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ABSTRACT

In this paper we first introduce a fractional form formula among a number
of Euler’s formulas. We then extend the formula and with mathematical
induction prove the case when the number of terms increases and the
exponent is integer. Afterwards, we study the connection between Euler’s
formula and Lagrange interpolating polynomial and use the latter to prove part
of the extended formula. We then obtain a new formula from this connection.
At last, we derive a set of new equations from the extended formula.

Keywords: Euler's Formula, Lagrange Interpolating Polynomial,

Mathematical Induction
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Chapter 1 Introduction

Euler discovered the following equation in 18" century, and named it as
Euler’'s Formula, which is the name for many of his formulas, making them
sometimes confusing.

r " ) 0,r=0,1
a ¢ = 1r=2 1.1
(@-b)a—c) (b-a)(b-c) (c-a)(c-b) M:C - Y

However, this formula only includes four cases with »=0,1,2,3 and three
terms. Thus, this formula draws attention of the people who love math.
Someone (reference [2]) has already succeeded in expanding the formula to
the cases when r is any non-negative integers.

In this paper, we will furthermore systematically expand the formula to

n r

a.

) e e e —a e —a] (1.2)

i=1

where a,,a,,

integer and the number of terms is greater than one.

--,a are distinct and n>2, r € Z, that is when r is any

At first, we spent a month to solve and prove the case when r=0 using
mathematical induction, which is often the tool used in our proofs. Then, from
this case we got the recursion formula about the relation between f(n,7) and
f(n-11), (i:O,l,--.,r—l). Using the new formula, we solved the cases when
r—n+1<0 and r—n+1 >0separately(r >0). After that, we solved the cases
when r <0 through similar approach.

Subsequently, we studied the connection between Euler’s Formula and
Lagrange Interpolating Polynomial, and proved part of the expanded formula
of f(n,r). Through this connection we also discovered a new equation.

At last, we derived some new formulas as well as new thoughts from the

expansion of Euler’s Formula.
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Chapter 2 The expansion of Euler’'s Formula

2.1 The case when r=0

We used a C++ program to choose random «, and calculate f(n,0). We

found out that the outcome is always very close to 0.

n r a f(n,0)
30 0,-6,2 0

4 0 2,-7,3,1 0

5 0 -6,-1,5,9,-9 1.05879x107*
6 0 0,-3,1,7,-1,-4 ~4.23516x107%
7 0 -6,-7,-3,0,-4,6,3 1.32349x10™

Chart 1

(The source code and the outcome of a f(7,0) and a f(11,0) are in the

appendix)

Hence, we guess that f(n,0)=0.
Lemma (1): f(n,0)=0

Proof:

+1:O

a—-b b-a

Suppose f(k,0)=0, that is

First we have

1

1

(ay— )y —a)-(a,— @, —a,) (@ —a,)(a, -

1

+...+ =
(a,—a)a, —a,)(a,—a,_,)Na,—a_,)

Then

a,)-(a,—a;_Na,—a,)
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(al _ak+1) + (az _ak+1)
(al_az)(al_a3)"'(a1_ak+1) (az—al)(az—a3)---(a2—ak+l) 2.1)
- (ak_ak+1) ~0 |
(ak B al)(ak - az)"'(ak - ak—l)(ak B ak+1)
Now we need to prove f(k+1,0)=0, thatis
! + ! fot
(al - aZ)(al B az)"'(al — ) (a2 - al)(az - a3)---(a2 — )
1 1 2.2)
(ak - al)' (e, —a N —a,,) ’ (ak+1 - al)' ~(a,, —a Ny, —a,) B
(2.2) left side x(a,—q,,, ).
4~ 4y n 4~ 4y
((11—(12)(611—613)“'(611—ak+1) (a2—al)(az—a3)---(a2—ak+1) (2.3)
4 —qq

I
(ak _a1)"'(ak -, Na,—a;,)

(2.1) left side - (2.3),

0 a,—q

+
(al - aZ)(al - as)"'(al —a ) —a,) (a2 - al)(aZ - a3)---(a2 —a)ay, = ay,,)

