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Abstract
In this article, we classify all standard invariants that can arise from a composed inclusion of
an Az with an A4 subfactor. More precisely, if N/ C P is the A3 subfactor and P C M is the A4
subfactor, then only four standard invariants can arise from the composed inclusion N C M.
This answers a question posed by Bisch and Haagerup in 1994. The techniques of this paper
also show that there are exactly four standard invariants for the composed inclusion of two A4
subfactors.

1 Introduction
Jones classified the indices of subfactors of type II; in [Jon83|. It is given by
{4cos2(%),n =3,4,---}U[4,00].

For a subfactor A/ C M of type II; with finite index, the Jones tower is a sequence of factors
obtained by repeating the basic construction. The system of higher relative commutants is called
the standard invariant of the subfactor [GAIHJ89, [Pop90]. A subfactor is said to be finite depth, if its
principal graph is finite. The standard invariant is a complete invariant of a finite depth subfactor
[Pop90]. So we hope to classify the standard invariants of subfactors.

Subfactor planar algebras were introduced by Jones as a diagrammatic axiomatization of the
standard invariant [Jon]. Other axiomatizations are known as Ocneanu’s paragroups [Ocn88| and
Popa’s A-lattices [Pop95]. Each subfactor planar algebra contains a Temperley-Lieb planar subalge-
bra which is generated by the sequence of Jones projections. When the index of the Temperley-Lieb
subfactor planar algebra is 4c0s2(nL+1), its principal graph is the Coxeter-Dynkin diagram A,,.

Given two subfactors NN C P and P C M, the composed inclusion N' C P C M tells the

relative position of these factors. The group type inclusion R € R € R x K for outer actions of
finite groups H and K on the hyperfinite factor R of type II; was discussed by Bisch and Haagerup
[BHI6).
We are interested in studying the composed inclusion of two subfactors of type A, i.e., a subfactor
N C M with an intermediate subfactor P, such that the principal graphs of N' C P and P C M
are type A Coxeter-Dynkin diagrams. From the planar algebra point of view, the planar algebra of
N C M is a composition of two Temperley-Lieb subfactor planar algebras. Their tensor product
is well known [Jon|[Liub]. Their free product as a minimal composition is discovered by Bisch and
Jones [BJ97], called the Fuss-Catalan subfactor planar algebra. In general, the composition of two
Temperley-Lieb subfactor planar algebras is still not understood.
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The easiest case is the composed inclusion of two Ag subfactors. In this case, the index is 4, and
such subfactors are extended type D [GAIHI89][Pop94]. They also arise as a group type inclusion
R C R CRxK, where H = Zy and K = Z,.

The first non-group-like case is the composed inclusion of an As with an A4 subfactor. Its
principal graph is computed by Bisch and Haagerup in their unpublished manuscript in 1994. Either
it is a free composed inclusion, then its planar algebra is Fuss-Catalan; or its principal graph is a
Bisch-Haagerup fish graph as

Then they asked whether this sequence of graphs are the principal graphs of subfactors. The first
Bisch-Haagerup fish graph is the principal graph of the tensor product of an A3 and an A4 subfactor.
By considering the flip on R ® R, Bisch and Haagerup constructed a subfactor whose principal
graph is the second Bisch-Haagerup fish graph. Later Izumi generalised the Haagerup factor [AH99]
while considering endomorphisms of Cuntz algebras [[zu01], and he constructed an Izumi-Haagerup
subfactor for the group Z4 in his unpublished notes, also called the 3%4 subfactor [PP]. The third
Bisch-Haagerup fish graph is the principal graph of an intermediate subfactor of a reduced subfactor
of the dual of 3%4. It turns out the even half is Morita equivalent to the even half of 3%4.
In this paper, we will prove the following results.

Theorem 1.1. There are exactly four subfactor planar algebras as a composition of an As with an
Ay planar algebra.

This answers the question posed by Bisch and Haagerup. When n > 4, the ny, Bisch-Haagerup
fish graph is not the principal graph of a subfactor.

Theorem 1.2. There are exactly four subfactors planar algebras as a composition of two Ay planar
algebras.

Now we sketch the ideas of the proof. Following the spirit of [Pet10] [BMPS12], if the principal
graph of a subfactor planar algebra is the n;, Bisch-Haagerup fish graph, then by the embedding
theorem [JP1I], the planar algebra is embedded in the graph planar algebra [Jon00]. By the
existence of a “normalizer” in the Bisch-Haagerup fish graph, there will be a biprojection in the
subfactor planar algebra, and the planar subalgebra generated by the biprojection is Fuss-Catalan.
The image of the biprojecion is determined by the unique possible refined principal graph, see
Definition and Theorem B.I3] Furthermore the planar algebra is decomposed as an annular
Fuss—Catalan module, similar to the Temperely-Lieb case, [Jon01) [JR06]. Comparing the principal
graph of this Fuss-Catalan subfactor planar algebra and the Bisch-Haagerup fish graph, there is a
lowest weight vector in the orthogonal complement of Fuss-Catalan. It will satisfy some specific
relations, and there is a “unique” potential solution of these relations in the graph planar algebra.

The similarity of all the Bisch-Haagerup fish graphs admits us to compute the coefficients of loops
of the potential solutions simultaneously. The coefficients of two sequences of loops has periodicity
5 and 20 with respect to n. Comparing with the coefficients of the other two sequences of loops, we
will rule out the all the Bisch-Haagerup fish graphs, except the first three.

The existence of the first three follows from the construction mentioned above. The uniqueness
follows from the “uniqueness” of the potential solution.



Furthermore we consider the composition of two A4 planar algebras in the same process. In this
list, there are exactly four subfactor planar algebras. They all arise from reduced subfactors of the
four compositions of A3z with Ay.

The skein theoretic construction of these subfactor planar algebras could be realized by the
Fuss — Catalan Jelly fish relations of a generating vector space.

In the meanwhile, Izumi, Morrison and Penneys have ruled out the 4;, — 104, Bisch-Haagerup
fish graphs using a different method, see [IMP].

Acknowledgement. [ would like to thank my advisor Vaughan Jones and Dietmar Bisch for a
fruitful discussion about this problem and to thank Corey Jones and Jiayi Jiang for computations.

2 Background

We refer the reader to [Jonl2] for the definition of planar algebras.

Notation 2.1. In a planar tangle, we use a thick string with a number k to indicate k parallel
strings.

A subfactor planar algebra . = {.%, 1 }nen, will be a spherical planar *-algebra over C, such
that dim(.%, 1) < oo, for all n, dim(-# 1) = 1, and the Markov trace induces a positive definite
inner product of ., + [Jonl2][Jon|. Note that dim(# +) = 1, then . 4 is isomorphic to C as a
field. It is spherical means

the Markov trace of z*y, for any y, 2z € .}, +, is positive definite.

It is called a subfactor planar algebra, because it is the same as the standard invariant of a finite
index extremal subfactor N of a factor M of type II; [Jonl.

A subfactor planar algebra is always unital, where unital means any tangle without inner discs
can be identified as a vector of .. Note that . 1 is isomorphic to C, the (shaded or unshaded)

empty diagram can be identified as the number 1 in C. The value of a (shaded or unshaded) closed
string is . And §~'s |n-2 {in ., 4, denoted by e,_1, is the Jones projection ey, _,, for n > 2.

The graded algebra generated by Jones projections is the smallest subfactor planar algebra, well
known as the Temperley-Lieb algebra, denoted by T'L(4). Its vector can be written as a linear sum
of tangles without inner discs.

Notation 2.2. We may identify 7_ , as a subspace of /4 m+1 by adding one string to the left.



Definition 2.1. Let us define the (1-string) coproduct of v € 7 + andy € 7 1, fori,j > 1, to be
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whenever the shading matched.

Let us recall some facts about the embedding theorem. Then we generalize these results to prove
the embedding theorem for an intermediate subfactor in the next section.

2.1 Principal graphs

Suppose N' C M is an irreducible subfactor of type II; with finite index. Then L?(M) forms an
irreducible (A, M) bimodule, denoted by X. Its conjugate X is an (M, N) bimodule. The tensor
products X@X®---0X, X@X® --0X, XX®  -®X and X X®---®X are decomposed into
irreducible bimodules over (M, N), (N, M), (M, N) and (M, M) respectively, where ® is Connes
fusion of bimodules.

Definition 2.2. The principal graph of the subfactor N C M is a bipartite graph. Its vertices are
equivalent classes of irreducible bimodules over (N',N') and (N, M) in the above decomposed inclu-
sion. The number of edges connecting two vertices, a (N, N') bimodule Y and a (N, M) bimodule Z,
is the multiplicity of the equivalent class of Z as a sub bimodule of Y @ X. The vertex corresponds to
the (N, N') bimodule L*(N') is marked by a star sign. The dimension vector of the bipartite graph is
a function \ from the vertices of the graph to R™. Its value at a vertex is defined to be the dimension
of the corresponding bimodule.
The dual principal graph is defined in a similar way.

Remark . By Frobenius reciprocity theorem, the multiplicity of Z in Y @ X equals to the multiplicity
of Y in Z® X.

2.2 The standard invariant

For an irreducible subfactor A" C M of type II; with finite index, the Jones tower is a sequence
of factors N C M C My C My C - - - obtained by repeating the basic construction. The system of
higher relative commutants

C=N'NnNN cC N'nM c NnM; ¢ N'nMy C
U U U
C=MnM c MnM; ¢ MnM,y C

is called the standard invariant of the subfactor [GAIHJ89]|[Pop90].

There is a natural isomorphism between homomorphisms of bimodules X @ X ® --- ® X, X ®
X X, XX® ---®X and X®X ®---® X and the standard invariant of the subfactor
[Bis97]. Then the equivalent class of a minimal projection corresponds to an irreducible bimodule.
So the principal graph tells how minimal projections are decomposed after the inclusion. Then we
may define the principal graph for a subfactor planar algebra without the presumed subfactor.



Proposition 2.1. Suppose . is a subfactor planar algebra. If Py, P> are minimal projections
of Sm,+. Then Piemi1, Paemi1 are minimal projections of Smi2.4. Moreover Py and Ps are
equivalent in S, + if and only if Piem41 and Paepy1 are equivalent in Fpio +.

Proposition 2.2 (Frobenius Reciprocity). Suppose % is a subfactor planar algebra. If P is
a minimal projection of S and @ is a minimal projection of Spy1, then dim(P%,11Q) =
dim(PeerlfergQ).

By the above two propositions, the Bratteli diagram of .%,, C %41 is identified as a subgraph of
the Bratteli diagram of .7,11 C -%n42. So it makes sense to take the limit of the Bratteli diagram
of S C Fm+1, when m approaches infinity.

Definition 2.3. The principal graph of a subfactor planar algebra . is the limit of the Bratteli
diagram of S + C Fmy1,+. The vertex corresponds to the identity in %y + is marked by a star
sign. The dimension vector A at a vertex is defined to be the Markov trace of the minimal projection
corresponding to that vertex.

Sitmilarly the dual principal graph of a subfactor planar algebra . is the limit of the Bratteli
diagram of Sy, — C Fmy1,—. The vertex corresponds to the identity in %y — is marked by a star
sign. The dimension vector N at a vertex is defined to be the Markov trace of the minimal projection
corresponding to that vertex.

The Bratteli diagram of .%,,, C #+1, as a subgraph of the Bratteli diagram of #),+1 C S m+2,
corresponds to the two-sided ideal .7, 11 of %, +1 generated by the Jones projection e,,. So the two
graphs coincide if and only if .%,,11 = 1.

Definition 2.4. For a subfactor planar algebra .7, if its principal graph is finite, then the subfactor
planar algebra is said to be finite depth. Furthermore it is of depth m, if m is the smallest number
such that i1 = Fm+1€mLm+1-

2.3 Finite-dimensional inclusions

We refer the reader to Chapter 3 of [JS97] for the inclusions of finite dimensional von Neumann
algebras.

Definition 2.5. Suppose A is a finite-dimensional von Neumann algebra and T is a trace on it.
The dimension vector X is a function from the set of minimal central projections (or equivalent
classes of minimal projections or irreducible representations up to unitary equivalence) of A to C
with following property, for any minimal central projection z, Ny(z) = 7(x), where x € A is a
minimal projection with central support z.

The trace of a minimal projection only depends on its equivalent class, so the dimension vector
is well defined. On the other hand, given a function from the set of minimal central projections of
A to C, we may construct a trace of A, such that the corresponding dimension vector is the given
function. So it is a one-to-one map.

Let us recall some facts about the inclusion of finite dimensional von Neumann algebras By C Bj.

The Bratteli diagram Br for the inclusion By C Bj is a bipartite graph. Its even or odd vertices
are indexed by the equivalence classes of irreducible representations of By or By respectively. The
number of edges connects a vertex corresponding to an irreducible representation U of By to a



vertex corresponding to an irreducible representation V' of B; is given by the multiplicity of U in
the restriction of V on By.

Let Bry be the even/odd vertices of Br. The Bratteli diagram can be interpreted as the adjacent
matrix A = A : L*(Br_) — L?(Bry), where Ay, is defined as the number of edges connects u to
v for any u € Bry, v € Br_.

Proposition 2.3. For the inclusion By C By and a trace T on it, we have A\ = A\, .

If the trace 7 is a faithful state, then by GNS construction we will obtain a right B; module
L?(By). And L*(Bp) is identified as a subspace of L?(Bi). Let e be the Jones projection on to
the subspace L?(By). Let By be the von Neumann algebra (B; U {e})”. Then we obtain a tower
By C By € By which is called the basic construction. Furthermore if the tracial state T satisfies the
condition A*ANL = pAp for some scalar p, then it is said to be a Markov trace. In this case the

A

)\T
lar 11 is [|A][?. Then A" = | "5o :
scalar p is ||A]| en l A 0

OAE,

is a Perron-Frobenius eigenvector for l

Definition 2.6. We call A\™ the Perron-Frobenius eigenvector with respect to the Markov trace T.

The existence of a Markov trace for the inclusion By C B; follows from the Perron-Frobenius
theorem. The Markov trace is unique if and only if the Bratteli diagram for the inclusion By C B3
is connected.

We will see the importance of the Markov trace from the following proposition.

Proposition 2.4. If 7 is a Markov trace for the inclusion By C By, then T extends uniquely to a
trace on Bs, still denoted by 7. Moreover T is a Markov trace for the inclusion By C Bs.

In this case, we may repeat the basic construction to obtain a sequence of finite dimensional von
Neumann algebras By C By C Bs C B3 C --- and a sequence of Jones projections e1,es,e3---.

2.4 Graph Planar Algebras

Given a finite connected bipartite graph I', it can be realised as the Bratteli diagram of the inclu-
sion of finite dimensional von Neumann algebras By C B; with a (unique) Markov trace. Applying
the basic construction, we will obtain the sequence of finite dimensional von Neumann algebras
By C By C By CBsC---. Take %, + to be B/ N B, and .7, — to be Boo' N Byyi1. Then { S, 1}
forms a planar algebra, called the graph planar algebra of the bipartite graph I'. Moreover %7, +
has a natural basis given by length 2m loops of I'. We refer the reader to [Jon00l [JP11] for more
details. We cite the conventions used in section 3.4 of [JP1I].

