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Abstract

The geometric Cauchy problem for a class of surfaces in a
pseudo-Riemannian manifold of dimension 3 is to find the surface
which contains a given curve with a prescribed tangent bundle
along the curve. We consider this problem for constant negative
Gauss curvature surfaces (pseudospherical surfaces) in Euclidean
3-space, and for timelike constant non-zero mean curvature (CMC)
surfaces in the Lorentz-Minkowski 3-space. We prove that there
is a unique solution if the prescribed curve is non-characteristic,
and for characteristic initial curves (asymptotic curves for pseudo-
spherical surfaces and null curves for timelike CMC) it is necessary
and sufficient for similar data to be prescribed along an additional
characteristic curve that intersects the first. The proofs also give
a means of constructing all solutions using loop group techniques.
The method used is the infinite dimensional d’Alembert type rep-
resentation for surfaces associated with Lorentzian harmonic maps
(1-1 wave maps) into symmetric spaces, developed since the 1990’s.
Explicit formulae for the potentials in terms of the prescribed data
are given, and some applications are considered.

1. Introduction

The geometric Cauchy problem for a class of surfaces immersed in
a manifold N is to find all surfaces of this class which contain some
specified curve and with the surface tangent bundle prescribed along
this curve. This is nothing other than the classical Björling problem for
minimal surfaces addressed to other surface classes.

For minimal surfaces there is a unique solution given by a simple
formula, because these surfaces have the Weierstrass representation in
terms of holomorphic functions, and the prescribed data is sufficient to
determine these holomorphic functions along the curve. The solution
is then given by analytic extension. The geometric Cauchy problem
has recently been studied in several situations involving holomorphic
representations of surface classes – see, for example, [15, 16, 2, 11,
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14, 22, 4, 9, 18, 6]. The solution of this problem is clearly a useful
tool, both for proving general local properties of the surfaces and for
constructing interesting examples.

The associated partial differential equations (PDE) in the works re-
ferred to above are elliptic, and the solutions therefore real analytic. It
is interesting to see what can be done with hyperbolic equations. Aledo,
Gálvez and Mira have recently shown that the geometric Cauchy prob-
lem can be solved for flat surfaces in the 3-sphere [3], which are asso-
ciated to the homogeneous wave equation, a hyperbolic problem. The
situation is quite different from the elliptic case, since the solutions are
not real analytic in general. Nevertheless, for non-characteristic data,
a unique solution is given in [3] using a d’Alembert type construction.
Another example associated to the wave equation is that of timelike
maximal surfaces in Lorentz-Minkowski 3-space L3, treated using split-
holomorphic extensions in [10].

In this article we aim to address the geometric Cauchy problem for
surfaces associated to harmonic maps from a Lorentzian surface into
a Riemannian symmetric space. The associated PDE for the specific
surfaces we will discuss are the sine-Gordon equation, the hyperbolic
cosh/sinh-Gordon equations and the Liouville equation. There are no
classical d’Alembert type solutions to these; however Lorentzian har-
monic maps have a loop group representation [21, 25]. From loop group
techniques a kind of infinite dimensional d’Alembert solution can be
found, whereby all solutions are given in terms of two functions, each
of one variable only [26, 12]. This type of solution was also derived in
the late 1970’s by Krichever for the sine-Gordon equation [19].

Examples of surfaces associated to Lorentzian harmonic maps include
constant Gauss curvature −1 surfaces in E3 (pseudospherical surfaces),
timelike constant mean curvature (CMC) surfaces in L3, and spacelike
constant positive Gauss curvature surfaces in L3. Specifically, we treat
the first two of these cases; since the main tool is the d’Alembert type
solution for Lorentz harmonic maps, one expects that the approach can
be adapted to other such problems.

We treat both pseudospherical surfaces and timelike CMC surfaces
because the problem is not identical for the two cases. Firstly, the Gauss
map of a timelike CMC surface is Lorentzian harmonic with respect
to the first fundamental form of the surface, while for pseudospheri-
cal surfaces the Gauss map is harmonic with respect to the Lorentzian
metric given by the second fundamental form. Consequently the routes
to solving the problems are slightly different. Secondly, the group in-
volved in the construction is compact in the pseudospherical case and
non-compact in the timelike CMC case. The non-compact case is in-
teresting because the loop group decomposition used is not global, an
issue which will be discussed in future work.
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1.1. Results of this article. By uniqueness of the solution of the
geometric Cauchy problem, we will always mean the following: given
two solutions f : M → N and f̃ : M̃ → N , then, at any point p = γ(t0)

on the initial curve γ, with f(z0) = f̃(z̃0) = p, there are neighbourhoods

U of z0 and Ũ of z̃0, and an isometry φ : U → Ũ such that f = f̃ ◦ φ.
In Section 3 we solve the geometric Cauchy problem for timelike CMC

surfaces. In Theorem 3.1 we prove existence and uniqueness of the
solution for timelike or spacelike initial curves, and in Theorem 3.2 we
give a simple formula for the potentials used to construct the solution
in terms of the initial data. If the initial curve is a null curve, we prove
in Theorem 3.3 that it is necessary and sufficient to specify similar
geometric Cauchy data on an additional null curve, which intersects
the first, to obtain a unique solution. The potentials are also given
explicitly.

As an application, we use in Section 4 the solution of the geometric
Cauchy problem to find the potentials for timelike CMC surfaces of
revolution.

In Section 5 we solve the geometric Cauchy problem for pseudospher-
ical surfaces. Given an initial curve f0 and prescribed surface normal
N0 along the curve, the characteristic case is distinguished this time
not by the curve being null, but by the vanishing of the inner product
〈f ′0, N ′0〉, which dictates that the curve must be an asymptotic curve of
any solution surface.

Theorem 5.3 states that, if 〈f ′0, N ′0〉 does not vanish, then there is
a unique regular solution to the problem, provided that, in addition,
f ′0 and N ′0 are either everywhere parallel or nowhere parallel. Explicit
formulae for the potentials are given. The characteristic case, where
〈f ′0, N ′0〉 is everywhere zero is treated in Section 5.2.2, and here one needs
to specify an additional complex function to obtain a unique solution.

As a consequence of Theorem 5.3, Corollary 5.5 states that, given a
space curve with non-vanishing curvature, with the additional condition
that the torsion is either zero everywhere or never zero, then there is a
unique pseudospherical surface which contains this curve as a geodesic.
This geodesic is, of course, a principal curve if and only if the curve is
a plane curve. Some examples are computed numerically (Figures 1, 3,
4 and 5).

Remark 1.1. Generally, we do not discuss the PDE associated to
the geometric problems here. The non-characteristic Cauchy problem
for the sine-Gordon equation has been well studied within the class of
rapidly decreasing functions; with that type of initial data, it was solved
by Ablowitz et al [1] using inverse scattering. We point out here that
the construction in Section 5.2 can be used to prove global existence and
uniqueness for the solution to the sine-Gordon equation with arbitrary
C∞ Cauchy data along a non-characteristic curve, and the solutions
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Figure 1. Two views of the unique pseudospherical sur-
face that contains the ellipse x2+(y/2)2 = 1 as a geodesic
principal curve. The ellipse wraps around the smooth
central band of the image on the right.

can be computed numerically by solving an ordinary differential equa-
tion and performing an LU decomposition. The global existence of the
solution follows from the global Birkhoff decomposition proved in [7].
For the PDE associated to the timelike CMC surface the solution is
unique for non-characteristic data, but only proved here to exist on a
(large) open set containing the initial curve.

Notation: Throughout this article we follow the convention that, if
X̂ denotes any object which depends on the loop parameter λ, then
dropping the hat means we evaluate at λ = 1, that is X := X̂

∣∣
λ=1

.

Acknowledgments. Research partially sponsored by CP3-Origins
DNRF Centre of Excellence Particle Physics Phenomenology. Report
no. CP3-ORIGINS-2010-40. Research partly sponsored by FNU grant
‘Symmetry Techniques in Differential Geometry”.

