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Abstract Let T := T (A,D) be a disk-like self-affine tile generated by an integral
expanding matrix A and a consecutive collinear digit set D, and let f (x) = x2+ px+q
be the characteristic polynomial of A. In the paper, we identify the boundary ∂T with
a sofic system by constructing a neighbor graph and derive equivalent conditions for
the pair (A,D) to be a number system. Moreover, by using the graph-directed con-
struction and a device of pseudo-norm ω, we find the generalized Hausdorff dimension
dimω

H (∂T ) = 2 log ρ(M)/ log |q| where ρ(M) is the spectral radius of certain con-
tact matrix M . Especially, when A is a similarity, we obtain the standard Hausdorff
dimension dimH (∂T ) = 2 log ρ/ log |q| where ρ is the largest positive zero of the
cubic polynomial x3 − (|p| − 1)x2 − (|q| − |p|)x − |q|, which is simpler than the
known result.

Keywords Boundary · Self-affine tile · Sofic system · Number system · Neighbor
graph · Contact matrix · Graph-directed set · Hausdorff dimension

1 Introduction

Let Mn(Z) denote the set of n × n matrices with entries in Z and let A ∈ Mn(Z)

be expanding (i.e., all eigenvalues of A have moduli >1). Assume | det(A)| = |q|,
and D = {0, d1, . . . , d|q|−1} ⊂ Z

n with |q| distinct vectors. We call D a digit set
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and (A,D) a self-affine pair. It is well known that there exists a unique self-affine set
T := T (A,D) [20] satisfying

T = A−1(T + D) =
{ ∞∑

i=1

A−i d ji : d ji ∈ D
}
.

If T has non-void interior, then there exists a subset J ⊂ Z
n such that

T + J = R
n and (T + t)◦ ∩ (T + t ′)◦ = ∅, t 	= t ′, t, t ′ ∈ J ,

thus T is called a self-affine tile and J a tiling set. T + J is called a tiling of R
n , and

a lattice tiling if J is a lattice [22].
The topological properties of self-affine tiles and their boundaries, such as con-

nectedness, local connectedness, or disk-likeness (i.e., homeomorphic to the closed
unit disk), have attracted a lot of interest. A systematical study on the connect-
edness of self-affine tiles was due to Kirat and Lau [19], they mainly concerned
a class of tiles T (A,D) generated by the consecutive collinear (CC) digit sets
D := D(v, |q|) = {0, 1, . . . , |q| − 1}v, v ∈ Z

n \ {0} via the algebraic property of
the characteristic polynomial of the matrix A. More general cases on non-consecutive
collinear or non-linear digit sets were considered by [6,18,25].

The question of disk-likeness was first investigated by Bandt and Gelbrich [3] for
self-affine tiles in R

2 with | det(A)| = 2 or 3. They observed that the characteristic
polynomial of A ∈ M2(Z) is of the form:

f (x) = x2 + px + q, with |p| ≤ q, if q ≥ 2; |p| ≤ |q + 2|, if q ≤ −2.

By studying the neighborhood structure of T , Bandt and Wang [5] proved that a
tile T with no more than six neighbors is disk-like if and only if T is connected. A
translation of the tile T + �, � ∈ J is called a neighbor of T if T ∩ (T + �) 	= ∅.
Making use of this criterion, Leung and Lau [24] then gave a complete characterization
of the disk-likeness of self-affine tiles with CC digit sets. Gmainer and Thuswaldner
[14] considered the disk-likeness of tiles with non-collinear digit sets arising from
polyominoes, and Kirat [18] proposed necessary and sufficient conditions for such tiles
to be disk-like in general. By using the neighbor map technique, Bandt and Mesing
[4] constructed a kind of finite type self-affine tiles and discussed their disk-likeness
as well.

Theorem 1.1 ([24]) Let A ∈ M2(Z) be an expanding matrix with characteristic
polynomial f (x) = x2 + px + q. Then for any CC digit set D(v, |q|) in Z

2 such that
v, Av are linearly independent, T is a disk-like tile if and only if 2|p| ≤ |q + 2|.

Moreover, when p = 0, T is a square tile; when p 	= 0, T is a hexagonal tile.

The boundary of a self-affine tile has more complicated geometric structure than
the tile itself, hence it is also of considerable interest. The dimension of the boundary
of a self-similar tile (where the expanding matrix A is a similarity) has been studied
extensively in the literature. Strichartz and Wang [31] described the boundary set as a
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196 Discrete Comput Geom (2013) 50:194–218

graph-directed set and gave an algorithm for finding the dimension of the boundary,
various other methods can be founded in [8,17,23,32].

Recently, Akiyama and Loridant [1,2] provided a new method to parameterize
the boundary set and reproved Theorem 1.1 by showing that the boundary of T is a
simple closed curve. In the present paper, we go further to explore the structure of the
boundary of the T defined in Theorem 1.1. For convenience, we call such T a CC tile.
If it is also disk-like, we call it a disk-like CC tile.

First we establish a neighbor graph of T such that the boundary ∂T is identified as
the union of all one-sided infinite paths of this graph. Hence ∂T determines a sofic
system [11]. The neighbor graph technique is classical in the study of tiling theory
[3,4]. However, it will be shown that we use the technique here from a different aspect.
As self-affine tiles can be studied in the context of number systems [29], it is worth
studying the conditions for the self-affine pair (A,D) to be a number system. We give
the answer when T (A,D) is disk-like.

Theorem 1.2 Let T = T (A,D) be a disk-like CC tile. Then the following are equiv-
alent:

(i) (A,D) is a number system.
(ii) 0 ∈ T ◦.
(iii) f (x) = x2 + px + q with −1 ≤ p and q ≥ 2.
(iv) For all neighbors T +�, � = ∑k

i=0 ai Aiv ∈ DA,k+1 for some k ∈ Z with ak = 1
and ai ∈ D where 0 ≤ i < k.

In [31], Strichartz and Wang applied the graph-directed iterated function system
(GIFS) to represent the boundary of a self-affine tile, but they were not sure whether the
GIFS satisfies the open set condition or not. Our second aim is to give a positive answer
for the disk-like CC tile and estimate the generalized Hausdorff dimension (dimω

H ) of
the boundary by using a pseudo-norm ω [16,26] instead of Euclidean norm.

Theorem 1.3 The generalized Hausdorff dimension of the boundary of disk-like CC
tile T is

dimω
H (∂T ) = 2 log ρ(M)

log |q| ,

where ρ(M) denotes the spectral radius of certain contact matrix M, and the corre-
sponding measure is positive and finite.