R 4G4 + Q1 — 4
(ak_al)(ak_az)”'(ak_ak—l)(ak_ak+1) (ak+1_a1)"'(ak+1_ak—l)(ak+1_ak)
1 1
B (az - a3)(a2 - a4)---(a2 —a)ay, = a,,) ’ (a3 - az)(a3 - a4)---(a3 —a)a;—a,,)
1
+...+
(ak+l - az)(“lm - a3)"'(ak+1 — N, —a;)
=0
. (2.1)-(2.3)=0
“(2.1)=0
S (2.3)=0

Also (2.3)=(2.2)x(a, —aj,,)

" (2.2)=0, thatis if f(k,0)=0, f(k+1,0)=0
Q.E.D.
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2.2 The cases when >0

2.2.1 The recursion formula of f(n,r)

After guessing that f(n,0)=0, we figured that if this hypothesis was
proven true, then there would be a relation between f(a,b) and
f(a-10), f(a-11), ---, f(a—1,b-1). We give the following lemma to illustrate
that relation.

Lemma (2):

f(n,l”)= aan(n—1,0)+an"72f(n—1,1)+-..+

an]f(n—1,7’—2)+an0f(n_1’r_1) (2.4)

A B © D E F G H J K

O | P IN W | bd|jor) OO N |0

/i 2131415161789 1]10

Figure 2
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Proof:
a a.
fnr)= 1 + 2
) e —afa—a)a=a) (o= —e){a—a)
{
+...+ n
(an - al)(an - az)" .(an - an—l)
_ a1r - anr + azr B anr

) (al —az)(al —a3)---(a1 _an) (az B al)(az —a3)---(a2 - an)

a
n

"M o ma)a, - a) (o, -a,)

_ al"_1 + al"_za cedq ™! N a, - +a, _zan +---+anr_1
(al_az)(al_a3) (al_an—l) (az_al)(az_a3)"'(a2_an—l)

et va lr_2an+---+anr_1

=anr_lf(n—1,0)+an’_zf(n—1,1)+-~-+anlf(n—1,r—2)+an°f(n—l,r—l)

Q.E.D.
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2.2.2 The expanded formula when »—n+1<0

First, we found that since f(2,0)=0, f£(3,1)=a,’f(2,0)=0. Also, because
fB,0)=f31)=0,thus f(41)=a,f(3,0)=0, /(4.2)=a, f(3,0)+a,’f(3,1) =0.

Using Lemma(2) (2.4), it is relatively easy to find out

Theorem (1):

When r—-n+1<0,

f(n,r)=0 (2.5)
) 8 8
L7 L7
. 6 .6
8 5 |5
4 4
.3 3
.2 2
, 1 , 1 0 o0ojojofo0oj0 0 00O
,0 0o/ o0jojoj0ofl0oj0/0 0 O 0o o o o/ololo 0 0o o
Ln 2 3141516178 9 10 - L2 3 415161718 9 10

Figure 3 Figure 4
; 1 e
§ 8 8
7 L7 o |/
.| 6 6
.5 .5 o | o | o | o/ilo
o4 4 0 o | o | djjio
E ; P e B B
. 2 0|0 0 O0|o0 0|0 o0 . 2 o|lo|o o|o0o]| 0|0 o
. 1 0 0 0 0 0 0 0 0 0 S 1 0 0 0 0 0 0 0 0 0
.0 0 0f0|0 0 0|lO0|0 0 O ; 0 o 0/o|/o o o|ojo 0 o
/m 2 3|45 6 7[8[9 10 - /n 2 3145 6 7[8|9 10
; | | _
Figure 5 Figure 6
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Proof:
Using Lemma (2) (2.4)

f(n,r) = an"flf(n— 1,0)+ aan(”— 1,1)+...+
a'f(n-1r=2)+a’f(n-1,r-1)
We get

f(n,r):O+c]f(n—2,O)+---+cr_3f(n—2,r—3)+cr_2f(n—2,r—2) (c, are constants)
=O+0+d]f(n—3,0)+--'+dr_4f(n—3,r—4)+dr_3f(n—3,r—3) (d, are constants)

:O+0+---+kf(n—r,0) (k 1s a constant)

Since n—-r>2, f(n,r)=0.

