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Abstract. We prove Kudla-Rallis’s conjecture on first occurrences of orthogonal-
symplectic dual pair correspondence, for a local field of characteristic zero.

1. Introduction and main results

Let k be a local field of characteristic zero. Fix a nontrivial unitary character
ψ : k → C×. We shall also fix a parity ǫ ∈ Z/2Z and a quadratic character
χ : k× → {±1}.

Denote by Q(ǫ, χ) the set of isomorphism classes of non-degenerate quadratic
spaces V over k such that

• dim V is finite and has parity ǫ, and
• the discriminant character χV of V equals χ.

Recall that the discriminant character χV is given by

χV (x) :=
(
x, (−1)

m(m−1)
2 det[〈ei, ej〉V ]1≤i,j≤m

)
2
, x ∈ k×,

where m := dim V , e1, e2, · · · , em is a basis of V , 〈 , 〉V is the symmetric bilinear
form on V , and ( , )2 is the Hilbert symbol for k. Also denote by S the set of
isomorphism classes of finite dimensional symplectic spaces over k.

By abuse of notation, we do not distinguish an element of Q(ǫ, χ) with a qua-
dratic space which represents it. Likewise for an element of S and a symplectic
space which represents it. Throughout this article, V always refers to a quadratic
space in Q(ǫ, χ) and W a symplectic space in S.

Write

(1) 1 → {±1} → Spǫ(W ) → Sp(W ) → 1

for the unique topological central extension of the symplectic group Sp(W ) by
{±1} such that it splits if ǫ is even, or W = 0, or k is isomorphic to C, and it does
not split otherwise.
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Put
W := V ⊗ W,

to be viewed as a symplectic space under the form

〈v ⊗ w, v′ ⊗ w′〉W := 〈v, v′〉V 〈w, w′〉W ,

where 〈 , 〉V and 〈 , 〉W are the non-degenerate symmetric form and the symplectic
form on V and W , respectively. Denote by

H := W × k

the Heisenberg group associated to W, whose multiplication is given by

(u, t)(u′, t′) := (u + u′, t + t′ + 〈u, u′〉W).

The group Sp(W) acts on H as automorphisms by

g · (u, t) := (gu, t).

It induces an action of O(V ) × Spǫ(W ) on H via the obvious homomorphism

O(V ) × Spǫ(W ) → O(V ) × Sp(W ) → Sp(W).

This defines a semidirect product (the Jacobi group)

(2) JV,W := (O(V ) × Spǫ(W )) ⋉ H.

We are concerned with the smooth oscillator representation ωV,W [Ho1, MVW]
of the Jacobi group JV,W . Up to isomorphism, ωV,W is the unique representation
with the following properties: [Ho2, Part II], [MVW, Chapter 2]

• it is a smooth representation if k is non-archimedean, and a smooth Fréchet
representation of moderate growth if k is archimedean;

• as a representation of H, it is irreducible with central character ψ;
• for every Lagrangian subspace L of W , denote by λV,L the unique (up to

scalar multiplication) nonzero (continuous in the archimedean case) linear
functional on ωV,W which is invariant under V ⊗ L ⊂ H, then λV,L is
O(V )-invariant;

• it is genuine as a representation of Spǫ(W ), namely, the central element
−1 ∈ Spǫ(W ) acts through the scalar multiplication by −1 ∈ C.

The reader is referred to [du, Definition 1.4.1] or [Sun, Section 2] for the notion
of “smooth Fréchet representations of moderate growth” in the setting of Jacobi
groups.

