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1 Introduction

Wigner envisioned that the laws of the eigenvalues of large random matrices are new paradigms for universal
statistics of large correlated quantum systems. Although this vision has not been proved for any truly
interacting quantum system, it is generally considered to be valid for a wide range of models. For example,
the quantum chaos conjecture by Bohigas-Giannoni-Schmit [6] asserts that the eigenvalue statistics of the
Laplace operator on a domain or manifold are given by the random matrix statistics, provided that the
corresponding classical dynamics are chaotic. Similarly, one expects that the eigenvalue statistics of random
Schrödinger operators (Anderson tight binding models) are given by the random matrix statistics in the
delocalization regime. Unfortunately, both conjectures are far beyond the reach of the current mathematical
technology.

In Wigner’s original theory, the eigenvector behaviour plays no role. As suggested by the Anderson model,
random matrix statistics coincide with delocalization of eigenvectors. A strong notion of delocalization, at
least in terms of “flatness of the eigenfunctions”, is the quantum ergodicity. For the Laplacian on a negative
curved compact Riemannian manifold, Shnirel’man [31], Colin de Verdière [11] and Zelditch [36] proved that
quantum ergodicity holds. More precisely, let (ψk)k>1 denote an orthonormal basis of eigenfunctions of the
Laplace-Beltrami operator, associated with increasing eigenvalues, on a negative curved manifold M (or
more generally, assume only that the geodesic flow of M is ergodic) with volume measure µ. Then, for any
open set A ⊂ M, one has

lim
λ→∞

1

N(λ)

∑

j:λj6λ

∣∣∣
∫

A

|ψj(x)|2µ(dx)−
∫

A

µ(dx)
∣∣∣
2

= 0,

where N(λ) = |{j : λj 6 λ}|. Quantum ergodicity was also proved for d-regular graphs under certain
assumptions on the injectivity radius and spectral gap of the adjacency matrices [3]. Random graphs are
considered a good paradigm for many ideas related to quantum chaos [24].

An even stronger notion of delocalization is the quantum unique ergodicity conjecture (QUE) proposed
by Rudnick-Sarnak [30], i.e., for any negatively curved compact Riemannian manifold M, the eigenstates
become equidistributed with respect to the volume measure µ: for any open A ⊂ M we have

∫

A

|ψk(x)|2µ(dx) −→
k→∞

∫

A

µ(dx). (1.1)

Some numerical evidence exists for both eigenvalue statistics and the QUE, but a proper understanding of
the semiclassical limit of chaotic systems is still missing. One case for which QUE was rigorously proved
concerns arithmetic surfaces, thanks to tools from number theory and ergodic theory on homogeneous spaces
[20,21,26]. For results in the case of general compact Riemannian manifolds whose geodesic flow is Anosov,
see [2].

A major class of matrices for which one expects that Wigner’s vision holds is the Wigner matrices, i.e.,
random matrices with matrix elements distributed by identical mean-zero random variables. For this class of
matrices, the Wigner-Dyson-Mehta conjecture states that the local statistics are independent of the laws of
the matrix elements and depend only on the symmetry class. This conjecture was recently solved for an even
more general class: the generalized Wigner matrices for which the distributions of matrix entries can vary and
have different variances. (See [17,18] and [16] for a review. For earlier results on this conjecture for Wigner
matrices, see [14, 34] for the bulk of the spectrum and [19, 32, 33] for the edge). One key ingredient of the
method initiated in [14] proceeds by interpolation between Wigner and Gaussian ensembles through Dyson
Brownian motion, a matrix process that induces an autonomous evolution of eigenvalues. The fundamental
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conjecture for Dyson Brownian motion, the Dyson conjecture, states that the time to local equilibrium is
of order t & 1/N , where N is the size of the matrix. This conjecture was resolved in [19] (see [14] for the
earlier results) and is the underlying reason for the universality.

Concerning the eigenvectors distribution, complete delocalization was proved in [19] for generalized
Wigner matrices in the following sense : with very high probability

max |ui(α)| 6
(logN)C log logN

√
N

,

where C is a fixed constant and the maximum ranges over all coordinates α of the L2-normalized eigenvectors,
u1, . . . , uN (a stronger estimate was obtained for Wigner matrices in [13], see also [8] for a delocalization
bound for the Laplacian on deterministic regular graphs). Although this bound prevents concentration of
eigenstates onto a set of size less than N(logN)−C log logN , it does not imply the “complete flatness” of type
(1.1). In fact, if the eigenvectors are distributed by the Haar measure on the orthogonal group, the weak
convergence √

Nui(α) → N (1.2)

holds, where N is a standard Gaussian random variable and the eigenvector components are asymptoti-
cally independent. Since the eigenvectors of GOE are distributed by the Haar measure on the orthogonal
group, this asymptotic normality (1.2) holds for GOE (and a similar statement holds for GUE). For Wigner
ensembles, by comparing with GOE, this property was proved for eigenvectors in the bulk by Knowles-Yin
and Tao-Vu [22, 35] under the condition that the first four moments of the matrix elements of the Wigner
ensembles match those of the standard normal distribution. For eigenvectors near the edges, the matching
condition can be reduced to only the first two moments [22].

In this paper, we develop a completely new method to show that this asymptotic normality (1.2) and
independence of eigenvector components hold for generalized Wigner matrices without any moment matching
condition. In particular, even the second moments are allowed to vary as long as the matrix stays inside the
generalized Wigner class. From the law of large numbers of independent random variables, this implies the
local quantum unique ergodicity, to be specified below, with high probability. In fact, we will prove a stronger
form of asymptotic normality in the sense that any projection of the eigenvector is asymptotically normal,
see Theorem 1.2. This can be viewed as the eigenvector universality for the generalized Wigner ensembles.

The key idea in this new approach is to analyze the “Dyson eigenvector flow”. More precisely, the Dyson
Brownian motion is induced by the dynamics in which matrix elements undergo independent Brownian
motions. The same dynamics on matrix elements yield a flow on the eigenvectors. This eigenvector flow,
which we will call the Dyson eigenvector flow, was computed in the context of Brownian motion on ellipsoids
[28], real Wishart processes [9], and for GOE/GUE in [4] (see also [1]). This flow is a diffusion process on
a compact Lie group (O(N) or U(N)) endowed with a Riemannian metric. This diffusion process roughly
speaking can be described as follows. We first randomly choose two eigenvectors, ui and uj . Then we
randomly rotate these two vectors on the circle spanned by them with a rate (λi − λj)

−2 depending on the
eigenvalues. Thus the eigenvector flow depends on the eigenvalue dynamics. If we freeze the eigenvalue flow,
the eigenvector flow is a diffusion with time dependent singular coefficients depending on the eigenvalues.

Due to its complicated structure, the Dyson eigenvector flow has never been analyzed. Our key observa-
tion is that the dynamics of the moments of the eigenvector entries can be viewed as a multi-particle random
walk in a random environment. The number of particles of this flow is one half of the degree of polynomials
in the eigenvector entries, and the (dynamic) random environment is given by jump rates depending on the
eigenvalues. We shall call this flow the eigenvector moment flow. If there is only one particle, this flow is
the random walk with the random jump rate (λi − λj)

−2 between two integer locations i and j. This one
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dimensional random walk process was analyzed locally in [15] for the purpose of the single gap universality
between eigenvalues. An important result of [15] is the Hölder regularity of the solutions. In higher dimen-
sions, the jump rates depend on the locations of nearby particles and the flow is not a simple tensor product
of the one dimensional process. Fortunately, we find that this flow is reversible with respect to an explicit
equilibrium measure. The Hölder regularity argument in [15] can be extended to any dimension to prove
that the solutions of the moment flow are locally Hölder continuous. From this result and the local semicircle
law (more precisely, the isotropic local semicircle law proved in [23] and [5]), one can obtain that the bulk
eigenvectors generated by a Dyson eigenvector flow satisfy local quantum unique ergodicity, and the law of
the entries of the eigenvectors are Gaussian.

