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ABSTRACT 

In this paper we first introduce a fractional form formula among a number 
of Euler’s formulas. We then extend the formula and with mathematical 
induction prove the case when the number of terms increases and the 
exponent is integer. Afterwards, we study the connection between Euler’s 
formula and Lagrange interpolating polynomial and use the latter to prove part 
of the extended formula. We then obtain a new formula from this connection. 
At last, we derive a set of new equations from the extended formula. 

Keywords: Euler’s Formula, Lagrange Interpolating Polynomial, 
Mathematical Induction 
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Chapter 1 Introduction 

Euler discovered the following equation in 18th century, and named it as 
Euler’s Formula, which is the name for many of his formulas, making them 
sometimes confusing. 
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However, this formula only includes four cases with 0,1,2,3r =  and three 
terms. Thus, this formula draws attention of the people who love math. 
Someone (reference [2]) has already succeeded in expanding the formula to 
the cases when r is any non-negative integers. 

In this paper, we will furthermore systematically expand the formula to 

 
   
f n,r( ) =

i=1

n

∑
ai

r

ai − a1( )! ai − ai−1( ) ai − ai+1( )! ai − an( )   (1.2) 

where    a1,a2 ,!,an  are distinct and 2n ³ , 	𝑟 ∈ ℤ , that is when r  is any 
integer and the number of terms is greater than one. 

At first, we spent a month to solve and prove the case when 0r =  using 
mathematical induction, which is often the tool used in our proofs. Then, from 
this case we got the recursion formula about the relation between ( , )f n r  and 
( 1, )f n i- ,    

i = 0,1,!,r −1( ) . Using the new formula, we solved the cases when 
1 0r n- + <  and 1 0r n- + ³ separately ( )0r > . After that, we solved the cases 

when 0r <  through similar approach. 

Subsequently, we studied the connection between Euler’s Formula and 
Lagrange Interpolating Polynomial, and proved part of the expanded formula 
of ( , )f n r . Through this connection we also discovered a new equation. 

At last, we derived some new formulas as well as new thoughts from the 
expansion of Euler’s Formula. 
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Chapter 2 The expansion of Euler’s Formula 

2.1 The case when 0r =  

We used a C++ program to choose random ia  and calculate ( ,0)f n . We 
found out that the outcome is always very close to 0. 

 
 
 

n r ia  ( ,0)f n  

3 0 0,-6,2 0 

4 0 -2,-7,3,1 0 

5 0 -6,-1,5,9,-9 221.05879 10-´  

6 0 0,-3,1,7,-1,-4 224.23516 10-- ´  

7 0 -6,-7,-3,0,-4,6,3 231.32349 10-´  

Chart 1 

(The source code and the outcome of a (7,0)f  and a (11,0)f  are in the 
appendix) 

 
 
Hence, we guess that ( ,0) 0f n = . 

Lemma (1): ( ,0) 0f n =  

Proof: 

First we have 1 1 0
a b b a

+ =
- -

  

Suppose ( ,0) 0f k = , that is 

   

1
(a1 − a2 )(a1 − a3)!(a1 − ak−1)(a1 − ak )

+ 1
(a2 − a1)(a2 − a3)!(a2 − ak−1)(a2 − ak )

+!+ 1
(ak − a1)(ak − a2 )!(ak − ak−2 )(ak − ak−1)

= 0
  

Then 
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a1 − ak+1( )
a1 − a2( ) a1 − a3( )! a1 − ak+1( ) +

a2 − ak+1( )
a2 − a1( ) a2 − a3( )! a2 − ak+1( )

+!+
ak − ak+1( )

ak − a1( ) ak − a2( )! ak − ak−1( ) ak − ak+1( ) = 0

  (2.1) 

Now we need to prove ( 1,0) 0f k + = , that is 

 

   

1
a1 − a2( ) a1 − a3( )!(a1 − ak+1)

+ 1
a2 − a1( ) a2 − a3( )!(a2 − ak+1)

+!+

1
ak − a1( )!(ak − ak−1)(ak − ak+1)

+ 1
ak+1 − a1( )!(ak+1 − ak−1)(ak+1 − ak )

= 0
  (2.2) 

(2.2) left side × ( )1 1ka a +- ,  

 

   

a1 − ak+1

a1 − a2( ) a1 − a3( )!(a1 − ak+1)
+

a1 − ak+1

a2 − a1( ) a2 − a3( )!(a2 − ak+1)

+!+
a1 − ak+1

ak − a1( )!(ak − ak−1)(ak − ak+1)

  (2.3) 

(2.1) left side - (2.3), 
 

   