Denote by Irr(O(V )) the isomorphism classes of irreducible admissible smooth
representations of the orthogonal group O(V ) if k is non-archimedean, and the
isomorphism classes of irreducible Casselman-Wallach representations of O(V ) if
k is archimedean. The reader may consult [Ca] and [Wal, Chapter 11] for details
about Casselman-Wallach representations. Similarly, denote by Irr(Spǫ(W )) the
isomorphism classes of irreducible admissible genuine smooth representations of
Spǫ(W ) if k is non-archimedean, and the isomorphism classes of irreducible genuine
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Casselman-Wallach representations of Spǫ(W ) if k is archimedean. Throughout
this article, π denotes a representation in Irr(O(V )) and ρ denotes a representation
in Irr(Spǫ(W )). We are interested in occurrences of π and ρ in the local theta
correspondence [Ho3, MVW].

Before we state our main results, we recall two important facts: Kudla’s persis-
tence principal [Ku, Propositions 4.1 and 4.5] and non-vanishing of theta liftings
in stable range ([Ku, Propositions 4.3 and 4.5], and [PP, Theorem 1] for the
archimedean case).

We first consider the case of orthogonal groups. Kudla’s persistence principle
says that if W1,W2 ∈ S and dim W1 ≤ dim W2, then

HomO(V )(ωV,W1 , π) 6= 0 implies HomO(V )(ωV,W2 , π) 6= 0.

Non-vanishing of theta liftings in stable range says that if dim W ≥ 2 dim V , then

HomO(V )(ωV,W , π) 6= 0.

Define the first occurrence index

(3) n(π) := min{
1

2
dim W | W ∈ S, HomO(V )(ωV,W , π) 6= 0}.

The conservation relation for orthogonal groups is the following

Theorem A. For any V ∈ Q(ǫ, χ) and π ∈ Irr(O(V )), one has that

n(π) + n(π ⊗ det) = dim V,

where “det” stands for the determinant character of O(V ).

Remark: Theorem A was conjectured by Kudla and Rallis [KR3, Conjecture C].
In the non-archimedean case and for π irreducible cuspidal, Theorem A was proved
in [Mi, Theorem 2].

Now we consider the case of symplectic groups. For any U in Q(ǫ, χ) (or S),
denote by U− the space U equipped with the form scaled by −1. Two quadratic
spaces V1, V2 ∈ Q(ǫ, χ) are said to be in the same Witt tower if the quadratic space
V1 ⊕ V −

2 splits. This defines an equivalence relation on Q(ǫ, χ). An equivalence
class of this relation is called an (orthogonal) Witt tower.

Denote by T (ǫ, χ) the set of Witt towers in Q(ǫ, χ). By the classification of
quadratic spaces over a local field, we know that

(4) ♯(T (ǫ, χ)) =





2, if k is non-archimedean;
1, if k is isomorphic to C;
∞, if k = R.

Kudla’s persistence principle says that for any given T ∈ T (ǫ, χ), if V1, V2 ∈ T
and dim V1 ≤ dim V2, then

HomSpǫ(W )(ωV1,W , ρ) 6= 0 implies HomSpǫ(W )(ωV2,W , ρ) 6= 0.
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Non-vanishing of stable range theta liftings says that if V ∈ T and dim V ≥
min{dim V ′ | V ′ ∈ T} + 2 dim W , then

HomSpǫ(W )(ωV,W , ρ) 6= 0.

Define the first occurrence index

(5) mT (ρ) := min{dim V | V ∈ T, HomSpǫ(W )(ωV,W , ρ) 6= 0}.

The conservation relation for non-archimedean symplectic groups is the following

Theorem B. Assume that k is non-archimedean. For any W ∈ S and ρ ∈
Irr(Spǫ(W )), one has that

∑

T∈T (ǫ,χ)

mT (ρ) = 2 dim W + 4.

Remark: Theorem B was conjectured by Kudla and Rallis [KR3, Conjecture A].
They also proved the result for ρ irreducible cuspidal [KR3, Corollary 3].

The situation is more complicated in the case of real symplectic groups due to
the abundance of real orthogonal Witt towers. We observe that if T1, T2 ∈ T (ǫ, χ)
are two different Witt towers and Vi ∈ Ti (i = 1, 2), then V1 ⊕ V −

2 has even
dimension (from the parity assumption), trivial discriminant character (from the
same discriminate character assumption), and does not split. Therefore we must
have

(6) the split rank of (V1 ⊕ V −
2 ) ≤

dim V1 + dim V2 − 4

2
.

