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Fig. 5.9: Results of building 35 depots on the national expressway. The upper figure
shows random seeds, and the figure below is the converged result after 38 iterations.
Dots indicate the locations of the depots, and the corresponding color indicates the
Voronoi cell of each depot.

For any given connected networks, the proposed algorithm will converge to a so-

lution. However, this method does not necessarily guarantee the optimal solution(i.e.,
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Fig. 5.10: Star-like networks with tree structure: Voronoi tessellations with 3 seed points
(b-g) and 7 seed points (h-i). The dots represent the seed points, with the corresponding
Voronoi Cells represented in consistent color.

the average distance from each point to the seed point is equal), due to the structural

characteristics of the networks. We now illustrate various networks with their respective

structures.

5.3.1. Line networks with a tree structure

When the network has a tree structure, all the sub-networks corresponding to the

Voronoi tessellation of the network also have tree structures. When the centroid of

the tree happens to be the seed point of the partition, a (locally) optimal solution will

be obtained. Figure 5.10(a) shows a “star” like line network with six edges, where

each edge weight is equal. A Voronoi tessellation is obtained by randomly spreading

three seed points(see Figure 5.10(b)), and a locally optimal solution is reached after

7 iterations(see Figure 5.10(c)). Figure 5.10(d) and (f) show two other initializations,

converging to the Voronoi tessellations in Figure 5.10(e) and (g) after 8 iterations and

16 iterations respectively. If the average distance from the points in each cell to the

corresponding seed point is required to be as uniform as possible, Figure 5.10(c) and

(e) are better than the tessellation shown in Figure 5.10(g). However, in this example,

a tessellation with 3 cells cannot be found so that the average distance from the point

to the seed point is equal for each cell. If the number of seed points is set to 7, a

tessellation with equal average distances can be obtained for a specific choice of initial

seeds, as shown in Figure 5.10(h) and (i).

Therefore, for a general tree network, a centroidal Voronoi tessellation whose average

distances are equal in each Voronoi cell does not necessarily exist, but depends on the
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number and locations of the seeds.

5.3.2. Line networks with a loop

Fig. 5.11: Centroidal Voronoi tessellation of a hexagonal network with 6 seed points.
(a) the network; (b) 6 random seed points and corresponding Voronoi tessellation(c)–(e)
tessellations after 1, 7 and 12 iterations(f) the converged tessellation after 32 iterations.

We next consider the networks with a loop. Figure 5.11(a) shows a hexagonal net-

work in which the weight of each edge is equal. We initialize six seed points randomly

on the network and obtain the initial Voronoi partition in Figure 5.11(b). After 32 iter-

ations, the tessellation converges to a final result shown in Figure 5.11(f). For a network

with a single loop, the centroidal Voronoi tessellation on the loop can be transformed

into a one-dimensional Voronoi problem. Although the centroidal Voronoi tessellation

on networks with a loop varies with the initial seed points, the mean distances from the

points in each cell to their respective seed points are equal.

Obviously, for a network with a single loop, a centroidal Voronoi tessellation exists

with equal mean distances from points in each cell to the corresponding seed point, but

this tessellation is not unique.

6. Conclusion

This paper has studied a special discrete optimal mass transportation problem on

the line networks. Previous researches on discrete optimal mass transportation problem

usually require the space to have the property of convexity. This is not the case in real
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scenarios where the space is constrained on curves. We, therefore, propose the concept

of Voronoi diagrams on undirected connected line networks and develop an algorithm

for calculating such Voronoi diagrams based on the shortest path distance. Considering

practical applications, we extend the centroidal Voronoi tessellation of Euclidean space

to line networks so that the average distance is as uniform as possible between the points

in each Voronoi cell and the corresponding seed points. To achieve this objective, we

have computed the centroidal Voronoi partition of line networks by using an iterative

method. The method is proved effective in typical line network examples and practical

applications.

The increasing online taxi booking service poses a new problem, namely, how to

match drivers and passengers in a city, given the density distribution of the drivers

and the probability distribution of the passengers, to meet the service demands and to

minimize the total cost for drivers picking up passengers. This problem is associated

with the method proposed that deserves further further research.
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