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VORONOI DIAGRAMS ON LINE NETWORKS AND THEIR
APPLICATIONS

ZEHAN HU† AND ZEYU WANG‡

Abstract. The optimal mass transportation problem, proposed by Monge, is dominated by the

Monge-Ampère equation. In general, as the Monge-Ampère equation is highly non-linear, this type

of partial differential equations is beyond the solving ability of a conventional finite element method.

This difficulty led Gu et al. alternatively to the discrete optimal mass transportation problem. They

developed variational principles for this problem and reported the calculation for the optimal mapping,

based on theorem that among all possible cell decompositions, with constrained measures, the trans-

portation cost of the discrete mapping from cells to the corresponding discrete points is minimized

by the decomposition induced by a power Voronoi diagram. Their research inspired us to consider a

similar discrete optimal mass transportation problem. Here we replace the L2 Euclidean distance by

the length of the shortest path connecting two points on a line network. To solve the optimal trans-

portation problem on a line network, we study a type of Voronoi diagram on undirected and connected

networks and propose an elegant construction algorithm. We further consider weighted distances in a

network and develop a method to compute the centroidal Voronoi tessellation (CVT) for a network.

By using real geographic data, the method proposed is proved efficient and effective in several practical

applications, including charging station distribution in a traffic network, and trash can distribution in

a park.
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1. Introduction

In 1781, the French mathematician, Monge, proposed the optimal mass transmission

problem (a.k.a. Monge’s problem). Let X and Y be two measure spaces with probability

measures µ and ν respectively, and assume X and Y have equal total measure:

∫
X

µ(x)dx=

∫
Y

ν(y)dy.

A map T :X→Y is measure preserving if for any measurable set B⊆Y , the following

condition holds:

∫
T−1(B)

µ(x)dx=

∫
B

ν(y)dy.

∗This work is advised by both Qingming Yang from Tsinghua University High School and Associate
Professor Xianfeng Gu from State University of New York at Stony Brook.
† Tsinghua University High School, email(huzehandd@163.com)
‡ Tsinghua University High School, email(wzy032679@sina.com)

1

<<N16>>



Voronoi on Line Network

Let c(x,y) be the transportation cost for transporting x∈X to y∈Y . Then the total

transportation cost of T is given by:

E(T ) =

∫
X

c(x,T (x))µ(x)dx.

The optimal mass transmission problem is to find a measure-preserving mapping such

that the total transportation cost defined by the above formula is minimized.

In the 1940’s, Kantorovich [1] relaxed Monge’s problem and solved it using linear

programming. At the end of the 1980’s, Brenier [2] investigated the optimal transmission

problem in the Euclidean space, and proved that there is a unique optimal transportation

map T : (X,µ)→ (Y,ν). Furthermore, there is a convex function f :X→R, unique up

to a constant, such that the optimal mass transportation map is given by the gradient

map T :x→∇f(x), if X is a convex domain and the transportation cost is the quadratic

Euclidean distance.

Assuming the measures µ and ν are smooth, and f has second order continuity,

then f satisfies the following Monge-Ampère equation if f is measure-preserving,

det(
∂2f

∂xi∂xj
) =

µ

ν ◦∇f
.

In general, as the Monge-Ampère equation is highly non-linear, this type of partial

differential equations are beyond the solving ability of conventional finite element meth-

ods. Alternatively, based on its geometric interpretation, we will try to solve it using a

vibrational approach, by convex optimization.

The optimal mass transportation theorem holds in the discrete setting as well. Gu

et al. [3] developed variational principles for the discrete case to compute the optimal

mapping. Suppose Ω is a convex planar domain with a probability measure µ defined on

it. Given a discrete point set P ={p1,p2,·· · ,pn}, each point pi∈P is associated with a

positive number Ai, such that
∑n
i=1Ai=

∫
Ω
µ(x)dx. A cell decomposition of Ω is given

by Ω =
⋃n
i=1Di, such that the probability of each cell Di equals Ai. The discrete map

induced by the decomposition is denoted by f :Di→pi, then the transportation cost for

f is given by:

E(f) =
n∑
i=1

∫
Di

|x−pi|2µ(x)dx.
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The power distance is defined as

Pow(x,pi) = |x−pi|2 +hi,hi∈R.

Then the power distance induces a power Voronoi diagram,

Ω =
n⋃
i=1

Vi,Vi={x∈R2|Pow(x,pi)≤Pow(x,pi),∀j}.

It’s known that among all possible cell decompositions with the probability constraint∫
Di
µ(x)dx=Ai, the transportation cost of the mapping f :Di→pi is minimized by the

one induced by a power Voronoi diagram [4].

Fig. 1.1: A Voronoi diagram in the two-dimensional plane. Each red dot is the seed of
the Voronoi cell, and the blue lines show the boundaries of Voronoi cells.

The Voronoi diagram is an important geometric structure in mathematics, with

many important applications in physics, chemistry, biology, engineering and other field-

s [5]. In a Voronoi diagram, each point in the point set P is called a seed point, and

the corresponding area of the seed point is called a Voronoi cell. The distance from any

point in the cell to the associated seed point is less than the distance to any other seed

point (seeing Figure 1.1). In 1850, Dirichlet used two-dimensional and three-dimensional

Voronoi diagrams to study quadratic forms. In 1908, Georgy Voronoi defined and stud-

ied the general Voronoi diagram problem in n-dimensional space.

Moreover, the Voronoi diagram can be calculated for a set of discrete points on

a given region. If the seed points are further allowed to move, the Voronoi cells are

recalculated by choosing geometric centers of cells as the new seed points, and areas of

the Voronoi cells can be made as equal as possible by iterations. This is the centroidal

Voronoi tessellation (CVT) problem of the Voronoi diagram [6]. Wenping Wang of the

University of Hong Kong and other researchers considered fast algorithms for computing
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CVTs and their GPU-based acceleration [7, 8]. Wang et al. [9] investigated the CVT

problem over triangular meshes.

