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Abstract We study a class of planar self-affine sets T (A, D) generated by the integer expand-
ing matrices A with | det A| = 3 and the non-collinear digit sets D = {0, v, k Av} where
k ∈ Z \ {0} and v ∈ R

2 such that {v, Av} is linearly independent. By examining the char-
acteristic polynomials of A carefully, we prove that T (A, D) is connected if and only if the
parameter k = ±1.
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1 Introduction

Let Mn(Z) denote the set of n×n matrices with integer entries, and A ∈ Mn(Z) be expanding,
i.e., all eigenvalues of A have moduli strictly larger than 1. Let D = {d1, . . . , dq} ⊂ R

n be
a finite set of q distinct vectors, we call it a q-digit set. It is well known that there exists a
unique nonempty compact set T := T (A, D) [13] satisfying the set-valued equation

T = A−1(T + D).
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The set T is called self-affine set, and which can often be written as the form of radix
expansions:

T =
{ ∞∑

i=1

A−i d ji : d ji ∈ D
}

.

If | det A| = q and T has a nonvoid interior, we call such T a self-affine tile.
Recently, the topological structure of T (A, D), especially its connectedness, has attracted

a lot of attentions in the literature. It was asked by Gröchenig and Haas [6] that given
an expanding integer matrix A ∈ Mn(Z), whether there exists a digit set D such that
T (A, D) is a connected tile and they partially solved it in R

2. Hacon et al. [7] proved
that any self-affine tile T (A, D) with a 2-digit set is always pathwise connected. Lau et
al. ([9,11,12,14]) systematically studied the connectedness of self-affine tiles arising from
a kind of digit sets of the form {0, 1, . . . , q − 1}v where v ∈ Z

n \ {0}, which were called
consecutive collinear (CC) digit sets. They observed a height reducing property (HRP) of
the characteristic polynomial of A to determine the connectedness of T (A, D), and con-
jectured that all monic expanding polynomials have HRP, thus all the tiles generated by
CC digit sets are connected. Akiyama and Gjini [1] solved it up to degree 4. However it
is still open for arbitrary degree. Moreover, Liu et al. [17] classified the connected self-
affine sets with CC digit sets in R

2. On the other hand, the disk-likeness (i.e. homeomorphic
to a closed unit disk) is also an interesting topic in the planar geometry. Bandt and Gel-
brich [2], Bandt and Wang [3], and Leung and Lau [14] investigated the disk-like self-affine
tiles by making use of neighbour graphs of T . Along this line, Leung and Luo [16] further
studied the boundary structure of disk-like tiles. Deng and Lau [4], as well as Kirat [10]
concerned themselves about a class of disk-like self-affine tiles generated by product digit
sets.

With regard to other types of digit sets, there are few results about the connectedness
of T (A, D) generated by non-consecutive or non-collinear digit sets. In [15], by counting
the neighbours of T , the authors made a first attempt to exploit the case of non-consecutive
collinear digit set D = {0, v, kv} with | det A| = 3, and obtained a complete characterization
for T (A, D) to be connected or not. In this paper, we go further to discuss the non-collinear
digit set D = {0, v, k Av} for k ∈ Z \ {0}. By examining the characteristic polynomials of A
case by case, we can determine the connectedness of T (A, D) based on the parameter k in
the following way.

Theorem 1.1 Let A be a 2 × 2 expanding integer matrix with | det A| = 3, and let D =
{0, v, k Av} be a digit set where k ∈ Z \ {0} and v ∈ R

2 such that {v, Av} is linearly
independent. Then T (A, D) is connected if and only if k = ±1.

In the consecutive collinear case, to determine the connectedness, it suffices to check
whether v = ∑∞

i=1 A−ivi , vi ∈ �D [11]. In the non-consecutive collinear case, we also
need to check whether (k − 1)v = ∑∞

i=1 A−ivi , vi ∈ �D [15]. However, in the present
case, for the non-collinear digit set, the proof is more complicated, we have to check not only
v = ∑∞

i=1 A−ivi , vi ∈ �D but also k Av or k Av − v = ∑∞
i=1 A−ivi , vi ∈ �D.