Definition 2.7. Let us define 4 = {%,+} to be the graph planar algebra of a finite connected
bipartite graph T'. Let A be the Perron-Frobenius eigenvector with respect to the Markov trace.

A vertex of the I' corresponds to an equivalent class of minimal projections, so A is also defined
as a function from V4 to R*. If I' is the principal graph of a subfactor, then its dimension vector is
a multiple of the Perron-Frobenius eigenvector. In this paper, we only need the proportion of values
of A at vertices. We do not have to distinguish these two vectors.

Let V4 be the sets of black/white vertices of I', and let £ be the sets of all edges of I" directed from
black to white vertices. Then we have the source and target functions s : £ -V, and t: £ — V_.
For a directed edge € € £, we define €* to be the same edge with an opposite direction. The source



function s : £* = {e*|e € £} — V_ and the target function ¢ : £* — V4 are defined as s(e*) = t(e)
and t(e*) = s(e).

A length 2m loop in %, + is denoted by [e1€5 - - - €am—1£35,,] satisfying

()t(ex) = s(efyr) = t(er+1), for all odd k < 2m;

(ii)t(er) = s(er) = t(exs1), for all even k < 2m;

(i)t (e5,,) = s(e2m) = t(e1).

The graph planar algebra is always unital. The unshaded empty diagram is given by ZUEV+ v
And the shaded empty diagram is given by > _,, v. It is mentioning that the Jones projection is
given by

[e1€7€3€5].

o= 5tig = s Y[ AE)AEs)
LLA s(e1)=s(e3) <

Now let us describe the actions on . The adjoint operation is defined as the anti-linear extension
of

[e1€5 -+ Eam—1E5,]" = [E2mEqpm_1 - €2€7]-

For ¢, —, we have similar conventions.

Definition 2.8. The Fourier transform F : %, + — 9, —,m > 0 is defined as the linear extension

of

A(s(eam A(s(em * %
i1 TR st enacl o e
165" E2m—1E3pm,)) =
\/’)\\E:E::)))) ;Eigi:)))) [e5,,6165 -+~ €am—1] for m odd

Similarly it is also defined from 9, _ to G 4.

The Fourier transform has a diagrammatic interpretation as a one-click rotation

Definition 2.9. Let us define p to be F2. Then p is defined from G+ to 9+ as a two-click
rotation for m > 0,

A(s(e2m)) \/ A(s(em))
A

pleres - eom—1€3m]) = \/)\(s(azml)) (s(em—1)

] [€2m—1E5mE1E5 - - - €E2m—3E 5 _o)-

It is similar for 9, _.

For ll,lg S gm7+, I = [6163 . "E‘melf;m], lo = [5155 . '€2m71§2m]7 we have
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>

* * * * ;
emema1 X(s(e)) le165 - -eme™eey, 1 - - €am—1€5,,] when m is odd.

In general, the action of a planar tangle could be realised as a composed inclusion of actions
mentioned above. It has a nice formula, see page 11 in [Jon00].

2.5 The embedding theorem
For a depth 2r (or 2r + 1) subfactor planar algebra ., we have

I+l = m+1€m-Tm+1 = L mCm+1-m, whenever m > 2r + 1.

S0 S -1 C S C St forms a basic construction. Note that the Bratteli diagram of .%%, C H%,41
is the principal graph. So the graph planar algebra ¢ of the principal graph is given by

I I
gk,+ = Sor NS 2r 4k gk,— =91 N Skt 1

Moreover the map @ : . — ¢ by adding 2r strings to the left preserves the planar algebra structure.
It is not obvious that the left conditional expectation is preserved. We have the following embedding
theorem, see Theorem 4.1 in [JPTI].

Theorem 2.5. A finite depth subfactor planar algebra is naturally embedded into the graph planar
algebra of its principal graph.

Remark . A general embedding theorem is proved in [MW10)].

2.6 Fuss-Catalan

The Fuss-Catalan subfactor planar algebras are discovered by Bisch and Jones as free products of
Temperley-Lieb subfactor planar algebras while studying the intermediate subfactors of a subfactor
[BJ97]. We refer the reader to [BJ] [Lan02] for the definition of the free product of subfactor planar
algebras. It has a nice diagrammatic interpretation. For two Temperley-Lieb subfactor planar
algebras T L(d,) and TL(p), their free product FC(d,,d) is a subfactor planar algebra. A vector
in FC(d4,0p)m,+ can be expressed as a linear sum of Fuss-Catalan diagrams, a diagram consisting
of disjoint a, b-colour strings whose boundary points are ordered as abba abba - - - abba, m copies of

m
abba, after the dollar sign. It is similar for a vector in FC(d,, 0p)m,—, but the boundary points are
ordered as baab baab - - - baab. For the action of a planar tangle on a simple tensor of Fuss-Catalan

m
diagrams, first we replace each string of the planar tangle by a pair of parallel a-colour and b-colour



strings which matches the a,b-colour boundary points, then the out put is gluing the new tangle
with the input diagrams. If there is an a or b-colour closed circle, then it contributes to a scalar J,
or Jp respectively.

The Fuss-Catalan subfactor planar algebra F'C(d,,0p) is naturally derived from an intermediate
subfactor of a subfactor. Suppose N' C M is an irreducible subfactor with finite index, and P is
an intermediate subfactor. Then there are two Jones projections exr and ep acting on L?(M), and
we have the basic construction N'C P € M C P; C M;. Repeating this process, we will obtain a
sequence of factors N C¢ P C M C P C M; C Py, C Ms--- and a sequence of Jones projections

EN, ep, em, ep, ---. The algebra generated by these Jones projections forms a planar algebra.
That is FC(da,0), where §, = /[P : N] and §, = +/[M : P]. Moreover ep € FC(da,0p)2 +
abba baab
e [T e [ .
and ep, € FC(d4,0p)2,— could be expressed as §, $ Al and ¢, 1% Al respectively.
abba baab’

Specifically F(ep) is a multiple of ep,.

Definition 2.10. For a subfactor planar algebra ., a projection Q) € 5 1 is called a biprojection,
if F(Q) is a multiple of a projection.

Suppose . is the planar algebra for N' C M, then ep € % ; is a biprojection. Conversely all
the biprojections in .5 ; are realised in this way. That means there is a one-to-one correspondence
between intermediate subfactors and biprojections.

Proposition 2.6. If we identify %> _ as a subspace of 3 by adding a string to the left, then a
biprojection Q € S + will satisfy QF(Q) = F(Q)Q, i.e.

called the exchange relation of a biprojection.

Conversely if a self-adjoint operator in .75 | satisfies the exchange relation, then it is a biprojec-
tion. We refer the reader to [Liub] for some other approaches to the biprojection. The Fuss-Catalan
subfactor planar algebra could also be viewed as a planar algebra generated by a biprojection with
its exchange relation.

If there is a subfactor planar algebra whose principal graph is a Bisch-Haagerup fish graph, then
it has a trace-2 biprojection, due to the existence of a “normalizer”. So it contains FC(dq,dp),

where §, = /2,8, = ‘/52“, as a planar subalgebra. The principal graph and dual principal graph of
FC(q,0p) are given as




3 The embedding theorem for an intermediate subfactor

If there is a subfactor planar algebra . whose principal graph is a Bisch-Haagerup fish graph
I, then it is embedded in the graph planar algebra ¢ of I', by the embedding theorem. While .% 4
contains a trace-2 biprojection. We hope to know the image of the biprojection in ¢. Recall that
the image of the Jones projection e; is determined by the principal graph,

- A(t(er)) A(t(es))
der=" >, \SGE) NG

[e167e335)

s(e1)=s(e3)

The image of the biprojection has a similar formula. It is determined by the re fined principal graph.
The refined principal graph is already considered by Bisch and Haagerup for bimodules, by Bisch
and Jones for planar algebras. For the embedding theorem, we will use the one for planar algebras.

The lopsided version of embedding theorem for an intermediate subfactor is involved in a general
embedding theorem proved by Morrison in [MW10]. To consider some algebraic structures, we
need the spherical version of the embedding theorem. Their relations are described in|[MP]. For
convenience, we prove the spherical version of embedding theorem, similar to the one proved by
Jones and Penneys in [JP11].

In this section, we always assume AN/ C M is an irreducible subfactor of type II; with finite
index, and P is an intermediate subfactor. If the subfactor has an intermediate subfactor, then its
planar algebra becomes an N/ — P — M planar algebras. For N'— P — M planar algebras, we refer
the reader to Chapter 4 in [Har]. In this case, the subfactor planar algebra contains a biprojection
P, and a planar tangle labeled by P can be replaced by a Fuss — Catalan planar tangle. In this
paper, we will use planar tangles labeled by P, instead of Fuss-Catalan planar tangles.

3.1 Principal graphs

For the embedding theorem, we will consider the principal graph of ' C P C M. It refines the
principal graph of N' C M. Instead of a bipartite graph, it will be an (N, P, M) coloured graph.

Definition 3.1. An (N, P, M) coloured graph T is a locally finite graph, such that the set V of its
vertices is divided into three disjoint subsets Vi, Vp and Vaq, and the set € of its edges is divided
into two disjoint subsets E4, E_. Moreover every edge in £; connects a vertex in Vy to one in Vp
and every edge in E_ connects a vertex in Vp to one in Vaq. Then we define the source function
5:E = Vy UV and the target function t : € — Vp in the obvious way. The operation % reverses
the direction of an edge.

Definition 3.2. From an (N, P, M) coloured graph T, we will obtain a (N, M) coloured bipartite
graph T as follows, the N'/ M coloured vertices of T are identical to the N'/M coloured vertices of
T'; for two vertices vy, in Var and vy, € Vo, the number of edges between vy, and vy, in I' is given by
the number of length two pathes from vy, to v, in T'. The graph T” is said to be the bipartite graph
induced from the graph I'. The graph T is said to be a refinement of the graph T".

For a factor M of type II, if N C P C M is a sequence of irreducible subfactors with finite index,
then L?(P) forms an irreducible (N, P) bimodule, denoted by X, and L?(M) forms an irreducible
(P, M) bimodule, denoted by Y. Their conjugates X, Y are (P, ), (P, M) bimodules respectively.
The tensor products X @Y @Y 9 X ®--- X, XYY X® - 0X, XYY X® - -QY,
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XRY®Y®X®---®Y, are decomposed into irreducible bimodules over (N, N), (N, P), (N, M)
and (N, P) respectively.

Definition 3.3. The principal graph for the inclusion of factors N C P C M is an (N, P, M)
coloured graph. Its vertices are equivalent classes of irreducible bimodules over (N, N), (N, P) and
(N, M) in the above decomposed inclusion. The number of edges connecting two vertices, a (N, N)
(or (N, M) ) bimodule U (or V') and a (N, P) bimodule W, is the multiplicity of the equivalent class
of U (or V) as a sub bimodule of W @ X (or W @Y ). The vertex corresponding to the irreducible
(N, N) bimodule L*(N') is marked by a star sign *. The dimension vector of the pincipal graph is a
function X from the vertices of the graph to RT. Its value at a point is defined to be the dimension
of the corresponding bimodule.

Similarly the dual principal graph for the inclusion of factors is defined by considering the de-
composed inclusion of (M, M), (M,P), (M,N) bimodules.

There is another principal graph given by decomposed inclusions of (P, N), (P, P) and (P, M)
bimodules, but we do not need it in this paper.

Proposition 3.1. The (dual) principal graph for the inclusion of factors N C P C M is a
refinement of the (dual) principal graph of the subfactor N C M

Proof. If follows from the definition and the fact that X ® Y is the (A, M) bimodule L?(M). O
Let &, be /[P : N], the dimension of X, and &, be \/[M : P], the dimension of Y. Then by

Frobenius reciprocity theorem, we have the following proposition.

Proposition 3.2. For the principal graph of factors N C P C M and the dimension vector \, we

have
baAu) = D ACE), Vu€Vni BAw)= D AHe), Yw € Vs
e€€y,s(e)=u e€f_,s(e)=w
SaA®) = D As(2),  GA) = Y As(e)), Vv € Vp;
e€€q t(e)=v e€E_

Definition 3.4. For an (N, P, M) coloured graph T, if there exits a function X : V — RT with the
proposition mentioned above, then we call it a graph with parameter (84, ).

Proposition 3.3. The principal graph of factors N C P C M is a graph with parameter
(V[P : N],/IM : P]). Consequently if N C M s finite depth, then the principal graph of N' C
P C M is finite.

Proof. The first statement follows from the definition. Note that the dimension of a bimodule is
at least 1. By this restriction, N' C M is finite depth implies the principal graph of N'C P C M is
finite. O

3.2 The standard invariant

We will define the refined (dual) principal graph for a subfactor planar algebra with a biprojection.
This definition coincides with the definition given by bimodules, but we do not need this fact in this
paper. Given N' C P C M, there are two Jones projections ey and ep acting on L?(M). Then
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we have the basic construction N'C P € M C P; C M;. Repeating this process, we will obtain a
sequence of factors N C P C M CP; C My C Py C My--- and a sequence of Jones projections

EN, EP, €M, €p, ---. Then the standard invariant is refined as
C=N'NN Cc WNNP C N' N M c N'nPy ¢ NnM; C
U U U
C=P'nP C P'AM c PnPy C PNM; C
@] @] @]

C=MnM c MnP, ¢ MnM; C

For Fuss-Catalan, the corresponding Bratteli diagram is describe by the middlepatterns, see
page 114-115 in [BJ97].

We hope to define the refined principal graph as the limit of the Bratteli diagram Bry of N7 N
Mp_o CN' ' NPr_1 CN' N Mj_1. To show the limit is well defined, we need to prove that Bry
is identified as a subgraph of Bryyi. To define it for a subfactor planar algebra with a biprojection
without the presumed factors, we need to do some translations motivated by the fact

N' 0Py =N"0 (Mg {ep,}) = N N M) N {ep,}.

Definition 3.5. Let ¥ = ., + be a subfactor planar algebra. And ey, ez, - be the sequence of
Jones projections.

Suppose p1 is a biprojection in S . Then we will obtain another sequence of Jones projections
D1,P2,D3, -, corresponding to the intermediate subfactors, precisely pa in S — C A3 4+ is a multiple
of F(p1), and py, is obtained by adding two strings on the left side of pi—s.

Form > 1, let us define .7, , to be S N{pm} and .7, _ to be L - N {pmi1}'

Proposition 3.4. For X € %, +, m > 1, we have
Xpm =pmX = F(X)=F(X)pm.

That means ., , is the invariant subspace of ., 4 under the “right action” of the biprojection.
Diagrammatically its consists of vectors with one a/b-colour through string on the rightmost.

Proof. If p,,X = Xp,, then take the action given by the planar tangle :$ $: we have

F(X) = F(X)pm.

For m odd, if F(X) = F(X)pm, then X = X = F(p1), i.e
Im1l-n_l- E
$ % l'p1| 1,

-

N el

By the exchange relation of the biprojection, we have

X =

[ ""l'.'.l' B
| B Ial]

s LT $1X'C7§[' i

 SgOr] im

[ S L} [ S

-=-d1700

12



So pmX = Xppm.
For m even, the proof is similar. O

Note that .#p,—1,+ is in the commutant of p,,". So we have the inclusion of finite dimensional
von Neumann algebras
S CH L CA G C Sy C oy Coov

Then we obtain the Bratteli diagram Bry, for the inclusion .%,,—1 4+ C y,;wr C Zm,+. To take the
limit of Br,,, we need to prove that Br,, is identified as a subgraph of Br,41.