Q.E.D.
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2.2.3 The general formula g(n,7) when r—n+1>0

Apparently,
f@Qr)y=a"" +aa,++aa, *+a,’" (r>0, because f(2,0)=0)
= 2 alkl azkz (kls k2 2 0)
K +hey=r—1

According to Lemma (2) (2.4)
f(n,r) = an"flf(n— 1,0)+ an”f(n— 1,1)+...+
an]f(n—1,r—2)+anof(n—l,r—l)
We get
fBr)=a/"f(2,0)+a 7 f(2.0)++a f(2,r=2)+a f(2.r-1)

(r > 1, because r — 1> 0 otherwise all the terms would be 0 according to Theorem (1))

_ r=2 k kK =3 Z k ok
—0+a3 Z a'a,’ +a, a'a,

ky+ky=0 ky+ky=1
1 k k 0 Z Kk
+otal Y ala+a, ala,
k|+k2=r—3 kl+k2=r—2
J— kl k2 k3
- 2 a,°a, a,
k1+kz+k3=r72

By analogy, the following formula can be deduced.
Theorem (2):
When r—n+1 >0,

f(n,r):g(n,r)zl Z Eli[ajij (k, 0) (2.6)
’Z:Yl:k,-:r—nﬂ /=
Proof:
Firstly, f(2,r)=g(2,r)

Suppose for integer # and any constant integer v(v—u+12>0,u >2,v >0),

fu,v)=g(u,v).

Then
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f(u+ l,v) = au+lv_1f(u,0)+ auﬂv_zf(u,l)+---+ auﬂof(u,v— 1)
=O+O+---+O+au+l”’“f(u,u—1)+-~au+10f(u,v—l)

= O+O+-~+O+awv’”g(u,u—1)+---au+log(u,v—1)

u u
— k —u—1 k,
_ v—u T v—u i
=a." 2 | e [ra. 2| 1o
1 1

i=1 i=1

Q.E.D.

10
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2.2.4 Generalization of the cases when » >0

When »>0,

fr) =] b (27)

11



2.3 The cases when <0
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2.3.1 The recursion formula when » <0

We predicted that there is still a recursion formula of f(n,7) when <0,

and provided the following lemma.

Lemma (3):

f(n,r) = —an"f(n— 1,—1)— an’”f(n— 1,—2)
—---—anfzf(n—l,r+l)—anflf(n—l,r)

C

3

D

4

E

5

F

6

G

7

H

8

10

(2.8)

R

Figure 7

12



<<N18>>

Proof:
— alr aZ
f(” ’”)— (al —az)(al —a3)---(a] _an) ' (az —al)(az —a3)---(a2 _an)
a’
"l ma)a - a) e a)
a —a’ a—a’
aa)a-a){a-a) (o-a)e-a){o-a)
Feet a, —a
(an_al)(an_az)"'(an_an—l)
Ca'a a” l+al_’_2a +ootaq ! Ca'a az__1+a2 _2an+---+an__1
1 (al—az)(al aS)---(al—an_l) o (az_al)(az_as)"'(az_an—l)

—r=2 —r—1
a T 4+a Ta+-+a
n—1 n—1 n n

a 'a’
n_l n — — RS —
(an—l al )(an—l a2) (an—l an—2 )

= —anrf(n— 1,—1)—an’+1f(n—1,—2)—-~-— an_zf(n—1,r+1)—an_1f(n—l,r)

Q.E.D.

