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Abstract 

In virtual reality/augmented reality (VR/AR) applications, especially 

medical image visualization, it is highly desirable to magnify region of 

interests. In this work, we propose a novel method for virtual magnifying 

glass for visualizing volumetric data based on Optimal Mass 

Transportation. An optimal mass transportation map deforms a volume to 

itself, transforms the source measure (volumetric element) to the target 

measure with the minimal transportation cost. Solving the optimal mass 

transportation problem is equivalent to a convex optimization, and can be 

converted to computing power Voronoi diagrams in classical 

computational geometry. The proposed method allows the user to 

accurately control the target measure, and select multiple regions of 

interests with irregular shapes. We demonstrate the effectiveness and 

efficiency of our method with several volume data sets from medical 

applications. 
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1. Introduction

Recently virtual reality/augmented reality (VR/AR) technology has been applied for medical imaging.
Doctors and surgeons are able to visualize medical images such as CT images, MRI images in the virtual
environment for diagnosis or surgery planning. It is highly desirable to design a practical method to magnify
the region of interest and allow the user to examine in details without losing the global view of the shape
and the topology of the model. We propose a virtual magnifying glass technique for this purpose.

We can formulate this in a more formal way to further explain the idea. We use Ω ⊂ R
3 to denote the

region with Euclidean volumetric element. The user assigns an importance function µ : Ω → R
+, which

can be treated as the magnifying factor for the volumetric element. The deformation doesn’t exceed the
volume, therefore it is a self-mapping ϕ : Ω→ Ω. Furthermore, it is obvious that the mapping φ is smooth,
one-to-one and onto, therefore ϕ should be a diffeomorphism. More importantly, the mapping deforms the
initial Euclidean volumetric element to the target one,

Dϕ : dx ∧ dy ∧ dz → µ(x, y, z)dx ∧ dy ∧ dz

this requires the determinant of the Jacobian matrix of ϕ equals to µ,

det(Dϕ)(x, y, z) = µ(x, y, z). (1)

1.1. Optimal Mass Transportation Approach

This work proposes a novel method for virtual magnifying glass based on Optimal Mass Transportation
theory (OMT). Suppose the user gives a measure defined on Ω, which can be treated as the desired
volumetric element, furthermore, assume the total measure equals to the initial volume. There are infinitely
many diffeomorphsims which satisfy the Jacobian equation (1), but a unique one that minimizes the
following transportation cost

C(ϕ) :=

∫

Ω
|p− ϕ(p)|2dxdydz,

where φ is the so-called optimal mass transportation map. Furthermore, there is a convex function f :
Ω → R, whose gradient map p 7→ ∇f(p) gives the optimal mass transportation map. In this scenario, the
Jacobian Eqn. (1) becomes the following Monge-Amperé equation

det Hess f(x, y, z) = µ(x, y, z),

where Hess f is the Hessian matrix of the function f .
In our proposed approach, the Monge-Amperé equation is discretized and solved by a convex opti-

mization. The optimization is iterative, at each step, and the algorithm boils down to computing the upper
envelope of a set of hyper-planes, and projecting the envelope to obtain power Voronoi diagram and the
dual power Delaunay triangulation, which can be carried out using classical algorithms in computational
geometry [1].

Comparing to the existing methods, the OMT method has the following advantages: a) The exact
solution to the Jacobian Eqn. (1) can be directly found, and the existence, uniqueness has theoretic guar-
antees. This allows the user to control the magnifying factor accurately; b) the OMT map is definitely
a diffeomorphism, because its Jacobian is positive everywhere; c) the method to find the OMT map is
equivalent to a convex optimization process. Due to the convexity of the energy, there is a unique global
minimum. The result is independent of the initial condition, hence the method is easy to be reproduced.

2. Theoretic Background

In this section, we briefly introduce the theoretic foundation of our framework.
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2.1. Optimal Mass Transportation

Monge’s Problem. Let X and Y be two metric spaces with probability measures µ and ν respectively.
Assume X and Y have equal total measures:

∫

X

µ =

∫

Y

ν.

A map T : X → Y is measure preserving if for any measurable set B ⊂ Y , the following condition holds:
∫

T−1(B)
µ =

∫

B

ν.