0
a1 − a2( ) a1 − a3( )!(a1 − ak )(a1 − ak+1)

+
a2 − a1

a2 − a1( ) a2 − a3( )!(a2 − ak )(a2 − ak+1)

+!+
ak − a1

ak − a1( ) ak − a2( )!(ak − ak−1)(ak − ak+1)
+

ak+1 − a1

ak+1 − a1( )!(ak+1 − ak−1)(ak+1 − ak )

   

= 1
a2 − a3( ) a2 − a4( )!(a2 − ak )(a2 − ak+1)

+ 1
a3 − a2( ) a3 − a4( )!(a3 − ak )(a3 − ak+1)

+!+ 1
ak+1 − a2( ) ak+1 − a3( )!(ak+1 − ak−1)(ak+1 − ak )

= 0

  

∴ (2.1)-(2.3) 0=   
∵ (2.1) 0=  
∴ (2.3) 0=  
Also (2.3)= (2.2)× ( )1 1ka a +-  
∴ (2.2) 0= , that is if ( ,0) 0f k = , ( 1,0) 0f k + =  
Q.E.D. 
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Figure 1 
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2.2 The cases when 0r >  

 

2.2.1 The recursion formula of ( , )f n r  

After guessing that ( ,0) 0f n = , we figured that if this hypothesis was 
proven true, then there would be a relation between ( , )f a b  and 

   f (a −1,0),  f (a −1,1),  !,  f (a −1,b−1) . We give the following lemma to illustrate 
that relation. 

Lemma (2): 

   

f n,r( ) = an
r−1 f n−1,0( ) + an

r−2 f n−1,1( ) +!+

an
1 f n−1,r − 2( ) + an

0 f n−1,r −1( )                                      (2.4) 

 

Figure 2 
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Proof: 

 

   

f n,r( ) = a1
r

a1 − a2( ) a1 − a3( )! a1 − an( ) +
a2

r

a2 − a1( ) a2 − a3( )! a2 − an( )
+!+

an
r

an − a1( ) an − a2( )! an − an−1( )
=

a1
r − an

r

a1 − a2( ) a1 − a3( )! a1 − an( ) +
a2

r − an
r

a2 − a1( ) a2 − a3( )! a2 − an( )
+!+

an
r − an

r

an − a1( ) an − a2( )! an − an−1( )
=

a1
r−1 + a1

r−2an +!+ an
r−1

a1 − a2( ) a1 − a3( )! a1 − an−1( ) +
a2

r−1 + a2
r−2an +!+ an

r−1

a2 − a1( ) a2 − a3( )! a2 − an−1( )
+!+

an−1
r−1 + an−1

r−2an +!+ an
r−1

an−1 − a1( ) an−1 − a2( )! an−1 − an−2( )
= an

r−1 f n−1,0( ) + an
r−2 f n−1,1( ) +!+ an

1 f n−1,r − 2( ) + an
0 f n−1,r −1( )

 

  

Q.E.D. 
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2.2.2 The expanded formula when 1 0r n- + <  

First, we found that since (2,0) 0f = , 0
3(3,1) (2,0) 0f a f= = . Also, because 

(3,0) (3,1) 0f f= = , thus 0 1 0
4 4 4(4,1) (3,0) 0,  (4,2) (3,0) (3,1) 0f a f f a f a f= = = + = . 

…… 
Using Lemma(2) (2.4), it is relatively easy to find out 
Theorem (1): 
When 1 0r n- + < , 
 ( , ) 0f n r =      (2.5) 
 

 

 
 

…	

Figure 3 Figure 4 

	

Figure 6 

	

Figure 5 

	

<<N18>>



8	

	

Proof:  
Using Lemma (2) (2.4) 
 

   

f n,r( ) = an
r−1 f n−1,0( ) + an

r−2 f n−1,1( ) +!+

an
1 f n−1,r − 2( ) + an

0 f n−1,r −1( )  

We get 
 

   

f n,r( ) = 0+ c1 f n− 2,0( ) +!+ cr−3 f n− 2,r − 3( ) + cr−2 f n− 2,r − 2( )           (ci  are constants)

= 0+ 0+ d1 f n− 3,0( ) +!+ dr−4 f n− 3,r − 4( ) + dr−3 f n− 3,r − 3( )     (di  are constants)

!

= 0+ 0+!+ kf n− r,0( )      (k  is a constant)

 

Since 2n r- ³ , ( , ) 0f n r = . 