13



<<N18>>

2.3.2 The general formula when » <0

Obviously,
a’ a’
f(2,r) =—1l 42
a—a, a,—q
r r
— a, —4a,
a,—a,

R B | r+l1 r+2 -1 r+l1
= al a2 (al +Cll az + '|‘Cl2 )

=— Y a'a"  (k.k,<0)

ky+hy=r-1
Using (2.8), we get
f(3.r)= Z a'a)a (k. Ky ky <—1)

ky+ky+hky=r 2
By analogy, the following formula can be deduced.
Theorem (3):
When r<0,

flmr)=h(nr)=(-1)" X (Ha] (k 0) (2.9)
Serne =
Proof:
Firstly, /(2,r)=h(2,r)
Suppose for integer # and any constant integer v, (u=2,v <0),
f(u,v) = h(u,v).

Then

14
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f(u + l,v) = —auﬂvf(u,—l)— au+lv+1f(u,—2)— e an’lf(u + l,v)
= —au+1vh(u,—1) - auHV”h(u,—Z) —e— an_'h(u,v)
() (Hj

ikl:—u 7

Q.E.D.

15
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2.4 Generalization of the cases when r € 7

z Hajk’} (kl.ZO), r>n—1
Z”‘kl.=r—n+1 =
f(n,r)= 0, 0<r<n—-1
n—1 " k/.
)" X T ] (k,<0), r<0
Zk,.=r—n+l A
1 0
| Tk 0|0
8 j
iK1 N
3 | l Zki=r—n+1 = 0 0 0
. 6 — 0[(0|0]O0
.5 0O(0|0]|0O0]|O
| 4 O(0|0|O0O|O]|O
.3 0O(0|0|O|0O|O0]O
.2 o(0j0|O0O|O|O|O0O]O
1 oO(0|0|O|O|O]0O|O]O
,010j0j0j0O|0O|0O|0]|0]0]O
L/ 213141516 7|8]9]10

Figure 8
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Chapter 3 The connection between Euler’'s Formula and

Lagrange Interpolating Polynomial

Our teacher mentioned that there is some similarities and connections
between Euler’s Formula and Lagrange Interpolating Polynomial. In the latter,

F) = /G (3.1)

where

(x =)0 =) (2 =x Yx—x,) (2 = x,)

(xi _xl)(xi _xz)"'(xi _xifl)(xi _xi+1)"'(xi _xn)

1(x)=

the denominator of /(x) is the same as the denominator of f(n,r) (of
course, the constants changes to x. ). In addition, the coefficient of X" is 1,

which matches the numerator of f(n,r) . Therefore, we found that the
polynomial somehow connects with the expanded formula, leading to the

proof of some cases of f(n,r).

17
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3.1 Lagrange Interpolating Polynomial

F) = /G (3.1)

(x—x)(x—x,)(x—x_)x—x, ) (x—x,)

where [ (x)=
I (= 2)0x, = x,) (X, =X (X, = x,,) (%, = x,)

In order to prove the cases of f(n,r), we have to use a special property

of the polynomial, which is that if f(x) is a polynomial of degree n —1 or less,
then f(x) =F(x).

To prove this property of the polynomial, we need to prove the following
lemma.

Lemma (4): A polynomial of degree » —1 or less cannot have n zeros.

Proof: Suppose a polynomial of degree » —1 or less does have n zeros,
then this polynomial must have at least » —1 stationary points, which means
f'(x) has at least n—1 zeros. Likewise, f'(x) has at least n—2 stationary
points, that means f”(x) has at least n—2 zeros, and so on. f(x) can only
have a constant n—1™ order derivative (or does not have one at all).

However, the deduction above indicates that it has a n — order derivative

that has at least one zero, which is contradictory. Thus, such polynomials
cannot exist.

Q.E.D.

18
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Lemma (5): If f(x) is a polynomial of degree n—1 or less, then

f(x)zF(x).

Proof: Suppose f(x)#F(x), then assume that g(x)=f(x)-F(x),
where g(x) is a polynomial of degree »n —1 or less. Because on the n points
( x.x,-x, ) f(x) and F(x) have the same values, which are
£(x). £ (x,),+, f(x,) respectively, g(x) has zeros on those points, making it

has n zeros. According to Lemma (4) this is impossible. Hence f(x)=F(x).

Q.E.D.