When A is a similarity, we can improve the well-known Hausdorff dimension
formula of the boundary in the following simpler way.

Theorem 1.4 Let A ∈ M2(Z) be an expanding similarity with characteristic polyno-
mial f (x) = x2 + px + q and T = T (A,D) be a disk-like CC tile. Then

dimH (∂T ) = 2 log ρ

log |q| ,

where ρ is the largest positive zero of the cubic polynomial x3 − (|p| − 1)x2 −
(|q| − |p|)x − |q|.
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The rest of the paper is organized as follows: In Sect. 2, we identify ∂T with a
sofic system by constructing a neighbor graph and prove Theorem 1.2. In Sect. 3,
we consider ∂T as a graph-directed set and prove Theorems 1.3 and 1.4. Finally all
neighbor graphs, graph-directed sets and contact matrices corresponding to different
characteristic polynomials f (x) are listed in Appendices 1–3 for easy reference.

2 Sofic System and Number System

We first introduce some terminology of symbolic dynamics from [27]. Let G =
G(V, E) be a directed graph where V is the set of vertices and E the set of edges.
Let A be a finite set (called alphabet). If there exists a mapping (called labeling)
L : E → A, then the ordered pair G = (G,L) is called a labeled directed graph. All
the infinite paths ξ = e1e2e3 . . . on G constitute the so-called edge shift XG . Define
the label of the path ξ by

L∞(ξ) := L(e1)L(e2)L(e3) . . . ∈ AN.

Here AN is called the full shift of A. The set of all such labels is denoted by

XG = {
x ∈ AN : x = L∞(ξ) for some ξ ∈ XG

}
.

Any subset of AN which can be defined by a labeled directed graph as above, is called
a sofic shift or sofic system [11,27]. Weiss [33] coined the term sofic which is derived
from the Hebrew word for finite [27].

Let D = {0, 1, . . . , |q| − 1} and the difference set �D := D − D, then the CC
digit set D = Dv and �D := D − D = �Dv. Without loss of generality, we assume
the digit set D is primitive, i.e., the lattice J generated by D and AD in Z

2 is equal to
Z

2. For otherwise, there exists an invertible B ∈ M2(Z) such that D̃ = B−1D ⊂ Z
2 is

primitive and T (A,D) = BT ( Ã, D̃) where Ã = B−1 AB ∈ M2(Z) [21] and we can
consider Ã, D̃ instead. Hence we set Z

2 = {γ v + δAv : γ, δ ∈ Z}. It is easy to see
that T + � where � ∈ Z

2 is a neighbor of T if and only if � ∈ T − T . More precisely,
� can be expressed as

� =
∞∑

i=1

bi A−iv ∈ T − T, bi ∈ �D.

The following is a neighbor-generating formula which plays a key role in construct-
ing the labeled directed graph for the boundary.

Lemma 2.1 ([24]) Suppose T + � is a neighbor of T with � = γ v + δAv =∑∞
i=1 bi A−iv, then we get another neighbor T + �′ satisfying �′ = A� − b1v =

γ ′v + δ′ Av with γ ′ = −(qδ + b1) and δ′ = γ − pδ.
Inductively, we can construct a sequence of neighbors: {T + �n}∞n=0 where �0 = �

and �n+1 = A�n − bn+1v.
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198 Discrete Comput Geom (2013) 50:194–218

Let T be a disk-like CC tile and T� =T ∩ (T +�) for any � ∈ Z
2. Let V ={� ∈ Z

2 :
� 	= 0 and T ∩ T� 	= ∅}. Then the boundary of T can be written as

∂T =
⋃
�∈V

T�. (2.1)

Define an edge set E :={e=(�, �′) : �, �′ ∈V and �′ = A�−b1v for some b1 ∈�D}
and a labeling L : E → A by L(e) = b1 where A = �D. Then by the definition
above, G = (G,L) is a labeled directed graph and it determines a sofic shift. We call
G the neighbor graph of T .

Proposition 2.2 Let G be the neighbor graph of a CC disk-like tile T . If x =∑∞
i=1 ai A−iv = � + ∑∞

i=1 a′
i A−iv ∈ T� where ai , a′

i ∈ D, then {bi := ai − a′
i }∞i=1 is

the sequence of labeling of the edges of an infinite path starting at � (or simply called a
label sequence starting at �). Conversely, any label sequence {bi }∞i=1 (with bi ∈ �D)
starting at � defines a set

{
x : x =

∞∑
i=1

ai A−iv = � +
∞∑

i=1

a′
i A−iv, ai − a′

i = bi , ai , a′
i ∈ D for i = 1, 2, . . .

}

of boundary points of T .

Proof Since � = ∑∞
i=1 bi A−iv with bi = ai −a′

i , by Lemma 2.1, we have a sequence
of neighbors {T + �n}∞n=0 where �0 = � and �n+1 = A�n − bn+1v, hence {bi }∞i=1 is a
label sequence starting at � by the definition.

Conversely, if � = ∑∞
i=1 bi A−iv where bi ∈ �D, then bi = ai − a′

i for ai , a′
i ∈ D

and � = ∑∞
i=1(ai − a′

i )A−iv. It follows that

x =
∞∑

i=1

ai A−iv = � +
∞∑

i=1

a′
i A−iv ∈ T ∩ (T + �) = T�. (2.2)

�
We can verify whether the origin 0 is a boundary point of T in the following way.

Corollary 2.3 0 ∈ ∂T if and only if there exists an infinite path in G with all edge
labels either non-positive or non-negative.

Proof Suppose 0 ∈ T ∩ (T + �) for some neighbor T + �. Putting ai = 0 for all i
into (2.2), we have

� =
∞∑

i=1

(−a′
i )A−iv.

