The main
drawback is that when viewing T 2 as R2/Z2 associating µ and λ with
the x-axis and y-axis of R2 our slopes are “run over rise” and hence a
“horizontal” curve has slope ∞ while a “vertical” curve has slope 0.

With our choice of convention it is convenient to orient the labeling
of the Farey tessellation so that −∞,−1, 0 appear in clockwise order as
in Figure 2. This orientation is opposite what is common, but with our
convention for slopes it permits us to preserve the notion of the slopes
of three curves being in a clockwise order.

∞

+1

2

3

3

2

1

2

1

3

2

3

0

−1

−2

−3

− 3

2

− 1

2

− 1

3

− 2

3

Figure 2. The Farey tesselation oriented for use with
our convention of slopes.

4.2.3. Contact structures on solid tori and T 2×I. We now briefly
recall the classication of tight contact structures on solid tori and T 2 ×
[0, 1] from [35].

To this end we begin by discussing continued fractions. Given a
rational number −1 < s

r
< 0 let [r0, . . . , rk] be the continued fraction
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representation of s
r
such that

s

r
=

1

r0 −
1

r1 −
1

. . . − 1

rk

with ri ≤ −2 for each i.
Using the convention that [r0, . . . , rj ,−1] = [r0, . . . , rj +1], we define

the set of exceptional cabling slopes associated to s
r
as follows: Start

with e1 = [r0, . . . , rk + 1]. Once el is defined then el+1 is defined by
adding 1 to the last term in the continued fraction expansion of el.
Stop at en = [−1] = −1. This produces a finite set of rational numbers
e1, . . . , en. Notice that the ei are precisely the vertices in a minimal path
from −1 to s

r
in the Farey tessellation (not including the vertex s

r
). The

set of exceptional cabling slopes for an integral open book (with Seifert
slope 0) may be taken to consist of just −1. Finally, an exceptional
cable of a binding component of a rational open book with Seifert slope
s
r
with −1 < s

r
< 0 is a (p, q)–cable with p, q coprime where q

p
is an

exceptional cabling slope associated to s
r
.

Remark 4.8. If the Seifert slope s
r
of a rational unknot shares an

edge in the Farey tessellation with q
p
, then its (p, q)–cable with p, q

coprime (so that rq − ps = ±1) gives another rational unknot. See
Example 2.3 (2).

Suppose ξ is a tight contact structure on a solid torus such that the
boundary is convex with two dividing curves of slope −1 < q

p
≤ 0. Take

a shortest clockwise path in the Farey tessellation from −1 to q
p
and

notice that the vertices in this shortest path are precisely the exceptional
slopes e1, . . . , en associated to q

p
. A tight contact structure on the solid

torus is determined by a choice of sign on each edge. (Notice that some
of these contact structures may be the same due to “shuffling” in a
continued fraction block, but this will not be important for us in this
paper). Similarly if ξ′ is a tight (minimally twisting) contact structure
on T 2 × [0, 1] with convex boundary, each torus T 2 × {i} having two
dividing curves of slope si, with s0 6= s1, then signs assigned to the
shortest clockwise path in the Farey tessellation from s0 to s1 determine
a tight contact structure on T 2 × [0, 1]. Now suppose s0 = q

p
and we

glue the contact structures ξ and ξ′ together. We now have a path from
−1 to s1 in the Farey tessellation obtained by concatenating the paths
corresponding to ξ and ξ′. The resulting contact structure will be tight
if and only if while shortening this path to a minimal path from −1 to
s1 we never have to merge two paths with different signs.
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Lemma 4.9. Let (B,π) be the relative open book on S = S1 × D2

with binding B = S1 × {(0, 0)} and pages annuli of slope −1 < s
r
≤ 0.

Let (p, q) be a pair of integers such that p > 0 and −1 < q
p
< s

r
.

Let ξ be the contact structure supported by (B,π) and assume that ∂S

has linear characteristic foliation with slope s′

r′
with q

p
< s′

r′
≤ s

r
. (We

can perturb ∂S in a C∞-small manner to arrange it to be convex with
two dividing curves of slope s′

r′
.) Let (B′, π′) be the open book obtained

by cabling (B,π) and ξ′ the contact structure supported by it. After
perturbing the boundary of the solid torus so that it is convex with respect
to ξ and ξ′ the contact structure ξ′ can be described as follows: take a
shortest path in the Farey tessellation from −1, clockwise, to s′

r′
that

passes through q
p
. The contact structure ξ is described by putting a +

on each jump. The contact structure ξ′ is described by putting a − on
all jumps from −1 to q

p
and a + on the rest.

Remark 4.10. As an example, the shortest path from −1 to −1
3 does

not go through −2
3 , so the (3,−2)–cable of a (3,−1)–open book yields an

overtwisted contact structure, since the path in the Farey tessellation
describing this cable can be shortened along edges with inconsistent
signs.

Proof. We begin by considering a neighborhood N of the boundary
of S and the topology of the open book in this region. Recall that the
cable of B can be taken to be a (multi)curve on a torus contained in N .
We will construct an open book for S with binding given by the cable of
B and so that the pages agree with those of (B,π) on ∂S. We do this by
first constructing the open book on N with binding the cable of B that
extends over S. We then construct the contact structure supported by
this open book in several steps and observe that is the contact structure
described in the lemma.

Step I — Construct an open book on N with binding the (p, q)–cable of
B. Think of N as an annulus A times S1 where A is an annulus on the
disk D2. We can break A into three successively larger annuli A1, A2

and A3. The open book (B,π) in each of the regions Ai×S1 is a foliation
by annuli of slope s

r
. To construct (B′, π′) we foliate A3 × S1 by annuli

of slope s
r
(oriented so that they intersect the S1-fibers positively) and

A1 ×S1 by annuli of meridional slope ∞ (oriented so they intersect the
S1-fibers negatively). Finally, A2 × S1 can be though of as the union
of two solid tori S1 ∪ S2 each of which has slope q

p
. We foliate S1 by

meridional disks so that the disks in S1 ∩ (Ai × S1), for i = 1, 3, agree
with the foliation already defined on Ai × S1. Thus we have fibered
the complement of the neighborhood S2 of a (p, q)–curve in A × S1.
This fibration on ∂(S2 = S1 × D2) (the product structure is induced
by the framing induced by the torus on which the (p, q)–curves sits)
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is by curves of slope l
k
> 0. We can cone these curves to the core of

S2 to obtain an open book decomposition for A × S1 with binding a
(p, q)–curve and pages intersecting the boundary in curves of slope −∞
(co-oriented downward) and slope s

r
(co-oriented upwards). (We notice

that if the (p, q)–cable has multiple components then we actually have
to break A2×S1 into 2gcd(p, q)–solid tori. To avoid confusing notation
we ignore this issue in the rest of the proof but note that none of the
arguments are affected by this omission.)

Turning this construction around we can start with an open book
for the solid torus S2 with the core curve being the binding and the
pages having slope l

k
> 0. We can then glue S1, foliated by meridional

disks, to S2 (along a pair of annuli that are longitudinal on both S1
and S2) so that the pages of the open book on S2 are extended over S1
by the meridional disks. We then can trivially extend this open book
over (A1 ∪ A3) × S1 by annuli. This results in the same open book
decomposition for A× S1.

Step II — Construct a contact structure on A2 × S1 supported by the
cabled open book. For convenience, first apply an orientation preserving
diffeomorphism to T 2 × [0, 1] = A × S1 so that the (p, q)–curves are
vertical, recall this means their slope is 0. (In particular, this makes the
solid tori S1 and S2 vertical too.) We may choose this diffeomorphism so
that the slope s

r
becomes a positive number t and the slope ∞ becomes

a negative number t′. The slope l
k
on ∂S2 is still l

k
since the framing

on the (p, q)–curve is unchanged after the diffeomorphisms (since the
framing is determined by the torus on which the curve sits).

To begin the construction of the contact structure, let S2 = S1 ×D2

be a solid torus and let (B′, π′) be an open book for S2 with binding
B′ = S1 × {(0, 0)} and annular page that foliates ∂S2 by l

k
–curves

(recall l
k
> 0). This supports the contact structure that starts positively

transverse to the binding and uniformly rotates clockwise to any slope
0 < l′

k′
< l

k
. In particular, let S′

2 be a concentric solid torus within S2
so that the characteristic foliation on ∂S′

2 is linear of longitudinal slope
0. Perturb S′

2 slightly, still denoting it by S′
2, so that ∂S′

2 is broken

into 8 vertical annuli Â1, . . . , Â8. See Figure 3. On Âi, with i even, the
characteristic foliation has a single vertical singular set and horizontal
ruling curves. On Â1 and Â5 the foliation is non-singular and each leaf
has slope varying between two barely negative values. On each of Â3

and Â7 we have an inner sub-annulus Â′
i on which the foliation has slope

exactly l′′

k′′
where l′

k′
< l′′

k′′
< l

k
and on Âi − Â′

i the slope is between 0

and l′′

k′′
.

Now let S1 = S1×I×I where I = [0, 1] is an interval. The boundary
∂S1 is made of four longitudinal annuli B1, . . . , B4. Gluing S1 to S′

2 so

that B1 maps to a sub-annulus of Â3 and similarly for B3 to Â7 yields
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S′

2

S2

Figure 3. The inside circle (times S1) is the torus in S′
2

with linear vertical slope. The outside circle has some
positive slope. The heavier line with corners rounded
(times S1) is the convex ∂S′

2.

the manifold C = A2×S1 = T 2× [0, 1]. We can choose the gluing maps
as discussed above so that the open book decomposition on S′

2 extends
(by meridional disks in S1) to an open book decomposition for C. Think-
ing of S1 as B1 × [0, 1], we can assume the slope of the pages of S′

2 on

B1 × {0} is l
k
and on B1 × {1} it is − l

k
. Moreover the meridional disks

that make up the pages in S1 intersect B1 × {t} in lines of slope uni-
formly rotating (clockwise) from l

k
to − l

k
. The characteristic foliation

on B1 × {0}, respectively B1 × {1}, induced by the contact structure

on S′
2 and the gluing maps has slope l′′

k′′
, respectively − l′′

k′′
. Thus we

can extend the contact structure from S′
2 to C so that it induces linear

characteristic foliations on B1 × {s} of slope uniformly rotating (clock-

wise) from l′′

k′′
to − l′′

k′′
. One can easily see that this extended contact

structure is supported by the open book on C. (Notice that one can
easily arrange the characteristic foliation on the meridional disks of S1
to contain a single hyperbolic singularity.)

Note that (1) C is a T 2 × [0, 1], (2) the binding of the open book
is a vertical S1, (3) the dividing slope on both boundary components
of C is vertical (since the vertical dividing curves on S2 give dividing
curves on both boundary components of C), and (4) a page of the open
book intersects ∂(T 2 × [0, 1]) in curves of slope t′ on T 2 × {0} and t on
T 2 × {1}.
Step III — Identify the contact structure on A2 × S1. We claim the
contact structure on C = A2×S1 supported by this open book is tight.
Moreover the contact structure is non-rotative. To see this consider the
I invariant contact structure on T 2 × I with two vertical Legendrian
divides and ruling slope some small positive number on, say, T0 = T 2 ×
{0}. If A is a vertical annulus on T0 that contains both the Legendrian
dividing curves and I ′ is a sub-interval of I that is contained in the
interior of I then one can round the corners of A× I ′ to obtain a solid
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torus contactomorphic to S′
2. One may also easily check that A and I ′

can be chosen so that (T0 \ A)× I ′′ (where I ′′ is a sub-interval of I ′) is
contactomorphic to S1. Thus we can embed C into an I invariant contact
structure on T 2 × I with vertical dividing curves on each T 2 × {0} and
T 2 × {1}. This establishes our claim.

Step IV — Glue the open book decomposition and contact structure on
A2×S1 to A3×S1 and a solid torus and observe that this is the contact
structure described in the lemma. From the discussion above we would
like the characteristic foliation on the boundary of our manifolds to be
linear. To this end we see how to slightly extend the contact structures
near the boundary of C = A2 × S1 so that they become “rotative” and
in particular have linear characteristic foliations.

Notice that S′
2 sits inside a solid torus S′′

2 that has a linear foliation
on its boundary of some very large positive slope. We can use S′′

2 to
enlarge C to C ′ = T 2 × [0, 1] so that on T 2 × {0} we have a linear
characteristic foliation of slope between t′ and 0 and on T 2 × {1} the
characteristic foliation is also linear and of slope between 0 and t. The
open book constructed above can easily be seen to support this contact
structure too.

Using the inverse of the diffeomorphisms of T 2 discussed above we
can convert the above construction to give a contact structure ξ′ on
T 2 × [0, 1] and an open book decomposition (B′, π′) with the following
properties: (1) the binding B′ has slope q

p
, (2) the pages intersecting

T 2 × {0} have slope −∞ with downward co-orientation, (3) the pages
intersect T 2 × {1} have slope s

r
with upward co-orientation, and (4) on

tori Tx = T 2 × {x} near the boundary of T 2 × [0, 1] the characteristic
foliations are linear with slopes between −∞ and q

p
near T0 and between

q
p
and s

r
near T1. Moreover, on a subset T 2 × [ǫ, 1 − ǫ] the contact

structure is non-rotative and both boundary components have dividing
curves of slope q

p
.

We can now take the contact structure on S1 × D2 that is radially
symmetric and rotates to a slope near q

p
on the boundary and notice

that it is “supported” by the fibration by meridional disks. If we reverse
the orientation on the contact planes and the meridional disks we can
glue this to the contact structure on C ′ above. From this we see that
the contact structure on the solid torus now bounded by Tǫ is described
by a shortest path in the Farey tessellation from ∞ to q

p
with − signs

on all the jumps (except the first). (In other words it is the standard
contact structure on the solid torus with its orientation reversed.)

Gluing A3 × S1 to the boundary of the above contact structure on
S1 × D2 we get a new contact structure on the solid torus which is
easily seen to be the one described in the lemma and is supported by
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the open book decomposition obtained by (p, q)–cabling the core of the
solid torus. q.e.d.

To apply Lemma 4.9 to the proof of Theorem 1.8 we need to under-
stand neighborhoods of binding components.