The CVT method for a Voronoi diagram can also solve practical problems, such

as electric vehicle charging stations’ distribution in which people expect the coverage

area of each charging station to be as equal as possible. However, the charging stations

can only be distributed at the roadside, and electric cars can only run on the roads,

so that the distribution problem cannot be solved by the traditional Voronoi diagram

method in the Euclidean distance. After all, when we consider traffic congestion and

speed limits, we do not necessarily expect the equal area of the geometric cell for each

seed point, but the equal total weighted length of the streets dominated by each seed

point. To optimize the distribution problem on road, we, therefore, propose a kind of

Voronoi problem based on the undirected connected line network.

The problem we consider here is similar to the discrete optimal transmission prob-

lem, but we replace the L2 Euclidean distance with the shortest path distance between

two points in the line network. In the following sections, based on an algorithm for

the shortest paths in the network (connected graph), we first define Voronoi diagrams

on undirected connected networks, and then present a method of calculating Voronoi

cells. Then we extend CVT algorithm for Voronoi diagrams in the Euclidean space to

the Voronoi diagram on the undirected connected line network. By iteration, thus we

make the weighted lengths corresponding to seed points in the line network as equal as

possible.

This paper is organized as follow. In Section 2, we define Voronoi diagrams on line

networks and describe their properties, and an algorithm for calculating Voronoi cells.

By applying the algorithm, we present an iterative method for finding the centroidal

Voronoi in Section 3. Then Section 4 gives details on the algorithm design for Voronoi

tessellation and centroidal Voronoi tessellation. Section 5 presents the experimental

results with discussions, which are followed by the conclusions in Section 6.

2. Voronoi diagrams on line networks

2.1. Definition and properties

2.1.1. Line network

Line networks can represent a set of vertices and the connections between them.

They have a wide range of applications, such as path planning. We first define a line
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Fig. 2.1: Line networks and Voronoi diagrams over them. (a) a line network; (b) the
Voronoi diagram over that line network. s1, s2 and s3 are three seed points; the colors
identify the corresponding Voronoi cells.

network G= (V,E) in the N -dimensional space (seeing figure 2.1(a)). The set of vertices

is given as,

V ={v1,v2,·· · ,vn},vi∈RN ,1≤ i≤n,

and the set of edges is,

E={(vi,vj)|1≤ i,j≤n,

vi and vj are directly connected by a continous curve γij of finite length.}

In the shortest path problem, we usually assign a weight wi,j to each edge (vi,vj)∈E

of the line network. The weight of a path is the sum of weights of all edges on the path

from vertex vi to vj . The path with the least total weight from vertex vi to vj is

called the shortest path from vertex vi to vj . The corresponding total weight, called

the shortest distance between vertices vi and vj , is denoted by di,j . If there is a path

between any two points in the vertex set, then the line network is connected; otherwise

the network is disconnected. If the edges are directional, that is, (vi,vj) and (vj ,vi)

represent different directed edges, then the network is called a directed network. In

undirected networks, (vi,vj) and (vj ,vi) represent the same edge and wi,j =wj,i. We

also denote w(pi,pj) as the weight between two points pi and pj on the same edge curve

of the line network, which is proportional to the length of curve connecting pi and pj

on the same edge curve.

2.1.2. Voronoi diagrams on undirected networks
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We only consider the Voronoi diagram problem on undirected connected networks.

For Voronoi diagram problems on disconnected networks, we can divide the disconnect-

ed network into several connected sub-networks and then solve the Voronoi diagram

problem on each connected sub-network.

We define the network space ΩG on the N-dimensional connected network G= (V,E)

as:

ΩG={p∈RN |p is on curve γij and (vi,vj)∈E}.

Definition 2.1. Let dG(pi,pj) be the distance metric between two points pi and pj on

ΩG. For a given point set S={sk}mk=1 on ΩG, the Voronoi cell V̂k corresponding to a

point sk is defined as

V̂k ={p∈ΩG|dG(p,sk)≤dG(p,sj),∀j}. (2.1)

Then {V̂k}mk=1 is called a Voronoi tessellation of the network space ΩG. Figure 2.1(b)

shows the Voronoi cells are determined by three seed points on the line network.

In order to define the distance between seed points and points on ΩG, we further

define a new network GS = (VS ,ES) by adding the set of discrete seed points S to the

vertices of G, VS =V ∪S, and ES is updated according to the following rules: if the

curve γij corresponding to an edge (vi,vj)∈E does not pass through any point in S,

then (vi,vj) is added to ES ; otherwise, if the curve γij passes through points in S in

the order of {skt}lt=0,l≥0, edges (vi,sk0),(skl ,vj),(skt ,skt+1
),t= 0,·· · ,l−1 are added to

ES .

For a given discrete set S={sk}mk=1 and network G= (V,E), we define the distance

between any two points p1,p2∈ΩGS
as the length of their shortest path on network GS ,

denoted by dGS
(p1,p2). Then the Voronoi tessellation {V̂k}mk=1 of ΩGS

with respect to

the discrete set S has the following properties.

Proposition 2.2 (Shortest Path). ∀v∈ΩGS
, if v∈ V̂k, we have p∈ V̂k for an

arbitrary point p on the shortest path from v to the underlying seed point sk of V̂k.

Proof : As shown in figure 2.2, if there exists a point p on the shortest path (the

green solid curve) from v to sk, such that p∈ V̂l,p /∈ V̂k,l 6=k, according to (2.1), we have,

dGS
(p,sl)<dGS

(p,sk). (2.2)
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Fig. 2.2: Proof of Proposition 2.2. The green solid line represents the shortest path
from v to the seed point sk of the Voronoi cell v belongs to. p is an arbitrary point on
the path and sl is another seed. The red dotted line is the shortest path from p to sl.