Since a′
i ∈ D, the label sequence {bi = −a′

i }∞i=1 starting at � has all labels non-positive.
Similarly {b′

i = ai }∞i=1 is a sequence starting at −� with all labels non-negative. By
reversing the argument, we can prove the converse. �
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Table 1 Relation among all
neighbors of T associated with
f (x)= x2+ px+ q, p, q ≥2,

2p ≤ q + 2 (excluding
p = q = 2)

� b1 �′

v −(p − 1) Av + (p − 1)v

−p Av + pv

Av + (p − 1)v −(q − p) −Av − pv

−(q − p + 1) −Av − (p − 1)v

Av + pv −(q − 1) −v

−v p − 1 −Av − (p + 1)v

p −Av − pv

−Av − (p − 1)v q − p Av + pv

q − p + 1 Av + (p − 1)v

−Av − pv q − 1 v

Fig. 1 The neighbor graph of T associated with f (x) = x2 + px + q, p, q ≥ 2, 2p ≤ q + 2 (excluding
q = p = 2)

In fact, we can determine the neighbor graph G for any disk-like CC tile T . Let
us take the case of f (x) = x2 + px + q, p, q ≥ 2 (excluding p = q = 2) as an
example. By Theorem 1.1, T is a hexagonal tile with six neighbors [24] and

V = {±v, ±(
Av + (p − 1)v

)
, ±(Av + pv)}. (2.3)

In view of the definition of E , if � = v we take b1 = −p and �′ = Av + pv or
b1 = −(p − 1) and �′ = Av + (p − 1)v; if � = Av + pv, using f (A)v = 0, we have
b1 = −(q − 1) and �′ = −v. Proceeding similarly with all �, we obtain Table 1. Then
we establish the neighbor graph (Fig. 1). The neighbor graphs corresponding to other
f (x) are given in Appendix 1.

Following [20], we let DA,k = {∑k−1
i=0 ai Aiv : ai ∈ D}, �DA,k = DA,k −DA,k =

{∑k−1
i=0 bi Aiv : bi ∈ �D} and DA,∞ = ⋃∞

k=1 DA,k .
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Proposition 2.4 Let T be a disk-like CC tile and T + � a neighbor. Then � =∑k
i=0 bi Aiv ∈ �DA,k+1 for some k ∈ Z with bk ∈ {−1, 1}, bi ∈ �D for 0 ≤ i < k.

When f (x) = x2 ± 2x + 2, k = 3; and k = 1 otherwise.

Proof It follows from (2.3) that � ∈ �DA,2 excluding the case of f (x) = x2 ±2x +2.
For f (x) = x2 ± 2x + 2, we have Av ± 2v = A3v ± A2v + Av ∈ �DA,4 by using
(A ∓ I ) f (A) = 0.

A more desirable property is that any � ∈ Z
2 can be expressed as � = ∑k

i=0 ai Aiv ∈
DA,k+1 (instead of �DA,k+1) for some k ∈ Z with ak = 1 and ai ∈ D where
0 ≤ i < k. But this is not always the case. This property is closely related to a number
system defined below (see also [29]).

Definition 2.5 Let A ∈ M2(Z) be expanding and D be a CC digit set. The self-
affine pair (A,D) is said to be a number system if for any � ∈ Z

2, it has a unique
representation � = ∑k

i=0 Aiv′
i with v′

i ∈ D.

For convenience, we sometimes write a point of the form x = ∑∞
i=1 ai A−iv ∈ R

2

as radix expansion: 0.a1a2a3 . . . An overbar denotes repeating digits as in 0.12301 =
0.12301301301 . . . Likewise, a−2a−1a0.a1a2a3 . . . represents a point a−2 A2v +
a−1 Av + a0v + ∑∞

i=1 ai A−iv. Note that shifting a radix place to the left means
multiplying A to x . When x is on the boundary of T , the radix expansion of x is not
unique. Now we give some equivalent conditions for the self-affine pair (A,D) to be
a number system.

Theorem 2.6 Let T = T (A,D) be a disk-like CC tile. Then the following are equiv-
alent:

(i) (A,D) is a number system.
(ii) 0 ∈ T ◦.
(iii) f (x) = x2 + px + q with −1 ≤ p and q ≥ 2.
(iv) For all neighbors T +�, � = ∑k

i=0 ai Aiv ∈ DA,k+1 for some k ∈ Z with ak = 1
and ai ∈ D where 0 ≤ i < k.

Proof (i) ⇒ (ii) Suppose 0 /∈ T ◦. Then 0 ∈ T ∩ (T +�) for some � ∈ Z
2 \{0}. Since

(A,D) is a number system, � = ∑0
i=−k ai A−iv with ai ∈ D and a−k > 0. Hence

0 = a−ka−(k−1) . . . a−1a0.a1a2a3 . . . . Shifting the radix point k places to the left, we
get 0 = a−k .a−(k−1) . . . a−1a0a1a2a3 . . . . That means T + a−kv is a neighbor of T .
By Proposition 2.4, a−k = 1. Hence 0 corresponds to an infinite path starting at v with
non-positive labels bi = −ai . But by checking all the neighbor graphs in Appendix 1,
we find no such path.

(ii) ⇒ (i) It suffices to show that Z
2 ⊂ DA,∞. By the lattice tiling property, 0 is the

only lattice point in T , i.e., Z
2 ∩ T = {0}. It follows that Z

2 ∩ AnT = ∑n−1
i=0 AiD =

DA,n for n ≥ 1. If � ∈ Z
2, there exists a large integer n such that � ∈ AnT as 0 ∈ T ◦,

then � ∈ DA,n ⊂ DA,∞.
(ii) ⇔ (iii) By inspecting all neighbor graphs in Appendix 1, we find that in each

graph corresponding to f (x) = x2 + px + q with −1 ≤ p and q ≥ 2, there exists no
infinite path with edge labels either all non-positive or all non-negative, hence 0 ∈ T ◦
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Table 2 Infinite paths
representing a boundary point 0

f (x) Neighbor Path

x2 − 2x + 2 Av − v (−1)

−Av + v 1

x2 − px − q v p(q − 1)

−v (−p)[−(q − 1)]
x2 + px − q Av + (p + 1)v (q − p − 1)

−Av − (p + 1)v [−(q − p − 1)]
x2 − q v 0(q − 1)

−v 0[−(q − 1)]
Av + v (q − 1)

−Av − v [−(q − 1)]
x2 − px + q Av − (p − 1)v [−(q − p + 1)]

−Av + (p − 1)v (q − p + 1)

by Corollary 2.3. In every other case, there always exists such a path. All these paths
are listed in Table 2.

(iii) ⇒ (iv) Let f (x) be one of the cases: x2+q, x2+x +q, x2+ px +q (p ≥2,

excluding p = q = 2), x2 + 2x + 2, x2 − x + q, where p ≥ 0 and q ≥ 2. In each
case, we can rewrite their neighbors as the desired form in (iv). By using 0 = f (A)v,
0 = (A − I ) f (A)v, 0 = (A + I ) f (A)v, we have

Case (1) f (x) = x2 +q. Av−v = A2v+ Av+ (q −1)v, −v = A2v+ (q −1)v,

−Av = A3v + (q − 1)Av, −Av + v = A3v + (q − 1)Av + v, −Av − v =
A3v + A2v + (q − 1)Av + (q − 1)v.