2. The infinite dimensional d’Alembert solution for timelike
CMC surfaces

We first summarize the method given by Dorfmeister, Inoguchi and
Toda [12] for constructing all timelike CMC surfaces from pairs of func-
tions of one variable (called potentials) via a loop group splitting. The
essential idea is the same as that used earlier by Toda [26] for pseudo-
spherical surfaces in E3. The idea of using the loop parameter and the
Sym formula to obtain the surface can be traced back to Sym [24].

2.1. The SL(2,R) frame for a Lorentz conformal immersion.
We denote by L3 the Lorentz-Minkowski space with metric of signature
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(−+ +). Take the following basis for the Lie algebra sl(2,R):

e0 =

(
0 −1

1 0

)
, e1 =

(
0 1

1 0

)
, e2 =

(
−1 0

0 1

)
.

With the inner product 〈X,Y 〉 = 1
2 trace(XY ), the vectors e0, e1, e2

form an orthonormal basis with 〈e0, e0〉 = −1, and we use this to identify
L3 ∼= sl(2,R).

Let M be a simply connected 2-manifold.

Definition 2.1. A conformal immersion f : M → L3 is said to be
timelike if the metric on M induced by f has signature (−,+).

In the following, a timelike immersion will always be understood as
a conformal timelike immersion.

Let f : M → L3 be a timelike immersion. The metric induced by f
determines a Lorentz conformal structure on M . For any null coordinate
system (x, y) on M , we define a function ω : M → R by the condition
that the induced metric is given by

(2.1) ds2 = εeω dx dy, ε = ±1.

Let N be a unit normal field for the immersion f , and define a coor-
dinate frame for f to be a map F : M → SL(2,R) which satisfies

fx =
ε1
2
eω/2 AdF (e0 + e1),

fy =
ε2
2
eω/2 AdF (−e0 + e1),

N = AdF (e2),

(2.2)

where ε1, ε2 ∈ {−1, 1}. In this case (2.1) holds with ε = ε1ε2. Con-
versely, since M is simply connected, we can always construct a co-
ordinate frame for a timelike conformal immersion f . For a regular
surface we can choose coordinates and a coordinate frame such that
ε1 = ε2 = ε = 1, but we prefer a set-up that can also be used for
surfaces which fail to be regular at some points.

The Maurer-Cartan form α for the frame F is defined by

α = F−1dF = Udx+ V dy.

With the choices made above, one easily computes

U =
1

4

(
−ωx −4ε1Qe

−ω
2

2ε1He
ω
2 ωx

)
, V =

1

4

(
ωy −2ε2He

ω
2

4ε2Re
−ω

2 −ωy

)
,

where H = 2εe−ω〈fxy, N〉 is the mean curvature and Q = 〈fxx, N〉 and
R = 〈fyy, N〉. The quadratic differentials Qdx2 and Rdy2 are indepen-
dent of the choice of null coordinates (provided the null directions are
not interchanged), and are called the Hopf differentials of M .
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2.2. The extended coordinate frame for a timelike CMC sur-
face. The integrability condition dα + α ∧ α = 0, also known as the
Maurer-Cartan equation for the sl(2,R)-valued 1-form α, is equivalent
to the Gauss-Codazzi equations for the surface:

εωxy +
1

2
H2eω − 2QRe−ω = 0,(2.3)

Hx = 2εe−ωQy, Hy = 2εe−ωRx.(2.4)

From these it is clear that the mean curvature H is constant if and only
if Q and R depend only on x and y respectively, that is,

H constant ⇐⇒ Qy = Rx = 0.

It follows easily that these conditions on R and Q do not depend on the
choice of Lorentz null coordinates.

For any λ ∈ R \ {0}, set Qλ = λQ and Rλ = λ−1R. Replacing Q
and R by these in the compatibility conditions (2.3) and (2.4), equation
(2.3) is unaffected, whilst equations (2.4) are satisfied for all λ if and
only if the mean curvature H is constant. If this is the case, then the
compatibility conditions are also unchanged if we multiply the (2, 1)
and (1, 2) components of U and V respectively by λ and λ−1. Set

α̂ = Ûdx+ V̂ dy, with

Û =
1

4

(
−ωx −4ε1Qe

−ω
2 λ

2ε1He
ω
2 λ ωx

)
,

V̂ =
1

4

(
ωy −2ε2He

ω
2 λ−1

4ε2Re
−ω

2 λ−1 −ωy

)
.

(2.5)

Then we have demonstrated the following:

Lemma 2.2. The mean curvature H is constant if and only if dα̂+
α̂ ∧ α̂ = 0 for all λ ∈ R \ {0}.

By a timelike CMC surface we mean a timelike conformal immersion
f : M → L3 with constant mean curvature; if H is the constant value
of the mean curvature we call it a timelike CMC H surface.

Let ΛSL(2,C) denote the group of (smooth) loops with values in
SL(2,C), with a suitable topology. The Hs topology with s > 1/2 is
sufficient for our purposes. Define the involution ρ on ΛSL(2,C) by

(ργ)(λ) = γ(λ̄).

Denoting by ΛSL(2,C)ρ the fixed point subgroup, we note that any loop
γ ∈ ΛSL(2,C)ρ which extends holomorphically to some neighbourhood
of S1, is SL(2,R)-valued for real values of λ.

Consider another involution σ on ΛSL(2,C) given by

(σγ)(λ) = Ade2 γ(−λ).



THE GEOMETRIC CAUCHY PROBLEM 43

It is easy to see that σ and ρ commute, and we denote by ΛSL(2,C)σ
the subgroup of ΛSL(2,C) of loops fixed by σ and by ΛSL(2,C)σρ the
subgroup fixed by both σ and ρ. To indicate that ΛSL(2,C)σρ is a real
form of ΛSL(2,C)σ we will from now on use the shorthand notation

GC = ΛSL(2,C)σ, G = ΛSL(2,C)σρ.

We use the same symbols to denote the infinitesimal versions of ρ and
σ on the Lie algebra Λsl(2,C). Thus the Lie algebra of G is Lie(G) =
Λsl(2,C)σρ, the subalgebra of fixed points of σ and ρ in Λsl(2,C), whilst
Lie(GC) = Λsl(2,C)σ is the Lie algebra of GC. Elements of G, GC and
their Lie algebras all have the property that diagonal and off-diagonal
components are even and odd functions of λ respectively, due to the
twisting introduced by σ.

Let f : M → L3 be a timelike CMC surface, F a coordinate frame
for f , and (x0, y0) ∈M a given point. As a consequence of Lemma 2.2,

we can integrate the equation α̂ = F̂−1dF̂ with the initial condition
F̂ (x0, y0) = F (x0, y0) to obtain a map F̂ : M → G which we call an

extended coordinate frame for f . Note that F̂
∣∣
λ=1

= F .
From the extended coordinate frame, we can easily reconstruct our

surface f from the so-called Sym formula. Define a map S : ΛSL(2,C)→
Λsl(2,C) by the formula, for any Ĝ ∈ ΛSL(2,C),

S(Ĝ) = 2λ∂λĜĜ
−1 −AdĜ(e2).

For any λ0 in the Riemann sphere Ĉ at which the holomorphic extension
of the loop Ĝ is defined, we define Sλ0(Ĝ) = S(Ĝ)

∣∣
λ=λ0

.

Lemma 2.3. Let H ∈ R\{0} and let f be a timelike CMC H surface

with extended frame F̂ as described above, with f(p) = 0 for some point
p ∈M . Then f is recovered by the Sym formula

f(z) =
1

2H

{
S1(F̂ (z))− S1(F̂ (p))

}
.

For other values of λ ∈ R \ {0}, fλ = 1
2HSλ(F̂ ) : M → L3 is also

a timelike CMC H surface, with the same null coordinate system and
metric, but with Hopf differentials (Qλ, Rλ) = (λQ, λ−1R).

Proof. To verify the formula for f(z), set f̃(z) = 1
2H (S1(F̂ (z)) −

S1(F̂ (p))). It is readily verified that f̃x = fx and f̃y = fy. Since

f̃(p) = f(p) = 0, we see that f̃(z) = f(z) for all z ∈M .
To verify that fλ is timelike CMC H for other values of λ, we note

fλx = λ ε1e
ω/2

2 AdF̂ (e0 + e1)
∣∣
λ

and fλy = λ−1 ε2e
ω/2

2 AdF̂ (−e0 + e1)
∣∣
λ
, and

we set Nλ = AdF̂ (e2)
∣∣
λ
. It follows now easily that H = 2εe−ω〈fλxy, Nλ〉.

q.e.d.
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2.3. The loop group characterization of timelike CMC sur-
faces. The next proposition identifies the essential properties of the
matrices Û and V̂ that we need in (2.5) in order to characterize timelike
CMC surfaces as loop group maps.