Proposition 3.5. If P1, P> are minimal projections of ., . Then Pipy, Papy are minimal
projections of .7, 11 . Moreover Pi and Py are equivalent in .7, , if and only if Pipm, and Papy,

are equivalent in ) | | .

This proposition is the same as Proposition 2.1}

Proposition 3.6 (Frobenius Reciprocity).
(1) For a minimal projection P € Sp_1 + and a minimal projection @ € Y,;%_,_, we have Qpm
is a minimal projection of 7}, .1 , Pen is a minimal projection of 7}, 11 , and

dim(P(.7}, ,)Q) = dim(Pep (S mi1,4+)QPm)-

2) For a minimal projection P’ S ! and a minimal p’f’Oj@CtiO?’l / S fgﬂm , we have Plpm 18
m,+ 7+
a minimal p’f’Oj@CtiO?’l 0J L%/n 1,47 and

dim(Pl(ym,-i-)Q/) = dim(P/pm(yr;q+1,+)Q/)'

Proof. (1) Consider the maps

For m odd, if X € P(%), ,)Q, then by Proposition 3.4l we have X = P(X'x F(p1))Q for some
X' € S+ So ¢1(X) € Pep (S mt1,4)@Pm- On the other hand, if Y € Pey(-Simt1,+)QPm, then
2(Y) € P(Z, ,)Q. While ¢ o ¢ is the identity map on Pen(Fm11,4)Qpm and ¢2 o ¢y is the
identity map on P(7), ,)Q. So dim(P'(Sm +)Q") = dim(P'pm (-S54 1 4)Q")-

For m even, the proof is similar.

(2) This is the same as Proposition [Z21 O

By Proposition(Z1))(3:0]), the Bratteli diagram Bry, is identified as a subgraph of Bry, ;1.

Definition 3.6. Let us define the refined principal graph of & with respect to the biprojection p;
to be the limit of the Bratteli diagram of S, + C 73,11 1 C Fmy1,4. The vertex corresponds to the
identity in Sy is marked by o star sign.

Similarly let us define the refined dual principal graph of & with respect to the biprojection py to
be the limit of the Bratteli diagram of S — C 11— C Fmy1,—. The vertex corresponds to the
identity in S, is marked by a star sign.

13



The refined principal graph is an (N, P, M) coloured graph. The A, P, M coloured vertices are
given by equivalence classes of minimal projections of Sy, —, 5., 11, %2m+1,— respectively, for m
approaching infinity. Similarly the refined dual principal graph is an (M, P, N') coloured graph.

Definition 3.7. The dimension vector \ of the principal graph is defined as follows, for an N or
M coloured vertex, its value is the Markov trace of the minimal projection corresponding to that
vertex; for a P coloured verter v, suppose @ € Y,’nﬁ is a minimal projection corresponding to v.
Then A(v) = 0;'r(Q), when m is even, where 6, = /tr(p1); A(v) = &, 'tr(Q), when m is odd,
where &, = 60, L.

Remark . An element in 5”,;1_* has an a/b-colour through string on the rightmost. When we
compute the dimension vector for a minimal projection in 5”7’”#, that string should be omitted. So

there is a factor ;% or &, "

Note that the dimension vector satisfies Proposition [3.221 So the refined principal graph is a
graph with parameter (04,05). If the Bratteli diagram of .7, y C 41,4 is the same as that
of i1+ C S my2,4, i.e. 7 has finite depth, then Bry,, 11 = Brpy2 by the restriction of the
dimension vector. Specifically the Bratteli diagram of .7, 1 , C %41+ is the same as that of
I+ C L ppyo - S0 L1 C g1+ C Fpyo 4 forms a basic construction, and py,41 is the
Jones projection. Then the Jones projection can be expressed as a linear sum of loops. We will see
the formula later.

The subfactor planar algebra F'C (\/5, 12—‘/5) contains a trace-2 biprojection. Considering the

middle pattern of its minimal projections, we have its refined principal graph as

and its refined dual principal graph as

where the black, mixed, white points are N, P, M coloured vertices.

3.3 Finite-dimensional inclusions

Now given an inclusion of finite dimensional von Neumann algebras By C By C Ba, similarly we
may consider its Bratteli diagram, adjacent matrixes, Markov trace, and the basic construction.

Definition 3.8. The Bratteli diagram Br for the inclusion By C By C Bay is a (B, B1, Ba) coloured
graph. Its B; coloured vertices are indexed by the minimal central projections (or equivalently the
irreducible representations) of B;, for i = 0,1,2. The subgraph of Br consisting of By, B coloured
vertices and the edges connecting them is the same as the Bratteli diagram for the inclusion By C By.
The subgraph of Br consisting of B1, By coloured vertices and the edges connecting them is the same
as the Bratteli diagram for the inclusion By C Ba.

14



Let A, A; and Ay be the adjacent matrixes of By C By, By C By and By C Bs respectively.
Then A = AjA;. Take a faithful tracial state 7 on Bs. Let L2(B3) be the Hilbert space given
by the GNS construction with respect to 7. Then L?(Bp) and L?(B;) are naturally identified
as subspaces of L?(Bg). Let e1, p1 be the Jones projections onto the subspaces L?(By), L?(B1)
respectively. Then By = (By U p1)”, Bs = (Ba Uey)” are obtained by the basic construction. So
Z(Bo) = Z(By), Z(B1) = Z(B3). And the adjacent matrixes of By C Bs, By C By are AT, AT.

Proposition 3.7. The adjacent matriz of Bs C By is AT.

Proof. We assume that the adjacent matrix of By C By is A. Let J denote the modular conjugation
operator on L?(Bp). Then z — Jz % J is a *-isomorphism of Z(By) onto Z(Bs), of Z(B1) onto
Z(B3). Take a minimal central projection x of By and a minimal central projection y of By, we have
Z = JzJ is a minimal central projection of By, and § = JyJ is a minimal central projection of Bs.
The definition of the adjacent matrix implies that

Ay = [dim(zyByzy N zyB; EINIEE

l\)\)—l

Az 5 = [dim(ZgB4E7 N FjB4Eg))>.
Note that

zyBLzy N TyBazy = JaeyJByJzyJ N JryJByJzyJ = J(zyByzy N zyBizy)J.
So Az =~Ay.=AL,. O

Definition 3.9. We say 7 is a Markov trace for the inclusion By C B1 C Ba, if T is a Markov
trace for the inclusions By C By and By C Bs.

Proposition 3.8. If 7 is a Markov trace for the inclusion By C By C Ba, then 7 is a Markov

trace for the inclusion By C Ba. Moreover T extends uniquely to a Markov trace for the inclusion
By C By C By.

Proof. Let A\; = A5 be the dimension vectors for i = 0,1,2. If 7 is a Markov trace for the
inclusion By C By C 82, then by the definition 7 is a Markov trace for the inclusions By C By and
Bl C 82. So Ag)\g = )\1; Al)\l = )\0; Ar’lr)\o = ||A1||2)\1; and AgAl = ||A2||2)\2 Then ATA)\Q =
ATATAL A0 = ||A1]%[|A2]|?A2. So 7 is a Markov trace for the inclusion By C B2 and ||A]| =
|A1][]|X2]|. Then 7 extends uniquely to a Markov trace for the inclusion By C By. Let A; = AB, be
the dimension vectors for i = 3,4. We have Ay = [|A||72\o by the uniqueness of the extension of
7. And A3 = AT\ = ||A||” 2AT)\0 = ||A2]|72\1. Then by a direct computation AjAT Ay = [|A1]|?>\4
and AoAT A3 = [|A2||?\3. That means 7 extends to a Markov trace for the inclusion By C B3 C By.
On the other hand, if 7 extends to a Markov trace for the inclusion By C Bs C By, then it
also extends to a Markov trace for the inclusion By C Bs. That implies the uniqueness of such an
extension. O

Definition 3.10. Given the Bratteli diagram Br for the inclusion By C Bi C Ba, let us define
the dimension vector with respect to the Markov trace T to be A", a function from the vertices of
the Bratteli diagram the into R™, as follows for a By coloured vertex, its value is the trace of the
minimal projection corresponding to that vertex; for a By coloured vertex, its value is ||A1]| times
the trace of the minimal projection corresponding to that vertex; for a By coloured vertex, its value
is ||A]| times the trace of the minimal projection corresponding to that vertes.
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Proposition 3.9. The inclusion By C By C Bs admits a Markov trace if and only if the Bratteli
diagram for the inclusion is a graph with parameter (04,0y). In this case 6, = ||A1|| and dp = ||A2]].
Under this condition, the Markov trace is unique if and only if the Bratteli diagram is connected.

Proof. The first statement follows from the definitions.

In this case, 6, = ||A1]|| and &, = ||Az2|] follows from the fact that the eigenvalue of AT A; with a
positive eigenvector has to be [|A;||2.

Suppose the inclusion By C By C By admits a Markov trace. If the bratteli diagram Br is not
connected, then we may adjust the proportion to obtain different Markov traces. If the bratteli
diagram Br for the inclusion By C By C Bs is connected, we want to show that the bratteli diagram
Br’ for the inclusion By C By is connected. Actually if two By (or Bz) coloured vertices are adjacent
to the same B coloured vertex in Br. then they are adjacent to the same Bs (or By) coloured vertex
in Br’, because any By coloured point is adjacent to a By (or Bp) coloured vertex in Br. While
the bratteli diagram Br’ is connected implies the uniquness of the Markov trace for the inclusion
By C By. Then the dimension vectors Ag and Ay are unique. So A is also unique. That means the
Markov trace for the inclusion By C B; C By is unique.

O

Corollary 3.10. Given the principal graph for the inclusion N C P C M, its dimension vector is
uniquely determined by the graph.

Proof. The dimension vector is a multiple of the dimension vector A with respect to the unique
Markov trace 7. While the value of the marked point is 1, so the dimension vector is unique. O

Now we may repeat the basic construction to obtain the Jones tower By C By C Bo C B3 C By C
- and a sequence of Jones projections ey, p1,ea,p2---.

Proposition 3.11. The algebra generated by the sequences of projections {e;} and {p;} forms a
Fuss-Catalan subfactor planar algebra.

This proposition is essentially the same as Proposition 5.1 in [BJ97]. In that case the Jones
projections are derived from the inclusion of factors. The proof is similar. We only need a fact that
the trace preserving conditional expectation induced by a Markov trace maps the Jones projections
to a multiple of the identity.

3.4 Graph planar algebras and the embedding theorem

Given a connected three (N, P, M) coloured graph T with parameter (d,, ), we have Vy, Vp,
Vi, €4, 8, t, x as in Definition Bl Let A be the (unique) dimension vector. Let I be the bipartite
graph induced from I". Suppose the Bratteli diagram for the inclusion of finite dimensional von
Neumann algebras By C By C By is I'. Then the Bratteli diagram for the inclusion of By C By is
I”. Let Ay be the adjacent matrix for B; C Bs. Applying the basic construction, we will obtain the
tower By C By C By C B3 C By C ---. Let {e;},{pi} be the sequences of Jones projections arising
from the basic construction. Note that the relative commutant of By in the tower can be expressed
as linear sums of loops of I'. While the even parts of the relative commutant is exactly the graph
planar algebra & of IV. So an element in ¢ could be expressed as a linear sums of loops of T', instead
of loops of T. Actually an edge of I is replaced by a length 2 path e1e3. It is convenient to express
p1 by loops of T'.
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Proposition 3.12. Note that p; € B} N B3, we have

P11 = 5;1 Z \//\(8(63))/\7(8(;)))) [5§535;57]'

e3,e7€E_ t(e3)=t(e7)

To express p1 as an element in 9o+ = By N By, we have

p1=0," Z \/M)\(Sij)) [e1e5e3eteserere]].

e3,e7€€_
€1,65€E4
t(e1)=t(e3)=t(es)=t(e7)

Proof. Note that p; is the Jones projection for the basic construction B; C Bs C B3. So we have the
first formula. Take the inclusion from B] N B3 to BjN By for p1, we obtained the second formula. O

Theorem 3.13. Suppose . is a finite depth subfactor planar algebra, p is a biprojection in S5 4,
I’ is the principal graph of ., and T is the refined principal graph with respect to the biprojection p.
Let ¢ the embedding map from . to the graph planar algebra . Then ¢(p) = p1 is a linear some
of loops as in Proposition [3.12,

Proof. Note that p,, is the Jones projection for the basic construction .7, C .7, C .7, |, when
m is odd and greater than the depth of .. So ¢(p) is the Jones projection for the basic construction
By C By C Bs, which implies ¢(p) = ps1. O

4 Bisch-Haagerup fish graphs
The following result is proved by Bisch and Haagerup.

Theorem 4.1. Suppose N C P C M is an inclusion of factors of type IIy, such that [M : P] =
32—‘/5 and [P : N] = 2. Then either it is a free composed inclusion, or the principal graph of the

subfactor N C M is

called the ny, Bisch-Haagerup fish graph, when it is of depth 2n + 1.

It follows from computing the relation of (P, P) bimodules arisen from the two subfactors N' C P
and P C M.

Remark . It is a free composed inclusion means there is no extra relation between (P, P) bimodules.
In this case, the planar algebra of N' C M is Fuss-Catalan.

By the embedding theorem, if the principal graph of a subfactor planar algebra is the ny, Bisch-
Haagerup fish graph, then the subfactor planar algebra is embedded in the graph planar algebra.
Because of the existence of a normalizer in the Bisch-Haagerup fish graph, the planar algebra contains
a trace-2 biprojection. First we will see there is only one possible refined principal graph with respect
to the biprojection. Then in the orthogonal complement of the Fuss-Catalan planar subalgebra, there
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is a new generator at depth 2n. We will show that this generator satisfies some relations. We hope
to solve the generator with such relations in the graph planar algebra. In the case n > 4, there is no
solution. So there is no subfactor planar algebra whose principal graph is the ny, fish. In the case
n = 1,2,3, there is a unique solution up to (planar algebra) isomorphism. So there is at most one
subfactor planar algebra for each n. Their existence follows from three known subfactors.

Notation 4.1. Take 6, = V2, & = 1+2‘/5, and § = 0,0,. Then 6% = 0, + 1. Let FC = FC(8,,0)
be the Fuss-Catalan planar algebra with parameters (0q,0,). We assume that fo, is the minimal
projection in FCsy  with middle pattern abba abba --- abba, n copies of abba; and g, is the

n
minimal projection in FCay — with middle pattern baab baab - -- baab.

n

4.1 Principal graphs

If the ng, Bisch-Haagerup fish graph is the principal graph of a subfactor N C M, then its index
is 02 = 3+ /5. Because of the existence of a “normalizer”, there is an intermediate subfactor P,
such that [P : N] = 2.

Definition 4.1. Let us define the subfactor planar algebra of N C M to be B ={PBpm +}, and ep
to be the biprojection corresponding to the intermediate subfactor P.