Case (2) f (x) = x2 + x +q. −v = A2v + Av + (q −1)v, −Av = A3v + A2v +
(q − 1)Av, −Av − v = A2v + (q − 1)v.

Case (3) f (x) = x2+ px+q (p ≥ 2). −v = A2v+ p Av+(q−1)v, −Av−(p−1)

v = A2v + (p − 1)Av + (q − p + 1)v, −Av − pv = A2v + (p − 1)Av + (q − p)v.

Case (4) f (x) = x2 +2x +2. Av +2v = A3v + A2v + Av, −v = A4v + A3v +
A2v + v, −Av − v = A2v + Av + v, −Av − 2v = A2v + Av.

Case (5) f (x) = x2 − x + q. Av − v = A2v + (q − 1)v, −v = A3v +
(q − 1)Av + (q − 1)v, −Av = A4v + (q − 1)A2v + (q − 1)Av, −Av + v =
A4v + (q − 1)A2v + (q − 1)Av + v.

(iv) ⇒ (ii) Suppose 0 /∈ T ◦. By the same argument as in the proof of (i)⇒(ii)
above, there should be an infinite path in the neighbor graph starting at v with edge
labels all non-positive. But we find no such path by inspecting all the neighbor graphs
in Appendix 1. �

Remark 2.7 Gilbert [13] obtained some related results in the context of quadratic
number fields. We conjecture that Theorem 2.6 can be extended to non-disk-like
tiles.
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3 Dimension of the Boundary of T

For a directed graph G = G(V, E) where V = {v1, v2, . . . , vm}, we write Ei, j for the set
of edges from vertex vi to vertex v j , and we add a contraction mapping Fe : R

2 → R
2

for each edge e ∈ E . Then the family of contractions {Fe : e ∈ E} is called a graph-
directed iterated function system (GIFS) and there exists a unique family of non-empty
compact subsets E1, . . . , Em of R

2 [9,28] such that

Ei =
m⋃

j=1

⋃
e∈Ei, j

Fe(E j ). (3.1)

We call E := ⋃m
i=1 Ei a graph-directed set. Define M = (Mi j )1≤i, j≤m as the contact

matrix [15] of G with Mi j = #Ei, j counting the number of edges from vi to v j .
The GIFS {Fe : e ∈ E} is said to satisfy the open set condition (OSC) if there exists

a family of open sets {O1, . . . , Om} such that

Oi ⊃
m⋃

j=1

⋃
e∈Ei, j

Fe(O j ) for i = 1, 2, . . . , m (3.2)

with disjoint unions, i.e., Fe(O j ) ∩ Fe′(O j ′) = ∅ whenever (e, j) 	= (e′, j ′). With
this OSC, we then can compute the dimension of the graph-directed set.

In this section, we first identify the boundary of T with a graph-directed set by
making use of the well-known method [17,31], then calculate its dimension in the
self-affine case and the self-similar case, respectively.

Proposition 3.1 Let � = γ v + δAv, �′ = γ ′v + δ′ Av ∈ V such that �′ = A� − b1v

for some b1 ∈ �D, then

A−1(T�′ + jv) ⊂ T� for all j ∈ Ib1 :=
{ {b1, b1 + 1, . . . , q − 1} if b1 ≥ 0;

{0, 1, . . . , q − 1 + b1} if b1 < 0.

Moreover,

T� =
⋃

�′∈B�

⋃
j∈Ib1

A−1(T�′ + jv)

where B� := {�′′ ∈ V : �′′ = A� − b′
1v for some b′

1 ∈ �D}. Hence the boundary
∂T = ⋃

�∈V T� is a graph-directed set.

Proof When b1 ≥ 0, if x ∈ T�′ then the radix expansion is

x = 0.c1c2c3 . . . = δ′γ ′.c′
1c′

2c′
3 . . . .

It follows from Lemma 2.1 and 0 = A−1 f (A)v that

A−1x + (b1 + k)A−1v = 0.(b1 + k)c1c2c3 . . . = δγ.kc′
1c′

2c′
3 . . . ∈ T�

for k = 0, 1, . . . , q − 1 − b1. The case when b1 < 0 can be proved similarly.
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For the second part, we only need to show

T� ⊂
⋃

�′∈B�

⋃
j∈Ib1

A−1(T�′ + jv).

Let y = 0.a1a2a3 . . . = δγ.a′
1a′

2a′
3 . . . ∈ T�. It follows that Ay − a1v =

0.a2a3a4 . . . = δγ (a′
1 − a1).a′

2a′
3 . . . ∈ T�′ , where �′ = A� − (a1 − a′

1)v. This
implies y ∈ A−1(T�′ + a1v). By definition, we see that a1 ∈ Ib1 for b1 = a1 − a′

1. �
It should be mentioned that the graph for the GIFS comes from the neighbor graph

by adding more edges, or equivalently the neighbor graph is a reduced graph for the
GIFS. The following example about Fig. 1 can illustrate their relationship. All the
other cases are given in Appendix 2.

Example 3.2 Consider the case f (x) = x2 + px +q (p, q ≥ 2, excluding p = q = 2).
When �=v, from Table 1 we have B� = Bv ={Av + pv, Av + (p − 1)v}. When �′ =
Av+ pv, b1 =−p and I−p ={0, 1, 2, . . . , q−1− p}; when �′ = Av+(p−1)v, b1 =
−(p −1) and I−(p−1) = {0, 1, 2, . . . , q − p}. Thus by Proposition 3.1, the first set
equation comes out. Similarly the other five can be deduced. For simplicity we let
u1 =v, u2 = Av+(p−1)v, u3 = Av+pv. Then the sets T±u1 , T±u2 , T±u3 , represent-
ing ∂T satisfy

ATu1 =
q−p⋃
j=0

(Tu2 + jv) ∪
q−p−1⋃

j=0

(Tu3 + jv),

ATu2 =
p−2⋃
j=0

(T−u2 + jv) ∪
p−1⋃
j=0

(T−u3 + jv),

ATu3 = T−u1 ,

AT−u1 =
q−1⋃

j=p−1

(T−u2 + jv) ∪
q−1⋃
j=p

(T−u3 + jv),

AT−u2 =
q−1⋃

j=q−p+1

(Tu2 + jv) ∪
q−1⋃

j=q−p

(Tu3 + jv),

AT−u3 = Tu1 + (q − 1)v.