We say that T1 and T2 are adjacent if the equality holds in (6). When k is non-
archimedean, the two Witt towers in T (ǫ, χ) are adjacent. When k = R, every
Witt tower in T (ǫ, χ) has exactly two adjacent Witt towers (in T (ǫ, χ)).

We put

(7) m(ρ) := min{mT (ρ) | T ∈ T (ǫ, χ)}.

We have the following conservation relation for real symplectic groups.

Theorem C. Assume that k = R. For any W ∈ S and ρ ∈ Irr(Spǫ(W )), one has
that

min{mT1(ρ) + mT2(ρ) | T1, T2 ∈ T (ǫ, χ), T1 6= T2} = 4n + 4,

where 2n := dim W . In fact we have the following more precise assertions.

(a): We have m(ρ) ≤ 2n + 2.
(b): If m(ρ) = 2n + 2, then

♯{T ∈ T (ǫ, χ) | mT (ρ) = 2n + 2} = 2,

and the two Witt towers in the above set are adjacent.
(c): If m(ρ) ≤ 2n + 1, then

• there is a unique Witt tower Tρ ∈ T (ǫ, χ) such that mTρ
(ρ) = m(ρ);
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• there exists a Witt tower T ∈ T (ǫ, χ) adjacent to Tρ such that

mT (ρ) + m(ρ) = 4n + 4;

• for all Witt towers T ∈ T (ǫ, χ) different from Tρ, one has that

mT (ρ) + m(ρ) ≥ 4n + 4,

and the inequality is strict if T is not adjacent to Tρ.

Remarks: (a) A. Paul proved an analog of Kudla-Rallis’s conjecture for unitary-
unitary dual pair correspondence for k = R [Pa, Conjecture 1.2], for a discrete
series representation, or a representation irreducibly induced from a discrete series
representation. Method of this article applies to general dual pairs, and in partic-
ular establishes the validity of [Pa, Conjecture 1.2] without any restrictions. (b)
For complex symplectic groups, there is no conservation relation to formulate for
the simple reason that there is only one Witt tower in Q(ǫ, χ).

To conclude this introduction, the authors would like to acknowledge the deep
influence of the ideas of Kudla and Rallis [KR1, KR2, KR3] on this article. The
proof of our results follows their approach closely. Our main contribution (Lemmas
3.2 and 5.4) is to pinpoint and to recognize the role of certain structure results
about degenerate principal series representations, which fortunately can be read
off from results in the existing literature. (Method of the current article, together
with analogous results on degenerate principal series for other classical groups, will
imply similar conservation relations for other dual pairs, which we will leave to the
interested reader. The appropriate statements to be made are in [Mi], for example.)
As pointed out by Kudla and Rallis [KR3], the conservation relations imply theta
dichotomy phenomenon in the non-archimedean case ([KR3, Conjecture B]. Note
that the latter was recently established by Zorn [Zo], and by Gan, Gross and
Prasad [GGP]. Note also Harris, Kudla and Sweet [HKS] proved some important
cases of theta dichotomy for unitary-unitary dual pair correspondence earlier. For
k = R, the corresponding (though more complicated) result was established by
Adams and Babasch [AB, Corollary 5.3], using Vogan’s version of the Langlands
classification. The conservation relations proved in this article thus yield a shorter
proof for [AB, Corollary 5.3], as one of the by-products.