The rest of the paper is organized as follows: In Sect. 2, we recall several well-known
results on self-affine sets. The complete proof of Theorem 1.1 is shown in Sect. 3. In Sect. 4,
we give some remarks and open questions on the related studies.
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2 Preliminaries

In this section, we give some preparatory results of self-affine sets which will be used fre-
quently in the paper. Let A ∈ Mn(Z) be expanding and D = {d1, . . . , dq} ⊂ R

n be a digit
set. Define

E = {(di , d j ) : (T + di ) ∩ (T + d j ) �= ∅, di , d j ∈ D}.
We say that di and d j are E-connected if there exists a finite sequence {d j1 , . . . , d jk } ⊂ D
such that di = d j1 , d j = d jk and (d jl , d jl+1) ∈ E, 1 ≤ l ≤ k − 1. It is easy to check that
(di , d j ) ∈ E if and only if di − d j ∈ T − T , i.e.,

di − d j =
∞∑

k=1

A−kvk where vk ∈ �D := D − D.

The following criterion for connectedness of self-affine set T (A, D) was first proved by Hata
[8] and rediscovered by Kirat and Lau [11].

Proposition 2.1 [8,11] A self-affine set T with a digit set D is connected if and only if any
two di , d j ∈ D are E-connected.

In the paper, we mainly consider the planar self-affine set T (A, D) generated by a 2 × 2
expanding integer matrix A with | det A| = 3 and a digit set D = {0, v, k Av} such that
{v, Av} is linearly independent, where k ∈ Z \ {0}. Denote the characteristic polynomial of
A by f (x) = x2 + px + q , and define αi , βi by

A−iv = αiv + βi Av, i = 1, 2, . . . .

By applying the Hamilton-Cayley theorem f (A) = A2 + p A + q I = 0, the following
consequence is immediate.

Lemma 2.2 [14] Let αi , βi be defined as the above. Then qαi+2 + pαi+1 + αi = 0 and
qβi+2 + pβi+1 + βi = 0. Especially, α1 = −p/q, α2 = (p2 − q)/q2; β1 = −1/q, β2 =
p/q2. Moreover for � = p2 − 4q �= 0, we have

αi =
q

(
yi+1

1 − yi+1
2

)
�1/2 and βi = − (

yi
1 − yi

2

)
�1/2

where y1 = −p+�1/2

2q , y2 = −p−�1/2

2q are the two roots of qx2 + px + 1 = 0.

Let

α̃ :=
∞∑

i=1

|αi |, β̃ :=
∞∑

i=1

|βi |.

Corollary 2.3 Assume f (x) = x2 + px + q and g(x) = x2 − px + q be the characteristic
polynomials of expanding matrices A and B, respectively. Let αi , βi , α̃, β̃ for f (x) be as
before; let α′

i , β
′
i , α̃

′, β̃ ′ be the corresponding terms for g(x). Then

α′
2 j = α2 j , α′

2 j−1 = −α2 j−1, β ′
2 j = −β2 j , β ′

2 j−1 = β2 j−1,

and hence α̃ = α̃′, β̃ = β̃ ′.
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When | det A| = 3, it is known by [2] that there are ten eligible characteristic polynomials
of A:

x2 ± 3; x2 ± x + 3; x2 ± 2x + 3; x2 ± 3x + 3; x2 ± x − 3.

Following [15], together with Corollary 2.3, we obtained the estimates or values of the
corresponding α̃ and β̃ as follows:

f (x) = x2 ± x + 3 : α̃ < 0.88, β̃ < 0.63; (2.1)

f (x) = x2 ± 2x + 3 : α̃ < 1.17, β̃ < 0.73; (2.2)

f (x) = x2 ± 3x + 3 : α̃ < 2.24, β̃ < 1.08; (2.3)

f (x) = x2 ± x − 3 : α̃ = 2, β̃ = 1. (2.4)

3 Proof of Theorem 1.1

For the digit set D = {0, v, k Av}, denote by �D = {0,±v,±(k Av − v),±k Av} the differ-
ence set. We separate the proof of Theorem 1.1 into three parts (A,B and C) according to the
characteristic polynomials of A.