Lemma 4.2. The refined principal graph with respect to the biprojection ep is

Co C1 C2 C3 Cy Cs Cxn2 Con1 Con
81 2 3 &4 5 &on-2 on-1 8on
do di ds dons  don don-1

Its dimension vector A is given by
Meag—1) = 5a5{f, for 1<k<n;
Mdog—1) = da 5 L ofor1<k<n;
(czk)—25b,for1<k<n—1
A(co) = Ado) = 1; AMezn) = A(d2n) = &'
Ag2k—1) = 640, b1 ,for1 <k<n;
AMgak) = 0q 5b,f07”1 <k<n.

Proof. Note that 62 = 3+/5 = 6267, so the planar subalgebra generated by the trace-2 biprojection
ep is FC = FC(d,,0). Observe that the principal graph of F'C is the same as the ng, fish up to
depth 2n — 1, so Bo(n—1),4+ = FCy(n—1),4- Then the refined principal graph of % starts as

Co C1 C C3 Cy Cs Coxn2  Con
&1 p) 3 &4 5 &on-2 2n-1
do di d3 don-3

The vertex cop—1 corresponds to the minimal projection of F'Cop_1, with middle pattern
abba - -- abbaab, k — 1 copies of abba, for 1 < k <n. So A(cok—1) = 5a5l’f.
—_—
k—1
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The vertex do—1 corresponds to the minimal projection of FC9;41,4+ with middle pattern

abba --- abbaabbb, for 1 <k <n—1. So Mdag_1) = 005 "
k—1

The vertex cgp corresponds to the minimal projection of F'Cyy 4 with middle pattern

abba --- abba, for 1 <k <n—1. So A(eax) = 25{5;
k

The vertex c¢g is the marked point. So A(cg) = 1; The vertex dy corresponds to the minimal
projection of FCs 4 with middle pattern aa. So A(dp) = 1;

The vertex gor—1 corresponds to the minimal projection of FC} k—1,+ With middle pattern
abba --- abba a, for 1 <k <n. So AMgzk—1) = (5a5l’f—1;

k—1

The vertex goj, corresponds to the minimal projection of F’ Oék-, 4 with middle pattern

abba - - abba abb, for 1 <k <n—1. So A(gax) = 5a5l’f.
k—1

All these vertices are not adjacent to a new point in the refined principal graph except co,_1,
because they are identical to the vertices of the refined principal graph of F'C.

Note that dp\(can—1) — A(gan-1) = 5a5{)’+1 - 5a5{7’_1 = 0407. So there is a new P coloured vertex,
denoted by g2,, adjacent to ca,—1. Then A(gan) < 64,65 . On the other hand A(gan) > 5;1)\(02,1,1) =
oy > %5(15{]. S0 g2y, is unique new P coloured vertex adjacent to ca,—1 and A(gan) = a0}

While dpA\(g2n)—A(can—1) = 5a5g+1—5a5{f = 5a5{f*1, so there is a new N coloured vertex, denoted
by daon—1, adjacent to ga,. Then A(dap—1) < 6a5}}71. On the other hand A(da,—1) > (5;1)\(92”) =
5,1(5:_1. So dgp,—1 is unique new N coloured vertex adjacent to ga, and A(dep—1) = 6a5;’_1.

Now dpA(d2n—1) = A(gan), so there is no new P coloured vertex adjacent to da,—1.

In the principal graph, there are two M coloured vertices, denoted by cay,,d2,, adjacent to
Con—1. Thus cay,, do, are adjacent to goy, in the refined principal graph. Moreover A(cay,) = A(day,) =
%(A(an_l) + AMdan—1)) = 6}'. Then 6o\ (can) = 0aA(d2n) = A(g2n). So there is no new P coloured
vertices adjacent to cay, or doy,.

Therefore we have the unique possible refined principal graph and its dimension vector as men-
tioned in the statement. O

Because # contains a biprojection, it is decomposed as an Annular Fuss — Catalan module
[Liual, similar to the Temperley-Lieb case [Jon0Il [JR06]. The Fuss-Catalan planar subalgebra F'C
is already a submodule of %. There is a lowest weight vector in %y, + which is orthogonal to F'C.
So this vector is rotation invariant up to a phase. Moreover it is totally uncappable, see [Liual. In
this special case, we have a direct proof of this result.

Definition 4.2. An element x € %y, + is said to be totally uncappable, if
p"(x)P =0, p*(F(x))F(P) =0, Vk>0;
An element y € B, — is said to be totally uncappable, if F(y) is totally uncappable.

If we consider P as an a,b-colour diagram, then an element is totally uncappable means it becomes
zero whenever it is capped by an a/b-colour string.

Now let us construct the totally uncappble element S € Ay, ;. If S is totally uncappable, then S
is orthogonal to F'Cyy, 4. While the minimal projection fo,, of F'Cy, 4 is separated into two minimal
projections in %o, 4, denoted by P. Py, with fair trace. So S has to be a multiple of P, — P;. Take
S to be P, — P, then S satisfies the following propositions.
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Proposition 4.3. For S = P, — P; in PBay 4+, we have
(1) S*=S;
(2) S2 = f2n7'
(8) S is totally uncappable;
(4) p(S) = wS, for some w € C satisfying |w| = 1.

Proof. (1) S* = (P.— Py)* = S.

(2) 52 = (PC — Pd)2 =P.+PFP;= fgn.

(4) Note that p preserves the inner product of S € Ha, 4+, and FCy, 1 is rotation invariant, so
both S and p(S) are in the orthogonal complement of F'Cy, + which is a one-dimensional subspace.
Then we have p(S) = wS for some w € C. Moreover ||p(S)||2 = ||S]|2, so |w| = 1.

(3) From the refined principal graph, we have S x P is a multiple of fs,. By computing the
trace, we have S « P = 0. On the other hand ¢r((SP)*(SP)) = tr(fanP) = 0, so SP = 0. By
proposition(4), we have S is totally uncappable. O

If S € Pan + is totally uncappable, then F(S) € Ba,, — is also totally uncappable. To describe
its relations, we need the dual principal graph of 2.

Lemma 4.4. If the principal graph of A is the ny, Bisch-Haagerup fish graph, then the dual
principal graph of A is

V3

V2

Vo V.

\ Vs V7 Vg
Vs

For its dimension vector X', we have X (v1) = o, X (v2) = &, ".
Proof. Note that %s,—1,+ = FCoy—1,4, 80 Bop—1,— = FC9,—1,—. Then the dual principal graph
of # is the same as the dual principal graph of F'C' up to depth 2n — 1. In %y, _, there is a

totally uncappable element, so the minimal projection g2, of F'Cs, — is separated into two minimal
projections of A, —, denoted by P!, Pj. Then we have the dual principal graph up to depth 2n as

The vertex vy corresponds to the minimal projection of F'Cs,,—1,— with middle pattern

baab --- baabba. So N (vy) = 840};
n—1

The vertex vy corresponds to the minimal projection PJ; The vertex ve corresponds to the
minimal projection Pj;

In the case n = 1, there is no vertex vs; In the case n > 2, the vertex vs corresponds to the
minimal projection of FCs, _ with middle pattern paab --- baabbb. So N (v3) = &;" '

n—1

In the case n = 1, there is no vertex v4; In the case n > 2 the vertex vy corresponds to the

minimal projection of FCs,_1 _ with middle pattern bbbaab --- baab ba. So X (vy) = 6&}:72;

n—2
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The vertex vs corresponds to the minimal projection of F'Cy, _ with middle pattern
bb baab --- baab. So X (vs) = &, '
—_———
n—1
In the case n < 2, there is no vertex vg; In the case n > 3, the vertex vs corresponds to the
minimal projection of FCy, _ with middle pattern bbbaab --- baabbb. So N (vs) = 53>,
) —_——

n—2

In the principal graph, there is one vertex at depth 2n 4+ 1 with multiplicity 2. So in the dual
principal graph, there is one vertex at depth 2n + 1 with multiplicity 2, denoted by wvr.

While 6N (v5) — N (va) = 6a6f — 5a517f_2 = 5a517f_1. So ws is adjacent to v7. Then at most one
of v1 and wve is adjacent to vy. Without loss of generality, we assume that vy is not adjacent to
v7. Then X(va) = tXN(vo) = 677" So N(vi) = tr(gen) — N(v2) = 65T — 6" = 6. Then
SN (v1) — N(vg) = (5a5l?+1 — 040 = 6a5}}71. So v is adjacent to vz, and N (v7) = 6a5}}71. While
SN (v7) — N (v1) — N (vs) = 267 — 6% — 6,1 = 672, So there is a new N coloured vertex, denoted
by vs, adjacent to v7. Then X(vs) < ;"2 On the other hand X (vs) > 67 *N(v7) = 672 So
N (vg) = 5{7’_2. And there is no new vertices in the dual principal graph.

Therefore we obtain the unique possible dual principal graph. o

Definition 4.3. Let us define T'y, to be the (potential) dual principal graph of 2.

Note that the minimal projection ga,, of F'Cs, _ is separated into two minimal projections P/, P
in Bon,—. And tr(P)) = Auv1) = 6, tr(P}) = Mvz) = 6", Take R to be &, ' P, — &, ?P}, then
R is orthogonal to F'Cs,, — in oy, . Recall that F(S) € FCsy, _ is totally uncappable, so F(S) is
also orthogonal to FC2n, — in %,,,,_. While the orthogonal complement of F'Cy,, _ in %s, _ is one
dimensional. So F(S) is a multiple of R. Then we have the following propositions.

Proposition 4.5. For R = 5b_1Pé — 5;2P’ in Bon,—, we have

(0) R = wod~'F(S), for a constant wy satisfying wy > = w, where S and w are given in Proposi-
tion[{.3

(1’) R* = R;

(2’) R+ 6, 2gan is a projection;

(8’) R is totally uncappable;

(47) p(R) = wR.

Proof. (1) R* = (3, 'P}— 6, *P.)* = R.
(0) By the argument above, we have F(S5) is a multiple of R. While

[|F(9)|[3 = tr(S * S) = tr(fan) = 626, and

RIS = tr(R*R) = 0, *tr(P) + 6, Mtr(Py) = 8, 28, " + 6,6y = 0y 72 = 6 || F(9)I[5.

So R = wpd 1 F(S), for some phase wp, i.e. wp € C and |wp| = 1.
Note that
(F(R))" = FH(R") = F\(R).

So

Then

21



Recall that p(S) = wS. Thus wy? = w.
(2)) R+ 6, 2gan, = P is a projection.
(3”) and (4") follows from (0).
o

By the embedding theorem, we hope to solve (S, R,wp) in the graph planar algebra, such that
(S, R,wp) satisfies the propositions (0)(1)(2)(3)(4)(17)(2°)(3")(4’) listed in Proposition(@3) ([@H). In
this case, there is no essential difference to solve it in the graph planar algebra of the principal graph
or the dual principal graph. But for computations, we may avoid a factor % in the graph planar
algebra of the dual principal graph. The factor % comes from the symmetry of ¢y, dy and cap,, doy, in
the principal graph. Now let us describe the refined dual principal graph of Z.

Lemma 4.6. The refined principal graph of % with respect to the biprojection ep is

where the marked vertex is by. For convenience, we assume that as, = ag.
Then its dimension vector X' is given by
N(agk—1) = N(aan—2k+1) = 6, for 1 <k <mn;
N(bze—1) = N (ban—2k41) = 0y, for 1 <k <n;
/\/(agk) = /\’(a4n,2k) = 5(151],6; fOT 0 S k S n;
N(hgk—1) = N (han—2i42) = 0 ', for 1 <k <n;
/\/(hgk) = /\/(h4n—2k+l) = 5{:, for1<k<n.

Proof. The proof is similar to that of Lemma [£.2]

We have known that %, - = FCs, _ & C(R), where C(R) is the one dimensional vector space
generated by the totally uncappable element R. So we obtain the refined principal graph up to
depth 2n as mentioned in the statement.

For the vertices vg,vio as marked in the statement, we have X (vg) = S\ (v2) = G0, ' = 47,
)\I(Ulo) = 5;1/\/(1)5) = 6;151:71 = 6?72.

Then dp N (v1) — A(vg) = 007t — 6 = 5{7’_1. So v is adjacent to a new P coloured vertex, denoted
by v11. Then N (v11) < 5{7’_1. On the other hand N (v11) > 517_1/\’(1)1) = 5{7’_1. So w11 is the unique
new P coloured vertex adjacent to v; and X (v11) = 5{7’_1. Then 6\ (v11) = A (v1) implies vg is not
adjacent to v1;. And the N coloured vertex adjacent to v11 has to be vr.
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Moreover dp N (v5) —A(v10) = 61,6?71 —6272 = 6?71. So vy is adjacent to a new P coloured vertex,
denoted by vi2. Then X (v12) < 5{7’_1. On the other hand X (v12) > 517_1/\’(1}5) = 5;’_2 > %6g_1. So
v12 is the unique new P coloured vertex adjacent to vs and N (vi2) = 5{7’_1. Then dp\ (v12) — N (v5) =
N (vg) implies vg is adjacent to v11. And the N coloured vertex adjacent to vy; has to be vy.

While d,\(v7) = 267" = N(v11) + N (vi2), 0N (vs) = 077" = N(v12). So there is no new P
coloured vertices. Then we have the unique possible refined dual principal of 4.

Now we adjust the refined principal graph and relabel its the vertices as

where the marked vertex is by.

The graph is vertically symmetrical, by Corollary[3.10}, the dimension vector X’ is also symmetric.
So we only need to compute the value of A’ for the upper half vertices.

The vertex a; corresponds to the minimal projection of F'Cy — with middle pattern bb. So
XN(a1) = d; The vertex agi—1 corresponds to the minimal projection of FCo,_o _ with middle
pattern baab --- baab, k — 1 copies of baab, for 2 < k < n. So N(agk—1) = 6{)“, for 2 <k <mn;

The vertex by is the marked vertex. So A (b;) = 1; The vertex boi_1 corresponds to the minimal
projection of F'Cy,_1,— with middle pattern baab --- baab bb, k — 1 copies of baab, for 2 < k < n.
So N (bag—1) = 55_1, for 2 <k <m;

The vertex ag corresponds to the minimal projection of F'Cs3 _ with middle pattern bbba. So
N (ag) = dq; The vertex agy, corresponds to the minimal projection of FCo,—; — with middle pattern
baab --- baab ba, k — 1 copies of baab, for 1 < k <n. So XN (az) = (5a5{f, forl1 <k <mn;

The vertex hy corresponds to the minimal projection of FCj _ with middle pattern bbb. So
N (h1) = 1; The vertex hgp_1 corresponds to the minimal projection of FC’ék7177 with middle
pattern baab --- baab baa, k — 2 copies of baab, for 2 < k < mn. So N (ag) = (5571, for 2 <k <m;

The vertex h; corresponds to the minimal projection of FC% _ with middle pattern bbb. So
N (h1) = 1; The vertex hyy, corresponds to the minimal projection of FC} k1, With middle pattern

baab --- baab b, k — 1 copies of baab, for 1 <k <n. So N(ag) = 5571, for1 <k <n; O

We hope to embed %, + in the graph planar algebra of the dual principal graph, so we will
consider the biprojection ep, = 0, 16, F(ep) in HBa, .