Definition 2.4. Let M be a simply connected subset of R2, and let
(x, y) denote the standard coordinates. An admissible frame on M is a

smooth map F̂ : M → G such that the Maurer-Cartan form of F̂ has
the form

(2.6) F̂−1dF̂ = λA1 dx+ α0 + λ−1A−1 dy,

where the sl(2,R)-valued 1-form α0 is constant in λ. The admissible

frame F̂ is said to be regular if [A1]21 6= 0 and [A−1]12 6= 0.

Due to the loop group twisting, a regular admissible frame can be
written F̂−1dF̂ = Ûdx+ V̂ dy, with

Û =

(
a1 b1λ

c1λ −a1

)
and V̂ =

(
a2 b2λ

−1

c2λ
−1 −a2

)
,

where c1 and b2 are non-zero, and we use this notation in the next
proposition.

Proposition 2.5. Let F̂ : M → G be a regular admissible frame and
H 6= 0. Set ε1 = sign(c1), ε2 = −sign(b2) and ε = ε1ε2. Define a
Lorentz metric on M by

ds2 = εeωdx dy, εeω = −4c1b2
H2

.

Set

fλ =
1

2H
Sλ(F̂ ) : M → L3 (λ ∈ R \ {0}).

Then, with respect to the choice of unit normal Nλ = AdF̂ e2 and the

given metric, the surface fλ is a timelike CMC H surface. Set

ρ =

∣∣∣∣b2c1
∣∣∣∣ 14 , T =

(
ρ 0

0 ρ−1

)
,

and set F̂C = F̂ T : M → G. Then F̂C is the extended frame for the
surface f = f1, with respect to the coordinate frame defined by

fx = ε1
1

2
eω/2 AdFC

(e0 + e1), fy = ε2
1

2
eω/2 AdFC

(−e0 + e1),

N = AdFC
e2 = AdF e2.
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Proof. Since T is diagonal and constant in λ, we have S(F̂C) = S(F̂ )

and F̂−1C dF̂C = ÛCdx+ V̂Cdy, where

ÛC =

(
ρ−1ρx + a1 ρ−2b1λ

ρ2c1λ −ρ−1ρx − a1

)
,

V̂C =

(
ρ−1ρy + a2 ρ−2b2λ

−1

ρ2c2λ
−1 −ρ−1ρy − a2

)
.

Differentiating f = 1
2HS1(F̂C), we use ÛC and V̂C to compute

fx =
c1ρ

2

H
AdFC

(e0 + e1), fy = −b2ρ
−2

H
AdFC

(−e0 + e1).

It follows that f is conformally immersed with conformal factor εeω =
−4c1b2

H2 , and FC is the coordinate frame given at equation (2.2), with

εi as defined here. Therefore F̂C has precisely the form of an extended
coordinate frame for a timelike CMC H surface and, by Lemma 2.2, the
result follows. q.e.d.

2.4. The d’Alembert construction of timelike CMC surfaces.
The point of Lemma 2.3 and Proposition 2.5 is that the problem of
finding a conformal timelike CMC H 6= 0 immersion M → L3 is equiv-
alent to finding an admissible frame. In this section, we explain how to
construct an admissible frame from two pairs of real functions.

Let Λ±SL(2,C)σ denote the subgroup of GC consisting of loops which
extend holomorphically to D±, where D+ is the unit disc and D− =
S2 \ {D+ ∪ S1}, the exterior disc in the Riemann sphere. Set 0+ := 0
and 0− :=∞ and define

G± = G ∩ Λ±SL(2,C)σ, G±∗ = {γ ∈ G± | γ(0±) = I}.

We define the complex versions GC± analogously by substituting GC for
G in the above definitions.

The Birkhoff decomposition for ΛSL(2,C) [23] restricts to a decom-
position of either of the subgroups GC or G; see [8], Proposition 1, for a
general statement for fixed-point subgroups with respect to finite order
automorphisms of the type used here.

Theorem 2.6 (The Birkhoff decomposition).

1) The sets BL = G− · G+ and BR = G+ · G− are both open and dense
in G. The multiplication maps

G−∗ × G+ → BL and G+∗ × G− → BR
are both real analytic diffeomorphisms.

2) The analogue holds substituting GC, GC± and GC±∗ for G, G± and
G±∗ , respectively, writing BCL = GC− · GC+ and BCR = GC+ · GC−.
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In particular, any element F̂ in the big cell B = BL ∩ BR has exactly
two decompositions

(2.7) F̂ = F̂−Ĥ+ = F̂+Ĥ−, where F̂± ∈ G±∗ , and Ĥ± ∈ G±,

and the factors F̂± and Ĥ± depend real analytically on F̂ .

Definition 2.7. Let Ix and Iy be two real intervals, with coordinates
x and y respectively. A potential pair (χ, ψ) is a pair of smooth Lie(G)-
valued 1-forms on Ix and Iy respectively with Fourier expansions in λ
as follows:

χ =

1∑
j=−∞

χiλ
idx, ψ =

∞∑
j=−1

ψiλ
idy.

The potential pair is called regular if [χ1]21 6= 0 and [ψ−1]12 6= 0.

The following theorem is a straightforward consequence of Theorem
2.6.

Theorem 2.8. 1) Let M be a simply connected subset of R2 and

F̂ : M → B ⊂ G an admissible frame. The pointwise (on M)

Birkhoff decomposition (2.7) of F̂ results in a potential pair

(F̂−1+ dF̂+ , F̂
−1
− dF̂−), of the form

F̂−1+ dF̂+ = χ1λ dx, F̂−1− dF̂− = ψ−1λ
−1 dy.

2) Conversely, given any potential pair, (χ, ψ), define F̂+ : Ix → G
and F̂− : Iy → G by integrating the differential equations

F̂−1+ dF̂+ = χ, F̂+(x0) = I,

F̂−1− dF̂− = ψ, F̂−(y0) = I.

Define Φ̂ = F̂−1+ F̂− : Ix × Iy → G, and set M = Φ̂−1(BL). Point-

wise on M , perform the Birkhoff decomposition Φ̂ = Ĥ−Ĥ+, where

Ĥ− : M → G−∗ and Ĥ+ : M → G+. Then F̂ = F̂−Ĥ
−1
+ is an ad-

missible frame.
3) In both items (1) and (2), the admissible frame is regular if and

only if the corresponding potential pair is regular. Moreover, with
notation as in Definitions 2.4 and 2.7, we have sign[A1]21 =
sign[χ1]21 and sign[A−1]12 = sign[ψ−1]12. In fact, we have

F̂−1dF̂ = λχ1dx+ α0 + λ−1Ĥ+

∣∣
λ=0

ψ−1Ĥ
−1
+

∣∣
λ=0

dy,

where α0 is constant in λ.

Note that F̂ in item (3) above is not in general an extended coordinate

frame for the timelike CMC surface constructed from F̂ via the Sym
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formula. With notation as in Proposition 2.5, F̂C = F̂ T is an extended
coordinate frame for this surface, and

F̂−1C dF̂C = λT−1χ1Tdx+α0+T−1dT +λ−1T−1Ĥ+(0)ψ−1Ĥ+(0)−1Tdy.

3. The geometric Cauchy problem

In this section we show how to construct a unique timelike confor-
mally immersed CMC surface from appropriate data along a curve. We
treat two cases; first the case where the curve is non-characteristic for
the PDE (here meaning not a null curve), where there is a unique solu-
tion of the geometric Cauchy problem, and next the case of a null curve,
where one instead needs two curves to obtain a unique solution. We do
not consider curves of “mixed type”.

3.1. The case of non-characteristic curves. Given a timelike im-
mersion f : M → L3 and a local null coordinate system (x, y) on M ,
the associated Lorentz isothermal coordinate system is defined by

u =
1

2
(x− y) , v =

1

2
(x+ y) .