Part A: f (x) = x2 ± 3.
Since the case of f (x) = x2 − 3 is more or less the same as that of f (x) = x2 + 3,

it suffices to show the last one. If k = 1, then �D = {0,±v,±(Av − v),±Av}. From
f (A) = A2 + 3I = 0, we have

I = −2A−2(I + A−2)−1 = 2
∞∑

n=1

(−1)n A−2n (3.1)

and

v = 2
∞∑

n=1

(−1)n A−2nv =
∞∑

n=0

A−4n(
A−2(−v) + A−3(−Av) + A−4v + A−5(Av)

)
. (3.2)

Hence v ∈ T − T , or equivalently T ∩ (T + v) �= ∅. Moreover,

Av =
∞∑

n=0

A−4n(
A−1(−v) + A−2(−Av) + A−3v + A−4(Av)

)
(3.3)

which implies T ∩ (T + Av) �= ∅. Consequently, by Proposition 2.1, T is connected (see
Fig. 1a).

If k = −1, then �D = {0,±v,±(Av + v),±Av}, and (3.1, 3.2, 3.3) still hold. Hence T
is also connected.

If |k| > 1, let ki Av + liv ∈ �D for i ≥ 1, then a point of T − T can be written as
∞∑

i=1

A−i (ki Av + liv) =
∞∑

i=1

A−2i (k2i Av + l2iv) +
∞∑

i=1

A−2i+1(k2i−1 Av + l2i−1v)

=
∞∑

i=1

(−1

3
)i (k2i Av + l2iv) +

∞∑
i=1

(−1

3
)i (−3k2i−1v + l2i−1 Av)

=
(

k1 +
∞∑

i=1

(−1

3
)i (l2i + k2i+1)

)
v +

( ∞∑
i=1

(−1

3
)i (l2i−1 + k2i )

)
Av

:= Lv + K Av.
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Fig. 1 Two cases for f (x) = x2 + 3 and v = (1, 0)t

As |li +ki+1| ≤ 1+|k|, it follows that |K | ≤ (1+|k|)∑∞
i=1(

1
3 )i = (1+|k|)/2 < |k|. Hence

T ∩ (T + k Av) = ∅ and (T + v) ∩ (T + k Av) = ∅, which imply that T is disconnected (see
Fig. 1b).

Part B: f (x) = x2 + px ± 3 where p > 0.
For the cases of f (x) = x2+px+3 with 0 < p < 3, by using 0 = f (A) = f (A)(A−I ) =

A3 + (p − 1)A2 + (3 − p)A − 3I , we obtain

I =
∞∑

i=1

A−3i ((1 − p)A2 − (3 − p)A + 2I
)
. (3.4)

Case 1 f (x) = x2 + x + 3: For k = 1, then �D = {0,±v,±(Av − v),±Av}. By (3.4),
I = ∑∞

i=1 A−3i
( − 2A + 2I

)
and

v =
∞∑

i=1

A−3i ( − 2Av + 2v
) =

∞∑
i=0

A−3i (A−2(−v) + A−3(v − Av) + A−4(Av)
)
. (3.5)

Hence T ∩ (T + v) �= ∅. Moreover,

Av =
∞∑

i=0

A−3i (A−1(−v) + A−2(v − Av) + A−3(Av)
)

(3.6)

which implies T ∩ (T + Av) �= ∅. Consequently, T is connected (see Fig. 2a).
For k = −1, then �D = {0,±v,±(Av + v),±Av}. From f (A) = 0, we deduce that

I = (−A − 2I )(A2 + I )−1, which in turn gives

v = −A−1v − 2A−2v + A−3v + 2A−4v − A−5v − 2A−6v + A−7v + 2A−8v − · · ·
= A−2(−Av − v) + A−3(−Av) + A−4(Av + v) + A−5(Av) + A−6(−Av − v)

+A−7(−Av) + A−8(Av + v) + A−9(Av) + · · ·
∈ T − T .
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Fig. 2 Connected cases for v = (1, 0)t and k = 1

Hence T ∩ (T + v) �= ∅. Multiplying the above expression by A, we have

Av = A−1(−Av − v) + A−2(−Av) + A−3(Av + v) + A−4(Av)

+A−5(−Av − v) + A−6(−Av) + A−7(Av + v) + A−8(Av) + · · ·
∈ T − T

which implies T ∩ (T + Av) �= ∅. It follows that T is connected.
For |k| > 1. A point of T − T can be written as