Immediately, (2.2) gives,

dGS
(v,p)+dGS

(p,sl)<dGS
(v,p)+dGS

(p,sk). (2.3)

Since the sub-path of a shortest path is also a shortest path connecting the corresponding

endpoints of the sub-path, we have,

dGS
(v,sk) =dGS

(v,p)+dGS
(p,sk). (2.4)

(2.3) and (2.4) together give that,

dGS
(v,p)+dGS

(p,sl)<dGS
(v,sk). (2.5)

This means that we find a closer seed point, sl, for v, which is contrary to v∈ V̂k.�

We can see that if both endpoints of an edge belong to the same Voronoi cell, any

points on the edge must also belong to that cell. Since a point may be the intersection

of two or more cells, we have the following property for ΩGS
.

Proposition 2.3 (Closure). ∀(vi,vj)∈ES, if vi∈
⋂q
k=1 V̂ik ,vj ∈

⋂t
l=1 V̂jl ,q≥1,t≥

1, for any point p on the underlying curve, γij of the edge (vi,vj), we obtain p∈

(
⋃q
k=1 V̂ik)∪(

⋃t
l=1 V̂jl).

Proof : As shown in figure 2.3, assume that there exists a point p on curve γij , such

that p∈ V̂r,r 6= ik,r 6= jl,k= 1,·· · ,q,l= 1,·· · ,t. Without loss of generality, assume that

the shortest path from p to sr goes through vertex vi. According to Proposition 2.2, we

have vi∈ V̂r. Since r 6= ik,k= 1,·· · ,q, it is contrary to vi∈
⋂q
k=1 V̂ik .�

Proposition 2.4 (Locality). If {V̂ci}ki=1,k≥1 are all the adjacent Voronoi cells
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Fig. 2.3: Proof of Proposition 2.3. (vi,vj) is an edge of the line network, p is an arbitrary

point on the underlying curve of the edge. vi∈ V̂ik ,vj ∈ V̂jl , V̂r is another Voronoi cell
(shown as dotted regions). Assume that the shortest path (the green solid curve) from
p to sr goes through vertex vi.

to Voronoi cell V̂c, for an arbitrary point p∈ V̂c and an arbitrary non-adjacent cell V̂f

of V̂c, there exists an i∈{1,·· · ,k}, such that dGS
(p,sci)<dGS

(p,sf ).

Fig. 2.4: Proof of Proposition 2.4. Cell V̂c is adjacent to V̂c1 ,V̂c2 ,V̂c3 ,·· ·, except V̂f .

Point p is an arbitrary point in V̂c. Without loss of generality, assume that the shortest
path from p to sf goes through V̂c1 , and the entrance point in V̂c1 for this path is pi.
The blue solid curve depicts the shortest path form pi to sc1 .

Proof : As shown in figure 2.4, without loss of generality, assume that the shortest

path from p to seed point sf of V̂f goes through V̂c1 , and the entrance point in V̂c1 for

this path is pi. Since the sub-path of a shortest path is also a shortest path connecting

the corresponding endpoints of the sub-path, we have,

dGS
(p,sf ) =dGS

(p,pi)+dGS
(pi,sf ). (2.6)

As V̂c is not adjacent to V̂f , but adjacent to V̂c1 , it is clear that, pi∈ V̂c1 and pi /∈ V̂f .
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According to (2.1), this means,

dGS
(pi,sc1)<dGS

(pi,sf ). (2.7)

(2.6) and (2.7) yield,

dGS
(p,pi)+dGS

(pi,sc1)<dGS
(p,pi)+dGS

(pi,sf ) =dGS
(p,sf ). (2.8)

Since the sub-path from point p to pi, and the shortest path between pi and sc1 together

give a path from point p to seed point sc1 , we have,

dGS
(p,sc1)≤dGS

(p,pi)+dGS
(pi,sc1). (2.9)

Combining the inequalities in (2.8) and (2.9), we obtain dGS
(p,sc1)<dGS

(p,sf ).�

From Proposition 2.4, we can conclude that adding or removing a seed point in the

network only impacts the cells influenced by the seed, i.e., cells containing the seed and

cells adjacent to those cells.

2.2. Computation of the Voronoi diagram on an undirected connected

line network

According to the definition and analysis in Section 2.1, given an undirected con-

nected line network G= (V,E) and a seed point set S={sk}mk=1, the computation of

the Voronoi tessellation of network space ΩG with regard to S requires us to locate the

nearest seed points in S for given vertices in VS , or points on underlying curves of edges

in ES . So we have the following definition:

Definition 2.5. Let V or : ΩGS
→2S be a map from network space ΩGS

to the power set

of the seed point set S. V or(p) indicates the set of seed points whose seeds are nearest

to a given point p∈ΩGS
.

So, the computation of the Voronoi diagram on an a line network is equivalent to

find out the map V or.

2.2.1. Voronoi cells for vertices in VS

Vertices in VS can be divided into two kinds, i.e., the set of vertices V on the line

network G and the set of seed points S. Since for any seed point s∈S,dGS
(s,s) = 0, we
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easily obtain,

V or(s) ={s},∀s∈S. (2.10)

According to the definition in (2.1), for any vertex v∈V , we have,

V or(v) ={s̄∈S|dGS
(v,s̄)≤dGS

(v,s),∀s∈S},∀v∈V. (2.11)

2.2.2. Voronoi cells for points on edges in ES

Proposition 2.2 tells that if the shortest path from a vertex to the seed point of the

vertex’s containing Voronoi cell includes the edges adjacent to the vertex, then all the

points on that edge belong to the containing cell. Otherwise, the points on the edge

may belong to different cells. Thus we have the following theorem.

Theorem 2.6. If (vi,vj)∈ES, denote Si,j =V or(vi)∩V or(vj), where di is the distance

from vi to the seed points in V or(vi), and dj is the distance from vj to the seed points

in V or(vj).