Note that, even though the null directions are well-defined, the direc-
tions determined by ∂u and ∂v are not, as they depend on the choice of
null coordinates. With respect to the associated isothermal coordinates,
a conformal metric ds2 = eωdx dy is of the form

ds2 = eω(−du2 + dv2).

The first problem which we shall solve is one where the following data
is given:
Geometric Cauchy data: An open interval J ⊂ R containing 0, a
regular smooth curve f0 : J → L3, which is either timelike or spacelike,
and a regular smooth vector field V : J → L3 along f0, with the con-
dition that the vector fields df0

dt (t) and V (t) are everywhere orthogonal
and

〈V (t), V (t)〉 = −
〈

df0
dt

(t),
df0
dt

(t)

〉
(t ∈ J).

Note that our assumptions on V are equivalent to prescribing a family
of timelike tangent planes along the curve f0(t).
Non-characteristic geometric Cauchy problem: Find a timelike
CMC H-surface which contains the curve f0 and is tangent along this
curve to the plane spanned by df0/dt and V .

3.2. Existence and uniqueness. We state and prove the existence
and uniqueness of the solution for the case that f0 is timelike. A similar
result, with the obvious changes in statement and proof, holds for the
case that f0 is spacelike.
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Theorem 3.1. Assume that geometric Cauchy data as above are
given, with f0 timelike, and let H 6= 0. Set J− = {y ∈ R | − y ∈ J}.
Let M = J × J−, with coordinates (x, y), and set

∆ = {(x,−x) | x ∈ J} ⊂ J × J−.
Then:

1) There is an open subset W ⊂M , which contains ∆, and a unique
timelike CMC H immersion f : W → L3, with Lorentz isothermal
coordinates (u, v) = (12(x− y), 12(x+ y)), satisfying

f(u, 0) = f0(u) and
∂f

∂v
(u, 0) = V (u).

2) The surface so constructed is the unique, in the sense defined in
Section 1.1, solution to the non-characteristic geometric Cauchy
problem with the orientation given by df0

dt ∧ V .

Proof. Item 1: We first show that there is a local solution in a
neighbourhood of any point in ∆, and then that any two solutions agree
at points where they are both defined.

Local existence: Fix a point t0 ∈ J . Without loss of generality, we
may assume that f ′(t0) is a multiple of e0 and V (t0) a multiple of e2.
We seek a solution such that t corresponds to the coordinate u along
v = 0. Define the function ω0 : J → R by eω0(t) = 〈V (t), V (t)〉, and the
map F0 : J → SL(2,R) by

df0
dt

= eω0/2 AdF0(e0), V = eω0/2 AdF0(e1), F0(t0) = I.

Assume that f is a solution with a coordinate frame F , satisfying
F (u, 0) = F0(u), and an extended coordinate frame F̂ constructed as in
Section 2.1. Along ∆, we then have

F̂−1F̂u = Û − V̂

=
1

4

(
−ωx − ωy −4Qe−ω/2λ+ 2Heω/2λ−1

2Heω/2λ− 4Re−ω/2λ−1 ωx + ωy

)
.

At λ = 1, this should agree with

F−10 (F0)u =

(
a b

c −a

)
,

where a, b and c are known functions on ∆. Hence we have Q − R =
−1

4e
ω/2(b−c) and Q+R = 〈fxx+fyy, N〉 = 〈fuu+2fxy, N〉 = 〈fuu, N〉+

Heω, which give us the formulae

(3.1)

Q = −1

8
eω/2(b− c) +

1

2

〈
d2f

du2
, N

〉
+

1

2
Heω,

R =
1

8
eω/2(b− c) +

1

2

〈
d2f

du2
, N

〉
+

1

2
Heω.
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These are all known functions along ∆, the normal N being given by
AdF0(e2), and the diagonal components of F̂−1F̂u along ∆ are given by
a and −a respectively.

Thus, by defining Q and R along ∆ by (3.1), we obtain a map

F̂0 : ∆ → G with F̂0(x0, x0) = I and F̂0(x,−x)
∣∣
λ=1

= F0(x). There

is an open interval J ′ containing x0 with F̂0(∆
′) ⊂ B, where ∆′ =

{(x, y) ∈ ∆ | x ∈ J ′}. Performing the left and right normalized Birkhoff

decompositions on ∆′ gives F̂0 = F̂ 0
−Ĝ

0
+ = F̂ 0

+G
0
−. It follows from the

construction of F̂0 that

(F̂ 0
−)−1dF̂ 0

− = ψ−1λ
−1du, (F̂ 0

+)−1dF̂ 0
+ = χ1λ

1du,

where ψ−1 and χ1 do not depend on λ. Hence F̂−(y) = F̂ 0
−(−y), and

F̂+(x) = F̂ 0
+(x), correspond to a potential pair ψ = F̂−1− dF̂− and χ =

F̂−1+ dF̂+, on I ′x = {x ∈ R | (x,−x) ∈ J ′} and I ′y = {y ∈ R | (−y, y) ∈
J ′}, respectively.

As in the second part of Theorem 2.8, define Φ̂ : I ′x × I ′y → G by

the expression Φ̂(x, y) := F̂+(x)−1 F̂−(y); since Φ̂(x0,−x0) = I, there

is an open set W ⊂ M , with (x0,−x0) ∈ W , such that Φ̂(W ) ⊂ BL.

Performing a left normalized Birkhoff splitting of Φ̂ on W gives Φ̂ =
Ĥ−Ĥ+, and we have an admissible frame F̂ = F̂−Ĥ

−1
+ : W → G.

By construction, this frame agrees with F̂0(u) along W ∩ ∆, and
is therefore regular along this set; hence, taking W sufficiently small,
regular on W . From the Sym formula we thus conclude that there is a
solution defined in a neighbourhood of (x0,−x0).

Global existence and uniqueness for item 1: We have shown
that we can cover ∆ with open sets W on each of which there is a
solution of the geometric Cauchy problem.

Suppose f : W → L3 and f̃ : W̃ → L3 are two local solutions, with
W ∩ W̃ ∩ ∆ 6= ∅. Let (x0,−x0) = (u0, 0) be a point in this set and

U ⊂ W ∩ W̃ a contractible neighbourhood of this point. Without loss
of generality, we can assume that df0

dx (x0) = α2e0 and V (x0) = α2e1.
For each surface we have a unique extended frame, respectively denoted

by F̂ and
˜̂
F , with F̂ (x0,−x0) =

˜̂
F (x0,−x0) = I. Since these are in the

big cell B in a neighbourhood U1 ⊂ U of (x0,−x0), we may perform
(normalized) left and right Birkhoff decompositions

F̂ = F̂−Ĝ+ = F̂+Ĝ−,
ˆ̃F =

˜̂
F−

˜̂
G+ =

˜̂
F+

˜̂
G−.

It follows from the first part of the argument in the existence proof,

that F̂− =
˜̂
F− and F̂+ =

˜̂
F+ in U1 ∩ ∆, since these are completely

determined from the geometric Cauchy data along ∆. Consequently

F̂−(−y) =
˜̂
F−(−y), for (y,−y) ∈ U1, and F̂+(x) =

˜̂
F+(x) for (x,−x) ∈

U1. Thus the normalized potentials for the two surfaces are identical
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here, and the surfaces therefore are identical on U1. Hence we have a
well-defined solution on some open set containing ∆. It also follows
from the argument just given that the solution is unique.
Item 2: Now suppose that f̃ : M̃ → L3 is an arbitrary solution of
the geometric Cauchy problem. To show that it agrees with the solu-
tion in item 1, it is enough to show that, locally, there exists a choice
of null coordinates (x, y), with corresponding isothermal coordinates
(u, v), such that the curve f0 is given by v = 0. It then automatically
follows that fv(u, 0) = V (u), because in such coordinates we can write
V = afu + bfv; but then a is zero because fu is tangent to the curve, to
which V is assumed to be orthogonal. It then follows from the condi-
tion 〈V, V 〉 = −〈df0/dt,df0/dt〉 that b = ±1. Our assumption on the
orientation of the solution implies that b = 1.