Q.E.D. 
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2.2.3 The general formula ( , )g n r  when 1 0r n- + ³  

Apparently, 

 

   

f (2,r) = a1
r−1 + a1

r−2a2 +!+ a1a2
r−2 + a2

r−1     (r > 0,  because f (2,0) = 0)

=
k1+k2=r−1
∑ a1

k1a2
k2                               (k1, k2 ≥ 0)  

According to Lemma (2) (2.4) 

   

f n,r( ) = an
r−1 f n−1,0( ) + an

r−2 f n−1,1( ) +!+

an
1 f n−1,r − 2( ) + an

0 f n−1,r −1( )  

We get

   

f 3,r( ) = a3
r−1 f 2,0( ) + a3

r−2 f 2,1( ) +!+ a3
1 f 2,r − 2( ) + a3

0 f 2,r −1( )
           (r >1,  because r −1> 0 otherwise all the terms would be 0 according to Theorem (1))

= 0+ a3
r−2 a1

k1a2
k2

k1+k2=0
∑ + a3

r−3 a1
k1a2

k2

k1+k2=1
∑

+!+ a3
1 a1

k1a2
k2

k1+k2=r−3
∑ + a3

0 a1
k1a2

k2

k1+k2=r−2
∑

=
k1+k2+k3=r−2
∑ a1

k1a2
k2 a3

k3

  

By analogy, the following formula can be deduced. 

Theorem (2):  

When 1 0r n- + ³ , 

 ( ) ( ) ( )

1

1
1

, ,     0j

n

i
i

n
k
j i

j
k r n

f n r g n r a k

=

=
= - +

æ ö
= = ³ç ÷

è øå
å Õ   (2.6) 

Proof: 

Firstly, (2, ) (2, )f r g r=  

	  
Suppose for integer u and any constant integer v(v − u +1≥ 0,u ≥ 2,v ≥ 0),  
	f (u,v) = g(u,v).

 

Then 
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f u +1,v( ) = au+1
v−1 f u,0( ) + au+1

v−2 f u,1( ) +!+ au+1
0 f u,v −1( )

= 0+ 0+!+ 0+ au+1
v−u f u,u −1( ) +!au+1

0 f u,v −1( )
= 0+ 0+!+ 0+ au+1

v−ug u,u −1( ) +!au+1
0g u,v −1( )

= au+1
v−u

i=1

u

∑ki=0

∑
j=1

u

∏aj
k j

⎛

⎝⎜
⎞

⎠⎟
+ au+1

v−u−1

i=1

u

∑ki=1

∑
j=1

u

∏aj
k j

⎛

⎝⎜
⎞

⎠⎟

+!+ au+1
0

i=1

u

∑ki=v−u

∑
j=1

u

∏aj
k j

⎛

⎝⎜
⎞

⎠⎟

= [au+1
h( aj

k j )
j=1

u

∏ ]
ki=v−u−h

i=1

u

∑
∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

h=0

v−u

∑

=

i=1

u+1

∑ki=v−u

∑
j=1

u+1

∏aj
k j

⎛

⎝⎜
⎞

⎠⎟

= g u +1,v − w( )
  ∴  While r − n+1≥ 0,  

 

  

 f n,r( ) = g n,r( ) =
i=1

n

∑ki=r−n+1

∑
j=1

n

∏aj
k j

⎛

⎝⎜
⎞

⎠⎟
    ki ≥ 0( )   

Q.E.D. 
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2.2.4 Generalization of the cases when 0r >  

When 0r > , 

 

  

f n,r( ) =
i=1

n

∑ki=r−n+1

∑
j=1

n

∏aj
k j

⎛

⎝⎜
⎞

⎠⎟
  ki ≥ 0( ),  r − n ≥ −1

0,   r − n < −1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (2.7) 
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2.3 The cases when 0r <  

  

2.3.1 The recursion formula when 0r <  

We predicted that there is still a recursion formula of ( , )f n r  when 0r < , 

and provided the following lemma. 

Lemma (3): 

 
   

f n,r( ) = −an
r f n−1,−1( )− an

r+1 f n−1,−2( )
−!− an

−2 f n−1,r +1( )− an
−1 f n−1,r( )   (2.8) 

 
Figure 7 
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Proof:

   

f n,r( ) = a1
r

a1 − a2( ) a1 − a3( )! a1 − an( ) +
a2

r

a2 − a1( ) a2 − a3( )! a2 − an( )
+!+

an
r

an − a1( ) an − a2( )! an − an−1( )
=

a1
r − an

r

a1 − a2( ) a1 − a3( )! a1 − an( ) +
a2

r − an
r

a2 − a1( ) a2 − a3( )! a2 − an( )
+!+

an
r − an

r

an − a1( ) an − a2( )! an − an−1( )
= −a1

ran
r a1

−r−1 + a1
−r−2an +!+ an

−r−1

a1 − a2( ) a1 − a3( )! a1 − an−1( ) − a2
ran

r a2
−r−1 + a2

−r−2an +!+ an
−r−1

a2 − a1( ) a2 − a3( )! a2 − an−1( )
−!− an−1

ran
r an−1

−r−1 + an−1
−r−2an +!+ an

−r−1

an−1 − a1( ) an−1 − a2( )! an−1 − an−2( )
= −an

r f n−1,−1( )− an
r+1 f n−1,−2( )−!− an

−2 f n−1,r +1( )− an
−1 f n−1,r( )

 

 

Q.E.D. 
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2.3.2 The general formula when 0r <  

Obviously, 

   

f 2,r( ) = a1
r

a1 − a2

+
a2

r

a2 − a1

=
a1

r − a2
r

a1 − a2

= −a1
−1a2

−1 a1
r+1 + a1

r+2a2
−1 +!+ a2

r+1( )
= −

k1+k2=r−1
∑ a1

k1a2
k2      (k1,k2 < 0)

 

Using (2.8), we get 

( ) ( )31 2

1 2 3

1 2 3 1 2 3
2

3, 1 ,  , kk k

k k k r

f r a a a k k k
+ + = -

= £ -å  

By analogy, the following formula can be deduced. 

Theorem (3): 

When 0r < , 

 ( ) ( ) ( ) ( )

1

1

1
1

, , 1    0j

n

i
i

n
n k

j i
j

k r n

f n r h n r a k

=

-

=
= - +

æ ö
= = - < ç ÷

è øå
å Õ   (2.9) 

Proof: 

Firstly, ( ) ( )2, 2,f r h r=  

  

Suppose for integer u and any constant integer v,  (u ≥ 2,v < 0),  

f u,v( ) = h u,v( ).  

Then 
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f u +1,v( ) = −au+1
v f u,−1( )− au+1

v+1 f u,−2( )−!− an
−1 f u +1,v( )

= −au+1
vh u,−1( )− au+1

v+1h u,−2( )−!− an
−1h u,v( )

= −au+1
v −1( )u−1

aj
k j

j=1

u

∏⎛⎝⎜
⎞
⎠⎟

ki=−u
i=1

u

∑
∑

−au+1
v+1 −1( )u−1

aj
k j

j=1

u

∏⎛⎝⎜
⎞
⎠⎟

ki=−u−1
i=1

u

∑
∑

−!− au+1
−1 −1( )u−1

aj
k j

j=1

u

∏⎛⎝⎜
⎞
⎠⎟

ki=v−u+1
i=1

u

∑
∑

= −1( )u
au+1

h a j
k j

j=1

u

∏⎛⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ki=v−u−h
i=1

u

∑
∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

h=−1

v

∑

= −1( )u
a j

k j

j=1

u+1

∏⎛⎝⎜
⎞
⎠⎟

ki=v−u
i=1

u+1

∑
∑

= h(u +1,v)

 

Hence, when 0r < ， 

 ( ) ( ) ( )

1

1

1
1

1         ( 0, ),

i

j

n

i

n

j

n
k
j

k r n

inf r h a kn r

=

-

=
= - +

æ ö
= = - < ç ÷

è øå
å Õ   

Q.E.D. 
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2.4 Generalization of the cases when 𝑟 ∈ ℤ 

  

f n,r( ) =
i=1

n

∑ki=r−n+1

∑
j=1

n

∏aj
k j

⎛

⎝⎜
⎞

⎠⎟
   ki ≥ 0( ), r > n−1

0, 0 ≤ r ≤ n−1

−1( )n−1

i=1

n

∑ki=r−n+1

∑
j=1

n

∏aj
k j

⎛

⎝⎜
⎞

⎠⎟
  ki < 0( ), r < 0

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

 

 
Figure 8 
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Chapter 3 The connection between Euler’s Formula and 

Lagrange Interpolating Polynomial 
 
Our teacher mentioned that there is some similarities and connections 

between Euler’s Formula and Lagrange Interpolating Polynomial. In the latter, 

 
1

(( ) )( )
n

i i
i

F x f x l x
=

=å   (3.1) 

where 

 
   
li(x) =

(x − x1)(x − x2 )!(x − xi−1)(x − xi+1)!(x − xn )
(xi − x1)(xi − x2 )!(xi − xi−1)(xi − xi+1)!(xi − xn )

  

the denominator of ( )il x  is the same as the denominator of ( , )f n r  (of 

course, the constants changes to ix ). In addition, the coefficient of 1nx -  is 1, 

which matches the numerator of ( , )f n r . Therefore, we found that the 

polynomial somehow connects with the expanded formula, leading to the 

proof of some cases of ( , )f n r .  

