A note on standard equivalences

Xiao-Wu Chen

Abstract

We prove that any derived equivalence between triangular algebras is standard, that is, it is isomorphic to the derived tensor functor given by a two-sided tilting complex.

1. Introduction

Let k be a field. We require that all categories and functors we are discussing are k-linear. Let A be a finite-dimensional k-algebra. We denote by A-mod the category of finite-dimensional left A-modules and by $\mathbf{D}^{b}(A$ -mod) its bounded derived category.

Let B be another finite-dimensional k-algebra. We will require that k acts centrally on any B-A-bimodule. Recall that a two-sided tilting complex is a bounded complex X of B-A-bimodules such that the derived tensor functor gives an equivalence $X \otimes_A^{\mathbf{L}} -: \mathbf{D}^b(A\operatorname{-mod}) \to \mathbf{D}^b(B\operatorname{-mod})$.

such that the derived tensor functor gives an equivalence $X \otimes_A^{\mathbf{L}} -: \mathbf{D}^b(A\text{-mod}) \to \mathbf{D}^b(B\text{-mod})$. A triangle equivalence $F: \mathbf{D}^b(A\text{-mod}) \to \mathbf{D}^b(B\text{-mod})$ is said to be standard if it is isomorphic, as a triangle functor, to $X \otimes_A^{\mathbf{L}}$ - for some two-sided tilting complex X. It is an open question whether all triangle equivalences are standard; see the remarks before [7, Corollary 3.5]. We mention that the answer to this question is yes for hereditary algebras in [6, Theorem 1.8], and for algebras with ample or anti-ample canonical bundles in [5, Theorem 4.5].

The aim of this note is to answer the above question affirmatively in another special case, which contains hereditary algebras.

Recall that an algebra A is triangular provided that the Ext-quiver of A has no oriented cycles. There are explicit examples of algebras A and B, which are derived equivalent such that A is triangular, but B is not; the reader is referred to the top of [2, p. 21]. It makes sense to have the following notion: an algebra A is derived-triangular if it is derived equivalent to a triangular algebra.

THEOREM 1.1. Let A be a derived-triangular algebra. Then any triangle equivalence $F: \mathbf{D}^b(A\operatorname{-mod}) \to \mathbf{D}^b(B\operatorname{-mod})$ is standard.

We observe that a derived-triangular algebra has finite global dimension. The converse is not true in general. Indeed, let A be a non-triangular algebra with two simple modules that has finite global dimension; for an example, one may take the Schur algebra S(2,2) in characteristic two. Then A is not derived-triangular. Indeed, any triangular algebra B that is derived equivalent to A has two simple modules and thus is hereditary. This forces that the algebra A is triangular, yielding a contradiction.

We recall that a piecewise hereditary algebra is triangular. In particular, Theorem 1.1 implies that the assumption on the standardness of the autoequivalence in [4, Section 4] is superfluous.

The proof of Theorem 1.1 is a rather immediate application of [1, Theorem 4.7], which characterizes certain triangle functors between the bounded homotopy categories of Orlov

Received 9 November 2015; revised 28 April 2016; published online 14 July 2016.

²⁰¹⁰ Mathematics Subject Classification 13D09, 16G10, 18E30 (primary).

The author is supported by National Natural Science Foundation of China (Nos. 411201446 and 11522113), NCET-12-0507, and the Fundamental Research Funds for the Central Universities.

categories. Here, we observe that the category of projective modules over a triangular algebra is naturally an Orlov category.

We refer the reader to [8, 9] for unexplained notions in the representation theory of algebras.

2. The bounded homotopy category of an Orlov category

Let \mathcal{A} be a k-linear additive category, which is Hom-finite and has split idempotents. Here, the Hom-finiteness means that all the Hom spaces are finite-dimensional. It follows that \mathcal{A} is a Krull–Schmidt category; see [3, Corollary A.2].

We denote by $\operatorname{Ind} \mathcal{A}$ a complete set of representatives of indecomposable objects in \mathcal{A} . The category \mathcal{A} is called *bricky* if the endomorphism algebra of each indecomposable object is a division algebra.

We slightly generalize [1, Definition 4.1]. A bricky category \mathcal{A} is called an Orlov category provided that there is a degree function deg: $\operatorname{Ind} \mathcal{A} \to \mathbb{Z}$ with the following property: for any indecomposable objects P, P' having $\operatorname{Hom}_{\mathcal{A}}(P, P') \neq 0$, we have that $P \simeq P'$ or $\deg(P) > \deg(P')$. An object X in \mathcal{A} is homogeneous of degree n if it is isomorphic to a finite direct sum of indecomposables of degree n. An additive functor $F: \mathcal{A} \to \mathcal{A}$ is homogeneous if it sends homogeneous objects to homogeneous objects and preserves their degrees.

