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Dynamics around the double resonance

CHONG-QING CHENG*

In this paper, we study time-periodic perturbation of classical sys-
tems with two degrees of freedom. A transition chain is established,
by passing through small neighborhood of double resonant point,
to connect any two cohomology classes corresponding to resonant
frequencies. Applying the result to nearly integrable Hamiltonian
systems with three degrees of freedom, one obtains a transition
chain along which one is able to construct diffusion orbits sug-
gested by Arnold in [A66].

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 37J40, 37J50; secondary
49L.25.

1. Introduction and the main result

In this paper, we consider time-periodic perturbations of the Lagrange sys-
tem with two degrees of freedom

(1.1) L(z,i,t) = %(A:‘n,ﬁc) + V(@) + VeR(x, #,0(8),  (2,0) € T2 x T

where A is a 2 x 2 positive definite matrix of constants, V' € C"(T?,R) with
r > 5 R. € C"YT? x R? x T,R) is a small perturbation, the variable
depends on ¢ in two ways, either § =t or 6(t) = QL\/E where p is a positive
constant. As we shall see later, the system in the latter case emerges when
one studies Arnold diffusion in nearly integrable Hamiltonian systems with
three degrees of freedom around strong double resonance. Regarding R, as

a function of (i,z,0), we assume that for x € (0, 1)
(1.2) Vel Rel|gr-1 < Ce”, for {|2] < e, (z,0) € T? x T}.

To apply the variational theory, we assume L, is a Tonelli Lagrangian.
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Definition 1.1. Let M be a closed manifold. A C?-function L: TM xT — R
is called Tonelli Lagrangian if it satisfies the following conditions:
POSITIVE DEFINITENESS. For each (x,t) € M x T, the Lagrangian function
is strictly convex in velocity: the Hessian Oz; L is positive definite.
SUPER-LINEAR GROWTH. For each (z,t) € M x T, one has L/|%|| — oo as
]| = oo

COMPLETENESS. All solutions of the Euler-Lagrangian equation are well de-
fined for the whole t € R.

1.1. Brief introduction to Mather theory

It is established for Tonelli Lagrangian. Let (n.(z),dz) be a closed 1-form
so that [(n.(z),dz)] = ¢ € H'(M,R), we introduce a Lagrange multiplier
Ne(z, ) = (N.(x), ). Abusing the terminology without danger of confusion,
we call it closed 1-form also.

To define the minimal measure, we notice that, ¥V C! curve v: R — M
with period £, there is a unique probability measure j, on T'M x T so that
the following holds

1 k
| g =5 [ ran).sas

for each f € CO(TM x T,R), where we use the notation dy = (v,7). Let
H* = {uy| v € C*(R, M) is periodic of k € Z*}.

The set $ of holonomic probability measures is the closure of $H* in the
vector space of continuous linear functionals. Clearly, § is convex.
For each p € $) the action A.(u) is defined as follows

A = [ (L= n)d

It is proved in [M91, Man]| that for each first class ¢ there exists at least one
probability measure p,. minimizing the action over

Ac(pe) = ,irelsfa / (L —ne)dp,

which is invariant for the Lagrange flow ¢}, i.e. ¢%* e = p. We call it ¢-
minimal measure. Let $. C $ be the set of c-minimal measures, the Mather
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set M(c) is defined as

M(c)= | suppe.

He€He

The a-function is defined as a(c) = —A¢(pe) : HY (M, R) — R, it is convex,
finite everywhere with super-linear growth. Its Legendre transformation 5 :
Hi(M,R) — R is called S-function

B(w) = max({w, c) — a(c)).

c

It is also convex, finite everywhere with super-linear growth (see [M91]).

Notice that [ Adu = 0 holds for each exact 1-form A and each p, € H*.
For each measure p1 € §) one can define its rotation vector w(u) € Hi(M,R)
such that

(N w(p)) = / Ay

holds for each closed 1-form A on M. According to the definition of holonomic
measure, and due to the work in [Man], one has

Blw) = inf / Ldv

vEN,

where $),, is the set of holonomic probability measures with the rotation
vector w, not necessarily invariant for gth.

The Fenchel-Legendre transformation %3: Hi(M,R) — H'(M,R) is
defined by the following relation

ce Lw) = oalc)+PBw) = (cw).
Let ,
[AcMit.e1] = /t (L(dv(t),w — nc(d’y(t))>dt+ ale)(t' — 1),

hc((.%', 7—)7 (xlv T/)) = inf [AC(5)|[T,T']]7

gecl g(n)=x
g(r"H=a’

F.((x,t), (2, 1)) = ir}f he((z,7), (2", 7).

The concept of semi-static curves is introduced in [M93, Man|. A curve ~:
R — M is called c-semi-static if in time-T-periodic case we have

[Ac 1] = Fe((v(1), 1), (1), 1))
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A semi-static curve v € CY(R, M) is called c-static if, in addition, one has
the relation

[AcN] )] = =Fe((v(¥), 1), (4(£), 1))

An orbit X (t) = (v(t),7(t),t) is called c-static (semi-static) if v is c-static
(semi-static). We call the Mané set N'(c) the union of c-semi-static orbits

U{ : 7y is c-semi static}

and call the Aubry set A(c) the union of c-static orbits

U{ : 7y is c-static}.

~ We use M(c), A(c) and N (c) to denote the standard projection of M(c),
A(c) and N (c) from TM x T to M x T respectively. They satisfy the inclusion
relation

M(c) € A(c) € N(c).

It is showed in [M91, M93] that the inverse of the projection is Lipschitz
when it is restricted to A(c). By adding subscript s to NV, i.e. N we denote
its time-s-section. This principle also applies to N'(¢), A(c), M(c), A(c) and
M(c) to denote their time-s-section respectively. For autonomous systems,
these sets are defined without the time component.

A pseudo-metric d, is introduced on Aubry set A(c) in [M93], its defini-
tion relies on the quantity ho°. Let

B (), (@) = Timinf he((w,7), (&', 7).

/=t mod T

)

The pseudo-metric d. on Aubry set is defined as

de((z, 1), («',1)) = h((2,1), (2, 1)) + B (2, 1), (2, 1))

With the pseudo-metric d. one defines equivalence class in Aubry set. The
equivalence (x,t) ~ (2/,t') implies d.((z,t), (2’,¢)) = 0, with which one can
define quotient Aubry set A(c)/ ~. Its element is called Aubry class, denoted
by A;(c), its lift to TM x T is denoted by Ai(c). Therefore, A(c) = Ujep Ai(c),
A(c) = UieaAi(c). Tt is proved generic in [BC] that, for system with n degrees
of freedom, each c-minimal measure contains not more than n 4+ 1 ergodic
components. In this case, each Aubry set contains at most n + 1 classes.
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1.2. The main result

In this paper we consider the conditions that different Aubry sets are con-
nected by orbits of the Euler-Lagrange flow. An orbit is said to connect two
invariant sets if its a-limit stays in one set while its w-limit stays in the
other. Two Aubry sets are said to be dynamically connected if there is an
orbit connecting them.

One way to make sure that two Aubry sets A(¢'), A(¢") are dynamically
connected is to establish a continuous path in the first cohomology space I :
[0,1] — HY(M,R) joining ¢ to ¢, namely, I'(0) = ¢/ and I'(1) = ¢’ and each
s € [0,1] is associated with &, > 0 so that A(I'(s)) is dynamically connected
to A(T(s")) if |s — &'| < 8. In this case, we say that A(T'(s)) is connected
to A(T(s')) by local connecting orbits. Two types of local connecting orbits
are established in [CY1, LC], one looks like heteroclinic orbit, based on the
variational version of Arnold’s mechanism [A64], and the other one is based
on cohomology equivalence developed from that was introduced in [M93], to
be defined in Section 3.1. Following Arnold, we call the path a (generalized)
transition chain.

Once two cohomology classes ¢ and ¢ are connected by a transition
chain, an orbit connecting A(¢) to A(c”), which is called a global connecting
orbit, is constructed shadowing a sequence of local connecting orbits, as it
was done in [CY1, CY2, LC].

Let ac, 3. denote the a-, S-function for L. and let F. = o !(mina,).
Adding a constant to the Lagrangian L. we assume that min a. = 0. Then
we have

Theorem 1.1. There exists a residual set By C C"(T?,R) with r > 2. Each
V € Yy is associated with some positive numbers Ay, ey such that for any
E € (0,Ay), € € [0,ev] the circle a-'(E) establishes a transition chain (of
cohomology equivalence) for the Lagrangian L., V¢, € a7'(E), the Aubry
sets A(c) and A(c') are dynamically connected. These circles make up an
annulus A, surrounding Fe.

For the second theorem we consider resonant rotation vector. A vector
w € R™ is called k-resonant if there are exactly k£ independent integer vectors
ki, kg € Z" such that

(w, kj) =0, j=12 -k

For n = 2, there is only one double resonant point w = 0. A resonant vector
w # 0 is associated with an irreducible class g € H{(T?,Z) and positive
number v such that g = vw. Let C,, = Cy = U505, (vg) C H (T R).
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For 7 > 5, let B, € C"}(T? x R? x T,R) be the set of \/eR, such that
the inequality (1.2) holds.

Theorem 1.2. Each resonant rotation vector w # 0 determines an open-
dense set B, C C"(T?,R) with r > 5. Each V € 0, is associated with small
positive numbers ey and d < k, for each € € (0,ey] certain residual set
Ry C B exists such that for each \/eRe € Ry, the Lagrangian L. admits a
generalized transition chain Ty, C C,, which joins the level set of low energy
aZl(e?) to the level set of high energy o=t (257 1).

€

Given a potential V' € oMY, NV, there exists small ey > 0 such that
Ay > eﬁl,. In this case, both C,, and C, extend into A, A(c) is dynamically
connected to A(c') provided ¢ € C,, ¢ € Cy and a(c), a(d') < e ".

The main part of L, is a classical system with two degrees of freedom

Lo(z,) = %(Aj;,@ V().

Let ap, By denote the a-, B-function for Lg. As Lo is autonomous, two
Aubry sets A(c) and A(c') are not dynamically connected if ag(c) # ap(c).
However, one has

Theorem 1.3. There exists a residual set Vo C C"(T?,R) with r > 2. Each
V € By is associated with a number Ay > 0 such that for any E € (0, Ay),
the union of Aubry sets UcEagl(E)A(c) 1s topologically transitive: there exists
an orbit of the Fuler-Lagrange flow determined by Ly such that its w-limit
set contains UCGQJI(E)A(C).

Thus, the dynamics in a level set with the energy slightly above Mané’s
critical value behaves similar to that in Birkhoff instability zones for twist
maps. The problem of topological transitivity for geodesic flow on surfaces
with negative curvature was illustrated by Birkhoff (see Chapter 8 of [Bir]).
However, it is impossible to construct a geodesic flow on 2-torus with nega-
tive curvature everywhere, restricted by Gauss-Bonnet formula. Once coho-
mology equivalence is established among a set of first cohomology classes,
such topological transitivity was observed by Mather in [M93].

Throughout the whole paper, to abbreviate the notation, we shall use
“Crt-generic” to express “C" -generic for any integer ' > r”.

2. The dynamics around the hyperbolic fixed point

In this section we restrict ourselves to the classical system

1
Lo = 5{Ad,#) + V(2),  (x,4) € TT"
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where A is a positive definite matrix of constants, min V' = 0. So, one has
min o = 0. For z € V~1(0), the point (x,0) supports a minimal measure of
Loy whose rotation vector is 0. We consider the Fenchel-Legendre duality of
0,

Fo = {c € HY(T",R) : ag(c) = minag} = Z3,(0).

We shall show later that this set is a convex disk with full dimensions.
2.1. Flat of the a-function

A subset is called flat of certain a-function if, restricted on this set, the
a-function is affine, and no longer affine on any set properly containing the
set. Since a-function is convex with super-linear growth, each flat is a convex
and bounded set. Given an n-dimensional flat F, a subset E in OF is called
an edge if it is contained in a (n — 1)-dimensional hyperplane.

Proposition 2.1. Given a class c € HY(T™, R), if the Mané set N'(c) lies in
a neighborhood of lower dimensional torus N such that Hy(T", N,Z) = ZF
with k > 1, then there exists a k-dimensional flat F C H'(T",R) such that
c € intlF.

Proof. Let pc, pl. denote the minimal invariant probability measure for the
classes ¢ and ¢’ respectively. We obtain from the definition of the a-function
that

0= [ Lodise = (o) + () < [ Lodpe ~ (e.o(pe)) + alo)
0= [ Lodise ~ (eswlpe)) + ale) < [ Lodpe ~ (¢ o(p) + (),

where the inequality is obtained since pe and p. are not necessarily minimal
for ¢ and for ¢’ respectively. It follows that

(2.1) a(d) = alc) if {(c—c,w(ue)) = {(c—c wlu)) =0.

Since N(c) ¢ N and Hy(T" N,Z) = ZF, the rotation vector p(u.) of
each ergodic minimal measure p. satisfies k-resonant conditions, i.e. there
are k independent integer vectors ki, - -- , kg such that (k;, p(1)) = 0 holds
foreachi=1,2,--- ,k.

Because of the upper semi-continuity of Mané set, one has N'(¢/) C N if
|’ —¢| is suitably small. Therefore, there exist a small ball Bs(c) C H*(T",R)
such that for any ¢ € Bs(c), the relation (k;, p(ue)) = 0 holds for each ¢/-
minimal measure p and for each i =1,2,--- k.
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Treating H' (T, R) as R", we set II; = Span{ky, Ko, --- ,k}. It follows
from (2.1) that a(c) = a(c) provided ¢’ € Bs(c) and ¢ — ¢ € TIy. It proves
the existence of k-dimensional flat. O

Proposition 2.2. For the Lagrangian Lo we assume the potential V' reaches
its minimum at one point, then Fg is an n-dimensional disk containing the
origin.

Proof. Introducing a coordinate translation x — = + x9 and adding a con-
stant to Lo, we can assume that the potential V' reaches its minimum at
x=0and Ly(0,0) = 0. As Lo(z,z) > 0 for (x, &) # 0, the minimal measure
is uniquely supported on (z,z) = 0.

Let us show =z ¢ A(0) if x # 0. If x € A(0), there would be a sequence
of closed curves ~v;: [-T;,T;] — T™ such that v;,(—T;) = v(T;) = x and
A(vi) = 0as T; — oo. If |v(T; —9)| = %, then it follows from the convexity
of kinetic energy in & that

1T 5/A [T 1 m Alz|?
5 A%, i)dt > —( — yidt, < yidt ) >
2/T,5< Yis ¥ 2<5 /Tiﬂ 5/T_57 > 80

i i

where A > 0 is the smallest eigenvalue of A. For x # 0, we set ty =
min{|z|, &} with suitably large K > 0. If |y(t/) — z| = % holds for some
t' € [T; — to, T;], we obtain from the argument just above that

|

1 (T Az 1
A(v; >—/ A%, A dt > max{—,K}.

z|

If there does not exist ¢y = min{|z|, &} such that |[y(t) — z| < % holds for
any t € [T; — to, T;)

A(vi) > /Ti V(7:)dt > min {|x|, %} min V(z').

Ti—to |x’|2%

In both cases, A(y;) is uniformly bounded from below by a positive number
as T; — oo. It contradicts the assumption that A(7;) — 0. Thus, one has
A(0) = M(0). As the minimal measure is uniquely supported on the fixed
point, one has N (0) = M(0) = 0. Applying Proposition 2.1, we complete
the proof. O

For a Tonelli Lagrangian L and a class in g € H1(T",Z), we define

T .
(2.2) A(g,c) =liminf inf / Lo(&(t),&(t))dt — (c, g) + 2T;a(c)

T,—00 &(—T;)=&(T;)EM(c) _T
[£]=g N
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which is non-negative. When N O M(c) is open and connected, this defi-
nition extends to g € H1(T", N,Z), because each closed curve ¢ is uniquely
associated with a class [[¢]] = g € H,(T", N, Z) also.

Proposition 2.3. If the Lagrangian Lo has two degrees of freedom only,
c ¢ Fy, there exists a neighborhood N of a circle such that M(c) C N and
H1(T?,N,7Z) = 7, then there exists a 1-dimensional flat such that for all c
in this flat, the Mather set M(c) is the same.

Proof. Since n = 2, ¢ ¢ Fy, M(c) C N and H;(T? N,Z) = Z, the Mather
set consists of periodic orbits. Each closed curve v;: [=T;,T;] — T? with
vi(=T;) = v (T;) € M(c) is associated with a class [y;] € Hi(T?,Z) and a
class [[vi]] € H1(T?, N, 7Z).

Let g € H1(T?, N,Z) be a generator over Z, we claim A(g, c)+A(—g,c) >
0. Since the quantity A(g,c) is non-negative, if A(g,c) + A(—g,c) = 0
there would be two curves v*,v~ such that [y*] = g, [y"] = —g, and
7,7~ € A(c). To see it, let v;": [-T;,T;] — T? be such a sequence of mini-
mizers realizing the quantity A(g,c). Let [t;,¢]] be a connected component
of [T}, T;] such that ~;(t) ¢ N if t € (t;,t) and ~;7(tF) € ON. There
must be such a connected component such that [[v;" - )l = 9- 1t M(c)
does not touch the boundary of N, tj —t; is uniformly bounded. So, there
exists a number t( such that [—tg, o] D [t;,t;], by a time-translation, for all
large 7;. As each ~; is a minimizer, ;" is uniformly bounded. As it solves
the Lagrange equation & = (&ML)_I(@JCL — @03 ,L) and L is positive defi-
nite, we find the set {’Y;_‘[—to,to}} is compact in C'-topology. Let ¢y — co. By
the diagonal extraction argument some subsequence of {v;} converges C*-
uniformly, when they are restricted on any compact set containing [—to, to],
to a Cl-curve v*: R — M. Clearly, [[y"]] = g. Because A(g,c) = 0, this
curve must be in the Aubry set A(c). In the same way, we see that the v~
also lies in A(c) and [[y7]] = —g.

However, it is impossible since it would violate Lipschitz graph property
of Aubry set, for the curve v~ would intersect the curve v somewhere since
the configuration space is 2-torus. If A(—g,c¢) = 0, one has A(g,c) =a > 0.

Let . be a minimal measure for ¢, which is supported on periodic orbit
in this case. Given a class ¢ € H'(T? R) such that (¢’ — c,w(j.)) = 0, one
has

0< /Loduc —{d w(e)) + ald) = a(d) — alc).

As the a-function is convex, the rotation vector w(u. ) stays in the set of
sub-derivative of « at ¢/. So, one has (w(ue),c — ) < alc) —a(d) <0.
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Let ¢ be a class such that ¢ — ¢ = vg with small v > 0. Treating c,
and g as vectors in R?, we claim (w(pue),c — ) = 0. If (w(pe), ¢ —c) > 0,
there exists a curve v lying in M(c) as well as two numbers t,J > 0 such
that Bs(y(t)) € N. We set

T(v,t,0) = min{t' > 0: d(y(t),y(t +1')) <& [[Vljsse7)] = 9}-

It follows from the upper semi-continuity of Mafié set in the first cohomology
class that T'(v,t,0) — oo as ¢ — ¢ and § — 0. Since v lies in M ()

t+T'(,t,0)
‘[ (Lo(1(),4(5)) — (s 4(s)) + a(¢))ds < C5.

On the other hand, because of A(g,c) =a > 0,3 € —0as T(y,t,0) = oo

t+T(7,L,6)
/t (Lo(v(s),7(s)) — (¢, 7(s)) + ale))ds = a — C5 —e.

Putting these two inequalities together, letting 4 denote the lift of v to the
universal covering space R?, one has

T(,t,8)(a(c) — a(c)) + (¢ — e, 3t + T(7,£,6)) = A(t)) > a — 205 — €.

But it is absurd as a(c) — a(c) <0, [[V|ge4r(ytonl] = g and ¢ —c = vg
with small v.

Since (¢’ — ¢, p(pe)) = (¢ — ¢, p(pe)) = 0, we obtain from (2.1) that
a(d) = ale). O

For a k-dimensional flat IF, to define its interior and the boundary, we
treat it as a set in R¥. Then, they follow from the standard definitions,
denoted by intlF and OF respectively.

Proposition 2.4 ([Mas]). Let F be a flat of a-function, then A(c) = A(c)
if ¢, € intF and A(c) D A(d) if ¢ € OF and ¢ € intF.

2.2. Around the flat of the minimum

In this subsection we will restrict ourselves to the classical system with two
degrees of freedom and investigate the structure of the Mather sets and the
Mané sets for each ¢ € dF. It is C**-generic to assume

(H1): the potential V attains its minimum at one point only, where the
Hessian matriz 02V is positive definite and the matriz Jdiag{ A=, 0>V} has
4 different real eigenvalues —Xo < —A1 <0 < Ay < Ag.
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Up to a translation of coordinates and addition of constant to V', one
can assume min V' = 0 which is attained at x = 0.