Definition 4.4. Let us define 4 = 9,1+ to be the graph planar algebra of the dual principal graph
I'y. Then By + is naturally embedded in 4, +. Let p1 € % 1 be the image of ep,. Then the
planar subalgebra FC(6y,0q)m,+ of 4 generated by p1 is identical to the image of FC(0q,0p)m, -
The images of fan, and goyn are still denoted by fa, and gon.

Notation 4.2. Note that the dual principal graph T is simply laced. A path e of T, is determined
by s(e) and t(e), so we may use

[s(e1)t(e1)s(e3)t(e3) - - - s(€2m—1)t(€2m—1)]

to express a loop [e1€3e3e) - - €am—1E5,,] N Gom 4+, similarly for loops in Gam, .
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Proposition 4.7.

n
p1 = E [agk—1a2k—202k—102K—2] + [@4n—2k+10an—2k+204n—2k+104n—2k+2)
k=1

+aok—1a2p 02k —102k] + [Q4n— 2811040 —2k0an—2k+10dn—2k]
+lask—102b2k—102k] + [@4n—2k+10an—2kban—2k+10an—2k
+[bak—1a28b2k—102k] + [ban—2k+104n—2kban—2k+10an—2k)
+[bok—102ka2%—102k) + [Dan—2k+104n—2k0dn—2k+104n—2k)-
Proof. It follows from Theorem and Lemma O

Definition 4.5. Note that % is abelian. Let us define Ay, By to be the minimal projections
corresponding to the vertices asg_1, bog—1 respectively, for 1 < k < 2n.

Note that 41 4 is abelian. Let us decompose Ay into minimal projections A, and A: as follows,
A = lask—1a0k—2], A5,y = [aan—2kt10an—2kt2), Af = [ask—1a0k], AS, ) = [aan—ok+10an—2k], for
1<k<n.

Let us define Hop—1, Hap—2k+1, Hor and Hap—op in 41—, for 1 <k <mn, as follows

Hop—1 = [agk—202k—1], Hop, = [a2kaok—1] + [a2rbar—1],
Hun—ok+2 = [Gan—2k+20an—2k+1)s Hin—2k4+1 = [@an—2k0an—2k+1) + [@an—2kban—2k41)-

Proposition 4.8.
Ay, By are in the center of Yoy, 4.
gon commutes with AZ and A, .

Proof. The first statement is obvious. For the second statement, it is enough to check p; commutes
with AZ and A, . By Proposition .7, for 1 <k < n, we have

+_ At
P1AL = [agk—102k02K02k—1021] = AL D1;

similarly for other cases. O

4.2 The potential generater

Now we sketch the idea of solving the generator R in 4. Essentially we are considering the length
8n loops on the refined dual principal graph. Observe that if a loop contains a word hyiayhg, for
1 < k < 2n, then the vertex a; could be replaced by an a/b-colour cap, because ay is the unique
N /M coloured vertex adjacent to hg. The coefficient of such a loop in the totally uncappable
element R has to be 0. Therefore for a loop [ with non-zero coefficient in R, if it goes to the
right, then it will not return until passing the vertex as,. Among these loops, there is exactly one
in Ay %, + AT, that tells the initial condition of R. By proposition(2’), ArRA} is determined by
A, RA{. By proposition(3’), BiR is determined by A; RA. By proposition(4’), Ay RAgy is
determined by (A + Bi)R(Ax + Bi). That means R could be computed inductively by the initial
condition.

Definition 4.6. Let us define F € % to be the image of F(id — ep), i.e. F'=Se1 — 040, 'p1.
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It is easy to check that F« F=F, P+« F = Fx P =0, and F % go,, = gop, *x FF = 0.
Note that e; and p; could be expressed as linear sums of loops, then we have.

—0.5
F = g 000, 7 ([a2k—1a2k—2a2k—1G2k] + [@4n—2k+1C4n—2k+204n—2k+1Cdn—2k]
1<k<n

+azk—102ka2k 102k —2) + [@4n—2k+104n—2k0d4n—2k+10an—2k+2])
+040, 2 ([agk—1a2ka2%—102k] + [Q4n—2k+104n—2k Qan—20+104n—2k])
—8a0;, ([agk—1a2kb2k—102k) + [a4n—2k+104n—2kban—2k+104n—2k])
+0q([b2x—102kb2k—1028] + [ban—2k+10an—2kban—2k+104n—2k])
—8a6; " ([bak—1a2ka2k—1a2k] + [ban—2k+104n—2%0an—2k+104n—2k]).
We may compute F x [ for a loop | € ¥, 1 by the following fact,

A/(yz)A/(yz)
[Woy1y2ys) * [Tox1 - - Tan—1] = Oyr21 OyomoOysman 1 X7@;j}7@;5{y0$1"'$4n—1}

Proposition 4.9. For a loop | € %y, 4 and 1 < k < 2n, we have

Fxl=0, whenl=A_lA_,

Fxl=1, whenl = A,:lAZ orl = A:ZA,:;

Fxl= (A} + Bp)(F )(Af + By), when | = (A} + Bp)l(Ay + By).

S0 Yo, + is separated into 6n invariant subspaces under the the action Fx. Moreover the set of
length 4n loops, as a basis of %ap +, is separated into 6n subsets simultaneously.

Proof. It could be checked by a direct computation. O

Definition 4.7. Let (3 : A:%2n7+A: — Br%on +, V1 <k <2n be the linear extension of
ﬂ([a2k71@2k72$3$4 e '$2n71a2k72]) = [b2k710J2k72$3I4 e '$2n71a2k72]7

for any loop [ask—1a2k—223T4 -+ Top—_1G2k—2] € A;ffgnﬁAZ.

Proposition 4.10. The linear map 3 : Azg2ny+A;: — By%on,+ is a *-isomorphism. Moreover
Fxx=0,"2—6, 'B(x), Ve A%, Al
Fxy=0,"y—0,87"(y), Vy € Br%an.+:
ﬂ(Azgm) = Bkg2n-

Proof. It is obvious that £ is a *-isomorphism. It is easy to check the first two formulas by a direct
computation. For the third formula, by Proposition .9 and the fact that F * g, = 0, we have

F s (AL + Bi)gan(Af + By)) = 0.
By Proposition 4.8 we have
F % (Af gan) = —F  (Bygon)-
Then
8, 2(Af g20) — 0y ' B(AL g2n) = =6, ' (Brgzn) + 6, 267" (Brgzn)-
So
B(A:g%l) = Bigon.
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Lemma 4.11.
A, RA, =0, for 1 <k <2n.
H,F(R)H; =0, for 1 <i<4n.

Proof. By proposition (3’), R is totally uncappable, so R = F * R. Then by Proposition 9] we
have
(A, RA;)=Fx* (A RA,)=0.

Note that
> HF(R)H; = F(Rp1) =0,
1<i<dn
o)
O
Lemma 4.12.

AT RAT is a multiple of the loop [a1a4n04n—1 - - - az], denote by Ly;
A;nRA;n is a multiple of the loop [asn—1a0a1 « - - a4n—2|, denote by Lo.
Proof. Note that the coefficient of a loop | = [a1a4,2324 - -+ T4n—1a2] in Al_RAf is the same as the

coefficient of [ in R. If it is non-zero, then by Proposition(4’), the coefficient of F~2¥*1(]) in F(R)
is non-zero and the coefficient of F~2%(l) in R is non-zero. Applying Lemma LTIl we have

Hl]:(R)Hl =0= T3 = A4n—1;

aZn—lRa’Zn—l =0= z4 = agn—2;

and for k=1,2,--- ,n,
Hypiz—op F(R)Hany3—2k = 0 = Zop1 = Qant1—2k;

Uyp1—2k B 1 o), =0 = Topyo = aan—2k.

For the rest part, there is only one length 2n — 2 path from as, to as. So
l = [a1a4naan—1---as] = Ly.
That means A} RA] is a multiple of L;. Similarly A, RAZ, is a multiple of Lo O

Definition 4.8. For a loop | = [xox1 -+ Xan—1] and 0 < k < 4n — 1, the point xy, is said to be a
cusp point of the loop 1, if Tp—1 = Tpy1, where x_1 = xon—1, Tan = x9. Otherwise it is said to be a
flat point.

Similar to the proof of Lemma 12, Lemma [AT]] tells that if the coefficient of a loop I =
[zox1 -+ - Z4n—1] in R is non-zero, then the cusp point zx of [ has to be bg;—1 or ag;—1. In this case,
we have xx_1 = Xg41 = a9, when 1 < ¢ < n; Or xx_1 = Tgpy1 = agi—2, when n+1 < 7 < 2n.
Furthermore if [ passes the point ag, then it is unique up to rotation and the adjoint operation x;
If [ does not pass the point ag, then it is determined by its first point and cusp points. So we may
simplify the expression of a loop by its first point and cusp points. To compute the product of two
loops, we also need the middle point x2,. Then the loop is separated into two length 2n paths from
the first point to the middle point. We may label the two paths by the first point, cusp points and
the middle point.
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Definition 4.9. For a loop | = [xox1 - Tan-1], 2k # ao, V 0 < k < 4dn — 1, we assume that
Y1, Y2, -, Yi are the cusp points from x1 to Ton—1 and z1,22,-- - , z; are the cusp points from xony1
t0 Tan—1. Then we use [Toy1y2 - - Yi%an) to express the first length 2n path of 1, (xonz122 - - - 2;T0]
to express the second length 2n path of I and [zoy1ys - - - Yi%an)(Tan 2122 - - - 2;T0] to express the loop
l. Furthermore if xa, is a cusp point, then it could be simplified as [xoy1y2 - - - YiToanz122 - - - 2;%0); if
Tan, 15 a flat point, then it could be simplified as [Toy1ys2 - - Yiz122 -+ 2jTo)-

Definition 4.10. Suppose R € %o, 1 is a solution of Proposition[{.5, i.e. R satisfies the following
propositions,

(1’) R* = R;

(2’) R+ 6, 2gan is a projection;

(8’) R is totally uncappable;

(4°) p(R) = wR, for some w € C satisfying |w| = 1.

Let us define Uy, Py, Qr, Pr, Qu, Ri for 1<k <2n as follows

U, = A;RAZ,

Py = 8, 2(R — 6 ' gon) By

Q =0, ' (R+0,%g20) B

Py ==, ' (Pr);

Qr = —0, ' 871Qy);

Ry = (A + Br)R(A] + By).

The following lemma is the key to solve the generator R in the graph planar algebra %, ;.

Lemma 4.13.
U, = u15b_1'5L1, for some py € C, |u1]| = 1;
Usap = p20p—1.5La, for some po € C, |uo| = 1;
P, =UpUy, for 1 <k <2n;
szégF*Pk*F, for 1 <k <2n;
Upi1 =w 'p(Re + Ui) and Usp—t, = w*p(Rop—k11 + Uzp—i41), for 1 <k <n-—1;
R= El§k§2n Ur + U + Ry.
So R is uniquely determined by p1, po and w.

Proof. For 1 < k < 2n, by definition, we have
RBy, = —8,%(6; 'g2n — R)Bi, + 6, *(R + 6, *) By, = Pi, + Q.
By proposition (2°)(3’), we have R + 51:29271 is a subprojection of go,. Then
gon = (R + 0, °gon) = 8, 'gon — R

is a projection. So . o
0Qk = (R+8,*)Br, — 6, Py = (8, 920 — R)By,

are projections, by Proposition .8l Note that
Ry = (A: + Bk)R(AZ + Bk) = AZRA: + By RBy,
so F' x Ry, = Ry, by Proposition Furthermore by Proposition .10, we have

Fx Ry =6, A RA} — 6, ' B(Af RA}) + 6, ' BeRBy, — 65°8~ (ByRB,).
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Thus
AFRAL = 6,2 A RAT — 6,287 (BLRBy,).

Then
AFRA = —6,'B7Y(BLRBy) = —6, '3 (Pr. + Q) = P + Q.

By Proposition .10 we have
Afgan = 871 (Brgan) = B (=03 P + 0,Qy) = 6, Px — 8, Qi
and &3 Py, —62Qy, are projections. Then
AF(R+ 6, %g2n)AY = (P + Qi) + (66Pr — Qi) = 67 P
By Proposition(@.8) (£I1)) and proposition(1’), we have

6, 2 AL gon Uy
Ur  82P,

AL (R+6,%g20) A, Ap (R+6, % g20) A
AL(R+06,%920) Ay AL (R+6,g2n) AL

Recall that R + 51,_292n is a projection, so Ag(R + 5;2gzn) is a projection. Then the matrix

6, 2 AL gon Uy
U; 6% P,

is a projection. While A g,, and 63 Py are projections, so 6;-°Uy, is a partial isometry from 63 P; to
A, gan- Then
(0 °Ur)* (05 °Uk) = 63 Pis - (8,°Uk) (8, °Ur)* = A gan-

Therefore
UiUy = Py, and U1U; = 6, > A} gon.

Observe that [a104n04n—1 - G2nt202n+102n+2 * - * Gay] 1S & subprojection of A7 ga,. So Ay gan # 0.
Then U; # 0. By Lemma T2 we have

Ur = ud,; *° Ly, for some p3 € C, |p1| = 1;

Symmetrically
Usy, = u25b_1'5L2, for some pug € C, |ua| = 1;

Note that
Bi(x*x F) = (Byx)« F, V x € %, 4,

SO
08Py, * F = (ByR) % F — 6y(Bygon) * F = Bp(R * F) — 04 Bi(gan * F) = ByR = Py, + Q.

Observe that
BN y*F)=p""(y)* F, Vy € Bt%an 4,

SO
5§Pk * = P, + Q.
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By Proposition E.10, we have
0iF % P, = P, — 6,8(Py) = Py + Py.
So _ L
OpF « Py« F =0}(Py+ Pr)« F = Po + Q.+ Pr + Q,
= Af RA} + RBy, = (A} + Br)R(Af + Bi) = Ry,.

Note that p induces an one onto one map from the loops of %, (A + By) to loops of
A1 %on 4 A, for 1<k <n—1.So

p(R(A + Br)) = A1 p(R)AL -
Then by proposition (47), we have

p(R(A] + Br)) = wA, | RAL .
While

R(A} + By) = (Af + By)R(A} + By) + A, R(A{) = Ry, + Uy,
thus
Ups1 = w 'p(Ry + Uy).
Symmetrically we have
Usn—t, = w ' p(Ron—k+1 + Usn—jt1).

Finally

R= Y (Ax+By)R(A+Bi)= > (A, +Af +Br)R(A; + Af + By)
1<k<2n 1<k<2n

= Y A RA} + AfRA; + (A} + BORAf +By)= > Up+ Ui + Ri
1<k<2n 1<k<2n
Given p1, p2 and w, Uy, Py, R, could be obtained inductively. So R is uniquely determined by
Wi, po and w. O

4.3 Solutions

Definition 4.11. Based on Lemma[{.13 for fized p1,p2,w € C, |pui| = |p2] = Jw| = 1, let us
construct the unique possible generator Ry, .. € %on + inductively,

Ui = md, °La;

Uan = pady, P Lo;

P, =UiUy, for 1 <k <2n;

Ry =6}F* Py F, for 1 <k < 2n;

U1 = w p(Ri, + Ug) and Uzp—, = w ' p(Ran—t+1 + Uzn—kt1), for 1 <k <n—1;

Rypow = Zlgkgzn Uk + Uy + Ry

We hope to check proposition(1’)(2)(3)(4") for Ry, u,.. Actually proposition(1’)(2’)(3’) are
satisfied, but not obvious. Proposition(4’) fails, when n > 4. We are going to compute the coefficients

of loops in Ry, ;1,0 If proposition(4’) is satisfied, then their absolute values are determined by the
coeflicients of loops in Ry.
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Lemma 4.14. R, ., s totally uncappable.