Let A be a finite-dimensional k-algebra. We denote by $\{S_1, S_2, \ldots, S_n\}$ a complete set of representatives of simple A-modules. Denote by P_i the projective cover of S_i . We recall that the Ext-quiver Q_A of A is defined as follows. The vertex set of Q_A equals $\{1, 2, \ldots, n\}$, and there is a unique arrow from i to j provided that $\text{Ext}_A^1(S_i, S_j) \neq 0$. The algebra A is triangular provided that Q_A has no oriented cycles.

Let A be a triangular algebra. We denote by Q_A^0 the set of sources in Q_A . Here, a vertex is a source if there is no arrow ending at it. For each $d \ge 1$, we define the set Q_A^d inductively, such that a vertex *i* belongs to Q_A^d if and only if any arrow ending at *i* necessarily starts at $\bigcup_{0 \le m \le d-1} Q_A^m$. It follows that $Q_A^0 \subseteq Q_A^1 \subseteq Q_A^2 \subseteq \cdots$ and that $\bigcup_{d \ge 0} Q_A^d = \{1, 2, \ldots, n\}$. We mention that this construction can be found in [8, p. 42].

We denote by A-proj the category of finite-dimensional projective A-modules. Then $\{P_1, P_2, \ldots, P_n\}$ is a complete set of representatives of indecomposables in A-proj. For each $1 \leq i \leq n$, we define $\deg(P_i) = d$ such that $i \in Q_A^d$ and $i \notin Q_A^{d-1}$.

The following example of an Orlov category seems to be well known.

LEMMA 2.1. Let A be a triangular algebra. Then A-proj is an Orlov category with the above degree function. Moreover, any equivalence F: A-proj $\rightarrow A$ -proj is homogeneous.

Proof. Since A is triangular, it is well known that $\operatorname{End}_A(P_i)$ is isomorphic to $\operatorname{End}_A(S_i)$, which is a division algebra. Then A-proj is bricky. We recall that for $i \neq j$ with $\operatorname{Hom}_A(P_i, P_j) \neq 0$, there is a path from j to i in Q_A . From the very construction, we infer that, for an arrow $\alpha \colon a \to b$ with $b \in Q_A^d$, we have $a \in Q_A^{d-1}$. Then we are done by the following consequence: if there is a path from j to i in Q_A , then $\operatorname{deg}(P_j) < \operatorname{deg}(P_i)$.

For the final statement, we observe that the equivalence F extends to an autoequivalence on A-mod, and thus induces an automorphism of Q_A . The automorphism preserves the subsets Q_A^d . Consequently, the equivalence F preserves degrees, and is homogeneous.

Let \mathcal{A} be a k-linear additive category as above. We denote by $\mathbf{K}^{b}(\mathcal{A})$ the homotopy category of bounded complexes in \mathcal{A} . Here, a complex X is visualized as $\cdots \to X^{n-1} \stackrel{d_{X}^{n-1}}{\longrightarrow} X^{n} \stackrel{d_{X}^{n}}{\longrightarrow} X^{n+1} \to \cdots$, where the differentials satisfy $d_{X}^{n} \circ d_{X}^{n-1} = 0$. The translation functor on $\mathbf{K}^{b}(\mathcal{A})$ is denoted by [1], whose *n*th power is denoted by [*n*]. We view an object A in \mathcal{A} as a stalk complex concentrated at degree zero, which is still denoted by A. In this way, we identify \mathcal{A} as a full subcategory of $\mathbf{K}^{b}(\mathcal{A})$.

We are interested in triangle functors on $\mathbf{K}^{b}(\mathcal{A})$. We recall that a triangle functor (F, θ) consists of an additive functor $F: \mathbf{K}^{b}(\mathcal{A}) \to \mathbf{K}^{b}(\mathcal{A})$ and a natural isomorphism $\theta: [1]F \to F[1]$, which preserves triangles. More precisely, for any triangle $X \to Y \to Z \xrightarrow{h} X[1]$ in $\mathbf{K}^{b}(\mathcal{A})$, the sequence $FX \to FY \to FZ \xrightarrow{\theta_{X} \circ F(h)} (FX)[1]$ is a triangle. We refer to θ as the connecting isomorphism for F. A natural transformation between triangle functors is required to respect the two connecting isomorphisms.