∞∑
i=1

A−i (ki Av + liv)

where ki Av + liv ∈ �D for i ≥ 1. By using the relation A−iv = αiv + βi Av,

∞∑
i=1

A−i (ki Av + liv) =
∞∑

i=1

(ki A−i+1v + l−i
i A v)
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Fig. 3 Disconnected cases for v = (1, 0)t and k = 2

=
∞∑

i=1

ki (αi−1v + βi−1 Av) +
∞∑

i=1

li (αiv + βi Av)

=
(

k1 +
∞∑

i=1

(ki+1 + li )αi

)
v +

( ∞∑
i=1

(ki+1 + li )βi

)
Av

:= Lv + K Av. (3.7)

As |li + ki+1| ≤ 1 + |k| and β̃ < 0.63 (2.1), we conclude |K | ≤ 0.63(1 + |k|) < |k|, which
yields T ∩ (T + k Av) = ∅ and (T + v) ∩ (T + k Av) = ∅. Hence T is disconnected (see
Fig. 3(a)).

Case 2 f (x) = x2 + 2x + 3: For k = 1. By (3.4), I = ∑∞
i=1 A−3i

( − A2 − A + 2I
)

and

v=
∞∑

i=1

A−3i (− A2v− Av+2v
)= A−1(−v)+

∞∑
i=0

A−3i (A−2(−v) + A−3v+ A−4(Av−v)
)
.
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Hence T ∩ (T + v) �= ∅. Moreover,

Av = A−1(−Av) +
∞∑

i=0

A−3i (A−1(−v) + A−2v + A−3(Av − v)
)

which implies T ∩ (T + Av) �= ∅. Consequently, T is connected (see Fig. 2b).
For k = −1. We obtain from (3.4) that

v = −A−1v − A−2v + 2A−3v − A−4v − A−5v

+2A−6v − A−7v − A−8v + 2A−9v + · · ·
= A−1(−v) + A−2(−v) + A−3v + A−4(Av) + A−5(−Av − v)

+A−6v + A−7(Av) + A−8(−Av − v) + · · ·
∈ T − T,

implying T ∩ (T + v) �= ∅. Multiplying the above expression by A, we have

Av + v = A−1(−v) + A−2v + A−3(Av) + A−4(−Av − v)

+A−5v + A−6(Av) + A−7(−Av − v) + · · ·
∈ T − T,

implying (T + v) ∩ (T − Av) �= ∅. Hence T is connected.
For |k| > 1. By (3.7) and β̃ < 0.73 (2.2), we have |K | ≤ (1 + |k|)β̃ < 0.73(1 + |k|).

When |k| ≥ 3, |K | < 0.73(1 + |k|) < |k|, which yields T ∩ (T + k Av) = ∅ and (T + v) ∩
(T + k Av) = ∅. Hence T is disconnected. When k = 2, suppose (T + 2Av) ∩ T �= ∅ or
(T + 2Av) ∩ (T + v) �= ∅, i.e., 2Av + lv ∈ T − T for l = 0 or −1. By (3.7), we obtain

(k2 + l1)β1 = 2 −
∞∑

i=2

(ki+1 + li )βi ≥ 2 − (1 + 2)(β̃ − |β1|) > 0.8 (3.8)

where β1 = −1/3. It follows that l1 = −1, k2 = −2. Then using f (A) = 0, we have

A(2Av + lv) − k1 Av − l1v = (−4 + l − k1)Av − (6 + l1)v ∈ T − T .

It follows from l1 = −1 that k1 = 0 or 2. Hence −4 + l − k1 ≤ −4 + 0 + 0 = −4, which
contradicts the inequality |K | ≤ (1 + |k|)β̃ < 3 × 0.73 = 2.19. So T is disconnected for
k = 2 (see Fig. 3b).

When k = −2, suppose 2Av + lv ∈ T − T where l = 0 or 1. Similarly, it yields from
(3.8) that l1 = −1, k2 = −2 and k1 = −2 or 0. If k1 = −2, then (l − 2)Av − 5v ∈ T − T .
Multiplying the expression by A and using f (A) = 0, we obtain

(l − 2)A2v − 5Av − (k2 Av + l2v) = (1 − 2l)Av + (6 − 3l − l2)v ∈ T − T

and 6 − 3l − l2 ≥ 6 − 3 − 1 = 2. On the other hand, by (3.7) and (2.2), −5.81 = −2 − 3α̃ ≤
L ≤ −2 + 3α̃ < 1.81. This is ridiculous. If k1 = 0, then (l − 4)Av − 5v ∈ T − T and
|l − 4| ≥ 3 contracts |l − 4| = |K | < 2.19. Therefore T is disconnected for k = −2.