Instead of showing the Hölder regularity, we will directly prove that the solution to the eigenvector
moment flow converges to a constant. This proof is based on a maximum principle for parabolic differential
equations and the local isotropic law [5] previously mentioned. It yields the convergence of the eigenvector
moment flow to a constant for t & N−1/4 with explicit error bound. This immediately implies that all
eigenvectors (in the bulk and at the edge) generated by a Dyson eigenvector flow satisfy local quantum
unique ergodicity, and the law of the entries of the eigenvectors are Gaussian.

The time to equilibrium t & N−1/4 mentioned above is not optimal and the correct scaling of relaxation
to equilibrium is t ∼ N−1 in the bulk, similar to Dyson’s conjecture for relaxation of bulk eigenvalues to
local equilibrium. In other words, we expect that Dyson’s conjecture can be extended to the eigenvector
flow bulk as well. We will give a positive answer to this question in Theorem 7.1. A key tool in proving this
theorem is a finite speed of propagation estimate for the eigenvector moment flow. An estimate of this type
was first proved in [15, Section 9.6], but it requires a difficult level repulsion estimate. In Section 6, we will
prove an optimal finite speed of propagation estimate without using any level repulsion estimate.

In order to prove that the eigenvectors of the original matrix ensemble satisfy quantum ergodicity, it
remains to approximate the Wigner matrices by Gaussian convoluted ones, i.e., matrices that are a small
time solution to the Dyson Brownian motion. We invoke the Green function comparison theorem in a version
similar to the one stated in [22]. For bulk eigenvectors, we can remove this small Gaussian component by
a continuity principle instead of the Green function comparison theorem: we will show that the Dyson
Brownian motion preserves the detailed behavior of eigenvalues and eigenvectors up to time N−1/2 directly
by using the Itô formula. This approach is much more direct and there is no need to construct moment
matching matrices.

The eigenvector moment flow developed in this paper can be applied to other random matrix models.
For example, the local quantum unique ergodicity holds for covariance matrices (for the associated flow and
results, see Appendix C) and a certain class of Erdős-Rényi graphs. To avoid other technical issues, in this
paper we only consider generalized Wigner matrices. Before stating the results and giving more details about
the proof, we recall the definition of the considered ensemble.

Definition 1.1. A generalized Wigner matrix HN is an Hermitian or symmetric N × N matrix whose
upper-triangular matrix elements hij = hji, i 6 j, are independent random variables with mean zero and
variance σ2

ij = E(|hij |2) satisfying the following additional two conditions:

(i) Normalization: for any j ∈ J1, NK,
∑N
i=1 σ

2
ij = 1.

(ii) Non-degeneracy: there exists a constant C, independent of N , such that C−1N−1 6 σ2
ij 6 CN−1 for all

i, j ∈ J1, NK. In the Hermitian case, we furthermore assume that, for any i < j, E((hij)
∗hij) > cN−1

in the sense of inequality between 2× 2 positive matrices, where hij = (ℜ(hij),ℑ(hij)).
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Moreover, we assume that all moments of the entries are finite: for any p ∈ N there exists a constant Cp
such that for any i, j,N we have

E(|
√
Nhij |p) < Cp. (1.3)

In the following, (ui)
N
i=1 denotes an orthonormal eigenbasis for HN , a matrix from the (real or complex)

generalized Wigner ensemble. The eigenvector ui is associated with the eigenvalue λi, where λ1 6 . . . 6 λN .

Theorem 1.2. Let (HN )N>1 be a sequence of generalized Wigner matrices. Then there is a δ > 0 such that
for any m ∈ N, I ⊂ TN := J1, N1/4K ∪ JN1−δ, N − N1−δK ∪ JN − N1/4, NK with |I| = m and for any unit
vector q in R

N , we have
√
N(|〈q, uk〉|)k∈I → (|Nj |)mj=1 in the symmetric case, (1.4)

√
2N(|〈q, uk〉|)k∈I → (|N (1)

j + iN
(2)
j |)mj=1 in the Hermitian case,

in the sense of convergence of moments, where all Nj ,N
(1)
j ,N

(2)
j , are independent standard Gaussian

random variables. This convergence holds uniformly in I and |q| = 1. More precisely, for any polynomial P
in m variables, there exists ε = ε(P ) > 0 such that for large enough N we have

sup
I⊂TN ,|I|=m,|q|=1

∣∣∣E
(
P
((
N |〈q, uk〉|2

)
k∈I

))
− E

(
P
(
(|Nj |2)mj=1

))∣∣∣ 6 N−ε, (1.5)

sup
I⊂TN ,|I|=m,|q|=1

∣∣∣E
(
P
((

2N |〈q, uk〉|2
)
k∈I

))
− EP

(
(|N (1)

j |2 + |N (2)
j |2)mj=1)

)∣∣∣ 6 N−ε,

respectively for the real and complex generalized Wigner ensembles.

The restriction on the eigenvector in the immediate regime JN1/4, N1−δK (and similarly for its reflection)
was due to that near the edges the level repulsion estimate, Definition 5.1, (or the gap universality) was
only written in the region J1, N1/4K (see the discussion after Definition 5.1 for references regarding this
matter). There is no doubt that these results can be extended to the the immediate regime with only minor
modifications in the proofs. Here we state our theorem based on existing written results.

The normal convergence (1.4) was proved in [35] under the assumption that the entries of HN have
moments matching the standard Gaussian distribution up to order four, and if their distribution is symmetric
(in particular the fifth moment vanishes).

This convergence of moments implies in particular joint weak convergence. Choosing q to be an element
of the canonical basis, Theorem 1.2 implies in particular that any entry of an eigenvector is asymptotically
normally distributed, modulo the (arbitrary) phase choice. Because the above convergence holds for any
|q| = 1, asymptotic joint normality of the eigenvector entries also holds. Since eigenvectors are defined only
up to a phase, we define the equivalence relation u ∼ v if u = ±v in the symmetric case and u = λv for some
|λ| = 1 in the Hermitian case.

Corollary 1.3 (Asymptotic normality of eigenvectors for generalized Wigner matrices). Let (HN )N>1 be a
sequence of generalized Wigner matrices, ℓ ∈ N. Then for any k ∈ TN and J ⊂ J1, NK with |J | = ℓ, we have

√
N(uk(α))α∈J → (Nj)

ℓ
j=1 for the real generalized Wigner ensemble,

√
2N(uk(α))α∈J → (N

(1)
j + iN

(2)
j )ℓj=1 for the complex generalized Wigner ensemble,

in the sense of convergence of moments modulo ∼, where all Nj ,N
(1)
j ,N

(2)
j , are independent standard

Gaussian variables. More precisely, for any polynomial P in ℓ variables (resp. Q in 2ℓ variables) there exists
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ε depending on P (resp. Q) such that, for large enough N ,

sup
J⊂J1,NK,|J|=ℓ,

k∈TN

∣∣∣E
(
P
(√

N(eiωuk(α))α∈J
))

− EP
(
(Nj)

ℓ
j=1

)∣∣∣ 6 N−ε, (1.6)

sup
J⊂J1,NK,|J|=ℓ,

k∈TN

∣∣∣E
(
Q
(√

2N(eiωuk(α), e
−iωuk(α))α∈J

))
− EQ

(
(N

(1)
j + iN

(2)
j ,N

(1)
j − iN

(2)
j )ℓj=1

)∣∣∣ 6 N−ε,

for the symmetric (resp. Hermitian) generalized Wigner ensembles. Here ω is independent of HN and
uniform on the binary set {0, π} (resp. (0, 2π)).