To show that the required coordinates exist, observe that, since the
curve f0 is timelike, it can, in local null coordinates (x, y) for M̃ , be
expressed as a graph y = h(x), where h′(x) < 0. But then the coordi-
nates (x̃, ỹ) = (−h(x), y) are also null, with the same orientation, and
the curve is given by ṽ = (x̃+ ỹ)/2 = 0. q.e.d.

3.2.1. The boundary potential pair. The construction given in the
proof of Theorem 3.1 is not very practical, as one needs to perform a
Birkhoff decomposition to get the potential pair (χ, ψ). Below we show
how to obtain an alternative potential pair directly from the geometric
Cauchy data. Again we describe only the case when f0 is timelike; the
analogue holds for a spacelike initial curve, using F̂+(x) = F̂0(x) and

F̂−(y) = F̂0(y), in lieu of the definitions below.

Theorem 3.2. Assume that the geometric Cauchy data are given,
and let H 6= 0, J−, M = J × J− and ∆ be as in Theorem 3.1. Let
F̂0 : J → G be the extended frame along ∆ constructed as before. Set
F̂+(x) = F̂0(x) and F̂−(y) = F̂0(−y). Then

1) (χ, ψ) = (F̂−1+ dF̂+, F̂
−1
− dF̂−) is a potential pair on J × J−, and is

regular on an open set containing ∆.
2) Set Φ̂ = F̂−1+ F̂− : J × J− → G, and M◦ = Φ̂−1(BL). The surface

f : M◦ → L3 obtained from the corresponding admissible frame
F̂ from Theorem 2.8 is a solution of the given geometric Cauchy
problem.

Proof. Item (1) is clear from the construction. To prove (2), we note

that F̂ is obtained by Birkhoff decomposing F̂−1+ F̂− = Ĥ−Ĥ+, and then

setting F̂ = F̂−Ĥ
−1
+ . Along ∆ = {v = x+ y = 0}, we have u = x = −y,

so that F̂+(x)−1F̂−(y) = F̂0(x)−1F̂0(−y) = I, and thus H+ = I along

∆. Hence we have F̂ (x,−x) = F̂−(−x) = F̂0(u) along ∆, which shows
that f is a solution of the geometric Cauchy problem. q.e.d.
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3.3. The geometric Cauchy problem with null initial curve.
Next we consider the case where the initial curve f0 is a null curve.
Null geometric Cauchy data: An open interval J ⊂ R containing 0,
a regular smooth curve f0 : J → L3, which is everywhere null, that is〈
df0
dx ,

df0
dx

〉
= 0, and a regular smooth null vector field V : J → L3, such

that
〈
df0
dx , V

〉
> 0 on J .

Note that the vector field V carries more information than just spec-
ifying a family of timelike tangent planes along the curve, as df0

dx and V
determine the conformal factor of the metric along the curve. However,
even with this information, we do not have a unique solution in the null
case.

Theorem 3.3. Let Iy ⊂ R be an interval containing 0 and α, β :
Iy → R two smooth functions, with α(0) 6= 0. Let H 6= 0. Given null
geometric Cauchy data on an interval Ix, together with the functions α
and β, then there is an open set U ⊂ Ix×Iy, containing the set Ix×{0},
and a unique timelike CMC H surface f : U → L3 with null coordinates
(x, y) such that

(3.2) f(x, 0) = f0(x) and
∂f

∂y
(x, 0) = V (x).

Conversely, given any local solution of the geometric Cauchy problem
satisfying (3.2), there is a unique pair of such functions α and β from
which the solution is constructed.

Proof. Without loss of generality we may assume that df0
dx (0) = 1

2(e0+

e1) and V (0) = 1
2(−e0 + e1). Define a function ω0 : Ix → R by

eω0

2
=

〈
df0
dx

, V

〉
,

and F0 : Ix → SL(2,R) by

df0
dx

=
1

2
eω0/2 AdF0(e0 +e1), V =

1

2
eω0/2 AdF0(−e0 +e1), F0(0) = I.

Let us write F−10 (F0)x = ae0 + be1 + ce2 and set χ = (λ(ae0 + be1) +

ce2)dx. We integrate F̂−10 dF̂0 = χ with initial condition F̂0(0) = I to

obtain a map F̂0 : Ix → G. Clearly, if f is any solution to the geometric
Cauchy problem satisfying (3.2), and F̂ is the extended coordinate frame

with F̂ (0, 0) = I, and coordinates chosen so that ε1 = ε2 = 1, then

F̂ (x, 0) = F̂0(x). Thus, setting

ψ =

(
0 αλ−1

βλ−1 0

)
dy,
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then (χ, ψ) is a regular potential pair, and by Theorem 2.8, this pair cor-

responds to an admissible frame F̂ . By construction, F̂ (x, 0) = F̂0(x),
and the corresponding surface solves the geometric Cauchy problem.

Finally, since ψ is a normalized potential, it is uniquely determined by
an extended frame for the solutions of the geometric Cauchy problem.
Thus, for any choice of ψ, there is a unique solution of the geometric
Cauchy problem. q.e.d.

Remark 3.4. In the above proof, we have F̂ (x, 0) = F̂0(x) and

F̂ (0, y) = F̂−(y), where F̂−1− dF̂− = ψ, and F̂−(0) = I. Thus it is
necessary and sufficient to specify the geometric Cauchy data along two
(intersecting) null curves in order to obtain a unique solution to the
problem in the null case.

Remark 3.5. We can write down the general solution quite explic-
itly: without loss of generality, we can assume that

df0
dx

(x) =
1

2
s(x)(e0 + cos(θ(x))e1 + sin(θ(x))e2),

V (x) =
1

2
t(x)(−e0 + cos(θ(x))e1 + sin(θ(x))e2),

where s, t and θ are positive real-valued functions with t(0) = s(0) = 1.
Then eω = st and one finds

F0 =

(
r cos(θ/2) −r−1 sin(θ/2)

r sin(θ/2) r−1 cos(θ/2)

)
,

where r =
√
t/s. A simple calculation now gives

χ =

(
rx
r − θx

2r2
λ

r2θx
2 λ − rx

r

)
dx.

A similar geometric expression can be given for ψ in terms of data along
Iy.

4. Surfaces of revolution

Timelike surfaces of revolution in L3 come in three types, according
to the causal character of the axis which is fixed by the revolution. The
differential equations defining the possible profile curves for the three
cases are given by R López [20]. These are nonlinear and solutions have
only been found by numerical methods.

Below we will consider the problem of finding potential pairs for sur-
faces of revolution. Knowledge of these potentials can be used to con-
struct new examples of timelike CMC surfaces, as has been done for the
case of CMC surfaces in R3 (see, for example, [13, 17]).

We will work out the potentials for the null axis and timelike axis
cases. The case with a spacelike axis can be done in a similar way.
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4.1. Rotations in L3. First we describe the SL(2,R) matrices corre-
sponding to rotations about the three types of axes. Without loss of
generality, we can take the timelike axis given by e0, the spacelike by e1,
and the null axis by e0 + e1. It is easy to see that the rotation matrices,
up to sign, are given respectively by

T (t) =

(
cos 1

2 t sin 1
2 t

− sin 1
2 t cos 1

2 t

)
, S(t) =

(
cosh 1

2 t sinh 1
2 t

sinh 1
2 t cosh 1

2 t

)
,

L(t) =

(
1 0

t 1

)
.

4.2. Constructing the surfaces via the geometric Cauchy prob-
lem. To find the potential pairs corresponding to all surfaces of revolu-
tion with a given type of axis, it is enough to solve the geometric Cauchy
problem along a “circle” generated by the corresponding rotation, with
all possible choices of prescribed tangent plane. Since the surface is
to be invariant under the relevant rotation, the vector field V for the
geometric Cauchy problem is determined at a single point on the circle.

4.2.1. Timelike axis. Let us consider the timelike axis in the direction
of e0. Given a circle of radius ρ centered on this axis, we may assume
that this is given by

f0(t) = ρ(sin t e1 + cos t e2) = ρAdT (t)(e2).

Since f ′0(0) = ρe1, we may assume that the vector field V (t) for the geo-
metric Cauchy problem satisfies V (0) = ρe0, so that V (t) = ρAdT (t)(e0)
= ρe0. Hence

eω0 =

〈
df0
dt

,
df0
dt

〉
= ρ2.