If this condition is satisfied, we say the push forward measure of µ induced by T equals to ν, and denote
it as ν = T#µ.

Let c(x, y) be the transportation cost for transporting x ∈ X to y ∈ Y , then the total transportation
cost of T is given by:

E(T ) :=

∫

X

c(x, T (x))µ(x)dx. (2)

In 18th century, Monge [2] raised the optimal mass transportation problem: how to find a measure preserving
map T , T#µ = ν, that minimizes the transportation cost in Eqn. (2).

In the 1940s, Kantorovich [3] has introduced the relaxation of Monge’s problem and solved it using
linear programming. At the end of 1980’s, Brenier [4] has proved the following theorem.

Theorem 1 [Brenier]. Suppose X,Y are subsets in R
n, the source X is a convex domain, the transportation

cost is the quadratic Euclidean distance,

c(x, y) = |x− y|2.

Given probabilities measures µ and ν on X and Y respectively, then there is a unique optimal transportation
map T : (X,µ) → (Y, ν), furthermore there is a convex function f : X → R, unique up to a constant, and
the optimal mass transportation map is given by the gradient map T : x 7→ ∇f(x).

Assume the measures µ and ν are smooth, f is with second order smoothness, f ∈ C2(X, R), then if
f is measure-preserving, then it satisfies the Monge-Amperé equation:

det















∂f

∂x2
1

∂f
∂x1∂x2

· · · ∂f
∂x1∂xn

∂f
∂x2∂x1

∂f

∂x2
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· · · ∂f

∂x2∂xn

...
...

...
∂f

∂xn∂x1

∂f
∂xn∂x2

· · · ∂f
∂x2

n















=
µ

ν ◦ ∇f
. (3)

In general, Monge-Amperé equation is highly non-linear, conventional finite element method is incapable
of solving this type of partial differential equations. Instead, based on its geometric interpretation, we can
solve it using variational approach, by a convex optimization.

2.2. Discrete Optimal Mass Transportation

In practice, we formulate the optimal transportation problem in the discrete setting by sampling the target
domain into a discrete point set, when the sampling density goes to infinity, the discrete solutions converge
to the smooth solution. Suppose µ has a compact support on X, define

Ω = Supp µ = {x ∈ X|µ(x) > 0},
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Fig. 1. The upper envelope E(h) of {πi(h)} is the dual to the convex hull C(h) of {π∗

i (h)}. The projection of E(h) induces
the power Voronoi cell decomposition V(h) of Ω. The projection of C(h) induces the power Delaunay triangulation T (h) of
the discrete samples {qi}. The upper envelope E(h) is the graph of a piecewise linear convex function uh. The gradient map
of the convex function ∇uh maps each power Voronoi cell Wi(h) to a sample point qi.

and assume Ω is a convex domain in X. The space Y is discretized into Y = {y1, y2, · · · , yk} with Dirac
measure

ν =

k
∑

i=1

viδ(y − yi).

We define a height vector h = (h1, h2, · · · , hk) ∈ R
k, consisting k real numbers. For each yi ∈ Y , we

construct a hyperplane defined on X:

πi(h) : 〈x, yi〉+ hi = 0, (4)

where 〈, 〉 is the inner product in R
n. Define a piece-wise linear function:

uh(x) = max
1≤i≤k

{〈x, yi〉+ hi}, (5)

then uh is a convex function. We denote its graph by G(h), which is an infinite convex polyhedron with
supporting planes πi(h). Namely, G(h) is the upper envelope of the planes {πi(h)}. The projection of G(h)
induces a polyhedral partition of Ω,

Ω =

k
⋃

i=1

Wi(h), Wi(h) := {x ∈ X|uh(x) = 〈x, yi〉+ hi} ∩ Ω. (6)

Each cell Wi(h) is the projection of a facet of the convex polyhedron G(h) onto Ω. The convex function
uh on each cell Wi(h) is a linear function πi(h), therefore, the gradient map

∇uh : Wi(h) 7→ yi, i = 1, 2, · · · , k, (7)

maps each cell Wi(h) to a single point yi.
The Brenier theorem 1 restricted on the current discrete setting can be formulated as follows:
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Theorem 2 [Discrete Optimal Mass Transport]. For any given measures µ on X with convex support Ω ⊂
X, and Dirac measure ν on Y , such that