Proof. Note that U; is totally uncappable. So

92n U192 = Un.
Then
gonP1gon = P1.

By the exchange relation of the biprojection, we have
9on(F * Py * F)goy, = F % (gon * P % gon) * F = F xpy x F.

Therefore Ry = F % P, x F is totally uncappable. Then U = w~!p(R;) is totally uncappable.
Inductively we have Uy, Ry, are totally uncappable, for £ = 1,2,--- ,n. Symmetrically U;, R; are
totally uncappable, for i = 2n,2n —1,--- ,;n+ 1. S0 Ry 0w = Y 1<p<an Ur + Up + Ry is totally
uncappable. o O

Lemma 4.15. For 1 <k < 2n, Ry does not depend on the parameters i, 2 and w.

Proof. Note that P, = U;U; does not depend on the parameters. So R; = 5§F x P; x F' does not
depend on the parameters. By the second principal of mathematical induction, for k =1,2,--- ,n—1,
assume that R;, for any i < k, does not depend on the parameters. Note that

Py =U, U

= p(Ry + Ug)" p(Ri + Ug)
= p(Ri)"p(Ri) + p(Uk)*p(Uy)

= p(Rp)*p(Ry) + p*(Re—1)"p*(Ri—1) + - + p"(R1)* p"(R1) + p"(U1)* " (U1)F.

Moreover p*(Uy)*p*(Uy) does not depend on the parameters. So Pii1 does not depend on the
parameters. Then Ry = 5§F * Pr11 % F' does not depend on the parameters. For n +1 < k < 2n,
the proof is similar. O

To compute Ry, we may fix the parameters as u; = o = w = 1 first. Now let us compute the
coefficients of loops in R = Ry11.

Definition 4.12. For a loop | € %y, 4, let us define Cr(l) to be the coefficient of | in R = Ri11.
Let us define Cp(l) to be the coefficient of I in P =73} o, Pk

If a loop I’ has a cusp point by;_1, then we may substitute bo; 1 by as;_1 to obtain another loop
[. By Proposition([@9) @I0) and Lemma 14, we have Cr(l’) is determined by Cg(l). Essentially
we only need to compute the coefficients of loops whose points are just a;-s. Their relations are given
by the following lemma.
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Lemma 4.16. For a loop I} € Gony, I} = X0+ bai—1 - Tan){Tap - - xg|, we have
1
Cr(ly) = =07 Cr(lh),

where Iy = [xg - agi—1 -+ Ton)(Tan - - - o] is the loop replacing the given point bo;—1 by agi—1 in lf.
For a loop ly € Af %oy A, 1o = ask—1 -+ @2m—1){a2m—1 - az2k—_1], we have

Crlls) = 52Cp(ls), when the middle point azm—1 is a flat point;
R\ Cp(l2) — Cp(ly), when the middle point agm—1 s a cusp point,

where ly = [agg—1 - bam—1){bam—1 - - a2x—1] is the loop replacing the middle point azm—1 by bam—1
m lg.
Proof. For a loop I € %4,
lll = [330 to $2k71b2i715172k+1 te I2n><172n172n+1 te $4n71$0];
we take [ to be the loop
lh = [x0 - Tap—1G2i— 12k 41 - * - T2n) (T2 T2n 41 - Tdn—1T0]-

Assume that

16 = [b2i71132k+1 e 'I2n+2k><$2n+2k © T4n—1T0 * - 'I2k71b2i71]
and

lo = [agi—1T2k+1 " Tontok) (T2ant2k - - Tan—1T0 -+ - T2k —102i—1]-

Then the coefficient of If) in p~*(R) is

)\'(xo))\/(x%) .
\/X(b%l)/\’(a@nﬂk) Cr(l1);

and the coefficient of Iy in p~*(R) is

\/ e Cal).

N(agi—1)N (T2n+t2k)

By Proposition 9] the linear space spanned by lg, [{, is invariant under the coproduct of F' on the
left side. By Lemma .14 we have

F+(p 5 (R)) = p"(R).

\/ )\/(xo))\’(xgn) CR(lll)lé I \/)\/()\’(.%'O)A/(xzn) CR(ll)lo

N (b2i—1) N (Ton+2k) a2;—1) N (T2n+t2k)

is invariant under the coproduct of F' on the left side. By Proposition E.10, we have

\/ )\’(.’L'O))\/(=T2n) )CR(lll) n 5b\/A/()\’($O))\/(fE2n) CR(ll) = 0.

So

N (b2i—1) N (T2n+2k a2;—1) N (Tont2k)
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Thus .
Cr(l}) = —07 Cr(l1).

For a loop I € Ag%szrAg, lo = [agk—1 - a2m—1)(a2m—1 - azg—1], we have
tr(RIL3) _ tr(Ril3) _ 64tr((F x Py x F)I3)
trloly) — tr(laly) — ° tr(l2l3)

Cr(l) =
Note that
tr((F * Py x F)I5) =tr(Pp(F x5« F))
by a diagram isotopy. So

ot tr(Pr(Fxl3+F))  ytr(Pe(F xla* F)*)
tr(lo13) =0 tr(lol3)

Cr(l2) =

If as,,_1 is a flat point, then ls * F' = I3, by a direct computation. By Proposition [£10, we have
Fxly =6, %l — 6, B(l2).
So
5 QtT(Pklz)

Cnle) = 0% 5

= 62Cp(lo).
If agyy—1 is a cusp point, then
lox F =6, %l — 6, ',
by Proposition 10 and an 180° rotation, where I = [agk—1 - - - b2m—1){b2m—1 - - - a2k—1] is the loop
replacing the middle point as,;,—1 by bopm—1 in lo. Again by Proposition [£.10, we have
Fxlyx F =03, 6, 3B(l2) — 6,15 + 8, 2B(1h).
50 (B3 s tr(PuY)
Cr(la) = 836, —omc2 = 518, ° — 2.
rll2) =9, tr(lal3) tr(lal3)

Observe that
tr(loly) = dptr(1515°).
Therefore
Cr(l2) = Cp(l2) — Cp(ly).
O

Note that P, = U} Uy, to compute the coefficient of a loop in Pj we only need the coeflicients of
loops in Uy. They are determined by the coefficients of loops in Rg_1.

Definition 4.13. For 1 <k <mn, let us define [azk—1,y) to be the set of all length 2n pathes from
ask—1 to y starting with ask—1azi—2. For a path n = [z0z1 - zx—12k), let us define n* to be the path
<Z]€7 Zk—1,""" %1, ZO]'

Lemma 4.17. For a loop mn; € AzggnﬂLAZ whose first point is ask—1, suppose its middle point
is y. Then we have

Crpimns) = > Cr(mn*)Cr(m3).

ne€lazk—1y)
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Proof. Note that a length 2n path n € [ag;x—1y) starts with asg—1a2k—2, 50 Cr(n*n2) is the coefficient
of n*ny in Uy, and Cr(mn*) is the coefficient of mn* in U}. Then the statement follows from the
fact Pk:U]:Uk O

When the initial condition p; = po = w =1 is fixed, given a loop
U= [ak, @2tk @2ty * * * Q2nthyy Oy |, for 1<y ko, oo hoe < 20— 1,

we may compute Cg(l) by repeating Lemma(@T6) (4.I7). A significant fact is that the computation
only depends on ki, ka, - - - , kot, in other words, Cr(l) is independent of n. We list all the coefficients
for k1 < 7 in the Appendix. This is enough to rule out the 4;, fish by comparing the coefficients
Cr(lasagasagas]) and Cr(laraiiaraiiar]). Tt is possible to rule out finitely many Bisch-Haagerup
fish graphs by computing more coefficients. To rule out the n;, Bisch-Haagerup fish graph, for
all n > 4, we need formulas for the coefficients of two families of loops which do not match the
proposition(4’). Then only the first three Bisch-Haagerup fish graphs are the principal graphs of
subfactors.

Lemma 4.18.
Cr([azk—1a2nt2k—1a2k-1]) = 0, >,V 1 < k < n.

Proof. For 1 < k < n, by Lemma [£.16, we have

Cr([a2k—102n426—102k—1]) = Cp([agk—1a2n+42k-1a2k—1]) — Cp([a2k—1b2nt2k—102k—1]).
By Lemma .17 we have
Cp(lazk—1a2n+2k—1G2K-1])
= Cr([agk—1 - @an—1a0 - - - a2p—102k—2])Cr([a2k—102%—2 - - - Q0Qan—1 - - - G2k)),

because
[&2k7 142n4-2k—1 a2k71] = [a2k71a2n+2k7 1 > <a2n+2k7 142k — 1] )

and A2k —102k—2 - A0A4n—1 " A2n+2k—1 is the unique path in [CLQk,l, a2n+2k71>- Note that

3
[@2k71 st l4n—100 0J2k71azk72] = [G2k7102k72 crapQ4n—1 azk],

and R = R*, so

OR([CL2k71 crrO4n—100 * 'azk71a2k72]) = CR([a2k71a2k72 crrapl4n—1 7 '&2k])-

Observe that
plaraoasn—1-- - az)

_ \/ N (a1)N (azn+1)

A2k—102k—2 * * - A1G004n—1 * * * A2k
N(agg—1)N (a2n+2k—1) [ " ]

= [agk—1a2k—2 - - - A1G0A4n—1 - - - Q2]

and p(R) = R, (we assumed that g1 = p2 = w =1,) so

CR([a2k71a2k72 crrapl4n—1 - 'G2k]) = CR([alaOCMnfl T az]) = 5;1'5-
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Then
Cp([azk—1a2n+26—102k-1]) = 6, °.

On the other hand,
[agk—1b2nt2k—1a2k—1] = [agk—1b2n+2k—1) (b2nt2k—1a2k—1],
but there is no path in [azg—1, bantor—1], SO
Cp([agk—1b2nt2r—102k-1]) = 0.

Then
Cr([azk—1a2n426—1a26-1]) = 6y °.

Lemma 4.19.
Cr(lazk—1a2n 11020 —2k+302n+102k1]) = 0, >,V 2 < k < n;

5.5

Cr([a2k—1G2n1 10201020 12k—302k—1]) = 0, 77,V 3 < k < n;
5.5

Cr([azk—102n42k—302n—102n102k—1]) = 6, *°,V 3 < k < n.

Proof. For 2 < k < n, by Lemma [£16, we have
Cp([a2k—1a2n+102n—2k+302n+102k—1]) = Cp([G2k—102n+102n—2k+3) (AQ2n—2k+302n+102k—1))

= Cr([azk-102n1102n—2k+3) (@2n—2k+30102k1]) Cr([a2k 10102028 +3) (G20 2K+ 3020+ 1025-1])
+Cr(lagk—102n 11020 -2k+3) (a2n—2k-+3D102k 1)) CR([a2k 1010202k +3) (@20 —2k+ 3020+ 102k -1])

By Lemma .16 we have

Cr([azk—1b1a2n—2k+3)(a2n—2k+302n+102k—1] = =08 "Cr([a2k—1a1a2n—2k+3) (A2 —2k+3020+102k—1)-
So the formula is simplified as
CP([a2k71a2n+1a2n72k+3a2n+1a2k71])

= 6; Cr([azk—102n+1020—2k+3) (a2n—264+301a2k—1]) Cr([a26—101 20 —2k43) (@2n— 2K+ 30204+ 1a2k-1]),
where 62 is given by 1+ (—d9-°)? = §2.
We see that the cusp point of a path in [agox—1a2,—2k+3) could be ay or by, but we may ignore
the path with the cusp point b; by adding a factor &7.
While
Cr([aok—1a102n 11028 -1])

_ N(a1)N (azni1) _ s—05¢-3 _ ¢35
B \/)"(azk—l))\’(a2n—2k+3)CR([GIGQ”Halb =0, U0, =0,

So
Cp([azk—1a2n+1a20—2k+302n+1a25-1]) = 6 (8, >7)? = 6, °.
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On the other hand, there is no path in [agr—1b2n—2k+3), SO

Cp(lazk—1a2n41b2n 2130201102k -1]) = 0.

Then
Cr([a2k—102n4102n—2k4302n102k—1]) = 51:5-

For the formula Cg([a2k—1a2n+102n—102n+2k—302k—1]), when k = 3, we have
Cr([aza2ny102n—102n4103]) = 517_5-
When k > 3, by Lemma [£16], we have
Cp([agk—1a2n+102n—102n+2k—302k—1])
= OP([a2k71a2n+1a2n71a2n+2k75><a2n+2k75a2n+2k73a2k71])
= 02CR([agk—102n+1020—12n+2k—5) (Q2n+2k—5 2% —3026—1])
X Cr([a2k—102k—302n+2k—5) (@2n+2k—502n+2k—302k—1])

where the factor §7 comes from the choice the cusp point as,_3. While

Cr ( [a2k71 A2n+102n—102n4-2k—302k— 1])

= Cr([a2k—102n+102n—102n+2k—5) (G2n42k—502k—302%—1])

_ \/X(azkg)/\’(aznwkﬂ

Cr(la2k—302n+102n—102n 42k —502k—3
N(agk—1)N (a2n+2k—5) ( nifan nr )

. 5;0'503([(13@2”4_1@2”_1a2n+1a3]) = 6;5'5 when k = 3;
Cr([a2k—302n+1020—102n+2k—502k—3)) when k > 4.

Cr(la2k—102k—302n2K—302k—1])

_ \/)\’ (a%_3))\/ (a2n+2k—3)

N(agk—1)N (a2nt2k—5)

Cr([azk—3a2n+26—3a26-3]) = &, 16, % = 6, .

Note that the middle point agp42x—5 is a flat point, by Lemma [4.16] we have
2
OR([a2k71a2n+1a2nf1a2n+2k73a2k71]) = 51)CP([a2k71a2n+1a2nf1a2n+2k73a2k71])-
—5.5
Then Cr([agk—1a2n+102n—102n42k—302k—1]) = 0, 7 when k = 3;
OR([CLQkfla2n+1a2n710J2n+2k73a2k71]) = OR([a2k73a2n+1a2n71a2n+2k75a2k73]) when k > 4.

Therefore we have Cr([agk—102n+102n—102n+2k—302k—1]) = 5;5'5 inductively, for 3 < k < n.
Take the adjoint, we have Cr([a2k—102n+2k—302n—102n+102k—1]) = 5{5'5.

Lemma 4.20.