From the equations

df0
dt

= eω0/2 AdF0(e1), V (t) = eω0/2 AdF0(e0), F0(0) = I,

we see that F0(t) = T (t). For a coordinate frame F (u, v), in isother-
mal coordinates, for the solution of the geometric Cauchy problem, we
should have F (0, v) = F0(v), so that

1

2

(
0 1

−1 0

)
= U+V =

1

4

(
−ωx + ωy −4Qe−ω/2 − 2Heω/2

2Heω/2 + 4Re−ω/2 ωx − ωy

)
,
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where ω(0, v) = ω0(v). Solving this, with eω/2 = ρ, we obtain Q = R =
−1

2ρ(1 + ρH). Therefore, we set

Â =

(
0 −Qρ−1λ− 1

2Hρλ
−1

1
2Hρλ+Rρ−1λ−1 0

)

=
1

2

(
0 (1 + ρH)λ−Hρλ−1

Hρλ− (1 + ρH)λ−1 0

)
,

and define F̂0 by integrating F̂−10 dF̂0 = Âdv with F̂0(0) = I. As dis-
cussed in Section 2.4, the boundary potentials are given by

χ = Âdx, ψ = Âdy.

Since Â is constant in x and y, these integrate to F̂+(x) = exp(Âx)

and F̂−(y) = exp(Ây), respectively. Setting Φ̂ = F̂+(x)−1F̂−(y) and

performing a normalized Birkhoff decomposition of Φ̂ into Ĥ−Ĥ+, the

extended frame for the solution is given by F̂ = F̂+Ĥ−.

Figure 2. Partial plots of the typical timelike CMC sur-
faces of revolution with timelike axis, computed from
the geometric Cauchy data on a circle of radius ρ. Left:
ρH = −1. Center ρH = −1/2. Right: ρH = 1.

Example 4.1. In general, the Birkhoff decomposition cannot be
written down explicitly. The typical solutions have been computed nu-
merically here (Figure 2). However, the special case when ρH = −1/2,
which is a transition point of the topological type of the solution, can
be worked out explicitly. We have Â = −1

4(λ+ λ−1)e0 and in this case,

Φ̂(x, y) = exp

(
1

4
(λ+ λ−1)(x− y)e0

)
= exp

(
λ−1

4
(x− y)e0

)
exp

(
λ

4
(x− y)e0

)
= Ĥ−Ĥ+.

Hence, we have the extended frame

F̂ (x, y) = F̂−(y)Ĥ−1+ (x, y) =

 cos
(
λx+λ−1y

4

)
sin
(
λx+λ−1y

4

)
− sin

(
λx+λ−1y

4

)
cos
(
λx+λ−1y

4

) .
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Then we can compute S(F̂ ) = 1
2((y−x)e0− sin(x+y)e1−cos(x+y)e2),

and since we are in the case H = − 1
2ρ , the surface is given by

f(x, y) =
1

2H
S1F (x, y) = ρ

1

2
((x− y)e0 + sin(x+ y)e1 − cos(xy)e2)

= ρ[u, sin(v), cos(v)],

a right circular cylinder in R3 of radius ρ = − 1

2H
.

4.2.2. Null axis. Consider now the null axis e0 + e1, and a curve f0(t)
which we can assume is a null curve of the form

f0(t) = AdL(t)(ae0 + be1 − ce2), a, b, c constant, c > 0.

Note that we cannot apply an isometry of L3 to simplify f0 and V as
we did in the proof of Theorem 3.3, because this would move the aixs
of the rotation.

Since f ′0(t) = AdL(t)(c(e0 + e1) + (−a+ b)e2), we see that f0 is null if
and only if a = b, so that f ′0(t) = AdL(t)(c(e0+e1)) = c(e0+e1). To find
a timelike CMC surface of revolution around the null axis containing
this curve, we specify a null vector field V (t) along this curve, invariant
under L(t). We can assume that it is given by

V (t) = AdL(t)(Ae0 +Be1 + Ce2), A, B, C constant, B −A ≥ 0.

where we require −A2 +B2 + C2 = 0. As before, set

eω0

2
=

〈
df0
dt

, V

〉
= c(B −A).

Hence
eω0/2

2
=

√
c(B −A)

2
. Next we find a map F0 along the curve

satisfying

f ′0(t) =
eω0/2

2
AdF0(t)(e0 + e1), V (t) =

eω0/2

2
AdF0(t)(−e0 + e1).

Writing F0(t) =

(
x y

z w

)
, we see that

c(e0 + e1) =
eω/2

2
AdF0(t)(e0 + e1) = 2

√
c(B −A)

2

(
yw −y2

w2 −yw

)
.

Thus, y = 0 and x−1 = w = ±(2c/(B − A))1/4. We may choose the
plus sign here, and, after scaling the coordinate of the curve, we may
also assume that 2c = B − A, so that x = w = 1. Finally, from the
two expressions for V (t), we obtain z = t+C/(2c). A translation of the
coordinate t, allows us to take C = 0, so that

F0(t) =

(
1 0

t 1

)
.
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which gives,

F−10 (F0)t =

(
0 0

1 0

)
.

As in Theorem 3.3, we multiply by λ and exponentiate to obtain F̂+(x),
and all solutions are obtained by choosing two arbitrary functions α(y)
and β(y), with α(0) 6= 0, and the potential pair:

χ =

(
0 0

λ 0

)
dx, ψ = λ−1

(
0 α

β 0

)
dy.

Example 4.2. Taking α = 1 and β = 0, gives F̂−(y) =

(
1 λ−1y

0 1

)
.

In the (left) normalized Birkhoff decomposition F̂−1+ F̂− = Ĥ−Ĥ+, it
follows easily that

Ĥ− =

(
1 yλ−1

1−xy
0 1

)
.

Hence

F̂ = F̂+Ĥ− =

(
1 yλ−1

1−xy
λx 1

1−xy

)
.

From the Sym formula, (choosing H = 1/2) we get the surface

f(x, y) =
1

1− xy
(2(x+ y)e0 + 2(x− y)e1 − (3xy + 1)e2).

5. Pseudospherical surfaces in Euclidean 3-space

5.1. The loop group formulation. Let D ⊂ R2 be a simply con-
nected domain. An immersion f : D → E3 is said to be a pseudo-
spherical surface if it has constant sectional curvature −1. Following
Bobenko [5], let x and y be asymptotic coordinates for f , not necessar-
ily arc length coordinates. Let φ denote the oriented angle between fx
and fy. The first and second fundamental forms of f are given by

I = |fx|dx2 + 2 cos(φ)dxdy + |fy|dy2, II = 2|fx||fy| sin(φ)dxdy,

and the equations of Gauss and Codazzi-Mainardi reduce to

φxy − |fx||fy| sin(φ) = 0, ∂y|fx| = ∂x|fy| = 0.

Set θ = φ/2 and

(5.1) E1 =
1

2 cos(θ)

(
fx
|fx|

+
fy
|fy|

)
, E2 = − 1

2 sin(θ)

(
fx
|fx|
− fy
|fy|

)
.

It is easy to see that E1 and E2 are unit principal vector fields for the
surface.
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To obtain a loop group formulation, we identify E3 with the Lie al-
gebra su(2) with the orthonormal basis

e1 =
1

2

(
0 i

i 0

)
, e2 =

1

2

(
0 −1

1 0

)
, e3 =

1

2

(
i 0

0 −i

)
.

A Darboux frame for f is a map F : D → SU(2) adapted to the principal
directions in the sense that

(5.2) E1 = AdF e1, E2 = AdF e2, N = AdF e3.

We assume that coordinates are chosen so that F (0, 0) = I. Let U =
F−1Fx and V = F−1Fy. A simple calculation shows that

(5.3) U =
i

2

(
−θx |fx|e−iθ

|fx|eiθ θx

)
, V =

i

2

(
θy −|fy|eiθ

−|fy|e−iθ −θy

)
.