∫

Ω
dµ =

k
∑

i=1

νi, νi > 0,

there must exist a height vector h unique up to adding a constant vector (c, c, · · · , c), the convex function
in Eqn. (5) induces the cell decomposition of Ω as Eqn. (6), such that the following measure-preserving
constraints are satisfied for all cells,

∫

Wi(h)
dµ = νi, i = 1, 2, · · · , k. (8)

Furthermore, the gradient map ∇uh optimizes the following transportation cost

E(T ) :=

∫

Ω
|x− T (x)|2µ(x)dx. (9)

The existence and uniqueness have been first proven by Alexandrov [5] using a topological method.
The existence has also been proven by Aurenhammer et al [6].

Recently, Gu et al. [1] have given a novel proof for the existence and uniqueness based on variational
principle. First, we define the admissible space of the height vectors:

H := {h|

∫

Wi(h)
dµ > 0} ∩ {

k
∑

i=1

hi = 0}. (10)

Then, we define an energy E(h) as the volume of the convex polyhedron bounded by the graph G(h) and
the cylinder through the boundary of Ω and minus a linear term,

E(h) =

∫

Ω
uh(x)µ(x)dx−

k
∑

i=1

νihi. (11)

The gradient of the energy is given by:

∇E(h) =

(

∫

Wi(h)
µ− νi

)

. (12)

Suppose the cells Wi(h) and Wj(h) intersect at a face

fij(h) = Wi(h) ∩Wj(h) ∩Ω,

then the Hessian of E(h) is given by:

∂2E(h)

∂hi∂hj
=

{

∫

fij (h) µ

|yj−yi|
, Wi(h) ∩Wj(h) ∩ Ω 6= ∅

0, otherwise.
(13)

It has been proven that the admissible space H is convex, and the Hessian matrix is positive definite on
H, therefore the energy E(h) is convex in Eqn.(11). Furthermore, the global unique minimum h∗ is an
interior point of H. At the minimum point, ∇E(h∗) = 0. This implies the gradient map ∇uh meets the
measure-preserving constraint in Eqn. (8), furthermore the gradient map is the optimal mass transportation
map.

Due to the convexity of the volume energy (Eqn.11), the global minimum can be obtained efficiently
using Newton’s method. Comparing to Kantorovich’s approach, where there are k2 unknowns, this approach
has only k unknowns.
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3. Computational Algorithm

In the current work, the source domain Ω is the canonical unit cube in R
3, the target is a set of discrete

points Y = {q1,q2, · · · ,qk} which densely and uniformly samples the unit cube. The source measure on
the cube is the uniform measure µ = 1 everywhere. The target measure on Y is prescribed by the user,
ν = {ν1, ν2, · · · , νk}.

For each target point qi ∈ Y , we construct a hyperplane in R
4,

πi(h,p) := 〈qi,p〉+ hi, i = 1, 2, · · · , k.

Then we compute the upper envelope of these hyper-planes G(h).

Power Voronoi Diagram and Power Delaunay Triangulation. For each hyperplane πi(h), we construct a
dual point π∗

i (h) ∈ R
4 as follows: assume the coordinates of qi ∈ R

3 are (xi, yi, zi), then the dual point is

π∗
i (h) = (xi, yi, zi,−hi), i = 1, 2, · · · , k.

Then we compute the convex hull of {π∗
1(h), π∗

2(h), · · · , π∗
k(h)} using incremental convex hull algorithm as

described in [7], and denote the resulting convex hull as C(h).
We examine each tetrahedron tijklon the boundary of the convex hull C(h) in R

4,

tijkl(h) ∈ ∂C(h).

The hyperplane equation of the tetrahedron is given by
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xi yi zi −hi 1
xj yj zj −hj 1
xk yk zk −hk 1
xl yl zl −hl 1
x y z w 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

from this equation, we can obtain the normal to the hyperplane, denoted as nijkl. If the w-component
of the normal nijkl is negative, then we project the tetrahedron tijkl onto the (x, y, z)-hyperplane. This
projection process of the convex hull C(h) produces a power Delaunay triangulation of the point set Y ,
denoted as T (h).