Lemma 4.11. Let (L, π) be an open book decomposition and K a
component of L. Choose a framing of K so that so that the Seifert
slope is −1 < s

r
≤ 0. If the page of (L, π) is not a disk then there is a

neighborhood N of K so that N has convex boundary with two dividing
curves of slope s

r
and the contact structure induced on N is determined

by only positive jumps in the Farey tessellation. Moreover given any s′

r′

such that −1 < s′

r′
< s

r
, there is another neighborhood N ′ ⊂ N of K

whose boundary has linear characteristic foliation of slope s′

r′
and the

intersection of the open book with N ′ gives a relative open book on N ′

that supports the contact structure on N ′ and the intersection of the
open book with the complement of N ′ gives a relative open book that
supports the contact structure there.

Remark 4.12. We notice that this theorem constructs a large “stan-
dard neighborhood” of a binding component. Understanding the size of
a standard neighborhood of a transverse (or Legendrian) knot has been
an important, recurring theme in contact geometry, see [20, 21, 24].
Such considerations have also become important in higher dimensional
contact geometry [49].

We also notice that the hypothesis that the page is not a disk is
clearly necessary since if such a neighborhood of the binding could be
constructed in this case then one would have an overtwisted disk on one
of the pages of the open book.

Proof. Let P be a page of the open book and let A be a small neigh-
borhood of the boundary of P. Set P ′ = P −A. Since there is a Reeb
vector field v transverse to the pages of the open book we see that
P ′ is convex. Now let P ′ × [−ǫ, ǫ] be an invariant neighborhood of P ′

constructed using the flow of v. One can round the corners of this neigh-
borhood so to obtain a convex surface Σ where Σ = P ′×{ǫ}∪P ′×−ǫ∪B
where B is a union of annuli. Moreover the dividing set can be taken
to be B ∩ P and P ′ × {±ǫ} is contained in the ±-region of the convex
surface.

On P ′ ×{ǫ} ⊂ Σ we can Legendrian realize a curve L′ parallel to the
(r, s)–cable of K. If L 6= K then we can use the standard Legendrian
realization principle [35]. If L = K then we must first Legendrian
realize another non-separating curve on P ′ × {ǫ} ⊂ Σ. Now using a
local model for this realized curve we can “fold” the surface to create a
new convex surface with two new dividing curves. We can now use the
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Legendrian realization principle on this new convex surface to realize L′

as a Legendrian curve.
Notice that we can use the annulus on Σ that L′ and a dividing

curve cobound and an annulus on P to create an annulus that L′ and
K cobound and that contains no singular points and no closed leaves
other than L′. Let N be a neighborhood of this annulus and having L′

on its boundary. We can build a model of this annulus in S1 ×R2 with
contact structure dφ+ r2 dθ (where φ is the coordinate on S1 and (r, θ)
are polar coordinates on R2). Moreover we can identify the annulus
with an annulus in S1 ×R so that K maps to K ′ = S1 × {(0, 0)}. Thus
we can assume that N is contactomorphic to a neighborhood of K ′.
This implies that the contact structure on N is universally tight. Now
making the boundary of N convex and possible taking a sub-torus of
N we can assume that ∂N has just two dividing curves and they have
slope s

r
(that is, they are parallel to L′). The classification of contact

structures on solid tori implies that N is the neighborhood claimed in
the lemma.

Since N has the unique universally tight contact structure on the
torus one may easily use a standard model for N to construct N ′.

q.e.d.

We can now prove item (3) and (4) in Theorem 1.8 in complete gen-
erality.

Proof of Statements (3) and (4) in Theorem 1.8. We begin by assum-
ing that the page of our open book is not a disk. (The case where the
page is a disk is dealt with below.) Notice that Lemma 4.11 allows us to

assume s′

r′
= s

r
in Lemma 4.9 for the purposes of determining the effect

of cabling on the contact structure.
Given a binding component K of an open book (L, π) and a framing

on K chosen so that the pages of the open book approach L′ as (r, s)–
curves where −1 < s

r
≤ 0 then choose a pair of integers (p, q) such

that q
p
< s

r
. We have neighborhoods N and N ′ given in Lemma 4.11.

Applying Lemma 4.9 to N ′ with its relative open book induced from
(L, π) we see the effect of cabling on the contact structure restricted
to N ′. From this we also see the effect for the contact structure on N.
Thus it is clear from Lemma 4.9 that the result of (p, q)–cabling K will
be to replace the contact structure on N with the one described in the
lemma. If q

p
is not an exceptional cabling slope then we may shorten

the path that describes the contact structure on N by removing the
q
p
-vertex, but since the signs describing the contact structure changed

at q
p
the contact structure must be overtwisted.

To see that all negative cables are virtually overtwisted, except for the
(p, q)–cables of a rational unknot of Seifert slope s

r
with rq − ps = −1,

we notice that the solid torus neighborhood of the binding component
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L′ can be unwrapped in a cover of the manifold until the slope of the
page becomes longitudinal while the cabling remains negative. One
may easily see that this makes the contact structure on the solid torus
overtwisted. By taking a further cover if needed so that the lift of the
open book is integral, Lemma 4.7 applies too.

Now consider the case when the page of the open book is a disk. In
this case the manifold is a lens space with universally tight contact struc-
ture. We cannot apply Lemma 4.11 above to get a nice neighborhood
of the binding; however, if we perform a (p, q)–cable of the binding with
rq − ps = −1 then one may easily check in the Farey tessellation that
the resulting path given in Lemma 4.9 cannot be shortened. Moreover,
as the contact structure on a lens space is determined by its restriction
to the solid torus used in the statement of Lemma 4.9 we see that the
effect on the contact structure is to reverse the co-orientation. q.e.d.

4.3. Lutz twists and Homotopy classes of negative cablings. We
will identify the overtwisted contact structure supported by the open
book of a negative cable with a modification of the original contact
structure by Lutz twists along the component being cabled and along
its cable. This will facilitate an understanding of how the Hopf invariant
changes under cabling too. (We note that this analysis also determines
the change in the homotopy type of supported contact structures when
an exceptional cabling is done to a binding component.)

Let us recall and discuss Lutz twists. A transverse simple closed curve
K in a contact manifold (M, ξ) has a neighborhood N = S1 ×D2 with
coordinates (φ, (r, θ)), where (r, θ) are polar coordinates on the disk D2

of radius c > 0 in the plane, on which the contact form can be written
dφ+ r2 dθ. Fix 0 < δ such that 4δ ≪ c.

Define functions f(r) and g(r) on the interval [0, c] satisfying g′f −
f ′g > 0 and such that

f(r) =





−1 r ∈ [0, δ]

cos(π( r−δ
c−2δ ) + π) r ∈ [2δ, c − 2δ]

1 r ∈ [c− δ, c]

,

and

g(r) =





−r2 r ∈ [0, δ]

r2 sin(π( r−δ
c−2δ ) + π) r ∈ [2δ, c − 2δ]

r2 r ∈ [c− δ, c]

.

(Note we really think of the functions as defined by the trigonometric
functions on all of [δ, c − δ] but altered on [δ, 2δ] ∪ [c − 2δ, c − δ] to
make it smooth.) The Lutz twist of ξ along K is the contact structure
ξLutzK obtained from ξ by changing the contact form from dφ+ r2 dθ to
f(r)dφ+g(r) dθ on N . In effect, a Lutz twist introduces a half rotation
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to the contact planes in N as one travels radially inward to K. This is
also known as a half Lutz twist or a π–Lutz twist.

When dealing with plane fields that are either foliations or contact
near a curve transverse to the plane field one can add a positive or
negative twist along the curve. We will call these positive and negative
Lutz twists (even though they are not technically Lutz twists).

Notice that there is a radius r0 ∈ [0, c] such that the leaves of the
characteristic foliation of the torus {r = r0} induced from ξLutzK are
meridional. The (p, q)–curve on this torus is transverse to the charac-
teristic foliation and, with orientation induced by the contact planes,
wraps around N in the opposite direction as K. We define a (p, q)–Lutz
cable of K to be this transverse link in ξLutzK .

Lemma 4.13. Let ξ be the contact structure supported by the open
book (L, π). If q

p
< s

r
, then the contact structure, ξ(p,q), compatible with

L(p,q) is homotopic to the contact structure obtained from ξ by a Lutz
twist along the component K to be cabled followed by a Lutz twist along
each component of its Lutz cable K(p,q).

Proof. From the Thurston-Winkelnkemper construction (even the ra-
tional one), any contact structure compatible with an open book is ho-
motopic to a standard positive confoliation (see [14] for information
about confoliations) given by the foliation of the fibers matched to the
rotative positive contact structure in tubular neighborhoods of the bind-
ing. As shown in Lemma 4.4, a positive cable of a binding component of
an open book induces an open book supporting a contact structure iden-
tical to the original outside a neighborhood of the binding and isotopic to
the original in this neighborhood. Similarly, the standard positive con-
foliation of a positive cable is homotopic (actually confoliation-isotopic)
to the standard positive confoliation of the original open book. By mir-
roring, we have the same statements for negative cables and negative
confoliations.

Given the standard positive confoliation associated to an open book,
applying negative Lutz twists along each binding component produces
a plane field homotopic to the standard negative confoliation. Simi-
larly, applying positive Lutz twists along each binding component of
the standard negative confoliation of an open book produces a plane
field homotopic to the standard positive confoliation. Also, recall that
the plane field obtained from performing two positive Lutz twists along
the same curve is homotopic to the original as is performing a posi-
tive and a negative Lutz twist along the same curve. Thus the plane
field obtained from a positive Lutz twist is homotopic to the plane field
obtained from a negative Lutz twist.

Now consider the standard positive confoliation η associated to the
open book (L, π) that is the foliation of the pages outside tubular neigh-
borhoods of the binding components. Perform a (positive) Lutz twist
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on K. The plane field is homotopic to a plane field η′ associated to
(L, π) by taking the foliation given by the fibers of the open book in
the complement of a neighborhood of L, matched to a positive rotative
contact structure in a neighborhood of L − K and a negative rotative
contact structure in a neighborhood of K. Moreover the cable K(p,q) of
K can be kept transverse to the plane fields throughout the homotopy
from η after the Lutz twist to η′. From above this η′ is homotopic to a
plane field η′′ that is a negative rotative contact structure near K(p,q), a
positive rotative contact structure near L−K and a foliation by fibers
of the cabled open book elsewhere. Now perform a positive Lutz twist
along K(p,q). This yield a plane field η′′′ that is homotopic to the stan-
dard positive confoliation associated to L(p,q) and hence to the contact
structure ξ(p,q) supported by L(p,q). q.e.d.

4.4. Contact structures of cabled open books.

Proof of Theorem 1.8. Assume (L, π) is an open book supporting (M, ξ)
with binding components L1, . . . , Ln. Let (p,q) = ((p1, q1), . . . , (pn, qn))
be n pairs of integers such that all the pi have the same sign and the
slope qi

pi
is neither the meridional slope nor Seifert slope of Li. Form the

cable L(p,q) successively, taking the (pi, qi)–cable of the ith component
of L one at a time. Let ξ(p,q) be the contact structure it supports.

Assume all the (pi, qi) are positive. If the pi are all positive, then
apply Lemma 4.4 upon cabling each component of L to show that the
open book at each step continues to induce the contact structure ξ. This
proves (1). If the pi are all negative, apply the same construction to
the open book (−L,−π) which supports −ξ. With respect to this new
open book the corresponding cabling uses the integers −pi and −qi so
that L(p,q) supports −ξ. This proves (2).

The case when (pi, qi) is negative for some i is dealt with at the end
of Subsection 4.2.

Since overtwisted contact structures are determined by their homo-
topy class (Eliashberg’s theorem [9]), applications of Lemma 4.13 to the
each of the negative cablings completes the proof. q.e.d.

Proof of Corollary 1.12. Parts (1) and (2) of the corollary are clear form
Theorem 1.8 when pq > 0. If p = 1 then K(p,q) is isotopic to K so
the corollary follows in this case too. For parts (3) and (4) notice
that Theorem 1.8 implies the contact structure is overtwisted and ob-
tained from ξ or −ξ from performing Lutz twists. Since the binding is
null-homologous, all the Lutz twists performed are on null-homologous
curves and thus the spinc structure of the contact structure is unaf-
fected, so we only need to see how the Hopf invariant of the resulting
contact structure compares to ξ or −ξ. Let us focus on part (3) and ξ
as part (4) is similar.
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Let ξ′ be obtained from ξ by a Lutz twist along K, viewed as the
transversal binding of the open book. By Lemma 4.13, ξ(p,q) is homo-
topically obtained from ξ′ by a Lutz twist along K(p,q). Since a Lutz
twist followed by another Lutz twist on the (now orientation reversed)
core is homotopic to the identity, ξ′ is homotopically obtained from ξ(p,q)
by a Lutz twist along K(p,q), viewed as the transversal binding of the
cabled open book. Because ξ′ and ξ(p,q) are both overtwisted, this is
actually an isotopy.

Section 4.3 of [25] shows that a Lutz twist on a transversal knot adds
the self-linking number of the knot to the Hopf invariant of the contact
structure. In the contact structure supported by an integral open book
with connected binding, the binding is naturally transversal and has
self-linking number equal to the negative of the Euler characteristic of
its page. Hence in obtaining ξ′ from ξ, we add −χ(K) to the Hopf
invariant of ξ. Similarly, in obtaining ξ′ from ξ(p,q) we add −χ(K(p,q))
to the Hopf invariant of ξ(p,q). Therefore, passing from ξ to ξ(p,q), we
add (−χ(K)) − (−χ(K(p,q))) = −χ(K) + |p|χ(K) + |q| − |pq| = (1 −
|p|)(−χ(K) + |q|) to the Hopf invariant of ξ. Letting g be the genus of
K, the Hopf invariant changes by (1 − |p|)(2g + |q| − 1) as we were to
show. q.e.d.

We now prove two of our propositions that determine what happens
at exceptional surgeries.

