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Part of Results on Admissibility of the well-known Wilcoxon-Mann-Whitney test 

Abstract  

The admissibility of the Wilcoxon-Mann-Whitney test in the class of all two- 

samples tests has been a longstanding “difficult and unsolved problem” in statistics. 

The problem hasn’t been solved completely, except for results under some special 

situation. In this note, under the assumption that the samples have no ties, we solve 

this open problem affirmatively for any sample sizes. 

 

1. Definition and notation 

Suppose a random variable  takes each of  possible values  with 

probability . And similarly, a random variable  takes 

each of  possible values  with probability . 

The expectations are then defined as  

                                 (1.1) 

                       (1.2) 

Where  is a function of x and y. Particularly, let , then we have 

                              (1.3) 

Also, if X has a Bernoulli distribution, that is, X takes either 0 or 1, the expectation of 

is 
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(4) is very important in that it is a bridge between two concepts: probability and 

expectation. 

Next, we introduce the concept of the cumulative distribution function of a 

random variable . 

DEFINITION:  The cumulative distribution function (cdf) of a random variable X, 

denoted by , is defined by 

 

Where , if , elsewhere . 

DEFINITION:  For any two distributions F and G, we say  if  for 

each x and  for some x. 

2. Formulation of the problem 

In this section, we will present the problem we try to solve. We first introduce 

hypothesis test and the relative testing procedure. 

2.1. Hypothesis test 

In real life, we often run into some statements needed to determine which of the 

two complementary hypotheses is true. For example, (a) Whether does a new drug 

have effect or not? (b) Are some people more susceptible to a disease than the other? 

(c) whether is a particular product up to standard or not? and so on. If we were the 

“God”, knowing all the information, we can make the judgment correctly and easily. 

However, we are definitely not. We can only infer based on incomplete information. 

Yet we might make a correct decision or make a mistake. Thus, a prerequisite to draw 

statistical inference is the quantization of the chance of making right or wrong 

decision. It is probability that provides a mean for this job. The aim of this part is not 

to give a thorough introduction to probability. Rather, we attempt to outline some 

relative concepts in hypothesis test by probability language. 

In general, the hypothesis which tends to be refused in a hypothesis testing 

problem is called the null hypothesis and its complementary is called alternative 
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hypothesis. They are denoted by  and , respectively. For example, in the 

statement (b) given above, the null hypothesis states that, on the average, the drug 

has no effect, and the alternative hypothesis states that there is some effect. If the 

result of the test does not correspond with the actual state of nature, an error has 

occurred. If, on the other hand, the result of the test corresponds with the actual 

state of nature, a correct decision has been made. These four different situations are 

depicted in Table 1.1. 

 

 Decision  

Accept  Reject  

Truth  

 
Correct decision 

 

Type I 

 

 
Type II 

 

Correct decision 

 

Table 1.1  the four different situations and their probabilities 

As we can see in Table 1.1, a hypothesis test might make one of two types of 

errors. If the hypothesis test incorrectly decides to reject a null hypothesis  when 

it is actually true, then the test has made a Type I Error. If, on the other hand, the test 

decides to accept  when it is actually false, a Type II Error has been made. A test 

is a level  test if the maximum probability of its Type I Error equals . The 

probability of a Type II Error is denoted by . And the power of a hypothesis test is 

the probability of correctly rejecting a false null hypothesis. Therefore, the power is 

equal to . 

In practice, we wish to find a good test that has both types of error probability 

http://en.wikipedia.org/wiki/Null_hypothesis
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that as small as possible. However, for a fixed sample size, it is usually impossible to 

achieve this goal. Although the goal has a highly tight connection with sample size, 

we are not going to give further discussion on the connection. For fixed sample size, 

the level of significance of a test decreases at the cost of raising the probability of its 

Type II Error (As the saying goes, you can't have your cake and eat it too). In searching 

for a good test, it is common to restrict consideration to tests at a specified level of 

significance, with typical choices being α=0.05 (significant) and 0.01 (highly 

significant). Within this class of tests we then search for tests that have Type II Error 

probability that as small as possible.  

In statistics, a hypothesis test is specified in terms of a test statistic, a function of 

the sample. It is worth to mention here, even for the same problem, we can have 

different test statistics. 