By characterizing the joint distribution of the entries of the eigenvectors, Theorem 1.2 and Corollary 1.3
imply that for any eigenvector a probabilistic equivalent of (1.1) holds. For aN : J1, NK → [−1, 1] we denote
|aN | = |{1 6 α 6 N : aN (α) 6= 0}| the size of the support of aN , and 〈uk, aNuk〉 =

∑ |uk(α)|2aN (α).

Corollary 1.4 (Local quantum unique ergodicity for generalized Wigner matrices). Let (HN )N>1 be a
sequence of generalized (real or complex) Wigner matrices. Then there exists ε > 0 such that for any
δ > 0, there exists C > 0 such that the following holds: for any (aN )N>1, aN : J1, NK → [−1, 1] with∑N
α=1 aN (α) = 0 and k ∈ TN , we have

P

(∣∣∣∣
N

|aN | 〈uk, aNuk〉
∣∣∣∣ > δ

)
6 C

(
N−ε + |aN |−1

)
. (1.7)

Under the condition that the first four moments of the matrix elements of the Wigner ensembles match
those of the standard normal distribution, (1.7) can also be proved from the results in [22, 35]; the four
moment matching were reduced to two moments for eigenvectors near the edges [22].

The quantum ergodicity for a class of sparse regular graphs was proved by Anantharaman-Le Masson [3],
partly based on pseudo-differential calculus on graphs from [25]. The main result in [3] is for deterministic
graphs, but for the purpose of this paper we only state its application to random graphs (see [3] for details
and more general statements). If u1, . . . , uN are the (L2-normalized) eigenvectors of the discrete Laplacian
of a uniformly chosen (q+ 1)-regular graph with N vertices, then for any fixed δ > 0 we have, for any q > 1
fixed,

P (♯{k : |〈uk, aNuk〉| > δ} > δN) −→
N→∞

0,

where aN may be random (for instance, it may depend on the graph). The results in [3] were focused on very
sparse deterministic regular graphs and are very different from our setting for generalized Wigner matrices.

Notice that our result (1.7) allows the test function to have a very small support and it is valid for any
k. This means that eigenvectors are flat even in “microscopic scales”. However, the equation (1.7) does not
imply that all eigenvectors are completely flat simultaneously with high probability, i.e., we have not proved
the following statement:

P

(
sup

16k6N
|〈uk, aNuk〉| > δ

)
→ 0

for aN with support of order N . This strong form of QUE, however, holds for the Gaussian ensembles.

In the following section, we will define the Dyson vector flow and, for the sake of completeness, prove
the well-posedness of the eigenvector stochastic evolution. In Section 3 we will introduce the eigenvector
moment flow and prove the existence of an explicit reversible measure. In Section 4, we will prove Theorem
1.2 under the additional assumption that HN is the sum of a generalized Wigner matrix and a Gaussian
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matrix with small variance. The proof in this section relies on a maximum principle for the eigenvector
moment flow. We will prove Theorem 1.2 by using a Green function comparison theorem in Section 5. In
Section 6, we will prove that the speed of propagation for the eigenvector moment flow is finite with very
high probability. This estimate will enable us to prove in Section 7 that the relaxation to equilibrium for
the eigenvector moment flow in the bulk is of order t & N−1. The appendices contain a continuity estimate
for the Dyson Brownian motion up to time N−1/2, and some basic results concerning the generator of the
Dyson vector flow as well as analogue results for covariance matrices.

2 Dyson Vector Flow

In this section, we first state the stochastic differential equation for the eigenvectors under the Dyson Brow-
nian motion. This evolution is given by (2.3) and (2.5). We then give a concise form of the generator for
this Dyson vector flow. We will follow the usual slight ambiguity of terminology by naming both the matrix
flow and the eigenvalue flow a Dyson Brownian motion. In case we wish to distinguish them, we will use
matrix Dyson Brownian motion for the matrix flow.

Definition 2.1. Hereafter is our choice of normalization for the Dyson Brownian motion.

(i) Let B(s) be a N × N matrix such that B
(s)
ij (i < j) and B

(s)
ii /

√
2 are independent standard Brownian

motions, and B
(s)
ij = B

(s)
ji . The N ×N symmetric Dyson Brownian motion H(s) with initial value H

(s)
0

is defined as

H
(s)
t = H

(s)
0 +

1√
N
B

(s)
t , (2.1)

(ii) Let B(h) be a N ×N matrix such that ℜ(B(h)
ij ),ℑ(B(h)

ij )(i < j) and B
(h)
ii /

√
2 are independent standard

Brownian motions, and B
(h)
ji = (B

(h)
ij )∗. The N × N Hermitian Dyson Brownian motion H(h) with

initial value H
(t)
0 is

H
(h)
t = H

(h)
0 +

1√
2N

B
(h)
t ,

Definition 2.2. We refer to the following stochastic differential equations as the Dyson Brownian motion
for (2.2) and (2.4) and the Dyson vector flow for (2.3) and (2.5).

(i) Let λ0 ∈ ΣN = {λ1 < · · · < λN}, u0 ∈ O(N), and B(s) be as in Definition 2.1. The symmetric Dyson
Brownian motion/vector flow with initial condition (λ1, . . . , λN ) = λ0, (u1, . . . , uN ) = u0, is

dλk =
dB

(s)
kk√
N

+


 1

N

∑

ℓ 6=k

1

λk − λℓ


 dt, (2.2)

duk =
1√
N

∑

ℓ 6=k

dB
(s)
kℓ

λk − λℓ
uℓ −

1

2N

∑

ℓ 6=k

dt

(λk − λℓ)2
uk. (2.3)
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(ii) Let λ0 ∈ ΣN , u0 ∈ U(N), and B(h) be as in Definition 2.1. The Hermitian Dyson Brownian mo-
tion/vector flow with initial condition (λ1, . . . , λN ) = λ0, (u1, . . . , uN ) = u0, is

dλk =
dB

(h)
kk√
2N

+


 1

N

∑

ℓ 6=k

1

λk − λℓ


 dt, (2.4)

duk =
1√
2N

∑

ℓ 6=k

dB
(h)
kℓ

λk − λℓ
uℓ −

1

2N

∑

ℓ 6=k

dt

(λk − λℓ)2
uk. (2.5)

The theorem below contains the following results. (a) The above stochastic differential equations admit
a unique strong solution, this relies on classical techniques and an argument originally by McKean [27]. (b)
The matrix Dyson Brownian motion induces the standard Dyson Brownian motion (for the eigenvalues)
and Dyson eigenvector flow. This statement was already proved in [4]. (c) For calculation purpose, one
can condition on the trajectory of the eigenvalues to study the eigenvectors evolution. For the sake of
completeness, this theorem is proved in the appendix.

With a slight abuse of notation, we will write λt either for (λ1(t), . . . , λN (t)) or for the N ×N diagonal
matrix with entries λ1(t), . . . , λN (t).

Theorem 2.3. The following statements about the Dyson Brownian motion and eigenvalue/vector flow hold.

(a) Existence and strong uniqueness hold for the system of stochastic differential equations (2.2), (2.3). Let
(λt,ut)t>0 be the solution. Almost surely, for any t > 0 we have λt ∈ ΣN and ut ∈ O(N).

(b) Let (Ht)t>0 be a symmetric Dyson Brownian motion with initial condition H0 = u0λ0u
∗
0, λ0 ∈ ΣN .

Then the processes (Ht)t>0 and (utλtu
∗
t )t>0 have the same distribution.