<<N18>>
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3.1 Lagrange Interpolating Polynomial 

 
1

(( ) )( )
n

i i
i

F x f x l x
=

=å   (3.1) 

where     
   
li(x) =

(x − x1)(x − x2 )!(x − xi−1)(x − xi+1)!(x − xn )
(xi − x1)(xi − x2 )!(xi − xi−1)(xi − xi+1)!(xi − xn )

 

In order to prove the cases of ( , )f n r , we have to use a special property 

of the polynomial, which is that if ( )f x  is a polynomial of degree 1n -  or less, 

then ( ) ( )f x F x= . 

To prove this property of the polynomial, we need to prove the following 
lemma. 

 
Lemma (4): A polynomial of degree 1n -  or less cannot have n zeros. 
 
Proof: Suppose a polynomial of degree 1n -  or less does have n zeros, 

then this polynomial must have at least 1n -  stationary points, which means 

( )f x¢  has at least 1n -  zeros. Likewise, ( )f x¢  has at least 2n -  stationary 
points, that means ( )f x¢¢  has at least 2n -  zeros, and so on. ( )f x  can only 
have a constant 1n - th  order derivative (or does not have one at all). 
However, the deduction above indicates that it has a 1n - th  order derivative 
that has at least one zero, which is contradictory. Thus, such polynomials 
cannot exist.  

 
Q.E.D. 
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Lemma (5): If ( )f x  is a polynomial of degree 1n -  or less, then 

( ) ( )f x F x= . 

Proof: Suppose ( ) ( )f x F x¹ , then assume that ( ) ( ) ( )g x f x F x= - , 

where ( )g x  is a polynomial of degree 1n -  or less. Because on the n points 

(    x1,x2 ,!,xn ) ( )f x  and ( )F x  have the same values, which are 

   f x1( ), f x2( ),!, f xn( )  respectively, ( )g x  has zeros on those points, making it 

has n zeros. According to Lemma (4) this is impossible. Hence ( ) ( )f x F x= . 

Q.E.D. 
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3.2 Proof of the extended formula when 1r n£ -

 

Proof: Suppose that in Lagrange Interpolating Polynomial, ( ) rf x x= . 
In this case, the coefficient of 1nx -  in  ( )F x  is 

   

   

=
xi

r

(xi − x1)(xi − x2 )!(xi − xi−1)(xi − xi+1)!(xi − xn )i=1

n

∑
= f (n,r)

 

According to Lemma (5), when n r> , ( ) ( ) rF x f x x= = . Thus all the 

coefficients of xk  in ( )F x  is zero except that the coefficient of rx  is 1. 

When 1n r= + , the coefficient of 1nx -  is ( , ) ( , 1) 1f n r f n n= - =. 

When 1n r> + , the coefficient of 1nx -  is ( , ) 0f n r = .(Because 1n r- ¹ ) 

  

<<N18>>
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3.3 Using the polynomial to proof the extended formula when 
1 2 2n r n- < £ -  

 
When 1( ) nf x x -= , 
The coefficient of 1nx -  in ( )F x ( , 1) 1f n n= - = 
The coefficient of 2nx -  in ( )F x  

 

   

= 0

=
i=1

n

∑
− x1 + x2 +!+ xi−1 + xi+1 +!+ xn( )xi

n−1

xi − x1( ) xi − x2( )! xi − xi−1( ) xi − xi+1( )! xi − xn( )
=

i=1

n

∑
− x1 + x2 +!+ xn( )xi

n−1 + xi
n

xi − x1( ) xi − x2( )! xi − xi−1( ) xi − xi+1( )! xi − xn( )
= − x1 + x2 +!+ xn( ) f n,n−1( ) + f n,n( )

  

Therefore    f (n,n) = (x1 + x2 +!+ xn )  

The coefficient of 3nx -  in ( )F x  

 

   

= 0

=
x jxh

j ,h=1, j≠i≠h≠ j

n

∑⎛

⎝⎜
⎞

⎠⎟
xi

n−1

(xi − x1)(xi − x2 )!(xi − xi−1)(xi − xi+1)!(xi − xn )i=1

n

∑

=
x jxh

j ,h=1, j≠h

n

∑⎛

⎝⎜
⎞

⎠⎟
xi

n−1 − (x1 + x2 +!+ xn )xi
n + xi

n+1

(xi − x1)(xi − x2 )!(xi − xi−1)(xi − xi+1)!(xi − xn )i=1

n

∑

= x jxh
j ,h=1, j≠h

n

∑⎛

⎝⎜
⎞

⎠⎟
f (n,n−1)− (x1 + x2 +!+ xn ) f (n,n)+ f (n,n+1)