2. Doubling method

Recall that W is a symplectic space over k, of dimension 2n ≥ 0. We form
the symplectic space W := W ⊕ W− and note that ∆ := {(w, w) ∈ W ⊕ W−} is
a Lagrangian subspace of W. Denote by P(∆) the parabolic subgroup of Sp(W)
stabilizing ∆. Write

(8) 1 → {±1} → Pǫ(∆) → P(∆) → 1
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for the topological central extension of P(∆) which is induced by the extension (1)
(for W). Denote by | · |k the normalized absolute value on k. For ease of notation,
we use | · | to denote the following positive character on Pǫ(∆):

Pǫ(∆) → P(∆)
restriction on ∆
−−−−−−−−−→ GL(∆)

det
−→ k× | · |k

→ R×
+.

For every V ∈ Q(ǫ, χ), recall that ([Ho2, Theorem 5.1]) there is a unique (up to
scalar multiplication) nonzero (continuous in the archimedean case) linear func-
tional λV,∆ on ωV,W which is invariant under

V ⊗ ∆ ⊂ JV,W = (O(V ) × Spǫ(W)) ⋉ ((V ⊗ W) × k).

It is invariant under O(V ) by the definition of ωV,W in the Introduction.
By using the Schrodinger model of ωV,W ([Ho2, Part II], [MVW, Chapter 2]),

one immediately has the following

Lemma 2.1. There is a unique character χ∆ on Pǫ(∆), which depends on χ (and
ψ), such that

λV,∆(p · v) = χ∆(p)|p|
dim V

2 λV,∆(v), p ∈ Pǫ(∆), v ∈ ωV,W.

for every V ∈ Q(ǫ, χ).

For s ∈ C, define the following normalized degenerate principal series represen-
tation of Spǫ(W):

Iχ(s) := {f ∈ C∞(Spǫ(W)) | f(px) = χ∆(p)|p|s+
2n+1

2 f(x), p ∈ Pǫ(∆), x ∈ Spǫ(W)}.

Under right translations, this is a smooth genuine representation of Spǫ(W).
The functional λV,∆ induces a Spǫ(W)-intertwining map

Φ : ωV,W → Iχ(dim V
2

− 2n+1
2

),
v 7→ (g 7→ λV,∆(g · v)).

Denote by RW(V ) the image of Φ (equipped with the quotient topology in the
archimedean case):

(9) RW(V ) := Φ(ωV,W) ⊆ Iχ(
dim V

2
−

2n + 1

2
).

Rallis and, Kudla and Rallis, prove that RW(V ) is the maximal (Hausdorff in the
archimedean case) quotient of ωV,W on which O(V ) acts trivially. See [Ra] and
[KR1].

Note that there is a unique continuous homomorphism

Spǫ(W ) × Spǫ(W
−) → Spǫ(W)
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which makes the diagrams in

1 // {±1} × {±1} //

²²

Spǫ(W ) × Spǫ(W
−) //

²²

Sp(W ) × Sp(W−) //

²²

1

1 // {±1} // Spǫ(W) // Sp(W) // 1

commutative, where the first vertical arrow is the multiplication map. Therefore
every representation of Spǫ(W) is a representation of Spǫ(W ) × Spǫ(W

−) through
the restriction.

Let ρ ∈ Irr(Spǫ(W )) be as in the Introduction. Identify Spǫ(W
−) with Spǫ(W )

in the obvious way and write ρ∨ ∈ Irr(Spǫ(W
−)) for the contragredient of ρ.

The following criterion for non-vanishing of theta lifting is, by now, quite stan-
dard [Ho1, Ra].

Lemma 2.2. For any V ∈ Q(ǫ, χ), we have

HomSpǫ(W )(ωV,W , ρ) 6= 0

if and only if

HomSpǫ(W )×Spǫ(W
−)(RW(V ), ρ⊗̂ρ∨) 6= 0.

Here and henceforth, “⊗̂” stands for the completed projective tensor product if
k is archimedean, and the algebraic tensor product if k is non-archimedean.

On the other hand, the theory of local Zeta integrals [PSR, LR] implies

Lemma 2.3. For any s ∈ C, we have

HomSpǫ(W )×Spǫ(W
−)(Iχ(s), ρ⊗̂ρ∨) 6= 0.