In virtue of Proposition 2.2, the flat Iy is a 2-dimensional disk when the
hypothesis (H1) is assumed. Now, let us study the shape of the disk Fy and
divide the boundary of Fy into two parts 0Fy = 0*Fg U (0F(\0*Fy), where

9'Fy = {c € OFy : M(c)\{z =0} £ o).

Clearly 0 € intFg, N(c) = {0} is a singleton V ¢ € intlFy. Given ¢ € §*Fy,
we use . to denote the minimal measure which is not supported on the
fixed point. Since the configuration space is a 2-torus, all minimal measures,
except the one supported on the fixed point, share the same rotation vector,
denoted by w(ue).

It is possible that the set 0*FF( is non-empty. Here is an example:

1/2

1.
(2.3) L:—ﬁ+2

5 x% + V(x)

where |v| # 1, the potential satisfies the following conditions: x = 0 is the
minimal point of V' only, there exist two numbers d > d’ > 0 such that

1. V =d + (z2 —a)? as it is restricted in a neighborhood of circle zo = a
with a # 0 mod 1;

2. V = P(y/2? + 23) for |z| < 26, where P is a bump function P(r) =
Be 73 for r € (0,20). By choosing suitably large B > 0, for any
closed curve «: [T, T] — T? passing through the origin with [y] # 0
one has

T
| 166)56)ds = a

-T

In this case, we find that 0Fy N {c2 = 0} = {¢1 = £v2d'}. Indeed,
. 1 . 2 V2 .2 1 2
L+cia = §(x1:|:cl) +—x2+V(x)—§cl,

the M(c) = {0} U {(z10 F V2d't,a) : t € R} for ¢ = (£v2d,0). The
set 0*Fy is closed in JFy. If it is non-empty, the existence of infinitely many
homoclinic orbits has been proved in [Zhe, Zm2]. These orbits are associated
with different homological classes {g;}, each of these orbits is minimal when
it is lifted to certain finite covering manifold. When |g;| — oo, these orbits
are getting closer and closer to the support of that minimal measure not
supported on the fixed point.
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2.2.1. The structure of 9Fy and the phase space correspondence.
A homoclinic orbit (,%) is called minimal if the action along the curve =y
is not large than the action along any other curve ¢ homoclinic to the point
provided [¢] = [7]. In this case, 7 is called minimal homoclinic curve.

If ¢ € OFy\0*Fo, the Mané set is the same as the Aubry set, consisting
of the fixed point (z,7) = 0 and some minimal homoclinic orbit to the fixed
point, it can not be the fixed point alone, since one has

Lemma 2.1. Let Fy be a 2-dimensional flat, the Mather set be a singleton
for each class in the interior of Fy, and let E; be an edge of Fy, then A(c') =
Ale) if ¢ ¢ C intE; and

A(d) 2 Alo)
holds for ¢ € OF (OE;) and c € intF (intE;) respectively.

Proof. Recall the proof of Proposition 2.2, we see that A/(0) is a singleton.
Applying Proposition 2.4, the Mané set is that singleton V ¢ € intlFy. For
a class ¢ € OF(\0*Fy, the Aubry set A(c) contains at least one minimal
homoclinic curve with non-zero first homology. Otherwise, for a class ¢ ¢ Fy
very close to ¢, the homology of the Mané set is trivial, the same as that for
c. It is guaranteed by the upper semi-continuity of Mané set in cohomology
class. It follows that (c,w(p.)) = (¢, p(1.)) = 0 and

—ao(c') = A(pe) = (¢, p(pe)) = Alue) = —ao(c).

However, one has ag(c’) > ap(c) for ¢ ¢ Fy. The contradiction verifies
our claim. When ¢ € 9*Fy, the certain ¢’-minimal measure u. exists with
p(per) # 0. In both cases, we have A(c') D A(c) if ¢ € intlFy and ¢ € OF.
To show A(c") = A(e) for ¢, ¢ C intE;, one follows the way of [Mas]. As
d,c C intE;, 3 ¢" € E;; A € (0,1) such that ¢ = (1 — X\)e+ A¢”. For any
small € > 0, x € A(c), 3 a curve v: [0,T] — M with v(0) = v(T") = = and

T
e> / (L), 4(8) — (¢, 3(0))dt
0
T
—(1- ) /0 (L), 4(5) — (e At
T
A / (L(3(8), 5(1)) — ("4 () .
0

Since € > 0 can be arbitrarily small, one has = € A(¢).
Let E; be an edge, then it follows from Proposition 2.4 that either int[E;N
O*Fg = @ or intE; C 9*Fy. In the former case, the Aubry set contains
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homoclinic orbits which share the same homological class. Indeed, given two
homoclinic orbits (v1,%1) and (7y2,%2) associated with class [y1] and [y2]
respectively, one has [A.(7;)] = 0 for j = 1,2 and for ¢ = ¢, " € intE; (see
(2.2)). It follows that (¢’ —¢”, [7;]) = 0 holds for ¢, ¢ € intE; and j = 1,2. As
each curve 7; is minimal and the configuration space is a 2-torus, ;] has to
be irreducible, otherwise, the curve will intersect itself. Therefore, one has
[71] = [72], denoted by g(E;). In latter case, all ergodic minimal measures,
except the one supported on the fixed point, also share the same rotation
vector.

Let ¢ € JE; and ¢ € intE;, one chooses ¢* € 9Fy\E; arbitrarily close to
c’. As the straight line connecting ¢ to ¢* passes through the interior of F,
we obtain from Proposition 2.4 that A(c)NA(c*) = A(co) with ¢ € intFy. If
A(c*)\A(cg) contains a homoclinic orbit (¢, ¢), it follows from the following
equation

(hi/@MM@D—@ﬂ@ﬂﬁi/@dﬂan—@fﬁﬁ+«*wﬁkb

that (c—c*,[(]) # 0 holds. We claim [¢] # g(E;). Let us assume the contrary
and consider the case that A(c) contains a homoclinic orbit (v, 7). Because
min ag = 0, one has

[”m«£Mt<&KD=a /fLa%wﬁ@g@mzo

Since the class ¢* is not on the straight line containing E;, we have (¢* —
¢, g(E;))y # 0. If (¢* — ¢, g(E;)) > 0 one would have

/mLa%wﬁ—«%hb:/mLa%wﬁ—«mﬂwwa—aam»<o

—0o0 —00

If [(] = g(E;) and (c* — ¢, g(E;)) < 0 we would have

/mLag@ﬁ—@sz/mLagoﬁ—@%mwu&—amm»<0

—00 —00

Both cases are absurd since ag(c) = ap(c*) = 0, the left hand side of above
inequalities can not be negative. Since [(] # ¢(E;), some z* € A(c*) remains
far away from A(c). Let ¢* — ¢, the accumulation point of these points does
not fall into A(c), therefore it implies A(¢’) 2 A(c). The proof is similar if
¢ and ~ are curves lying in the Mather set. O
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Let G. C H1(T?,Z) be a set that g € G if there is a minimal homoclinic
orbit (7,%) in A(c) with [y] = g. We say that there are k-types of minimal
homoclinic orbits in A(c) if G, contains exactly k elements. Given an edge
E;, we define Gg, = G, for each ¢ € intE; since all classes in intE; share the
same Aubry set (Proposition 2.4).

Theorem 2.1. Let Fy = ag ' (minag) be a two dimensional flat, M(co) be
a singleton for ¢y € intFy. Let E; denote an edge of Fy (not a point), then

1, either E; N 0*Fy = @ or E; C 0*Fy;

2, if E;NO0*Fg = @, then Gg, contains exactly one element, if E; C 0*Fy,
all curves in M(E;)\{0} have the same rotation vector;

3, if c € OE; and ¢ ¢ 0*Fy then G, contains exactly two elements;

4, if B, E; C 0*Fo, then either E; = E;, or E; is disjointed to E;;

5, if E; C 0*Fo, M(c) = M() holds for c € OE; and ¢ € intE;;

6, if pe is an ergodic c-minimal measure for ¢ € 0*Fy and w(u.) is
wrrational, then the class ¢ is an extremal point of Fy;

7, if ¢ € OF\d*Fy and A(c) consists of the fived point and a homoclinic
orbit (7y,%) only, then c is located in the interior of certain edge E;;

8, each edge in OFo\O*F¢ is joined by two edges in OFy\O*Fy.

Proof. Tt follows from Lemma 2.1 that A(c) = A(¢) if ¢, € intE;. So, if
the item 1 is not true and intlE; N 9*Fy = &, there would exist an invariant
measure . for the class ¢ € JE;, not supported on the singleton which
minimizes the action

(2.4) [ Eodne = (ot} ) = ~aale) =

but not minimizes the ¢’-action for ¢’ € intE;. As the configuration space is
T2, the Lipschitz graph property of Aubry set will be violated if the rotation
vector of the measure w(p.) is not parallel to g € Gg,. So, (w(ue),c—¢) =0
holds for ¢’ € intE;. It follows that p. also minimizes the action for ¢’ € int[E;.
This leads to a contradiction. If intE; C 0*Fy, then the formula (2.4) holds
for each ¢ € intE;. Let intE; > ¢ — JE;, (2.4) holds for ¢ € JE;, namely, the
whole edge is contained in 0*F.

The item 2 follows from the fact that (¢ — ¢, [7y]) = 0 holds for any
¢, d € intE; and any v € A(c). The item 3 follows from that A(c) 2 A(c) if
¢ € intE;, the Lipschitz property would be violated if G, contains three or
more elements.

If the item 4 were not true, for the cohomology class in E; N [E; the
Mather set would contain two closed circles with different homology, but it
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violates the Lipschitz graph property of Aubry set. With the same reason
we have the item 5.

If the item 6 were not true, the class ¢ lies in the interior of an edge E,
whose normal direction is w(p.). Let ¢ € OE, it follows from Lemma 2.1 that
there exists some point x € A(c)\A(c). There exists a sequence of closed
curves i [=T;,T;] — T? such that ~/(=T;) = (T;) and [Ax ()] — 0 as
T; — oo. Regarding [/] as a vector in R?, it is impossible that [7]/| [/l -
w(pe)/||w(e)|| because it will violate the Lipschitz graph property as w(fic)
is irrational. The fact [7/]/||[V/]Il = w(e)/||w(pe)|| implies z € A(c).

By the condition of the item 7, one has N'(¢) = A(c) for ¢ € OFy\d*Fy.
Due to the upper semi-continuity of Mané set in the first cohomology class,
N(¢) lies in a small neighborhood of the orbit (v,%) provided ¢ is close to
c. If such ¢ lies on dFy, the Aubry set for ¢’ must contain some homoclinic
or periodic orbit (7/,4") which entirely stays in a small neighborhood of ~.
Because of the topology of T?, one has [y] = [7/]. Let Ao(7) = [ Lo(y/,%/)dt.
If (¢ — ¢, [v]) > 0, one obtains from ag(¢’) = 0 that

Ao(y) = (e, [V']) = Ao(v) = (¢, Y]} + (' = e, [7]) <0,

but it is absurd because the c-action along any closed curve is non-negative.
It is also obviously impossible that (¢ — ¢/, [y]) < 0. Thus, one obtains from

Ao(7) = (e, [Y]) = Ao(v) = (. [Y']) = 0.

that v/ = 7, namely, ¢ stays in the interior of certain edge E and (c—¢/, [y]) =
0 holds ¢, € E.

Let us prove the last one. Given an edge E C 0F(\0*Fy. There exists a
homoclinic curve v which is c-minimal for all ¢ € E. For ¢ € JE, the Aubry
set A(c) must contain, besides the curve 7, another homoclinic curve 7/
with [7/] # [y]. We identify H'(T?,R) with R? where we choose L to be a
straight line passing through the point ¢ and orthogonal to the vector [+].
Since Ao(Y')— (", [7']) = Ao(7') — (¢, [7']) = 0 holds for each ¢’ € L and the
Aubry set contains the fixed point only when the class stays in the interior,
any point on IL does not lie in the interior of Fy. If there exists a class ¢’ € L
other than ¢ so that a(c”) = 0 we assert ¢’ € OF\0*Fy. Otherwise, some
¢’-minimal measure p.» would exist with w(uer) # 0, per is supported on
a periodic orbit (7”,4”) with [v"] = [y/]. Therefore, 4" also lies in A(¢).
However, it is absurd because it violates the Lipschitz property of Aubry
set because [v"] # [y]. Therefore, if 3 ¢ € L # ¢ with a(c”) = 0, the edge
containing ¢’ to ¢’ is contained in 9F\0*Fy, joint to E at ¢'.
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Let us show that there does exist such point on L. The line L. divide
the plane H'(T?,R) into two parts. Let ¢; € OFg\E — ¢ be a sequence of
classes on JF( which approach ¢’ from outside of E. If no point on IL belongs
to Fy other than ¢/, these points and the edge [ stay in the same side of L.
As qg is a convex function and Fy is convex set touching the line L. at one
point ¢, each vertex v; of the sub-derivative of aq at ¢; has the expression
of v; = —v;[y] + V/[y] where both v; and v} are non-negative. If v; > 0, there
would be a segment of certain ¢;-minimal curve falls in the vicinity of v due
to the upper semi-continuity ¢ — A(¢), but moves in an opposite direction
of % because of v; > 0. It contradicts the upper semi-continuity ¢ — N (c).
Therefore, the rotation vector of each ergodic ¢;-minimal measure u; takes
the form of v/[y'], or A(c;) contains a homoclinic orbit (v”,4") such that
[v'] = [7/]. It follows from the convexity of Fy that ¢; € L. It contradicts the
assumption. ]

Let E; C OF; be a edge. When ¢ moves along E; to its boundary, what
emerges in the Aubry set is just heteroclinic orbit connecting the periodic
orbit and the fixed point. It is the consequence of upper semi-continuity of
Marié set on the first cohomology class. When ¢’ approaches ¢ € JE; from
outside of E;, N(¢’) falls into the vicinity of N'(¢). It would contradicts the
condition w(¢') # w(c) if N'(c) consists of the periodic orbit and the fixed
point, so it contains some orbit connecting the periodic orbit and the fixed
point which is approached by a sequence of ¢;-static orbit with ¢; ¢ E; — (.
Consequently, the curve is ¢-static, see Fig. 1.

7, N A
& 0 &g

Figure 1: M(E;) = {0} U {¢,}. The blue curve is in A(c) for ¢ at one end
point of E;, the red curve is in A(¢’) for ¢ at another end point.

Lemma 2.2. Let E,E' C 0F¢\0*Fy be two adjacent edges and assume ¢ €
ENE. If (m,n) =g € Gg and (m/,n') = ¢ € Gg/, then m'n —mn’ = +1.

Proof. The Aubry set A(c) contains homoclinic orbits with the class (m, n)
as well as (m/,n’), both are irreducible. Guaranteed by the Lipschitz graph
property, these two curves intersect each other only at the fixed point. In the
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universal covering space R?, each curve in the lift of the homoclinic curves
are determined by the equation

mx1 + nre =k, m'zy +n'ze =K.

The solution of the equations corresponds to the intersection point which
are lattice points in Z? for any (k, k') € Z2. To guarantee this property, the
necessary and sufficient condition is mn’ — m'n = +1. O

We ask if the set OFy\0*Fy can be empty. If not, it follows from Theorem
2.1 that the a-function will be not differentiable. For the topic of differen-
tiability, see [MS].

2.2.2. Dynamics in a neighborhood of Fy with ag(c) > min ap.
To proceed the demonstration, we assume further conditions on the classical
system. The Lagrangian Ly induces a Hamiltonian G = %(A_ly, y) — V(x).
The point (z,y) = 0 is a fixed point of the Hamiltonian flow, which is hyper-
bolic as A is positive definite. Recall (H1), the matrix Jdiag{A~!, 92V (0)}
has 4 different real eigenvalues £\, =As. If we denote by A;r = (Mg, Niy)
the eigenvector for the eigenvalue \; (i = 1,2), where A;, and A;, are for
the x- and y-coordinate respectively, then the eigenvector for —\; will be
A7 = (Nigy, —Aiy).

Let z = (z,y). The fixed point z = 0 has its stable and unstable manifold,
denoted by W and W™ respectively. Each point z € W NW=\{0} lies on
certain orbit homoclinic to the point z = 0. As each homoclinic orbit entirely
stays in the energy level set H~1(0), along the orbit their intersection can
not be transversal in the standard definition, but can be transversal when
they are restricted to the energy level, namely

T.W- e T.W™ =T.H(0)

holds for each z is on homoclinic orbit. Without causing danger of confusion,
we call the intersection transversal also. Since H1(T?,Z) contains countably
many elements, it is also a C?*-generic condition that

(H2): For each g € H1(T?,7Z), there is at most one minimal homoclinic
curve y such that [y] = g, the stable manifold intersects the unstable manifold
transversally along each minimal homoclinic orbit. Each minimal homoclinic
orbit approaches to the fized point in the direction Ai: 4(t)/||¥(t)]| = A1 as
t — £o0.

Next, we fix an irreducible class g € H1(T?,Z)\{0} and study the struc-
ture of M(c,) with ¢, € Z3,(rg) and ag(c,) > min ag. As the configuration
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space is T?, the rotation vector is rational, each ergodic c-minimal measure
is supported on a periodic orbit. To specify the topological information of
a minimal periodic orbit (curve), we call it vg-minimal if some irreducible
class g € Hi(T?,Z) and v > 0 exist such that it is c-minimal V ¢ € Z3(vg).
An orbit is called vg-periodic if it is merely %—periodic with the homology
type g, no minimal property is implied.

Let v > 0 decrease such that ag(cy) | min . There are two possibilities.
Either Z3,(vg) ¢ OFy for any v > 0, or 3 19 > 0 such that £, (1pg) € OF,
see the example of (2.3). In the latter case, Z3,(1pg) € 0*Fy. For the latter
case, one has

Proposition 2.5. Assume some vy > 0 exists such that £, (v0g) € 0*Fy.
For vy > vy, there is an open-dense set 0 C C™(T? R) with r > 5 such that
for each V€ B, c € Lp,(vg) with v € (vy,11], the Mather set consists of
hyperbolic vg-minimal periodic orbits. Indeed, there are finitely many v; €
(vo,v1) such that the set contains exactly two periodic orbits for ¢ € L3, (vig)
and contains exactly one periodic orbit if v # v; and v € (v, 11].

Proof. We apply a result in [CZ2]. For a Tonelli Lagrangian L € C"(TT?,R),
let o/, 8" denote the a-, B-function of L + V respectively, one has

Theorem 2.2 ([CZ2]). For a class g € H1(T?,Z)\{0} and a closed interval
[Eq, Ey] with E, > min «, there exists an open-dense set G C C™(T?,R) with
r > 5 such that for each V € 0 it holds simultaneously for all E € [E,, Ey
that the Mather set M(c) for L+V consists of hyperbolic vg-periodic orbits
if c € o/ 7Y E) NUy=0-Ly (vg). Indeed, there are finitely many E; € [E,, Ep]
such that the Mather set contains exactly two periodic orbits for E = E; and
contains one periodic orbit only if £ # E;.

It is clearly an open-dense condition on V' in C” (r > 2) that the Mather
set for ¢ € Z3(yg) is constituted by the fixed point and a hyperbolic peri-
odic orbit (&g, fg). Choosing a perturbation V' — V — §V such that §V > 0
and suppdV is a small disk containing the point z = 0, disjoint with the
periodic curve &;. Clearly, for v > 1y with small |v — 1y, the support of
Z3,(vg)-minimal measure of Ly does not touch suppdV'. It follows that the
support of £, (vg)-minimal measure of Ly — 0V is the same as that for Ly.
Let o be the a-function of Ly — 0V, then mina/ < o/ (L3, (v0g)). We then
finish the proof by applying Theorem 2.2. O

Theorem 2.2 is proved by variational method. Let £ be a closed curve
on the torus T? such that H;(T?,Z) is spanned by {g, [¢]}. Define

Te
F(z,E)= min /0 Lo(y(8),4(t))dt

v(0)=y(Tg)==
[v]=g
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where the time Ty is set so that the minimal curve ~y generates an orbit
(v,0:Lo(7,%)) lying on the energy level set G~(E). If xx is a minimal
point of F(-, E), the minimal curve passing through the point zp gener-
ates a periodic orbit. The orbit is hyperbolic if and only if the minimal
point is non-degenerate. So, the problem becomes to check whether it holds
simultaneously for all E € [E,, Ep] that all minimal points of F(-, ) is non-
degenerate. The Lipschitz dependence of F'in E plays key role, one is unable
to get the non-degeneracy if some Holder instead of Lipschitz continuity is
assumed [Zm3].