  

Therefore 

 

   

f (n,n+1) = (x1 + x2 +!+ xn )2 − x jxh
j ,h=1, j≠h

n

∑

=

i=1

n

∑ki=2

∑
j=1

n

∏x j

k j
⎛

⎝⎜
⎞

⎠⎟
            (ki ≠ 0)

  

And so on, 

The coefficient of n tx -  in ( )F x  
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= 0

=
−1( )t−1

x jh
h=1

t−1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ xi

n−1

(xi − x1)(xi − x2 )!(xi − xi−1)(xi − xi+1)!(xi − xn )i=1

n

∑        (jh  are distinct)

=
−1( )t−1

x jh
h=1

t−1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ xi

n−1 + −1( )t−2
x jh

h=1

t−2

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ xi

n +! −1( )0
xi

n+t−2

(xi − x1)(xi − x2 )!(xi − xi−1)(xi − xi+1)!(xi − xn )i=1

n

∑

 

   

= −1( )t−1
x jh

h=1

t−1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n−1)

+ −1( )t−2
x jh

h=1

t−2

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n)+!+ f (n,n+ t − 2)

  (3.2) 

Therefore 

   

f (n,n+ t − 2) = −1( )t−2
x jh

h=1

t−1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n−1)+ −1( )t−3

x jh
h=1

t−2

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n)

+!+ −1( )0
x jh

h=1

1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n+ t − 3)

 

To prove the right side of the equation above 

  

=

i=1

n

∑ki=t−1

∑
j=1

n

∏x j

k j
⎛

⎝⎜
⎞

⎠⎟
, 

Is equivalent to prove that the coefficient of every term in the following 

polynomial is 1. (Because 

1

1
1

j

n

i
i

n
k
j

j
k t

x

=

=
= -

æ ö
ç ÷
è øå

å Õ  includes every term of 1t - th 

degree and has the coefficient 1.) 

   

−1( )t−2
x jh

h=1

t−1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n−1)+ −1( )t−3

x jh
h=1

t−2

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n)

+!+ −1( )0
x jh

h=1

1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n+ t − 3)
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Consider a term in 
1

j
n

k
j

j

x
=
Õ  (

1

1
n

i
i
k t

=

= -å ). Its coefficient (the number of time 

it appears) in 
1

1

( , 3)
hj

h
x f n n t

=

é ùæ ö
ê úç ÷

è øë
+

û
-å Õ  equals to the number of terms it 

includes in 
1

1
hj

h
x

=

æ ö
ç ÷
è ø

å Õ . In brief, the coefficient is the number of distinct 

letters in 
1

j
n

k
j

j

x
=
Õ  (suppose it is m ). Similarly, its coefficient in 

2

1

( , 4)
hj

h
x f n n t

=

é ùæ ö
ê úç ÷

è øë
+

û
-å Õ  equals to the number of terms it includes in 

  
x jh

h=1

2

∏⎛⎝⎜
⎞
⎠⎟∑ . This number is the number of terms of two distinct letters in 

1

j
n

k
j

j

x
=
Õ , which is 

2
mæ ö
ç ÷
è ø

. Hence, the coefficient of this term in 
1

j
n

k
j

j

x
=
Õ  (the 

total number of times it appears) is 

 

  

(−1)i−1 m
i

⎛

⎝⎜
⎞

⎠⎟i=1

m

∑ = m
0

⎛

⎝⎜
⎞

⎠⎟
− (−1) j m

j
⎛

⎝
⎜

⎞

⎠
⎟

j=0

m

∑
= 1

 

Therefore, 

   

f (n,n+ t − 2) = −1( )t−2
x jh

h=1

t−1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n−1)+ −1( )t−3

x jh
h=1

t−2

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n)

+!+ −1( )0
x jh

h=1

1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n+ t − 3)

=

i=1

n

∑ki=t−1

∑
j=1

n

∏x j

k j
⎛

⎝⎜
⎞

⎠⎟

 

 

 

Q.E.D. 
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Once again, using another method, we obtained and proved part of 

theorem (2), 

 

When 1 2 2n r n- < £ - ,   

                                       ( )

1

1
1

, j

n

i
i

n
k
j

j
k r n

f n r x

=

=
= - +

æ ö
= ç ÷

è øå
å Õ                           (2.6) 
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3.4 A new equation derived from the application of the 

extended formula in Lagrange Interpolating Polynomial 
 
We noticed that the coefficient of each term of the polynomial can be 

expressed by the extended formula. Also, the coefficient of in n ix -  in ( )F x  is 