(c) Existence and strong uniqueness hold for (2.2). For any T > 0, let νH0

T be the distribution of (λt)06t6T
with initial value the spectrum of a matrix H0. For 0 6 T 6 T0 and any given continuous trajectory
λ = (λt)06t6T0

⊂ ΣN , existence and strong uniqueness holds for (2.3) on [0, T ]. Let µH0,λ
T be the

distribution of (ut)06t6T with the initial matrix H0 and the path λ given.

Let F be continuous bounded, from the set of continuous paths (on [0, T ]) on N ×N symmetric matrices
to R. Then for any initial matrix H0 we have

E
H0(F ((Ht)06t6T )) =

∫
dνH0

T (λ)

∫
dµH0,λ

T (u)F ((utλtu
∗
t )06t6T ). (2.6)

The analogous statements hold in the Hermitian setting.

We will omit the subscript T when it is obvious. The previous theorem reduces the study of the eigenvector
dynamics to the stochastic differential equations (2.3) and (2.5). The following lemma gives a concise form
of the generators of these diffusions. It is very similar to the well-known forms of the generator for the
Brownian motion on the unitary/orthogonal groups up to the following difference: weights vary depending
on eigenvalue pairs.
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We will need the following notations (the dependence in t will often be omitted for ckℓ, 1 6 k < ℓ 6 N):

ckℓ(t) =
1

N(λk(t)− λℓ(t))2
, (2.7)

uk∂uℓ
=

N∑

α=1

uk(α)∂uℓ(α), uk∂uℓ
=

N∑

α=1

uk(α)∂uℓ(α),

X
(s)
kℓ = uk∂uℓ

− uℓ∂uk
, (2.8)

X
(h)
kℓ = uk∂uℓ

− uℓ∂uk
, X

(h)

kℓ = uk∂uℓ
− uℓ∂uk

.

Here ∂uℓ
and ∂uℓ

are defined by considering uℓ as a complex number, i.e., if we write uℓ = x + iy then
∂uℓ

= 1
2∂x +

i
2∂y.

Lemma 2.4. For the diffusion (2.3) (resp. (2.5)), the generators acting on smooth functions f((ui(α))16i,α6N ) :

R
N2 → R (resp. C

N2 → R) are respectively

L
(s)
t =

∑

16k<ℓ6N

ckℓ(t)(X
(s)
kℓ )

2,

L
(h)
t =

1

2

∑

16k<ℓ6N

ckℓ(t)
(
X

(h)
kℓ X

(h)

kℓ +X
(h)

kℓ X
(h)
kℓ

)
. (2.9)

The above lemma means dE(g(ut))/dt = E(L
(s)
t g(ut)) (resp. dE(g(ut))/dt = E(L

(h)
t g(ut))) for the stochastic

differential equations (2.3) (resp. (2.5)). It relies on a direct calculation via Itô’s formula. The details are
given in the appendix.

3 Eigenvector Moment Flow

3.1 The moment flow. Our observables will be moments of projections of the eigenvectors onto a given
direction. More precisely, for any fixed q ∈ R

N and for any 1 6 k 6 N , define

zk(t) =
√
N〈q, uk(t)〉 =

N∑

α=1

q(α)uk(t, α).

With this
√
N normalization, the typical size of zk is of order 1. We assume that the eigenvalue trajectory

(λk(t), 0 6 t 6 T0)
N
k=1 in the simplex Σ(N) is given. Furthermore, u is the unique strong solution of

the stochastic differential equation (2.3) (resp. (2.5)) with the given eigenvalue trajectory. Let P(s)(t) =
P(s)(z1, . . . , zN )(t) and P(h) = P(h)(z1, . . . , zN )(t) be smooth functions. Then a simple calculation yields

X
(s)
kℓ P

(s) = (zk∂zℓ − zℓ∂zk)P
(s), (3.1)

X
(h)
kℓ P(h) = (zk∂zℓ − zℓ∂zk)f, X

(h)

kℓ P
(h) = (zk∂zℓ − zℓ∂zk)P

(h). (3.2)
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For m ∈ J1, NK, denote by j1, . . . , jm positive integers and let i1, . . . , im in J1, NK be m distinct indices. The
test functions we will consider are:

P(s)j1,...,jm
i1,...,im (z1, . . . , zN ) =

m∏

ℓ=1

z2jℓiℓ
,

P(h)j1,...,jm
i1,...,im (z1, . . . , zN ) =

m∏

ℓ=1

zjℓiℓ z
jℓ
iℓ
.

For anym fixed, linear combinations of such polynomial functions are stable under the action of the generator.
More precisely, the following formulas hold.

(i) In the symmetric setting, one can use (3.1) to evaluate the action of the generator. If neither k nor ℓ

are in {i1, . . . , im}, then (X
(s)
kℓ )

2P(s)j1,...,jm
i1,...,im = 0; the other cases are covered by:

(X
(s)
i1ℓ

)2P(s)j1,...,jm
i1,...,im = 2j1(2j1 − 1)P(s)1,j1−1,...,jm

ℓ,i1,...,im − 2j1P
(s)j1,...,jm
i1,...,im when ℓ 6∈ {i1, . . . , im},

(X
(s)
i1i2

)2P(s)j1,...,jm
i1,...,im = 2j1(2j1 − 1)P(s)j1−1,j2+1,...,jm

i1,...,im + 2j2(2j2 − 1)P(s)j1+1,j2−1,...,jm
i1,...,im

− (2j1(2j2 + 1) + 2j2(2j1 + 1))P(s)j1,j2,...,jm
i1,i2,...,im .

(ii) In the Hermitian setting, we note that the polynomials P(h) are invariant under the permutation
zi → zi. Thus the action of the generator L(h) (2.9) on such functions P(h) simplifies to

L
(h)
t P(h) =

∑

k<ℓ

ckℓX
(h)
kℓ X

(h)

kℓ P
(h).

Then (3.2) yields

X
(h)
i1ℓ
X

(h)

kℓ P
(h)j1,...,jm

i1,...,im = j21P
(h)1,j1−1,...,jm

ℓ,i1,...,im − j1P
(h)j1,...,jm

i1,...,im when ℓ 6∈ {i1, . . . , im},

X
(h)
i1i2ℓ

X
(h)

kℓ P
(h)j1,...,jm

i1,...,im = j21P
(h)j1−1,j2+1,...,jm

i1,...,im + j22P
(h)j1+1,j2−1,...,jm

i1,...,im

− (j1(j2 + 1) + j2(j1 + 1))P(h)j1,j2,...,jm
i1,i2,...,im

We now normalize the polynomials by defining

Q
(s)
t

j1,...,jm

i1,...,im
= P(s)j1,...,jm

i1,...,im (t)

m∏

ℓ=1

a(2jℓ)
−1 where a(n) =

∏

k6n,k odd

k, (3.3)

Q
(h)
t

j1,...,jm

i1,...,im
= P(h)j1,...,jm

i1,...,im (t)

m∏

ℓ=1

(2jℓjℓ!)
−1. (3.4)

Note that a(2n) = E(N 2n) and 2nn! = E(|N1 + iN2|2n), with N , N1, N2 independent standard Gaussian
random variables. The above discussion implies the following evolution of Q(s) (resp. Q(h)) along the Dyson
eigenvector flow (2.3) (resp. (2.5)).
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(i) Symmetric case: L
(s)
t Q

(s)
t =

∑
k<ℓ ckℓ(X

(s)
kℓ )

2Q
(s)
t where

(X
(s)
i1ℓ

)2Q
(s)
t

j1,...,jm

i1,...,im
= 2j1Q

(s)
t

1,j1−1,...,jm

ℓ,i1,...,im
− 2j1Q

(s)
t

j1,...,jm

i1,...,im
when ℓ 6∈ {i1, . . . , im},

(X
(s)
i1i2

)2Q
(s)
t

j1,...,jm

i1,...,im
= 2j1(2j2 + 1)Q

(s)
t

j1−1,j2+1,...,jm

i1,...,im
+ 2j2(2j1 + 1)Q

(s)
t

j1+1,j2−1,...,jm

i1,...,im

− (2j1(2j2 + 1) + 2j2(2j1 + 1))Q
(s)
t

j1,j2,...,jm

i1,i2,...,im
.