(i) if |di−dj |=wi,j, then for any point p on the underlying curve γij of edge (vi,vj)

(excluding vertices vi and vj), V or(p) =Si,j;

(ii) otherwise, there exists a cut point pc on curve γij, such that V or(pc) =V or(vi)∪

V or(vj) and the weight from pc to vi on curve γij is

w(pc,vi) = (wi,j+dj−di)/2. (2.12)

Proof :(i) Without loss of generality, assume that,

dj =di+wi,j . (2.13)

For any seed point s′∈V or(vi), obviously we have dGS
(s′,vi) =di. So, (2.13) gives,

dGS
(s′,vi)+wi,j =dj . (2.14)

This means there exists a path from vj to seed point s′ with the same distance dj . Since

dj is the minimal length of the path from vj to all seed points, we immediately conclude
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that s′∈V or(vj). This means,

V or(vi)⊆V or(vj). (2.15)

So, we have,

Si,j =V or(vi). (2.16)

Since the sub-path of a shortest path is also a shortest path connecting the corresponding

endpoints of the sub-path, we conclude from (2.14) that there exists a shortest path from

vj to s′ which passes through edge (vi,vj). According to Proposition 2.2, for any point p

on curve γij (excluding vertices vi and vj), p also belongs to the Voronoi cell containing

s′. This gives,

Si,j⊆V or(p). (2.17)

Consider any seed point s′′∈V or(vj)\Si,j , any seed point s′∈Si,j , and any point p on

curve γij (vertices vi and vj are excluded). From (2.13), we obtain,

di=dGS
(p,s′)<dGS

(p,s′′) =dj . (2.18)

According to the definition of shortest path, we have,

dGS
(p,s′′) = min(w(p,vj)+dGS

(vj ,s
′′),w(p,vi)+dGS

(vi,s
′′)). (2.19)

Since there exists a shortest path from vj to s′ which passes through edge (vi,vj), we

also have,

dGS
(p,s′) =w(p,vi)+dGS

(vi,s
′). (2.20)

Again, (2.13) gives,

dj =dGS
(vj ,s

′′) =dGS
(vj ,s

′) =dGS
(vi,s

′)+wi,j . (2.21)
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So, (2.18)–(2.21) together yield,

dGS
(p,s′)<dGS

(p,s′′). (2.22)

This immediately implies that for any s′′∈V or(vj)\Si,j ,

s′′ /∈V or(p). (2.23)

We known from Proposition 2.3 that,

V or(p)⊆V or(vi)∪V or(vj). (2.24)

Combining (2.16), (2.17), (2.23), (2.24), we have V or(p) =Si,j .

Fig. 2.5: Proof of Theorem 2.6(ii). p is an arbitrary point on edge (vi,vj), sk ∈
V or(vi),sl∈V or(vj),sk /∈V or(vj),sl /∈V or(vi), w(p,vi) is the weight from p to vi on
the underlying curve γi,j . The solid curves depict shortest paths.

(ii). Without loss of generality, assume di<dj , then we must have,

dj<di+wi,j . (2.25)

Otherwise, if dj>di+wi,j , we can find a shorter path between vj and the seed points.

This is contrary to the fact that dj is the minimal length of paths from vj to all seed

points. So,

0< (wi,j+dj−di)/2<wi,j . (2.26)

Proposition 2.3 tells that, for any point p on curve γij , we have,

V or(p)⊆V or(vi)∪V or(vj). (2.27)
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If V or(vi) is equal to V or(vj), Obviously, (ii) holds from Propostion 2.3 and (2.26).

Otherwise, as shown in figure 2.5, consider any seed point sk ∈V or(vi) and any seed

point sl∈V or(vj), sk /∈V or(vj),sl /∈V or(vi). Without loss of generality, assume that

dGS
(p,sk)<dGS

(p,sl). (2.28)

We claim that the shortest path from p to sk must first meet vertex vi and then reach

seed point sk. Otherwise, the shortest path first meets vj and then reaches sk. According

to the definition of shortest path, we have

dGS
(p,sk) =w(p,vj)+dGS

(vj ,sk). (2.29)

Since dj is the minimal length of paths from vj to all seed points and sk /∈V or(vj), we

obtain

dGS
(vj ,sk)>dj =dGS

(vj ,sl). (2.30)

Combining (2.29),(2.30) and the definition of shortest path, we have

dGS
(p,sk)>w(p,vj)+dGS

(vj ,sl)≥dGS
(p,sl). (2.31)

This is contrary to the assumption in (2.28). Based on (2.27) and (2.28), we conclude

that,

sk ∈V or(p),sl /∈V or(p). (2.32)

For any point p satisfying (2.28), based on the arbitrariness of sk and sl, (2.27) and

(2.32) give,

V or(p) =V or(vi). (2.33)

Since curve γij is continuous, as point p continuously varies from one endpoint to

another on the curve, the minimal length of the paths from p to all the seed points is

also continuous. Obviously, this minimal length is bounded and thus the maximum of

this minimal length exists. Assume that the maximum is reached at point pc on the
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curve γij . We claim that for any seed point sk ∈V or(vi) and any seed point sl∈V or(vj),

sk /∈V or(vj),sl /∈V or(vi),

dGS
(pc,sk) =dGS

(pc,sl). (2.34)

Otherwise, without loss of generality, we assume dGS
(pc,sk)<dGS

(pc,sl). According

to (2.33), we know that minimal length of the paths from pc to all the seed points

is dGS
(pc,sk). Since the minimal length of the paths from p to all the seed points is

continuous w.r.t. p on curve γij , we can always find a change |δp|>0 small enough

toward vj , such that dGS
(pc+δp,sk)<dGS

(pc+δp,sl). Thus, the shortest path from

pc+δp to sk also first goes through vi. So, we have dGS
(pc+δp,sk) =dGS

(pc,sk)+ |δp|>

dGS
(pc,sk), which is contrary to the maximality of dGS

(pc,sk).