19
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3.2 Proof of the extended formula when »<n—1

Proof: Suppose that in Lagrange Interpolating Polynomial, f(x)=x".
In this case, the coefficient of x"" in F(x) is

”

“ X
-3 ,

i=1 (xi _xl)(xi _xz)"'(xi X )(xi _xi+1)"'(xi _xn)

= f(n,r)

According to Lemma (5), when n>r, F(x)=f(x)=x". Thus all the
coefficients of x* in F(x) is zero except that the coefficient of x" is 1.
When n=r+1, the coefficient of x"" is f(n,7)= f(n,n-1) 1.

When n>r+1, the coefficient of x" is f(n,7)=0.(Because n—1#r)

20
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3.3 Using the polynomial to proof the extended formula when
n-1<r<2n-2

When f(x)=x"",
The coefficient of X" in F(x)= f(n,n—-1) 1
The coefficient of x> in F(x)

=0

-1

! —(x1+x2+---+xi_1+xi+1+---+xn)xf
i=1 (xi _xl)(xi _xz)"'(xi _xi—l)(xi _xi+1)"'(xi _xn)
—(x1 +x, +---+xn)xl."_1 +x;

i=1 (xi _xl)(xi _xz)"'(xi _xi—l)(xi _xi+1)"'(xi _xn)

=—(x,+x, +-+x,) f(n,n=1)+ f(n,n)

N

Therefore f(n,n)=(x,+x,++x)

The coefficient of X"~ in F(x)
=0

n

n
n—l1
z xjxh xi

=1, jizh

i=1 ('x,' _xl)(xi _xz)'“(xi _xi_l)(xi —XHI)"'(.X'[ _x,,)

n
( Z x_/,xh}ci”_l—(xl+x2+---+xn)xi”+xlf’+1

J.h=1,j#h

=

:2<xi—xl><x,-—x2>---<xi—x,-1><xi—x,-+1>~--<xi—x,,>

i=1

=L i xjxh]f(n,n—l)—(x1+x2+-~+xn)f(n,n)+f(n,n+1)

Jh=1,j#h
Therefore
S(n,n+1)=(x+x, +-~-+)cn)2 - Z XX,
J.h=1,j#h
‘ k.
= Z [ijfj (k. #0)
iki:z s
And so on,

The coefficient of x" in F(x)

21
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=0

A S
"2 G (o)
NEURD0 1N SRR Dol R EE R
— 2 h=1 h=1

i=1 (xi _xl)(x,- _xz)"'(xi _xi—l)(xi _xi+1)“'(xi _xn)

(j, are distinct)

:(—l)t_1 2(t xjhj f(n,n—-1)

e Y] (3.2)
o (D Jfrenme simei=2

Therefore

—

Fon+t-2)=(-1)" [2( x, H Fnn=1)+(=1)" {2[ 1 X, ﬂ f(n,n)

h=1

+...+(_1)° {2( h; x, H f(n,n+1=3)

To prove the right side of the equation above = ) (ijkf),
" j=1
Zk,:z—l /

Is equivalent to prove that the coefficient of every term in the following

polynomial is 1. (Because Y (ij"f] includes every term of £ — 1™
ik,-:t—l A

degree and has the coefficient 1.)

—_

1— -2

(1)~ [2( x, ﬂ f(nn— 1)+(—1)"3{2[ x, H f(n.n)

=
I

1 h=1

1

+-~+(—1)0[2(ij,1ﬂf(mn+f—3)

h=1

22
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Consider a term in ijkf (Zki =t—1). Its coefficient (the number of time
Jj=1 i=1

1

it appears) in [Z(H’% Hf(n,n +1—3) equals to the number of terms it

h=1

1
includes in Z(H x"”j' In brief, the coefficient is the number of distinct
h=1

letters in ijkf (suppose it is m ). Similarly, its coefficient in
Jj=1

2
[Z(ijhﬂf(n,nﬂ—@ equals to the number of terms it includes in
h=1
2
Z(Hx; J This number is the number of terms of two distinct letters in
i Jh

ok L. M - . Tk
ijf, which is [J Hence, the coefficient of this term in ijf (the

J=1 J=1

total number of times it appears) is

C V| o mo || omo| c vl m
Sor( 7 (5 2o 1)
|
Therefore,
f(mn+t-2)= (—1)’2[2[]1% H f(n,n—l)+(—l)t3[2[ x].hﬂ F(n,n)
lL[xjhﬂf(n,n+t—3)

Q.E.D.