By Proposition 2.5, there exist finitely many pieces of normally hyper-
bolic invariant cylinders (NHICs) made up by rg-minimal periodic orbits
where v ranges over the set [vg,1]. Next, let us consider the former case
that 23, (vg) — 0Fy as v | 0.

Proposition 2.6. We assume the hypotheses (H1,2) for Lg, for some g €
H;(T?,Z) one has ayg(Ls,(vg)) > 0 for all v > 0. Then, there exist vy > 0
and finitely many NHICs which are foliated by vg-periodic orbits v € (0, vp],
each vg-minimal periodic orbit lies on one of the cylinders.

Proof. Since Ly is autonomous and the configuration space is T?, %3, (vg)
is either an interval or a point, each ergodic c-minimal measure is supported
on certain vg-minimal periodic orbit if ¢ € £, (vg) and v > 0. It follows
that some set E, C 0F(\0*Fy exists such that 3 (vg) = E; as v — 0 in
the sense of Hausdorff. Therefore, for ¢ € E4, the Aubry set is the same as
the Mané set, consists of homoclinic orbits and the hyperbolic fixed point.
Due to the upper semi-continuity of Mafié set in the first cohomology, the
Kuratowski upper limit set of the sequence of periodic orbits consists of
homoclinic orbit(s) staying in A(c) for ¢ € E,.

According to Theorem 2.1 (the items 7 and 8), the set 0F(\0*F( consists
of edges {E;} only. Under the hypothesis (H2), the Aubry set consists of one
homoclinic curve for ¢ € intE;, and consists of exactly two homoclinic curves
Yg: and 7., if ¢ € E;NE;y1 (a vertex). In latter case, det(g;, gi+1) = £1 if
g; and g; 11 are treated as vectors in Z2, see Lemma 2.2. It is impossible that
A(c) contains more than two homoclinics with different homology types,
which violates the Lipschitz property of Aubry set, one can refer to [M11]
for more details.

Let us study a general case g = kjg; + ki+1¢i+1. Through the Legendre
tranaformation y = Az, one obtains from the Lagrangian Ly the Hamiltonian
G = (A7 'y,y) — V(z). Each c-minimal orbit (z(t),#(t)) lies in the energy
level set {G71(ap(e))} in the sense that G(x(t),y(t)) = ao(c). Denote by
zi(t) = (x;(t),yi(t)) the homoclinic orbit such that [z;] = ¢; and [z;11] =
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gi+1. Because of (H2), one has
(4 .
lim —ZZ( = lim 72:14_1( ) .

t—to0 ’Z,(t)‘ t—=too ]z,-+1(t)]

To proceed the proof, we quote a result (Lemma 2.2 in [C15]):

Lemma 2.3 ([C15]). Assume the hypotheses (H1,2). For a class g = k;g; +
kit19i+1 (ki, kiv1 > 0), we assume that, as v | 0, there is a vg-periodic orbit
z,(t) approaching the minimal homoclinic orbits z; and zj+1. Then, some
vy > 0 exists such that for each v € (0,1, there is a two-dimensional disk
Y, C G Hao(Ls,(vg))) intersecting the orbit z,(t) transversally. Restricted
>y, the Hamiltonian flow CIDtG duces a Poincaré return map ®,: ¥, — X,
and there exists some A > 1,C > 1 independent of v < vy such that

ID®, (2v0)0” | = CE A o™, Voo €T, W,
ID®, (z0)v | < CTUER 0|, Vot €T, W,

where B, = ag(ZL3,(v9)), zv,0 is the point where the periodic orbit intersects
Y., and Wt denotes the stable (unstable) manifold of the periodic orbit.

As each vg-minimal periodic orbit falls into the vicinity of the homoclinic
orbits, the Lemma guarantees the hyperbolicity when it is restricted on
the energy level of 3-dimension G~1(ag(%3,(rg))). By the estimate on the
normal hyperbolicity and the implicit function theorem, each rg-minimal
periodic orbit has its continuation of a continuous family of hyperbolic vg-
periodic orbits as v ranges over the interval (0,1p]. We do not study the
uniqueness of the cylinder, it is enough for our approach. O

To study what is the shape of the set C; = U,~0.%3,(vg), letting E, in
Theorem 2.2 be a sequence of numbers F; | min«, each E; is associated
with an open-dense set 0; C C"(T?,R) with r > 5 such that Theorem 2.2
holds. Taking the intersection of U, one obtains a C"-residual property that
each rg-minimal orbit is hyperbolic. It follows from Proposition 2.3 that
Z3,(vg) is an interval provided v > 0, namely, C, is foliated by intervals
I, 4. Therefore, the set looks like a channel. The length of [, ; may or may
not approach zero as v | 0, depending on whether there is some edge E; C
OFp\0*Fy such that g € Gg,.

If g € Gg, holds for some E; C 0F\0*Fy, the length of Z3,(rg) does
not shrink to zero as v | 0 and the Hausdorff distance between two sets [E;
and .,%[L(yg) approaches zero as v | 0, forced by the upper semi-continuity

of ¢ = N(c).
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If there does not exist such an edge, then there are a pair of adjacent
edges E;,E;11 and positive integers k;, k;11 such that g = k;g; + kitr19i+1,
the channels Cy, and Cg,,, join at a vertex of Fy. The interval 23, (vg) is
located between C; and C;11. When v | 0, it shrinks to the vertex where
[E; is joined to E;11. Therefore, the channel C, appears to be wedge-shaped,
joint to the disk Fy at one point. As v | 0, one obtains a family of vg-
minimal periodic orbits {~,,4,}. Forced by the upper semi-continuity, its
Kuratowski upper limit set is exactly the Mané set for the class at the
vertex, made up by two minimal homoclinic orbits to the fixed point, looks
like a figure eight:

M(c) = v * Yig1,

where 7, is a minimal homoclinic curve such that [y, = g, for £ = 4,7 + 1.

Fle .

Channel i’

Figure 2: For ¢ in the channel, fi(c) is a closed orbit, it approaches a curve
of figure eight, k;-folded over v; and k;41-folded over ;1.

To be more precise, let us consider it in the finite covering space M =
k1T x kT where k,, = kigim + kiv1giv1,m for m = 1,2 if we write g, =
(9e,1,902) for £ = i3+ 1. Let o: {1,2,--- ki + kiy1} — {i,i+1} be a
permutation such that the cardinality #0 1(i) = k; and #o 1(i +1) =
ki+1. The lift of homoclinic curve ~; as well as v;41 to M contains several
curves. Pick up one curve 7, (1) in the lift of 7,(1), it determines a unique
curve 7,(z) such that the end point of 7, (;) is the starting point of 5 (2),
and so on. We shall see that there exists a unique permutation o (up to
a translation) such that, as ¢ approaches the vertex through in channel,
each Aubry class in A(c, M) approaches (up to a translation) the curve
Yo(1) * Vo(2) * *** * Vo (k,+k,,,) Without folding. Here A(c, M) denotes the
Aubry set with respect to M. Although A(c) is made up by one periodic
curve, A(c, M ) may contain several periodic curves.

As the minimal curve 7, is periodic with the homological class [v,] =
kig; + kit19i+1, the permutation o: Z — {i,i + 1} is (k; + k;41)-periodic.
Since k; is prime to k;11, we have k; = k;y1 = 1if k; = k1.
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Proposition 2.7. The permutation is uniquely (up to a translation) deter-
mined by k; and ki1q1. For k; > kw1, 3 jo such that the following holds for
J=1 kit ki

U(j+j0):i7 if j:2347"‘ ,2k1+1,2ki+1+1,"' ,ki+ki+1,
U(j+j0):i+1, ifj:1,3,‘--,2ki+1—1.

Proof. By the assumption, there exists only one minimal homoclinic curve -y,
such that [y,] = g¢ for £ = 4,7+ 1. Because of the lemma 2.2, we can assume
that g; = (1,0) and g;11 = (0,1) by choosing suitable coordinates on T2. We
choose two sections I~ and I in a small neighborhood of the origin such
that, emanating from the origin, these homoclinic curves pass through I~
and It successively before they return back to the origin as ¢t — oo, see the
figure below. In the section I* we choose disjoint subsections I; * and IfH
such that the curve v, passes through IKi for ¢ =1,i+ 1.

Let v, be the minimal periodic curve with rotation vector vg. For small
v > 0, v, falls into a small neighborhood of these two homoclinic curves. So
it has to pass either through I; * or through I ; +1 Let tjE be the time for v,
passing through I* with --- < tiq < t+ <t; < tj+1 < , and it does not
touch these sectlons whenever t 7& tk. By deﬁnltlon the perlod of the curve
equals tk ks £ If the curve intersects I; * at tj and intersects I, | at t;
then the segment 'yl,][tf keeps close to v; and vy\[t ] keeps close to
Yi+1, so one has v, (¢;_) 6 I and v, (¢ j+1) I

Since the curve 'y,, is mlnlmal it does not have self-intersection. Thus,
once there exists t such that 'yl,(t+) € I" and Yw(t;) € I;, then there does
not exist tj, such that ’yl,(t+) eI’ Y1and 1 (t;) € I;rl Up to a shift, we set
J = {2ki+1 +1,2ki41 +2,--- ki + kz—‘,—l} with cardinality #(J) =k — kit
such that for j € J one has vy(ti) € I*, for j ¢ J one either has vy(tj) €I
and v, (t;) € I, or has v, (t] e I+1 and v,(t;) € I; . In this way, we
obtamed a unique permutatlon oup toa translatlon ]

To make it more clear we introduce a coordinate transformation on 7'
T? — T? such that T.g = g for each g € H;(T?,Z) and T, is a straight
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line projected down to the unit square, a fundamental domain of T?. Start-
ing from a point z(}} = (x0,0), the line successively reaches to the points
2 = (21,0),---, 28 = (2,,,0),--- ,zZ = 2 where z,, = (zo + mkit1/k;
mod 1,0) with small g > 0. To connect the point (x,,—1,0) to the point
(Zm, 1), the curve T+, does not touch the vertical boundary lines if

[on-052] = [n52]

where [a] denote the largest integer not bigger than the number a, and it
has to pass through the vertical lines at some point z%, = (0 mod 1,y,,) if

[on =0T +1= [

% %

We define an order < for these k; 4+ k;;+1 points such that zjh < z,’; iff j <k
and zjh < zj < thH iff [jki/kjp1] +1=[(J + D)ki/kjs1].

v
K

P

“1

o b b ok b 4 A 4 4 2

Back to the original coordinates, the curve -, falls into a neighborhood
of the curves 7; and 7;. 1, intersects the horizontal line I'y, = T~ {(z1, z2) :
z1 =3 mod 1} at Tflz;-‘ and intersects the vertical line T', = T~ (x1, z2) :
Ty = % mod 1} at T_lz;-’, [['s] = giy1 and [I'y] = g;. The map T naturally
induces the order among these points: T *12;“] < T*IzZ’U if and only if
z?’v < zZ’v. If the curve passes the point T_lz;-‘ at t € (t;,t;ﬁrl), the seg-
ment fy,,|[tf’t++1} falls into a neighborhood of ~;, otherwise, it falls into a
neighborhood of ~; 1.

3. Cohomology equivalence around the flat Fq

As it was done in [CY1, CY2, LC], the orbits connecting two Aubry sets are
constructed by variational method shadowing a sequence of local connecting
orbits. Two types of local connecting orbits are found for this purpose, one
is the variational version of Arnold’s mechanism and the other is based on
the principle of cohomology equivalence.
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3.1. A new version of cohomology equivalence

In [M93], Mather introduced the concept of cohomology equivalence for the
construction of connecting orbit. However, it does not apply to interesting
problem in autonomous systems and one tries to modify the notion (see for
example [B02, B08]).

A new version of cohomology equivalence was introduced in [LC] for au-
tonomous system. For a Tonelli Lagrangian defined on T'T", it is defined not
with respect to the whole T™ as in [M93], but to a section. For n-torus T", the
section is chosen as a non-degenerately embedded section (n—1)-dimensional
torus. We call ¥, non-degenerately embedded (n — 1)-dimensional torus by
assuming a smooth injection ¢: T?~! — T™ such that X is the image of ¢,
and the induced map o,: Hi(T" 1, Z) — H1(T", Z) is an injection.

Let € C HYT" R) be a set where we are going to define cohomol-
ogy equivalence. For each class ¢ € €, we assume that there exists a non-
degenerate embedded (n — 1)-dimensional torus ¥, C T" such that each
c-semi static curve v transversally intersects .. Let

Vv, = ﬂ{iU*Hl(U, R) : Uis a neighborhood of N'(¢) N X.},
U

here i;: U — M denotes inclusion map. V7 is defined to be the annihilator
of Vg, ie. if ¢ € HY(T" R), then ¢ € VL if and only if (¢, h) = 0 for all
h € V.. Clearly,

vi= U{ker ifr : Uis a neighborhood of N'(¢) N 3.}
U

Note that there exists a neighborhood U of N(c) N X, such that V. =
i« H1(U,R) and V= kerif; (see [M93]).

We say that ¢,/ € H'(T",R) are cohomologically equivalent if there
is a continuous curve I': [0,1] — € such that I'(0) = ¢, ['(1) = ¢, a(T'(s))
keeps constant along I', and for each sy € [0, 1] there exists § > 0 such that
['(s) —T'(sp) € V#(SO) whenever s € [0,1] and |s — sg| < 0.

It is proved in [LC] that the Aubry set A(c) is dynamically connected
to the Aubry set A(¢) if the class ¢ is equivalent to ¢.

Here, we extend the cohomology equivalence for autonomous system to
time-periodic system and obtain a new version if we treat the time t as a
new angle variable and choose a section in the extended configuration space
T+ where the extra dimension is for t. If we write the cohomology class in
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coordinates (c1,- -+ ,cp, "), ¢; corresponds to xz;, then ¢* = a(c) corresponds
to t. It appears to be more flexible than that introduced by Mather, which
turns out to be a special case of the new version where the section is chosen
as the time-0-section.

To illustrate how two Aubry sets are dynamically connected by the mech-
anism of cohomology equivalence, we consider the Lagrangian system (1.1).

Lemma 3.1. Given c € H'(T? R) such that ag(c) = E > min ag we assume
that the Mané set ./\7(6) for Lo does not project surjectively on T?. Then there
exist § > 0 and g > 0 such that for each € € [0, €0] and ¢ € a7 (ae(c)) with
|/ — ¢| < 8, the Aubry sets A(c) and A(') are dynamically connected.

Proof. Let w(u) = (w1(p),w2(p)) denote the rotation vector of the measure
w, which obviously depends on the coordinate system. As ap(c¢) > min «p,
there is a line passing through the origin w = 0 € H;(T? R) such that
the convex set Zﬁzl(c) stays one side of the line. So, there is a coordinate
transformation x — Mx where M is a uni-module matrix such that in the
new coordinates wi () > 0 holds for each ergodic c-minimal measure ..
By the condition, there exists a section S, of T? homotopic to {(z1, x2) :
x1 = 0} such that S NNz, (¢) C int UI.; where we use the notation N7, (c)
to denote the Mafé set for L, at ¢ with + = 0, ¢, {I.;} denote disjoint closed
intervals. In the extended configuration space T we choose ¥, = S, x T.

¢ t
<=
C

.
Figure 3.

Because of the upper semi-continuity of the Mané set in the Lagrangian and
in the cohomology class, there exist J,¢y > 0 such that for each € € [0, €]
and |¢ — ¢| < 4 the following

(3.1) NL ()N C (Ul;) x T

holds in the extended configuration space. Treating (c, a.(c)) as a class for
the extended space, one has V. , () = span{(0,0, 1)}, from which one obtains

(¢ ae(e)) — (c.0e(@) € Vi i acld) = acle).
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Regarding each I.; as a segment of line embedded in the torus T?, we find
that the set UI.; is topologically trivial. Therefore, there exists a smooth
function u: T2 — R such that u = (z,¢ — ¢) when it is restricted in a
neighborhood U. = [—d,d] x UI.;. The 1-form p = (¢’ — ¢, dx) — du is closed
with [u] = ¢ — ¢ and its support does not touch U.. We can choose u so that
lu|c= is sufficiently small provided |¢’ — c| is sufficiently small.

To construct orbits connecting A(c) to A(c'), we work in the covering
space M = R x T > (Z1,Z2) =  in the new coordinates, where Z; € R and
To € T.

We can think the Lagrangian L. and the 1-form 7. to be defined on the
covering space, just think it is periodic in x1. Let p: M — R be a smooth
function such that p = 1 for 1 > d and p = 0 for £; < —d. The lift
of the section Y. to the covering space contains infinitely many connected
components, denoted by {¥; : 71 = i}. Let Mt = {Z : ;1 > 1} and
M~-={z:2;<—1}.Forz € M~ and ¥’ € M, we set

hLemc,pu(i’»j,) = inf inf [Ar_ .. u(9)],

k€L 5(—k)=3
~(k)=z'
where
k .
AL ()] = / (L= = ) (3(5),A(5):8) ds + 2k o)

If ¢/ is close to ¢ such that wy(p’) > 0 holds for each ergodic ¢’-minimal
measure g/, the infimum is reached at some k < +oo. To see why, let
Yk : [—k, k] = M be the minimal curve of infs(_)—z 5(k)=z [AL_n.pu(7)]- If
hr. ,nc,pu(ﬂf 7') is attained as k — oo, the orbit (i, Jx) will accumulate some
invariant measure p such that wy (,u) = 0 if we write w(p) = (w(p)1,w(p)2).
For both ¢* = ¢, ¢, the average action of L. — (c*, &) + a(c*) over this mea-
sure is bigger than the action over the minimal measure with w; > 0 which
is equal to zero. Consequently, one would have hr,_,_ ,.(Z, %) = co. For the
details, one can refer to the proof of Lemma 2.1 in [LC].

With positive integers £ and ¢/ we define the Deck transformations ¢* :
M — M: 0*z = (T, — {,%3) and ("% = (2} + /', 7}). Let 54 be the minimal
curve for he oo o(£*Z, £*Z") which is defined on the interval [—k(¢, ), k(¢, ¢')].
Because of super-linear growth of the Lagrangian, one has k(¢,¢') — oo as
£, — oo.

Let g, 00 [=k (0, £)), k(¢i, £;)] — M be the sequence of minimal curves
such that

16121 inf he o o (0°Z, 0*F) = Zi722100[AL6,77C,,0/¢(§&,4)|[fk(€,é'),k(€,€’)}]'
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For any large 7', there exists ig > 0 such that k(&,f;-) > T holds for

all £;,0; > ip and the set {J, ¢ |77 ¢ €i,¢; > o} is pre-compact in
CY[~T,T),M). Let T — oo, by the diagonal extraction argument, there
is a subsequence of {'7@1.74_} which C!-converges on each compact set to a
Cl-curve 4: R — M. Let %7, ;. ,u denote the set of all curves obtained in

this way. Let

(32) Croap= U @GOA0.0, Coam= U GO0,

YECL me,pu YECLe me, o

let 71 : R x T — T? be the standard projection, then one has

1. let v = m17, for each 4 € €1 . o, the orbit (7,%) has A(c) and A(c)
as its a-limit, w-limit set respectively;

2. if = 0, then m,Cr, . pu = N'(¢) and m1Cr 5. o0 = N(c);

3. both Cr, ;..o and Cr, ;. pu are upper-semi continuous in (Le, 7¢, pi).

The first two points are obvious. The third one follows from the observation:
restricted on any large interval [T, T the set {%;} is C'-precompact, where
Yi € Cr.imepps A (Lei,ne, pri) — (Le,ne, ppr). The accumulation point
must be in €7, 5. pu-

Because of the choice of du, each curve ¥ of 67, ,. 0 does not touch the
support of du when it passes through the set X9 + d = {|z1| < d}. Due
to the upper semi-continuity, such property remains true if € and |¢/ — ¢
is suitably small, see the figure on the right in Fig. 3. One can construct
small pdu provided |’ — ¢ is small. Therefore, along each curve y € €1 . ou
the term pdu does not contribute to the Lagrange equation of L. — 1. — pu,
namely, (,7) is an orbit of (ﬁtLé, the Euler-Lagrange flow determined by L.,

connecting A(c) to A(¢). O
3.2. Topology of orbits in the lowest energy level set

Before getting involved into the details about how such cohomology equiva-
lence is found, let us establish a lemma, reminiscent of Shilnikov’s A-lemma.
It is technically crucial for the follow-up demonstration. For ¢ > 0 and
v € R"\{0}, we define a cone

C(v,0,d) = {z € R" : [(z,v)| = O] ||z]l, [[«]| = d}.