Proof of Proposition 1.15. The rational unknot in L(p, q) supports the
contact structure obtained by gluing together two solid tori. More pre-
cisely, L(p, q) is obtained from T 2× [0, 2] by collapsing the ∞ curves on
T 2 × {0} and the −q/p curves on T 2 × {2}. The contact structure on
L(p, q) is tangent to the [0, 2] factor and rotates from −∞ to −q/p. We
can split L(p, q) along T×{1} and assume the characteristic foliation on
this torus is by curves of slope −1. Now perturb the torus to be convex.
The contact structure on the solid torus with ∞ meridians is unique.
The contact structure on the other torus is described by only positive
jumps in the Farey tessellation description. An exceptional cable will
give two solid tori glued together with a combination of positive and
negative jumps in the Farey tessellation description of the second solid
torus. It is well known that all of these are precisely the tight contact
structures on L(p, q) as described in [35]. q.e.d.

Proof of Proposition 1.17. Given the hypothesis of the Proposition it
is clear that the path in the Farey tessellation describing the contact
structure on a solid torus neighborhood containing the cabled binding
component can be shortened so that positive and negative edges must
be merged. (Compare with the proof of Statement (3) in Theorem 1.8.)

For the second statement on the proposition one may observe that
when one negatively (p, q)–cables a binding component with (p, q) not
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relatively prime then the change in the relative Euler class on a neigh-
borhood of the binding component results in a relative Euler class that
is not the relative Euler class of a tight contact structure on a solid torus
[35]. (One may also explicitly locate an overtwisted disk in the cabling
solid torus.) q.e.d.

Our last result, Proposition 1.16 will be proven in Section 8.3 below
once we consider monodromies of cables.

5. Integral resolution of a rational open book

Suppose K is a rational (and non-integral) binding component of an
open book (L, π) for a manifoldM whose page approaches K in a (r, s)–
curve, r > 1. Set n = gcd(r, s). We say K has order r and multiplicity
n.

For any l 6= s, replacing K in L by K(r,l), the (r, l)–cable of K, gives
a new link LK(r,l)

where the components of K(r,l) all have multiplicity

1. This is called the (r, l)–resolution of L along K. If K were the only
component of L, then the (r, l)–resolution of the rational open book
would yield an integral open book.

Using the same analysis as in Lemma 2.2 notice that in the resolu-
tion, the new fiber is created using just one copy of the old fiber. Thus
the data along the other binding components of the open book remain
unchanged and we may continue to resolve the other boundary compo-
nents in a similar way without affecting the boundary components that
have already been resolved.

Theorem 5.1 (Resolution of rational open books). Let (L, π) be a
rational open book decomposition of M compatible with a contact struc-
ture ξ and let {Ki} be the collection of binding components, each of
which has order ri greater than one. Choose framings on the Ki so that
the pages approach Ki as a (ri, si)–curve and choose integers li > si.
Then the open book decomposition (L′, π′) obtained by (ri, li)–resolving
L along Ki is an integral open book, is also compatible with ξ, and agrees
with (L, π) outside of a neighborhood of {Ki}.

Proof. The fact that (L′, π′) is an integral open book decomposition
of M that agrees with (L, π) outside of a neighborhood of {Ki} fol-
lows from the discussion above. That the resolved open book (L′, π′)
supports the same contact structure follows from statement (1) of The-
orem 1.8 since the li > si. q.e.d.

Example 5.2. The easiest example of a resolution is when s = −1
(for some choice of longitude) and we do the (r, 0)–resolution. Specif-
ically let K be a binding component of an open book decomposition
(L, π) of a manifold M and choose a framing on K so that the pages
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approach K as (r,−1)–curve. There is a natural way to describe the ab-
stract (r, 0)–resolution of this open book given the abstract open book
for (L, π). Specifically if Σ is a page of L and the monodromy of L is
φ, then the page of the resolved open book Σ′ is obtained by gluing an

r-punctured disk to Σ along K̃ ⊂ ∂Σ (where K̃ is the component of ∂Σ
that r–fold covers K) and composing the extension of φ to Σ′ with a
positive Dehn twist about a curve parallel to each boundary component
in the punctured disk (except for the component K). See Figure 4.

To see that this is indeed the correct description of the resolution
we notice that we can remove a neighborhood of K from M and reglue
it to obtain a manifold M ′ and an open book (L′, π′) where the core
of the reglued solid torus is a knot K ′ contained in the link L′, K
has multiplicity 1, and −r–surgery on K ′ yields M and the open book

(L, π). (Then on the page Σ, K ′ = K̃.) Notice that the surgery takes a
meridian ofK ′ to the framing ofK. Stabilizing the open book (L′, π′) by
r connect sums of positive Hopf bands to K ′ produces a new open book
with binding L′ union r unknots linking K ′ as meridional curves. The
new page gives K ′ a framing r less than the old page. Thus 0–surgery
on K ′ (using the framing from the new page) returns M . Since the r
unknots from the stabilization are isotopic to meridian of K ′, after the
surgery they are r parallel copies of the framing of K and hence form
the (r, 0)–cable of K. Abstractly, the stabilization of (L′, π′), effectively
adds r punctures to Σ near K ′ with a positive Dehn twist around each.
The 0–surgery then caps off the boundary componentK ′. This produces
the open book as claimed above.

K1

K2

K
Σ

Kr

K

+

+

+

Σ′

Figure 4. The (r, 0)–resolution of a rational open book
with binding component K being approached by a page
as a (r,−1)–curve.

Notation. Every rational open book (L, π) has description as an ab-
stract open book. When each boundary component has trivial multiplic-
ity (i.e., gcd(r, s) = 1) the monodromy is particularly straightforward
to describe. Let our link components be L = K1, . . . ,Kn and denote
by Σ the rational fiber surface of L. To give an abstract presentation
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for this rational open book, we prescribe the boundary behavior of the

monodromy near an (r, s) binding component to be a right-handed |s|
r

partial or fractional Dehn twist, where we have chosen our framing so
that −r < s ≤ 0. By right-handed we mean a right-handed fractional
rotation of the surface as you move toward the boundary along a cylin-
drical neighborhood of the boundary component. (In particular, this
rotation is “right-veering” when measured at the boundary.) We will
denote this fractional Dehn twist by δ s

r
, adding the superscript i to

indicate it acting on the ith binding component Ki. Given these frac-
tional Dehn twists we can describe the open book abstractly (uniquely)
as (Σ,

∏n
i=0 δ

i
|s|
r

◦φ) where φ is a(n) (isotopy class of) diffeomorphism(s)

supported away from ∂Σ.

One particular advantage of this description is that it allows us to
determine the monodromy of certain resolutions nicely. In particular
the discussion of Example 5.2 (specifically the construction of (L, π)
from (L′, π′) yields the following result.

Proposition 5.3. Let (L, π) be a rational open book obtained from
(L′, π′) = (Σ, φ) by r surgery on L′ with each ri a negative integer. Then
we can describe (L, π) abstractly as (Σ,

∏n
i=0 δ

i
1
ri

◦ φ).

We can now restate Example 5.2 as follows.

Proposition 5.4. Let (L, π) be a (r,−1) open book with abstract
description (Σ,

∏n
i=0 δ

i
1
ri

◦ φ). The (r, 0)–resolution of (L, π) can be de-

scribed abstractly as (Σr, φ ◦M∂) where Σr is built from Σ by gluing a
disk with ri holes to the ith boundary component so that φ acts on Σ
as a subsurface of Σr. The map M∂ is a Dehn multitwist about all the
boundary components of Σr.

6. Surgery on transversal knots

We recall the notion of an admissible surgery along a transverse
knot. Given a transverse knot K in a contact manifold (M, ξ) with
a fixed framing F then q

p
surgery on K is admissible if there is a neigh-

borhood N of K in M that is contactomorphic to a neighborhood
N ′
r0

= {(r, θ, z)|r ≤ √
r0} of the z-axis in R3/(z ≡ z + 1) with the

contact structure ξ′ = ker(dz + r2 dθ) such that F goes to the product
framing on N ′

r0
and −∞ < q

p
< − 1

r0
. (We remind the reader that we

are using a different convention for representing slopes of curves on tori
that is usual in contact geometry. This is to agree with conventions
used when describing Dehn surgery coefficients. See also Section 4.2.2.)

Note that if MK(
q
p
) is obtained from M by an admissible surgery

then there is a natural contact structure ξK(
q
p
) on it. The contact
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structure comes from a contact reduction process. Specifically let Ta =
{(r, θ, z)|r = 1√

a
} and Sa,b = {(r, θ, z)| 1√

a
< r < 1√

b
} in R3/(z ≡ z + 1)

with the contact structure ξ′ = ker(dz + r2 dθ). Then in N ′
r0

above we
have the torus T− q

p
that divides N ′

r0
into two pieces S− q

p
,r0 and N ′

− q
p

.

If we remove N ′
− q

p

from N ′
r0

∼= N ⊂ M then we have a manifold M ′

with a torus boundary component T− q
p
and the characteristic foliation

on this boundary component has slope (with respect to the framing F )
q
p
. Notice that if we form the quotient space of M ′ with each leaf of the

characteristic foliation identified to a point then the resulting manifold
is MK( q

p
). Let K ′ be the knot formed from points in the quotient space

where nontrivial identifications have been made (that is K ′ is the core
of the surgery torus). Notice that MK(

q
p
)−K ′ has a contact structure

on it since it is a subset of M. We claim this contact structure extends
over K ′. To see this we consider S− q

p
,r0 and let S be the solid torus

obtained by identifying the leaves of the characteristic foliation on T− q
p

to a point. We claim that the contact structure on S− q
p
,r0−T− q

p
extends

over the core of S. This is easily seen by applying the contactomorphism

Ψ : (S− q
p
,r0 − T− q

p
) → (N ′

r1
− Z) : (r, θ, z) 7→ (f(r), p′θ − q′z,−pθ + qz),

for some r1 where p′, q′ satisfy qp′ − q′p = 1, Z is the core of N ′
r1
,

and f(r) is a smooth increasing function such that the torus Tf(r) has

characteristic foliation with slope −p′−rq′
p+rq . One may easily check that

since Ψ preserves the radial direction and preserves the characteristic
foliations on the tori Tr it is a contactomorphism. It is also clear that
this map extends to a homeomorphism from S to N ′

r1
. Thus we may

considerMK(
q
p
) as being build fromM \N ′

r0
and N ′

r1
by using Ψ to glue

their boundaries together and hence the contact structure on MK( q
p
)

clearly extends over K ′.
We recall Gay showed that if (M, ξ) is symplectically fillable then so

is (MK( q
p
), ξK( q

p
)), [24]. So admissible surgery on transverse knots is

analogous to Legendrian surgery on Legendrian knots (in fact, if the
transverse knot is the push off of a Legendrian knot with Thurston-
Bennequin invariant greater than the surgery slope, then the admissible
surgery is precisely a sequence of Legendrian surgeries).

The following result is a simple consequence of the construction of
compatible contact structures for open books decompositions.

Lemma 6.1. Let (L, π) be an open book decomposition of a manifold
M that supports the contact structure ξ. Then if K is a component of
the binding of L with framing given by the page of the open book then
any negative Dehn surgery is admissible.
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Let (L, π) be a rational open book decomposition for (M, ξ) and K
be a binding component with order larger than one. Fix a framing on
K so that the pages approach K as a s

r
–curve. Then a Dehn surgery

coefficient is admissible if it is less than s
r
.

Notice that if K is the binding of an (rational) open book decompo-
sition (L, π) and we do any surgery to K, except the one corresponding
to the slope of a page approaching K, then letting L′ be L −K union
the core K ′ of the surgery torus clearly is the binding of a rational open
book decomposition for the new manifold. We will call this an induced
open book decomposition.

Lemma 6.2. Let (L, π) be a rational open book decomposition for
(M, ξ) and K be a binding component. For the admissible surgeries
described in Lemma 6.1 the induced open book decomposition supports
the contact structure obtained by the admissible surgery.

Proof. Notice that the compatibility of (L, π) with ξ gives a contact
form α that is positive on oriented tangents to L and such that dα is
a positive area form on the pages. After the admissible surgery α re-
stricted to the complement of a small neighborhood of K gives a contact
form on the surged manifold minus a small neighborhood of K ′. This
contact form shows compatibility with the induced open book every-
where except the neighborhood of K ′. Using the contactomorphism Ψ
above one may easily use the construction at the end of the proof of The-
orem 1.7 to extend α over this torus so as to demonstrate compatibility.

q.e.d.

Example 6.3. Let (L0, π0) be an open book for a contact manifold
(M, ξ) and let K0 be a component of the binding L0. For a positive
integer r the −r surgery is an admissible surgery on K0 and satisfies
the hypothesis of Lemma 6.1. Thus the rational open book (L, π) in-
duced on the admissibly surgered manifold supports the resulting con-
tact structure. The binding component of this open book has the page
approaching it as a (−1, r)–curve. Moreover Figure 4 shows how to re-
solve this rational open book decomposition into an honest open book
decomposition.

Notice that this gives the same open book we would obtain by Leg-
endrian surgery on a Legendrian copy of K given by r right-handed sta-
bilizations of a realization of K on the page of the open book (assuming
this is possible, which it is if there are other boundary components).

Example 6.4. The open book on S3 with binding the left-handed
trefoilK supports an overtwisted contact structure. In particular it sup-
ports the contact structure ξ−2 with Hopf invariant −2. The −5 surgery
is an admissible surgery and satisfies the hypothesis of Lemma 6.1 so the
induced rational open book decomposition on S3

K(−5) supports the con-
tact structure obtained by admissible surgery on K. It is known that
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−5 surgery on K gives the lens space L(5, 4). Looking at the (5, 0)–
resolution of the rational open book decomposition, we obtain the open
book given by Figure 5. Using relations in the mapping class group
given in [39] one can see that this gives the (unique) Stein fillable con-
tact structures on L(5, 4). Thus, the rational open book supported by
the −5 surgery on the left-handed trefoil is tight.

+

+

+

+

+

−

−

Figure 5. The resolution of a rational open book on
L(5, 4) given by surgery on the left-handed trefoil.

It is clear from the results above that to understand the open book
decomposition associated to admissible surgeries on a transverse knot
K it is helpful to have K in the binding of an open book decomposi-
tion. One can always do this as the following lemma, whose potential
existence was first observed during conversations between the authors
and Vincent Colin, shows.