Let us introduce the matrices
(5.4)

Û =
i

2

(
−θx |fx|e−iθλ
|fx|eiθλ θx

)
, V̂ =

i

2

(
θy −|fy|eiθλ−1

−|fy|e−iθλ−1 −θy

)
,

where λ ∈ C\{0}. The equations of Gauss and Codazzi-Mainardi imply

that −Ûx + V̂y + [Û , V̂ ] = 0, and integrating F̂−1dF̂ = Ûdx + V̂ dy

with F̂ (0, 0) = I, we obtain an extended Darboux frame, that is, a map

F̂ : D → ΛSL(2,C)σρ with F̂
∣∣
λ=1

= F . Here σ is the twisting involution
defined previously, and ρ is defined by

(ργ)(λ) =
(
γ(λ̄)

T
)−1

.

From F̂ we obtain from the Sym formula a family of pseudospherical
surfaces

(5.5) fλ = λ
∂F̂

∂λ
F̂−1 (λ ∈ R \ {0}).

It follows easily that f1 coincides with f up to a rigid motion of E3.

Definition 5.1. Let M be a simply connected subset of R2, and let
(x, y) denote the standard coordinates. An admissible frame is a smooth

map F̂ : M → ΛSL(2,C)σρ such that the Maurer-Cartan form of F̂ has
the form

(5.6) F̂−1dF̂ = λA1 dx+ α0 + λ−1A−1 dy,

where the coefficients A1 and A−1 and the su(2)-valued 1-form α0 are

constant in λ. The admissible frame F̂ is said to be weakly regular if
[A1]12 6= 0 and [A−1]12 6= 0. The frame is said to be regular if it is
weakly regular and Arg([A1]12)−Arg([A−1]12) 6= kπ for any integer k.
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Note that the reality condition given by ρ means that the matrices
Ai are in su(2). Hence, for a weakly regular frame, all the off-diagonal
components of A±1 are non-zero. Given a weakly regular admissible

frame F̂ , it is straightforward to verify (as in the proof of Proposition

2.5) that by multiplying F̂ on the right with a matrix-valued function
of the form T = diag(eiµ, e−iµ), we can bring the Maurer-Cartan form

F̂−1dF̂ into the form of (5.4), with 2θ ∈ [0, π). If the frame is regular,
then one also has that 2θ ∈ (0, π). In this case the analogue of Propo-
sition 2.5 holds, in the sense that regular admissible frames correspond
precisely to pseudospherical surfaces.

Definition 5.2. Let Ix and Iy be two real intervals, with coordi-
nates x and y, respectively. A potential pair (χ, ψ) is a pair of smooth
Λsl(2,C)σρ-valued 1-forms on Ix and Iy respectively with Fourier expan-
sions in λ as follows:

χ =
1∑

j=−∞
χiλ

idx, ψ =
∞∑

j=−1
ψiλ

idy.

The potential pair is called weakly regular if [χ1]12 6= 0 and [ψ−1]12 6= 0.

Note that, again, if the pair is weakly regular then one also has
[χ1]21 6= 0 6= [ψ−1]21. It is straightforward to verify that the analogue
of Theorem 2.8 holds in this situation, with the only essential differ-
ence being that, as is shown in [7], the big cell is the whole group for
ΛSL(2,C)σρ so that Φ−1(BL) is the whole of M . However, a weakly
regular potential pair only produces a weakly regular admissible frame;
there is no guarantee that the corresponding pseudospherical surface is
everywhere regular.

5.2. Solution of the geometric Cauchy problem. As with timelike
CMC surfaces, we will find that the problem splits into two quite differ-
ent situations, that of non-characteristic curves (non-asymptotic curves)
and characteristic curves (asymptotic curves). The results are broadly
similar to the timelike CMC case, but with important differences.

5.2.1. The non-characteristic case. Recall that a curve f0 on a sur-
face with unit normal N is asymptotic if and only 〈f ′0, N ′〉 = 0. For the
first case that we consider we assume that the following is given:
Non-characteristic Geometric Cauchy data: An open interval
J ⊂ R containing 0, a regular smooth map f0 : J → E3, and a reg-
ular smooth vector field N0 : J → E3, which is everywhere orthogonal
to f ′0, and such that

〈f ′0, N ′0〉 6= 0.

The Geometric Cauchy problem: Find a pseudospherical surface
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f : D → E3, where D is an open subset of R2 containing J , such that
f
∣∣
J

= f0 and the normal to the surface along J is given by N0.

The non-characteristic problem splits further into two subcases; how-
ever these are not analogous to the split into timelike/spacelike cases
encountered earlier. The two cases are when f ′0 and N ′0 are everywhere
parallel, and when f ′0 and N ′0 are nowhere parallel, in other words when
f0 is everywhere or is never tangent to a principal direction.

Given a pseudospherical surface f : D ⊂ R2 → E3, with coordinates
and Darboux frame as described above, let us define new coordinates
by

u =
1

2
(x− y), v =

1

2
(x+ y).

Then

(5.7) F−1Fu = U − V =
i

2

(
−θv |fx|e−iθ + |fy|eiθ

|fx|eiθ + |fy|e−iθ θv

)
.

where, by (5.3), we have

(5.8) θv = 〈(E2)u, E1〉.
Let α = |fx| − |fy| and β = |fx|+ |fy|. From (5.1) we have

fu = fx − fy = α cos(θ)E1 − β sin(θ)E2

and from (5.3) we have

Nu = AdF ([U − V, e3]) = −α sin(θ)E1 − β cos(θ)E2.

Hence we have

〈fu, Nu〉 =
(β2 − α2)

2
sin(φ),

|Nu|2 − |fu|2 = (β2 − α2) cos(φ),

|Nu|2 + |fu|2 = β2 + α2.

It follows that

|fu|2|Nu|2 − 〈fu, Nu〉2 = 2α2β2.

As β > 0, we see that α = 0 if and only if fu and Nu are parallel, that
is, if and only if the curve v = 0 is a principal curve on the surface. If
this is the case, then

β = 2|fx| = 2|fy| =
√
|fu|2 + |Nu|2,(5.9)

sin(φ) =
2〈fu, Nu〉
|fu|2 + |Nu|2

, cos(φ) =
|Nu|2 − |fu|2

|fu|2 + |Nu|2
.(5.10)

From the expressions E2 = −(β sin(θ))−1fu and E1 = E2×N we obtain

(5.11) θv = 〈(E2)u, E1〉 =
1

|fu|2
〈fuu, fu ×N〉.
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Thus, we see that the matrices U and V in (5.3) may be obtained along
the curve v = 0 entirely from knowledge of f(u, 0) and N(u, 0).

On the other hand, if fu and Nu are never parallel along v = 0,
equivalently, if α is non-zero everywhere along this curve, then we may
assume that α > 0. Then we have

E1 =
1

α
(cos(θ)fu − sin(θ)Nu), E2 = − 1

β
(sin(θ)fu + cos(θ)Nu),

and subsequently obtain

tan(φ) =
2〈fu, Nu〉
|Nu|2 − |fu|2

,

α2 =
1

2

(
|fu|2(1 + cos−1(φ)) + |Nu|2(1− cos−1(φ))

)
,

β2 =
1

2

(
|fu|2(1− cos−1(φ)) + |Nu|2(1 + cos−1(φ))

)
.

Let us also assume that 〈fu, Nu〉 6= 0; by changing the sign of N if
necessary, we may assume that 〈fu, Nu〉 > 0. With this assumption φ
is a well defined function with values in (0, π), satisfying

(5.12) cos(φ) =
Z√

1 + Z2
, sin(φ) =

1√
1 + Z2

, Z =
|Nu|2 − |fu|2|

2〈fu, Nu〉
.

Noting that cos(φ) has the same sign as (|Nu|2 − |fu|2) and recalling
that α > 0 and β > 0, we obtain

α =
1√
2

(
|fu|2 + |Nu|2 −

√
4〈fu, Nu〉2 +

(
|Nu|2 − |f2|

)2)1/2

,

β =
1√
2

(
|fu|2 + |Nu|2 +

√
4〈fu, Nu〉2 + (|Nu|2 − |fu|2)2

)1/2

.

(5.13)

As before, we have θv = 〈(E2)u, E1〉. From the expressions above for E1

and E2 and from θu = −Zu/2(1 + Z2), we obtain

(5.14) θv =
αZu

2β(Z2 + 1)
− Y

αβ
,

where

Y = sin(θ) cos(θ) (〈fuu, fu〉 − 〈Nu, Nuu〉)

+ cos2(θ)〈fu, Nuu〉 − sin2(θ)〈Nu, fuu〉.