Lemma 3.2. For mechanical Hamiltonian of G = (A7 'y,y) — V(z), we
assume that (z,y) = (0,0) € {G71(0)} is a hyperbolic fized point for @,
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where all eigenvalues are real and different:
Spec{JVG(0,0)} = {1, £X2;0 < A\p < A2}

Let (AjE AjE ,) be the eigenvector for £X;, where AjE Ai denote the x-,

y- coordinate component respectively. Let (z(t),y(t)) c {G~ ( )} be an orbit
such that x(t) passes through a ball Bs(0) C R™ with =(—T) € 0Bs(0),
z(T) € 0Bs(0) and x(t) € intBs(0) for all t € (=T,T). Then, for small
0>0and > %, there exist sufficiently large Ty > 0 such that for T > Ty
one has

(2(=T),2(T)) ¢ C(A{,0,0) x C(Ar,,0,0).
If (£T) € C(Afr, 0,0), for T — oo, there exist constant df ,dy such that

‘m(:FT) — df AL, | = o(5).

Proof. By some symplectic transformation of coordinates, the Hamiltonian
is reduced to the normal form

i%( — Nz 2>+P3(x Y)
i=1

where P3(z,y) = O(|(z,9)|?). By the method of variation of constants, we
obtain the solution of the Hamilton equation produced by the normal form

zi(t) ="M (b; + F7) +eM(b + F1),

3.3
(8:3) yi(t) = — )\ie_’\it(bi_ +F)+ )xl-e’\"t(b;-|r + Ff),

where bilL are constants determined by boundary condition and

1 t
Fr= / (XD, Py + Oy, P)(w(s), y(s))ds,
v JO
ot
F‘Zf" :ﬁ e ‘8()\2(9%1’33 - 8$1P3)($(8), y<3>)ds

Be aware that autonomous Hamiltonian keeps constant along its orbits.
Substituting the formula (3.3) at t = 0 for the variable (z,y) in the normal
form, we get a constraint for the constants b;t:

(3.4) G (x(t = —QZAbe b+ Py((b) + b)), Mi(b — b;7)).

1
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Let z = (2,9) and let e*'z denote the flow of the linearized equation 2 =
JVG'(0)z, where A = JVG'(0). Although a conjugacy h = id + v between
the Hamiltonian flow ®%,(z) and the linear flow eMz is only C°, according
to Hartman-Grobman Theorem, we can see from the proof that |v(z)| =
o(]z|) when |z| is small (we will do it later). From the conjugate relation
®L, (h(z)) = eMz+v(eMz) we find the solution of the Hamiltonian equation
takes the form

xi(t) =by e M 4 b e + o(6),
yi(t) =Xi(=b; e M+ b eMt) + o(9),

(2
provided |z(t)], |y(t)] < §. Given a boundary condition z(—T),z(T) with
|x(£T)| = 0 with small § > 0, there is a unique solution z(t), y(t) such that
lz(t)], ly(t)| < 6 for t € [T, T] provided T > 0 is suitably large.
Let us investigate how the constants bli depend on the boundary condi-
tion z(T) = (27 ,24) € 9Bs(0), x(~T) = (z1,25) € dBs(0) by assuming

(3.5)

. _ 0
(36) min{fer o} 1} > 2
For 6 = 1/2, (z(=T),2(T)) € C(A{,,0,6) x C(A{,,0,6) implies (3.6) holds.
Because the curve z||_7 ) stays inside of the ball B5(0) and 7' is sufficiently
large, the orbit (x,y)|—7 1] stays near the stable and unstable manifold of
the fixed point. From (3.5) one immediately obtains the solution

,0)
0)

e Mz +0(8) — e M (2} 4 0(6))

b =
(3.7) Z ey |
. b+ _e—AiT(xj + 0(5)) _ 6_3)”T(l‘; + 0(5))
i 1— 6—4)\iT '

For sufficiently large T > 0, it follows from the assumption (3.6) and Equa-
tion (3.7) that

)
bE| > §e*’\1T, bF| < 2022,

It follows from \; < \g that |bf| < |bf| if T is sufficiently large. In this
case, we get from (3.4) that

(G (z(t),y(8))] > [ATbT by | > 0.

It contradicts the assumption that (z(t),y(t)) € {G~1(0)}. Let T — oo, one
obtains the last item immediately.
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To complete the proof, let us verify Formula (3.5). Consider the time-
1-map defined by €A’z and ®L,(2) and let Bz = ez, &L, ;=1 = Bz + g(2).
Since

%(@E(z) —eMz) = A(DL(2) — M2) + JVP3 (DL, (2)),

by using the method of variation of constants one obtains a formal solution
t
ol (2) — Mz = eAt/ e ATV P3(D% (2))ds.
0

one has |®L, (2)—eA'z| < sup [JVP3(®L,(2))||A~L(eA—1)]. Since [V P3(z)| =
O(]z|?), one obtains |g(2)| = O(|z[?).

In the proof of Hartman-Grobman Theorem, the conjugacy id + v solves
the equation

(B+g)o(id+wv)=(id+v)o B,

which is equivalent to the equation
U(g,v) =v—BovoB ' —go(id+v)oB™ ' =0

Since B is hyperbolic, the linear map v — v — Bowvo B~ CO(R",R") —
CY(R™,R"™) is an isomorphism. Due to the Implicit Function Theorem, for
small g the equation ¥(g,v) = 0 has a unique solution v. Since v is contin-
uous and v(0) = 0, v(z) — 0 as z — 0. It follows from g(z) = O(|z|?) that
lv(z)| = o(|z|) as |z| is small. O

Because of the relation between the eigenvalues || < |A2|, on the unsta-
ble manifold there exist exactly two orbits (v~ (¢),4~(¢)) and (7'~ (¢),4"~(¢))
which approach the origin as ¢ — —oo in the direction of Ag ,:

(4 - (4
(3.8) im 8 _p, T O R W

t=—c0 |37 (¢)] ’ t==c0 [¥ (1)) ’
On the stable manifold there exist exactly two orbits (y(¢),5"(¢)) and
(7' (t),4*(t)) which approach the origin as t — oo in the direction of Ag :

-+ -/+
At 0]
3.9 lim — = Ao, lim — = —Ao,.
(39) t=vo0 [§F(2)] t=oo [+ (¢)]

These curves intersect the circle 0Bs(0) at four points: :1:5i is the intersection
point of v* with dB5(0) and xgi is the intersection point of v/* with 9Bs(0).
Obviously, for small § > 0, :10("5F is close to x5 and x? is close to x:;_.
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3.3. The Mané set for ¢ € 9Fg

To establish the cohomology equivalence around double resonant point, let
us first consider the classical Lagrangian with two degrees of freedom

Loz, &) = %<Aae,sn> + V().

Recall the flat Fo = g (min ag) where o denotes the a-function of L.
The main goal of this subsection is to prove

Theorem 3.1. For the Lagrangian Lg, there exists a residual set U C
C"(T?,R) with » > 2 such that for each V € 0 it holds simultaneously
for all ¢ € OFy that the Mané set does not project surjectively on the config-
uration space: N'(c) C T2.

Proof. We shall show in the following that, if A'(c) = T?, there is some c-
semi static curve approaching the origin {x = 0} in the direction of £A, ,,
namely, one of the formulae in (3.8) and (3.9) holds for this curve.

There are only four orbits (y*(t), 4% (1)), (Y*(t),5'*(t)) approaching the
fixed point in the direction of Ay as t — oo or as t — —o0. These orbits
connect the fixed point to at most four Aubry classes. Because of the work
[BC] it is a C'°°-generic property that, for each first cohomology class, the
Mather set contains at most three connected components. Since each Aubry
class is compact, some § > 0 exists so that Bs(0) is disjoint with these Aubry
sets, unless one of them is the fixed point itself.

In the disk B;(0), there exists a smaller disk U such that none of the
curves yF, '* touch U provided it is semi-static, because the duration of a
semi static curve staying outside of d-neighborhood of Mather set is finite.

We construct potential perturbation V' — V + Vj such that non-negative
Vs is small in C"-topology and suppVs C U. In this way, these Aubry classes
remains unchanged. Since Vj is non-negative, each curve of v, 4/* remains
semi-static for certain c if it is already semi-static before the perturbation is
added. So, if M'(c) = T?, under the small perturbation, none of the c-semi-
static curves passes through the set U.

It is possible that, if the perturbation is added, another curve of 4+, '+
becomes semi-static for other cohomology class ¢. In this case, we construct
a new perturbation further so that the support of potential perturbation
touches none of v+, 4/* if it is ¢/-semi static for the perturbed Lagrangian.
Since there are only four curves v+, 4/ are concerned about, we can do it one
by one. As these four curves are already in the Mané sets containing that four
Aubry classes, they do not lie in any other Mafié set, namely, any other Mané
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set does not project surjectively on T2. Therefore, we complete the proof
under the condition which will be proved in the following proposition. [J

We mention a result in opposite direction. In T*T", a Tonelli Hamilto-
nian without conjugate point is C-integrable [AABZ], the Riemannian tori
are flat [BI]. Next, let us verify that the condition of Theorem 3.1 is really
generic.

Proposition 3.1. Assume the hypotheses (H1,2) for the Lagrangian Lg
and assume N(c) = T? for some ¢ € OFq, then there exist c-semi static
curves which approaches the fized point in the direction of £As, ast — oo
ort — —o0.

Proof. First, let us study the case of ¢ € 0*Fy. Other than the minimal
measure supported on the fixed point, another minimal measure u. exists
with non-zero rotation vector. For typical potential V', there exist at most
three ergodic minimal measures for any first cohomology class [BC]. So, in
the universal covering space 7: R? — T2, there exists a strip S, > {z = 0},
bounded by two c-static curves & and £, in the sense that 7., 7. C M(c),
such that int7S. N M(c) = {0}. If the Mané set projects surjectively onto
T?, this strip is filled with c-semi-static curves £ in the sense that ¢ is c-
semi static, i.e. passing through every point in the strip there is at least one
c-semi static curve.

Lemma 3.3. If the strip S, is filled with c-semi-static curves and w(ji.) s
wrrational, passing through each point in the strip there is only one semi-
static curve.

Proof. As the configuration space is two-torus, any two orbits ﬁ(fc,fc) and
(o 52) share the same rotation vector, where we extend the standard pro-
jection 7: R? — T? in a natural way to 7: TR? — T'T?, it keeps the velocity
unchanged. Properly choosing a section Y. of T? which is a circle, the clo-
sure of & N X, and of 7&, N X, are Denjoy set. So, two curves 7. and 7,
are in the same Aubry class, i.e. h2°(z,2") + he°(2’,2) = 0 holds for any
x € 7,2’ € .

If there were two semi-static curves 7.+, intersecting each other at
7:(0) = ~4(0), the w-limit set of the orbit (7., 4.) must be different from
the w-limit set of the orbit (v.,4.). It is a consequence of the Lipschitz prop-
erty of Aubry set. Let us assume v.(t) — 0 and ~.(t) — 7E as t — oo.
There are four possibilities for ¢t -+ —oo

1. 7.(t) = {0} and ~.(t) — 7 as t — —oc;
2. 7.(t) = {0} and ~.(t) — {0} as t — —o0;
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3. Ye(t) = & and 7.(t) — {0} as t - —o0;
4. 4.(t) = 7 and Y.(t) — TE as t — —o0.

In Case 3, we join 7.(—¢) and v.(¢) by a minimal curve &, join v.(—¢) and
v¢(€) by a minimal curve ¢'. The action along ¢ plus it along £ is smaller
than the action along vc|[_q plus it along 7;|_cq. Notice A(ye|[—cq) +
A(Vel—e,g) > A(E) + A(E) (the curve shortening lemma in Riemannian
geometry). Because the curve 7.|(_oo —q * & * Velje,00) 18 closed, along which
the action is non-negative, the action along the curve %|[—K',—e] x & * fy(’:\[QK]
is smaller than the action along the curve ~.|_g- o) * fyé\[o’ K] for any large
K,K' > 0. It implies that h2°(z,0) + h2°(0,2") > h*°(z,2’) holds for any
xz,2 € 7&. It contradicts the assumption that the Mané set covers the
whole torus: for any m € T?, x, 2’ € M(c) one has h°(x,m) + h(m,z') =
h*>(z, ).

In Case 4, there exists a semi-static curve 7/ which approaches {0} as
t — —oo and approaches . as t — co. We join 7.(—¢) to 7.(€) by a minimal
curve &', join ~v.(—€) to v.(€) by a minimal curve £. Given z,2/ € &,
3 sequence Kj;, K] — oo such that v.(—K!) — =z, 7/(K;) — 2/. Also 3
sequences N;, N/ — oo such that v.(—N/) — z, v.(N;) — 2’. As the action
along 7e|[— N}, —€] * £ * 7¢|ie,n,) Plus the quantity h2°(2’, ) is non-negative,
the action along vz|[_ k1, — *&" Vel [e.00) ¥7¢ | (— 00, k,] is smaller than the action
along Yel[— N7 00)] * Ve |(=o0,k;]- Again, it implies that h°(z,0) 4+ h(0,2") >
h*(z,x") holds for x,2’ € 7&. It is absurd. Other cases can be proved
similarly. O

Next, let us study the case ¢ € 0*Fy with rational w(u.). In this case,
the strip S, is bounded by two curves 7&. and 7&.. In typical case, £, = &,
and there exists an edge E;, C 0Fq such that, for each ¢ € E,, the Mather
set M(c) is made up by the fixed point and the curve g, see Figure 1. In
this case one has 7S, = T?. Using the same argument to prove Lemma 3.3,
one also has

Lemma 3.4. If the Mather set M(c) consists of a fized point and a closed
curve &, N'(c) = T2, then, passing through each point on T? there is only
one semi-static curve.

For ¢ € 0Fy\0*Fp, the Mané set is the same as the Aubry set. Therefore,
passing through each point on T? there is exactly one semi-static curve when
N(c) = T2

As the second step of the proof of the proposition, let us study what will
happen if the strip S, is filled with semi-static curves. As the curves &, as
well as £, is disjoint with the origin, some number § > 0 exists so that these
two curves do not hit the ball Bs(0). Let chi; C 0Bs(0) be such a set that
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passing through each point x € I;t(s the c-semi static curve approaches to the

origin, as t — Fo00. Obviously, the set Ici5 # @ is closed and I_; N Ijé =0
(see the proof of Lemma 3.3). Indeed, one has even stronger property as
follows:

Lemma 3.5. Assume the Mané set covers a neighborhood of the hyperbolic
fized point. Then, some number v > 0 exists so that for suitably small § > 0,
the distance between 1:5 and I 5 is not smaller than vd.

Proof. Let T.5 € I;5 and x:& € I;ré be the endpoint of I;,a and I;“& respec-
tively so that d(wc_’a,xzé) = vd. Passing through the point xzfé there is a
c-semi static curve v such that v (t) — 0 as t — +0o. One then has a
wedge-shaped region in Bs(0), bounded by . and v and denoted by W, see
the left of Figure 4. No semi-static curve passes through intW to approach
the origin. Since the fixed point is hyperbolic, it has its stable and unstable
manifold, determined by the generating functions Ut and U~ respectively,
namely, the stable (unstable) manifold is the graph of the differential of U™
(U7). Restricted in W, these functions satisfy the condition

_ _ A2 A2
U™ (2) =U(0) = Zll=l®,  UH0) = U* (@) > FHall?, ¥ [l <o.

Let {:(:jZ 53 € 0Bs5(0) be a sequence of points which are located between
3325 and T 5 SO that x:iﬁ — xjﬁ as i — oo. By the assumption, passing
through :sz s there is a semi static curve 7,; which keeps close to the curve
’y;é before getting close to the origin. After that, it moves roughly along
the curve 75 and intersect the circle 0Bs(0) at a point ;s see the left
of Figure 4. Clearly, To;5 = Tosasi —> 00 Up to a time translation, we

Figure 4: The red line is a semi-static curve departing from the origin.

assume 7, ;(0) = mzm, Ye,i(Ti) = Toise If we set U~ (0) = U™(0), the action
along the curve 7. ;

223

> 752, as i — oo.

A ['Vc,i

[O,Ti]] - U_(ff;a) - U+($:,5)
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On the other hand, we connect the point z_ ;0 tO xm s by a straight line ¢:
[0,7] = M, then || < Y Since L = $(A~ 1x,x> + V() there exists some

constant a; > 0 which is independent of § such that L(¢,¢) < al(('j?é)2 +62).
Let 7 = v, then one has

AlCljo] < 2a1v6°.

Ifv< 3 , one would have A[Clo,,)] < A[ye,ljo,7y)] for sufficiently large 7. It
is absurd since the curve 7. ; is assumed to be semi-static. O

Lemma 3.6. Assume the Mané set for a class ¢ covers a neighborhood
of the hyperbolic fized point. Let vI and ’yc_ be c-semi static curve passing
through I and I~ s respectively, if both v and v, approach the origin in
the dzrectwn of A1 ast — £o0, then, they approach it in opposite direction,

i.€.
. Jr t
s i@ e e (0]l ( )|
Proof. If both curves v and . approach the origin in the direction of Aj

such that
Yo _ o, T
= 3 (@) == [l ()]
there would be a sharp wedge-shaped region in Bj(0), bounded by ~; and
v. , with a vertex at the origin and denoted W. None of semi static curves
passes through W to approach the origin. The rest of the proof is applying
Lemma 3.5. 0
Next, let us study the case that both I_; and Ic+5 are connected. Denote
by xj’(s,x';’% and T 5 x::_é the end points of .7;“5 and I;(S respectively. Ii[(s is
a point if :):fé = :):'Cié Passing through a point z7, s € 9B;(0)\I;, close
to Ija, there is a c-semi static curve 7.; which will get close to the origin
and eventually depart from the disk Bs(0). Let :U“ & :;;,5 € 0B;(0) be two
sequence of points approaching I + from different sides, x+ s 3:+5 and
’ct s x o 5 Let ’ycz and ’yc ; be the semi static curves passing through the
points x+ ;.5 and x ;.5 Tespectively, they shall intersect the circle 0B;(0) at
pomts T;s and iL‘ 05 when they are going to leave the disk. Some points
T 5 675 e 0Bs5(0) exist such that To;5 T, 5 and :13672’5 — :1:0,(s as i — 00.
If z 5 # :1:'0:5, they divide the circle 9Bs(0) into two arcs. The arc
not containing Ij(s is nothing else but I_;. Indeed, by a time translation,
. + . ’ — _
certain T~ > 0 exists such that ’yc,i(—Tf) = xj’i’é, YeilT; ) = Tois and
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d(7¢,i(0),0) = mine_p+ -1 d(7c,i(t),0). When z_; s — x5, one has T, —
oo. It follows that both T, and x’c_cs are in I o5 As it is connected, the arc
is exactly the set I.s itself. If To5= x'czs, I is just a point.

Recall four points (.%;,ZC:;_,.%&_,I‘S_) defined before: there are exactly
four orbits (y*,4%), (v/%,4'F) intersecting the circle 0B;5(0) at these four
points such that the formulae (3.8) (3.9) hold for v+, ~'*. Let us consider
the location of x" s and w s with respect to the points x(; and x?. All
possibilities are hsted below

1. the two-point set {a: 5 65} does not overlap the set {a;6 , ’+ ;

2. the set {1:675, 075} overlaps the set {z],z}"}.
The following property is guaranteed by the condition A\; < Ao: by shrinking
the size of §, the direction of :BI(; (x";) is not close to the direction of A5,
if it is neither the point xg nor the point xf;“ itself.

For Case 1, because of Lemma 3.6, the semi static curves passing through
1‘2:5 and passing through :U'CJ% approach the origin in the same direction. By
applying Lemma 3.2, one sees that, when m+. i approaches x+5 from one
side of I o¢» the semi-static curve 7., will depart from the disk Bs(0) in a
direction close to A ;; the semi-static curve 'yc ; will depart from the disk

Bs(0) in a direction close to —As, when 2’ < approaches :r frorn another

¢,i,0
51de of It s So, the direction of z i6 18 nearly opposite to the direction of

c,i,5 if i = oo. In this case, we clalm that {z_;, 075} {zy, 25 }. To see
it, let us shrink the radius ¢ to a smaller ¢’. The curve 7., will intersect the
circle 0By (0 ) at a point z_, 5, when it is going to leave the disk Bg(0). If

z.5 & {zs .25}, the direction of x ;5 would not be close to the direction
of £Ay, if &' is sufficiently small and i is sufﬁcrently large. Along the curve
we retreat from the point x i 1O the point a: i where the curve enters
the disk, it is guaranteed by Lemma 3.2 that the direction of x ;.0 and
consequently, the direction of z* s is close to the direction of :l:AQ z- It is
obviously absurd. For the sequence {:1: s} one has the same conclusion.
Therefore, the set I o5 occupies an arc Wlth length close to wd. Because the
fixed point is hyperbolic, semi static curves crossing the arc I(;; produces
orbits staying on the unstable manifold. Therefore, some number d > 0
exists, no matter how small the number § > 0 could be, such that the
circle 9B4(0) contains an arc I, with length close to md. Through each
point of I_, there is a semi static curve which approaches the origin as the
time approaches minus infinity, see the left figure in Figure 5. The figure in
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Ag)z AZ,z Ag’z

Al,z 1z 1z

Figure 5: The red lines are the semi-static curves approach the origin along
the direction of Ay, as t — +oo.

the middle corresponds to case that the two-point set {x;5,x;}} does not
overlap the set {z}, 25 }. In both cases, there are c-semi static curves which
approaches the origin in the direction of Ag, as ¢ = —oo or as t — co. The
figure on the right is in the case when the set {:U:(;,x:%} overlaps the set
{J;;, x:;r}, namely, the case 2.

