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A note on standard equivalences

Xiao-Wu Chen

Abstract

We prove that any derived equivalence between triangular algebras is standard, that is, it is
isomorphic to the derived tensor functor given by a two-sided tilting complex.

1. Introduction

Let k be a field. We require that all categories and functors we are discussing are k-linear. Let
A be a finite-dimensional k-algebra. We denote by A-mod the category of finite-dimensional
left A-modules and by Db(A-mod) its bounded derived category.

Let B be another finite-dimensional k-algebra. We will require that k acts centrally on any B-
A-bimodule. Recall that a two-sided tilting complex is a bounded complex X of B-A-bimodules
such that the derived tensor functor gives an equivalence X ⊗L

A − : Db(A-mod) → Db(B-mod).
A triangle equivalence F : Db(A-mod) → Db(B-mod) is said to be standard if it is isomor-

phic, as a triangle functor, to X ⊗L
A − for some two-sided tilting complex X. It is an open ques-

tion whether all triangle equivalences are standard; see the remarks before [7, Corollary 3.5].
We mention that the answer to this question is yes for hereditary algebras in [6, Theorem 1.8],
and for algebras with ample or anti-ample canonical bundles in [5, Theorem 4.5].

The aim of this note is to answer the above question affirmatively in another special case,
which contains hereditary algebras.

Recall that an algebra A is triangular provided that the Ext-quiver of A has no oriented
cycles. There are explicit examples of algebras A and B, which are derived equivalent such
that A is triangular, but B is not; the reader is referred to the top of [2, p. 21]. It makes sense
to have the following notion: an algebra A is derived-triangular if it is derived equivalent to a
triangular algebra.

Theorem 1.1. Let A be a derived-triangular algebra. Then any triangle equivalence
F : Db(A-mod) → Db(B-mod) is standard.

We observe that a derived-triangular algebra has finite global dimension. The converse
is not true in general. Indeed, let A be a non-triangular algebra with two simple modules
that has finite global dimension; for an example, one may take the Schur algebra S(2, 2) in
characteristic two. Then A is not derived-triangular. Indeed, any triangular algebra B that is
derived equivalent to A has two simple modules and thus is hereditary. This forces that the
algebra A is triangular, yielding a contradiction.

We recall that a piecewise hereditary algebra is triangular. In particular, Theorem 1.1 implies
that the assumption on the standardness of the autoequivalence in [4, Section 4] is superfluous.

The proof of Theorem 1.1 is a rather immediate application of [1, Theorem 4.7], which
characterizes certain triangle functors between the bounded homotopy categories of Orlov
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categories. Here, we observe that the category of projective modules over a triangular algebra
is naturally an Orlov category.

We refer the reader to [8, 9] for unexplained notions in the representation theory of algebras.

2. The bounded homotopy category of an Orlov category

Let A be a k-linear additive category, which is Hom-finite and has split idempotents. Here,
the Hom-finiteness means that all the Hom spaces are finite-dimensional. It follows that A is
a Krull–Schmidt category; see [3, Corollary A.2].

We denote by IndA a complete set of representatives of indecomposable objects in A. The
category A is called bricky if the endomorphism algebra of each indecomposable object is a
division algebra.

We slightly generalize [1, Definition 4.1]. A bricky category A is called an Orlov category
provided that there is a degree function deg : IndA → Z with the following property: for any
indecomposable objects P, P ′ having HomA(P, P ′) �= 0, we have that P � P ′ or deg(P ) >
deg(P ′). An object X in A is homogeneous of degree n if it is isomorphic to a finite direct
sum of indecomposables of degree n. An additive functor F : A → A is homogeneous if it sends
homogeneous objects to homogeneous objects and preserves their degrees.

Let A be a finite-dimensional k-algebra. We denote by {S1, S2, . . . , Sn} a complete set of
representatives of simple A-modules. Denote by Pi the projective cover of Si. We recall that
the Ext-quiver QA of A is defined as follows. The vertex set of QA equals {1, 2, . . . , n}, and
there is a unique arrow from i to j provided that Ext1A(Si, Sj) �= 0. The algebra A is triangular
provided that QA has no oriented cycles.