Lemma 6.5. Let (L, π) be an integral open book decomposition for
the contact manifold (M, ξ). Assume K is an oriented Legendrian knot
on a page of the open book decomposition (so that the framing given by
ξ and by the page agree). Let γ be an arc on the page running from one
binding component of the open book decomposition to the knot K and
approaches K from the right. (The page of the open book and L are both
oriented. We say γ approaches K from the right if the orientation on
K followed by the orientation on γ induces the orientation on the page
where K and γ intersect.) Set α to be a curve that runs from L along
γ around K and then back to L along a parallel copy of γ. The open
book (Lα, πα) obtained from (L, π) by positively stabilizing along α has a
binding component B that is the transverse push off of K. See Figure 6.

Proof. On the page of the open book (Lα, πα) there is a knot K ′

that runs over the new 1-handle once, is isotopic to K (in the whole
manifold), and is parallel to one of the new binding components of the
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K

γ

T

Figure 6. On the left is a neighborhood of K, γ and a
binding component of L. (The top and bottom horizon-
tal lines in both figures are identified.) On the right is
the stabilized open book with the binding component T
drawn in a thicker line, where T is the transverse push
off of K.

open book. One may Legendrian realize both K and K ′. Then using a
local model for stabilization one can see that togetherK andK ′ cobound
an embedded annulus where the contact framing of K with respect to
this annulus is 0 and the contact framing of K ′ with respect to this
annulus is −1. One may use this annulus to see that K ′ is a Legendrian
stabilization of K.Moreover, by our choice of γ in the lemma, K ′ will be
a negative stabilization of K. Thus K and K ′ have the same transverse
push-offs, see [18].

Recall that K ′ cobounds an annulus with one of the binding compo-
nents of the open book. Using this annulus one sees that the binding
component is the transverse push-off of K ′. Thus the binding is also the
transverse push-off of K. q.e.d.

Remark 6.6. There are many techniques for putting Legendrian
knots on pages of open book decompositions [16, 22] (though this is still
more of an art than a science). Since any transverse knot can be realized
as the transverse push off of a Legendrian knot this previous lemma,
coupled with resolutions of rational open books, allows us to find open
books for admissible surgeries on transversal knots. The lemma also
gives us a convenient way to find open books for all “rational Legendrian
surgeries” on Legendrian knots sitting on a page of an open book.

7. Monodromies of cables

In Lemma 3.1 we discussed how to construct the page of a cabled
fibered link from the page of the original link. In this section we show
how to compute the monodromy, in terms of Dehn twists, of certain
cablings of an integral open book decomposition from the monodromy of
the original open book decomposition. (Throughout this section we will
focus solely upon integral open books.) It turns out this is most difficult
when the binding is connected and one wishes to perform a (p, 1)–cable.
This will be addressed in Subsection 7.4. The somewhat simpler cases
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will be addressed first in Subsection 7.3. We will analyze both cases
using branched coverings, so we review a few facts about branched covers
in Subsection 7.1. Subsection 7.2 contains a basic proposition that we
use throughout our analysis.

Remark 7.1. A quick note regarding notation: throughout this
section and the next, we will use group notation for braids, writing
them left to right, and functional notation for mapping class elements,
composing them right to left. Whenever product notation is used, we
will assume that the lower indexed elements act first. In the func-
tional notation, the product of mapping class elements would be writ-
ten

∏n
i=1 fi = fn ◦ fn−1 ◦ · · · ◦ f1, whereas for a braid we would write

resulting product in the reverse order.

7.1. Branched covers and open book decompositions. As we will
be using branched covering technology and terminology heavily in this
section we refer the reader to [8, 43] for a thorough discussion of the
relevant results; however, we review a few basic facts used below for the
convenience of the reader.

Let (U, π) be the open book for S3 with binding the unknot. Recall
a link B is braided in S3 it is transverse to the pages of (U, π), or
equivalently is isotopic to a closed braid through links transverse to the
pages of (U, π). The braid index of B, seen as a closed braid, is the
number of times B intersects the pages of (U, π). If B has braid index n
then notice that we can fix n points x1, . . . , xn on a disk D2 then there
will be a diffeomorphism φ of D2 that fixes these points set-wise such
that the image of {x1× [0, 1], . . . , xn× [0, 1]} in the mapping cylinder of
φ will trace out a link Lφ that is braid isotopic to B when the mapping
cylinder is completed to give the open book (U, π) of S3.

Let p : Σ → D2 be a k-fold covering map branched over x1, . . . , xn.
If there is a diffeomorphism φ′ of Σ that covers φ, then one may easily
check that the manifold associated to the open book (Σ, φ′) is a k-fold
cover of S3 branched along B.

We call a k-fold branched cover p : Σ → Σ′ of surfaces simple if the
pre-image of any point has either k or (k− 1) points. Notice if the pre-
image has k points then all the pre-image points are regular points (that
is, it is not a branched point). If it has (k−1) points then (k−2) of the
points are regular points and the other point has order two ramification,
that is there are local (complex) coordinates where p looks like the map
z 7→ z2.

Suppose that p : Σ → D2 is a simple k-fold cover branched over
the points x1, . . . , xn. Let γ be an arc with end points xi and xj and
not intersecting any xk on its interior. Let hγ be the diffeomorphism
of D that exchanges xi and xj via a right handed twist in a small
neighborhood of γ. The pre-image of γ in Σ will be a collection of



CABLING AND CONTACT STRUCTURES 47

arcs and possibly a circle. The diffeomorphism h is covered by the
composition of right handed half twists between the end points of the
arcs and a right handed Dehn twist about the circle (if it exists). Thus
h is covered by a diffeomorphism that is either isotopic to the identity
or isotopic to a Dehn twist about the circle covering γ (if it exists).

Here are some simple examples. Let g be the genus of Σ. Let n = |∂Σ|
if Σ has disconnected boundary, but set n = 2 if Σ has connected
boundary. If Σ has connected boundary then quotienting Σ by the
hyper-elliptic involution shows that it can be realized as a 2-fold cover
over the disk branched along 2g + 1 points. If Σ has disconnected
boundary then the surface Σ can be built by an n-fold simple branched
cover of the disk, branched over d = (2g + 2) + 2(n − 2) points. To see
this, think of the disk as the unit disk in R2 and the points on the x-axis,
labeled x1 to xd, left to right. Each adjacent pair of points (x2k−1, x2k)
can be connected by an arc γk in the x-axis. Crossing this arc moves
you between sheet 1 and sheet 2 in the cover for k = 1, . . . , g + 1 and
between sheet 1 and sheet k−g+1 for k = g+2, . . . , g+n. See Figure 7.
Now one easily sees thatM(Σ,id) can be built as a simple n-fold branched

Figure 7. The simple 3-fold branched cover of a genus
1 surface with 3 boundary components Σ over the disk.
The gray arcs on the disk are the arcs γi and their preim-
ages are shown in Σ.

cover of M(D2,id)
∼= S3, branched over the closure LB of the trivial d

component braid B where we think of LB as braided about the unknot
U = ∂D2.

Denote the standard generators in the braid group by σi. This gen-
erator switches the ith and (i+1)st points by a right handed half twist.
Now, for i < j, set

σi,j = σ−1
i . . . σ−1

j−2σj−1σj−2 . . . σi.
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That is to say, σi is the generator that exchanges the i and i+1 strands
in the braid by a right handed twist while σi,j is the element in the
braid group that switches the i and j strands with a right handed twist
along an arc that lies in the front of the braid diagram. Thinking of the
braid as the trace of a set of marked points on the y-axis of the disk,
the arc lies to the left of the marked points x1, . . . , xn, where we index
the marked points starting from the bottom strand. It is an interesting
and simple exercise to determine what these braid generators lift to in
the branched covers mentioned above. Any braid can be realized as a
composition of these generators.

We recall that a Markov stabilization of a braid B of index n is ob-
tained by adding an (n+ 1)st point and composing with σn.

Lemma 7.2 (Montesinos-Amilibia and Morton 1991, [43]).
Let (D2, id) be the standard open book decomposition for S3 and let L be
a link braided about U = ∂D2. Suppose (Σ, φ) is an open book decompo-
sition constructed by a finite sheeted simple branched cover of (D2, id)
branched along the link L. Let L′ be obtained from L by a positive Markov
stabilization. As L′ is topologically isotopic to L the branching data from
L provides branching data for L′. The open book decomposition (Σ′, φ′)
obtained from (D2, id) by the simple branched cover of L′ is obtained
from (Σ, φ) by a positive Hopf stabilization.

Proof. There is no need to restrict to S3 nor to the trivial open book
(D2, id), and so we give a proof that holds for an arbitrary link L
transverse to an arbitrary open book (F,ψ) in an arbitrary manifold
M . Denote by π the covering map π : ML → M . Let (FL, ψL) be the
open book decomposition on ML induced from the cover.

Restricting π to a page F of the open book gives finite sheeted cover
πL : FL → F , branched over the points {x1, . . . , xd}. We think of L as
a braid and hence a map BL ∈ Map+(F, {x1, . . . , xd}) in the mapping
class group of (F, {x1, . . . , xd}) (the diffeomorphisms are all the identity
in a neighborhood of the boundary).

We define positive Markov stabilization in this context as follows. Let
α be an arc connecting xd to the boundary and choose a point xd+1

on α that is contained in the region where BL is the identity. The
positive Markov stabilization is now the map BL′ obtained from BL by
composing with the diffeomorphism that exchanges xd and xd+1 by a
right handed twist contained in a small neighborhood of the portion of
α between xd and xd+1. One may easily check that this corresponds to
positive Markov stabilization (and conjugation) in the standard braid
group.

If the cover π is unramified along the component of L containing
xd then the branched cover of L and L′ are the same so (FL′ , ψL′) =
(FL, ψL). Thus we assume that L is fully ramified, so that some branch-
ing occurs along each component of L. In this case, as xd+1 and xd are
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on the same component of the link described by the braid, they must
be ramified in the same way. By this we mean that if we use the arc α
to provide branch cuts for xd and xd+1, the holonomy of the branched
cover about both points will be the same. (Said in a different way, α
can be used to provide an explicit relation between the loops about xd
and xd+1 in the fundamental group of the complement of the branched
points. With this identification these elements will both map to the
same permutation of the sheets of the cover). Now one easily sees that
FL′ is obtained from adding a 1-handle to FL and the arc between xd
and xd+1 will lift to a simple closed curve a that intersects the co-core
of this 1-handle one time. The extra right handed twist in BL′ will lift
to a right handed Dehn twist in FL′ , so ψL′ is ψL composed with a right
handed Dehn twist about the simple closed curve a. q.e.d.

7.2. Monodromies of cables. Let (Σ, φ) be the page and monodromy
of an open book on a manifold M with binding L, where L is an n com-
ponent link, L = K1∪· · ·∪Kn. The goal of this section is to give a Dehn
twist presentation of the monodromy of the open book

(
Σ(p,q), φ(p,q)

)
,

the (p,q)–cable of (Σ, φ). As in the previous sections, p is a positive
integer and q a vector of length n of positive integers. By (p,q)–cable
we mean the open book made by replacing the ith component Ki of L
with its (p, qi)–cable.

We recall the construction in Lemma 3.1 of the pages of an open book
after cabling. See the proof of that lemma for notation, but briefly recall
we took a (p, q)–torus knot T(p,q) in S

3 and noticed that we could choose

a core C of a Heegaard torus for S3 such that the Seifert surface F(p,q)

for T(p,q) (which is a page of an open book decomposition for S3 with
binding T(p,q)) intersected C in p points, which we label x1, . . . , xp. We
now observe that the monodromy of the open book T(p,q), which we
denote ψ(p,q), takes points xi to xi+1 (where i is taken modulo p). Let
NC be a small tubular neighborhood of C. This can be chosen so that
NC∩F(p,q) is p disjoint disksD1 . . . ,Dp and ψ(p,q)|Di

is a diffeomorphism

from Di to Di+1. Now S3 \ NC is denoted S(p,q) and is a solid torus

D2 × S1 containing T(p,q) such that the open book structure on S3

gives a fibration S(p,q) \ T(p,q) → S1. This fibration induces a fibration

of ∂S(p,q) by curves {pt} × S1 and the preimage of any point in S1

intersected with ∂S(p,q) is p curves. In addition the fiber of this fibration

is C(p,q) = F(p,q) \ (∪pi=1Di) and the monodromy is ψ′
(p,q) = ψ(p,q)|C(p,q)

.

As in Lemma 3.1 the open book
(
Σ(p,q), φ(p,q)

)
is built by removing

small neighborhoods of the binding components of (Σ, φ) and replacing
them with S(p,qi). Thus the fiber surface Σ(p,q) is built by taking the
surfaces Ci, where Ci is isomorphic to C(p,qi) and the p cyclicly ordered
boundary components, Oi,j are ordered so that the ψ′

(p,qi)
takes Oi,j to
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Oi,j+1. To this collection of surfaces one glues p copies Σ1, . . .Σp of Σ,
gluing the ith boundary component of Σj to Oi,j.

If the monodromy φ is idΣ then the monodromy φ(p,q) is simply ψ(p,qi)

on Ci and sends Σj to Σj+1, where again, j = p + 1 is identified with
j = 1. Since the Σi can be thought of as sitting in the complement of
the binding of the original open book which is a product we can use this
product structure to identify Σj with Σj+1. Thus we have an explicit
description of the monodromy in this case. We denote this monodromy
map as ρ(p,q)(Σ).

If the original monodromy map φ is non-trivial, then we can describe
φ as the identity map followed by a sequence of positive and negative
Dehn twists performed on fiber surfaces near Σ1, which we then inter-
pret as Dehn surgeries on curves lying on pages near Σ1. Thus the
monodromy map φ(p,q) will differ from ρ(p,q)(Σ) by performing these

Dehn surgeries on the curves near Σ1 ⊂ Σ(p,q). We denote by φ̃ the dif-
feomorphism of Σ(p,q) obtained from these Dehn twists on Σ1 and call
it the lift of φ to Σ(p,q).

Because we will use this decomposition of Σ(p,q) rather heavily, we
introduce the term nodules to refer to these distinguished subsurfaces
Σj of Σ(p,q). The remaining connected components, Ci, of Σ(p,q) will be
called base components. The goal of this section is to find a Dehn twist
presentation of the monodromy φ(p,q) of the cable, and the following
proposition, which is proven above, allows us to do this without referring
to a particular open book.