2.2. WMW( Wilcoxon-Mann-Whitney) test statistic 

Comparison between two samples of observations is one of the problems we are 

faced with widely in fields such as agricultural production, clinical trial and financial 

analysis. A typical example is the comparison of a treatment with a control, where 

the null hypothesis of no treatment effect  is test against the alternative of a 

beneficial effect  The WMW test is one of the best-known tests for assessing 

whether the two independent samples come from the same distribution. 

Suppose we have two independent samples without ties  and 

 from two unknown distribution  and  which need not to be discrete 

distributions. Here we only consider a one-tailed test  

 

The WMW test is based upon comparing each observation of the two samples 

and counting the number of . Obviously, if it is big, we are likely to accept . 

The number can be treated as a test statistic called by WMW test statistic. 
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Where , if , elsewhere . Let  

and , WMW test can be defined as 

 

where  is a non-negative integer and . 

 In fact, the rejection region of the WMW test is presented (Rejection region is 

the subsets of the sample space for which  will be rejected). If , we 

reject  and determine . If, on the other hand, , we accept 

 and say that . Otherwise, if , namely the observations fall on 

the boundary of the rejection region, we reject  with probability . 

2.3. Admissibility  

Suppose there are two tests  and  for the same hypothesis testing 

problem, if the two types error probabilities of  are less than those of ,then 

test  is considered to be better than test . The formal definition is given 

below. 

DEFINITION:  For any two tests  and , we say   is better than  if 

 

 

and at least one inequality is strict for some  and . 
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The definition posed above tells us whether one test is better than another one. 

After choosing a test statistic to handle problems in the practical life, we are 

definitely not willing to see that there is another test better than the one we choose. 

In that case, we will choose the “better” test naturally. Therefore, when searching for 

a test, we should follow the principle that there isn’t any other test that is better 

than ours. This principle will lead to many other tests that is well-matched with ours. 

Of course, these tests are “admissible”. The important concept of admissibility can be 

drawn from here. 

DEFINITION:  A test  is said to be admissible if there is no other test  such 

that  

 

 

3. Main results and Proofs 

THEOREM 3.1  Suppose the two samples have no ties, for testing the two 

sample hypothesis , WMW test is admissible in the class of 

all tests for arbitrary sample sizes m and n. 

Note: the theorem is under the assumption of the samples without ties. And our 

proof can be applied to a two-tailed test  with a few 

changes. The solution of the admissibility of the Wilcoxon test is still a long way off, 

yet this theorem is the best one for the present. We believe that our proof offers a 

new way for the final solution of the admissibility of the Wilcoxon test. 

Proof  we will prove the theorem by contradiction. The basic idea is converting the 

expectation to a polynomial by constructing a discrete distribution, and completing 

the proof with the relation between the test statistic  and the power of the 

polynomial. 

 Suppose that there is a partially symmetric test  which is the same for any 

permutation of x or y such that as good as the WMW test . Thus  satisfies 

(2.3) 
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Equation (2.3). It is suffice to prove that , that is, , 

. Without loss of general, we assume there are no ties in  and . 

 Denote non-zero vector  satisfied . 

And define  tuples  and 

 as follows 

 

 

Then we can define two discrete distribution functions as 

 

and 

 

It is easy to show that 

 

Note that  if and only if , and  implies 
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that at least a pair say  such that . We get 

 

That is, .  

 Next we will evaluate  Note that  and  are discrete, 

the integral takes non-zero values only if the random vector  takes all 

permutations of . Thus, it can be represented as a function of  and 

, indeed, a polynomial of . 

 Without loss of general (W.L.O.G.), assume  and 

. Let  and  be subsets of  and  and  be subsets 

of [n] such that  

 

Then . Thus, we could recount all permutations in 

the integral in the following way: 
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where , . 

 In the case , the terms  are 

the polynomial of . By lemma , the power of  in , denoted by , 

is the minimum, and  as . Particularly, if 

, then 

 

In the inequality of the expectation given above, after dividing , let , note 

that , we get . Hence . 

 For , analogous augment leads to . 

 Since  for all  by Equation  and 
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 for  and  for . That is, . 

This completes the proof. 

LEMMA 3.1  Assume  and . Given  and 

 be subsets of  and  and  be subsets of [n] satisfied 

, we have 

 

With equality holds if and only if . 

Proof  By the definition of  and , we have . 

Furthermore, we can verify that 

 

 

where  and . Thus,  
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Therefore, for  

 

 

 

 

The equality holds if and only if , 

. In that case, . Further, 

 for . Hence  
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