It follows from the argument above that each point :L‘Ié € 8]:5\{56('{, 25t}
is associated with a point of {1'6_,%'3_} N I;a, a non-empty set, the circle
0Bs5(0) is divided into two arcs by these two points. One of the arcs does
not contain points of Icti U Ic_ﬁ except for the end points. Consequently, I;Ed
contains at most two connected components; and if I;’(; has two connected
components, then so does I;(S.

Let v, v." be the semi-static curve passing through different connected
components of Ic+5. If 4 approach the origin in the direction of £A; ;, then
7+ approaches in the direction of FA; ,:

-+ -+
(3.10) lim ﬁ—(t) — — lim 7+—(t)
t=o0 |14 (¢) | t=o0 |14 (t) |

If not, there would be a sharp wedge-shaped region W in Bs(0), bounded by
v+ and /T with a vertex at the origin such that through each point in the
interior of W, there is a semi-static curve which does not approach the origin
as t — 0o. As these semi-static curves do not intersect each other, both ~
and +." approach the origin as ¢ — oo, there must be a semi static curve
which passes through W and approaches the origin as t — —oo, see the right
of Figure 4. This contradicts Lemma 3.4. If v, " approach the fixed point
in the direction of Ay, then {zy,z} } = I s, ie. there exist semi-static
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curve approaching the fixed point in the direction of Ay, as t — foo. This
completes the proof of Proposition 3.1. O

It holds unconditionally that A'(¢) C T? if ¢ € intE; C dF(\d*Fo, since
one has N(c) = A(c) € A() for ¢ € intE; and ¢ € IE,;. It also holds
unconditionally that N'(c) € T? if ¢ € intE; C 8*Fy if M(c) consists of the
fixed point and a periodic curve.

In the latter case, if N'(¢) = T?, one can see from the proof of Lemma
3.4 that N(c) = A(c). But it is impossible since A(c) € A(¢) for ¢ € OE,.
A typical portrait of semi-static curves is shown in Figure 1.

In the former case, let E; C 0F(\0*Fy be an edge joined to other two
edges at the vertex ¢;, ¢;4+1 respectively. By Theorem 2.1, the Aubry set for
¢; consists of two minimal homoclinic curves «y;_1 and ~; with j = ¢,¢ + 1.
Denote by g; € Z? the homology class of ;, then the matrix (g;_1,g;)
is uni-module. By introducing suitable coordinates on T?, we can assume

|
! 1 - 1 - 1
N N\,
: A : '1(‘ 1 ,¢»\ 1
1 I
1 3 1, N R 1
1 \ & \ 4 A I
1 v v \ |
1 AN | N \ |
! AT X N
- ~ L - S * ~, L L
I 1

gi = (1,0). In this coordinate system, ¢g;—1 = (k,1) and g;y1 = (K, —1).
In this figure, each unit square represents a fundamental domain of T? in
the universal covering space, the horizontal line represents the lift of the
homoclinic curve ~y;, which stays in the Aubry set for each ¢ € E;. The blue
dashed lines represent the lift of the «;_; which stays in the Aubry set for the
class at one end-point of E;. The purple dashed lines represents the lift of the
i1 which stays in the Aubry set for the class at another end-point of E;.

3.4. Annulus of cohomology equivalence around the disk Fg

To establish the new version of cohomology equivalence around the flat Fy,
we make use of the upper semi-continuity of Mané set in the first cohomol-
ogy class. According to Theorem 3.1, for C**-generic potential V in the
Lagrangian Lg, it holds simultaneously for all ¢ € 0F( that the Mané set
does not cover the configuration space: N'(c) C T?. As OFq is compact, cer-
tain Ay > 0 exists such that for each ¢ € ay *(A) with A < 2Ay, the Maiié
set does not project surjectively on the 2-torus too. Recall ay denotes the
a-function for L.

Since the Lagrangian Lg is defined on 2-torus, for each average action
A > min ag, the dynamics on the energy level G~1(A) is similar to an area-
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preserving twist map, where G = %(A_ly, y)—V(x). First of all, the rotation
vector of each minimal measure is not zero. Thus, any minimal measure is
not supported on fixed points. Next, for any class ¢ € o 1(A), all c-minimal
measures share the same rotation direction. Otherwise, the Lipschitz graph
property of Mather set will be violated. Each ergodic minimal measure is
supported on a periodic orbit if the rotation direction is rational.

Therefore, V¥ ¢ € ag ' (A), some circle S. C T? exists so that each semi-
static curve intersects the circle transversally and N'(¢) NS, C S.. As Marié
set is closed, there exist finitely many intervals I..; C S, disjoint to each other
such that N(c) NS, C Ul.;, see the left figure in Figure 3. To establish
cohomology equivalence, we work in the extended configuration space T3
where the extra dimension is for the time t.

In the extended configuration space T3, we choose a section ¥, = S, x T.
As Ly is independent of ¢, the Mané set in the extended space, denoted by
N1, (c), stays in the strips: N7, (¢)NE. C (Ul.;) X T, see the figure in middle
of Figure 3.

Recall the Lagrangian Lg is a truncation of the Lagrangian L. of (1.1)
rewritten as the following

(311) L= %<A¢,g;~> 4 V(@) + VeR(w,#,),  (x,y) € T? x R2.

Let F. = {c € HY(T?,R) : a.(c) = mina,}. Because of the upper-semi
continuity of Marié set with respect to small perturbation of Lagrangian, for
each ¢ € JF, there is €. > 0 such that for each € < ¢, one has

€

(3.12) Ni (e)nX. C (UIL;) x T,

see the right figure of Figure 3.

Because OF., the boundary of F., is compact, some €, > 0 exists such
that the relation (3.12) holds simultaneously for any ¢ € JF and any € < ey.
Applying the upper semi-continuity of Mané set with respect to cohomology
class again, one obtains that Formula (3.12) holds for any ¢ such that a.(c) €
(min ae, min ae + Ay). Therefore, one has

Theorem 3.2. Each C*T-generic potential V in (3.11) is associated with
positive constants ey, Ay > 0 such that for each € € [0, ey] some annulus

A, ={ce H(T%R) : a.(c) € (mina,,Ay)}

admits a foliation of circles Ty = {c: a(c) = E}, each circle establishes a
relation of cohomology equivalence.
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Proof. We choose the section ¥, = S, x T and obtain from (3.12) that
Ve = span{(0,0,1)}, V¢ € a7 H(minag, Ay).

In this case, one has V- = span{(1,0,0),(0,1,0)}. For any two classes c,
¢ on the same circle I'g, one has (c, ac(c)) — (¢, a.(d)) = (c — ¢,0) € V.,
namely, if two classes are located on the same circle, they are cohomologically
equivalent. O

Theorem 1.1 follows immediately from this theorem. A special case of
the theorem is ¢ = 0, when it appears to be a classical system with two
degrees of freedom, far from integrable. By this theorem, one is able to show
the topological transitivity among all Aubry sets fl(c) on any energy level
set where ap(c) — minag > 0 is small. The proof will be finished later.

By this theorem, one also obtains the cohomology equivalence in Tonelli
Lagrangian with three degrees of freedom. Restricted on energy level set,
a Hamiltonian with n-degrees of freedom can be reduced to a Hamiltonian
with n — % degrees of freedom. Let us study what is the relation between
the a-function of the original autonomous Hamiltonian and the reduced
Hamiltonian.

Theorem 3.3. For the Hamiltonian H(x, xpn,y, yn), we assume that 0y, H #
0 holds on (T™ x B)N{H Y(E)} where E > minay, B C R" is a ball. Let
Yn = —AG(z,y,t) be the solution of H(x, %t,y, —A\G) = E, let ay, ag be
the a-function for the Lagrangian Ly and Lg, determined by H and G
respectively. For a class c € H (T R), if the c-minimal curve z(t) of Lg
satisfies the condition

(z(t), N, y(t), —AG(x(t),y(t),t) € T" x B, VteR
where y(t) = 03 Lg(x(t),4(t), t), then one has (¢, —Aag(c)) € a; (E).
Proof. Let ¢ = (¢, —Aag(c), ¥ = (7,7), T = (x,2z,) and § = (y,yn). Let

~ be c-minimal curve for the Lagrange flow qStLG, 4 is then ¢-minimal curve
for the Lagrange flow gthé if v, = x,, and 7 is re-parameterized 7 — t. If

x = z(7) is a solution of ¢} , one obtains y = y(7) from the Hamiltonian
equations. As H(Z(t),y(t)) = E, we find

At = [ ((Gw—c)-G+aa()ar
Z/WW—Q—H+Dﬁ:MMm.

This completes the proof. O
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We restrict ourselves to the case n = 3. Let m3 : R® — R? be the
projection so that m3Z = z. According to this theorem, 713_1 : HY(T2,R) —
aI}l(E) is a homeomorphism when c is restricted in F 4 d, a d-neighborhood
of F = ag'(minag).

Let GG¢ be the Hamiltonian obtained from L. which is reduced from a
Tonelli Hamiltonian H,(z,x3,y,y3) = E. What obtained in Theorem 3.2
have their counterpart on the level set {oz;{l(E)} where ¢ € 73 1 (F + d) N
a;ﬁ (E). Therefore, restricted on a;I}(E) one establishes some cohomology
equivalence provided E > minag. .

Theorem 3.4. Each C?T-generic potential V in (1.1) is associated with a
constant Ay > 0 such that an annulus-like surface

A= ozI_{l(E) N{ec3 € (min o, min e + Ay)}

admits a foliation of contour circles of 'y = {¢: ay.(¢) = E,c3 = A}, each
of these circles establishes a relation of cohomology equivalence.

4. Generalized transition chain

The goal of this section is to prove Theorem 1.2. The concept of transition
chain was proposed by Arnold in [A64] for the construction of diffusion
orbits. It was formulated in geometric language. The generalized transition
chain formulated in our previous work [CY1, CY2, LC]| is a combination of
Arnold’s mechanism and the mechanism of cohomology equivalence. It is
in variational language which requires less information about the geometric
structure.

4.1. Genericity of the generalized transition chain

By variational method, two types of orbit have been constructed to connect
one Aubry set to another one nearby. One is based on Arnold’s mechanism,
the other is based on cohomology equivalence.

We recall Arnold’s example in [A64]. If the stable and unstable manifold
of a circle intersect transversally each other, the unstable manifold intersects
the stable manifold of other circles nearby. To understand this phenomenon
from variational point of view, let us work in a finite covering space 7 :
T x 2T — T such that the lift of the circle consists of two copies {z2 =
0}U{x2 = 1}. In the covering space, the Aubry set consists of two circles, the
Mané set is composed by the Aubry set and the minimal heteroclinic orbit
connecting the circles. The transversal intersection of the stable and unstable
manifold implies that Ny(c)\(Ao(c) + ) consists of discrete points only.
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Hinted by this observation one obtains the variational version of Arnold’s
mechanism.

Let # : M — M be a finite covering of the space M, let N (c, M)
and A(c, M) be the Mané set, Aubry set with respect to M. The following
condition HA (hypothesis of Arnold) ensures that the A(c) is dynamically
connected to A(c) if ¢ is sufficiently close to ¢ and A(c) is contained in a
small neighborhood of A(c)

(HA): there exists a finite covering 7 : M — M such that

1. for time-periodic systems: #Ny(c, M)\(Ao(c, M) 4 &') is non-empty
and totally disconnected;
2. for autonomous systems: 7N (¢, M)|p\(A(c, M)+4d") is non-empty and

totally disconnected, where D is a section of M.

It is not necessary to work always in nontrivial finite covering space. If the
Aubry set contains more than one class, one can choose M = M. The con-
dition (HA) appears weaker than the condition of transversal intersection
of stable and unstable manifolds. It also works if the intersection is only
topologically transversal.

Definition 4.1. Two cohomology classes ¢, € HY(M,R) are joined by
a generalized transition chain if a continuous curve I': [0,1] — H'(M,R)
exists such that and for each s € [0,1] at least one of the following cases
takes place:

1. the condition (HA) holds for T'(s) and A(T'(s")) lies in a small neigh-
borhood of A(T'(s)) if |s' — s| is small;

2. there is 65 > 0, for each s’ € (s — 05,8 + 0s), I'(s) is cohomologically
equivalent to T'(s).

If the Lagrangian is autonomous, it is also required that a(I'(s)) keeps con-
stant.

By the definition, for each cohomology class I'(s), the Aubry set A(I'(s))
can be connected to certain Aubry set A(I'(s')) nearby, either by Arnold’s
mechanism which looks like heteroclinic orbits as shown in the first case, or
by cohomology equivalence. The existence of generalized transition chain im-
plies the existence of sequence of local connecting orbits (7;,;), a sequence
of numbers s; such that a(v;, %) C A(I'(s;)) and w(vi, %)) € AT (si+1))-
Global connecting orbits are constructed shadowing these local connecting
orbits, one can refer [CY2, LC] for the details.

To establish a transition chain for the problem under consideration, let
us consider what candidates of transition chain we already have.
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Given an irreducible class g, let v, < yg such that a.(vy9) < Ay and
ae(ygg) = 2"~ where r € (0, 3). We consider the set

(4.1) Cowyr = |J Zs.(vg)

I/E[Vgﬂléﬂ

According to Theorem 1.1 in [C15], for C°*-generic potential V in the La-
grangian L. of (3.11), the set Cg,,,gﬂ,g looks like a channel. For each class
¢ in the channel, the Aubry set lies on some normally hyperbolic invariant
cylinder. Because the thickness of the annulus A, is of order /Ay > 0,
independent of ¢, one has

Theorem 4.1 (Overlap Property). Given any two irreducible classes g,q’ €

H1(T?,7Z), there exists a positive number ey = ey (g,g') > 0 such that the

channels intersect the annulus: Cgy, o N Ac # @ and Cy ) | N A # O
9 I gl

provided 0 < € < ey. Moreover,

1. the channel Cg’yg,,,g s connected to the channel (Cg,,l,g,’l,g, by circles Ty,
of cohomology equivalence;

2. For each ¢ € intCy, ,n (intC
normally hyperbolic invariant cylinder.

glwgwg/) the Aubry set is located in a

By the theorem, we obtains a candidate of transition chain that connects
any class ¢ € (Cgﬂ,g,,,; to another class ¢ € (Cg,ﬂ,g,,u(h,. To make sure the
candidate is indeed a transition chain we need to Verifgf the condition (HA)
for those cohomology classes in the channels for which the time-0-section of
the Aubry set is an invariant circle.

Let us recall Theorem 1.1 of [C15]. There exists a C5*-residual subset 0,
for each V' € 90 and each irreducible class g € Hy(T?,Z), there exists ey, > 0

such that V e € [0,ey] and V ¢ € (Cg,vg,vgb the time-0-section of the Mather

set Mo(c) lies on some normally hyperbolic invariant cylinder. The number
of the cylinders is independent of €. Indeed, 3 some large E;, such that all
Mather sets {My(c)} lie on one cylinder if ¢ € Cypyn with ac(c) > Ej,.
Let {E; :i=0,1,---i9} be the bifurcation points, i.e. for ¢ € (Cg,ug,yg with
ap(c) = E;, the set M(c) of Ly is composed by two periodic orbits, while for
¢ with ag(c) # Ej;, it consists of one periodic orbit (see Theorem 2.2, proved
in [CZ2]).

To illustrate the result, let us work in the space T*T? x T. The coun-
terpart of M(c), A(c) and N'(c) in the space are still called Mather, Aubry
and Mané set respectively.
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Denote by Il g, , g, the cylinder composed of the Mather sets which
are periodic orbits {zg(t),yg(t)} of the Hamiltonian flow &,

Uy g6 ={(xe),ye®)) : [zg] = g, F € [Ei-1, Ei],t € R}.

As F; is a bifurcation point, the Mather set consists of two periodic orbits
in G~1(E;), one makes up the upper boundary of Iy E, . E,, denoted by ZJJEFN
another one makes up the lower boundary of Iy g, g, ,, denoted by zp . Due
to the hyperbolicity of the orbits at both ends, the cylinder has its continu-
ous extension Il; g, , s r,4+s composed of the hyperbolic periodic orbits such
that G(zg(t),ye(t)) € [Ei1 — 6, E; + ). Denoted by 7 (t), y(t) the pe-
riodic orbit lying in Iy g, ,_sp,+s such that G(z4(t),y5(t)) € [Ei, E; +
4], by (xg(t),yg(t)) the periodic orbit lying in Iy g,_s5E,,,+5 such that
G(xg(t),yp(t)) € [Ei — 0, E;]. Tt is clearly C5T-generic condition that

(H3): 58 (1. (0), E;) > (a7 (0), E;).
Let G. be the Hamiltonian obtained from L., ®' be the Hamiltonian

flow of G, ®. = ®1 with T = [%]% As G, is a perturbation of G, the
main body of Il; g, ,_s5 k45 survives perturbation &, — ®., denoted by

I g 5. Bits, Where 6 76 when € — 0.

Apoint (z,y) €IIf 5 p s implies Ge(x,y,0) € [Ej_1—0, Ei+0] as
well as @c(z,y) €I |5 p s unless Ge(Pe(2,y),0) & [Ei—1—0c, Ei+0c).

Because of the hypothesis (H3), some E; . — Ej; exists such that the
Aubry set A(c) consists of two classes if ¢ € Cy,, ,» and ac(c) = Ej, one
lies in H;EFI_&?E#(SE and the other one lies in H;,Ei—ég,EHl—&-éf' For each
c € Cyp,up With ace(c) € (Ei—1¢, Ej ) the Aubry set liesin IIf 5 5 5,
guaranteed by Proposition 5.2 of [C15].

Let us study the genericity of the transition chain I'; — Cgﬂ,g,ys;; so that
ag(Fl(O)) = Ei—l,e and O[E(Fz(l)) = Ei,e-

Lemma 4.1. For C°T-generic V and C**-generic R, in Lagrangian L,
the condition (HA) holds for each invariant circle in II{ 5 p 5 with
1=1,2,--1p.

Proof. The cylinder Y g, . E,4e. Can be thought as the image of a stan-
dard cylinder II = {(z,y) : (z2,92) = 0,21 € T,y; € [0,1]} under the map
P I — I 5 6. Bts.- This map induces a 2-form ¥*w on II

Y*w = Dipdxy A diy

where D1 is the Jacobian of . Since the second de Rham cohomology group
of Il is trivial, it follows from Moser’s argument on the isotopy of symplectic



Dynamics around the double resonance 197

forms [Mo] that there exists a diffeomorphism ; on II such that

(zp o 1p1)*w =dxi A dy;.

As H; E,_,_6. E,+s. 18 invariant for the time-periodic map ®¢, and 5 w = w,
one has

((zp o) Lo dg, o (o wl))*d:vl Adyy = dzy A dy

namely, (1 o11) Lo®g o(1por)y) preserves the standard area. Each invariant
circle I'y C H; B\ —6. E,+5, 18 pulled back to the standard cylinder, denoted
by I'’ which is Lipschitz. The parameter o is set to be the algebraic area
bounded by the circle and a prescribed one, |I% =TI, |co < C*y/|o — o] (see
[CY1]). As the maps 9,1 are smooth, back to the current coordinate one
has [I's —T'g'[co < C1v/|o — o’|. We notice that the cylinder IIf 5 5 5 5.
may be crumple and slanted, the constant C; might approach infinity if the
crumpled cylinder extends to the homoclinic orbits. However, since we keep
ourselves away from the double resonance for certain distance, Eg > 0 is
independent of ¢, the cylinders are moderately crumpled. The constant C

is therefore uniformly bounded for ¢ if we are restricted on the cylinder

H;7Ei—1 —6c,Ei+d."