For a triangle functor (F, θ) , the connecting isomorphism θ is trivial if [1]F = F[1] and θ is the identity transformation. In this case, we suppress θ and write F for the triangle functor.

Any additive functor $F: \mathcal{A} \to \mathcal{A}$ gives rise to a triangle functor $\mathbf{K}^{b}(F): \mathbf{K}^{b}(\mathcal{A}) \to \mathbf{K}^{b}(\mathcal{A})$, which acts on complexes componentwise. The connecting isomorphism for $\mathbf{K}^{b}(F)$ is trivial. Similarly, any natural transformation $\eta: F \to F'$ extends to a natural transformation $\mathbf{K}^{b}(\eta): \mathbf{K}^{b}(F) \to \mathbf{K}^{b}(F')$ between triangle functors.

The following fundamental result is due to [1, Theorem 4.7].

PROPOSITION 2.2. Let \mathcal{A} be an Orlov category and let (F, θ) : $\mathbf{K}^{b}(\mathcal{A}) \to \mathbf{K}^{b}(\mathcal{A})$ be a triangle functor such that $F(\mathcal{A}) \subseteq \mathcal{A}$. We assume further that $F|_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ is homogeneous. Let $F_{1}, F_{2} : \mathcal{A} \to \mathcal{A}$ be two homogeneous functors.

(i) Then there is a unique natural isomorphism $(F, \theta) \to \mathbf{K}^b(F|_{\mathcal{A}})$ of triangle functors, which is the identity on the full subcategory \mathcal{A} .

(ii) Any natural transformation $\mathbf{K}^{b}(F_{1}) \to \mathbf{K}^{b}(F_{2})$ of triangle functors is of the form $\mathbf{K}^{b}(\eta)$ for a unique natural transformation $\eta: F_{1} \to F_{2}$.

Proof. The existence of the natural isomorphism in (1) is due to [1, Theorem 4.7]; cf. [1, Remark 4.8]. The uniqueness follows from the commutative diagram (4.10) and Lemma 4.5(2) in [1], by induction on the support of a complex in the sense of [1, Subsection 4.1]. Here, we emphasize that the connecting isomorphism θ is used in the construction of the natural isomorphism on stalk complexes; compare the second paragraph in [1, p. 1541].

The statement (2) follows by the same uniqueness reasoning as above. More precisely, in the notation of [1, Theorem 4.7], the extension of θ^0 therein to θ is unique.

Recall that $\mathbf{D}^{b}(A\operatorname{-mod})$ denotes the bounded derived category of A-mod. We identify A-mod as the full subcategory of $\mathbf{D}^{b}(A\operatorname{-mod})$ formed by stalk complexes concentrated at degree zero. We denote by $H^{n}(X)$ the *n*th cohomology of a complex X.

The following observation is immediate.

LEMMA 2.3. Let A be a finite-dimensional algebra and let $F: \mathbf{D}^{b}(A\operatorname{-mod}) \to \mathbf{D}^{b}(A\operatorname{-mod})$ be a triangle equivalence with $F(A) \simeq A$. Then we have $F(A\operatorname{-mod}) = A\operatorname{-mod}$, and thus the restricted equivalence $F|_{A\operatorname{-mod}}: A\operatorname{-mod} \to A\operatorname{-mod}$.

Proof. We use the canonical isomorphisms $H^n(X) \simeq \text{Hom}_{\mathbf{D}^b(A-\text{mod})}(A[-n], X)$. It follows that both F and its quasi-inverse send stalk complexes to stalk complexes. Then we are done.

We assume that we are given an equivalence $F: A \text{-mod} \to A \text{-mod}$ with $F(A) \simeq A$. Then there is an algebra automorphism $\sigma: A \to A$ such that F is isomorphic to $\sigma A_1 \otimes_A -$. Here, the A-bimodule σA_1 is given by the regular right A-module, where the left A-module is twisted by σ . This bimodule is invertible and thus viewed as a two-sided tilting complex. We refer the reader to [7,9, Subsection 6.5] for details on two-sided tilting complexes and standard equivalences.

We now combine the above results.

PROPOSITION 2.4. Let A be a triangular algebra and let (F, θ) : $\mathbf{D}^{b}(A \operatorname{-mod}) \to \mathbf{D}^{b}(A \operatorname{-mod})$ be a triangle equivalence with $F(A) \simeq A$. We recall the algebra automorphism σ given by the restricted equivalence $F|_{A \operatorname{-mod}}$, and the A-bimodule ${}_{\sigma}A_{1}$. Then there is a natural isomorphism $(F, \theta) \to {}_{\sigma}A_{1} \otimes_{A}^{\mathbf{L}} -$ of triangle functors. In particular, the triangle equivalence (F, θ) is standard.