23
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Once again, using another method, we obtained and proved part of

theorem (2),

When n—-1<r<2n-2,

fnr)= ¥ (Hj 26

n ':1
Zkf =r—n+l1 J
i=1

24
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3.4 A new equation derived from the application of the

extended formula in Lagrange Interpolating Polynomial

We noticed that the coefficient of each term of the polynomial can be

expressed by the extended formula. Also, the coefficient of in x"~ in F(x) is

I, i=1
! (Supposing that f(x) = x”’l)
0, i>1

Thus, we can obtain a new equation using this relation.
According to (3.2)

:(—1)H 2 ﬁxjh] f(n,n-1)

h=1

(-7 Y I x&J F(mn)+e+ f(nn+t-2)

h=1

_ g{(_l)’-" z[nxﬂ f(n,n+i—2)} (3.3)

Hence, the constant term in F(x)
=0

_ ,: {(_1)’” {z(lh‘][xl ﬂ fnn+i 2)} (3.4)

g(n,r)= i[ﬂ X, j (g(n,0)=1) (3.5)

Then we have

f(n,2n-2)g(n,0)— f(n,2n-3)g(n,1)

ot (<) f(mn=-Dg(nn—-1)=0 (3.6)

25
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Using “X” to express the sum, we have

Theorem (4):

S (0" fnn+i-2gmn—i) 0 (3.7)

26
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Chapter 4 Other applications of the formula, conjectures
and predictions

We noticed that the constants a, in f(n,r) do not have to be random and
meaningless constants. Rather, they could be some fixed constants or
functions that are distinct. Thus, we believe that some useful equations can
be derived from this. The following equations are the ones we found by

substituting a, with certain constants and functions.

1. According to Theorem (2),

a n—1 a n—1

f(nn=1)= (a—a)a-a){a-a) (a-a)a—-a]{a—a)

n—1

a
4ot n

(an - al)(an - az)"'(an - an_l)

=1

Substitute @, with i, we get

(al—az)(al—a3)--~(al_—an) (a,-a)(a,~a,)(a,~a,)
e —a)a—a) e, —a)

=1

B 1—1 N 211—1
_(1—2)(1—3).'-(1—_;1) (2-1)(2-3)-++(2-n)

That is
Theorem (5):

> (1) =1 @.1)

27
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|
Noticing that n = L (4.1) can be written as
i il(n—=1)!

X n—i +n n
Zl,(—l)l . |=n! (4.2)

l

2. According to Theorem (2),
f(4,4)=al+a2+a3+a4 (4.3)

Substitute
a, =sinacos Bcosy
a, =cosorsin Bcosy
a, = cosocos fsiny
=—sinasin Bsiny

a,

Because that the trigonometric three-angle formula (expansion of
sin(a+b+c)) states that
sin(a+,8+7):sinacosﬂc0s7+cosasinﬁcosy 4.4)

+cosa cos fsin y —sina sin fsiny

We get
(sin acos fcos }/)4
+
(sina cos fcos y —cosasin Bcosy )(sina cos fcosy —cosa cos Bsiny )(sina cos fcosy +sina sin fsiny)

(cosasin S cos ;/)4
+
(cosasin ffcos y —sina cos fcosy )(cosasin ffcosy —cosa cos fsiny)(cosasin fcosy +sinasin Bsiny)

(cosa cos Bsin ;/)4
+
(cosacosﬁsin y—sina cosﬂcosy)(cosacosﬁsin y —cosa sin,b’cosy)(cosa cos fsiny +sina sin £ sin 7/)

(—sinasin Ssin }/)4
. . . . . . . . . . . . Al
(—smasmﬂsmy —sina cos [ cos ;/)(—smasmﬂsmy —cosasin fcos ;/)(—smasm,b’smy —cosa cos ffsiny