Case 3 f (x) = x2 + 3x + 3: For k = 1. From (A − I ) f (A) = 0, we get A2 + A − I =
2(A + I )−1, which yields I = −A−1 + A−2 + 2

∑∞
i=3(−1)i+1 A−i and
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v = −A−1v + A−2v + 2
∞∑

i=3

(−1)i+1 A−iv

= A−2(v − Av) + A−3v +
∞∑

i=0

A−2i (A−4(Av − v) + A−5(v − Av)
)
.

Hence T ∩ (T + v) �= ∅. Moreover,

Av = A−1(v − Av) + A−2v +
∞∑

i=0

A−2i (A−3(Av − v) + A−4(v − Av)
)

which implies T ∩ (T + Av) �= ∅. Consequently, T is connected (see Fig. 2c).
For k = −1. From f (A) = 0 we get A + 2I = −(A + I )−1. It follows that I =

−2A−1 − A−2 + A−3 − A−4 + A−5 + · · · and

v = −2A−1v − A−2v + A−3v − A−4v + A−5v + · · ·
= A−1(−v) + A−2(−Av − v) + A−3v + A−4(−v) + A−5v + A−6(−v) + · · ·
∈ T − T,

then T ∩ (T + v) �= ∅. Also we can deduce immediately that

Av + v = A−1(−Av − v) + A−2v + A−3(−v) + A−4v + A−5(−v) + · · ·
∈ T − T,

which yields (T + v) ∩ (T − Av) �= ∅. As a result, T is connected.
For k > 1. By (3.7) and (2.3), we have |L| ≤ k + (1 + k)α̃ < 2.24 + 3.24k. Suppose

k Av + lv ∈ T − T for l = 0 or −1. Multiplying (3.7) by A and then subtracting k1 Av + l1v
from both sides, we see that

(−3k + l − k1)Av − (3k + l1)v ∈ T − T . (3.9)

Repeating the process, we obtain

(6k − 3l + 3k1 − l1 − k2)Av + (9k − 3l + 3k1 − l2)v ∈ T − T . (3.10)

Since 9k − 3l + 3k1 − l2 ≥ 9k − 0 − 3k − 1 = 6k − 1 > 2.24 + 3.24k, which exceeds the
upper bound of |L|. It concludes that T ∩ (T + k Av) = ∅ and (T + v) ∩ (T + k Av) = ∅,
that is, T is disconnected (see Fig. 3c).

For k ≤ −3, then |L| ≤ −k + (1 − k)α̃ < 2.24 − 3.24k. It follows from (3.10) that
|9k − 3l + 3k1 − l2| ≥ −9k − 3 + 3k − 1 = −6k − 4 > 2.24 − 3.24k, which also exceeds
the upper bound of |L|.

For k = −2, then |K | < 3.24 and |L| < 8.72. From (3.9), we have 6 + l − k1 < 3.24,
hence l = −1 and k1 = 2. From (3.10), we have l2 = −1 and 3 + l1 + k2 < 3.24, it follows
that l1 = 0, k2 = −2, or l1 = 0, k2 = 0, or l1 = 1, k2 = −2.

When l1 = 0, k2 = −2. Multiplying (3.10) by A and then subtracting k3 Av + l3v, we get

(−5 − k3)Av + (3 − l3)v ∈ T − T .

By |5 + k3| ≤ 3.24, it yields k3 = −2. Repeating this process, we obtain

(12 − l3 − k4)Av + (9 − l4)v ∈ T − T .

Hence we get a contradiction |12 − l3 − k4| ≥ 9 > 3.24.
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When l1 = 0, k2 = 0. Multiplying (3.10) by A and then subtracting k3 Av + l3v, we get

(1 − k3)Av + (9 − l3)v ∈ T − T .

It yields l3 = 1 and k3 = 0 or 2. Repeating this process, we obtain

(3k3 + 5 − k4)Av + (3k3 − 3 − l4)v ∈ T − T .