It follows that, as in the case α = 0, we can construct the matrices
U and V in (5.3) from knowledge of f(u, 0) and N(u, 0). The following
result now follows easily.
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Theorem 5.3. Let the non-characteristic geometric Cauchy data f0
and N0 be given, where f ′0 and N ′0 are either everywhere parallel, or
nowhere parallel. In the first case set:

α(t) = 0, β(t) =
√
|f ′0|2 + |N ′0|2, θv(t) =

1

|f ′0|2
〈f ′′0 , f ′0 ×N0〉,

cos(θ(t)) =
|N ′0|√

|f ′0|2 + |N ′0|2
, sin(θ(t)) =

|f ′0|√
|f ′0|2 + |N ′0|2

.

In the second case, substitute f0(t), N0(t) and t for f , N and u in the
expressions at (5.12), (5.13) and (5.14), to find the expressions for α(t),

β(t), θ(t) := φ(t)/2 and θv(t). In either case define Â(t) to be the loop
algebra valued function:

i

2

(
−θv 1

2(β + α)e−iθλ+ 1
2(β − α)eiθλ−1

1
2(β + α)eiθλ+ 1

2(β − α)e−iθλ−1 θv

)
.

Then

1) The pair of 1-forms (χ, ψ) := (Â(x)dx,−Â(−y)dy) is a weakly
regular potential pair on J × J−, where J− = {y ∈ R| − y ∈ J}.

2) The pseudospherical surface obtained from (χ, ψ) is regular on an
open set containing ∆ := {(x,−x)} ⊂ J × J−. It is the unique
solution of the given geometric Cauchy problem.

The uniqueness in item (2) should be understood in the sense de-
scribed in Section 1.1.

The proof of this theorem is essentially identical to the proof of the
corresponding result for timelike CMC surfaces, see Theorems 3.1 and
3.2. The only difference here is that the weakly regular solution is
defined on the whole of J × J−, as the big cell is the whole group. By
construction, φ ∈ (0, π) along ∆, which implies regularity on an open
set containing ∆.

Remark 5.4. The expression (5.14) for θv implies that the solution
for the case α 6= 0, with the choice of coordinates we seek, will not exist
at points where α does vanish, unless we also have the condition that
Y
αβ is bounded. Since αβ = 2(|fu|2|Nu|2− 〈fu, Nu〉2), whilst Y contains

higher order derivatives, one would have to impose a condition on the
second derivatives of f and N in order to extend the theorem to the
situation where α is non-zero at some points but zero at others. Condi-
tions on the second derivatives of f and N also arise in the expression
for αu, which needs to be smooth when α vanishes.

5.2.2. The characteristic case. Now we consider the case of an as-
ymptotic curve, that is 〈f ′0, N ′0〉 = 0 along J .
Characteristic Geometric Cauchy data: An open interval J ⊂ R
containing 0, a regular smooth map f0 : J → E3, and a regular smooth
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vector field N0 : J → E3, which is everywhere orthogonal to f ′0, and
such that f ′0 and N ′0 are also orthogonal.

〈f ′0, N ′0〉 = 0.

Since the curve is necessarily an asymptotic curve of any solution to
the geometric Cauchy problem, we are looking for a solution such that
f(x, 0) = f0(x).

Consider a pseudospherical surface f parameterized by asymptotic
coordinates (x, y). By multiplying a Darboux frame for f on the right

by the matrix function diag(e−iθ/2, eiθ/2), we obtain a new frame F
satisfying

fx
|fx|

= AdF (e1),
1

sin(2θ)

(
− cos(2θ)

fx
|fx|

+
fy
|fy|

)
= AdF (e2).

A simple calculation shows that

F−1dF =
i

2

(
−φx |fx|
|fx| φx

)
dx+

i

2

(
0 −|fy|eiφ

−|fy|e−iφ 0

)
dy.

Hence, if

Û =
i

2

(
−φx |fx|λ
|fx|λ φx

)
, V̂ =

i

2

(
0 −|fy|eiφλ−1

−|fy|e−iφλ−1 0

)
,

we may integrate F̂−1dF̂ = Ûdx + V̂ dy, with F̂ (0, 0) = I. Clearly, F̂
will be an extended Darboux frame for f up to multiplication from the
right by a diagonal matrix (which has no effect on the Sym formula).

To return to the geometric Cauchy problem, assume that character-
istic geometric Cauchy data f0 and N0 are given. Solving f ′0/|f ′0| =
AdF0(e1), N0 = AdF0(e3) with F0(0) = I (after a suitable isometry of
E3), we see from the condition that 〈f ′0, N ′0〉 = 0 that

F−10 dF0 =

(
ia ib

ib −ia

)
dx,

where a and b are two real-valued functions on J . Thus, we define the
potential

χ =

(
ia ibλ

ibλ −ia

)
dx.

To find a solution, we may now freely choose a potential of the form

ψ =

(
0 αλ−1

−ᾱλ−1 0

)
dy,

where α : Iy → C is a non-vanishing function. It is now not difficult
to see that the analogue of Theorem 3.3 holds in this case also, where
in this case the additional data required is a non-vanishing function
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α : Iy → C. The potential pair (χ, ψ) given above defines a solution to
the problem, where χ is constructed from the Cauchy data, and ψ is
determined by α, and conversely every solution corresponds to such a
function α.

5.3. Applications. As a consequence of Theorem 5.3 we have:

Corollary 5.5. Let γ : J → E3 be a regular, constant-speed curve
with curvature κ, and torsion τ . Suppose that κ is nonvanishing and
that either γ is a plane curve or τ is nonvanishing. Then there exists
a unique regular pseudospherical surface which contains γ as a geodesic
and this surface can be constructed by Theorem 5.3.

Proof. This follows by applying Theorem 5.3, choosing f0 to be γ and
N0 to be the principal unit normal to the curve. q.e.d.

Note that a geodesic curve γ is a principal curve if and only if it is a
plane curve.

Figure 3. Left, center: two plots of a part of the unique
constant Gauss curvature −1 surface which contains the
parabola y = x2 as a geodesic principal curve. Right:
the pseudospherical surface that contains the catenary
y = cosh(x) as a geodesic principal curve.

Example 5.6. We show how to construct the unique pseudospheri-
cal surface which contains the parabola y = x2 as a geodesic. Take the
curve f0(t) = (t, t2, 0) and N0(t) = 1√

1+4t2
(2t,−1, 0); since N0 is the

principal normal to f0, f0 will necessarily be a geodesic on the result-
ing pseudospherical surface. Note that N ′0(t) = (1 + 4t2)−3/2(2, 4t, 0) is
parallel to f ′0, and f0 will also be a principal curve on the surface.
The solution will be well defined along the entire parabola because
〈f ′0(t), N ′0(t)〉 = (2 + 8t2)(1 + 4t2)−3/2 > 0 for all t. From the formulae
in Theorem 5.3 we have

|fx| = |fy| =
√

(1 + 4t2)3 + 4

2(1 + 4t2)
, θv = 0

eiθ =
2√

4 + (1 + 4t2)3
+ i

√
(1 + 4t2)3

4 + (1 + 4t2)3
.
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The surface, together with the surface similarly generated by the cate-
nary f0(t) = (t, cosh(t), 0), can be seen in Figure 3.

Figure 4. Two views of the unique pseudospherical sur-
face that contains the cubic y2 = x2(x+ 1) as a geodesic
principal curve. The cusp lines converge at infinity.

Figure 5. The surface generated by Bernoulli’s Lem-
niscate (x2 + y2)2 = x2 − y2. The cusp lines meet at
the center of the figure eight, where the curvature of the
plane curve is zero (compare Figure 4).

In the same way, taking the parameterizations

f0(t) = (t2 − 1, t(t2 − 1), 0),

f0(t) = (cos(t)/(1 + sin(t)2), sin(2t)/(2(1 + sin(t)2)), 0),

f0(t) = (sin(t), 2 cos(t), 0),

of the cubic, Bernoulli’s lemniscate, and an ellipse, we obtain the sur-
faces shown in Figures 4, 5 and 1.
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