Let A be a triangular algebra. We denote by Q0
A the set of sources in QA. Here, a vertex

is a source if there is no arrow ending at it. For each d � 1, we define the set Qd
A inductively,

such that a vertex i belongs to Qd
A if and only if any arrow ending at i necessarily starts at⋃

0�m�d−1 Qm
A . It follows that Q0

A ⊆ Q1
A ⊆ Q2

A ⊆ · · · and that
⋃

d�0 Qd
A = {1, 2, . . . , n}. We

mention that this construction can be found in [8, p. 42].
We denote by A-proj the category of finite-dimensional projective A-modules. Then

{P1, P2, . . . , Pn} is a complete set of representatives of indecomposables in A-proj. For each
1 � i � n, we define deg(Pi) = d such that i ∈ Qd

A and i /∈ Qd−1
A .

The following example of an Orlov category seems to be well known.

Lemma 2.1. Let A be a triangular algebra. Then A-proj is an Orlov category with the
above degree function. Moreover, any equivalence F : A-proj → A-proj is homogeneous.

Proof. Since A is triangular, it is well known that EndA(Pi) is isomorphic to EndA(Si),
which is a division algebra. Then A-proj is bricky. We recall that for i �= j with HomA(Pi, Pj) �=
0, there is a path from j to i in QA. From the very construction, we infer that, for an arrow
α : a → b with b ∈ Qd

A, we have a ∈ Qd−1
A . Then we are done by the following consequence: if

there is a path from j to i in QA, then deg(Pj) < deg(Pi).
For the final statement, we observe that the equivalence F extends to an autoequivalence on

A-mod, and thus induces an automorphism of QA. The automorphism preserves the subsets
Qd

A. Consequently, the equivalence F preserves degrees, and is homogeneous.

Let A be a k-linear additive category as above. We denote by Kb(A) the homotopy category

of bounded complexes in A. Here, a complex X is visualized as · · · → Xn−1 dn−1
X→ Xn dn

X→
Xn+1 → · · · , where the differentials satisfy dn

X ◦ dn−1
X = 0. The translation functor on Kb(A)

is denoted by [1], whose nth power is denoted by [n].
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We view an object A in A as a stalk complex concentrated at degree zero, which is still
denoted by A. In this way, we identify A as a full subcategory of Kb(A).

We are interested in triangle functors on Kb(A). We recall that a triangle functor (F, θ)
consists of an additive functor F : Kb(A) → Kb(A) and a natural isomorphism θ : [1]F → F [1],
which preserves triangles. More precisely, for any triangle X → Y → Z

h→ X[1] in Kb(A), the

sequence FX → FY → FZ
θX◦F (h)−→ (FX)[1] is a triangle. We refer to θ as the connecting

isomorphism for F . A natural transformation between triangle functors is required to respect
the two connecting isomorphisms.

For a triangle functor (F, θ), the connecting isomorphism θ is trivial if [1]F = F [1] and θ is
the identity transformation. In this case, we suppress θ and write F for the triangle functor.

Any additive functor F : A → A gives rise to a triangle functor Kb(F ) : Kb(A) → Kb(A),
which acts on complexes componentwise. The connecting isomorphism for Kb(F ) is triv-
ial. Similarly, any natural transformation η : F → F ′ extends to a natural transformation
Kb(η) : Kb(F ) → Kb(F ′) between triangle functors.

The following fundamental result is due to [1, Theorem 4.7].

Proposition 2.2. Let A be an Orlov category and let (F, θ) : Kb(A) → Kb(A) be a
triangle functor such that F (A) ⊆ A. We assume further that F |A : A → A is homogeneous.
Let F1, F2 : A → A be two homogeneous functors.

(i) Then there is a unique natural isomorphism (F, θ) → Kb(F |A) of triangle functors,
which is the identity on the full subcategory A.

(ii) Any natural transformation Kb(F1) → Kb(F2) of triangle functors is of the form Kb(η)
for a unique natural transformation η : F1 → F2.