It is a typical phenomenon that the invariant circles make up a Cantor
set. Thus, the parameter o is defined on a bounder Cantor set 2; C R. If the
topology on ¥; is inherited from the Euclidean metric on R, a continuous
function ¢ : Xj = Cy,, ,» is obtained such that I'; = A(c(o)). As the chan-
nel Cy, ,» admits a foliation of intervals {I,4}, each o corresponds to an
interval. To make it single-valued function, we choose a smooth curve lying
in (Cgﬂ,gﬂjg which intersects every interval I, 4 transversally. Let ¢ = ¢(o) be
the intersection point of the curve with the interval corresponding to o.

Let 7 : M — T2 be the covering space so that the lift of H;EFP(SE,E#&
has two components, denoted by II;; and 1I; ,, where the subscript [, u are
introduced to indicate lower and upper respectively. In suitable coordinates
one has g = (1,0) and then M = T x 2T, namely, 2; mod 1 and x5 mod 2.

The lift of the invariant circle also has two components I';; and I';,,. To
get a special weak KAM solution uil, we perturb the Lagrangian L (&, z) —
Le(&,x)+ 0Vs(x) with V5 > 0 and suppVs = 71’5, + d, where 7 : TM — T2
is the standard projection along the tangent fiber. For § > 0, a unique
weak KAM solution uilﬁ exists for ¢ = ¢(o) such that for almost z €

M\(nT,., + d), the initial condition (z,y) determines a unique forward
(backward) semi-static orbit which approaches the circle I'y; as k — oo
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(k — —o0). Let & | 0, some function u>

ol exists such that uil 5 uil in
CY%topology. Similarly, we get another function u},. Both ut 1 and ut, are

weak KAM solutions and one has

(42) o) (z,2') = ul, (2,0) —ul ,(z,0), ' €nlyy
‘2 b b
o) (', 2) = u,(x,0) — u;l(a:', 0), 2’ €nlyy.

The normal hyperbolicity guarantees the smooth dependence of sta-
ble (unstable) fibers on the base points, the local stable (unstable) man-
ifolds of I'y;, I'v, are also parameterized by o with % 5-Holder continuity.
They are the time-0-section of the graph of du™ ol and au . respectively. So,

\/|o — ¢’| holds in a neighborhood 771“0.71 4+ d of the circle

|uo,z 0’,2
Iy, for 1 =1, u.

In the region M\ (7T, +6) U (74, + ) with 0 < & < d, the stable and
unstable manifold may not keep horizontal any more, because of conjugate
point. As a result, it seems not so clear that the Holder modulus continuity
hold in this region. However, due to Lemma 6.4 in [CY2] (substitute h2°
with the formulae (4.2)), one has

max [uZ(x,0) - u (2,0)] < Collo — o[> +|e(o) — c(0)]),
€M\, ,+3 ’ ’

max Jub,(2,0) — uk ,(,0)| < Ca(|o — 0’| + |c(o) — c(o”)]).
z€M\7L, 1 +6

(4.3)

The rest of the proof is completed by applying the argument in Section
6 of [CY1]. Under the perturbation of bump function as designed there, the
set of barrier function undergoes a translation {B } — {B* +5G} when
they are restricted on a disk D where the mlmmal homochnlc curves pass
through. We define a set 3 ¢ C°. A function U € 3 if the set U~ (mm U)nD
is not totally disconnected. This set has infinite “codimensions” in C%(T3).
Since the box dimension of {B*( } is finite, there are abundant perturba-
tions of shift {B( } = {B () —|— dG} so that {B*( ) + 0GtN3 =0o. It
implies that all mlmmal homoclinic orbits are totally disconnected for the
perturbed Lagrangian. Clearly, the perturbation can be arbitrarily small.
For the details, one can refer to Section 6 of [CY1]. O

To study the (HA) condition for invariant circles in high energy level
set, in virtue of the result in [C15], we only need to consider one cylinder
which extends from certain energy level with large E but independent of e
to the level where E = O(e2571).

To illustrate why there does not exist bifurcation point so that one cylin-
der extends for such a large scale, we notice that along any periodic orbit



Dynamics around the double resonance 199

(z(t),y(t)) of ®L lying in high energy level set the quantity |y(¢)| is large.
For g = (1,0) and large v € Z, in the new coordinates y — y — ¢/, z = x
where 3y’ = vAg the Hamiltonian G appears to be (up to a constant)

G=vy+5 <A Yy,y) = V().

under further coordinate rescaling (z1,z2,y1,y2) — (%, 22, Y1, y2) one ob-
tains a time-periodic Hamiltonian with one degrees of freedom

1 1
n = 5%% +bEys — V(var, x2) + ;RH(V$17$273127 E) + const.
which solves the equation G(%%, z2, —Vyl(uazl, T2, yg) y2) = vE, a and b are
constants with a > 0 the remainder ;RH is of order - in C"-topology in the
variable (vzy,z2,y2). One gains a Lagrangian with one and half degrees of
freedom from this Hamiltonian

1 bE 1

L' = —x% + —a9 + V(I/l'l,xg) + _RL(l/.Tl,LUQ,.f'UQ,E).

2a a v
The problem to find minimal periodic orbits of Ly with the class g and large
energy is switched to the problem to find the minimizer of the function

1
F(zy,v,E) = inf / L'(vr,~(7),%(7))dr
Y(0)=y(1)=z2 Jo

The term %1}2 is a closed 1-form, does not contribute the function F'(z2, E).
Applying the technique to prove Riemann-Lebesgue lemma one obtains a
decomposition of the function F' = Fj + %F 'r where

2
Folea ) = [ (o Cun(raa) P + V)us(r.aa) )ar.

where [V fo (v7,22)dT, vy, is the minimal curve of F(x2,v, E). Thus,
the mlmmal curve is Cl-close to a straight line (1) = xo € [V]™(min[V]).
For generic V, the minimal point of [V] is unique and non-degenerate. As the
term %x% +[V](z2) is independent of v and E, such a cylinder exists and ex-
tends from certain energy level with large E but independent of € to the level

set where E = O(e?:~1). One can refer to Section 3 of [C15] for the details.

Lemma 4.2. For C°t-generic V and C*T-generic R, in Lagrangian L., the
condition (HA) holds for each invariant circle in HZ B —§. 21
yHig €
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Proof. To check the condition (HA) for the cylinder II{ iy =5, 217 We Te-
call that the cylinder II; g, c2x-1 is composed by minimal periodic orbits of
G with high energy if E;, > 0 is large. By Proposition 3.1 in [C15], the min-
imal periodic orbit in G~!(F) remains in a small neighborhood of the circle
{(z,y) : (x2,y) = const.} if E > 0 is suitably large. Therefore, the cylinder
H;y Big—.,e201 is a slight deformation of standard cylinder, the map ®. is
close to integrable when it is restricted on the cylinder. Thus, the constant
C in the parameterization so that |I'v — I'y/|co < C14/|o — ¢’| is uniformly
bounded for the whole cylinder. Although the quantity

max{|o — 0’| : To, Do CIIg g 5 o0}

approaches infinity as e — 0, it is finite once € > 0 is fixed. As we only need
to show the density of (HA) i.e. for each \/eR, some other \/eR. exists such
that |/eR. — v/eéR.| can be arbitrarily small and (HA) holds for v/eR.. It
implies the number ¢ > 0 is fixed when we handle this problem. So, the
parameter o is restricted in a bounded set, and consequently, the argument
for H;,Eifréé,EHrée applies here. O

With Lemma 4.1, Lemma 4.2 and the annulus of cohomology equiva-
lence we see that a generalized transition chain has been established to join
a class ¢ € Cgﬂ,g,,,g and another class ¢ € Cg/%’yyh It passes through the
channel (Cg’,,g’l,g down to lower energy level set, then turns around the dou-
ble resonance along circles of cohomology equivalence before it reaches the
channel Cy/ s, through which it arrives at c.

As a matter of fact, the channel can be deeply extended to lower energy
level set a7 (O(e?)) where d < Uk, the constant ¥ < § only depends on Ly,
see Formula (2.29) in [C15].

For Lagrangian Ly and each v € (0, 1], it follows from Proposition 2.6
that the vg-minimal minimal periodic orbit lies on some NHIC. In terms
of Poincaré return map, the normal hyperbolicity approaches infinity as
v ] 0 (see Lemma 2.3), meanwhile the return time approaches infinity also.
The theorem of implicit function guarantees that certain NHIC extends
from v = 40 to v = 1. Thus, there are finitely many cylinders only, since
hyperbolic fixed points are isolated. Denote by Hg’& g, the cylinder where
Ey = ag(ZLs,(10g)), £ =1,2,- -+, £y. One does not expect the whole cylinder
survives the time-periodic perturbation \/eR., but large part of H§707yo sur-
vives. An invariant manifold with boundary is said to be overflowing if any
point leaves or enters the manifold only by passing through its boundary.

Lemma 4.3. Let ®! be the Hamiltonian flow of G, obtained from the La-
grangian L¢ by the Legendre transformation, then
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1. The Hamiltonian flow ® admits an overflowing invariant cylinder

H;ﬁ:d,EDHE in T*T?x 0y/€T (0 = 1, ﬁ) which lies in an € -neighborhood
. =y :

0f Iy ca gy 15, X 0\/€T, the point (x,y,t) € H;’,ed,Eo-s—(L zf%ed < G(z,y) <
EO + (56 — ed;

2. There is a number N > 1 such that for a class ¢ € C4 with ac(c) >
Ne?, the Aubry set A(c) lies in the set ﬁ;’,id,Eo—i—dﬁ' Indeed, each orbit
in the Aubry set does not hit the energy level set GZH(E) with E < €.

Proof. The condition is not required that H§707 B, 18 c0£npletely foliated by
vg-minimal periodic orbits of Lg. If the Aubry set A(c) is contained in
N4
Hg7€d7E0+6F ’
along curves on other cylinders, one can assume the condition holds for Lj,

by perturbing the Lagrangian Ly — Lj, to increase the action

while L{; = Ly when they are restricted in a neighborhood of ﬁ;,id, Fots.-
Therefore, one has Lj + \/eR. = L, in the neighborhood.
Since the Hamiltonian G, is obtained from L, by the Legendre transfor-
mation, it is a time-periodic €®-perturbation of GG, namely, G, = G + €"R..
To modify the Hamiltonian G, we choose a C2-function p so that p(v) =
1forv >1, p(v) =0 for v < 0 and set po = 1 — p(G(m’y)f(eEd"Mred)),

_¢3d
pi(z,y) = ,0(2%). We set

G+ e piRe, if G(z,y) € [, €],
(4.4) G. =G+ paR,, if G(x,y) € [Ey+ 6 — e, Eg+ 6,

G, elsewhere.

Clearly, ||GL — G|lc2 < 1if d < k and € < 1. It follows that the cylin-
der Il csa g,45, persists the perturbation &g — ®¢, the boundary of the

tt+1

cylinder remains unchanged. We use the notation ®g: = ®2," |;=o where

<I>th (x,y) denotes a point on the orbit of the Hamiltonian flow that emanate
from the point (x,y) at the time ¢ and arrive at this point after the time
t' — t. The survived cylinder in the phase space T? x R? x T is denoted
by ﬁ;,eM,EOJr&E‘ Since G, = G. when they are restricted to ﬁ;esd’Eﬁée N
{(z,y,t) : G € [3€%, Ey + 6. — €]}, it completes the proof for the first part.

For the second part, we only need to prove it for the Hamiltonian G
of (4.4). So, each orbit in the Aubry set lies in the cylinder forever. If the
lemma does not hold, there would be an orbit z(¢t) = (x(¢),y(t)) lying in
the Aubry set for ¢ € C, N a t(Ne?) hitting the energy level G_1(e?) at
the time tg, namely, G(2(tp),tp) = €. It returns to a neighborhood of z(tg)
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after a time t' = O(|Ine€?|) (cf. Formula (2.22) of [C15]). Because % = %,
for time-1-periodic case, one has

(4.5) |GL(2(t +to),t +to) — GL(z(to), to)] < Kt'e”

For time—g%ﬁ—periodic case, along an orbit z(s) of the Hamiltonian flow, the
variation of the energy is controlled by

d 0 _10R,

. . ST 1 . . . t
Since R, is 1-periodic in over we expend R, into Fourier series of PN
0G(z,t ¥4 i
76(7):6'{ R()gﬁ.
ot
040

Integrating by parts, we have

g N t1 e e t1
U s / Reo(2(0))e 57 dt = € Ry y(())e' o7
to

0 Lo

(4.7) . -
— / (OR. 4, 2(t))e a7 dt.
to
10:Bellen

Because the perturbation term R, is C*-smooth, one has |0.Re 0| < | Sl
Since z(t) solves the equation 2(t) = JV.G(z(t),t), by setting

K = max_[|[V.Ge(2(t),t)]|]|0- R HcsZ T
(=,t)ell 040 g

where the maximum is taken over the cylinder l:I; e By K is uniformly upper
bounded for small e. It follows from (4.6) and (4.7) that

Gulalt)ot) = Gulatto).to)] = | [ ZGul=(0). 0

t

+ €®

< EﬁRe( 7
t

t1
/t (OReq, 2(t))é’ gfdt)
40 /o

the right hand side is bounded by K (¢; — to)e”, namely, the estimate (4.5)
holds also in time-%ﬁ-periodic case.

As GTY(E) NIl ca g, is an invariant circle for ®¢, the perturbed cylinder
is O(e")-close to the original one in C"~!-topology. The cylinder may be
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crumpled but at most up to the order O(e%) see (4.10) below, so there is a
time T' = O(|In €?|) and a small number p/ = ds > 0 such that x—yu’ > 0 and

(4.8) 12(T + to) — 2(to))|| < CTe" .

By decreasing d — d’ such that d’ —d = O(|Ine|™!) one can assume T is an
integer in time-1-periodic case. In time—g%/g—periodic case, 1" is very close to

[ulove.
Since x(t) is c-static, |x(tg) — x(to + T)| < CTe"* the following holds
in both cases

T+t0
19) | / £, 3(t),1) — (e, #(t)) + al(c))dt| < e

However, by applying the following observation

1. the ae-function for G is a small perturbation of g, | — ag| < €”
(see [C11]);

2. for ¢ € Cy, g is smooth and strictly convex in the direction of g, its
derivative in the direction of g is the frequency that is of the order
O(|Ine[);

3. for ¢ € CyNag ' (e?), each ¢-static orbit for G keeps | In e|e"# -close to
the segment (z, )|}, 4,47, while ae(c) —ap(c’) > (N—1)e? and k > 4d.

we find that the left hand side of (4.9) is in fact bounded from below by Ce?
where C > 0 is a constant. One can refer to the proof of Proposition 5.1 of
[C15] for the details. As d < 1k, 4/ is small and T' = O(|In€]) it leads to a
contradiction for small e. O

Let H;id Fots. be the time-0-section, a 2-dimensional cylinder. All in-
variant circles on the cylinder are Lipschitz and are parameterized so that
Ty — Tor|lco < C1y/|o — 0’| as shown before. However, the coefficient
may be much larger than C* since the cyhnder may be crumpled. Since the
cylinder II¢ ’€d Eot6. is a C2-perturbation of Hg cd, Eo+6. of order O(e"), we
only need to consider the unperturbed one. As the homoclinic orbits in all
relevant Aubry sets are assumed to approach the origin in the direction of
Ay, if the cylinder is the image of the map (z1,y1) — (21, 22, Y1, y2), one has

5(9627 y2)
Y, 14+ — == .
w|H ed,Bg+6c ( + 8(%’1, y1)>dl'1 A dyl

Since we are concerned about the cylinders not touching the region where
G. < ¢4, the formula (2.22) of [C15] shows
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0xo

Oz3) |0y2
oy

4.10
(4.10) o

)

‘ < CE", for (z,y) € G"H(E),

where ¢ > 0 is very small. Therefore, the coefficient C] is bounded by
O(e=%). To get an upper bound of Cf in general case, we work in the covering
space M = ki T x kT where k,,, = kigi m+kit1Gi+1,m for m = 1,2 if we write
gr = (ge1, ge2) for £ =i,i+ 1. By a coordinate transformation on M we can
still assume the cylinder is the image of the map (x1,y1) — (21,22, y1,Y2)-
Although there are k; + k;11 fixed points, they are the lift of the hyperbolic
fixed point. The analysis for upper bound of Cf is the same.

To complete the proof, we emphasize that the large Holder coefficient
C) = O(e~%) does not damage the proof, since it is only crucial to have
a positive Holder exponent uniformly bounded away from zero. Although e
is small, it is fixed in the context. We only need to show some other /eR.
exists such that |\/eRe —+/€RL.| is arbitrarily small and (HA) condition holds
for v/eR.. To show the transversal intersection of the stable and unstable
manifolds, we parameterize the classes by o such that (4.3) holds. A Hamil-
tonian produces a set of barrier functions H — {B:(U)}. As o is defined on

a Cantor set on line, the box dimension of {B;*(U)} is not larger than 2 in
C%-topology, due to the Holder exponent in (4.3) which equals %
As the conclusion of the subsection, Theorem 1.2 is proved.

Remark. We do not need to consider the case that cylinder extends
to the lowest energy level a; ! (mina.) even if g = g;, namely, the cylinder
I1,, o0,E, takes a homoclinic orbit z,, as its boundary. The precise quantitative
analysis of cylinder around the fixed point appears to be complicated, but
it is not required in our approach.

4.2. Genericity in the sense of Mané

The method developed in [CY1] does not apply to prove the genericity if
the perturbation /eR. is independent of i. In this subsection, let us prove
the genericity of transition chain in the category of potential perturbation,
namely, in the sense of Mané.

To check the condition (HA) for all invariant circles in the cylinder
I g 5. F.ts.» WE Can assume g = (1,0) and work in the covering space
T x 2T. Then, the time-periodic section of Aubry set consists of two invariant
circles I'y; and I'y, for each o € X;. The subscript [, 4 mean lower, upper
respectively.

For convenience of notation, we work in the extended space & = (z,z3) €
T x 2T x T where #3 = 1, each invariant circle I'; , is expanded into a 2-torus

Iy, with e = [, u. Let () = (y(t),t) denote curve in the extended space.
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Due to the normal hyperbolicity, the circle fa,z has its stable, unstable

manifold ijl for + = [, u. There exists a neighborhood Uy, of wfgﬂ, over

which W;tl keeps horizontal, i.e. there is a generating function uiz

that sz = Graphduiz. This function is at least C1:'-smooth when it is
restricted on U,, and has its extension to the whole space, which is a weak
KAM solution of the Hamilton-Jacobi equation.

Any ¢(o)-minimal curve in the Mané set has to pass through Ua,l\(ﬂfa,z+
0) when it approaches wfml, the duration approaches infinity as 6 — 0. Let
TC Ug,l\(ﬂfml + 4’) be a 2-dim torus homological to ﬂfg,l. To check the

condition (HA) we only need to investigate the set

such

arg min(u,; — u;“u)\T ={zeT:(u,; - uju)(a?) = min(u,; — u:u)}

and prove

Theorem 4.2. There exists a set Vo, residual in C"(T? x T, R) such that,
for each V. € U, it holds simultaneously for all o € 1, that the set
arg min(u ut )| is totally disconnected.

ol
Proof. Dividing the torus T into squares with the side length d. Pick up
one of them, we denote it by D. Under a local coordinate transformation, a
neighborhood of D can be assumed to be

D+ d = {53 : ]a;l — 1?170’ <d+ d/,xg = 22,0, ‘1'3 — $370‘ < d+dl},

and D = D 4 d'|g—¢. For a subset S C D, let II;S be its project to the ;-
coordinate, II;S = {z; : T € S, |x; — ;0| < d} for ¢ = 1,3. If for each of the
o1~ U D G [2i0—d, xi0+d],
the diameter of each connected component of arg min(u
be larger than 2d.

To construct potential perturbation, we do some preparatory work. Let
Vot &;f , be a backward and forward c(o)-semi static curve approaching

squares and for ¢ = 1, 3, one has II; arg min(u

o — Ug) T will not

sy, 'y as t — —o00 and ¢t — oo respectively. Starting from a point on
T, a unique curve ’y;l will retreat back down to the torus ﬁfg’l ast — —oo.
We denote by ’yil(t,i) the curve such that f?éfl(o,:i) =z for » = [,u. We
write the curve ﬁiz(-, Z) in the coordinate form when it is restricted in the
neighborhood

(4.11) ’
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where z_ , can be assumed to increases monotonely for ¢t € [-T,0] and
a:joz(t) > xg for ¢ > 0. Since the unstable manifold is at least Lipschitz,
these curves are Lipschitz in Z. Since continuous function can be approxi-
mated by smooth functions, for small §; > 0, a tubular neighborhood of the

semi-static curves {7, ;[[-70} admits smooth foliation of curves
Gt (%,1) € (D+d) x [-T,0] = T*

so that each semi-static curve ’y;ml(-, Z) keeps d4-close to (; in the sense that
d(Ca(t), 7y, 4(t, @) < bq for all ¢ € [-T,0]. Here we use & to emphasize that
the point is on the disk D + d’. The tubular neighborhood is defined by the
form

C= U,Tgtgo{cgg(t) T €D+ dl}.