Immediately, (2.34) implies

V or(pc) =V or(vi)∪V or(vj). (2.35)

Since the shortest path from pc to sk first goes through vi, we have

dGS
(pc,sk) =w(pc,vi)+di. (2.36)

Similarly, we have

dGS
(pc,sl) =w(pc,vj)+dj . (2.37)

We also know

wi,j =w(pc,vi)+w(pc,vj). (2.38)

Substituting (2.36)–(2.38) into (2.34), we finally obtain (2.12).�

For any edge (vi,vj)∈ES , we can judge whether a cut point exists on the edge or

not, based on Theorem 2.6. If it exists, (2.12) locates the cut point.

According to the definition of Voronoi cells, we can also define Voronoi cells by

means of the map V or,

V̂k ={p∈ΩGS
|sk ∈V or(p)},k= 1,·· · ,m. (2.39)
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Consider the sub-network Gk = (Vk,Ek) formed by all vertices and cut points in

Voronoi cell V̂k. We can easily obtain

V̂k = ΩGk
,k= 1,·· · ,m. (2.40)

This indicates that the Voronoi tessellation {V̂k}mk=1 of the network space ΩGS
implies

a partition {Gk}mk=1 of the underlying line network GS .

3. CVT on a line network

3.1. CVT on RN

Given an open set Ω⊂RN and a probability density function ρ defined on Ω, the

mass centroid s∗ of Ω is usually defined as

s∗=

∫
Ω

yρ(y)dy∫
Ω
ρ(y)dy

(3.1)

Given m seed points {sk}mk=1 on Ω, we can determine their associated Voronoi

cells {V̂k}mk=1. In turn, given regions Dk,k= 1,·· · ,m, we can also calculate their mass

centers s∗k,k= 1,·· · ,m according to (3.1). Given a Voronoi tessellation {V̂k}mk=1 of Ω,

if the seed points for the Voronoi cells are themselves the mass centers of those cells,

i.e., sk =s∗k,k= 1,·· · ,m, we call such a tessellation a centroidal Voronoi tessellation.

Obviously, an arbitrary set of seed points will unlikely be the mass centroids of the

associated Voronoi cells.

Next, to calculate the CVT for a line network, we introduce an iterative algorithm,

called Lloyd’s method [10]. Lloyds method updates the Voronoi tessellation and seed

points in each iteration. Given the number of seed points, m, an open region Ω⊂RN

and a probability density function on Ω, the main procedures of Lloyd’s method are as

follows:

1. Randomly select m seed points {sk}mk=1;

2. Calculate the associated Voronoi tessellation {V̂k}mk=1 of Ω with seed points

{sk}mk=1;

3. Calculate the mass centroids, s∗k, for each Voronoi cell V̂k,k= 1,·· · ,m;

4. If centroids and seed points meet the given convergence criterion, the algorithm

terminates; otherwise, take the centroids as new seed points and go to Step 2.

This algorithm has been proved convergent [6, 11].
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3.2. CVT on a line network

Given a Voronoi tessellation on a line network, we also expect the average distances

to be equal between points and their associated seed points for all Voronoi cells. This is

common in real scenarios. For example, we hope to set charging stations in a city such

that electric automobile drivers can go to their nearest charging station in nearly equal

time in average. Again, we hope to place garbage bins in a park to ensure that people

travel roughly equally average distance to walk to the nearest bin when they need to

drop litter.

For this end, given an undirected connected line network G= (V,E), a probability

density function ρ on network space ΩG, we define the mass centroid s̃ for ΩG as

s̃= arg min
p∈ΩG

∑
(vi,vj)∈E

∫
γij

d2
G(p,y)ρ(y)dy. (3.2)

Though line network space is usually not convex, one can prove that (3.2) and (3.1) are

essentially the same when used in a convex space.

Now, we generalize CVT on N-dimensional to line networks. Given an undirected

connected line network G= (V,E), a probability density function ρ on network space

ΩG and m seed points S={sk}mk=1, if the mass centroids of Voronoi cells {V̂k}mk=1

corresponding to S are also the same as their seed points, we refer to this Voronoi

tessellation as the centroidal Voronoi tessellation of ΩG.

Following the cost function used in discrete optimal transportation problem, given

any seed points set S={sk}mk=1 on ΩG and any tessellation T ={Tk}mk=1 of ΩG, we

generalize the cost function to line networks and have

E(S,T ) =
m∑
k=1

∑
(vi,vj)∈Ẽk

∫
γ̃ij

d2
G(y,sk)ρ(y)dy, (3.3)

where Ẽk is edge set of Tk. Denote by V (S) ={V̂k}mk=1 the Voronoi tessellation of ΩG

corresponding to seed points set S={sk}mk=1. We have the following results.

Theorem 3.1. Denote by {Sn} the seed points sequence during iterations of Lloy’s

algorithm used to calculate CVT on a line network G. We have

E(Sn,V (Sn))≤E(Sn−1,V (Sn−1)). (3.4)
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Proof : According to the definition in (3.2), given T , when E(S,T ) is minimized,

sk is the mass centroid of Tk, k= 1,·· · ,m. So, we have

E(Sn+1,V (Sn)) = min
S
E(S,V (Sn)). (3.5)

Following [6], we fix the seed point set S. Consider any tessellation T which is not the

Voronoi tessellation {V̂j}mj=1 corresponding to S. We compare (3.3) with the following

E(S,{V̂j}mj=1) =

m∑
j=1

∑
(vk,vl)∈Ej

∫
γkl

d2
G(y,sj)ρ(y)dy, (3.6)

where Ej is edge set of V̂j .