Proposition 7.3. Let
(
Σ(p,q), φ(p,q)

)
be the (p,q)–cable of an open

book decomposition (Σ, φ). The monodromy φ(p,q) splits as a product

φ(p,q) = ρ(p,q)(Σ) ◦ φ̃, where ρ(p,q)(Σ) is a universal map depending only

on Σ, p and q, and φ̃ is a lift of φ acting on the first nodule Σ1. This
factorization holds for any conjugation of the factors by a map of the
cable surface Σ(p,q) which preserves the nodules and hence is independent
of the identification of Σ with Σ1.

Thus, assuming we know the original monodromy φ, we need under-
stand only ρ(p,q)(Σ) in order to understand the monodromy of the cable.
The idea will be to construct Dehn twist presentations of ρ(p,q)(Σ) while
keeping track of the first nodule Σ1 without a specific identification with
Σ.

7.3. Simple branched covers and cablings. In this subsection we
understand ρ(p,q)(Σ) in the case where Σ has more than one boundary
component or all the qi > 1. The reason for this restriction is that
Σ will have a nice branched cover description that can be exploited.
We illustrate this basic idea in the next theorem. Theorems 7.6, 7.8
and 7.12 expand on the basic ideas used here. However, as we will see
in Theorem 1.1, this result does not hold for (p, 1)–cables in general.
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Theorem 7.4. Let (Σ, φ) be an open book and
(
Σ(p,q), ρ(p,q)(Σ) ◦ φ̃

)

its (p,q)–cable with p and each qi a positive integer. If either Σ has

disconnected boundary or each qi > 1 then
(
Σ(p,q), ρ(p,q)(Σ) ◦ φ̃

)
can be

obtained from (Σ, φ) by a sequence of positive Hopf stabilizations.

Proof. By Proposition 7.3, it is enough to prove the theorem when
φ is the identity on Σ, as any sequence of positive Hopf stabilizations
from (Σ, id) to

(
Σ(p,q), ρ(p,q)(Σ)

)
can be used to build a sequence of pos-

itive Hopf stabilizations from (Σ, φ) to
(
Σ(p,q), ρ(p,q)(Σ) ◦ φ̃

)
. Following

[44, Section 4.3 and Figure 4.2], and recalled in Lemma 3.4 above, the
(p,q)–cable can be obtained from the (p,1)–cable by positive Hopf sta-
bilizations. These stabilizations can be done along arcs disjoint from Σ1

and thus we may make the further simplification that qi = 1 (or in the
case of connected boundary we will take q1 = 2).

Recall the description of (Σ, id) as a simple branched cover from
Subsection 7.1. The branched cover description breaks down into two
cases. One when ∂Σ is connected and one when it is not.

Case 1. Disconnected boundary. We begin with a simple lemma.

Lemma 7.5. If Σ has disconnected boundary then the (p, 1)–cable of
the binding of the open book (Σ, id) can be realized as the p-fold branched
cover of the braid Bp shown in Figure 8. The braid Bp can be expressed
as

p∏

i=2

d∏

j=1

σ(p−i)d+j,(p−i+1)d+j(1)

=(σ(p−2)d+1,(p−1)(d)+1σ(p−2)d+2,(p−1)d+2 · · · σ(p−1)d,pd)·
(σ(p−3)d+1,(p−2)d+1σ(p−3)d+2,(p−2)d+2 · · · σ(p−2)d,(p−1)d) · · ·(2)

(σ1,d+1σ2,d+2 · · · σd,2d).

Figure 8. A representation of Bp in terms of the gen-
erators σi,j. The figure illustrates d = 4 and p = 3.
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Proof. Since the boundary of Σ is disconnected, the cover construct-
ing Σ is trivial covering along ∂D2 is the trivial n-fold cover, and so
the (p, 1)–cable Up of ∂D2 lifts to the (p, 1)–cable of every component
of ∂Σ. The knot Up is again an unknot and the trace of the branch loci
in D2, LB , is now braided about Up (in particular, it is transverse to
the disk fibers in the complement of Up). Untwisting Up to make it the
braid axis transforms LB into the closure of the dp stranded braid Bp,
the branch cover of which reconstructs the fibration on the complement
of the lift of Up, i.e., the desired (p, 1)-cable. The left hand side of Fig-
ure 9 shows the braid B and the cable Up of braid axis U , while the
right hand side shows the braid Bp after unwinding Up. One may easily
verify that this braid can also be expressed as in Equation (2). Since

p

d

Up

B
Bp

−1

−1

Figure 9. The cabled unknot Up and braid B on the
left. On the right is Bp, that is LB when written as a
braid about the unknot Up. The braid Bp has dp strands.
The strand index starts at the bottom.

the disk Up bounds arises by the cabling construction from the disk U
bounds, the branched cover lifts it to the surface Σ(p,q). q.e.d.

From the presentation of Bp given in the lemma it is easy to see it can
be obtained from the d-strand trivial braid about Up by positive Markov
stabilizations. Using Lemma 7.2, it then follows that

(
Σ(p,q), ρ(p,q)(Σ)

)

is a Hopf stabilization of (Σ, φ).
Case 2. Connected boundary. When Σ has connected boundary, the

above goes through as stated, and nearly the same as in the previous
case, though since the chosen branched cover over ∂D2 is a non-trivial
2-fold cover, Up now lifts to the (p, 2)–cable of ∂Σ. q.e.d.

We are now ready to explicitly describe the monodromy of the cabled
open book.
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Theorem 7.6. The monodromy φ(p,1) of the (p,1)–cable of an open
book (Σ, φ) with disconnected binding can be written as

φ(p,1) =

p−1∏

j=1

d∏

i=1

Dcp−i,j
◦ φ̃,

where φ̃ is the lift of φ, acting on the first nodule and Dci,j is the right
handed Dehn twist along the curve ci,j, that is the simple closed curve
component of the lift of the curve ai,j shown in Figure 10 to the branch
cover Σ(p,1). The ci,j can also be thought of as the image of cj from
Theorem 7.6 under the identification of the subsurface of Σ(p,q) lying
above Di,i+1 shown in Figure 10 with Σ(2,1).

x2,1x2,2 x1,d x1,1x1,2x2,d

a1,2

xp,1xp,2xp,d

Figure 10. The disk D with its subdisks D1, . . . Dp

shaded. The disk D1,2 is lighter grey.

Proof of Theorem 7.6 in the case of p = 2. We give a detailed discus-
sion of the monodromy computation with p = 2. Later we extend this
to all p > 1. In this case the theorem states: The monodromy φ(2,1) of
the (2,1)–cable of an open book (Σ, φ) with disconnected binding can
be written as

φ(2,1) =
d∏

i=1

Dci ◦ φ̃

where φ̃ is the lift of φ, acting on the first nodule. We point out that,
notationally, this product is a sequence of compositions of Dehn twists
with the lowest indexed twists acting first. The Dehn twists Dci are
Dehn twists along the curves ci, which are the simple closed curve com-
ponents of the lifts to the branch cover Σ(2,1) of the curves ai shown
in Figure 13. The curves ci are also shown in Figure 14 and 15. See
Figure 11 for a symmetric view of Σ(2,1) and the curves ci.

Since Proposition 7.3 allows us to compute φ(2,1) as a product of

ρ(2,1)(Σ) and φ̃ (provided we keep track of the nodules of Σ1), we begin
by assuming that φ = id . Now as detailed in the proof of Subsection 7.1,
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c1
c2

c3
c4

c5

c6

c7

c8

C4

C3

C2

C1

Figure 11. The page Σ(2,1) drawn symmetrically when
Σ is genus 1 and has 4 boundary components. The nod-
ules Σ1 and Σ2 are the right most and left most surfaces
and the basic components C1, . . . , C4 are the four central
pairs-of-pants.

since n = |∂Σ| ≥ 2, the open book decomposition (Σ, id) can be thought
of as a simple n-fold branched cover of (D2, id) branched over a d-
component unlink that sits transverse to (D2, id) as the trivial braid B,
thinking of U = ∂D2 as the braid axis. Moreover, because n > 1, the
cover along ∂D2 is the trivial n-fold cover. (When the binding of the
open book is connected (i.e., n = 1), a separate construction is needed.
This will be given in Section 7.4.)

Lemma 7.5 shows that the open book decomposition for the (2,1)–
cable of the open book decomposition (Σ, id) is obtained as the simple
cover branched over the 2d-braid B2 given in Equation (2) (with p = 2).
The page Σ(2,1) of the (2,1)–cable is shown in Figure 12 with the nodules

and base components labeled. To be specific we think of D2 as a disk
in R2 that contains a segment of the x-axis. We then label 2d-points on
the x-axis from right to left, x1,1, . . . , x1,d, x2,1, . . . , x2,d. Let D1 and D2

be two disjoint subdisks of D with Di containing the xi,j with i = 1, 2
and for j = 1, . . . , d. The cable surface Σ(2,1) is the simple cover of

D2 branched over the xi,j with ramification data as described in the
proof of Theorem 7.4 for the x1,j and the same data repeated for the
x2,j. Moreover, the nodules Σi are lifts of the subdisks Di. Let ai be
the arc embedded in D, with negative y-coordinate on its interior, that
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Σ1 Σ2

D1 D2

Figure 12. A page of the (2, 1)–cable of (Σ, id) when
Σ has genus 1 and 4 boundary components. The two
nodules Σ1 and Σ2 are shown in grey. The white regions
are the 4 base components C1, . . . , C4.

connects x1,i to x2,i as shown in Figure 13. The braid B2, thought of

x2,1x2,2 x1,d x1,1x1,2x2,d

a2

Figure 13. The disk D with its two subdisks D1

and D2 shaded.

as an element of the mapping class group, is given as B2 =
∏d
i=1 τi

where τi is a right handed half twist exchanging x1,i and x2,i in a small
neighborhood of ai. Each ai lifts to a simple closed curve ci in Σ(p,1)

(and several arcs). See Figures 14 and 15.
Since τi lifts to the right handed Dehn twist Dci we clearly see that

ρ(2,1) =
d∏

i=1

Dci . q.e.d.

Proof of Theorem 7.6 in the general case. Again, by Proposition 7.3, it
is enough to find a factorization of the cable of the open book with
φ = id , keeping track of the nodules, and so we make that simplification
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ai aj

ci

cj

Figure 14. The branched cover Σ(2,1) with the curves
ci, 1 ≤ i ≤ 2g + 2, and cj , 2g + 2 < j ≤ d, with i and j
even, where g is the genus of Σ.

ai aj

ci

cj

Figure 15. The branched cover Σ(2,1) with the curves
ci, 1 ≤ i ≤ 2g + 2, and cj , 2g + 2 < j ≤ d, with i and j
odd, where g is the genus of Σ.

again. The factorization is again a lift of a braid factorization of Bp from
Lemma 7.5. Specifically consider the diskD in R2 intersecting the x-axis
and let

x1,1, . . . , x1,d, x2,1, . . . , x2,d, . . . , xp,1, . . . , xp,d
be points on the x-axis, again ordered from right to left. (See Figure 10.)
Let D1, . . . ,Dp be disjoint disks in D such that Di contains the points
xi,1, . . . , xi,d. Moreover let Di,i+1, i = 1, . . . , p − 1 be larger disks in D
engulfing adjacent pairs of disks: Di,i+1 contains the disks Di and Di+1
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and is disjoint from the other Dj. Finally let ai,j be the embedded arc
in Di,i+1 with negative y-coordinate on its interior that connects xi,j
to xi+1,j as indicated in Figure 10. The braid Bp, thought of as an

element of the mapping class group, is given as Bp =
∏p−1
j=1

∏d
i=1 τp−i,j

where τi,j is a right handed half twist exchanging xi,j and xi+1,j in a
small neighborhood of the arc ai,j . Each ai,j lifts to a simple closed
curve ci,j in Σ(2,1) (and several arcs). Since τi,j lifts to the right handed
Dehn twist Dci,j , the factorization of Bp gives the desired factorization:

ρ(p,1) =

p−1∏

j=1

d∏

i=1

Dcp−i,j
. q.e.d.

Remark 7.7. From the proof of Theorem 7.4 we know that the
monodromy of the (p,q)–cable of an open book decomposition (Σ, φ)
can be constructed from the (p,1)–cable by stabilization. While it would
be nice to have an explicit description of the monodromy it is somewhat
difficult to write down and we leave this to future work.

7.4. Connected Binding. In this subsection we write find the mon-
odromy of the (2, 2)–cable and the (p, 1) cable of an open book with
connected binding. The (2, 2)–cable is more or less done in the previous
subsection, but explicitly derive it here as we will need it in our applica-
tions in Section 8 (it also helps cement the ideas from the last subsection
before we move onto the more difficult monodromy computations for the
(p, 1)–cable). It is interesting to contrast the monodromies constructed
in this section as we see the (p, 1)–cable requires some explicit left-
handled Dehn twists. This observation is a key to construction Stein
fillable contact structures supported by open books whose monodromy
is not a composition of positive Dehn twists.

7.4.1. The (2, 2)–cables of open books with connected bindings.
As discussed in the proof of Theorem 7.4, the (2, 2)–cable of an open
book with connected binding is the natural object you get by doubling
the branch locus as in the proof of Theorems 7.4 and 7.6 and this braid
has a positive braid factorization which lifts to a factorization of ρ(2,2),
the rotation map in the monodromy of the cable. To obtain a more
convenient and symmetric expression for ρ(2,2) we choose a different
conjugacy representative of the braid, see Figure 16 (the conjugation
is by a half twist on the lower (2n + 1) strands). This construction is
fundamentally different than the construction in Theorem 7.12, below,
where it is shown that the rotation map of the (2, 1)–cable does not ad-
mit a positive factorization. There is, however, a (single) positive Hopf
stabilization taking the (2, 1)–cable to the (2, 2)–cable (cf. Lemma 3.4),
which gives a factorization of the monodromy of the (2, 2)–cable. The
equivalence of these two presentations is discussed in Section 8.1.2.
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1

2g+2

2g+1

4g+2

Figure 16. Branch locus of the (2, 2)-cable of the trivial
genus g open book.