The Hausdorff dimension (dimH ) (see e.g., [9,10]) is the most common and impor-
tant dimension in fractal geometry. The case of self-similar sets has been studied
extensively with or without separation conditions. However the case of self-affine sets
is still hard to handle. Recently, He and Lau [16] defined the generalized Hausdorff
dimension (dimω

H ) and Hausdorff measure (Hs
ω) for self-affine fractals by replacing

the Euclidean norm with a pseudo-norm ω for which the expanding matrix A becomes
a similarity:

ω(Ax) = | det A|1/2ω(x).
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Under this setting, most of the basic properties for the self-similar sets can be carried
to the self-affine sets. Moreover, Luo and Yang [26] extended this technique to the
self-affine GIFS and obtained a dimension formula of the graph-directed set we need.

Proposition 3.3 ([26]) For the GIFS as in (3.1) with the affine mappings Fe(x) =
A−1(x + de) where A is an expanding matrix and | det A| = |q|, let ρ(M) be the
spectral radius of the contact matrix M. If the OSC holds, then s = dimω

H E =
2 log ρ(M)/ log |q| and 0 < Hs

ω(E) < ∞.

By using this, we can establish our first-dimensional result about the boundary of
T as follows.

Theorem 3.4 The generalized Hausdorff dimension of the boundary of disk-like CC
tile T is

dimω
H (∂T ) = 2 log ρ(M)/ log |q|

and the corresponding measure is positive and finite.

Proof From Propositions 3.1 and 3.3, it suffices to show the GIFS representing the
boundary of T satisfies the OSC. Replacing T� by (T + �)◦, we can check the OSC
holds case by case. We illustrate the idea by proving the case f (x) = x2+ px +q (p ≥
2, q ≥ 2, excluding p = q = 2). In view of Example 3.2, we need to show

A(T + u1)
◦ ⊃

q−p⋃
j=0

((T + u2)
◦ + jv) ∪

q−p−1⋃
j=0

((T + u3)
◦ + jv),

A(T + u2)
◦ ⊃

p−2⋃
j=0

((T − u2)
◦ + jv) ∪

p−1⋃
j=0

((T − u3)
◦ + jv),

A(T + u3)
◦ ⊃ (T − u1)

◦,

A(T − u1)
◦ ⊃

q−1⋃
j=p−1

((T − u2)
◦ + jv) ∪

q−1⋃
j=p

((T − u3)
◦ + jv),

A(T − u2)
◦ ⊃

q−1⋃
j=q−p+1

((T + u2)
◦ + jv) ∪

q−1⋃
j=q−p

((T + u3)
◦ + jv),

A(T − u3)
◦ ⊃ (T + u1)

◦ + (q − 1)v,

with disjoint unions. Since T is a CC tile, it follows that

AT ◦ ⊃
q−1⋃
j=0

(T + jv)◦ =
q−1⋃
j=0

(T ◦ + jv) (3.3)

with disjoint union. By using (3.3) and 0 = f (A)v = A2v + p Av + qv extensively,
we prove the first two set inequalities in the following. The remaining four can be
verified similarly.
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For j = 0, 1, . . . , q − p,

(T + u2)
◦ + jv = T ◦ + (p − 1 + j)v + Av ⊂ A(T + u1)

◦.

For j = 0, 1, . . . , q − p − 1,

(T + u3)
◦ + jv = T ◦ + (p + j)v + Av ⊂ A(T + u1)

◦.

For j = 0, 1, . . . , p − 2,

(T − u2)
◦ + jv = T ◦ + ( j − p + 1)v − Av

= T ◦ + (q + j − p + 1)v + A2v + (p − 1)Av

⊂ A(T + u2)
◦.

For j = 0, 1, . . . , p − 1,

(T − u3)
◦ + jv = T ◦ + ( j − p)v − Av

= T ◦ + (q + j − p)v + A2v + (p − 1)Av

⊂ A(T + u2)
◦.

By the same way, all the other cases follow and hence the theorem is proved. �
In the rest of this section, we will find the exact value of Hausdorff dimension

dimH (∂T ) for certain particular cases that A is a similarity. We state the simplest one
first.

Proposition 3.5 Let A ∈ M2(Z) be expanding with characteristic polynomial
f (x) = x2 + q (|q| ≥ 2) and T (A,D) a disk-like CC tile. Then dimH (∂T ) = 1.

Proof By Theorem 1.1, T is a square tile (parallelogram). Hence dimH (∂T ) = 1. �
Geometrically, a similarity is a multiple of either a reflection or a rotation. We call

the former a scaled reflection and the latter a scaled rotation; algebraically, a similarity
is a multiple of an orthogonal matrix. The case that A is a scaled reflection is solved
already as its characteristic polynomial is of the form f (x) = x2 − q (q > 0). So we
focus our attention on those A that are scaled rotations.

Lemma 3.6 Let A be a scaled rotation. Then its characteristic polynomial has positive
constant term and A has either two distinct non-real eigenvalues or two equal real
eigenvalues.

Proof Let A =
( r cos θ −r sin θ

r sin θ r cos θ

)
. The characteristic polynomial is given by

x2 − 2rcosθ x + r2. It has two equal real zeros when θ = 0 or π and two distinct
non-real zeros otherwise. �
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Table 3 The contact matrix of T associated with f (x) = x2 + px + q, p, q ≥ 2, 2p ≤ q + 2 (excluding
p = q = 2)

v Av + (p − 1)v Av + pv −v −Av − (p − 1)v −Av − pv

v 0 q − p + 1 q − p 0 0 0

Av + (p − 1)v 0 0 0 0 p − 1 p

Av + pv 0 0 0 1 0 0

−v 0 0 0 0 q − p + 1 q − p

−Av − (p − 1)v 0 p − 1 p 0 0 0

−Av − pv 1 0 0 0 0 0

The following dimension formula on the boundaries of self-similar tiles has been
investigated in the literature by various methods (see [8,31,32,17,23]). We shall apply
this formula to obtain our second dimensional result which is simpler than the known
one.

Proposition 3.7 If A is a similarity with | det(A)| = |q| ≥ 2, then the Hausdorff
dimension of ∂T is given by

dimH (∂T ) = log ρ(M)/ log r = 2 log ρ(M)/ log |q|, (3.4)

where ρ(M) denotes the spectral radius of the contact matrix M and r = |q|1/2 is the
expansion ratio of A.