If k3 = 0, then (5 − k4)Av + (−3 − l4)v ∈ T − T , and k4 = 2. Finally we get (−12 − l4 −
k5)Av + (−9 − l5)v ∈ T − T and a contradiction |12 + l4+k5| ≥ 9 > 3.24. If k3 = 2, then
(11 − k4)Av + (3 − l4)v ∈ T − T , and also |11 − k4| ≥ 9 > 3.24.

When l1 = 1, k2 = −2. By the same argument as above, we first get

(−2 − k3)Av + (6 − l3)v ∈ T − T .

It yields k3 = 0. Repeating this process, we obtain (12 − l3 − k4)Av + (6 − l4)v ∈ T − T
and |12 − l3−k4| ≥ 9 > 3.24 follows. Therefore T is disconnected for |k| > 1.

Case 4 f (x) = x2 +x −3: For k = 1. We deduce from f (A) = 0 that I = (A2 − I )−1(−A+
2I ), which yields I = ∑∞

i=0 A−2i (−A−1 + 2A−2) and

v =
∞∑

i=0

A−2i (−A−1 + 2A−2)v

= A−2(v − Av) +
∞∑

i=1

A−2i (A−1(Av − v) + A−2v
)
.

Hence T ∩ (T + v) �= ∅. Moreover,

Av = A−1(v − Av) +
∞∑

i=1

A−2i ((Av − v) + A−1v
)

which implies T ∩ (T + Av) �= ∅. Consequently, T is connected (see Fig. 2d).
For k = −1. It follows from v = A−1(Av) ∈ T − T that T ∩ (T + v) �= ∅. Moreover,

we can get A + I = −I + (A − I )−1 from f (A) = 0. This implies

Av + v = A−1(−Av) + A−2(Av) + A−3(Av) + A−4(Av) + · · ·
∈ T − T,

that is, (T + v) ∩ (T − Av) �= ∅. Hence T is connected.
For k > 1. By (3.7) and (2.4), we have |K | ≤ (1+ k)β̃ = 1+ k and |L| ≤ k + (1+ k)α̃ =

2 + 3k. Suppose k Av + lv ∈ T − T for l = 0 or −1. Multiplying (3.7) by A and then
subtracting k1 Av + l1v from both sides, we have

(−k + l − k1)Av + (3k − l1)v ∈ T − T .

Repeating the process, we obtain

(4k − l + k1 − l1 − k2)Av + (−3k + 3l − 3k1 − l2)v ∈ T − T . (3.11)

Note 4k − l +k1 − l1 −k2 ≥ 2k −1. When k ≥ 3, 2k −1 > k +1 which contradicts the upper
bound of |K |, hence T is disconnected; when k = 2, it forces l = 0, k1 = −2, l1 = 1, k2 = 2
and 3Av − l2v ∈ T − T , similarly which implies

(−3 − l2 − k3)Av + (9 − l3)v ∈ T − T .
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It is required that |9−l3| ≤ 8, hence l3 = 1. Furthermore, from (−3−l2−k3)Av+8v ∈ T −T ,
we can deduce that

(11 + l2 + k3 − k4)Av + (−9 − 3l2 − 3k2 − l4)v ∈ T − T .

Since 11 + l2 + k3 − k4 ≥ 6 > 3, we also get a contradiction, and T is disconnected.
Consequently, T is disconnected for all k > 1 (see Fig. 3d).

For k < −1, then |K | ≤ 1−k. From (3.11), it follows that |K | ≥ −4k +l −k1 +l1 +k2 ≥
−4k − 1 + k + 1 + k = −2k > 1 − k, which is impossible. Therefore T is disconnected for
|k| > 1.

Part C: f (x) = x2 − px ± 3 where p > 0.
The characteristic polynomial of A is f (x) = x2− px ±3 if and only if that of B := −A is

g(x) = x2 + px ±3 which has been considered in Part B. The proof for the disconnectedness
of T (A, D) when |k| > 1 can be adapted easily from Part B by applying Corollary 2.3. Let

D1 = {0, v, Bv} = {0, v,−Av} and D2 = {0, v,−Bv} = {0, v, Av}.
For |k| = 1, we deduce the connectedness of T1 := T (A, D1) (respectively, T ′

1 = T (A, D2))
from that of T (B, D1) (respectively, T (B, D2)).