Let p: (D +d') x R = R be a smooth function so that p(Z,t) = p(&/,t)
Vz,% € D, p(Z',t) = 0if t ¢ [-T,0] and p(z,t) > 0if x € D+ d and
t € (=T,0). Since (; is a smooth foliation of the tubular domain, it can be
thought as a differeomorphism U: (D +d') x [-T, 0] — C, namely, for ' € C
there exists a unique (#,t) € (D+d') x [T, 0] such that U(z,t) = (z(t) = &'
With a smooth function V: D + d — R one obtains a smooth function V
supported on C

(4.12) V(&) = p(T @)V (@).

By the construction of V, some constant Ci3 > 0 exists such that

0
(4.13) /_T V(G(t)dt = CsV(z), YizeD.

The potential perturbation is constructed in the form of (4.12) where V'
ranges over the function space spanned by

pIf] :,u( Z ag cos 20m(x1 — 1,0) + besin 20m(zq — :L'l’())),
(=12

U3 :,u( Z cpcos20m(x3 — x30) + desin 20w (z3 — x370)),
(=1,

each parameter of (ay, by, ¢y, dy) ranges over the unit interval [1, 2].

Lemma 4.4. In the cube [1,2]® of the parameters, a set with Lebesgue mea-
sure not smaller than 1 — O(u) exists so that for each (ag, by, cy,dy) in the
set it holds simultaneously for all o € 1, that
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IT; arg min(u,; — ug )| C [wio —d,xip + d], V,i=1,3,

=

where L, is a neighborhood of og, independent of .

Proof. Recall that uf;u and u_, denote the weak KAM solution generating

forward semi-static orbits approaching fo,u and backward semi-static orbits

approaching fa,l respectively. Let u:u v and u_, o denote the weak KAM

solutions defined in the same way for the system under potential perturba-
tion L(#,z) — L(i,z) + V(z) of (4.12).

Under the potential perturbation, the cylinder remains unchanged. Re-
stricted on the disk D, the function u™ 7 keeps the same as uF ., but the

o,
function Uy undergoes the perturbation Uy 7 #* Upy g If ’)/0717‘7(',1‘) is
a semi-static curve produced by u_,

"y

7 with 7;17‘7(0,1') = 2 and o € [,

then
0
u;l,V(x) —u ,l,V(’Y;l,V(_t’ z)) :/t(L+ V = neo))(dy_, (=t 2))dt
+ alc(o))t,
0
Uy () =g 500 5 (68)) < /_t(L HV = neo) (7, 5 (=t 7)) dt
+ a(c(o))t

For large ¢ the curve 5, f/(_t’ Z) shall retreat into a small neighborhood of

f‘g .7 Where the function v - remains unchanged. So, it follows from the
2l g V

i3]

last two formulae that
0 ~ ~
—_ ~ — ~ / ~— ~
w @ = @ 2 [ 7=V, ()t

In a similar way, we find

where fy;l o denotes the backward semi-static curve produced by the func-

tion ua,l,f/’ ~ ~ o,V
is differentiable, one has W;lf/(t’j) -7, V/(t,i“)\ — 0as |[V-V'| =0,
guaranteed by the upper—serrfi continuity’of semi-static curves. Therefore,

for Z € D one has

with 5" -, (0,Z) = Z. Because 7 lies in the region where u
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@14) @) = @) = [ (V= @)+ o7 = V),

=(Hy + Ry)(V = V')

where the operator J#; is linear

0 0
A V@) = [ VG pwand=v@ [l )

-r 7" -T
and Z,(V — V') = o(|V — V'||). As we introduce the perturbation in the
way of (4.12), the operator .#, can be thought as a linear map V — J#,V,
and one obtains from the formula just above that

(4.15) oV (z) = As(2)V (T)

where |A,(Z) — C3| is small if o is close to op, and what is more important,
the function A, is %—Hélder continuous in o, which follows from the C"2-
smooth dependence of unstable fibers on base point, one of the results of
the theorem of normally hyperbolic invariant manifold.

To defined a neighborhood I, of g such that Lemma 4.4 holds, we
notice that there exists B = B(d) < 1 such that for each

V= Z {ag COS 2@7['(331 - $170) + bg sin 2571’(.%1 — 56170)
(=1,2

+ cpcos 2w (xg — x3,0) + dgsin 20m(x3 — x30)}

one has

min [V(#)] < Bmax |V (7).
zeD zeD

Let B < B; < 1, we defined a neighborhood I, of oy such that for each

oel,

1. the disk D does not intersect ﬂ'fgyg + d;

2. for 4_,(t, %), 45,(t,Z) in the coordinate presentation of (4.11), x,,
increases monotonely V ¢ € [T, 0] and xIQ(t) > 290 VE>0;

3. mingep |Ay(Z)| > By maxzep |As(Z)| and Ay (Z) > %03.

The number B; exists. When ¢ = ¢, by choosing ¢; close to Yo+ @) the
quantity |A,(Z) — C3| can be arbitrarily small. The upper semi-continuity
of semi-static curves guarantees the existence of this neighborhood. This
neighborhood of o is associated with a neighborhood of ¢(o), denoted by
I:c(o) €el. &0 €l,.
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We construct a grid for the parameters (a;,b;,c;,d;) by splitting the
domain equally into a family of cubes and setting the size length by

A(Li = Abz = ACZ' = Adl = U,

there are as many as [ %] cubes.

Since ¢ € I,,, some constant Cy > 0 exists such that for V.V’ €
Span{U1,Vs3}

Oscep(HV — V') = max | AV (%) — AV (T)]
‘e

w B

~ /
> —Cg(l — —Bl>Oscx€D([/ -V ) > C’4,uA.

with A = max{|a; — ay|, |be — V)|, |ce — ¢, |de — dj|}

We split the interval I, equally into K[ ~2] small intervals, denoted by
{Is;}jer,, where K, = [L(,(Zéf2 )2], Ly is the length of I,, Cs is the constant
appearing in (4.3) and Cy appearing in (4.16). Let o; be the middle point of
I;, corresponding to a barrier function u;]_J —uj]u We also split the interval

I. equally into K,[~!] small intervals, denoted by {Uejtjen.
We assume that under a perturbation L — L + V; with V; = p@~1V;
such that

(o ot _
(4.17) Osczep H;én(u%l% uaj,u,f/j) =0
where Vj = p(>°,_1 5 arjcos2{m(zy — x10) + b jsin2¢m(z1 — x10)). Let us
consider what change the barrier function undergoes if the Lagrangian is
under further perturbation V' = p¥~'V’ where V' is determined by the
parameters (ay, b))

V' = u( Z ay cos 20m(x1 — x1,0) + by sin 267 (z1 — :1:170)).

(=12
Using the formula (4.14) and noticing ™ - =u' _ we obtain the iden-
O—jvuv‘/j Uj7u7V/
tity
- + - +
u o~ —ut )= ) .
( o,l,V’ a,u,V’) oLV’ oju,V’
R W
- ua7l,\7’ uaj,l,V’ umu,V’ uaj,u,V’
- Nt
+ (uaj,l,f/’ uaj,l,\/;- UU]‘ u, V7 uoj u,Vj
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— (0~ + u+ )

R SR Rl GO
+ (‘%/O'j +‘%O'J)(‘~/J - f//)

For each o € [, in virtue of the inequalities (4.3) the first term on the right-
hand-side of the identity is not bigger than £Cyu?. For small ||V; — V|| one

has || %, (V; — V')|| < %H%J(f/] — V")||. Note that V', V; are independent
of x3. If the parameters (a}, b)) satisfy

max{lae; — ayl, [br; — by} =

we find from the identities, the condition (4.17) and the estimate (4.16) that
~ 1
(4.18) Osczep min (ul_a —uf , — (A + %U)V’> > §C4,U2 > 0.
T3 ’ ’

It implies that, for each small square of parameter (o, c(0)) € I ; x I, j we
only need to cancel out at most 2¢ j-cubes from the grid for {Aay, Aby : £ =
1,2} so that the formula (4.18) holds for the all other cubes. Let j range
over the set J, and j’ range over the set J. we obtain a set S| C {as €
[1,2],by € [1,2] : £ = 1,2} with Lebesgue measure

measS| > 1 — 2' K, pu,

such that the formula (4.18) holds for each (aj, b)) € S{ and for each o € L.
Considering perturbations from V'’ € 23, in the same way we can show
that some set S5 C {c¢; € [1,2],dp € [1,2] : £ = 1,2} with Lebesgue measure

measS§ > 1 — 2' K, p,
such that the formula

(4.19) Osczep Irélln (ul_g —ut, — (Mo + ,%’g)f/’) >0

for each (¢}, ¢;) € S§ and each o € I,.
Therefore, for each (ag, by, cp,dy,) € ST x S5, the formulae (4.18) and
(4.19) implies

IT; arg min(u, ; — u;u)\D C [zio —d,zip +d], V,i=1,3.

=

holds for all ¢ € I;,. This completes the proof. O

Notice the construction of potential perturbation, the function p(z) may
approach infinity in C"-topology with » > 1. It does not make trouble be-
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cause the smallness of perturbation is guaranteed by setting arbitrarily small
coeflicient p.

The 2-torus T is divided into as many as O([d~?2]) squares like D. Notice
that p© > 0 can be arbitrarily small. Applying Lemma 4.4 to each square,
we find that there exists an open-dense set U, of potential perturbation, for
each V €%, that the diameter of each connected component of

argmin(u_, o —u )|t

is not larger than 2d.

Each section of torus T admits a hierarchy of partition into small disks
U;Dyg; so that the size length dj, — 0 as k — oo, the intersection MYy, is
a residual set. Therefore, we have proved Theorem 4.2. O

Since the section of torus T is chosen so that all semi-static curves 7
pass through the section, it follows from the lemma, the set arg min(u;l —
ug ) (2, 0)\(A(c(o)) + ) is totally disconnected. Since the parameter o is
restricted on a closed set in the line which can be covered by finitely many
I,, this property is also open-sense for all o under our consideration.

5. Application to the problem of Arnold diffusion

We apply Theorem 1.1 and 1.2 to the study of Arnold diffusion in nearly
integrable Hamiltonian systems with three degrees of freedom, and establish
a transition chain passing through a small neighborhood of double resonance.
The Hamiltonian takes the form

(5.1) H(p,q) = h(p) + €P(p,q), (p,q) € R" x T",

where 0?h(p) is positive definite, both h and P are C"-differentiable with
r > 6. In autonomous case, the positive definiteness is sufficient for the ap-
plication of Mather theory. We may modify the Hamiltonian so that the con-
dition of super-linear growth is satisfied while the energy level set H1(E)
remains in the domain where the Hamiltonian is unchanged. As each energy
level set is compact, each solution of the Hamilton equation can be extended
to the whole t € R.

For nearly integrable Hamiltonian systems with n-degrees of freedom,
Arnold asked a notable question (cf. [A66])

Conjecture: The “general case” for a Hamiltonian system (5.1) with
n > 3 s represented by the situation that for an arbitrary pair of neighbor-
hood of tori p = p', p = p", in one component of the level set h(p) = h(p')
there exists, for sufficiently small €, an orbit intersecting both neighborhoods.
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As the first step to answer the question, we search for normal hyper-
bolic invariant cylinder (NHIC) along resonant path. Once a NHIC is found,
around which the system turns out to be a priori unstable, one can refer to
[B08, CY1, CY2, DLS06, LC, Tr2] for the construction of diffusion orbits.
In the system with three degrees of freedom, an irreducible integer vector
k' € Z3\{0} determines a path

I"={peh™'(E): (0h(p),k) = 0}.
To make things clearer, we introduce a symplectic coordinate transformation
(5.2) M : q — Mtq, p— M p,

where the matrix M = (K, ko, k3) is made up by three integer vectors with
detM = 1. In the new coordinates the frequency appears to be dh(p) =
(0, w2, ws). If (we,ws) is a Diophantine frequency at a point p, around which
there will be a piece of cylinder [Trl, El] and for typical perturbation P, its
size is independent of € (cf. [B10]).

However, there are points along the path where another resonant condi-
tion exists. A point p” € I is called double resonant if 3 another irreducible
vector k" € Z3\{0}, independent of k', such that (k”,dh(p”)) = 0 holds as
well. If we set ko = k” in the matrix M, the frequency in the new coordinates
takes the form dh(p”) = (0,0,ws). There are many choices for ks, we choose
a ks so that |ks| is the smallest one.

In the following, the Hamiltonian of (5.1) is assumed to be under the
coordinate transformation already. So one has dh(p”) = (0,0, w3).

To get the normal form around a double resonance, we introduce a co-
ordinate transformation ®.r which is defined as the time-27m-map ®.p =
P! . |;—or of the Hamiltonian flow generated by the function eF(p,q). This
function solves the homological equation

(5.3)

<8h 8F>:_P(p7q)+Z(p7Q)

o ("), 9

where

Z(p,q)= Y, Pup)eattae),
L3 03=0

in which P, represents the Fourier coefficient of P, ¢ = ({1, {2, (3). Expanding
F into Fourier series and comparing both sides of the equation we obtain

iPi(p) e
Foa)= Y 0 v,
tedn ALt (€,0n(p"))
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Under the transformation ®.r we obtain a new Hamiltonian

. oh oh or
CepH =h(p) +eZ(p,q) + 6<a—p(p) ~ 5, a—q>

+5/0 (1 —t){{H,F},F} o ®dt.

Notice | (¢, 0h(p"))| = [l3ws|, w3 = O3h(p") # 0 since h(p”) > min h. To solve
Equation (5.3), we do not encounter the problem of small divisor.
The function ®*.H (p,q) determines its Hamiltonian equation
dqg 0 dp 0

5.4 — = 0" H — = ——®&".H.
( ) dt 8]? eF+4 dt 8q eV

For this equation we introduce another transformation (call it homogeniza-
tion)
~ 1., . 1 " -
(55) Ge:_q)eFHv y:—(p_p)7 r=gq, 5:\/Et7
€ Ve

with Z = (z,23), ¥ = (v,v3), * = (x1,22), y = (y1,y2). In the new canonical
variables (Z,y) and the new time s, Equation (5.4) turns out to be the
Hamiltonian equation with the generating function as the following;:

(66)  Go= (W0 + Va) ~ (")) ~ Vi) + VeRd(#, ),
where V = —Z(p”, z) and

Re= Ry + Ry + R,

=20 + Veix) - 26 7),

e
Ro= (G (" vaa) - 5o 50 )

1
R3 = g/o (1—t){{H,F},F}o® .dt.

To choose the neighborhood where we study the normal form, we notice the
following two points.

1. there are finitely many double resonant points {p/} C I such that

I is covered by the disks {|[p — p/|| < K;'e¢*'}, where v’ < %,

K; < K*e 31735 ig the period of the double resonance at P}, namely,
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K;0h(p!!) € 73 and KOh(pl]) ¢ 73 for any K < K;, K* is a constant
independent of € (see Chapter 3 of [Lo]). Therefore, the size of each
disk is between O(e7) and O(e3);

2. one is unable to apply the KAM technique in K/e-neighborhood of
double resonance to obtain invariant cylinder, even with large K > 0.

Therefore, we will study the normal form (5.6) in the domain
~ ~ ~ k—1 ~ 3 . ].
Qe:{(x,y):]y\ge z,xe'ﬂ‘}, with O</£<§

where the term |\/eR;|c-—» is bounded by a small number of order O(/€)
(for i = 1,2,3). By introducing coordinate rescaling and translation

NC

€
Y, — \/_
w3

o 1 1 A
I)-\/E(p "), 0—w3x3.

and expand G in O(€e") neighborhood of p” we get a local expression

Ge(2,y,1,0) :I—I—%<B< ﬁ[),( \/EI)>

Y, — Yy, —
w3 w3

(5.7) (

(5.8)
w3

e

where B = 327’;(;0” ) and term Ry, represents the following

% [h (0" + (Ve < 1)) = [+ el + 5(B (s, g_ff), (1 g_ff) >]] _

For |y| < O(¢"2) and |I| < O(e"1), by direct calculation we see that both
VeRy, and v/eR, are bounded by a quantity of order O(y/€) in C"~2-topology.
By the expression of G, in (5.8) we find that 9;G. = 1 + O(e) holds in the
region where |y| < O(e" %) and |I| < O(e*!) and get a solution of the
equation Ge(x,y,I,0) = 0 by applying the implicit function theorem

— V(z) + VeRy, (y, ;/—EI) + VeR, (m, 0,p" + (\/Ey, wiSI))

(5.9) Ge <x, v, %9) = %(By,y) —V(z) + VeR. (:U,y, %9)

where B is got from B by eliminating the third row and the third column,
the remainder /R’ is bounded by O(e*) in C"~2-topology with respect to
the variable (z,y, %0) when it is restricted on the region |y| < O(e"3).
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Let A = B!, one obtains from the Hamiltonian G, the Lagrangian of
(1.1) by the Legendre transformation. It allows us to apply Theorem 1.1
and 1.2 by keeping it in mind that all Mather, Aubry and Mané sets are
symplectic invariant [B07]. Let ap, dg:, i and &, be the a-function for H,
®*-H and G. respectively.

The isoenergetic reduction from systems with three degrees of freedom
to two and half induces a relation between &_!(0) and the graph of ae (cf.
Theorem 3.3 and 3.4): if we regard the graph of a. over F. UA, UC, UCy
as a set in R3,

{(ae(c),c) i ce FFUAUC,UC, }

it precisely lies in the surface &_1(0). We denote the corresponding parts by
F, A., @g and @g/ respectively. Formula (5.2) induces a linear transforma-
tion in H*(T3,R) under which the sphere &y undergoes a linear transfor-
mation. Because of the rescaling (5.5) one has

/yd:c —¢IpHdt = \/E(/pdx - éeds),
the rescaling (5.7) induces a rescaling from &_1(0) to d;}F (0)

c—cd = Vele—d), c3 — ¢y — €(cg — ch).

The Hamiltomorphism ®.r does not change the cohomology class.

Therefore, returning to the original coordinates, one has the following
observation. The flat F, is a disk with a size O(y/€), the annulus A, has a
thickness of Ayy/e and the channels @g and @g/ extend into the annulus,
because of Theorem 4.1. Any two classes ¢ € @g, e @g/ is connected by a
transition chain if c3, ¢4 < €2*. See Figure 6.

Channel Channel

Figure 6: The transition chain under 73 : &_1(0) — R2, represented by the
thick solid red curve. Along the circle, c3 keeps constant.
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Since the announcement of Mather (cf. [M03]), it has been widely known
a difficult problem how to cross double resonance. Along the path suggested
by Mather one has to consider the dynamics in the zero energy level ([KZ,
Mar]). The path we figured out here is different, which does not touch the
zero energy level. It turns out to be applicable even in the study of Arnold
diffusion in nearly integrable systems with arbitrary degrees of freedom [CX].
In the available way to handle systems with more than three degrees of
freedom, certain singularities arises at zero energy level when one makes
reduction of order. It prevents one from touching the zero energy level.

Finally, let us consider the question raised by Arnold. Given any two
p,p’ € h™Y(E) and any small § > 0, there exist two irreducible integer
vectors k, k' € Z3\{0} such that the circles of resonance I'y, = {p € R? :
h(p) = E, (k,0h(p)) = 0}, T = {p € R* : h(p) = E, (K, 0h(p)) = 0} passes
through a d-neighborhood of p and p’ respectively. These two circles are
either coincide or intersect at two points. In both cases, one obtains a reso-

Figure 7: The resonant path in the surface of h=!(E).

nant path connecting the d-neighborhood of p and p’. This path is covered by
finitely many disks {||p — p/|| < K; 'e"'} where each p is a double resonant
point the path. Although the number of the disks depends on €, the number
of strong double resonance is independent of € for generic perturbation P.
A double resonance is called strong if there does not exist NHIC around. See
Section 6 of [C15] for the quantitative criteria for distinguishing strong and
weak double resonances.

To state the result we will obtain by applying Theorem 1.1 and 1.2, we
introduce some notations. For E > 0, let H (E) = {(p,q) : H(p,q) =
E} denote the energy level set, B C R? denote a ball in R such that
Urp<pi h~Y(E') C B. Let &,,8, C C"(BxT3,R) (r > 6) denote a sphere
and a ball, centered at the origin with radius a > 0 respectively: F' € G, if
and only ||F||c» = a and F € B, if and only ||F||c» < a. They inherit the
topology from C"(B x T3 R).