Let �, �′, b1 and B� be defined as in Proposition 3.1. We first find the contact matrix
M . Since D is a CC digit set, we have the entry M��′ = #Ib1 = q − |b1| where Ib1

is as in Proposition 3.1. Recall that b1 is the label of the edge from � to �′. Hence we
obtain the contact matrix M of T from its neighbor graph with different edge labels
(i.e., replace b1 by q − |b1|).

Moreover, it is easy to see that there is a one-to-one correspondence between the
contact matrix and the neighbor graph. For example, the contact matrix for the case
f (x) = x2 + px + q (p, q ≥ 2, 2p ≤ q + 2 excluding p = q = 2) can be found in
Table 3, and the related neighbor graph is shown by Fig. 1. The contact matrices for
the other cases are given in Appendix 3.

If M is irreducible (i.e., for each entry Mi j , there exists an integer n ≥ 0 such that
(Mn)i j > 0), then the spectral radius ρ(M) = λM where λM is the Perron–Frobenius
eigenvalue of M as stated in the following simplified version of the Perron–Frobenius
Theorem.

Theorem 3.8 ([12,30]) Let M be an irreducible non-negative matrix. Then there exists
a positive eigenvalue λM such that λM ≥ |μ| for all eigenvalues μ of M. Moreover,
λM is a simple zero of the characteristic polynomial of M.

It is known that a contact matrix is irreducible if and only if the neighbor graph it
represents is strongly connected. A directed graph is called strongly connected if for
any two vertices vi , v j there exists a path starting at vi and ending at v j .
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Theorem 3.9 Let A ∈ M2(Z) be an expanding similarity with characteristic poly-
nomial f (x) = x2 + px + q and T (A,D) be a disk-like CC tile. Then ρ(M) is the
largest positive zero of the cubic polynomial

x3 − (|p| − 1)x2 − (|q| − |p|)x − |q|.

Hence dimH (∂T ) = 2 log ρ(M)/ log |q|.
Proof Since | det(A)| = |q|, it is more convenient to work with f (x) = x2 ± px ± q
(p ≥ 0, q ≥ 2). Also we ignore those f (x) of the form f (x) = x2 ± px −q (p > 0,

q ≥ 2) as they cannot be characteristic polynomials of similarities (Lemma 3.6). We
can see from Appendix 1 or 3 that the contact matrix is irreducible if and only if
f (x) = x2 ± px + q where p > 0.

Case (1) f (x) = x2 + px + q. The characteristic polynomial of the corresponding
M is (x − 1)(x2 + px + q)[x3 − (p − 1)x2 − (q − p)x − q]. Notice that ρ(M) 	= 1.
Indeed, if ρ(M) = 1, then dimH (∂T ) = 0, which implies ∂T is totally disconnected
(Proposition 2.5, [10]). This is not possible for the boundary of a topological disk. The
zeros of x2 + px + q are either both negative or both non-real. Hence ρ(M) is the
largest positive real zero of x3 − (p − 1)x2 − (q − p)x − q.

Case (2) f (x) = x2 − px + q. The characteristic polynomial of the corresponding
M is (x + 1)(x2 − px + q)[x3 − (p − 1)x2 − (q − p)x − q]. Since f (x) cannot
have unequal real zeros (Lemma 3.6), we have p2 − 4q ≤ 0. When p2 − 4q < 0,
the zeros of x2 − px + q are non-real. Then ρ(M) is the largest positive real zero of
x3−(p−1)x2−(q−p)x−q. When p2−4q = 0, the two zeros of x2−px+q are equal.
But the Perron–Frobenius eigenvalue should be a simple zero of the characteristic
polynomial of M (Theorem 3.8), so ρ(M) is also the largest positive real zero of
x3 − (p − 1)x2 − (q − p)x − q.

Case (3) f (x) = x2 + q. The contact matrix M is reducible. Its characteristic
polynomial is (x2 − q)(x2 + q)(x − 1)(x + 1)(x2 + 1). We see that ρ(M) = q1/2,
which is the largest positive zero of x3 + x2 − qx − q = (x2 − q)(x + 1).

Case (4) f (x) = x2 − q. The contact matrix M is also reducible and its charac-
teristic polynomial is found to be (x2 − q)2(x + 1)(x − 1)3. As in the previous case,
ρ(M) = q1/2, which is also the largest positive zero of x3 + x2 − qx − q. �
Remark 3.10 It is interesting to see that the signs of p and q do not matter in the
calculation of dimH (∂T ) when A is a similarity. Notice also for the last two cases,
f (x) = x2 + q (|q| ≥ 2), we have ρ(M) = |q|1/2. It follows that dimH (∂T ) = 1, as
expected for the boundary of a parallelogram (Proposition 3.5).

We observe that dimH (∂T ) is independent of the choice of the vector v in the
following sense.

Corollary 3.11 Let A ∈ M2(Z) be an expanding similarity with characteristic poly-
nomial f (x) = x2 + px + q (|q| ≥ 2). Let D = D(v, |q|) and D′ = D(v′, |q|) be
two CC digit sets such that each of {v, Av} and {v′, Av′} is an independent set. If
2|p| ≤ |q + 2|, then

dimH (∂T (A,D)) = dimH (∂T (A,D′)).
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Proof As 2|p| ≤ |q +2|, both T (A,D) and T (A,D′) are disk-like CC tiles (Theorem
1.1). Hence the corollary follows from Theorem 3.9. �

Remark 3.12 We conjecture that Theorem 3.9 and Corollary 3.11 are also valid when
2|p| > |q + 2|, i.e., T is non-disk-like. The major difficulty in justifying these con-
jectures is that, in general, there is no upper bound on the number of neighbors of a
non-disk-like CC tile [7].

Acknowledgments The authors would like to thank Professor Ka-Sing Lau for suggesting the question
and reading an earlier version of the manuscript carefully. They are also grateful to the anonymous refer-
ees for their valuable comments and suggestions. The research is supported by STU Scientific Research
Foundation for Talents (No. NTF12016).

Appendix 1: Neighbor Graphs

Let f (x) = x2 ± px ± q (p ≥ 0, q ≥ 2). The neighbor graphs of disk-like tiles are
classified by f (x) and listed in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.