The upper envelope of the hyperplanes {πi(h)} is denoted as E(h), which is the dual to the lower part
of the convex hull C(h). For each tetrahedron tijkl on the boundary of the convex hull ∂C(h), whose normal
vector is with the negative w-component, its dual is a vertex on the upper envelope E(h), which is the
intersection among 4 hyperplanes {πi(h), πj(h), πk(h), πl(h)}. Each triangle ∆ijk in the tetrahedron tijkl is
dual to an edge in E(h), which is the intersection of 3 hyperplanes {πi(h), πj(h), πk(h)}. Each edge eij in
the tetrahedron tijkl corresponds to a face in E(h), which is the intersection of 2 hyperplanes {πi(h), πj(h)}.
Each vertex vi in the tetrahedron tijkl corresponds to a cell in E(h), which is the cell supported by the
hyperplane πi(h). By computing the dual of the convex hull C(h), we obtain the upper envelope E(h).
We project the upper envelope onto the (x, y, z)-hyperplane to obtain the power Voronoi diagram of the
hyperplane, each power Voronoi cell intersects Ω to obtain the power Voronoi cell decomposition of Ω,
denoted as V(h).

In fact, the upper envelope E(h) is exactly the graph of the convex function G(h), the power Voronoi
diagram V(h) is the polyhedral partition of Ω by projecting G(h) in Eqn. (6). The 2D analogy is depicted
in Figure 1, which illustrates the upper envelope E(h), the convex hull C(h), the power Voronoi cell
decomposition V(h), the power Delaunay triangulation T (h) and their relations for 2D case. Our current
work focuses on the 3D case, which share the same principle but is hard to directly visualized.

Optimal Transportation Map. In our current setting, the discrete point set Y is contained in the unit cube
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Ω. The initial height vector is set as follows:

hi =
1

2
〈qi,qi〉, i = 1, 2, · · · , k.

The initial power Delaunay triangulation T (h) is the traditional Delaunay triangulation, the power Voronoi
cell decomposition of the unit cube V(h) is the traditional Voronoi cell decomposition.

At each step, we compute the power Delaunay triangulation T (h) and the power Voronoi cell decom-
position V(h). The gradient of the volume energy in Eqn. (11) is given in Eqn. (12), the Hessian of the
volume energy is given by Eqn. (13). Then we solve the following linear equation

∇E(h) =

(

∂2E(h)

∂hi∂hj

)

δh (14)

with the linear constraint
∑k

i=1 hi = 0, the solution exists and is unique. Then we can update the height
vector by using Newton’s method

h← h + λ(δh),

where λ is the step length parameter. In theory, the step length parameter should be chosen such that the
height vector is kept inside the admissible space H (Eqn.10), namely, in the power Voronoi cell decompo-
sition V(h), each cell Wi(h) is non-empty. In practice, in the middle of the optimization, we allow h to
exceed the admissible space H. The convexity of the volume energy automatically guides the height vector
to return to the admissible space. The details of the algorithm can be found in Alg.1.

4. Visualization

The volume raw image data is of resolution 512×512×512, the range of the intensity of each voxel is from
0 to 255. The source domain Ω is the cube with side length 2, centered at the origin.

4.1. ROI Selection and Target Measure Prescription

The region of interest (ROI) can be selected manually. A simple and direct way for manual selection is as
follows: the user specifies two concentric spheres S(c, r) and S(c,R), r < R, and a parameter λ ≥ 1. We
compute the target measure function µ : Ω → R, which equals to 1 outside the bigger sphere S(c,R) and
equals to λ inside the smaller sphere S(c, r). Furthermore µ is a harmonic function in the region between
the two spheres, hence satisfies the following Laplace equation with Dirichlet boundary conditions:







∆µ(p) = 0, r < |p− c| < R
µ(p) = λ, |p− c| = r
µ(p) = 1, |p− c| = R

(15)

Then we normalize the target measure, we first compute the current total volume

V =

∫

Ω
µ(p)dp,

then scale the target measure by 4/V , µ← 4µ/V .