Proposition 7.8. Let (Σ, φ) be an open book with connected binding
and let g = g(Σ) be the genus of Σ. The (2, 2)–cable of (Σ, φ) can be
described abstractly as (Σ(2,2), φ(2,2)) where Σ(2,2) has genus 2g and 2

boundary components, and φ(2,2) = ρ(2,2) ◦ φ̃. The map ρ(2,2) is a lift of

the braid Rg
(2,2)

shown in Figure 16 and has a factorization

ρ(2,2) = Dd2g+1 ◦ · · · ◦Dd1 ,

where the Ddi are Dehn twists about the curves di shown in Figure 17.

The proof of the proposition is contained in the following two lemmas.

d1 d2
d2g d2g+1

Figure 17. Dehn twists used in the factorization of the
rotation map ρ(2,2)(Σ) of the (2, 2)-cable of a genus g
open book.

Lemma 7.9. The braid Rg(2,2) shown in Figure 16 has factorizations

Rg(2,2) = ∆∆−2
1 ∆−2

2

and

Rg(2,2) = b1 · · · b2g+1,

where bi is a braid half twist about the arc ai shown in Figure 18, ∆ is
the Garside half twist on all 4g + 2 strands, ∆1 is the half twist on the
first 2g + 1 strands, and ∆2 is the half twist on the last 2g + 1 strands.
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a1

a2g

a2g+1

Figure 18. Arcs presenting a braid factorization of the
braid Rg(2,2).

Proof. (cf. Lemma 7.5) That the braid half twists give a factorization
of Rg(2,2) is obvious. To see the other factorization recall that Figure 16

is obtained from Figure 9 by conjugating by ∆1. From this one may
easily see the new factorization. q.e.d.

Lemma 7.10. The rotation map ρ(2,2) has a factorization

ρ(2,2) = Dd2g+1 ◦ · · · ◦Dd1 ,

where the Ddi are Dehn twists about the curves di shown in Figure 17.

Proof. (cf. Theorem 7.6) As discussed in the previous subsection, in
the two-fold branched cover the braid axis for Rg(2,2) lifts to the (2, 2)-

cable of the braid axis for the trivial 2g + 1-stranded braid. This is
then the cable of the trivial open book and hence the monodromy is
exactly ρ(2,2). Any factorization of Rg(2,2) then lifts to a factorization of

ρ(2,2). The factorization of Rg(2,2) from Lemma 7.9 in particular gives

the desired factorization of ρ(2,2) since the braid arcs for Rg(2,2) lift to

the curves shown in Figure 17. q.e.d.

7.4.2. The (p, 1)–cables of open books with connected bindings.
The goal of this subsection is to present the monodromy of the (p, 1)–
cable of an open book with connected binding. In Theorem 7.4, we
used a branched cover construction of (Σ, id) over

(
D2, id

)
to also build(

Σ(p,1), φ(p,1)
)
. When Σ has only one boundary component, however,

the twofold branched cover used to construct Σ is non-trivial along the
boundary. So while we used the same ideas to construct the monodromy
of the (p, 2)–cables, there is no cable of the unknot which lifts to the
(p, 1)–cable of ∂Σ. To construct this cable we need a different approach,
in particular, a different branched cover.

Lemma 7.11. Let M be the manifold obtained from the trivial open
book (Σ, id) and denote the binding by C. The p-fold cyclic cover of
M branched over C(1,1) is again M . Moreover, we can assume C(1,1) is
transverse to the pages of the open book and then C lifts to C(p,1) and
the pages lift to pages of the cabled open book.

In other words, the (p, 1)–cable of (Σ, id) can be seen as the p-fold
cyclic cover of (Σ, id) branched over the (1, 1)–cable of the binding C.
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Proof. We begin by commenting that it is essential here that the
monodromy is the identity. In this case notice that the p-fold cyclic
branched cover over the binding of (Σ, id) yields the same manifold.
Moreover, the branched cover takes the (1, 1)–cable of the binding to
the (p, 1)–cable of the binding. Now reversing the roles of the binding
and its (1, 1)–cable (which we can do as they are isotopic) yields the
desired result. q.e.d.

Let us establish some notation. As discussed at the beginning of this
section, the page of the cabled open book decomposition Σ(p,1) is made
up of p-copies of Σ, denoted Σi, for i = 1, . . . , p, called nodules, and
a base component C, which is a disk with p subdisks removed. We
explicitly realize Σ(p,1) in R3 so that the nodules have z-coordinate non-
negative, the base component C is in the xy-plane and consists of the
unit disk minus p open disks arranged cyclically around the origin, and
the entire surface is invariant under a 2π

p
rotation about the z-axis. See

Figure 19. We are given a reference arc, dj, in C that connects the jth
and j + 1st nodules. Denote a neighborhood of dj and the nodules Σj
and Σj+1 by Σj,j+1. Notice that we can fix an identification of Σ with
Σ1 and then identify Σ with the remaining Σi by rotating about the
z-axis. Under this realization of Σ(p,1) there is an natural identification
of Σ(2,1) with Σj,j+1.

Σ1

Σ2

Σ3

Σp
d1

d2

dp

Figure 19. The base disk for Σ(p,1). The arcs dj are
used to determine the subsurfaces Σj,j+1.

Theorem 7.12. Let (Σ, φ) be an open book with connected binding.
Then the monodromy φ(p,1) of the (p, 1)–cable of (Σ, φ) can be written
as

φ(p,1) =

p∏

j=2

∂−1
j ◦

p−1∏

j=1

Tp−j ◦ φ̃.
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Here ∂j is the Dehn twist about the boundary of the jth nodule Σj and φ̃
is the lift of φ, acting on the first nodule. The map Tj is the diffeomor-
phism of Σj,j+1 that, when Σj,j+1 is identified with the surface Σ(2,1) in
Figure 22 as discussed above, is a lift of the Garside braid half-twist and
can be written

Tj = ∂−1
j ◦(D2d−1)◦(D2d−2◦D2d−1)◦· · ·◦(D2◦· · ·◦D2d−1)◦(D1◦· · ·◦D2d−1)

where Di is a right handed Dehn twist along ci.

We point out that, unlike the previous cases, there is in general no
positive Dehn twist presentation of ρ(p,1)(Σ) (see Theorem 1.1), and so
we content ourselves with the presentation given.

Proof. We again appeal to Proposition 7.3 and focus on determining
the Dehn twist presentation for ρ(p,1)(Σ). From Lemma 7.11 we see

that the monodromy of
(
Σ(p,1), ρ(p,1)(Σ)

)
can be computed from lifting

the braid representation of the (1, 1)–cable K of the binding of (Σ, φ)
to the p-fold cyclic cover branched over K. The braid representing K
thought of as an element of the mapping class group is B = Dc ◦D−1

c′

where c is a simple closed curve parallel to ∂Σ, c′ is a copy of c pushed
a little further into Σ, and Dc and Dc′ are Dehn twists about the given
curves. If we choose a point x between c and c′ then it will trace out
the (1, 1)–cable of the binding. See Figure 20.

−

x

+

c′ c

Figure 20. Braid picture of the (1,1)-cable of the bind-
ing of the page Σ.

Lifting B to the p-fold cyclic cover, we first note that c′ will lift
to p simple closed curves c′i, i = 1, . . . p, with each c′i parallel to the

boundary of the nodule Σi. Thus D−1
c′ will lift to the diffeomorphism

∂−1
1 ◦ . . . ◦∂−1

p (where we use the notation ∂i for Dc′i
as in the statement

of the theorem). The curve c does not lift to the cover, but we can still
lift Dc. Referring back to our description of Σ(p,1) in R3 above, assume
ǫ > 0 is chosen so that all the nodules of Σ(p,1) are contained in the
cylinder about the z-axis of radius 1 − ǫ. Now let rp the restriction to
Σ(p,1) of the map that is rotation by 2π

p
about the z-axis for all points
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within the cylinder of radius 1 − ǫ, the identity outside the cylinder of
radius 1 − ǫ

2 and interpolates between the two (keeping z-coordinate
constant) in between. By noting that the generating deck transform for
the p-fold cover of Σ(p,1) over Σ branched over x is just the restriction

to Σ(p,1) of rotation about the z-axis by 2π
p

one may easily check that

rp is the lift of Dc to Σ(p,1), cf. [43, Figure 3.1]. Thus we see that

ρ(p,1)(Σ) = ∂−1
1 ◦ . . . ◦ ∂−1

p ◦ rp.

So to complete the proof we need a Dehn twist presentation of rp.
As before, the idea will be to find a suitable presentation when p = 2

and show that the composition of different lifts, acting on each Σj,j+1,
j = 1, . . . , p − 1, gives the general case. When p = 2 the rotation r2 is
particularly easy to describe. It occurs as the lift of the Garside half
twist braid under a 2-fold branched cover. More specifically, Figure 21
shows the 2-fold cover which describes Σ(2,2), the page of a (2, 2)–cable

of the original open book. Here Σ(2,2) is the 2-fold cover of D2 branched
over 2d = 2(2g + 1) points. Let ψ be the diffeomorphism of Σ(2,2) that
fixes the boundary, rotates the figure (outside a small neighborhood of
the boundary) through an angle π, and interpolates between the two
maps in between. The surface Σ(2,1) is obtained from Σ(2,2) by capping
off one of its boundary components. Moreover, r2 is the extension of ψ
to Σ(2,1). So we are left to give a Dehn twist presentation of ψ.

Identify the base of the branched covering with the unit disk in R2 and
place the branched point x1, . . . , x2d on the x-axis, ordered left to right
so that they are symmetric about the origin. Then (up to isotopy) ψ
covers the diffeomorphism ψ′ of D2 that fixes the boundary, rotates the
complement of a small symmetric neighborhood of the boundary (that
contains no branched points) counterclockwise by π, and interpolates
between the two maps elsewhere — if we forget about the boundary,
this is just a rotation of the entire disk through an angle π — this is just
the Garside half twist braid ∆. If we let σi be the standard generators of
the braid group (that is they are diffeomorphisms of D2 that exchange
xi and xi+1 via a right handed twist supported in a neighborhood of an
arc ai on the x-axis connecting them) then ψ′ = ∆ has factorization

∆ = (σ2d−1 · · · σ1)(σ2d−1 · · · σ2) · · · (σ2d−1σ2d−2) · σ2d−1.

Each arc ai lifts to a simple closed curve ci in Σ(2,2), see Figure 21, and
the lift of the diffeomorphism ∆ is given by (D2d−1) ◦ (D2d−2 ◦D2d−1) ◦
· · · ◦ (D2 ◦ · · · ◦D2d−1) ◦ (D1 ◦ · · · ◦D2d−1), where Di is a right handed
Dehn twist about ci. This gives the factorization

φ(2,1)(Σ) = ∂−1
2 ◦∂−1

1 ◦ (D2d−1) ◦ (D2d−2 ◦D2d−1)◦
· · · ◦ (D2 ◦ · · · ◦D2d−1) ◦ (D1 ◦ · · · ◦D2d−1) ◦ φ̃.
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c1
c2

cd
cd−1cd+1c2d−2

c2d−1 l

g(l)

F

B

F

B

Figure 21. Branched cover picture of the (2,2)-cabled
surface Σ(2,2). To see the lift g of the Garside half twist
rotate both the base and cover 180◦ and then slide each
boundary back to where it started. The arc l and it’s
image g(l) under the rotation are shown, as are the lifts
ci of the standard arcs ai connecting adjacent marked
points inD2. The two sheets are labeled F and B and the
spin map takes each sheet in nodule Σ1 to its counterpart
in nodule Σ2.

To normalize the presentation of r2 in preparation for the p 6= 2
case, we pick the chain of curves c1, . . . , cd−1 and a proper arc a in
Σ shown in Figure 22, here a is cd intersected with the nodule. The
surface Σ(p,1) as described before the theorem consists of the base surface
C and the nodules Σ1, . . . ,Σp sitting symmetrically around the z-axis
in R3. We identify Σ with Σ1 and then with the other Σi by rigid
rotation about the z-axis. Under this identification we denote by ci,j
the curve cj on Σi for 1 ≤ j ≤ d − 1, and the curve c2d−j on Σi+1 for
d+ 1 ≤ j ≤ 2d− 1. Notice that there is some repetition among the ci,j .
In particular, ci,j = ci+1,2d−j . Finally denote by ci,d the curve obtained
by taking the union of a ⊂ Σi, a ⊂ Σi+1 and two parallel copies of
dj that connect the end points of the a’s. Notice that for a fixed i the
curves ci,j correspond to the curves in Figure 22 under the identification
of Σ(2,1) with Σi,i+1.

We set

si = (D2d−1)◦(D2d−2 ◦D2d−1)◦· · · ◦(D2 ◦· · · ◦D2d−1)◦(D1 ◦· · · ◦D2d−1)

and notice that si is simply r2 acting on Σi,i+1 under our above identifi-
cation. That is si acts on Σi,i+1 by exchanging the nodules Σi and Σi+1

and on the base component of Σi,i+1 it acts as shown in the middle part
of Figure 23.
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c1

c2

cd

cd+1 cd−1

c2d−2

c2d−1

FB F B

S2 S1d1

Figure 22. The surface Σ(2,1). The spin map r2 can be
seen by rotating the picture 180◦ and then sliding the
boundary clockwise back to where it began.

Sj

Sj+1

Figure 23. Local picture of the spin (middle) diffeomor-
phism si and dosado (right) diffeomorphism Ti showing
their framing difference.

If we set

Ti = ∂−1
i ◦ si

then this is a diffeomorphism of Σi,i+1 that acts on the nodules in the
same way si does and acts on the base component as shown on the
right of Figure 23. Consider the composition Tp−1 ◦ · · · ◦ T1. This is a
diffeomorphism of Σ(p,1) that acts on the nodules just as rp does, and
on the base acts as shown in Figure 24.
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S1

S2

Sp−1

Sp

Figure 24. On the left, the base disk with nodules la-
beled and framings given. The middle shows how the
rotation rp acts on the framed nodules. The right shows
the framing after applying the p−1 dosado maps between
the jth and j + 1st nodules.

Thus we can write

rp = ∂1 ◦
p−1∏

i=1

(Tp−i)

q.e.d.