We only show the case of f (x) = x2 − x + 3. In Case 1 of Part B, from (3.5) we have

v =
∞∑

i=0

(−A)−3i (A−2(−v) − A−3(v + Av) + A−4(−Av)
) ∈ T1 − T1

and from (3.6) we have

Av =
∞∑

i=0

(−A)−3i (A−1(−v) − A−2(v + Av) + A−3(−Av)
) ∈ T1 − T1.

Hence T1 is connected. Similarly, it can be verified that v, Av ∈ T ′
1 − T ′

1 and T ′
1 is also

connected.
Consequently, we finish the proof of Theorem 1.1.

4 Remarks

The proof of Part C in the last section is indeed an application of the following more general
result.

Theorem 4.1 Let A ∈ Mn(Z) be an expanding matrix, and D ⊂ R
n be a digit set. If a matrix

B is similar to A, then there exists a digit set D′ such that T (A, D) is connected if and only
if T (B, D′) is connected.

Proof Since B is similar to A, there exists an invertible matrix P such that B = P AP−1.
By letting D′ = PD, then

T (B, D′) =
{ ∞∑

i=1

B−i d ′
ji : d ′

ji ∈ D′
}

=
{ ∞∑

i=1

P A−i P−1d ′
ji : d ′

ji ∈ D′
}
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= P

{ ∞∑
i=1

A−i d ji : d ji ∈ D
}

= PT (A, D).

Thus T (A, D) and T (B, D′) have the same connected property. ��
Corollary 4.2 Let A, B ∈ M2(Z) be two expanding matrices with characteristic polynomi-
als f (x) = x2 + px + q and g(x) = x2 − px + q respectively. Let v be a vector such that
{v, Av} is linearly independent, and L = {a Av +bv : a, b ∈ R}. If D ⊂ L is a digit set, then
there exists a digit set D′ such that T1 := T (A, D) is connected if and only if T2 := T (B, D′)
is connected.

Proof If B = −A, we let D′ = D. For a Av + bv = −aBv + bv ∈ �D = �D′, we claim
that a Av+bv ∈ T1 −T1 if and only if −aBv+bv ∈ T2 −T2. Then the desired result follows
by Proposition 2.1. We now prove the claim: if a Av + bv ∈ T1 − T1 then

a Av + bv =
∞∑

i=1

A−i (ci Av + div)

where ci Av + div ∈ �D. Using the relation A = −B and the symmetry of �D, it follows
that

−aBv + bv =
∞∑

i=1

B−i
(
(−1)i (−ci Bv + div)

)
∈ T2 − T2.

If otherwise, B �= −A. Since v, Av are linearly independent, the minimal polynomial of
A coincides with f (x). Hence A is similar to the companion matrix of f (x). So is B. By
Theorem 4.1, we can assume that A, B are the companion matrices of f (x), g(x) respectively.

Then B = P(−A)P−1 where P =
[−1 0

0 1

]
. Combining the above argument and Theorem

4.1 yields the corollary. ��
From the proof of Theorem 1.1 in the previous section, we can also deduce that

Corollary 4.3 Let A be a 2 × 2 integral expanding matrix with | det A| = 3. Let v ∈ R
2

such that {v, Av} is linearly independent. Then the self-affine set T (A, D) is connected for
D = {0, v, Av + v} or {0, v,−Av + v}.
Proof Notice that the difference set �{0, v, Av + v} = {0,±v,±Av,±(Av + v)} =
�{0, v,−Av} and �{0, v,−Av + v} = {0,±v,±Av,±(Av − v)} = �{0, v, Av}. ��

The connectedness of self-affine sets/tiles is far from known extensively. Even for the
planar case, there are still a lot of unsolved questions. The following may be some interesting
topics related to the paper.

Q1. Can we characterize the connectedness of T (A, D) with | det A| = 3 and D =
{0, v, k Av + lv}?

Q2. For a two dimensional digit set D = {0, v, 2v, . . . , (l − 1)v, Av, 2Av, . . . , k Av} with
l + k = | det A| > 3, can we apply the same method to study the connectedness of
T (A, D)?

Recently, Fu and Gabardo [5] devised an algorithm to find the integral points in T − T .
Their method seems to be a different approach to the problems.
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