For any y∈ V̂j , we have

ρ(y)d2
G(y,sj)≤ρ(y)d2

G(y,sk), (3.7)

because y∈ V̂j but y may not belong to the Voronoi cell of sk, i.e., y∈Tk but Tk may

not be the Voronoi cell of sk. Since T is not a Voronoi tessellation, (3.7) must hold with

strict inequality over some measurable set of ΩG. So, we obtain

E(S,{V̂j}mj=1)<E(S,T ). (3.8)

Immediately, (3.8) implies

E(Sn,V (Sn)) = min
T
E(Sn,T ). (3.9)

Substitute n into n−1 in (3.5), we obtain

E(Sn,V (Sn−1))≤E(Sn−1,V (Sn−1)). (3.10)

Additionally, (3.9) gives

E(Sn,V (Sn))≤E(Sn,V (Sn−1)). (3.11)

Finally, (3.10) and (3.11) together give the expected result (3.4).�
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Algorithm 1 Define distance metric on line network

Input: Line network G= (V,E),and weights W
Output: Distance Dist

1: function ShortestPath(G, W )
2: for all v∈V do
3: Dist(v)←Dijkstra(G,W,v)
4: end for
5: end function

According to Theorem 3.1, when we use Lloyd’s algorithm to iteratively find the

CVT of a line network, the cost function defined in (3.3) declines monotonically. Since

the cost function has a lower boundary (not negative), the sequence {E(Sn,V (Sn))}

converges, resulting in a corresponding CVT of line network G.

4. Algorithms

In this section, we develop algorithms for finding the Voronoi diagram and centroidal

Voronoi tessellation of line networks.

4.1. Voronoi diagram on a line network

For a given undirected network G= (V,E) with weight W and initial seeds S=

{sk}mk=1 on network space ΩG, to obtain a Voronoi tessellation on network G, we must

compute Voronoi cells {V̂k}mk=1 for corresponding seeds. According to Section 2.2, cal-

culating the Voronoi diagram on the undirected network is to calculate the length of

the shortest path between any two points in the network, that is, to define the distance

between any two points on the network space ΩGS
. So, we need to calculate the short-

est path length between vertices on the line network GS . For more details about the

shortest path algorithms, please refer to [12].

We consider only connected networks with non-negative weights. We could traverse

each vertex of the network and use Dijkstra’s algorithm [12] to get the shortest path

between any two vertices.

The function for calculating the shortest path between any two vertices in a network

G is denoted by ShortestPath,shown in Algorithm 1, and results are stored in a data

structure Dist. We use Dist(v) to hold the shortest path lengths from vertex v to the

remaining vertices, and Dist(vi,vj) to hold the shortest path length between any two

vertices vi and vj . Dijkstra(G,W,v) represents Dijkstra’s algorithm to calculate the

shortest path lengths from vertex v to the rest of the vertices on a given line network

G and corresponding weights W . The pseudo-code for the ShortestPath is as follows:
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Algorithm 2 Add seed points into line network and update distances

Input: Line network G= (V,E), weights W , distance Dist and seed points S={sk}mk=1

Output: New line network GS = (VS ,ES), weights WS and distance DistS
1: function UpadateGraph(G, W , Dist, S)
2: VS←V , ES←E, WS←W , DistS←Dist;
3: for all s∈S, suppose s is on edge (vi,vj)∈ES do
4: ES←ES∪({(s,vi),(s,vj)});
5: WS(s,vi)←w(s,vi),WS(s,vj)←w(s,vj),WS(vi,vj)←+∞, WS(s,s)←0;
6: for all v∈VS do
7: DistS(s,v)←min(DistS(v,vi)+WS(s,vi),DistS(v,vj)+WS(s,vj));
8: end for
9: VS←VS∪{s},DistS(s,s)←0;

10: end for
11: end function

Algorithm 3 Compute mapping V or

Input: Network GS = (VS ,ES), seeds set S={sk}mk=1weights WSand distance DistS
Output: Mapping V or, and cut points set C

1: function VoronoiCut(GS , WS , DistS , S)
2: for all v∈VS do
3: Compute V or(v) based on (2.10) and (2.11);
4: end for
5: C←∅;
6: for all (vi,vj)∈ES do
7: if there exists a cut point pc on (vi,vj) based on Theorem 2.6 then
8: Calculate pc’s position according to (2.12);
9: V or(pc) =V or(vi)∪V or(vj);

10: C←C∪{pc};
11: end if
12: end for
13: end function

In the above algorithm, we add initial seeds S={sk}mk=1 into the vertex set of the

network G giving an updated network GS = (VS ,ES) with corresponding weights. In

Algorithm 2, UpdateGraph finds the shortest path distances between the vertices on the

updated network GS .

Here, the function UpdateGraph adds seeds in S into the original network, updates

the corresponding vertices and edges, and calculates the shortest path lengths from

those newly joined points to the original vertices. In this algorithm, min(a,b) is the

smaller of a and b, w(vi,vj) denotes the weight of the curve connected directly between

vi and vj (without passing through any other vertices); otherwise, w(vi,vj) = +∞.

In the next step, we can compute the Voronoi cells of GS = (VS ,ES) and determine

cut points on edges. Function VoronoiCut performs this task, as shown in Algorithm 3.
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Algorithm 4 Compute Voronoi tessellation for line networks

Input: Line network G= (V,E),weights W ,distance Dist,and seed points set S=
{sk}mk=1

Output: Voronoi tessellation {V̂k}mk=1 on network space ΩG
1: function GraphVoronoi(G, W , Dist, S)
2: (GS ,WS ,DistS)←UpdateGraph(G,W,Dist,S);
3: (V or,C)←V oronoiCut(GS ,WS ,DistS ,S);

4: Construct {V̂k}mk=1 from V or and C;
5: end function

Algorithm 5 Compute centroidal Voronoi tessellation for line networks

Input: Line network G= (V,E),weights W ,and the number of seed points m

Output: centroidal Voronoi tessellation {V̂k}mk=1 on network space ΩG
1: function GraphCVT(G, W , m)
2: Generate m random seed points S={sk}mk=1;
3: Dist←ShortestPath(G,W )

4: {V̂k}mk=1←GraphV oronoi(G,W,Dist,S);
5: Compute the centers, {s̃k}mk=1, of all Voronoi cells by (3.2);
6: if {sk}mk=1 and {s̃k}mk=1 satisfy the given convergence criterion then
7: go to Step 12;
8: else
9: S←{s̃k}mk=1;

10: go to Step 4;
11: end if
12: end function

Finally, Algorithm 4 presents the Voronoi tessellation algorithm GraphVoronoi for

a line network by combining above algorithms.