8. Applications

In this section we give two applications of our monodromy computa-
tions from the previous section. In particular we study the monodromy
of Stein fillable contact structures and prove the existence of many in-
teresting monoids in the mapping class group of a surface. We also
prove Proposition 1.17 by exhibiting many negative exceptional cables
that produce tight contact structures.

8.1. Stein fillable open books without a positive monodromy.
We apply Theorem 1.8 and the factorization given in Theorem 7.12
to show that there exists open books supporting Stein fillable contact
structures whose monodromy cannot be written as a product of positive
Dehn twists. The particular examples we find are (2, 1)–cables of genus
one open books compatible with the unique tight contact structure ξstd
on the lens spaces L(p, p− 1) for p ≥ 1, where we include S3 as the lens
space L(1, 0).
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8.1.1. The examples. In the following lemma, we think about a length
of a homeomorphism of a genus two surface as the algebraic length of a
presentation as a product of Dehn twists about non-separating curves,
which, for our purposes, counts right-handed Dehn twists positively and
left-handed Dehn twists negatively.

To do this, we define an invariant of an element m ∈Map+(Σ) which
is related to the algebraic word length of such a factorization. It is
easy to see (from Wajnryb’s presentation [53], for example) that the
abelianization A of Map+(Σ) is Z/10Z. There is a particular generator
in A we want to consider, that of a Dehn twist about a non-separating
curve [D]. Since any two such Dehn twists are conjugate they all repre-
sent the same element in A and so we can determine this class without
reference to a particular curve. Moreover, since Map+(Σ) is generated
by Dehn twists about non-separating curves, this class generates the
abelianization as well. We define the algebraic length, denoted |m|, of
a mapping class m to be the integer l such that the class of [m] in the
abelianization is [m] = l[D]. The following lemma is obvious from the
discussion here.

Lemma 8.1. Let φ be a homeomorphism of a surface Σ of genus two
and with one boundary component. The algebraic length of φ, denoted
as above by |φ|, is equal, modulo 10, to the algebraic word length of any
factorization of φ into a product of Dehn twists about non-separating
curves. In particular, the length of any such factorization is well-defined
modulo 10.

This length combined with the following classification of symplectic
fillings of L(p, p − 1) by Lisca give us the obstruction to a positive
monodromy for our examples.

−2 −2 −2 −2

                                      p− 1

Figure 25. Linear plumbing describing the unique min-
imal symplectic filling of L(p, p− 1). The vertices of the
graph correspond to disk bundles over spheres with Euler
number given by the label. An edge between two vertices
denotes a plumbing between the spheres corresponding
to the vertices.

Theorem 8.2 (Lisca 2004, [40]). Any minimal symplectic filling of
the contact manifold (L(p, p − 1), ξstd) is diffeomorphic to the plumbing
described in Figure 25.

When p = 1 the manifold L(1, 0) is S3, which Eliashberg proves has a
unique minimal symplectic filling, namely B4, [11]. The particular case
of L(p, p− 1) is discussed in detail as the Third Example of [40, p.18].
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Proof of Theorem 1.1. As stated before, the manifold L(p, p − 1) has a
unique tight contact structure ξstd, which additionally admits a unique
Stein filling (easily constructed from a Legendrian presentation of the
plumbing diagram Figure 25). The contact structure ξstd is supported
by an annular open book whose monodromy consists of p right-handed
Dehn twists about the core of the annulus. We can stabilize this open
book to get the genus one open book which has monodromy φ = Dp

1◦D2.
We will see that the (2, 1)–cable φ(2,1) of this open book does not have
a positive factorization. Theorem 7.12 gives us a factorization of the
monodromy φ(2,1) of the cable as

φ(2,1) = (D4 ◦D5)
−6◦(D1 ◦D2)

−6 ◦ (D5)◦
(D4 ◦D5) ◦ · · · ◦ (D1 ◦ · · · ◦D5) ◦Dp

1 ◦D2,

where Di is the right-handed Dehn twist about the curve ci in Figure
22. We have written φ(2,1) as a product of Dehn twists about non-
separating curves, and our particular factorization has algebraic length
15 − 24 + p + 1 = p − 8 and so |φ(2,1)| ≡ p − 8. To see that φ(2,1) has
no positive factorization, we compare this to the necessary length of a
minimal symplectic filling of ξstd.

Any positive factorization of φ(2,1) can be modified by chain relations
to give a positive factorization whose terms are each Dehn twists about a
non-separating curve. Any factorization into positive Dehn twists about
non-separating curves actually constructs a Stein filling (see [32, 33]).
Denote by F the positive factorization. The construction of the Stein
filling starts with a 4-dimensional thickening of the page, and adds 4-
dimensional (symplectic) 2-handles for each non-separating Dehn twist
in the positive factorization of the monodromy. For our cabled open
book on L(p, p−1), the page is a genus 2 surface, this means we are con-
structing a minimal symplectic manifold by a 0-handle, four 1-handles
and |F|, 2-handles which hence has Euler characteristic 1−4+|F|, where
|F| both is the algebraic length of the monodromy (|F| = |φ(2,1)|) and
the number of Dehn twists in the chosen positive factorization. How-
ever, we know all the minimal symplectic fillings of ξstd by Theorem 8.2,
namely the plumbing of spheres. This filling has Euler characteristic p
and so |F| = p+3 = |φ(2,1)|. Comparing this with the previously calcu-
lated length gives us the desired contradiction, as p−8 6= p+3 mod 10.
Thus φ(2,1) has no positive Dehn twist factorization. q.e.d.

8.1.2. Relating the monodromy of the (2,1)– and (2,2)–cables
of a genus one open book decomposition. The proof of Theo-
rem 1.1 above relies on all the work done in Section 7 to factor the
monodromy map of a (2, 1)-cable of an open book. As those details are
quite non-trivial, we will show out to make the proof independent of
that work. The proof of Theorem 1.1 starts with a factorization of the
monodromy of an open book decomposition that we claim supports the
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d1d2d3

∂Σ

Figure 26. The four Dehn twists presenting the cabling
rotation for a (2,1)–cable. We can write ρ(2,1) = Dd3 ◦
Dd2 ◦Dd1 ◦D−1

∂Σ
.

standard contact structure on a lens space L(p, p − 1). One may easily
verify that the given open book does indeed describe the said lens space.
Thus to make the proof independent of the rest of the paper we merely
need to verify that the supported contact structure is the Stein fillable
one as claimed. To this end we will show that by positively stabilizing
the open book one time we can write the monodromy as a composition
of positive Dehn twists. The precise stabilization that we do is the one
that takes the (2, 1)–cable of the original genus one open book to the
(2, 2)–cable, which has a positive factorization.

Specifically, we present a Hopf stabilization and sequence of mapping
class relations changing the monodromy of a (2,1)–cable to a (2,2)–cable
of any genus one open book. The method here generalizes directly to
any higher genus open book with one boundary component.

First, Theorem 7.12 gives a factorization of the monodromy of the
(2,1)–cable of a genus one open book as

φ(2,1) = ρ(2,1) ◦ φ̃ = (D4 ◦D5)
−6 ◦ (D1 ◦D2)

−6 ◦ (D5) ◦ (D4 ◦D5)◦
· · · ◦ (D1 ◦ · · · ◦D5) ◦ φ̃,

where we think of φ̃ as φ acting on the right side nodule and hence
having some factorization into Dehn twists D1 and D2.

Lemma 8.3. The diffeomorphism ρ(2,1) can be factored as

ρ(2,1) = Dd3 ◦Dd2 ◦Dd1 ◦D−1
∂Σ
,

where the curves d1, d2, d3 and ∂Σ are shown in Figure 26.

Proof. We will derive the relation in the surface Σ′ of genus 2 with
two boundary components and then cap off one boundary component.
We can represent Σ′ as a 2–fold cover of the disk branched over 6 points.
With the notation as in Lemma 7.9 we see that the original expression
for ρ(2,1) comes from branch covering the braid ∆∆−4

1 ∆−4
2 (recall that ∆
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γ

Figure 27. The Dehn twists after adding another, γ,
by stabilization.

c1 c2

c3 c4

β

Figure 28. The Dehn twists involved in the lantern
with γ and d1.

is a half twists on all strands and ∆1 is a half twist on the first 3 strands
and ∆2 is a half twist on the last 3 strands). Conjugating, we get the
braid ∆∆−2

1 ∆−6
2 . From Lemma 7.9 we see that ∆∆−2

1 ∆−2
2 = σa1σa2σa3 .

So ∆∆−2
1 ∆−6

2 = σa1σa2σa3∆
−4
2 . Lifting this relation to Σ′ (and capping

off one boundary component) gives the desired factorization of ρ(2,1).
q.e.d.

We now stabilize as in Figure 27 to get a monodromy factorization

Dd3 ◦Dd2 ◦Dd1 ◦Dγ ◦D−1
∂Σ

◦ φ̃

after commuting Dγ past φ̃ and D−1
∂Σ

. Now γ and d1 are two curves in
the lantern relation shown in Figure 28 and we substitute Dc4 ◦ Dc3 ◦
Dc2 ◦Dc1 ◦D−1

β = Dd1 ◦Dγ to get

Dd3 ◦Dd2 ◦Dc4 ◦Dc3 ◦Dc2 ◦Dc1◦D
−1
β ◦D−1

∂Σ ◦ φ̃.
Now β and ∂Σ also form part of a lantern relation with the other five
curves shown in Figure 29. This lantern relation gives D−1

β ◦ D−1
∂Σ =

D−1
c′4

◦D−1
c′3

◦D−1
c′2

◦D−1
c′1

◦Dδ1 where c3 = c′3 and c2 = c′2. Substituting

gives the factorization

Dd3 ◦Dd2 ◦Dc4 ◦Dc3 ◦Dc2 ◦Dc1 ◦D−1
c′4

◦D−1
c′3

◦D−1
c′2

◦D−1
c′1

◦Dδ1 ◦ φ̃.
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c′1

c′2

c′3

c′4

δ1

Figure 29. The Dehn twists involved in the lantern
with β−1 and ∂−1

Σ .

We cancel Dc3 with D−1
c′3

and Dc2 with D−1
c′2

to get

Dd3 ◦Dd2 ◦Dc4 ◦Dc1 ◦D−1
c′4

◦D−1
c′1

◦Dδ1 ◦ φ̃.

We will need to “conjugate” Dehn twists past one another. To this
end, recall that for any diffeomorphism f of a surface we have the rela-
tion f ◦Dc ◦ f−1 = Df(c), so f ◦Dc = Df(c) ◦ f and Dc ◦ f = f ◦Df−1(c).
We would like the curves d2 and d3 to look more like δ1, that is to loop
around the right most boundary component. To this end we will con-
jugate Dd2 and Dd3 past Dc4 and D−1

c′4
(after commuting D−1

c′4
and Dc1

past each other) and get the factorization

Dc4 ◦D−1
c4′

◦Dδ3 ◦Dδ2 ◦Dc1 ◦D−1
c1′

◦Dδ1 ◦ φ̃,

where δ2 = Dc′4
(D−1

c4
(d2)) and δ3 = Dc′4

(D−1
c4

(d3)) are shown in Fig-
ure 30. Now for ease we want to slide the right hand boundary compo-
nent up the back of the surface to the top. This gives us the arrange-
ments in Figure 31. Lastly, we conjugate Dc1 and D−1

c′1
to the left across

Dδ2 andDδ3 . ConjugatingDc1 acrossDδ3◦Dδ2 givesDDδ3
(Dδ2

(c1)) = Dc′4
and similarly Dc′1

transforms into DDδ3
(Dδ2

(c′1))
= Dc4 . The extra Dehn

twists then cancel, leaving our final factorization

Dδ3 ◦Dδ2 ◦Dδ1 ◦ φ̃,
as shown at the top of Figure 31. This is the factorization handed
to us from the branched cover construction in Proposition 7.8, but in
particular the factorization is in terms of positive Dehn twists. Thus
verifying that the supported contact structure is Stein fillable.

8.2. Monoids in the mapping class group. In this subsection we
establish the Stein cobordism from (M(Σ,φ1), ξ(Σ,φ1)) ⊔ (M(Σ,φ2), ξ(Σ,φ2))
to (M(Σ,φ2◦φ1), ξ(Σ,φ2◦φ1)) and hence all the corollaries of this fact dis-
cussed in the introduction.

Proof of Theorem 1.3. The theorem follows by finding a very particular
diffeomorphism ρ on Σ′, a surface related to Σ, as follows:
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δ2 δ3

Figure 30. The Dehn twists δ2 and δ3 are the images
of d2 and d3 under D−1

c4
◦Dc′4

.

δ1
δ2 δ3

c1

c1′ c4

c4′

Figure 31. The Dehn twists in the factorization of the
(2,2)–cable after sliding the boundary component on the
right up the back of the surface to the top. The top
diagram shows the curves δ1, δ2 and δ3, which give the
final monodromy.

1) Σ′ is built from two disjoint special submanifolds Σ1 and Σ2, each
diffeomorphic to Σ, by adding 2-dimensional 1-handles,

2) ρ maps Σ1 to Σ2 and Σ2 to Σ1 by the identity map under their
identifications with Σ,

3) ρ has a factorization into positive Dehn twists, and
4) the pair (Σ′, ρ) is obtained from (Σ1, id) by a sequence of positive

Hopf stabilizations (and no destabilizations).

We begin by constructing the desired Stein bordism given the pair
(Σ′, ρ). The pair’s existence is established in the last paragraph.
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We begin with an outline of the procedure in the language of open
book decompositions before translating this procedure into a Stein co-
bordism. We have two open books (Σ, φ1) and (Σ, φ2). By adding
1-handles, we can stick them side-by-side as the subsurfaces Σ1 and
Σ2 of Σ′, with the monodromy of the resulting open book being φi
acting on Σi and (extended as the identity everywhere else). We will

use this terminology later, so for now let’s call these extensions φ̃i. Now
by adding right-handed Dehn twists we can insert the map ρ to the
monodromy. The entire result now follows from the observation that
this new open book (the monodromy has been reordered for convenience

(Σ′, φ̃2◦ρ◦φ̃1) is a positive Hopf stabilization of (Σ, φ2◦φ1). To see this,

notice that by conjugating φ̃2 past ρ, we make φ2 act on the surface

Σ1 rather than Σ2 and rewrite the monodromy as ρ ◦ φ̃2 ◦ φ1, where
both φ1 and φ2 are now acting (as a composition) on Σ1. Since all the
destabilizing arcs for the Dehn twists in ρ sit on Σ2, this is a positive
Hopf stabilization of (Σ1, φ2 ◦ φ1).