3. Two results on degenerate principal series representations

Lemma 3.1. Let m ≥ 2n + 1 be an integer with parity ǫ, then
∑

V ∈Q(ǫ,χ), dim V =m

RW(V ) = Iχ(
m

2
−

2n + 1

2
).

Consequently for any ρ ∈ Irr(Spǫ(W )), we have

m(ρ) ≤

{
2n + 1, ǫ = 1,

2n + 2, ǫ = 0.

Proof. The first assertion is in [KR2] (non-archimedean) and [LZ1, LZ2] (archimedean).
The rest follows immediately from the first assertion and Lemma 2.2. ¤

For symplectic groups, the key observation of this article is the following lemma,
which can be read off from [KR2, Introduction] (non-archimedean) and [LZ1, Sec-
tion 4] (k = R).
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Lemma 3.2. Assume that k is not isomorphic to C. Let V1 ∈ Q(ǫ, χ) with m1 :=
dim V1 ≥ 2n + 1. Then as Spǫ(W)-representations,

Iχ(m1

2
− 2n+1

2
)∑

V ∈Q(ǫ,χ), dim V =m1, V ≇V1
RW(V )

∼=





RW(V ′
1), if there exists a quadratic space V ′

1 of dimension 4n + 2 − m1

which belongs to the same Witt tower as V1;
0, otherwise.

4. Proof of conservation relation for symplectic groups

We start with the following result of Kudla and Rallis [KR3, Lemma 4.2] (non-
archimedean) and of Loke [LL, Theorem 1.2.1] (k = R). Recall that a quadratic
space V ∈ Q(ǫ, χ) is called quasi-split if its split rank ≥ dim V −2

2
.

Lemma 4.1. Assume that ǫ is even. If V ∈ Q(ǫ, χ) is not quasi-split, then

HomSpǫ(W )(ωV,W , C) 6= 0

implies that V has split rank ≥ 2n, in particular dim V ≥ 4n + 4. Here C stands
for the unique one-dimensional genuine representation of Spǫ(W ).

The following result is also known, at least in the non-archimedean case ([KR3,
Theorem 3.8]). We include a proof for the sake of completeness.

Lemma 4.2. Let T1, T2 ∈ T (ǫ, χ) be two different Witt towers. Then

mT1(ρ) + mT2(ρ) ≥ 4n + 4.

Proof. For i = 1, 2, let Vi ∈ Q(ǫ, χ) be such that mTi
(ρ) = dim Vi and

(10) HomSpǫ(W )(ωVi,W , ρ) 6= 0.

Then V1 ⊕ V −
2 has even dimension, trivial discriminant character, and does not

split. By (6), it is not quasi-split.
Recall [MVW] that (10) for i = 2 is equivalent to

(11) HomSpǫ(W )(ωV
−

2 ,W , ρ∨) 6= 0.

Combining (10) for i = 1 and (11), we get

HomSpǫ0
(W )(ωV1⊕V −

2 ,W , C) 6= 0.

Here ǫ0 := 0 ∈ Z/2Z. Since V1 ⊕ V −
2 is not quasi-split, we conclude from Lemma

4.1 that dim V1 + dim V2 ≥ 4n + 4. The result follows. ¤

Lemma 4.3. Assume that k is not isomorphic to C. Then there are two different
T1, T2 ∈ T (ǫ, χ) such that

mT1(ρ) + mT2(ρ) ≤ 4n + 4.
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Proof. Pick a quadratic space V0 ∈ Q(ǫ, χ) so that

dim V0 = m(ρ) (≤ 2n + 2) and HomSpǫ(W )(ωV0,W , ρ) 6= 0.

From Lemma 2.3, we may pick a nonzero element µ in

HomSpǫ(W )×Spǫ(W
−)(Iχ(

4n + 4 − m(ρ)

2
−

2n + 1

2
), ρ⊗̂ρ∨).