Fig. 2 The neighbor graph of T associated with f (x) = x2 + q

Fig. 3 The neighbor graph of T
associated with f (x) = x2 − q
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Fig. 4 The neighbor graph of T associated with f (x) = x2 + x + q

Fig. 5 The neighbor graph of T associated with f (x) = x2 − x + q

Fig. 6 The neighbor graph of T associated with f (x) = x2 + px + q, p ≥ 2, 2p ≤ q + 2 (excluding
q = p = 2)
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Fig. 7 The neighbor graph of T associated with f (x) = x2 − px + q, p ≥ 2, 2p ≤ q + 2 (excluding
q = p = 2)

Fig. 8 The neighbor graph of T associated with f (x) = x2 + px − q, p ≥ 1, 2p ≤ q − 2

Fig. 9 The neighbor graph of T associated with f (x) = x2 − px − q, p ≥ 1, 2p ≤ q − 2

123

Author's personal copy



Discrete Comput Geom (2013) 50:194–218 211

Fig. 10 The neighbor graph of T associated with f (x) = x2 + 2x + 2

Fig. 11 The neighbor graph of
T associated with
f (x) = x2 − 2x + 2

Appendix 2: Graph-Directed Sets

Let f (x) = x2 ± px ± q (p ≥ 0, q ≥ 2). The graph-directed sets representing the
boundary ∂T are classified by f (x) and listed below.

(1) f (x) = x2 + q. Convention: u1 = v, u2 = Av − v, u3 = Av, u4 = Av + v.

ATu1 =
q−1⋃
j=1

(Tu2 + jv) ∪
q−1⋃
j=0

(Tu3 + jv) ∪
q−2⋃
j=0

(Tu4 + jv),

ATu2 = T−u4 ,

ATu3 = T−u1 ,

ATu4 = Tu2 ,

AT−u1 =
q−2⋃
j=0

(T−u2 + jv) ∪
q−1⋃
j=0

(T−u3 + jv) ∪
q−1⋃
j=1

(T−u4 + jv),

AT−u2 = Tu4 + (q − 1)v,
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AT−u3 = Tu1 + (q − 1)v,

AT−u4 = T−u2 + (q − 1)v.

(2) f (x) = x2 − q. Convention: u1 = v, u2 = Av − v, u3 = Av, u4 = Av + v.

ATu1 =
q−1⋃
j=1

(Tu2 + jv) ∪
q−1⋃
j=0

(Tu3 + jv) ∪
q−2⋃
j=0

(Tu4 + jv),

ATu2 = T−u2 + (q − 1)v,

ATu3 = Tu1 + (q − 1)v,

ATu4 = Tu4 + (q − 1)v,

AT−u1 =
q−2⋃
j=0

(T−u2 + jv) ∪
q−1⋃
j=0

(T−u3 + jv) ∪
q−1⋃
j=1

(T−u4 + jv),

AT−u2 = Tu2 ,

AT−u3 = T−u1 ,

AT−u4 = T−u4 .

(3) f (x) = x2 + x + q. Convention: u1 = v, u2 = Av, u3 = Av + v.

ATu1 =
q−1⋃
j=0

(Tu2 + jv) ∪
q−2⋃
j=0

(Tu3 + jv),

ATu2 = T−u3 ,

ATu3 = T−u1 ,

AT−u1 =
q−1⋃
j=0

(T−u2 + jv) ∪
q−1⋃
j=1

(T−u3 + jv),

AT−u2 = Tu3 + (q − 1)v,

AT−u3 = Tu1 + (q − 1)v.

(4) f (x) = x2 − x + q. Convention: u1 = v, u2 = Av, u3 = Av − v.

ATu1 =
q−1⋃
j=0

(Tu2 + jv) ∪
q−2⋃
j=0

(Tu3 + jv),

ATu2 = Tu3 ,

ATu3 = T−u1 ,

AT−u1 =
q−1⋃
j=0

(T−u2 + jv) ∪
q−1⋃
j=1

(T−u3 + jv),

AT−u2 = T−u3 + (q − 1)v,

AT−u3 = Tu1 + (q − 1)v.
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(5) f (x) = x2 + px + q, p ≥ 2, 2p ≤ q + 2 (excluding p = q = 2).
Convention:u1 = v, u2 = Av + (p − 1)v, u3 = Av + pv.

ATu1 =
q−p⋃
j=0

(Tu2 + jv) ∪
q−p−1⋃

j=0

(Tu3 + jv),

ATu2 =
p−2⋃
j=0

(T−u2 + jv) ∪
p−1⋃
j=0

(T−u3 + jv),

ATu3 = T−u1 ,

AT−u1 =
q−1⋃

j=p−1

(T−u2 + jv) ∪
q−1⋃
j=p

(T−u3 + jv),

AT−u2 =
q−1⋃

j=q−p+1

(Tu2 + jv) ∪
q−1⋃

j=q−p

(Tu3 + jv),

AT−u3 = Tu1 + (q − 1)v.

(6) f (x) = x2 − px + q, p ≥ 2, 2p ≤ q + 2 (excluding p = q = 2). Convention:
u1 = v, u2 = Av − (p − 1)v, u3 = Av − pv.

ATu1 =
q−1⋃

j=p−1

(Tu2 + jv) ∪
q−1⋃
j=p

(Tu3 + jv),

ATu2 =
p⋃

j=0

(Tu2 + jv) ∪
p−1⋃
j=0

(Tu3 + jv),

ATu3 = T−u1 ,

AT−u1 =
q−p⋃
j=0

(T−u2 + jv) ∪
q−p−1⋃

j=0

(T−u3 + jv),

AT−u2 =
q−1⋃

j=q−p+1

(T−u2 + jv) ∪
q−1⋃

j=q−p

(T−u3 + jv),

AT−u3 = Tu1 + (q − 1)v.

(7) f (x) = x2 + px − q, p ≥ 1, 2p ≤ q − 2. Convention: u1 = v, u2 = Av +
pv, u3 = Av + (p + 1)v.

ATu1 =
q−p−1⋃

j=0

(Tu2 + jv) ∪
q−p−2⋃

j=0

(Tu3 + jv),

ATu2 = Tu1 + (q − 1)v,
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ATu3 =
q−1⋃

j=q−p

(Tu2 + jv) ∪
q−1⋃

j=q−p−1

(Tu3 + jv),

AT−u1 =
q−1⋃
j=p

(T−u2 + jv) ∪
q−1⋃

j=p+1

(T−u3 + jv),

AT−u2 = Tu1,

AT−u3 =
p−1⋃
j=0

(T−u2 + jv) ∪
p⋃

j=0

(T−u3 + jv).

(8) f (x) = x2 − px − q, p ≥ 1, 2p ≤ q − 2. Convention: u1 = v, u2 = Av −
pv, u3 = Av − (p + 1)v.