(ii) Hermitian case: L
(h)
t Q

(h)
t =

∑
k<ℓ ckℓX

(h)
kℓ X

(h)

kℓ Q
(h)
t where

X
(h)
i1ℓ
X

(h)

i1ℓQ
(h)
t

j1,...,jm

i1,...,im
= j1Q

(h)
t

1,j1−1,...,jm

ℓ,i1,...,im
− j1Q

(h)
t

j1,...,jm

i1,...,im
when ℓ 6∈ {i1, . . . , im},

X
(h)
i1i2

X
(h)

i1i2Q
(h)
t

j1,...,jm

i1,...,im
= j1(j2 + 1)Q

(h)
t

j1−1,j2+1,...,jm

i1,...,im
+ j2(j1 + 1)Q

(h)
t

j1+1,j2−1,...,jm

i1,...,im

− (j1(j2 + 1) + j2(j1 + 1))Q
(h)
t

j1,j2,...,jm

i1,i2,...,im
.

Thanks to the scalings (3.3) and (3.4), on the right hand sides of the above four equations, the sums of the
coefficients vanish. This allows us to interpret them as multi-particle random walks (in random environments)
in the next subsection.

3.2 Multi-particle random walk. Consider the following notation, η : J1, NK → N where ηj := η(j) is
interpreted as the number of particles at the site j. Thus η denotes the configuration space of particles. We
denote N (η) =

∑
j ηj .

Define ηi,j to be the configuration by moving one particle from i to j. If there is no particle at i then
ηi,j = η. Notice that there is a direction and the particle is moved from i to j. Given n > 0, there is a one
to one correspondence between (1) {(i1, j1), . . . , (im, jm)} with distinct ik’s and positive jk’s summing to n,
and (2) η with N (η) = n: we map {(i1, j1), . . . , (im, jm)} to η with ηik = jk and ηℓ = 0 if ℓ 6∈ {i1, . . . im}.
We define

f
H0,(s)
λ,t (η) = E

H0(Q
(s)
t

j1,...,jm

i1,...,im
(t) | λ), f

H0,(h)
λ,t (η) = E

H0(Q
(h)
t

j1,...,jm

i1,...,im
| λ), (3.5)

if the configuration of η is the same as the one given by the i, j’s. Here λ denotes the whole path of eigenvalues

for 0 6 t 6 1. The dependence in the initial matrix H0 will often be omitted so that we write f
(s)
λ,t = f

H0,(s)
λ,t ,

f
(h)
λ,t = f

H0,(h)
λ,t . The following theorem summarizes the results from the previous subsection. It also defines

the eigenvector moment flow, through the generators (3.7) and (3.8). They are multi-particles random walks
(with n = N (η) particles) in random environments with jump rates depending on the eigenvalues.

Theorem 3.1 (Eigenvector moment flow). Let q ∈ R
N , zk =

√
N〈q, uk(t)〉 and cij(t) = 1

N(λi−λj)2(t)
.

(i) Suppose that u is the solution to the symmetric Dyson vector flow (2.3) and f
(s)
λ,t(η) is given by (3.5)

where η denote the configuration {(i1, j1), . . . , (im, jm)}. Then f
(s)
λ,t satisfies the equation

∂tf
(s)
λ,t = B

(s)(t)f
(s)
λ,t , (3.6)

B
(s)(t)f(η) =

∑

i 6=j
cij(t)2ηi(1 + 2ηj)

(
f(ηi,j)− f(η)

)
. (3.7)
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(ii) Suppose that u is the solution to the Hermitian Dyson vector flow (2.5), and f
(h)
λ,t is given by (3.5).

Then it satisfies the equation

∂tf
(h)
λ,t = B

(h)(t)f
(h)
λ,t ,

B
(h)(t)f(η) =

∑

i 6=j
cij(t)ηi(1 + ηj)

(
f(ηi,j)− f(η)

)
. (3.8)

An important property of the eigenvector moment flow is reversibility with respect to a simple explicit
equilibrium measure. In the Hermitian case, this is simply the uniform measure on the configuration space.

Recall that a measure π on the configuration space is said to be reversible with respect to a generator L
if
∑

η π(η)g(η)Lf(η) =
∑

η π(η)f(η)Lg(η) for any functions f and g. We then define the Dirichlet form by

Dπ(f) = −
∑

η

π(η)f(η)Lf(η).

Proposition 3.2. For the eigenvector moment flow, the following properties hold.

(i) Define a measure on the configuration space by assigning the weight

π(s)(η) =

N∏

x=1

φ(ηx), φ(k) =

k∏

i=1

(
1− 1

2i

)
. (3.9)

Then π(s) is a reversible measure for B(s) and the Dirichlet form is given by

Dπ(s)

(f) =
∑

η

π(s)(η)
∑

i 6=j
cijηi(1 + 2ηj)

(
f(ηi,j)− f(η)

)2
.

(ii) The uniform measure (π(h)(η) = 1 for all η) is reversible with respect to B(h). The associated Dirichlet
form is

Dπ(h)

(f) =
1

2

∑

η

∑

i 6=j
cijηi(1 + ηj)

(
f(ηi,j)− f(η)

)2
.

Proof. We first consider (i), concerning the symmetric eigenvector moment flow. The measure π(s) is re-
versible for B(s) for any choice of the coefficients satisfying cij = cji if and only if, for any i < j,

∑

η

π(s)(η)g(η)
(
2ηi(1 + 2ηj)f(η

ij) + 2ηj(1 + 2ηi)f(η
ji)
)

=
∑

η

π(s)(η)f(η)
(
2ηi(1 + 2ηj)g(η

ij) + 2ηj(1 + 2ηi)g(η
ji)
)
.

A sufficient condition is clearly that both of the following equations hold:
∑

η

π(s)(η)g(η)2ηi(1 + 2ηj)f(η
ij) =

∑

η

π(s)(η)f(η)2ηj(1 + 2ηi)g(η
ji),

∑

η

π(s)(η)g(η)2ηj(1 + 2ηi)f(η
ji) =

∑

η

π(s)(η)f(η)2ηi(1 + 2ηj)g(η
ij).
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Consider the left hand side of the first one of these two equations. Let ξ = ηij . If ξj > 0 then η = ξji,
ηi = ξi +1 and ηj = ξj − 1. For the right hand side of the second equation, we make the change of variables
ξ = ηji. Finally, rename all the variables on the right hand sides by ξ. Thus the above equations are
equivalent to

∑

ξ

π(s)(ξji)g(ξji)2(ξi + 1)(2ξj − 1)f(ξ) =
∑

ξ

π(s)(ξ)f(ξ)2ξj(1 + 2ξi)g(ξ
ji),

∑

ξ

π(s)(ξij)g(ξij)2(ξj + 1)(2ξi − 1)f(ξ) =
∑

ξ

π(s)(ξ)f(ξ)2ξi(1 + 2ξj)g(ξ
ij).