4.2. Centroidal Voronoi tessellation algorithm on networks

We use Lloyd iteration to solve the problem of centroidal Voronoi tessellation. Com-

bining the previous algorithms, we can design a centroidal Voronoi tessellation algorithm

GraphCVT for line networks as listed in Algorithm 5.

In all experiments, we adopted the convergence criterion that the sum of the shortest

path lengths between the corresponding points of {sk}mk=1 and {s̃k}mk=1 is less than a

given tolerance ε, i.e.,
∑m
k=1d

2
G(sk, s̃k)<ε.

5. Experimental results and discussions

In this section, we illustrate the effectiveness of the proposed method for typical

rectangular and triangular grid examples, and provide several practical applications. In

each case, the probability density of the points in the network space is evenly distributed

according to the weight of the edge.
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Fig. 5.1: Centroidal Voronoi tessellation on a rectangular network with 4 initial seed
points.

5.1. Rectangular and triangular grid networks

We have demonstrated the effectiveness of the proposed method by illustrating

rectangular and triangular grid networks. Figure 5.1(a) shows a 5×5 rectangular mesh

with 25 vertices, with equal weights on each edge. As shown in Figure 5.1(b), after four

seed points have been randomly generated, a Voronoi tessellation is obtained. After

eight iterations, it converges to a final centroidal Voronoi tessellation. Figure 5.1(c)

shows another set of initial seed points and converges after only three iterations as

shown in Figure 5.1(d)–(f). Both of these results are reasonable.Please note that the

dots in all subfigures ,except subfigure (a), denote seed points. The Voronoi cells are

identified by lines with the same color as the seed points. The color of an edge shared

by cells is the average of the color of corresponding seeds in the cells.

Figure 5.2 shows an example of a planar triangular grid mesh. In Figure 5.2(a),

each edge has the same weight. Figure 5.2(b) shows 3 randomly distributed seeds and

their Voronoi cells. The seeds will algorithm converges after four iterations, and the

average distances from each point in a cell to its seed point are equal. According to

the symmetry, we can choose another vertex in the same edge as the seed point, which

is different from the convergence result in Figure 5.2, and it is also a solution to this
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Fig. 5.2: Centroidal Voronoi tessellation on a triangular grid network with 3 initial seed
points.

example. Similar with to the example in Figure 5.1, the Voronoi cells are identified by

lines with the same color as the seed points, the color of the edge shared by neighboring

cells is the average of the color of corresponding seeds in the cells and edges shared by

all seeds are colored in black.

5.2. Practical applications

We apply the proposed centroidal Voronoi tessellation method to three practical

situations: the trash cans in the Beijing Olympic Forest Park, the distribution of the

electric car charging stations in Beijing, and optimization of the distribution of logistics

or express depot around the expressways in China.

5.2.1. Distribution of the trash cans in the Beijing Olympic Forest Park

In our first application is to the Olympic Forest Park, we aim to put trash cans along

the roadside, so that visitors in any places can reach to the nearest trash with almost

the same time. For this objective, we use the initial locations of the trash cans as seed

points, and compute the optimal locations by centroidal Voronoi tessellation on the line

network of the park’s roads.

Figure 5.3 maps out the Olympic Forest Park and the extracted line network (276

vertices, 434 edges, and the edge weights are the corresponding road lengths). Figure 5.4

shows the results of the proposed algorithm. The left column of Figure 5.4 shows a case
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Fig. 5.3: Map of the Olympic Forest Park (left) and the extracted line network (right).
Black points are road intersections, and lines are network connections.

with 10 trash cans. From top to bottom are randomly distributed initial seeds and

locations after 1, 4, and 7 iterations respectively. The right column of Figure 5.4 shows

a case for 20 trash cans. From top to bottom are randomly distributed initial seeds

and locations after 1, 14, and 27 iterations respectively. Please note the algorithm

converges after 7 and 27 iterations, which is very efficient. Different colors identify

different Voronoi cells, and the seed points in different cells are represented by dots of

corresponding colors.

5.2.2. Distribution of charging stations for electric cars in Beijing

As electric vehicles become more and more popular, the demand is increasing for

electric vehicle charging stations. How to plan the locations of charging stations becomes

an interesting problem, so as to allow users to quickly find their respective nearest

charging station and improve the utilization of each charging station. Specifically, taking

the main traffic roads within Beijing as an example, we use the proposed method to

demonstrate how to determine the locations of 50 charging stations.

The right figure in Figure 5.5 shows the network of Beijing map with 1034 vertices

and 1801 edge, with edge weights being the corresponding lengths of the roads.

Figure 5.6 and Figure 5.7 show that 50 charging stations converge to different loca-

tions under two different initial seed settings, demonstrating that the iterative method

in this paper is locally convergent (discussed further in Section 5.3). From the conver-

gent locations of charging stations, it can be found that some locations in two cases are

highly consistent with each other, especially in the outer layer.

5.2.3. Optimization of depot locations for express or logistics
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Fig. 5.4: Results of placing 10 (left) and 20 (right) trash cans, respectively. Top to
bottom: random initial seeds, after one iteration, intermediate results(after 4 or 14
iterations) and final convergence results (after 7 or 27 iterations).

Our approach can also optimize the distribution of depot locations for express or

logistics companies. Figure 5.8 shows the national expressway network. We took the

national roads and built a corresponding network with 287 vertices and 508 edges;
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Fig. 5.5: A traffic satellite map of Beijing city (left, Baidu map c©Baidu.com) and
the main traffic roads within the Sixth Ring Road (right). Black points depict road
intersections, and lines locate the network connections.