4.2. Discretization

Discretize the Target Domain. In our algorithm, the target domain is discretized into a set of points Y =
{q1,q2, · · · ,qk}. We use Delaunay refinement algorithm [1] to triangulate Ω, by specifying the maximal
volume of each tetrahedron, we can obtain a uniform samplings. In practice, we use Tetgen [8] to compute
the tetrahedron mesh of Ω. The tetrahedron mesh is still denoted as Ω = (V,E, F, T ), where V,E, F, T
represent the vertex, edge, face and tetrahedron set respectively. We use vi to denote a vertex, eij and edge
connecting vi and vj , tijkl a tetrahedron formed by vi, vj , vk and vl in the order.
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Discretize the Target Measure. The focus region can be selected by the user, two triangle meshes are chosen
which approximate the two spheres. By abusing the symbols, the inner and outer spheres are still denoted
as S(c, r) and S(c,R). The discrete Laplace-Beltrami operator is formulated using finite element method
[9]. Suppose eij ∈ E is an edge, then the cotangent edge weight is defined as

wij =
1

12

∑

kl

lkl cot θkl
ij , (16)

where lkl represents the length of edge ekl, θkl
ij the dihedral angle on the edge ekl in the tetrahedron tijkl,

the summation goes through all tetrahedra adjacent to the edge eij .
The target measure µ is approximated by a piecewise linear function, represented as a function defined

on the vertex set, µ : V → R, and is linearly interpolated for interior points. Namely, suppose p is a point
inside a tetrahedron tijkl, then

µ(p) = λiµ(vi) + λjµ(vj) + λkµ(vk) + λlµ(vl), (17)

where (λi, λj , λk, λl) is the bary-centric coordinates of p with respect to vi, vj , vk, vl, which is the unique
solution satisfying the following linear equations:

{

λivi + λjvj + λkvk + λlvl = p
λi + λj + λk + λl = 1

Then the discrete Laplace-Beltrami operator is

∆µ(vi) =
∑

eij∈E

wij(µ(vj)− µ(vi)).

The smooth Laplace Eqn. (15) can be discretized to a linear equation system. It can be shown that the
discrete Laplace-Beltrami operator is a positive definite matrix on the linear space

∑

i xi = 0, therefore,
the discrete Laplace equation has a solution unique up to a constant.

After obtaining the initial measure µ : V → R, we calculate the total measure

V =

∫

Ω
µ(p)dp =

∑

tijkl

∫

tijkl

µ(p)dp.

Because µ is piecewise linear, the integration of µ on each tetrahedron has a simple formula
∫

tijkl

µ(p)dp =
1

4
(µ(vi) + µ(vj) + µ(vk) + µ(vl))V ol(tijkl). (18)

Then we normalize the target curvature by µ ← 1/V µ. We compute the Voronoi cell decomposition of Ω
using the vertices as the centers,

Ω =
k
⋃

i=1

Wi, Wi = {p ∈ Ω||p− vi| ≤ |p− vj |, j = 1, 2, · · · , k} .

Then we compute the Dirac measure

µj =

∫

Wj

µ(p)dp.

The integration is computed as follows: we compute intersection between the Voronoi cell Wi and each
tetrahedron tijkl in the Delaunay triangulation, the intersection is a convex polyhedron; we then de-
compose the convex polyhedron into a couple of tetrahedra, and compute the integration of µ on each
tetrahedron using the formula in Eqn. (18). This process gives the Dirac measures for the samples
{(v1, µ1), (v2, µ2), · · · , (vk, µk)}.
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4.3. Optimal Mass Transportation Map

The discrete optimal mass transportation map algorithm Alg.1 computes a power Voronoi cell decompo-
sition of Ω, each cell Wi(h) is mapped to a sample point vi. Then, we convert this representation to a
piecewise linear map from the tetrahedral mesh Ω to itself. For each Voronoi cell Wi(h), we decompose

it into a couple of tetrahedra tji , the mass center of each tetrahedron is the mean of its four vertices, and

denoted as cj
i . The mass center of Wi(h) is given by

ci(h) =

∑

j cj
iVol(tji )

∑

j Vol(tji )
.

If Wi(h) intersects the boundary of Ω, we project its mass center onto the boundary surface ∂Ω, and
replace the mass center ci(h) by the projection image.