Denote by V1 the quadratic space of dimension 4n + 4 − m(ρ) which belongs to
the same Witt tower as V0. It suffices to show that there is a quadratic space
V ∈ Q(ǫ, χ) such that dim V = dim V1, V ≇ V1 and µ does not vanish on RW(V ).
Suppose this is not the case, then µ factors to a nonzero linear map on

Iχ(4n+4−m(ρ)
2

− 2n+1
2

)∑
V ∈Q(ǫ,χ), dim V =4n+4−m(ρ), V ≇V1

RW(V )
.

This is impossible by Lemma 3.2 and the minimality in the definition of m(ρ). ¤

Lemma 4.4. If T1, T2 ∈ T (ǫ, χ) are two different Witt towers so that

mT1(ρ) + mT2(ρ) = 4n + 4,

then T1 and T2 are adjacent.

Proof. Let V1 ∈ T1 and V2 ∈ T2 be quadratic spaces such that

dim V1 + dim V2 = 4n + 4,

and
HomSpǫ(W )(ωVi,W , ρ) 6= 0, i = 1, 2.

As in the proof of Lemma 4.2, the quadratic space V1 ⊕ V −
2 must have split rank

≥ 2n. Together with dim V1 + dim V2 = 4n + 4, this implies that T1 and T2 are
adjacent. ¤

Theorem B and Theorem C now follow by combining Lemmas 3.1, 4.2, 4.3 and
4.4.

5. The case of orthogonal groups

The proof of conservation relation for orthogonal groups is similar to that for
symplectic groups, though technically less complicated. We will be contented to
sketch a proof in this section.

Let V ∈ Q(ǫ, χ) be a quadratic space over k of dimension m ≥ 0. As in
the symplectic case, we form the quadratic space V := V ⊕ V − and note that
∇ := {(v, v) ∈ V ⊕ V −} is a maximal isotropic subspace of V. Denote by P(∇)
the parabolic subgroup of O(V) stabilizing ∇. Again, we simply use | · | to denote
the following positive character on P(∇):

P(∇)
restriction on ∇
−−−−−−−−−→ GL(∇)

det
−→ k× | · |k

→ R×
+.
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Denote by λ∇,W the unique (up to scalar multiplication) nonzero (continuous in
the archimedean case) linear functional on ωV,W which is invariant under

∇⊗ W ⊂ JV,W = (O(V) × Spǫ0
(W )) ⋉ ((V ⊗ W ) × k).

Here ǫ0 := 0 ∈ Z/2Z.
By using the Schrodinger model of ωV,W ([Ho2, Part II], [MVW, Chapter 2]),

one immediately has the following

Lemma 5.1. The functional λ∇,W transforms through the unique genuine charac-
ter under the action of Spǫ0

(W ), and satisfies

λ∇,W (p · v) = |p|
dim W

2 λ∇,W (v), p ∈ P(∇), v ∈ ωV,W .

For s ∈ C, define the normalized degenerate principal series representation of
O(V):

J(s) := {f ∈ C∞(O(V)) | f(px) = |p|s+
m−1

2 f(x), p ∈ P(∇), x ∈ O(V)}.

Under right translations, this is a smooth representation of O(V).
The functional λ∇,W induces a O(V)-intertwining map

Ψ : ωV,W → J(dim W
2

− m−1
2

),
v 7→ (g 7→ λ∇,W (g.v)).

Denote by RV(W ) the image of Ψ (equipped with the quotient topology in the
archimedean case):

(12) RV(W ) =: Ψ(ωV,W ) ⊆ J(
dim W

2
−

m − 1

2
).

Rallis [Ra] proves that RV(W ) is the maximal (Hausdorff in the archimedean case)
quotient of ωV,W on which Spǫ0

(W ) acts through the genuine character. See [Zhu]
for the archimedean case.

Again we have the following criterion for non-vanishing of theta lifting [Ho1, Ra].