Clearly, both equations hold provided that

π(s)(ξji)2(ξi + 1)(1 + 2(ξj − 1)) = π(s)(ξ)2ξj(1 + 2ξi). (3.10)

If the measure is of type π(s)(η) =
∏
x φ(ηx) and we note ξi = a, ξj = b, this equation is equivalent to

φ(a+ 1)φ(b− 1)2(a+ 1)(2b− 1) = φ(a)φ(b)2b(2a+ 1),

and the second equation yields the same condition with the roles of a and b switched. This holds for all a
and b if φ(k + 1) = ((2k + 1)/(2k + 2))φ(k), which gives (3.9) provided we normalize φ(0) = 1. In the case
(ii), the same reasoning yields that φ is constant.

Finally, the Dirichlet form calculation is standard: for example, for (i),
∑

η π
(s)(η)B(s)(f2)(η) = 0

by reversibility. Noting B(s)(f2)(η) = 2f(η)B(s)f(η) −∑π(s)(η)2ηi(1 + 2ηj)(f(η) − f(ηij))2 allows to
conclude.

4 Maximum principle

From now on we only consider the symmetric ensemble. The Hermitian case can be treated with the same
arguments and only notational changes. Given a typical path λ, we will prove in this section that the solution
to the eigenvector moment flow (3.7) converges uniformly to 1 for t = N−1/4+ε. It is clear that the maximum
(resp. minimum) of f over η decreases (resp. increases). We can quantify this decrease (resp. increase) in
terms of the maximum and minimum themselves (see (4.17)). This yields an explicit convergence speed to
1 by a Gronwall argument.

4.1 Isotropic local semicircle law. Fix a (small) ω > 0 and define

S = S(ω,N) =
{
z = E + iη ∈ C : |E| 6 ω−1 , N−1+ω 6 η 6 ω−1

}
. (4.1)

In the statement below, we will also need m(z), the Stieltjes transform of the semicircular distribution, i.e.

m(z) =

∫
̺(s)

s− z
ds =

−z +
√
z2 − 4

2
, ̺(s) =

1

2π

√
(4− s2)+,

where the square root is chosen so that m is holomorphic in the upper half plane and m(z) → 0 as z → ∞.
The following isotropic local semicircle law (Theorem 4.2 in [5]) gives very useful bounds on 〈q, uk〉 for any
eigenvector uk via estimates on the associated Green function.
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Theorem 4.1 (Isotropic local semicircle law [5]). Let H be an element from the generalized Wigner ensemble
and G(z) = (H − z)−1. Suppose that (1.3) holds. Then for any (small) ξ > 0 and (large) D > 0 we have,
for large enough N ,

sup
|q|=1,z∈S

P

(
|〈q , G(z)q〉 −m(z)| > N ξ

(√
Imm(z)

Nη
+

1

Nη

))
6 N−D. (4.2)

An important consequence of this theorem, to be used in multiple occasions, is the following isotropic
delocalization of eigenvectors: under the same assumptions as Theorem 4.1, for any ξ > 0 and D > 0, we
have

sup
|q|=1,k∈J1,NK

P
(
|〈q , uk〉| > N−1+ξ

)
6 N−D.

Under the same assumptions the Stieltjes transform was shown [19] to satisfy the estimate

sup
z∈S

P

(∣∣∣∣
1

N
TrG(z)−m(z)

∣∣∣∣ >
N ξ

Nη

)
6 N−D. (4.3)

4.2 Rescaling. Recall the definition (2.1) of the evolution matrix H
(s)
t . The variance σ2

ij(t) of the matrix

element hij(t) is given by σ2
ij(t) = σ2

ij + t/N if i 6= j, σ2
ij(t) = σ2

ij + 2t/N if i = j. Denote by α(t) =
(
1 + N+1

N t
)−1/2

. Then α(t)H
(s)
t is a generalized Wigner ensemble. In particular, the previously mentionned

rigidity estimates hold along our dynamics if we rescale H
(s)
t into α(t)H

(s)
t . Consider the simple time change

of our dynamics u(t) =
∫ t
0
α(s)−2ds. Then f̃t(η) := fu(t)(η) satisfies

∂tf̃(η) =
∑

i 6=j

1

N(α(t)λi(t)− α(t)λi(t))2
2ηi(1 + 2ηj)

(
f̃(ηij)− f̃(η)

)
.

In the rest of the paper it will always be understood that the above time rescaling t→ u(t) and matrix scaling

H
(s)
t → α(t)H

(s)
t are performed so that all rigidity estimates hold as presented in the previous subsection,

for all time.

4.3 Maximum Principle and regularity. Let H0 be a symmetric generalized Wigner matrix with eigenvalues
λ0 and an eigenbasis u0. Assume that λ,u satisfy (2.2) (2.3) with initial condition λ0,u0. Let G(z) =
G(z, t) = (u∗λu − z)−1(t) be the Green function. For ω > ξ > 0 and q ∈ R

N , consider the following three
conditions (remember the notation (4.1) for S(ω,N)):

A1(q, ω, ξ,N) =
{
|〈q, G(z)q〉 −m(z)| < N ξ

(√
ℑm(z)

Nη
+

1

Nη

)
,

∣∣∣∣
1

N
TrG(z)−m(z)

∣∣∣∣ <
N ξ

Nη
for all t ∈ [0, 1], z ∈ S(ω,N)

}
, (4.4)

A2(ω,N) =
{
|λk(t)− γk| < N− 2

3+ω(k̂)−
1
3 for all t ∈ [0, 1], k ∈ J1, NK

}
, (4.5)

A3(ω,N) =
{
〈q, uk(t)〉2 < N−1+ω for all t ∈ [0, 1], k ∈ J1, NK

}
. (4.6)

Note that the two conditions (4.5) and (4.6) follow from (4.4), i.e., A1 ⊂ A2 ∩ A3 , by standard arguments.
More precisely, (4.6) can be proved by the argument in the proof of Corollary 3.2 in [18]. The condition (4.5)
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is exactly the content of the rigidity of eigenvalues, i.e., Theorem 2.2 in [19]. Its proof in Section 5 of [19]
used only the estimate (4.4).

The following lemma shows that these conditions hold with high probability.

Lemma 4.2. For any ω > ξ > 0, D > 0 and N large enough, we have

inf
q∈RN ,|q|=1

P (A1(q, ω, ξ,N)) > 1−N−D,

where the probability denotes the joint law of the random variable H0 and the paths of λ,u.

Proof. For any fixed time, by (2.6) (4.2) and (4.3), the condition (4.4) holds with probability 1 −N−C for
any C. As C can be arbitrary, the same condition hold for any time and z in a discrete set of size NC/2,
say. For any two matrices H and H ′ with Green functions G(z) and G′(z), we have

[G(z)−G′(z)]ij = −
∑

k,ℓ

G(z)ik(H −H ′)kℓG
′(z)ℓj

Since

|G(z)ab| 6
∑

k

|uk(a)uk(b)|
|λk − z| 6 (2η)−1

∑

k

(|uk(a)|2 + |uk(b)|2) 6 Nη−1, Im z := η,

we have ∣∣∣[G(z)−G′(z)]ij
∣∣∣ = N3η−2

√∑

k,ℓ

|(H −H ′)kℓ|2.

Applying this inequality to H
(s)
t and H

(s)
s , we have with very high probability that

sup
|s−t|6|t−t′|

∣∣∣〈q, G(z)q〉 − 〈q, G(z)q〉
∣∣∣ 6 CN6|t− t′|1/2

Nη > 1. Here we have used the standard property that the sup over [0, t− t′] of a standard Brownian motion
has size order |t − t′|1/2 and Gaussian tails. Therefore, we can use a continuity argument to extend the
estimate (4.4) to all z ∈ S and all time between 0 and 1. This proves (4.4).