The cube Ω is triangulated by the power Delaunay triangulation T (h), and the vertex positions are
ci(h) in the source domain, and vi in the target domain. The piecewise linear map ϕ : (Ω,T (h))→ (Ω,T (h))
maps each vertex from ci(h) to vi, ϕ(ci(h)) = vi.

4.4. Voxel Resampling

In the current work, we perform trilinear voxel resampling. For example, suppose we are given a volume
image data S, and would like to generate another volume image data T with different resolutions and
volumetric measure using the optimal mass transportation map ϕ : Ω → Ω. The volume image data is
represented as a three dimensional array. For each voxel T (i, j, k) in T , we locate its position p in Ω, and
find the tetrahedron tpqrs containing p, compute the barycentric coordinates (λp, λq, λr, λs) using Eqn. (17),
then the preimage of p is given by

ϕ−1(p) = λpcp(h) + λqcq(h) + λrcr(h) + λscs(h),

then we find the voxels in S adjacent to ϕ−1(p), then use trilinear interpolation to get the intensity value
of ϕ−1(p), and assign it to T (i, j, k).

5. Experiments Results

We developed our system using generic C++ on a Windows platform, on a laptop with Dual Processor
2.9GHz CPU and 8GB Memory. The optimal mass transportation was implemented based on CGAL
library for computing the power Voronoi diagram and Delaunay triangulation. The volumetric rendering
was performed using Voreen based on raycasting algorithm with a GPU [10].

5.1. Large Deformation and Global Smoothness

Fig. 2 shows that our method is capable of designing large deformations and preserving the smoothness of
the mapping. The volumetric Aneurism data is of resolution 256× 256× 256. The focus region is the solid
ball with center c = (0.06, 0.32, 0.04) and radius r = 0.1. The magnifying factors are 1, 27, 125, even as big
as 343 in frame (d) which magnifies the volume of ROI by 343-fold. Because the optimal transportation
map is the gradient map of a convex function, the Jacobian matrix of the OMT map is the Hessian matrix
of the function. The Monge-Ameré equation in Eqn.(3) shows that the Jacobian is positive everywhere,
therefore the OMT map is globally diffeomorphic.

5.2. Smoothness of the Deformation

The deformation for the whole volume is controlled by the continuity of the target measure as shown in
Fig. 3. In the top row, the focus region is a solid ball centered at c = (−0.42, 0.13, 0.26) and with radius r =
0.26. The target measure µ equals to λ = 64 inside the ball, and 1 outside the ball, hence µ is discontinuous.
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Algorithm 1: Volumetric Optimal Mass Transportation Map

Input: A convex domain Ω⊂ R
3 and a set of discrete points Y = {q1, · · · ,qk},

discrete target measure ν = {ν1, · · · ,νk}, such that ∑i νi =Vol(Ω)

Output: A partition of Ω, Ω = ∪iWi, such that Wi 7→ qi is the optimal mass

transportation map.

1 Translate and scale Y , such that Y ⊂Ω

2 Initialize the height vector h, such that hi← 1/2〈qi,qi〉

3 while true do

4 for i← 1 to k do

5 Construct the hyperplane πi(h) : 〈qi,p〉+hi

6 Compute the dual point of the hyperplane π∗i (h)

7 end

8 Construct the convex hull C (h) of the dual points {π∗i (h)}

9 Compute the dual of the convex hull to obtain the upper envelope E (h) of

the hyperplanes {πi(h)}

10 Project C (h) to obtain the power Delaunay triangulation T (h) of Y

11 Project E (h) to obtain the power Voronoi cell decomposition V (h) of Ω

12 for i← 1 to k do

13 Compute the volume of Wi(h), denoted as wi(h)

14 end

15 Construct the gradient ∇E(h) = (νi−wi(h))
T

16 for each edge ei j ∈T (h) do

17 Compute the area of the dual face fi j, denoted as Ai j

18 end

19 Construct the Hessian matrix ∂ 2E(h)/∂hi∂h j = Ai j/|q j−qi|

20 Solve the linear equation Hess(h)δh = ∇E(h)

21 λ ← 1

22 Compute the power Voronoi diagram V (h+λδh) of Ω

23 while ∃wi(h+λ (δh) is empty do

24 λ ← 1/2λ

25 Compute the power Voronoi diagram V (h+λδh) of Ω

26 end

27 h← h+λδh

28 if ∀|wi(h)−νi|< ε then

29 Break

30 end

31 end

32 return the mapping {Wi(h) 7→ qi, i = 1,2, · · · ,k}
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(a) λ = 1 ; (b) λ = 27;

(c) λ = 125; (d) λ = 343;

Fig. 2. The volumetric Aneurism is magnified by large scales using the OMT technique.