ATu1 =
q−1⋃
j=p

(Tu2 + jv) ∪
q−1⋃

j=p+1

(Tu3 + jv),

ATu2 = Tu1 + (q − 1)v,

ATu3 =
q−1⋃

j=q−p

(T−u2 + jv) ∪
q−1⋃

j=q−p−1

(T−u3 + jv),

AT−u1 =
q−p−1⋃

j=0

(T−u2 + jv) ∪
q−p−2⋃

j=0

(T−u3 + jv),

AT−u2 = T−u1 ,

AT−u3 =
p−1⋃
j=0

(Tu2 + jv) ∪
p−2⋃
j=0

(Tu3 + jv).

(9) f (x) = x2 + 2x + 2. Convention: u1 = v, u2 = Av + v, u3 = Av + 2v.

ATu1 = Tu2 ,

ATu2 = T−u2 ∪ T−u3 ∪ (T−u3 + v),

ATu3 = T−u1 ,

AT−u1 = T−u2 + v,

AT−u2 = (Tu2 + v) ∪ Tu3 ∪ (Tu3 + v),

AT−u3 = Tu1 + v.

(10) f (x) = x2 − 2x + 2. Convention: u1 = v, u2 = Av − v, u3 = Av − 2v.

ATu1 = Tu2 + v,

ATu2 = Tu2 ∪ Tu3 ∪ (Tu3 + v),

ATu3 = T−u1 ,
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AT−u1 = T−u2 ,

AT−u2 = (T−u2 + v) ∪ T−u3 ∪ (T−u3 + v),

AT−u3 = Tu1 + v.

Appendix 3: Contact Matrices

Let f (x) = x2 ± px ± q (p ≥ 0, q ≥ 2). The contact matrices (in table form) of
disk-like tiles are classified by f (x) and listed in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, and
13.

Table 4 f (x) = x2 + q

v Av −v −Av Av − v −Av − v −Av + v Av + v

v 0 q 0 0 q − 1 0 0 q − 1

Av 0 0 1 0 0 0 0 0

−v 0 0 0 q 0 q − 1 q − 1 0

−Av 1 0 0 0 0 0 0 0

Av − v 0 0 0 0 0 1 0 0

−Av − v 0 0 0 0 0 0 1 0

−Av + v 0 0 0 0 0 0 0 1

Av + v 0 0 0 0 1 0 0 0

Table 5 f (x) = x2 − q

v Av −v −Av Av − v −Av + v Av + v −Av − v

v 0 q 0 0 q − 1 0 q − 1 0

Av 1 0 0 0 0 0 0 0

−v 0 0 0 q 0 q − 1 0 q − 1

−Av 0 0 1 0 0 0 0 0

Av − v 0 0 0 0 0 1 0 0

−Av + v 0 0 0 0 1 0 0 0

Av + v 0 0 0 0 0 0 1 0

−Av − v 0 0 0 0 0 0 0 1

Table 6 f (x) = x2 + x + q

v Av Av + v −v −Av −Av − v

v 0 q q − 1 0 0 0

Av 0 0 0 0 0 1

Av + v 0 0 0 1 0 0

−v 0 0 0 0 q q − 1

−Av 0 0 1 0 0 0

−Av − v 1 0 0 0 0 0
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Table 7 f (x) = x2 − x + q

v Av Av − v −v −Av −Av + v

v 0 q q − 1 0 0 0

Av 0 0 1 0 0 0

Av − v 0 0 0 1 0 0

−v 0 0 0 0 q q − 1

−Av 0 0 0 0 0 1

−Av + v 1 0 0 0 0 0

Table 8 f (x) = x2 + px + q, p ≥ 2, 2p ≤ q + 2 (excluding p = q = 2)

v Av + (p − 1)v Av + pv −v −Av − (p − 1)v −Av − pv

v 0 q − p + 1 q − p 0 0 0

Av + (p − 1)v 0 0 0 0 p − 1 p

Av + pv 0 0 0 1 0 0

−v 0 0 0 0 q − p + 1 q − p

−Av − (p − 1)v 0 p − 1 p 0 0 0

−Av − pv 1 0 0 0 0 0

Table 9 f (x) = x2 − px + q, p ≥ 2, 2p ≤ q + 2 (excluding p = q = 2)

v Av − (p − 1)v Av − pv −v −Av + (p − 1)v −Av + pv

v 0 q − p + 1 q − p 0 0 0

Av − (p − 1)v 0 p − 1 p 0 0 0

Av − pv 0 0 0 1 0 0

−v 0 0 0 0 q − p + 1 q − p

−Av + (p − 1)v 0 0 0 0 p − 1 p

−Av + pv 1 0 0 0 0 0

Table 10 f (x) = x2 + px − q, p ≥ 1, 2p ≤ q − 2

v Av + pv Av + (p + 1)v −v −Av − pv −Av − (p + 1)v

v 0 q − p q − p − 1 0 0 0

Av + pv 1 0 0 0 0 0

Av + (p + 1)v 0 p p + 1 0 0 0

−v 0 0 0 0 q − p q − p − 1

−Av − pv 0 0 0 1 0 0

−Av − (p + 1)v 0 0 0 0 p p + 1
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Table 11 f (x) = x2 − px − q, p ≥ 1, 2p ≤ q − 2

v Av − pv Av − (p + 1)v −v −Av + pv −Av + (p + 1)v

v 0 q − p q − p − 1 0 0 0

Av − pv 1 0 0 0 0 0

Av − (p + 1)v 0 0 0 0 p p + 1

−v 0 0 0 0 q − p q − p − 1

−Av + pv 0 0 0 1 0 0

−Av + (p + 1)v 0 p p + 1 0 0 0

Table 12 f (x) = x2 + 2x + 2

v Av + v Av + 2v −v −Av − v −Av − 2v

v 0 1 0 0 0 0

Av + v 0 0 0 0 1 2

Av + 2v 0 0 0 1 0 0

−v 0 0 0 0 1 0

−Av − v 0 1 2 0 0 0

−Av − 2v 1 0 0 0 0 0

Table 13 f (x) = x2 − 2x + 2

v Av − v Av − 2v −v −Av + v −Av + 2v

v 0 1 0 0 0 0

Av − v 0 1 2 0 0 0

Av − 2v 0 0 0 1 0 0

−v 0 0 0 0 1 0

−Av + v 0 0 0 0 1 2

−Av + 2v 1 0 0 0 0 0
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