Lemma 5.2. For any W ∈ S, we have

HomO(V )(ωV,W , π) 6= 0

if and only if

HomO(V )×O(V −)(RV(W ), π⊗̂π∨) 6= 0.

Again the theory of local Zeta integrals [PSR, LR] implies that

Lemma 5.3. For any s ∈ C, we have

HomO(V )×O(V −)(J(s), π⊗̂π∨) 6= 0.
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From the non-vanishing of stable range theta liftings, we clearly have

0 ≤ n(π), n(π ⊗ det) ≤ m.

We also recall the well-known fact that the first occurrence index of the determi-
nant character of O(V ) is m. See for example, [Ra, Appendix] and [PP, Appendix
C]. Similar to the proof of Lemma 4.2, this implies that

n(π) + n(π ⊗ det) ≥ m.

For orthogonal groups, the key observation of this article is the following

Lemma 5.4. Assume that dim W ≥ m − 1, then as O(V)-representations,

J(
dim W

2
−

m − 1

2
)/ RV(W )

∼=





RV(W ′) ⊗ detV, if there exists a symplectic space W ′

of dimension 2m − 2 − dim W ;
0, otherwise.

Here “detV” stands for the determinant character of O(V).

Of course the condition that there exists a symplectic space W ′ of dimension
2m − 2 − dim W is simply dim W ≤ 2m − 2. We phrase it in this way with the
sole purpose that the statements for orthogonal and symplectic groups will look
parallel.

Proof. The assertion is clear from the results of Yamana [Ya, Corollary 8.8] (non-
archimedean), Lee [LL, Appendix] (k = R), and Lee and Zhu [LZ2, Theorem 1]
(k = C). ¤

We are now ready to prove Theorem A. The case of m = 0 is trivial. So
assume that m ≥ 1. Without loss of generality, assume that n(π) ≥ n(π ⊗ det). If
n(π) ≤ m/2, then

n(π) + n(π ⊗ det) ≤ m

and we are done. So assume that n(π) ≥ (m+1)/2 and let W0 ∈ S be a symplectic
space of dimension 2 n(π) − 2 ≥ m − 1 ≥ 0. From Lemma 5.3, we may pick a
nonzero element µ in

HomO(V )×O(V −)(J(
dim W0

2
−

m − 1

2
), π⊗̂π∨).

Note that µ vanishes on RV(W0), by Lemma 5.2 and the minimality in the defini-
tion of n(π). Thus it follows from Lemma 5.4 that µ factors to a nonzero element
of

HomO(V )×O(V −)(RV(W ′
0) ⊗ detV, π⊗̂π∨)

= HomO(V )×O(V −)(RV(W ′
0), (π ⊗ det)⊗̂(π ⊗ det)∨).
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Here W ′
0 ∈ S is the symplectic space of dimension 2m−2−dim W0 ≥ 0. Therefore

n(π ⊗ det) ≤ m − 1 −
dim W0

2
= m − n(π)

and we conclude the proof.

References

[AB] J. Adams and D. Barbasch, Genuine representations of the metaplectic group, Compositio
Math. 113, (1998), 23–66.

[Ca] W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G,
Can. J. Math. 41, (1989), 385-438.

[du] F. du Cloux, Sur les reprsentations diffrentiables des groupes de Lie algbriques, Ann. Sci.
Ecole Norm. Sup. 24 (1991), no. 3, 257-318.

[HKS] M. Harris, S. S. Kudla, and J. Sweet, Theta dichotomy for unitary groups, J. Amer.
Math. Soc. 9, (1996), 941–1004.

[GGP] W.T. Gan, B.H. Gross, and D. Prasad, Symplectic local root numbers, central critical L-

values, and restriction problems in the representation theory of classical groups, to appear
in Asterisque.

[Ho1] R. Howe, θ-series and invariant theory, in Automorphic Forms, Representations and L-
functions, Proc. Symp. Pure Math. 33, (1979), 275–285.