As shown in the top frames, this measure induces large deformations, especially at the boundary of the
focus region. In the bottom row, we select two concentric balls, the center is c = (−0.42, 0.13, 0.26), two
radii are r = 0.15 and R = 0.26. The target µ equals λ = 64 inside the inner sphere, and 1 outside the
outer sphere, and is a harmonic function between the two spheres. Therefore, µ is a smooth function.
The deformation induced by the harmonic µ is prominently smaller, as shown in the bottom row. This
demonstrates that the global deformation of the volume is greatly affected by the smoothness of the target
measure.
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(a)λ = 1;

(b)Non-harmonic, front view; (c)Non-harmonic, left side view; (d)Non-harmonic, right side view;

(e) Harmonic,front view; (f)Harmonic, left side view; (g)Harmonic, right side view;

Fig. 3. The smoothness of the deformation is affected by the smoothness of the target measure µ. The µ is discontinuous for
the left column; µ is harmonic for the right column.

5.3. Irregular Region of Interests

Fig. 4 shows that our algorithm allows the user to define highly irregular regions of interests. Instead of
being regular solid balls, the focus region is a concave irregular shape encapsulating the vertebral column,
toughly fitting to the content of interests in the volumetric data. The optimal mass transportation map is
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still diffeomorphic and has full control of the target measure.

5.4. Multiple Focus Regions

Our OMT based approach allows user to select multiple regions of interest, furthermore different regions
of interests can be assigned with different magnifying factors. In the CT knee model given in Fig. 5, we
select two regions of interests : one is the left patella region, the ball with center c1 = (−0.4,−0.36,−0.50),
radius 0.19 and the magnifying factor λ1 = 8; the other is the right tibia, the solid ball with center
c2 = (0.46,−0.06,−0.71), radius 0.15 and the magnifying factor λ2 = 16. Different frames show the
visualization results with different views.

5.5. Time Complexity

We report the computational time in the Table 1. The volume Ω is a canonical cube with edge length 2.
The number of discrete samples is about 10k. The user manually selects the regions of interests, and the
computation of the optimal mass transportation map is performed off line.

Table 1. Running time

Dataset Data source Running time resolution

Aneurism Philips Research, 118s 512 × 512 × 512
Hamburg,Germany

Foot Philips Research, 182s 256 × 256 × 256
Hamburg,Germany

NCAT phantom Segars WP, 156s 512 × 512 × 512
Tsui BMW

CT knee Department of Radiology 134s 440 × 440 × 440
University of Iowa

6. Conclusion

This work introduces a virtual magnifying glass method for medical image visualization based on Optimal
Mass Transportation theory, which guarantees the existence, uniqueness and smoothness of the solution.
It allows the user to accurately control the target volumetric element, select multiple focus regions with
irregular shapes. The method can be implemented using power Voronoi diagram and Delaunay triangulation
in classical computational geometry. Furthermore, the method can be generalized to higher dimensions.

Currently, the computation of the method is not in real time. In the future, we will implement the
optimal mass transformation map algorithms on GPU to improve the speed, and generalize the visualization
technique to higher dimensional data.
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(a) Original model, front view; (b) λ = 27, front view;

(c) Original model, left view; (d) λ = 27, left view;

(e) Original model, right view; (f) λ = 27, right view;

(g) Original model, back view; (h) λ = 27, back view;

Fig. 4. Visualization for NCAT phantom model, the regions of interest are irregular shapes.
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(a) Original model, front view; (b) λ1 = 8, λ2 = 16, front view;

(c) Original model, side view; (d) λ1 = 8, λ2 = 16, side view;

(e) Original model, bottom view;(f) λ1 = 8, λ2 = 16, bottom view;

(g) Original model, side view; (h) λ1 = 8, λ2 = 16,side view;

Fig. 5. Visualization for CT Knee model with multiple focus magnification in different views.
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