We define the set

A(q, ω, ξ, ν,N) =
{
(H0,λ) : P

(
A1(q, ω, ξ,N)

∣∣∣(H0,λ)
)
> 1−N−ν

}
. (4.7)

From the previous lemma, one easily sees that for any ω > ξ, ν and D > 0, we have, for large enough N ,

inf
q∈RN

P (A(q, ω, ξ, ν,N)) > 1−N−D. (4.8)

Theorem 4.3. Let n ∈ N and f be a solution of the eigenvector moment flow (3.6) with initial matrix H0

and path λ in A(q, ω, ξ, ν,N) for some ν > 2. Let t = N− 1
4+δ, where δ ∈ (nω2 , 1/4] and we assume that

ω > ξ and nω < 1/2. Then for any ε > 0 and large enough N we have

sup
η:N (η)=n

|ft(η)− 1| 6 CNnω+ε−2δ. (4.9)

The constant C depends on ε, ω, δ and n but not on q.
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We have the following asymptotic normality for eigenvectors of a Gaussian divisible Wigner ensemble
with a small Gaussian component.

Corollary 4.4. Let δ be an arbitrarily small constant and t = N−1/4+δ. Let Ht be the solution to (2.1) and
(u1(t), . . . , uN (t)) be an eigenbasis of Ht. The initial condition H0 is assumed to be a symmetric generalized
Wigner matrix. Then for any polynomial P in m variables and any ε > 0, for large enough N we have

sup
I⊂J1,NK,|I|=m,|q|=1

∣∣E
(
P
(
(N〈q, uk(t)〉2)k∈I

))
− EP

(
(N 2

j )mj=1

)∣∣ 6 CNε−2δ. (4.10)

Proof. Since H0 is a generalized Wigner matrices, the isotropic local semicircle law, Theorem 4.1, holds for
all time with ξ arbitrarily small. With ω = 2ξ, and noticing that Lemma 4.2 holds for arbitrary large ν > 0,
(4.9) implies that (4.10) holds.

Proof of Theorem 4.3. Because of (4.8) and A1 ⊂ A2 ∩ A3, we can assume in this proof that the trajectory
(Ht)06t61 is in A1(q, ω, ξ,N)∩A2(ω,N)∩A3(ω,N); the complement of this set induces an additional error
O(N−ν+ξ) in (4.9), negligible compared to Nnω+ε−2δ.

We begin with the case n = 1. Let fs(k) = fs(η), where η is the configuration with one particle at the
lattice point k. The equation (3.6) becomes

∂sfs(k) =
1

N

∑

j 6=k

fs(j)− fs(k)

(λj − λk)2
(4.11)

Assume that
max

k∈J1,NK
fs(k) = fs(k0)

for some k0 (k0 is not unique in general). Clearly, we have

fs(j)− fs(k0)

(λj − λk0)
2

6
fs(j)− fs(k0)

(λj − λk0)
2 + η2

Together with (4.11), for any η > 0 we have

∂sfs(k0) =
1

N

∑

j 6=k0

fs(j)− fs(k0)

(λj − λk0)
2

6
1

Nη

∑

j 6=k0

ηfs(j)

(λj − λk0)
2 + η2

− fs(k0)
1

Nη

∑

j 6=k0

η

(λj − λk0)
2 + η2

. (4.12)

Notice that

1

N

∑

16j6N

ηfs(j)

(λj − λk0)
2 + η2

= E




N∑

j=1

η〈q, uj〉2
(λj − λk0)

2 + η2

∣∣∣(H0,λ)


 .

From the definition of A(q, ω, ξ, ν,N), for N−1+ω < η < 1 we therefore have

1

N

∑

16j6N,j 6=k0

ηfs(j)

(λj − λk0)
2 + η2

= ℑm(λk0 + iη) + O

(
N ξ(ℑm(λk0 + iη))1/2

(Nη)1/2
+
Nω

Nη

)
,

where the error Nω/(Nη) comes from the missing term j = k0 and we have used that for (H0, λ) ∈
A(q, ω, ξ, ν,N), N〈q, uj〉2 is bounded by Nω with very high probability. For the same reason, we have

1

N

∑

16j6N,j 6=k0

η

(λj − λk0)
2 + η2

= ℑm(λk0 + iη) + O

(
Nω

Nη

)
.
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Using these estimates, (4.12) yields

∂s(fs(k0)− 1) 6 −cℑm(λk0 + iη)

η
(fs(k0)− 1) + O

(
N ξℑm(λk0 + iη)1/2

N1/2η3/2

)
+O

(
Nω

Nη

)
.

Moreover, from the definition of A(q, ω, ξ, ν,N), we know that −2 − N− 2
3+ω 6 λk0 6 2 + N− 2

3+ω. As our

final choice of η will satisfy N− 2
3+ξ 6 η 6 1, this implies that

ℑm(λk0 + iη) > c
√
η.

Let Ss = supk(fs(k) − 1). Note that there may be some s for which Ss is not differentiable (at times when
the maximum is obtained for at least two distinct indices). But if we denote

S′
t = lim sup

u→t

St − Su
t− u

, (4.13)

the above reasoning shows

S′
s 6 − c√

η
Ss + C

N ξ

N1/2η3/2
+ C

Nω

Nη
6 − c√

η
Ss + C

Nω

N1/2η3/2
.

We chose η = N− 1
2+2δ−ε for some small ε ∈ (0, 2δ − ω) and t = N− 1

4+δ. The Gronwall inequality gives

St 6 C
(
e−N

ε/2

+Nω+ε−2δ
)
.

We can do the same reasoning for the minimum of f . This concludes the proof for n = 1.
For n > 2 the same argument works and we will proceed by induction. Let ξ satisfy

max
N (η)=n

fs(η) = fs(ξ).

Assume ξ is associated to jr particles at site kr, 1 6 r 6 m for some m 6 n, where the kr’s are distinct and
jr > 1. Then

∂sfs(ξ) 6 C

m∑

r=1


 1

Nη

∑

j 6=kr

ηfs(ξ
krj)

(λkr − λj)2 + η2
− fs(ξ)

1

Nη

∑

j 6=kr

η

(λkr − λj)2 + η2


 , (4.14)

where ξkrj is defined in Section 3.2. We now estimate the first term on the right hand side (the second term
was estimated in the previous n = 1 step). By (4.6), for (H0, λ) ∈ A(q, ω, ξ, ν,N), N〈q, uj〉2 is bounded by
Nω with very high probability. Thus we have

1

N

∑

j 6=kr

ηfs(ξ
krj)

(λkr − λj)2 + η2
=

1

N

∑

j 6∈{k1,...,km}

ηfs(ξ
krj)

(λkr − λj)2 + η2
+O

(
Nnω

Nη

)
.

Moreover, by definition the above sum can be estimated by

E




 (N〈q, uir 〉2)jr−1

a(2jr − 2)

∏

16r6m,r 6=r

(N〈q, uir 〉2)jr
a(2jr)




 1

N

∑

j 6∈{k1,...,km}

η(N〈q, uj〉2)
(λj − λkr )

2 + η2



∣∣∣ (H0,λ)




= E




 (N〈q, uir 〉2)jr−1

a(2jr − 2)

∏

16r6m,r 6=r

(N〈q, uir 〉2)jr
a(2jr)


ℑ〈q, G(λkr + iη),q〉

∣∣∣ (H0,λ)


+O

(
Nnω

Nη

)
, (4.15)
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where we first used that extending the indices to 1 6 j 6 N induces an error O(Nω(Nη)−1) and the bound
N〈q, uj〉2 6 Nω holds with very high probability. We have also used that for (H0, λ) ∈ A(q, ω, ξ, ν,N), we
can replace ℑ〈q, G(λkr + iη),q〉 by ℑm(λkr + iη) + O(N ξ(Nη)−1/2). This yields

1

N

∑

j 6=kr

ηfs(ξ
krj)

(λkr − λj)2 + η2
= fs(ξ\kr)ℑm(λkr + iη) + O

(
Nnω

(Nη)1/2

)
, (4.16)

where ξ\kr stands for the configuration ξ with one particle removed from site kr. By induction assumption,
we can use (4.9) to estimate fs(ξ\ir) for s ∈ (t/2, t). We have thus proved that

∂s(fs(ξ)− 1) 6 − c√
η
(fs(ξ)− 1) + O

(
Nnω

N1/2η3/2

)
+O

(
N (n−1)ω+ε−2δ

η

)
.

on (t/2, t). Notice that by our assumptions on the parameters ω, δ, η and ξ, the first error term always
dominates the second. One can now bound |fs(ξ)− 1| in the same way as in the n = 1 case.