Dynamics around the double resonance 217

For perturbation P independent of p (classical mechanical system) we
use the same notation &,,B, C C"(T3,R) to denote a sphere and a ball
with radius a > 0

Let R, be a set residual in &,, each P € R, is associated with a set
Rp residual in the interval [0,ap] with ap < a. A set €, is said to be
cusp-residual in B, if

¢, ={\P:P e Ry, \€E Rp}.

Regarding the action variable p and cohomology class ¢ as points in R3, one
has

Theorem 5.1. Given any two small balls Bs(p), Bs(p') C R3, where p,p’ €
h=Y(E) with E > 0 and small § > 0, there exists a cusp-residual set €, such
that for each eP € €, there is a transition chain that connects the class ¢
to & which satisfy the condition a(¢) = (@), |p—¢| <6 and |p' — | < 4.

Proof. Let T C Ty * 'y C h™Y(E) be a path that connects Bs(p) to Bs(p').
For every point p € I'y, 'y the frequency satisfies the resonance relation
(Oh(p), k) = 0 with k = k, k' respectively. Let p; € T' be a double reso-
nant point such that K;0h(p;) € Z3 with K; < K*(%(lf?’”'), K* > 0is
independent of e. One step of KAM iteration is carried out in the region
T x |lp — pi|| < K;le”,, the potential V' at p; is obtained by averaging P
over resonant circle and the remainder R, loses two times of differentiablity.
The whole path I is covered by the disks centered at p; with radius K Z-_le”‘/.

Although the number of the points {p;} depends on €, the number of
strong double resonant points is finite, independent of e¢ for C"-generic P.
We denote the point by p to specify the double resonance is strong. Indeed,
if we expand P into Fourier series, then

Z(p,q) = Zi(p, (k. Q) + Zi g, (0, (k. @), (ki q))

where
Zr=> Pu(p)e®,
JEZ\{0}
Zik,= Y Pirgar, (p)eVBotton)
(1) €72 170
As |Py| decrease fast as |k| increases |Py| < O(|k|™"), the term Zy, is
treated as a small perturbation to Zj, for big |k;|. That is why, for generic

Z., the number of strong double resonances is independent of €. The double
resonance at the point I'y N 'y is strong.
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For a weak resonant point p;, there exist NHICs and a channel
Ci = a (B) N2, (Uoh(p) : TN {lp — pi| < K'Y, lv — 1] < O(e))

foliated by flats (intervals) such that for each & € C; the Aubry set A(¢) lies
on the cylinders. It is in the situation of a priori unstable case. For C"2-
generic remainder the condition (HA) holds for all & € C; so that A(é) is
a 2-dimensional torus. It shall be specified later what generic condition one
has.

Around a strong double resonant point p;, one obtains a classical system
%(Adv,a'c) + Vi(z) where z = ((k,q), (ki,q)) and V; = Z(p, (k,q), (ki,q)). For
C"-generic V; the conditions (H1,2,3) are satisfied. Then, there is an annulus
of cohomology equivalence

A= ap (BE)N 25, {Uw 1 0 < |w — vOh(p))| < Ay, Ve v — 1] < O(e)}

where Ay, > 0 is the number obtained in Theorem 1.1. It connects two
channels of single resonance

C; UG =ag' (B) N5, {voh(p) : T n{ext < |p—pf| < K 'e"}}.
Corresponding to the channels there are NHICs such that for each ¢ € @; U
C; the Aubry set lies on the NHICs (the main result of [C15]). Under further
C"~2-generic perturbation, the condition (HA) holds for those ¢ € C;u (C;r
so that the Aubry set is a 2-dimensional torus. It is guaranteed by Theorem
1.2.

In this way we obtain a transition chain passing through the channels
and skirting around the strong double resonant points along circles of coho-
mology equivalence

T, cC (d;ll(E) N @i) U A

where C; = .5 (Uvdh(p) : p € T\ U{|p—p{| < e}, | — 1] < O(e)).

Let us specify the generic condition on the perturbation eP. The path
I’ induces a decomposition of functions P(p,q) = Zk(p, (k,q)) + P'(p,q)
according to the Fourier expansion. Since Z, is periodic in ¢, (k,q) can be
treated as a scalar variable x defined on T. As Zj is C"-smooth in (p, q),
regarding Zj as a function defined on R™ x T, there is a residual set 3j of
C"(B xT,R) such that for each Zj € 3j it holds simultaneously for all p € T’
that the maximal point of Z, in (k, ¢) is non-degenerate [CZ1]. In this case,
the number of strong resonant points is independent of €. Each Zj € 3 is
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associated with a set ', residual in the ball B, € C"(BxT? R)/C"(B x
T,R) with radius ez, > 0. For each eP" € P, , the condition (HA) holds

for all channels ((le of weak double resonance.

For each strong resonant condition, one obtains further decomposition
of the perturbation P(p, q) = Vi(¢q)+P"(p, q) where V; = Z(p}, (k,q), (ki, q))
which is defined on T2. There exists a set U, residual in the unit ball
C"(T?,R) so that hypotheses (H1,2,3) hold for each V; € 9;, which is then
associated with a set By, residual in the ball B, € C"(B xT3,R)/C"(T?,R)
with radius ey, > 0. For each eP” € By, the condition (HA) holds for all
channels around the strong double resonant points.

To get a set §; cusp-residual in By C C"(B x T3,R) such that each
eP € %B; is associated with certain transition chain passing through (C U
A UC;", we notice the decompos1t10n C"(BxT3R)=C"(T?,R)&® (C”"(B X

)/C’T(’H“2 R)). Let ;, i~ be the projection C"(B x T3, R) — C" (T2, R),
C”’(B x T3, R) — C"(B x T3,R)/C”(T2,R) respectively.
For each mP € ;, there is a set P/ p residual in B, , C C"(B x
,R)/C"(T?,R) with radius er,p > 0 such that for each em;-P € P ,

there is a transition chain to pass through (C UA; U (C+ We extend ‘B”
to a set ‘,}3” residual in the unit ball 98; of the quotlent space C"(B x
R)/C" (T2 R) in whatever a way provided its restriction on the ball B _
is the same as the original one. Let 3; = {V; + P" : V; € U;, P" € p” P}
which is obviously residual in B; C C"(B x T3, R). As B; = [0,1] x &1, by
applying the Kuratowski-Ulam theorem (categorlcal analogue of the Fubini
theorem, c.f. Chapter 12 of [Ox]), there exists a set R residual in &; such
that for each P € R, there is set of numbers Rp residual in [0, 1] such that
AP € ‘i?z for all A € Rp.
Indeed, P € R implies m; P € *U;. The set U; is 1nvar1ant for the rescaling
V — AV. Under the rescahng y =\ ry, t = v 't in the classmal system,
the Hamiltonian equation for 3 (Ay, y)+vV (z) is the same as it for 3 (Ay, y)+
V(x). It follows from the way to extend B, p that some number ap >0

exists such that Am;"P € B , if A € Rp N (0, ap).
The generic property of transition chain passing through channel of weak
double resonance is obtained in similar arguments. O

With a transition chain connecting ¢ to ¢, one is able to construct or-
bit which connects A(é) to A(&) by the variational method developed in
[CY1, CY2, LC]. For nearly integrable Hamiltonian systems, along each or-
bit (p(t),q(t)) in A(&) (the counterpart of the Aubry set in the cotangent
bundle) one has |p(t) — ¢| < 1.

The conjecture of Arnold diffusion for positive definite Hamil-
tonian turns out be a theorem for n = 3.
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6. Construction of topological transitive orbits for L

The main task of this section is to prove Theorem 1.3. Let 4; | 0 be a se-
quence of numbers. Since Lg is autonomous, the set {A(c) : ag(c) = E}
is compact, for each §; > 0 there are finitely many cohomology classes
{cij}1<j<;, so that the set U;A(c; ;) is di-dense in the set {A(c) : ap(c) = E}:
for each ¢ € ag'(E) there exists some ¢;; such that d(A(c), A(ci;)) < 9.
As ay '(E) is a circle, for each i, the classes {cij} are arranged in clockwise
order. The ¢; is chosen so small such that A(c; ;) is dynamically connected
to A(cmﬂ) modulo j; by the orbit constructed in Lemma 3.1.

As we are working on T?, the Fenchel-Legendre dual w(c) = fﬂ_ol(c)

of ¢ € ag!(E) is a point if £ > minag, and there are coordinates so that
wi(c) > 0 if we write it in coordinates w(c) = (w1(c),w2(c)). Indeed, one can
divide the circle agl(E) into three parts {I';, };n=123, each I, is associated
with a coordinate system x — M,z where wy(¢) > 0 holds V ¢ € T'y,. For
each i > 0, the set {¢; j}1<j<;, is automatically divided into three parts E,,,
B = {cijh<i<i B2 = {ei )<< and By = {cij}j,+1<5<j,- Since ¢
is assumed close to ¢; j11, it is reasonable to assume wi(c;,j,,+1) > 0 in both
coordinates M,z and Mp,11x for m =1, 2.

Let &, = {z € T?, 21 = a}. For ¢ € o' (E) with E > min ay, if N(c) C
T? and the coordinate system is chosen such that w; > 0, then N (c) N %,
is topologically trivial, finitely many disjoint closed intervals {I.,,} C T
exist so that N (¢) N Y, C int Uy I, 4 ¢ by regarding each interval I, as an
embedded segment in the circle X,.

For each ¢; ; and in the associated coordinate system so that wq(c; ;) > 0
we work in the covering space R x T. The Aubry and Mané sets have their
natural lift to the covering space, for which we use the same notation. Let
i; be a closed 1-form such that [Mz‘,j] = ¢;j+1 — ¢;j and its support does
not touch the set [—d,d] x UL, , o¢. The number d > 0 is chosen suitably
small so that N'(c; ;) N {|z1] < d} C [—d,d] x UL, 0.

Recall what we did in the proof of Lemma 3.1. We regard the Lagrangian
Lo and the 1-form as that defined on the covering space, just think it is
periodic in z1. As before, let = (Z1,Z2) denote a point in R x T. Let p; ;:
M — R be a smooth function such that p; ; = 1 for 1 > d, p;; = 0 for
Z1 < —d and let n; ; be a closed 1-form such that [7; ;] = ¢; j. We define the
Lagrangian L; ; : T(R x T) - R

Lij=Lo+E —nij— pijlij-

The lift of the section X to the covering space contains infinitely compo-
nents, denoted by {3; : 71 = i}. Let M ={z: 7y > 1}and M~ = {z: 71 <
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—1}.Forz € M~ and ' € M, let ; (-, Z,2') : [-t(z,2),t(z,7')] = RxT
be the minimal curve of the action

(6.1) Ai (3 (8, T | —y@anw@an)) = inf inf Aj 5(7),

where
t
Aii(Wi=ey) = /tLi,j(ﬁ(s)ﬁ(s),s)ds.

One has (Z,7') — oo as T} — 1 — oo, guaranteed by the super-linear
growth of Ly in & and wy; > 0 (Lemma 2.1 in [LC]).

Lemma 6.1. Assume N(c;j) T2 and i j+1 15 sufficiently close to c; ;.
Given a > 0, there exists large a’ > a such that, for the points T, € R x T
with T1 < —a' and T} > d/, the minimal curve %, j(-, &, &) crosses the section
Yo ={Z € RxT: 2z = a* < a} by passing through the interior of Ul,, | 4+
which are thought to be segments embedded in the circle Yq-

Proof. Recall the construction of 67, . Let Z1 — —oo, 7} — o0, as it was
shown in the proof of Lemma 3.1, each accumulation point of these minimal
curves precisely falls into the set CKL ,» with which the set Cr, . is defined in
(3.2). Because the Lagrangian is autonomous we eliminate the component
¢, namely, Cr = Usew;, ’y( ). Because of the upper semi-continuity L; j —
Cr, ., one has CL - /\/'(cl ,j) + € provided ¢; ;41 is sufficiently close to ¢; ;.
Restrlcted on the set {z : 21 € [~a,dl}, all curves in 7, . are approx-
imated by the minimal curves {%; ;(- ,x,x Vziel—aa} s —Z1,T1 — 00, and
the restriction of curves {%;;(-,Z,Z’)} on the set {Z : Z; € [—a,a]} take
the restriction of curves in 67, ., as their accumulation points. Therefore, for
sufficiently large a’ > a the lemma holds. O

As the first step to construct transitive orbits, let us construct orbits
which visit §;-neighborhood of fl(c”) for all ¢; ; € I'1. In this case, there is a
coordinate system where one has wi(c; ;) > 0 for all classes ¢; ; € I'1, where
j = 1,2,---71. In the covering space T(R x T), we introduce a modified
Lagrangian

~ ji—1
Liyv=Lo+E —n1 — Z(k;jpi,j),ui,j
j=1
where k; 1 < --- < k; j, is a sequence of positive integers, each k; ; induces an
operation on functlons k:l ;ip(T) = p(T1— ki j, T2). Let 7,7’ be the points such
that 21 < —k;1 and &) > k;j, and let %;1(-,z,7) : [-t(z,@),t(z,7")] —
R x T be the minimal curve of the action
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B N . =
Ar, (Gialan) = juf int 47,3,
y(t)=a'

where
t
Ap () = / Lix(3(s),7(s), s)ds.
—t
We claim that for sufficiently large k;1 > 0 and k; ;41 — k;; > 0 with
]:27 7]’1717
1. the curve %;1(-,7,2’) crosses the section ¥, , by passing a collection
of disjoint intervals Ul., ;o C ¥y, , and as an immediate consequence,
it solves the Euler-Lagrange equation determined by Ly;
2. for any small §; > 0, the orbit (%;1,7%;,1) generated by the curve
¥ia1 (-, @, &) visits the d;-neighborhood of every Aubry set A(c; ;) for
j: 1727"' ajl'

To verify the first one, we apply Lemma 6.1. Let Z! be the intersection point
of the curve ;1 (-, Z, Z") with the section X, . The restriction of ¥;1(-, Z, Z’)
to the segment joining the point Z with Z' is obviously a minimal curve. By
applying Lemma 6.1 we find that the term p; 14,1 does not contribute to
the Euler-Lagrange equation, namely, the conclusion holds for j = 1 if k; ;
is sufficiently large. The same argument applies to j =2,3,--- ,j; — 1 if all
numbers {k; j41 — ki ;} are sufficiently large.

To check the second, we notice that, restricted on the cylinder {Z :
z1 € [kij + 1,k j4+1]}, the projection of the minimal curve 7;1(-, z,7’) is
indeed ¢; j+1-minimal for the Lagrangian Lo with given boundary condition.
So, along the segment of this orbit, there must be points approaching .A(c)
provided k; j41 — k;; > 0 is sufficiently large. Otherwise this orbit would
approach the support of some invariant measure which is not ¢; j;1-minimal.

As the second step, we study the problem whether there are orbits of the
Lagrangian flow ¢tLO which visit §;-neighborhood of each Aubry set fl(c”)
for j =1,2,---,7;. Apparently, the result we just obtained also applies for
all ¢; ; € I'y, with m = 2,3. We need to handle the problem how to match
the orbits we obtained in different coordinate systems.

Assume the Lagrangian Lg takes the form in the coordinate system so
that wi(c) > 0 for all ¢ € I'y. For ¢ € 'y, with m = 2,3 we need to introduce
a linear coordinate transformation ®,,: v — Myz. Let ®} Lo denote the
Lagrangian Lo(Mp, &, M), i.e. ®F Lo(&,z) = Lo(Mpd, Mp,x).

For T?, let 3y = {x1 = 0} be a section in the original coordinates. To
the covering space R x T in the new coordinates Msx, the lift of 3 looks
like a spiral line, extending to z; — 4o00. Let E_J’g be a segment of the spiral
line in the new coordinates such that the projection from £ — % is one
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to one. Let 2_38 be a connected component in the lift of ¥y in the original
coordinates. The superscript n, o means new, old respectively.

Since wi(cij,) > 0 in both coordinates and N(c;j,) € T?, the set
N(cijz) N o is covered by finitely many disjoint closed intervals UI, o
Denoted by UIZ,J-I,O,E as a part in the lift of Ul., . o, to R x T in the new
coordinates and by Ujg,-,,jl,o,e as a part in the lift in the older coordinates
such that

4,51

1. the projection from Ufé,j oe C 26 to Ul ; ., 0¢ is one to one for
1171505 ,
1=mn,o0;
2. f1<—ki7j1v.f€UIZl_ 04 and :Z‘lzki’lei‘EUIo 0.0

i1 Ci,j1»
The same principle applies to the transition from Eq to Es. In the coordinates
Maz, one also has N(¢; j,+1)N¥o C Ul , ,, 0¢ where X9 = {x1 = 0}. These
two properties hold if the subscript j; is replaced with js.
To construct orbits of ¢} visiting d;-neighborhood of A(ci ) for all j =

1,2,---,j;, we introduce the Lagrangian
J2—1
Lio=®5Lo+E—mij, — Y ((kij = kij) pig) i,
J=i

defined in the covering space 7: R x T — T? in the coordinates Moz and
the Lagrangian

ji—1
Lig=®5Lo+E—mij, — Y ((kij — kij,)"pig) i

J=Jj2

defined in the covering space 7: R x T — T? in the coordinates Mszz.
Let v be a curve starting from the point x; 1 passing successively through
the points x; j,, z; j, and arriving at the point z; ;, such that

1. Tijg € UIci,jl,O,f and T, € UICi,j270,€;

2. to the covering space R x T in the original coordinates, the lift of the
segment joining x;1 to x;j, is a curve minimizing the action of fﬂ}l
along any curve connecting ;1 to ; ;,, where 72;, = z;, for « = 1, jy,
Tinn < —k¢71 and Tig 1 > ki,jl if we write Tiy = (.fi71’1,.f¢71’2) for
v=1,71;

3. to the covering space R x T in the coordinates Msz, the lift of the
segment joining x;;, to x;j, is a curve minimizing the action of Ei,Z
along any curve connecting Z; j, to Z; j,, where 7%; , = x;, for 1+ = jp, jo,
i1 < _ki,jl and Tijj,1 > ki,jrz;
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4. to the covering space R x T in the coordinates Msz, the lift of the
segment joining x;j, to x;, is a curve minimizing the action of f/i73
along any curve connecting T 4, 1O T4 j;, where TXiqa = Tiy, for+ = ja, js,
T gyl < —k; Ja and Z; gl > k; 3,905

5. form = 1,2, when x; ;, ranges over the set Ul., . o, it is required that
the correspondmg Z; j,, varies in the connected set S %3¢ respectively.

Finally, we consider the quantity

Ai(win, xi5) =  min {Az. (i (5 @i, Tiy))
@i 5, €Y ur ,0,¢ kel
€eul,

Ci,51°

Ti o Ciji 0L

+ Az, Gi2( @i, Tigo)) + Ap, (Yis(ss Hfz’,jw@,ji))}

and denote by v;(zi1,2;;,) the minimal curve. Clearly, the minimum is
reached in the interior of Ul., . o, and Ul ,,0,0 guaranteed by Lemma 6.1
if both k; ;, — k; j,—1 and sz k17]2_1 are sufﬁciently large, and it follows
that the curve is smooth at both z;; and z;j,. The curve ~;(x;1, ;)
obviously solves the Euler-Lagrange equation, it generates an orbit visiting
d;-neighborhood of A(cw) forall j =1,2,---,7;

Proof of Theorem 1.3. For a sequence of §; > d9 > - -+ > §;, we consider the
quantity

(2
Ay, 2iy,) = min Yy Ay(ay, ),

=1
where the minimum is taken over the set {z;; = z1411 € UL, 00 :1 =
1,2,--- ,z'}. Let v1; be the minimal curve, it is smooth at each point ;1
for { =2,3,---,i— 1 provided k; j, — k; j,—1 is sufficiently large. By setting
ki; — kij—1 — 00 as i — 0o, the orbit generated by the minimal curve will
visit the d;-neighborhood of each A(c”) with 7 = 1,2,---,j;. By a time-
translation, we assume the curve 7 ; is defined on ¢ € [ T;]. Apparently,
T; — o0 as i — o00. Let i — o0, d; — 0, the curves {y1;} of A1 ;(z1,1,2:)
approaches a curve RT — T2 which generates an orbit which is obviously
transitive for Uceagl(E)A(C). O

By the proof, this theorem holds for suitably small £ > minag. It is
interesting to ask whether it holds for larger E. Apparently, it is not true
if E > 0 is sufficiently large. Indeed, by rescaling the time ¢t — /At, the
Lagrangian is equivalent to

1. ... 1
Loy = 5(At,2) + 3V (2).
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It reduces the energy from E to E/X\. When A — oo it approaches an
integrable one. For sufficiently large A > 0, there exist a lot of KAM invariant
tori which block the transitivity.
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