Fig. 5.6: Locations of charging stations at convergence after 28 iterations. Initial seeds
(above) and converged results (below).

the weight of each edge is the length of the corresponding road. Express or logistics

companies usually build depots beside the expressway. In order to make effective use

of each depot, the average length of the road covered by each depot should be equal

as far as possible. We optimize the locations of the depots by computing a centroidal
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Fig. 5.7: Locations of charging stations with different initial seeds. Initial seeds (above)
and converged results after 33 iterations (below).

Voronoi tessellation. Figure 5.9 shows a result for 35 depots on the national expressway

network.

Fig. 5.8: The national expressway network and corresponding line network. Right: black
points are vertices, the straight lines are edges of the line network, and the blue-green
curves are the real highways.

5.3. Discussions
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Fig. 5.9: Results of building 35 depots on the national expressway. The upper figure
shows random seeds, and the figure below is the converged result after 38 iterations.
Dots indicate the locations of the depots, and the corresponding color indicates the
Voronoi cell of each depot.

For any given connected networks, the proposed algorithm will converge to a so-

lution. However, this method does not necessarily guarantee the optimal solution(i.e.,
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Fig. 5.10: Star-like networks with tree structure: Voronoi tessellations with 3 seed points
(b-g) and 7 seed points (h-i). The dots represent the seed points, with the corresponding
Voronoi Cells represented in consistent color.

the average distance from each point to the seed point is equal), due to the structural

characteristics of the networks. We now illustrate various networks with their respective

structures.

5.3.1. Line networks with a tree structure

When the network has a tree structure, all the sub-networks corresponding to the

Voronoi tessellation of the network also have tree structures. When the centroid of

the tree happens to be the seed point of the partition, a (locally) optimal solution will

be obtained. Figure 5.10(a) shows a “star” like line network with six edges, where

each edge weight is equal. A Voronoi tessellation is obtained by randomly spreading

three seed points(see Figure 5.10(b)), and a locally optimal solution is reached after

7 iterations(see Figure 5.10(c)). Figure 5.10(d) and (f) show two other initializations,

converging to the Voronoi tessellations in Figure 5.10(e) and (g) after 8 iterations and

16 iterations respectively. If the average distance from the points in each cell to the

corresponding seed point is required to be as uniform as possible, Figure 5.10(c) and

(e) are better than the tessellation shown in Figure 5.10(g). However, in this example,

a tessellation with 3 cells cannot be found so that the average distance from the point

to the seed point is equal for each cell. If the number of seed points is set to 7, a

tessellation with equal average distances can be obtained for a specific choice of initial

seeds, as shown in Figure 5.10(h) and (i).

Therefore, for a general tree network, a centroidal Voronoi tessellation whose average

distances are equal in each Voronoi cell does not necessarily exist, but depends on the
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number and locations of the seeds.

5.3.2. Line networks with a loop

Fig. 5.11: Centroidal Voronoi tessellation of a hexagonal network with 6 seed points.
(a) the network; (b) 6 random seed points and corresponding Voronoi tessellation(c)–(e)
tessellations after 1, 7 and 12 iterations(f) the converged tessellation after 32 iterations.

We next consider the networks with a loop. Figure 5.11(a) shows a hexagonal net-

work in which the weight of each edge is equal. We initialize six seed points randomly

on the network and obtain the initial Voronoi partition in Figure 5.11(b). After 32 iter-

ations, the tessellation converges to a final result shown in Figure 5.11(f). For a network

with a single loop, the centroidal Voronoi tessellation on the loop can be transformed

into a one-dimensional Voronoi problem. Although the centroidal Voronoi tessellation

on networks with a loop varies with the initial seed points, the mean distances from the

points in each cell to their respective seed points are equal.

Obviously, for a network with a single loop, a centroidal Voronoi tessellation exists

with equal mean distances from points in each cell to the corresponding seed point, but

this tessellation is not unique.

6. Conclusion

This paper has studied a special discrete optimal mass transportation problem on

the line networks. Previous researches on discrete optimal mass transportation problem

usually require the space to have the property of convexity. This is not the case in real
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scenarios where the space is constrained on curves. We, therefore, propose the concept

of Voronoi diagrams on undirected connected line networks and develop an algorithm

for calculating such Voronoi diagrams based on the shortest path distance. Considering

practical applications, we extend the centroidal Voronoi tessellation of Euclidean space

to line networks so that the average distance is as uniform as possible between the points

in each Voronoi cell and the corresponding seed points. To achieve this objective, we

have computed the centroidal Voronoi partition of line networks by using an iterative

method. The method is proved effective in typical line network examples and practical

applications.

The increasing online taxi booking service poses a new problem, namely, how to

match drivers and passengers in a city, given the density distribution of the drivers

and the probability distribution of the passengers, to meet the service demands and to

minimize the total cost for drivers picking up passengers. This problem is associated

with the method proposed that deserves further further research.

30

<<N16>>



Zehan Hu & Zeyu Wang

REFERENCES

[1] L. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk, 3, 225–226, 1948.

[2] Y. Brenier, Polar Factorization and Monotone Rearrangement of Vector-Valued Functions, Com-

munications on Pure and Applied Mathematics, 1991, 44(4), 375–417, 1991.

[3] Xianfeng Gu, Feng Luo, Jian Sun and Shingtung Yau, Variational principles for minkowski type

problems, discrete optimal transport, and discrete Monge-Ampère equations, Asian Journal of

Mathematics, 3(20), 383-C398, 2016.

[4] Franz Aurenhammer, Power diagrams: properties, algorithms and applications, SIAM Journal of

Computing, 16(1), 78–96, 1987.

[5] Franz Aurenhammer, Voronoi diagramsa survey of a fundamental geometric data structure, ACM

Computing Surveys, 23(3), 345–405, 1991.

[6] Qiang Du, Vance Faber and Max Gunzburger, Centroidal Voronoi Tessellations: Applications and

Algorithms, SIAM Review, 41(4), 637C-676, 1999.
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