[Ho2] R. Howe, The oscillator representation: algebraic and analytic preliminaries, unpublished
notes.

[Ho3] R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2, (1989), 535-552.
[Ku] S. S. Kudla, Notes on the local theta correspondence, Lecture notes from the European

School of Group Theory, 1996. http://www.math.toronto.edu/∼skudla/ssk.research.html.
[KR1] S. S. Kudla and S. Rallis, Degenerate principal series and invariant distributions, Israel

J. Math. 69, (1990), 25–45.
[KR2] S. S. Kudla and S. Rallis, Ramified degenerate principal series, Israel J. Math. 78, (1992),

209-256.
[KR3] S. S. Kudla and S. Rallis, On first occurrence in the local theta correspondence, in “Au-

tomorphic Representations, L-functions and Applications: Progress and Prospects”, Ohio
State Univ. Math. Res. Inst. Publ., vol. 11, 273–308. de Gruyter, Berlin (2005).

[LL] H. Y. Loke, Howe quotients of unitary characters and unitary lowest weight modules, with
an appendix by S. T. Lee, Represent. Theory 10 (2006), 21-47.

[LR] E. M. Lapid and S. Rallis, On the local factors of representations of classical groups, in
“Automorphic Representations, L-functions and Applications: Progress and Prospects”,
Ohio State Univ. Math. Res. Inst. Publ., vol. 11, 309–359. de Gruyter, Berlin (2005).

[LZ1] S. T. Lee and C.-B. Zhu, Degenerate principal series and local theta correspondence II,
Israel J. Math. 100 (1997), 29-59.

[LZ2] S. T. Lee and C.-B. Zhu, Degenerate principal series and local theta correspondence III:

the case of complex groups, J. Algebra 319, (2008), 336–359.
[Mi] A. Minguez, The conservation relation for cuspidal representations, Math. Ann., DOI

10.1007/s00208-011-0636-5.
[MVW] C. Moeglin, M.-F. Vigneras, and J.-L. Waldspurger, Correspondences de Howe sur un

corps p-adic, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, 1987.
[Pa] A. Paul, First occurrence for the dual pairs (U(p, q), U(r, s)), Canad. J. Math. 51, (1999),

636-657.



CONSERVATION RELATIONS FOR LOCAL THETA CORRESPONDENCE 13

[PP] V. Protsak and T. Przebinda, On the occurence of admissible representations in the real

Howe correspondence in stable range, manuscripta math. 126, (2008), 135–141.
[Pr] T. Przebinda, The oscillatory duality correspondence for the pair O(2, 2), Sp(2, R), Mem-

oirs Amer. Math. Soc. 403, (1989), 1–105.
[PSR] I. Piatetski-Shapiro and S. Rallis, ǫ factor of representations of classical groups, Proc.

Nat. Acad. Sci. U.S.A. 83, (1986), 4589–4593.
[Ra] S. Rallis, On the Howe duality conjecture, Compositio Math. 51, (1984), 333-399.
[Sun] B. Sun, On representations of real Jacobi groups, Science China Mathematics 55 (2012),

541-555.
[Wal] N. Wallach, Real Reductive Groups II, Academic Press, San Diego, 1992.
[Ya] S. Yamana, Degenerate princiapl series representations for quaternionic unitary groups,

Israel J. Math. 185, (2011), 77–124.
[Zhu] C.-B. Zhu, Invariant distributions of classical groups, Duke Math. J. 65, (1992), 85–119.

[Zo] C. Zorn, Theta dichotomy and doubling epsilon factors for S̃pn(F ), Amer. J. Math. 133,
(2011), 1313-1364.

Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing, 100190, P.R. China

E-mail address: sun@math.ac.cn

Department of Mathematics, National University of Singapore, Block S17, 10

Lower Kent Ridge Road, Singapore 119076

E-mail address: matzhucb@nus.edu.sg