  

1,   i = 1
0,   i >1

⎧
⎨
⎪

⎩⎪
     Supposing that f (x) = xn−1( )  

Thus, we can obtain a new equation using this relation. 
According to (3.2)  

   

= −1( )t−1
x jh

h=1

t−1

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n−1)

+ −1( )t−2
x jh

h=1

t−2

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n)+!+ f (n,n+ t − 2)

 

  
= −1( )t−i

x jh
h=1

t−i

∏⎛⎝⎜
⎞
⎠⎟∑⎡

⎣
⎢

⎤

⎦
⎥ f (n,n+ i − 2)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

t

∑   (3.3) 

Hence, the constant term in ( )F x  
0=  

( )
1 1

1 ( , 2)
h

n i
i

h
j

n
n

i
x f n n i

=

-
-

=

ì üé ùæ öï ï-í ýê úç ÷
è øï ïë ûî þ

= + -å Õå   (3.4) 

 
Define 

 ( )
11

( , )        ( ,0) 1
h

h

j
j

rn

h

g n r x g n
==

æ ö
= =ç ÷

è ø
å Õ   (3.5) 

 
Then we have 
 

 
   

f (n,2n− 2)g(n,0)− f (n,2n− 3)g(n,1)
+!+ (−1)n−1 f (n,n−1)g(n,n−1) = 0

  (3.6) 
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Using “S” to express the sum, we have 
 
 
Theorem (4): 
 

 
1
( 1) ( , 2) ( , ) 0

n
n i

i
f n n i g n n i-

=

- + - - =å   (3.7) 
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Chapter 4 Other applications of the formula, conjectures 
and predictions 

 
We noticed that the constants ia  in ( , )f n r  do not have to be random and 

meaningless constants. Rather, they could be some fixed constants or 
functions that are distinct. Thus, we believe that some useful equations can 
be derived from this. The following equations are the ones we found by 
substituting ia  with certain constants and functions. 

 
1. According to Theorem (2), 

   

f n,n−1( ) = a1
n−1

a1 − a2( ) a1 − a3( )! a1 − an( ) +
a2

n−1

a2 − a1( ) a2 − a3( )! a2 − an( )
+!+

an
n−1

an − a1( ) an − a2( )! an − an−1( )
= 1

 

Substitute  ai  with  i , we get 

   

a1
n−1

a1 − a2( ) a1 − a3( )! a1 − an( ) +
a2

n−1

a2 − a1( ) a2 − a3( )! a2 − an( )
+!+

an
n−1

an − a1( ) an − a2( )! an − an−1( )
= 1

= 1n−1

1− 2( ) 1− 3( )! 1− n( ) +
2n−1

2−1( ) 2− 3( )! 2− n( )
+!+ nn−1

n−1( ) n− 2( )! n− n+1( )
= −1( )n−i in−1

i −1( )! n− i( )!i=1

n

∑

 

That is 
Theorem (5): 
 

 ( ) ( )1
1 1

! !

nn
n i

i

i
i n i

-

=

- =
-å   (4.1) 
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Noticing that	 n
i

⎛
⎝⎜

⎞
⎠⎟
= n!
i!(n − i)!

, (4.1) can be written as 

 

																																																	 (−1)n−i in n
i

⎛
⎝⎜

⎞
⎠⎟i=1

n

∑ = n! 																																															(4.2)	

	
	
 

2. According to Theorem (2), 
   f 4,4( ) = a1 + a2 + a3 + a4   (4.3) 
 
Substitute 

  

a1 = sinα cosβ cosγ
a2 = cosα sinβ cosγ
a3 = cosα cosβ sinγ
a4 = −sinα sinβ sinγ

 

Because that the trigonometric three-angle formula (expansion of 
sin(a+b+c)) states that 

 
( )sin sin cos cos cos sin cos

cos cos sin sin sin sin
a b g a b g a b g

a b g a b g

+ + = +

+ -
  (4.4) 

 
We get 

( )
( )( )( )

( )
( )( )( )

( )

4

4

4

sin cos cos
sin cos cos cos sin cos sin cos cos cos cos sin sin cos cos sin sin sin

cos sin cos
cos sin cos sin cos cos cos sin cos cos cos sin cos sin cos sin sin sin

cos cos sin
cos cos s

a b g
a b g a b g a b g a b g a b g a b g

a b g
a b g a b g a b g a b g a b g a b g

a b g
a b

+

+

+
- -

+
- -

( )( )( )
( )

( )( )( )