Proof. Since the algebra A is triangular, it has finite global dimension. The natural functor $\mathbf{K}^{b}(A\operatorname{-proj}) \to \mathbf{D}^{b}(A\operatorname{-mod})$ is a triangle equivalence. We identify these two categories. Therefore, the triangle functor $(F, \theta) \colon \mathbf{K}^{b}(A\operatorname{-proj}) \to \mathbf{K}^{b}(A\operatorname{-proj})$ restricts to an equivalence $F|_{A\operatorname{-proj}}$, which is isomorphic to ${}_{\sigma}A_{1} \otimes_{A} -$. By Lemma 2.1, the statements in Proposition 2.2 apply in our situation. Consequently, we have an isomorphism between (F, θ) and $\mathbf{K}^{b}({}_{\sigma}A_{1} \otimes_{A} -)$. Here, we identify the functors $\mathbf{K}^{b}({}_{\sigma}A_{1} \otimes_{A} -)$ and ${}_{\sigma}A_{1} \otimes_{A}^{L} -$. Then we are done.

3. The proof of Theorem 1.1

We now prove Theorem 1.1. In what follows, for simplicity, when writing a triangle functor, we suppress its connecting isomorphism.

We first assume that the algebra A is triangular. The complex F(A) is a one-sided tilting complex. By [9, Theorem 6.4.1], there is a two-sided tilting complex X of B-Abimodules with an isomorphism $X \to F(A)$ in $\mathbf{D}^b(B$ -mod). Denote by G a quasi-inverse of the standard equivalence $X \otimes_A^{\mathbf{L}} - : \mathbf{D}^b(A$ -mod) $\to \mathbf{D}^b(B$ -mod). Then the triangle functor $GF: \mathbf{D}^b(A$ -mod) $\to \mathbf{D}^b(A$ -mod) satisfies $GF(A) \simeq A$. Proposition 2.4 implies that GF is standard, and thus F is isomorphic to the composition of $X \otimes_A^{\mathbf{L}} -$ and a standard equivalence. Then we are done in this case by the well-known fact that the composition of two standard equivalences is standard.

In general, let A be derived-triangular. Assume that A' is a triangular algebra that is derived equivalent to A. By [9, Proposition 6.5.5], there is a standard equivalence $F': \mathbf{D}^b(A'\text{-mod}) \rightarrow \mathbf{D}^b(A\text{-mod})$. The above argument implies that the composition FF' is standard. Recall from [9, Proposition 6.5.6] that a quasi-inverse F'^{-1} of F' is standard. We are done by observing that F is isomorphic to the composition $(FF')F'^{-1}$, a composition of two standard equivalences.

Acknowledgements. We thank Martin Kalck for pointing out the example in [2] and Dong Yang for the reference [5].

References

- P. N. ACHAR and S. RICHE, 'Koszul duality and semisimplicity of Frobenius', Ann. Inst. Fourier 63 (2013) 1511–1612.
- G. BONBINSKI, C. GEISS and A. SKOWRONSKI, 'Classification of derived discrete algebras', Cent. Eur. J. Math. 2 (2004) 19–49.
- 3. X. W. CHEN, Y. YE and P. ZHANG, 'Algebras of derived dimension zero', Comm. Algebra 36 (2008) 1-10.
- 4. B. KELLER, 'On triangulated orbit categories', Doc. Math. 10 (2005) 551–581.
- 5. H. MINAMOTO, 'Ampleness of two-sided tilting complexes', Inter. Math. Res. Not. 1 (2012) 67–101.
- J. I. MIYACHI and A. YEKUTIELI, 'Derived Picard groups of finite-dimensional hereditary algebras', Compos. Math. 129 (2001) 341–68.
- 7. J. RICKARD, 'Derived equivalences as derived functors', J. London Math. Soc. (2) 43 (1991) 37-48.
- 8. C. M. RINGEL, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics 1099 (Springer, Berlin, Heidelberg, New York, Tokyo, 1984).

9. A. ZIMMERMANN, Representation theory, a homological algebra point of view (Springer, International Publishing, Switzerland, 2014).

Xiao-Wu Chen Wu Wen-Tsun Key Laboratory of Mathematics Chinese Academy of Sciences School of Mathematical Sciences University of Science and Technology of China No. 96 Jinzhai Road Hefei 230026, Anhui P.R. China

xwchen@mail.ustc.edu.cn $http://home.ustc.edu.cn/\sim xwchen.$