Proof. The existence of the natural isomorphism in (1) is due to [1, Theorem 4.7]; cf. [1,
Remark 4.8]. The uniqueness follows from the commutative diagram (4.10) and Lemma 4.5(2)
in [1], by induction on the support of a complex in the sense of [1, Subsection 4.1]. Here,
we emphasize that the connecting isomorphism θ is used in the construction of the natural
isomorphism on stalk complexes; compare the second paragraph in [1, p. 1541].

The statement (2) follows by the same uniqueness reasoning as above. More precisely, in the
notation of [1, Theorem 4.7], the extension of θ0 therein to θ is unique.

Recall that Db(A-mod) denotes the bounded derived category of A-mod. We identify A-mod
as the full subcategory of Db(A-mod) formed by stalk complexes concentrated at degree zero.
We denote by Hn(X) the nth cohomology of a complex X.

The following observation is immediate.

Lemma 2.3. Let A be a finite-dimensional algebra and let F : Db(A-mod) → Db(A-mod)
be a triangle equivalence with F (A) � A. Then we have F (A-mod) = A-mod, and thus the
restricted equivalence F |A-mod : A-mod → A-mod.

Proof. We use the canonical isomorphisms Hn(X) � Hom
Db(A-mod)

(A[−n],X). It follows
that both F and its quasi-inverse send stalk complexes to stalk complexes. Then we are done.

We assume that we are given an equivalence F : A-mod → A-mod with F (A) � A. Then
there is an algebra automorphism σ : A → A such that F is isomorphic to σA1 ⊗A −. Here, the
A-bimodule σA1 is given by the regular right A-module, where the left A-module is twisted
by σ. This bimodule is invertible and thus viewed as a two-sided tilting complex. We refer
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the reader to [7,9, Subsection 6.5] for details on two-sided tilting complexes and standard
equivalences.

We now combine the above results.

Proposition 2.4. Let A be a triangular algebra and let (F, θ) : Db(A-mod) → Db(A-mod)
be a triangle equivalence with F (A) � A. We recall the algebra automorphism σ given
by the restricted equivalence F |A-mod, and the A-bimodule σA1. Then there is a natural
isomorphism (F, θ) → σA1 ⊗L

A − of triangle functors. In particular, the triangle equivalence
(F, θ) is standard.

Proof. Since the algebra A is triangular, it has finite global dimension. The natural
functor Kb(A-proj) → Db(A-mod) is a triangle equivalence. We identify these two categories.
Therefore, the triangle functor (F, θ) : Kb(A-proj) → Kb(A-proj) restricts to an equivalence
F |A-proj, which is isomorphic to σA1 ⊗A −. By Lemma 2.1, the statements in Proposition 2.2
apply in our situation. Consequently, we have an isomorphism between (F, θ) and Kb(σA1

⊗A −). Here, we identify the functors Kb(σA1 ⊗A −) and σA1 ⊗L
A −. Then we are done.

3. The proof of Theorem 1.1

We now prove Theorem 1.1. In what follows, for simplicity, when writing a triangle functor,
we suppress its connecting isomorphism.

We first assume that the algebra A is triangular. The complex F (A) is a one-sided
tilting complex. By [9, Theorem 6.4.1], there is a two-sided tilting complex X of B-A-
bimodules with an isomorphism X → F (A) in Db(B-mod). Denote by G a quasi-inverse
of the standard equivalence X ⊗L

A − : Db(A-mod) → Db(B-mod). Then the triangle functor
GF : Db(A-mod) → Db(A-mod) satisfies GF (A) � A. Proposition 2.4 implies that GF is
standard, and thus F is isomorphic to the composition of X ⊗L

A − and a standard equivalence.
Then we are done in this case by the well-known fact that the composition of two standard
equivalences is standard.

In general, let A be derived-triangular. Assume that A′ is a triangular algebra that is derived
equivalent to A. By [9, Proposition 6.5.5], there is a standard equivalence F ′ : Db(A′-mod) →
Db(A-mod). The above argument implies that the composition FF ′ is standard. Recall from [9,
Proposition 6.5.6] that a quasi-inverse F ′−1 of F ′ is standard. We are done by observing that
F is isomorphic to the composition (FF ′)F ′−1, a composition of two standard equivalences.

Acknowledgements. We thank Martin Kalck for pointing out the example in [2] and Dong
Yang for the reference [5].
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