4

in sin cos cos cos cos sin cos sin cos cos cos sin sin sin sin

sin sin sin
sin sin sin sin cos cos sin sin sin cos sin cos sin sin sin cos cos sin
sin cos cos cos sin cos cos cos sin s

g a b g a b g a b g a b g a b g

a b g
a b g a b g a b g a b g a b g a b g
a b g a b g a b g

+
- +

-
- -

-

- - -

+

-

= + -

( )
in sin sin

sin
a b g

a b g= + +
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After the simplification, we get 
 
Theorem (6): 
 

 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )

3 3

3 3

sin cos cos cos sin cos
sin sin cos sin sin cos

cos cos sin sin sin sin
sin sin cos cos cos cos

sin

a b g a b g
a b a g b g b a b g a g

a b g a b g
g a g b a b a b b g a g

a b g

- - - - - -

- -

+

+ -
- - - -

= + +

  (4.5) 

 

Of course, ;   , ,
2
pa b g a a b b g a g¹ ¹ ¹ - - - ¹   

  
 
 

 
 
3. Similar to Theorem (6), according to the trigonometric three-angle 

formula (expansion of cos(a+b+c)) 

 
( )cos cos cos cos cos sin sin
sin cos sin sin sin cos
a b g a b g a b g

a b g a b g

+ + = -

- -
  (4.6) 

And Theorem (2) (4.3) 
 
 
We get Theorem (7): 
	

        

cosα cosβ cosγ( )3

cos α − β( )cos β −γ( )cos α −γ( ) −
cosα sinβ sinγ( )3

sin α − β( )sin α −γ( )cos β −γ( )

−
sinα cosβ sinγ( )3

sin β −α( )sin β −γ( )cos α −γ( ) −
sinα sinβ cosγ( )3

sin γ −α( )sin γ − β( )cos α − β( )
= cos α + β + γ( )             

(4.7) 
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Also, ;   , ,
2
pa b g a a b b g a g¹ ¹ ¹ - - - ¹   

   
Due to the limitation of time, we only obtained those equations. However, 

we believe that by applying the extended Euler’s Formula, a lot of more useful 
formulas can be acquired.  
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Chapter 5 Conclusion 

In this paper, we successfully expanded the simple fractional Euler’s 
Formula (1.1) to the cases when the number of terms is an integer equal to or 
greater than two, and the exponent is any integer. We proved our theory step 
by step. Then, we connected the extended formula to Lagrange interpolating 
polynomial and proved the former using this relation. Also, a new equation 
was obtained through this connection. At last, we explored and applied the 
extended formula to derive a set of new equations, as well as propose some 
conjectures. 
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Appendix 

#include <iostream> 
#include <ctime> 
#include <cstdlib> 
using namespace std; 
int a[22]={0}; 
long long int power(int a,int b) 
{ 
 int i; 
 long long int x=1; 
 for(i=1;i<=b;i++) 
  x*=a; 
 return x; 
} 
long double f(int n,int r) 
{ 
 int i,j,numerator=1;long double denominator=1,x=0; 
 for(i=1;i<=n;i++) 
 { 
  numerator=power(a[i],r); 
  cout<<" "<<numerator<<"/"; 
  for(j=1;j<=n;j++)  
  { 
   if(i==j)continue;  
   denominator*=(a[i]-a[j]);  
   cout<<"("<<a[i]<<"-"<<a[j]<<")"; 
  } 
  cout<<" = "<<numerator<<"/"<<denominator<<" = 

"<<numerator/denominator<<"\n"; 
  x+=numerator/denominator; 
  cout<<" sum="<<x<<"\n"; 
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  denominator=1; 
 } 
 return x; 
} 
int random(int start,int end) 
{ 
    int x=start+(end-start)*rand()/(RAND_MAX+1.0); 
 return x; 
} 
int main() { 
 srand(unsigned(time(0))); 
 int i;int n,r;bool b; 
 while(1) 
 { 
 cout<<"\n Please input n(n<20),r:  ";  
 cin>>n; 
 if(n<=0||n>=20) 
 return 0; 
 cin>>r; 
 for(i=1;i<=n;i++) 
 { 
  b=false; 
  while(!b) 
  { 
   a[i]=random(-10,10); 
      b=true; 
   for(int j=1;j<i;j++) 
      { 
       if(a[j]==a[i])b=false; 
   } 
  } 
  cout<<"   a["<<i<<"] = "<<a[i]<<"\n"; 
 } 
    long double result=f(n,r); 
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    cout<<"  f(n,r)= "<<result<<" \n\n"; 
 } 
 return 0; 
} 
Some of the results: 
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