The procedure for turning the above steps (adding 1-handles and
adding positive Dehn twists) into a Stein cobordism is standard, but we
include the details for those who might be unfamiliar with the setup.

Let W0 = (M(Σ,φ1) ⊔M(Σ,φ2)) × [0, 1] with the symplectic structure
on the symplectization of ξ(Σ,φ1) ⊔ ξ(Σ,φ2) restricted to it. (It is well
known that projection to [0, 1] is pluri-subharmonic and thus W0 is
Stein.) One may attach 1-handles to (M(Σ,φ1) ⊔M(Σ,φ2)) × 1 so that
the Stein structure extends over the 1-handles [10] and so that the new
boundary component is the contact (self) connected sum of (M(Σ,φ1) ⊔
M(Σ,φ2), ξ(Σ,φ1)⊔ξ(Σ,φ2)) (i.e., we may end up with the contact connected

sum of additional copies of S1×S2). Thus the contact structure on this
new boundary component is supported by the one obtained by attaching
1-handles to the pages of the open book decomposition for the lower
boundary component. More importantly, any 2-dimensional 1-handle
attachment to the pages of an open book is reflected in such a cobordism.
Thus we may construct a Stein cobordism W1 with concave boundary
(M(Σ,φ1), ξ(Σ,φ1))⊔ (M(Σ,φ2), ξ(Σ,φ2)) and convex boundary supported by

the open book decomposition with page Σ′ and monodromy φ̃2 ◦ φ̃1
where φ̃i is the extension of φi to Σ′ and φi acts on the subsurface Σi.

Again following [10, 33] one can attach 2-handles to the convex
boundary of a Stein cobordism along a curve in the page of an open
book decomposition (with framing one less than the framing the page
induces on the curve) and extend the Stein structure over the 2-handle.
The monodromy of the open book decomposition on the convex bound-
ary changes by composing with a positive Dehn twist along the curve
[19]. Thus we can attach Stein 2-handles to the convex boundary of

W1 along curves in the pages of (Σ′, φ̃2 ◦ φ̃1) with framing one less than
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the page framing to get the Stein cobordism W2 and the open book

decomposition on the convex boundary is now (Σ′, φ̃2 ◦ ρ ◦ φ̃1).
Conjugating φ̃2 past ρ we get an open book (Σ′, ρ ◦ (ρ−1 ◦ φ̃2 ◦ ρ) ◦

φ̃1). The map ρ−1 ◦ φ̃2 ◦ ρ is the diffeomorphism where φ2 acts on Σ1

and is the identity everywhere else. Thus if we denote by φ̃2 ◦ φ1 the
diffeomorphism of Σ′ that is φ2 ◦ φ1 on Σ1 and the identity elsewhere,
then the convex boundary component of the Stein cobordism W2 is

supported by the open book (Σ′, ρ ◦ φ̃2 ◦ φ1). Since (Σ′, ρ) is obtained

from (Σ1, id) by a sequence of stabilizations we see that (Σ′, ρ ◦ φ̃2 ◦ φ1)
is also obtained from (Σ1, φ2 ◦ φ1) by positive stabilizations. Thus the
convex boundary ofW2 is supported by (Σ, φ2◦φ1) andW2 is the desired
Stein cobordism.

If Σ has more than one boundary component then Σ′ is the cable
surface Σ(2,1) from Theorem 7.4 and similarly ρ is ρ(2,1)(Σ) from the
same theorem. If Σ has connected binding then Σ′ = Σ(2,2) and ρ =
ρ(2,2) from Theorem 7.4. The properties listed above are clear from
Theorem 7.4 and Proposition 7.3. q.e.d.

8.3. Negative cables which remain tight. As we saw in Section
5, (r,−1)–rational open books have particularly nice resolutions and
abstract presentations. In this section we take (r − 1,−1)–cables of
(r,−1)–open books with connected binding and see that they are again
(r,−1)–open books. We show how to determine the abstract presenta-
tion of the cable given that of the pattern. As a sample application we
show that there are many cases where the (2,−1)–cable of a (3,−1)–
open book is a negative cable which is still tight.

Proposition 8.4. Let B be a (r,−1)–open book with connected bind-
ing, written abstractly as (Σ, δ 1

r
◦φ), φ ∈Map+(Σ, ∂Σ). The (r−1,−1)–

cable of B can be written abstractly as (Σ(r−1,1), δ 1
r
◦ρ−1

(r−1,1)◦∂
(2−r)
1 ◦ φ̃).

Here the surface Σ(r−1,1) and diffeomorphism ρ(r−1,1) are as described
for integral cables in Section 7.4. The diffeomorphism ∂1 is a Dehn
twist about a the boundary of the first nodule of Σ(r−1,−1). (Note that

δ 1
r
always refers to a 1

r
fractional Dehn twist along the boundary of the

surface under consideration. The two occurrences of this notation above
refer to diffeomorphisms on different surfaces.)

Before we prove the proposition, we discuss our primary interest in
these cables. Since the (r − 1,−1)–cable is still, as a rational open
book, an (r,−1)–open book, it has a particularly nice resolution. We
use this description to find examples where this negative cable is still
tight. These examples generalize to any r with only a small modification
of the proof.
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Corollary 8.5. The (2,−1)–cable of the rational open book (Σ, δ 1
3
◦

∂2) obtained by −3 surgery on the binding of (Σ, ∂2) (framed to be a
(3,−1)–open book) has an integral resolution with positive monodromy
and hence is tight. The monodromy ∂2 is a composition of two right-
handed Dehn twists about a curve parallel to the boundary of Σ.

Notice that this corollary is a more precise formulation of Propo-
sition 1.17. To prove the corollary, we need a relation in the planar
mapping class group proved in the lemma below.

∂2

∂1

δ1

δ2

δ3

D1

D2

D3

D∂

Figure 32. In the mapping class group of a five-holed
sphere the two collections of Dehn twists (left and right
diagrams) compose to give the same diffeomorphism.

Proof. By Proposition 8.4, the negative cable of (Σ, δ 1
3
◦ ∂2) has an

abstract description (Σ(2,1), δ 1
3
◦ ρ−1

(2,1) ◦ ∂
−1
1 ◦ ∂21). We can resolve this

open book as shown in Section 5 by adding two more boundary com-

ponents to Σ(2,1) to get a surface Σ̃(2,1) and replacing δ 1
3
with M∂ , the

Dehn multitwist about the three boundary components, to get the new
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monodromy φ̃ = Mδ ◦ ρ−1
(2,−1) ◦ ∂

−1
1 ◦ ∂21 . Subsection 7.4 gives a factor-

ization of the cable rotation ρ(2,1) as ρ(2,1) = ∆ ◦ ∂−1
2 ◦ ∂−1

1 with ∆ is

the “Garside twist.” We need two properties of ∆: 1) that ∆2 = D∂ ,
where D∂ is a Dehn twist along ∂Σ(2,1) thought of as a subset of , and
2) that ∆ can be written as a product of positive Dehn twists. Thus

we can rewrite the monodromy as φ̃ = Mδ ◦∆−1 ◦ ∂2 ◦ ∂21 . To see that

φ̃ has positive Dehn twist factorization, we apply a generalization of
the lantern relation to the five-holed sphere S, the complement of the

nodules in Σ̃(2,1). (S is the base component of the cable surface in the
terminology of Section 7. The boundary components of S split into

δ1, δ2, δ3, the boundary components of Σ̃(2,1), and ∂1, ∂2, the boundaries
of each of the two nodules, and these determine the Dehn twists Mδ,
∂1 and ∂2. We denote by δ1, δ2, and δ3 the Dehn twists about curves

parallel to the boundary components of Σ̃(2,1). Thus Mδ = δ1 ◦ δ2 ◦ δ3.
Applying the lantern relation of Lemma 8.6 we can rewrite part of the
monodromy; Mδ ◦ ∂21 ◦ ∂2 = D∂ ◦ D3 ◦ D2 ◦ D1. Since we can write

D∂ ◦∆−1 = ∆ as a product of positive Dehn twists, we can also write φ̃
as a product of positive Dehn twists; φ̃ = ∆◦D3 ◦D2 ◦D1, showing that
the (2,−1)–cable of (Σ, δ 1

3
∂2) supports a Stein fillable contact structure.

q.e.d.

Lemma 8.6 (Endo, Mark and Van Horn-Morris 2010, [15]). In the
mapping class group of a five-holed sphere, the two factorizations shown
in Figure 32 give the same diffeomorphism. Specifically ∂21 ◦∂2 ◦ δ1 ◦ δ2 ◦
δ3 = D∂ ◦D3 ◦D2 ◦D1.

Proof. Apply the original lantern relation twice, the first time about
the sphere with four punctures containing ∂1, δ1 and δ2 (and its fourth
boundary component a curve separating these curves from δ3 and ∂2).
The second time application of the lantern relation will be about the
sphere with four punctures containing ∂1, ∂2 and δ3. q.e.d.

Proof of Proposition 8.4. The proof of the proposition rests on a few
simple facts about Dehn surgery. The proof holds for disconnected
binding, although the description of the monodromy is more compli-
cated as we need to cable a single binding component and so we will not
discuss this here. First, any (r,−1)–open book comes from an integral
open book by −r surgery on the binding. We translate −r surgery on
a knot K into surgery on a link in a neighborhood of K composed of
a 0–cable K0 and the (r − 1,−1)–cable K(r−1,−1) which sits on a torus

nested inside the torus used for K0. The surgery coefficient is 1
r−2 for

K0 and −r for K(r−1,−1). We will show that the diffeomorphism from
the −r surgery on K to the sequence of surgeries on K0 and K(r−1,−1)
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is supported on the framed solid torus and that it takes the (r−1,−1)–
cable of the image of K to the image of K(r−1,−1). First though, we
show why this is enough to prove the proposition.

Once we have the surgery description, it is quite easy now to prove
the proposition. Let us fix notation and denote by K ′ the image of K
under −r–surgery along K (r > 0). Let Kr−1,−1 be the (r−1,−1)–cable
of K and K ′

r−1,−1 be that of K
′, framed to be an (r,−1) open book. Let

(Σ, φ) be the open book supported by K, which gives the rational open
book with bindingK ′ the abstract presentation (Σ, δ−1

r
◦φ). (This is our

original open book B.) We construct the fibration on K ′
r−1,−1 by first

cabling K to get Kr−1,−1, then applying the −r–surgery on Kr−1,−1 and
the 1

r−2 surgery along K0. As in Section 7, cabling changes the open

book (Σ, φ) to (Σ(r−1,1), ρ(r,−1) ◦ φ). The component K0 sits naturally
on a page of the cabled fibration as the boundary of a nodule with page
framing 0 so 1

r−2–surgery along K0 adds r − 2 left handed Dehn twists

along K0. These Dehn twists we denoted as ∂2−r1 in the statement of
the proposition. Last, we do the −r–surgery along K(r−1,−1) which also
doesn’t change the surface but adds the fractional boundary twist δ 1

r

to the factorization of the monodromy, completing our monodromy to
δ 1

r
◦ ρ(r−1,−1) ◦ ∂2−r1 ◦ φ.
Now we prove the surgery statement. Recall K ′ is the binding of a

rational (r,−1)–open book, built as the image of a knot K in an integral
open book under−r–surgery. We want to construct the (r−1,−1)–cable
of K ′ which we denote as K ′

(r−1,−1). We describe the surgery along K

by removing a neighborhood ν(K) from our ambient manifold M and
regluing by a map f : ∂ν(K) → −∂(M\ν(K)). Choose a meridian-
longitude basis µ, λ for the boundary torus T so that λ is the page
framing of K, oriented parallel to K, and µ is the meridian, oriented so
that it links K positively. (Alternatively the oriented intersection µ · λ
on T is positive.) With respect to this basis, we choose the regluing

map to be given by a matrix A =

(
r 1
−1 0

)
, which picks out the

desired framing curve, making the rational longitude of K ′, A−1(0, 1)t =
(−1, r)t. In other words, with this framing, the resulting rational open
book is exhibited as a (r,−1)–open book.

We can decompose A another way, however, which gives the second
surgery description. Since the framing of the cable K(r−1,−1) coming
from the cabling torus T is −r + 1, −r–surgery on K(r−1,−1) changes
the gluing along T by a left-handed Dehn twist along K(r−1,−1). This

send µ to
〈
K(r−1,−1), µ

〉
K(r−1,−1)+µ and λ to

〈
K(r−1,−1), λ

〉
K(r−1,−1)+

λ. In coordinates, this gives a gluing matrix

(
r 1

−(r − 1)2 −r + 2

)
.

We need to compose this with the surgery along K0, which we again
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think of as r − 2 left-handed Dehn twists along λ. This has the gluing

matrix

(
1 0

r − 2 1

)
. Composing these two matrices gives A, proving

the surgery equivalence. This also shows that this describes the fibration
on K ′

(r−1,−1). Both descriptions give the same gluing matrix and in each

description the cable knot is the (r − 1,−1)–cable of the core. q.e.d.
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[32] E. Giroux. Géométrie de contact: de la dimension trois vers les dimensions

supérieures. In: Proceedings of the International Congress of Mathemati-
cians, Vol. II (Beijing, 2002), pages 405–414, Beijing, 2002. Higher Ed. Press,
MR 1957051, Zbl 1015.53049.

[33] R. E. Gompf. Handlebody construction of Stein surfaces. Ann. of Math. (2) 148
(1998) 619–693, MR 1668563, Zbl 0919.57012.

[34] M. Hedden. Some remarks on cabling, contact structures, and complex curves.

Proceedings of Gökova Geometry-Topology Conference 2007, 49–59, 2008,
MR 2509749, Zbl 1187.57005.

[35] K. Honda. On the classification of tight contact structures. I. Geom. Topol. 4
(2000) 309–368 (electronic), MR 1786111, Zbl 0980.57010.



CABLING AND CONTACT STRUCTURES 79
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