-8
Cr([az2r—102n4102n 102012k —502n—102n102k—1]) = =0, *,V 3 <k <n

35



Proof. For 3 < k <n, by Lemma [£17 we have
OP([a2k71a2n+1a2n71a2n+2k75a2n71a2n+1a2k71])

= OP([a2k71a2n+1a2n71a2n+2k75><a2n+2k75a2nf1a2n+1a2k71])
= 51301%([@2]671a2n+1a2n71a2n+2k75><a2n+2k75a2k73a2k71])
x Cr([agk—102k—302n+2k—5) (0201 2k—502n—102n+102K-1]),
where 67 is given by the choice of agg_s.
On the other hand

CP ( [a2k—1 A2n+102n—1 b2n+2k—5a2n— 102n+1 a2k—1])

= OP([a2k71a2n+1a2n71b2n+2k75><b2n+2k75a2n71a2n+1a2k71])
= 8¢ Cr([agk—1a2n+1020—1b2nt2k—5) (b2n+2k—5a2%—3026—1])
X Cr(lagk—102k—3b2n+2k—5) (bant2k—502n—102n+102k—-1]),

where 67 is given by the choice of agg_s3.
Note that

CR([a2k—la2n+1a2n—lb2n+2k—5a2k—3a2k—1])
= 51;101%([a2k71a2n+1a2n71a2n+2k75a2k73a2k71]);
OR([a2k71a2k73b2n+2k75a2n71a2n+1a2k71])
= 6, 'Cr([agk—1a2k—302n+2k—502n—102n+102-1])-
By Lemma [£.16] we have
CR([(l%—l(I2n+1(I2n—1a2n+2k—5a2n—1a2n+1fl2k—1])
= OP([a2k71a2n+1a2n71a2n+2k75a2n71a2n+1a2k71])
—CP([azk—l (I2n+1Gzn—lbzn+2k—5azn—1a2n+1azk—1])
= 6;15501%([@2]@71a2n+1a2n71a2n+2k75><a2n+2k75a2k73a2k71])
XCR([a2k71a2k73a2n+2k75><a2n+2k75a2n71a2n+1a2k71])-
where —d, is given by 1 — ((5;1)2 = —0p.
We see that if the middle point is a cusp point, and both ag,t2r—5 and ba,42r—5 contribute to

the middle point of a loop in the multiplication, then we may ignore the loop with middle point
bontokr—s5 by adding a factor —dp.

‘While
Cr([aok—1G2k—302n {2k 502010204102k —1]
N (agk—3)N (aznt2k—7)
Cr([aok—302n+2k—5020n—102n+102k—1
N (a2k—1)N (a2n42k—5) ( nr " mr )
B 5b_0'5CR([a3a2n+1a2n71a2n+1a3]) = 517_5'5 when k = 3;
Cr([a2k—3a2n42k—502n—1a2n41a2k—1]) = & >°  when k > 4.
So
Cr([a2k—1020+1a2n—102n+2k—502n—102n41025—1]) = —0p05 (8, >F)2 = =6, %, V k > 3.
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Lemma 4.21. For 5 < k <n, we assume that
Nkl = [A2k—102n42k—502n+2k—9);
Nk2 = [a2k 1a2n4102n— 1a2n+2k77a2n+2k79>;
k1 = [a2k 102k —502n+2k— 9>
[

77k2 = |A2k—10A2k—-302n 41021 —102n4-2k— 9>
Then

Crlmiiy)  Crlmadiia)| _ | 6,7 6,°°
Cr(mr2miy)  Cr(mk2mls) 6, %% —¢,?
Proof.
Cr(Mk17x1) = Cr([a2k—102n+2k—502k—502k—1])
= 6, *Cr([a2k—502n+2k—502¢5]) = 6, °, by Lemma LIS}

Cr(Mk1Mre) = Cr([a2k—102n+2k—502n—102n+102k—302k—1])

(n
= 0, 'Cr([a2k—3a2n+2k—502n—12n41a26—3]) = &, ©°, by Lemma I T
OR(UkQﬁkl) = OR([azk—la2n+1a2n—1a2n+2k—7a2k—5a2k—1])

Cr(

—6.5
6, ' Cr([azk—5a2n+1a2n—102n126—7a26—5]) = 0, ©°, by Lemma ELI%

Cr(Mk2Mre) = Cr([a2k—102n4102n—102pn 42k 7027 — 10274102k —302k—1])

9
Cr([a2k—302n4+102n—102n4+2k—702n—102n+102k—3]) = =0, °, by Lemma [£.20

Lemma 4.22. For 5 <k <mn, we assume that
Nk3 = [a2kfla2n+1a2n71a2n+1a2n71a2n+2k79>7'
Nka = [azk—la2n+3(12n—1(l2n+2k—9>;

Nks = [sz—l(I2n+1a2n—3(l2n+2k—9>-

Then

k 50+5 | 5l+6 | 51+7 | 5/+8| 5+9
CR(T]/CITI;;3) 0 0 5;8 _5;9 5;8
Cr(manis) | —0, 0% | 6,°° | =6, 10 | g, 11> | o, 11°
Cr(nginty) | 0, °° 0 5, 00 5,5 0
CRr(Mk2 77;24) 0 0 5b—8 _5b—9 5b—8
CR(77M77;§5) 0 6;5'5 0 5b—6.5 6;6'5
Cr(manis) | 6, ° 0 0 5% 57
CR(nk377;;3) 51;_13 _6;12 _5b—12 5b—13 _5b—14
Cr(1k3M5a) 0 0 0 5,95 | =5, 105
OR(T]kSTI;%) 5b—9~5 0 0 0 _5b—10.5
Crlmeanpy) | —0,° 5,7 —5, 0 5
OR(nk477]:5) 0 0 0 0 5b—8
Cr(Mesnys) 0 -5, % 5,7 5,0 0
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Proof. For 5 < k <n, i =3,4,5, we assume that

ari| _ |Cr(mang;)
Bri| | Cr(mani)|
Then
laki _ CR(WWZZ-)] _ 52 |CrUmamiy) - Cr(maiz) 5§CR(771€1777$1')]
Bri Cr(nk2m;;) Cr(mamiy)  Cr(m2miy) | |0 Cr(Tk2mi;)

Furthermore we have
Cr(k1mi:) = Cr(p™(k—-2)11(—2)i)) = CR{I(k—2)17M5—2)1) = Q(k—2)i> when k > 7.

Cr(ikania) = Cr(p™ " (Te—1)2M(k—1)1)) = CR(Tkh=1)2M{5—1y1) = Br—1)i» When k > 6.

So
(7% _ 55 517_5 5;6'5 5%@(;6,2)1- _ 5b_1 5%'5 Qk—2)i '
Bri 6, %% =6, [08B-1yi 6 2% =6, | Bk—1yi
Substituting Bi; by oy, we have

Aet1yi + 0 i — 6 o —1)i — Qgr—2); = 0.
While 2% 4, '2? — 6, 'z — 1 = 0 has three roots 1, —gs, —g; '. So

Qgi =11 + TQi(_Qb)k + Tsi(—Qb)_k,

for some constant r1;,72;,73;. Then the periodicity is 5.
Based on the results listed in the Appendix, the initial condition is

Q33 Cr(M51m53) —d, "
ous| = |Cr(enis) | = | 6° |
Bis| |Crlisamis)|  |0,"°
Q34 CR(ﬁ517734) 51:6 °
ag| = |Cr(ermsg) | = | 0 |;
| Baa | | Cr(i152154) | i 5, "
Qa3p CR(ﬁ5177§5) 51:6 °
ous | = | Crliicinis) | = |6, %°
Bas|  |Cr(lsamis)| =0,

For example,

ass = Cr(M51153) = Cr([agasa2n+102n—102n+102n—102n4109)

= 8, 'Or([asazns1a2n—1a2n+1020—1a2n1105])) = =0, °.
The others are similar.
Then |“*| is obtained inductively. The result is listed in the following table
ki
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k| 5145 | 51+6| 51+7 | 51+8|51+9
g3 0 0 5% | =67 6°
Bra _5;10.5 5b—9.5 —6;10'5 5;11.5 5;11.5
aps | 0,00 0 5, %% 5, 5% 0
Brea 0 0 6,8 5,0 6,°
s 0 5,07 0 5, 5% | 5,50
Bis | 0" 0 0 5,° | =4,°

For 5 <k <mn, 3<1i,j <5, by Lemma(@I8) [@I7), we have
Cr(mkimi;) = —06(65 Cr(Mkitlin )Cr (Trani;) + 05 Cr (ki) Cr (Tk2ni;))
+5§OR(77ki<a2n+2k79a2n+2k77a2k73a2k71])OR([a2k71a2k73a2n+2k77a2n+2k79>77;j)
= =053 Cr(mkiTier ) Cr(Tk1175) + 05 Cr (MkiTia ) Cr(Tk21i;))
+84 Cr(M(k+1)i Mk +1)1)CR (ck41)170057)-

= =6 (k=20 (k—2)j — O Br—1)iB(k—1)j + O AUh—1)iO(h—1);-

Then

k 50+5 | 51+6 | 5147 | 5l+8 | 51+9
Cr(Mk3ngs) 51:13 _5;12 _5;12 5;13 _5;14
Cr(Mk3nis) 0 0 0 5;9.5 _5;10.5
Cr(Mk3nyis) 5;9'5 0 0 0 _5;10.5
Cr(nkangy) | —6,° 5,7 5,8 0 0
Cr(Mrans) 0 0 0 0 5,
Cr(Mksm}is) 0 -5, 8 5, 5,8 0

Lemma 4.23.

CR(a2n71a4n77a2n71a2n+1a2n71a2n+la2nf1a2n+1a2n71)
— 5;13'5 when n = 200 + §;
— 5;13'5 when n = 200 + 13;
— 5;11'5 when n = 20 + 18; -
- 5;11'5 when n = 200 4 23.

Proof. When 7 < k < n, we assume that
&kl = [A2k—102n42k—702n42k—13);
Ero = [A2k—102n4102n—102n42k—902n42k—13)}
&k3 = [A2k—102n4102n—102n4+102n—102n42k—1102n+2k—13)}
Eka = [A2k—102n1302n—102n42k—1102n+2k—13);
§k5 [a2k71a2n+1a2n73a2n+2k711a2n+2k713>;
&k = [A2k—102k—702n2k—13);
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§k2 = [A2k—102k— 5020110201020 +2k—13);

§k3 [a2k—102k—302n4+102n—102n+102n—102n+2k—13);

Eka = A2k 102k 302013020 10201 2k—13);

Eks = [a2k—102k—302n 110230201 2K—13)-

By Lemma(d.21]) ([£22]), we may compute Ty, for k > 7, where

Cr(€mé) Cr(éni) Cr(énéls) Cr(éméiy) Cr(€més)
Cr(&k2851)  Cr(Sr2i) CR(fI&fk ) CR(fI&fk ) CR(szfk )
Ty = | Cr(&ks&ia)  Cr(&rsia) CR(fkafk ) CR(fkafk ) CR(fkafk )
Cr(€ra&iy) Cr(6nais) Cr(€éis) Cr(€raéiy) Cr(Enaiis)
Cr(ks&hy) Cr(&sély) Cr(Skséls) Cr(&séls) Cr(Sksérs)

For 1 <i,5 <2, we have

CR(fking) = 5!;_10R(77(k—1)iﬁ2<k—1)j) VE=>T.

For 1 <i<5,3<j5 <5, we have

Cr(&ridlj) = 8y OR(Nk—1)iTl(—1);)  TE =T

For 3 <4 < 5,5 =2, we have

Cr(&ridiy) = 8y ' Cr(N(k—2)iTl(—2);) Tk =T

For 3 <i<5,5 =1, we have

Cr(&iliy) = 8y ' Cr(N(k—3)iTl(_3);) Yk > 8.

Based on the results listed in the Appendix, we have

Cr(&sés) =06, % Cr(€nh) =0, Cr(&sés) =6, "

For example, ~
OR(§73§;1) = CR([G13azn+1azn—1G2n+1azn—1a2n+3a7a13])

= 6, "°Cr(larazn+1a2n 102041020 102,13]) = 6, °.

The others are similar.
Then
5,° 67 0 0 4%
5b—7.5 _5b—10 6b—10.5 0 0
Te= |6, —6,"% -6, 0 0 |, whenk=51+T;

b
=00 & -5 0 0 |, when k =50 +8;
5% 0 0 -57 0
0 0 0 0 4



51)—6 5{)—7.5 _51)—10 5{)—7.5 5{)—7.5

5b—7.5 _6b—10 5b—12.5 _6b—10 5b—9
=1 0 =g g 00 0 |, when k=50+9;
0 5,0 6105 0 0
5% 0 0 0 —5°
6;6 5;7.5 5;9 0 6;7.5
557.5 _51:10 51:12.5 51:9 _5;10
=167 &2 1 g5 571 when k =50+ 10;
5b—7.5 _5b—10 _5b—11.5 0 5b—9
0 60 =gt g 0
L 0 5, 0° 0
5b—7.5 _5b—10 _5b—11.5 0 6b—9
= |-, g1 M 0  6,'%|, when k =50+ 11.
5;7.5 5;9 0 _559 0
5b—7.5 _5b—10 5;0.5 0 0

Take &, to be [agk—102n+4102n—102n+102n—102n+102n—102n+2k—13), then

Cr(&k1&;) 5§CR(§1€1§7§)
Cr(&k28r) 3y Cr(8r28s)
Cr(€rs&i) | = 05Tk |0,°Cr(€us&i) | VB> T
Cr(&ka&y) 3y Cr(8raty)
Cr(&ks8k) 05 Cr(Ersr)

Furthermore ~
CR(ﬁkle) = CR(g(k73)1§Z—3)u when k > 10;

Cr(€ra€r) = Cr(Em—2)265_o), when k > 9;
Cr(&sér) = Cr(Eg—1)3&k 1), when k > 8;
Cr(€ra&s) = Cr(Ek—1)4€5—1), when k > 8;

Cr(€rs&r) = Cr(Ek—1)5&5_1), when k > 8.