=sina cos fcosy + cosa sin fcos ¥ +cosa cos fsiny —sina sin fsiny

=sin(a+f+7)

28



<<N18>>

After the simplification, we get

Theorem (6):

(sin & cos Bcos }/)3 .\ (cosasin S cos 7/)3
sin(a — B)sin(a—y)cos(B-y) sin(B—a)sin(B—y)cos(a—7y)
. (cosozcos,b’sin;/)3 ~ (sinozsinﬂsiny)3 (4.5)
sin(y —a)sin(y — B)cos(a—B) cos(a—f)cos(f—y)cos(a—y) .
=sin(a+ﬂ+7/)
Of course, a = g +#y +«; a—ﬂ,ﬂ—y,a—yh&%

3. Similar to Theorem (6), according to the trigonometric three-angle
formula (expansion of cos(a+b+c))

cos(a+f+y)=cosacos fcosy cosasinfsiny

(4.6)
—sina cos fsin y —sina sin fcos y
And Theorem (2) (4.3)
We get Theorem (7):
(cosoccosﬁcos}/)3 (cosasinﬁsiny)3
cos(a —ﬂ)cos(ﬁ—y)cos(a —y) - sin(a—ﬁ)sin(a —j/)cos(ﬁ—]/)
(sinoccosﬁsin}/)3 (sinocsinﬁcos}/)3 (4.7)

B Sin(ﬁ_a)sin(ﬁ—y)cos(oc—y) - sin(y—a)sin(y—ﬁ)cos(a—ﬁ)
= cos(a+[i’+y)
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Also, a# f#y#a;

T
a_ﬂaﬂ_y:a_y|¢5

Due to the limitation of time, we only obtained those equations. However,
we believe that by applying the extended Euler’s Formula, a lot of more useful

formulas can be acquired.
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Chapter 5 Conclusion

In this paper, we successfully expanded the simple fractional Euler’s
Formula (1.1) to the cases when the number of terms is an integer equal to or
greater than two, and the exponent is any integer. We proved our theory step
by step. Then, we connected the extended formula to Lagrange interpolating
polynomial and proved the former using this relation. Also, a new equation
was obtained through this connection. At last, we explored and applied the
extended formula to derive a set of new equations, as well as propose some

conjectures.
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Appendix

#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;
int a[22]={0};
long long int power(int a,int b)
{

inti;

long long int x=1;

for(i=1;i<=b;i++)

x*=a;
return x;

}

long double f(int n,int r)

{
int i,j,numerator=1;long double denominator=1,x=0;
for(i=1;i<=n;i++)
{

numerator=power(al[il,r);

cout<<" "<<numerator<<"/";

for(j=1;j<=n;j++)

{
if(i==j)continue;
denominator*=(a[i]-a[j]);
cout<<"("<<a]i]<<"-"<<a[j]<<")";
}

cout<<" = "<<numerator<<"/"<<denominator<<" =
"<<numerator/denominator<<"\n";
x+=numerator/denominator;

cout<<" sum="<<x<<"\n";

35



<<N18>>

denominator=1;

}

return x;

}

int random(int start,int end)
{
int x=start+(end-start)*rand()/(RAND_MAX+1.0);
return x;
}
int main() {
srand(unsigned(time(0)));
int i;int n,r;bool b;
while(1)
{
cout<<"\n Please input n(n<20),r: ";
cin>>n;
if(n<=0]|n>=20)
return O;
cin>>r;
for(i=1;i<=n;i++)
{
b=false;
while(!b)
{
ali]J=random(-10,10);
b=true;
for(int j=1;j<i;j++)

if(afj]==al[i])b=false;
}
}
cout<<" a["<<i<<"] = "<<g[i]<<"\n";
}
long double result=f(n,r);
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cout<<" f(n,r)= "<<result<<" \n\n";

}

return O;

}

Some of the results:

Please input n(n{28>.»: 7 0

all1l =

al21

al31

al41]

al51

alel

al?1]
1/7¢6—-2>¢6-1>¢(6—8>C(6—4><(6-8><(6-2)
sum=7.440848e—-006

1/¢(-2-6>¢(-2-1>(-2-—-8>(-2--4>(-2-B>(-2-2)> = 1,/2384

sum=0.000441468
1/1-6>U—2>U—8>U1—4>{1-8>1-2)
sum=0.080192295
1/¢(-8-6>C(—8—2>(-8-1>(-8——4>(-8-8>(-8-2>
sum=0.001927688
1/(-4-6>(-4——-2>(-4-1>(-4—-8>(-4-8>(-4-2>
sum=0.80182292
1/¢(8-6>(B—2>(B-1>(B——8>(B—4>(B-2)
sum=0.0800520833
1/¢2-6>(2—-2>(2-1>(2——8>(2——4>(2-8>
sum=-1.5881%e-022

fdn,.r>= —-1.5881%e-022

1/-19280 =

Please input n{n<280)>,r: 11 @

alll 6

al21 =5

al31 9

al41] 1

al51 -2

al6l = -1

al?] = -4

al81 = @

al?1 = 2

al181 = 7

al111 = -3
1/¢6-53¢6-9>C6-1>¢(6—-2>C6——1>C(6——4><(6-B>C(6-2>C(6-7>(6—-3>
sum=5.51146e-0087
1/¢5-6>¢5-9>(5-1>(5—-2>(5—-1>(5-—-4>(5-B8>(5-2>(5-7>¢(5-—-3>
sum=-1.37787e-8087
1/¢9-6>(9-5>C(9-1>(9—-2>(9—1>(9——4>(9-8>(9-2>(9-7>(9—-3>
sum=-1.3296%e-8087
1/¢1-6>1-5>1-9>U—-2>1—1>1——4>1-8>{1-2>U-7>{1—-3>
sum=-8.81352e-0806

1/¢-2-6>C(-2-53(-2-9>(-2-15(-2—-15(-2—-4>(-2-B>(-2-2>(-2-7>(-2--3>

sum=-5.085571e-606

1/¢-1-6>¢-1-5>¢(-1-9>(-1-1>¢(-1--2>(-1-—-4>(-1-8>(-1-2>(-1-7>(-1--3>

sum=-1.3322%e-8085

1/¢(-4-6>(-4-55(-4-95(-4-1>(-4--2>(-4—1)>(-4-0>(-4-2>(-4-7>(-4—-3>

sum=-1.3215e-0685
1/¢B-6><(B-5>CB-2><(B-1><(B—-2>(B——1><(B——4><(B-2>(B-?7><(B—-3>
sum=-2.192086e—-006
1/¢2-6>C2-5>(2-95C2-1)>C(2—-2>(2—-1>(2—-4>(2-8>(2-?7>(2—-3>
sum=1.11482e-0086
1/¢?2-6>C?-5>C?-9>C(?-1>(?—-2>(?——1>(?——4>(?-8>(?-2>(?—-3>
sum=%.64506e-0087

1/-9608

1,/134408 = 7.44048e-0066

= 0.806434028

1,675 = B.80148148

1,241928 = 4.1336e-0806

= —-0.080184167

1/-768 = -8.08136268

-0.6808520833

1/1.8144e+006 = 5.51146e-007

1/-1.45152e+886 = —6.88933e-007

1/2.87567e+088 = 4.81771e-009

1/-115200 = -8.680856e-006

1/266112 = 3.75782e-006

1/-128968 = —-8.2672e-006

1/9.2664e+086 = 1.87917e-807

1/90728 = 1.1022%e-005

1,/3624808 = 3.30688e-006

1/-6.6528e+006 = —-1.50313e-007

1/¢-3-6>C(-3-5>(-3-9>(-3-11(-3—-2>(-3—1)>(-3--4>(-3-8>(-3-2>(-3-7)> = 1/-1.0368e+006 = -9.64506e-007

sum=-3.108193e-825
fdn,.rd>= -3.10193e-025
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