So we may compute it inductively. Based on Lemma(@21I))(£22), by a direct computation, the
initial condition is

Cr(én&) Cr(&a&) Cr(én&)]  [6,*° 0 —g,'2P
Cr(€n&) Cr(Es26d) P P
CR(§:73§?) = 5, 4o

Cr(&ras) —5,

Cr(&rs&%) =6, 1
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For example,
CR(fglf;) = CR([al’?alla2n+5a2n71a2n+1a2n71a2n+1a2n71a2n+1a17])

= 61,_0.501%([alla2n+5a2n71a2n+1a2n71a2n+1a2n71a2n+1a11])
=6, " (05 Cr([a11a2n1505011])Cr([a11a5020 410201020 +102n—12n4+1011])
+05 Cr([a1102n 150203020 +109011])CR([01109a20 41020 302011020~ 1020410201020 4 1011])
—0405 Cr([a1102n 450201020 +107011])CR([01107020 110201020 41020 102011025 1020 11011])
_5b5éOR([a11a2n+5a2n71a2n+3a9a11])CR([a11a9a2n+3a2n71a2n+1a2n71a2n+1a2n71a2n+1a11])
_5b5§OR([alla2n+5a2n71a2n+1a2n71a2n+1a9a11])
Cr([a11a902n1102n—1020+102n 1020 +102n 102010201020 +1011]))
=8, “2(670, 228,28, 12 (=0, %) + 836, " Cr(n51035)8, ** Cr(nssnss)
_555351:1.551:7.551:151:11 _ 5b5§51;0.50R(775177;4)51:0.5013(775477;3)
—05650, " Cr(1151m53)8, *°Cr(153m33))
_ 6;0'5(6?5;2'55;36;1'5(—5;8) 40— 5b5215b—1.55b—5.55b—16b—11 +0+0) = _6b—12.5_

The others are similar.
Then we have

k 7 8 9 10 11 12 13
CR(fkle) 0 5;13 5 5;12 5 5;12,5 6[;12 5 5;12 5 5;13 5
OR(ngé.;) 6[;13 _61:15 6[;16 5;12 6[;15 0 5;16
OR(&I@S&Z) 6[;15 5 5;14 5 5;17 5 5;16 5 6[;16 5 6[;15 5 6[;15 5
OR(€k4§Z) _61:14 5;15 6[;12 _5;14 6[;15 5;15 _5;14
CR (5]@5 2) 6[;13 5;13 _5;13 5;14 _5;14 5;12 5;12

14 15 16 17 18 19 20 21
0 §b—12 5 0 6b—12.5 51;_11 5 0 0 0
6b—13 +6b—16 5b—13 _6b—14 6b—14 5b—13 + 5b—16 6b—14 0
_61)—18 5 61)—15 5 5b—14.5 _5b—14 5 51)—17.5 _61)—15.5 _ 51)—18.5 61)—15 5 517—13.5
61)—14 _5b—14 61)—13 61)—13 _61)—13 61)—14 0 0
—13 —15 —14 —14 —14 —15 —12
5, B 4, 5 0 5 5 s 5 0
22 23 24 25 26 27 28 29
0 _(5;11.5 6;125 0 5;12 5 0 5;13 5 6;125
5;12 5;14 _5;15 5;14 5;13 6;13 6;15 6;16
—14. —15. — —16. —14 — — —17
_6b1 5 6b155 6b165 _6b165 6b1 5 6b155 §b14r5 6b1 5
0 0 6b—12 0 _5b—14 _5b—14 (Sb_lo 6b—12
0 0 0 5b—12 _5b—14 6b—13 5b—13 _5b—13
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Note that the periodicity is 20. So

OR(a2n71a4n77a2n71a2n+1a2n71a2n+1a2n71a2n+1a2n71) = CR(&A{;)

— (5;13'5 when n = 201 + §;
— (5;13'5 when n = 200 + 13;
— (5;11'5 when n = 200 + 18;
— (5;11'5 when n = 200 + 23.
O

Theorem 4.24. When n > 4, the ny, Bisch-Haagerup fish graph is not the principal graph of a
subfactor.

Proof. By Lemma LT3l to compute the coefficients Cr of loops in A;:g2n)+A;:7 we may fix the
initial condition as p; = ps = w = 1.

When n = 4, from the Appendix, we have Cr([asagasagas]) = 5{5 and Cgr([araiiaraiiar]) = 0.
By the symmetry of the dual principal graph, we may substitute 2k — 1 by 4n — 2k + 1. Then

Cr(lagasagasag]) = 0. By Lemma [TE these coefficients are independent of the parameters
pi, 2, w. If Ry 0 is a solution of Proposition BT, then
N (as)

) Cr([asagasagas]) = w?*Cr(Jagasagasag)).

So

|5lle'R([a5a9a5a9a5])| = |OR([CL96L5CL9(Z5CL9])|.
It is a contradiction. That means the 4, Bisch-Haagerup fish graph is not the principal graph of a
subfactor.

By the symmetry of the dual principal graph, we may substitute 2k — 1 by 4n — 2k + 1. Then
Cr([agasagasag]) = 0. So Cr([asagasagas]) = 0, by proposition(4’). It is a contradiction. That
means the 4;;, Bisch-Haagerup fish graph is not the principal graph of a subfactor.

When n > 5, by Lemma [£.20, we have Cg([asazn+1a2n—102n+102n—102n+105]) = —(5;8. By
the symmetry of the dual principal graph, we have Cr([a4n—502n—102n+1020n—102n+102n—104n—5]) =
—8, 8. If Ry, upw is a solution of Proposition ], then by Lemma ALI5, we have

|CR ( [a2n—1 A4n—502n—102n+102n—102n+1 a2n—1]) |

= |51;1OR([a4n75a2n71a2n+1a2n71a2n+1a2n71a4n75])| = 51;9-

On the other hand, by Lemma [.22]
|OR(77n177:;3)| = |OR([a2n71a4n75a2n71a2n+1a2n71a2n+1a2n71])| = 51,_9

implies 5|n — 3.
When n > 8 and 5|n — 3, from the Appendix, we have

1
Cr([a702n+102n—102n 41020 — 102741027 —1Q2n+107]) = 0, .
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By the symmetry of the dual principal graph, we have

—11
Cr([@4n—7021—102141021—1027+102n—102n+102n—1Can—7]) = 0, -
So
—12.5
|Cr([a2n—104n—702p 102741025 102141020 —102n+102n—1])| = &, 7.
On the other hand, by Lemma .23 we have

|OR([a2n71a4n77a2n71a2n+1a2n71a2n+1a2n71a2n+1a2n71])|

is (5;11'5 or 517_13'5. It is a contradiction.
Therefore the ny, Bisch-Haagerup fish graph is not the principal graph of a subfactor whenever
n > 4. O

4.4 Uniqueness

Theorem 4.25. There is only one subfactor planar algebra whose principal graph is the ngy, Bisch-
Haagerup fish graph, forn =1,2,3.

It is easy to generalize the Jellyfish technic [BMPS12] for Fuss-Catalan tangles, or tangles labeled
by the biprojection. We are going to check the Fuss-Catalan Jellyfish relations for the generators S
and R. Before that let us prove two Lemmas which tell the Fuss-Catalan Jellyfish relations.

Lemma 4.26. If R is a solution of Proposition[{-3]in a subfactor planar algebra with a biprojection,
then
P = §?Pe,, P,

where P = 5;19211 — R.

Proof. Note that P = 5;19% —Ris a projection. It is easy to check that §2Pe,, P is a subprojection
of P. Moreover they have the same trace. So P = §%Pe,,, P. O

Remark . This is Wenzl’s formula [Wen87] [Liub] for the minimal projection P.

Lemma 4.27. If S is a solution of Proposition[{.3in a subfactor planar algebra with a biprojection,
then

Q = 00aQp2nQ,
where Q = §(fan + 5).

Proof. Note that Q = %(fzn—FS) is a projection. It is easy to check that §0,Qp2,Q is a subprojection
of Q). Moreover they have the same trace. So Q = §6,Qp2,Q. O

Proof of Theorem[{.25] We have known three examples whose principal graphs are the first three
Bisch-Haagerup fish graphs. We only need to prove the uniqueness.
For n = 1,2, 3, suppose Ry, ,. is a solution of Proposition 5l Note that the loop

[&2n716l2n+1 i 'a2n71a2n+1]

n

is rotation invariant. Moreover its coefficient in R is non-zero. So w = 1.
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If (S, R,wp) is a solution of Proposition(d3))([@3]), then (=S5, R, —wp) is also a solution. Up to
this isomorphism, we may assume wg = 1.

Suppose A is a subfactor planar algebra whose principal graph is the ny, Bisch-Haagerup fish
graph, and its generators R, S satisfy Proposition(d.3))(£5), such that wg = 1. Let us consider the
linear subspaces Vi of %ap+1 + generated by annular Fuss-Catalan tangles acting on R. We claim
that the space V. satisfies Fuss-Catalan Jellyfish relations. Therefore the subfactor planar algebra
is unique.

Obviously Vi is * closed and rotation invariant. The multiplication on Vi is implied by the
Lemma Now let us check the Fuss-Catalan Jellyfish relations.

When we add one string in an unshaded region, for example, we add one string on the right of
R, where R € V_ is the diagram adding one string on the right of R. Then by Lemma [A20 we
have 6;19271 — R € Jopqo,—, where S5y, 1o _ is the two sided ideal of %y, — generated by the Jones
projection. That implies the Jellyfish relation of R while adding one string on the right. Other
Jellyfish relations are similar.

When we add one string in a shaded region, for example, we add one string on the right of S,
where S € V, is the diagram adding one string on the right of S. Then by Lemma FL27] and the
fact that pop, € Hopy2 4+, where Fop 1o 1 is the two sided ideal of %o, 1 generated by the Jones
projection, we have 3(fan +S5) € Fan42 4. That implies the Jellyfish relation of S while adding one
string on the right. Other Jellyfish relations are similar. O

It is easy to check that the possible solution (R, S), for 1 = p2 = £1,wg = 1, in the graph planar
algebra does satisfy Proposition(@3) [@5]). The skein theoretic construction of the three subfactor
planar algebras corresponding to the first three Bisch-Haagerup fish graphs could be realized by the
Fuss-Catalan Jellyfish relations of the generating vector space Vi mentioned above. We leave the
details to the reader.

5 Composed inclusions of two A, subfactors

In this section, we will consider composed inclusions A" C P € M of two A, subfactors. Let id
be the trivial (P,P) bimodule, and p1, p2 be the non trivial (P, P) bimodules arise from N C P,
P C M respectively. Then p? = p; ®id, for i = 1,2. If it is a free composed inclusion, i.e., there is no
relation between p; and po, then its planar algebra is F'C(0p, dp); Otherwise take w to be a shortest
word of p1, pa which contains id. If w = (p1p2)"p1, and n is even, then by Frobenius reciprocity, we
have

w3

dim(hom((p1p2) % p1, (p1p2) %)) = ¢ > 1.
So
dim(hom((p1p2) ? p7, (p1p2)#)) = dim(hom((p1p2) % p1, (p1p2) % p1)) > ¢ + 1.

Note that p? = p @ id, we have

dim(hom((p1p2)?, (p1p2) ) > L.

So (p1p2)™ contains id, which contradicts to the assumption that w is shortest. It is similar for the
other cases. Without loss of generality, we have w = (p1p2)™, for some n > 1.

Considering the planar algebra % of N' C M as an annular Fuss-Catalan module, then it contains
a lowest weight vector T' € %, + which induces a morphism from (p1p2)” to id. So T is totally
uncappable.
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Remark . There is another proof without using bimodules. The lowest weight vector T € AB,, 4 is
totally uncappable, for n > 2, see [Liud]. For the case n = 1, to show it is totally uncappable, we
need the fact that the biprojection cutdown induces an planar algebra isomorphism [B.J].

Definition 5.1. Let us define Q,, for n > 1, to be the (N, P, M) coloured graph with parameter

(O, 0p) as

where the black vertices are N', M coloured, and the white vertices are P coloured, and the number
of white vertices is 2n.

Lemma 5.1. Suppose B is a composition of two Ay Temperley-Lieb planar algebras. Then either
P is Fuss-Catalan, or its refined principal graph is Q.,, for some n > 1.

Proof. If # is not Fuss-Catalan, then it contains a lowest weight vector T' € 2,, ; which is totally
uncappable, for some n > 1. So the refined principal graph of 2 is the same as that of FC(dp,dp),
until the vertex corresponding to f, splits, where f,, the minimal projection of FC(dp,dp)n,+ with
middle pattern abba - - - abba(ab).

By the embedding theorem, 7" is embedded in the graph planar algebra. Similar to the proof
of Lemma [4.13] the loop passing the vertex, corresponding to the middle pattern aaa, has non-zero
coefficient in S. Similar to the proof of Lemma [.12] it has to be a length 2n flat loop, a loop whose
vertices are all flat. Via computing the trace, there is a unique way to complete the refined principal

-
\

n

aqa

O

For n = 1,2, 3, it is easy to check that €2,, is the refined principal graph of the reduced subfactor
from the vertex as, corresponding to the middle pattern baab, in the (refined) dual principal graph
of the nyj, fish factor.

Comparing this refine principal graph with the one obtained in Lemma [£.6] they share the same
black and white vertice and the same dimension vector on these vertices. Similar to Proposition [£.5]
we have the following result.

Proposition 5.2. Suppose A is a planar algebra as a composition of two A4 planar algebras, and
it is not Fuss-Catalan. Then there is a lowest weight vector T' € B, 4, such that

(1) Tx=T;

(2) T + 6, % fn is a projection;

(8) T is totally uncappable;

(4) p(T) = uT,
where fy, is the minimal projection of FC(0p,0p)n,+ with middle pattern abba - - - abba(ab).
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Note that the dual of £ is still a composition of two A4 planar algebras. So the refined dual
principal graph is the same as €2,,. Then there is a lowest weight vector T € %, _ satisfying similar
propositions. Solving this generators 7', 7" in the graph planar algebra is the same as solving R for
the compositions of Az with A4, while the rotation is replaced by the Fourier transform. Therefore
we have the following result.

Theorem 5.3. There are exactly four subfactor planar algebras as a composition of two A4 planar
algebras.

Proof. Suppose &£ is a planar algebra as a composition of two A4 planar algebras. If % is not
Fuss-Catalan, then there is a lowest weight vector T' € 4, + satisfying proposition (1)(2)(3)(4), and
T € A, + satisfying similar propositions. Comparing with the process of solving R in the graph
planar algebra for the composition of A3 and A4, we have the ,,, for n > 4, is not the refined
principal graph of a subfactor.

For n = 1,2,3, three examples are known as reduced subfactors. We only need to prove the
uniqueness. Similar to the proof of Theorem [£.25] by comparing the coefficient of the rotation in-
variant loop, we have T' = F(T") = p(T). So w = 1. Furthermore the linear subspaces Vi of %11 4
generated by annular Fuss-Catalan tangles acting on T satisfy Fuss-Catalan Jellyfish relations, which
are derived from Wenz!’s formula similar to Lemma and Theorem .25 Therefore the subfactor
planar algebra is unique. O

Similarly we may construct the generators (T, T") in the graph planar algebra. The skein theoretic
construction of the three subfactor planar algebras could be realized by the Fuss-Catalan Jellyfish
relations of the generating vector space V..

A the initial conditions

Up to the rotation, we only need Cg(l) for a loop [ € Aig2n7+AZ. Now we list of results up to
adjoint for 1 < k < 4. They are obtained by a direct computation by Lemma (18] (17).

When n > 1,

Cr([arazn+1]) = 6, .

When n > 2,

Cr(lazazny3]) = 6, %

Cr(lazazn+1a2,—1a2n41]) = 6, °.

When n > 3,

Cr(lasaznys)) = 6, %

Cr([asa2nt102n—302n41]) = 5;5;

CR([a5a2n+1a2n—la2n+la2n—la%n;-l]) =5
CR([(L5G2n+1a2n—la2n+3]) = 5b_ o
When n > 4,

Cr([arazni7]) = 6, %

Cr([arazni102n—502n41]) = 5;5;
Cr([arazn4302n—102n43]) = 0;
Cr([a7a2n+302n—1a2n+1020—102011]) = 6, 7
Cr([a7a2n+1a20—102n+1020 1020 1102n—102n41]) = 6, '
Cr([ara2n41020 3020110201020 11]) = —51,_8'5;
Cr(lara2n4102n—302n+43)) = 5;6;
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Cr([arazn+5a2n—102n+1]) = 5;5.5;

Cr(ja7a2n+1a20 102043020 —1a2,11]) = 3, °.
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