If ω can be chosen arbitrarily small (this is true for generalized Wigner matrices), Theorem 4.3 gives
supη:N (η)=n |ft(η)− 1| → 0 for any t = N−1/4+ε. This could be improved to t = N−1/3+ε by allowing η to

depend on k0 in the previous reasoning (chose η = N−2/3+εk̂
1/3
0 ).

More generally, our proof shows that the following equation (4.17) (with the convention 4.13) holds. Let

∆1(k, η) = E(〈q, G(λk + iη)q〉 − ℑm(λk + iη) | (H0,λ)),

∆2(k, η) = E(N−1TrG(λk + iη)−ℑm(λk + iη) | (H0,λ)),

where all variables depend on t (remember in particular that G(z) = (u∗
tλtut − z)−1). Then the following

maximum inequality holds:

S′
t 6 max

k:St=ft(k)
inf
η>0

{
−ℑm(λk + iη)

η
St +

|∆1(k, η)|
η

+
|∆2(k, η)|(St + 1)

η
+
Nω(St + 1)

Nη2

}
. (4.17)

Similar inequalities for a general number of particles can be obtained.

5 Proof of the main results

5.1 A comparison theorem for eigenvectors. Corollary 4.4 asserts the asymptotic normality of eigenvector
components for Gaussian divisible ensembles for t not too small. In order to prove Theorem 1.2, we need to
remove the small Gaussian components of the matrix elements in this Gaussian divisible ensemble. Similar
questions occurred in the proof of universality conjecture for Wigner matrices and several methods were
developed for this purpose (see, e.g., [12] and [34]). Both methods can be extended to yielding similar
eigenvector comparison results. In this paper, we will use the Green function comparison theorem introduced
in [18, Theorem 2.3] (the parallel result following the argument of [34] was given in [35]). Roughly speaking,
[22, Theorem 1.10] states that the distributions of eigenvectors for two generalized Wigner ensembles are
identical provided the first four moments of the matrix elements are identical and a level repulsion estimate
holds for one of the two ensembles. We note that the level repulsion estimates needed in [35] are substantially
different. We first recall the following definition.
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Definition 5.1 (Level repulsion estimate). Fix an energy E such that γk 6 E 6 γk+1 for some k ∈ J1, NK.
A generalized Wigner ensemble is said to satisfy the level repulsion at the energy E if there exist α0 > 0 such
that for any 0 < α < α0, there exists δ > 0 such that

P

(
|{j : λj ∈ [E −N−2/3−αk̂−1/3, E +N−2/3−αk̂−1/3]}| > 2

)
6 N−α−δ,

where k̂ = min(k,N − k + 1). A matrix ensemble is said to satisfy the level repulsion estimate uniformly if
this property holds for any energy E ∈ (−2, 2).

We note that such level repulsion estimates for generalized Wigner matrices was proved near the edge
(more precisely for 0 6 k̂ 6 N1/4) [7, Theorem 2.7] and in the bulk [16] via the universality of gap statistics.
In the intermediate regime, the level repulsion in this sense has not been worked out although it is clear that
the techniques developed in these papers can be adapted to prove such results. From now on, we will assume
that this level repulsion estimate holds in the region TN = J1, N1/4K ∪ JN1−δ, N −N1−δK ∪ JN −N1/4, NK
needed for Theorem 1.2 and its corollaries.

The following theorem is a slight extension of [22, Theorem 1.10] with the following modifications : (1) We
slightly weaken the fourth moment matching condition. (2) The original theorem was only for components
of eigenvectors; we allow the eigenvector to project to a fixed direction. (3) We state it for all energies in the
entire spectrum. (4) We include an error bound for the comparison. (5) We state it only for eigenvectors with
no involvement of eigenvalues. Theorem 5.2 can be proved using the argument in [22]; the only modification
is to replace the local semicircle law used in [22] by the isotropic local semicircle law, Theorem 4.1. Since
this type of argument based on the Green function comparison theorem has been done several times, we
will not repeat it here. Notice that near the edge, the four moment matching condition can be replaced by
just two moments. But for applications in this paper, this improvement will not be used and so we refer the
interested reader to [22].

Theorem 5.2 (Eigenvector Comparison Theorem). Let Hv and Hw be generalized Wigner ensembles where
Hv satisfies the level repulsion estimate uniformly. Suppose that the first three off-diagonal moments of Hv

and Hw are the same, i.e.
E
v(h3ij) = E

w(h3ij) for i 6= j

and that the first two diagonal moments of Hv and Hw are the same, i.e.

E
v(h2ii) = E

w(h2ii).

Assume also that the fourth off-diagonal moments of Hv and Hw are almost the same, i.e., there is an a > 0
such that ∣∣∣Ev(h4ij)− E

w(h4ij)
∣∣∣ 6 N−2−a for i 6= j.

Then there is ε > 0 depending on a such that for any integer k, any q1, . . .qk and any choice of indices
1 6 j1, . . . , jk 6 N we have

(Ev − E
w)Θ

(
N〈q, uj1〉2, . . . , N〈q, ujk〉2

)
= O(N−ε),

where Θ is a smooth function that satisfies

|∂mΘ(x)| 6 C(1 + |x|)C

for some arbitrary C and all m ∈ N
k satisfying |m| 6 5.
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5.2 Proof of Theorem 1.2 .We now summarize our situation: Given a generalized Wigner ensemble Ĥ, we
wish to prove that (1.5) holds for the eigenvectors of Ĥ. We have proved in (4.10) that this estimate holds
for any Gaussian divisible ensemble of type H0 +

√
t U , and therefore by simple rescaling for any ensemble

of type
Ht = e−t/2H0 + (1− e−t)1/2 U,

where H0 is any initial generalized Wigner matrix and U is an independent standard GOE matrix, as long
as t > N−1/4+δ. We fix δ a small number, say, δ = 1/8. Now we construct a generalized Wigner matrix
H0 such that the first three moments of Ht match exactly those of the target matrix Ĥ and the differences
between the fourth moments of the two ensembles are less than N−c for some c positive. This existence of
such an initial random variable is guaranteed by, say, Lemma 3.4 of [17]. By the eigenvector comparison
theorem, Theorem 5.2, we have proved (1.5) and this concludes our proof of Theorem 1.2.

5.3 Proof of Corollary 1.3. Let N = (N1, . . . ,NN ) be a Gaussian vector with covariance Id. Let m, ℓ ∈ N,
k ∈ TN and {i1, . . . , iℓ} := J ⊂ J1, NK. For q such that qi = 0 if i 6∈ J , consider the polynomial in ℓ variables:

Q(qi1 , . . . , qiℓ) = E
(
(N |〈q, uk〉|2)m

)
− E

(
|〈q,N 〉|2m

)
.

From (1.5), there exists ε > 0 such that

sup
|qi1 |26 1

ℓ ,...,|qiℓ |26 1
ℓ

|Q(qi1 , . . . , qiℓ)| 6 sup
|q|=1

|Q(qi1 , . . . , qiℓ)| 6 N−ε,

where, for the first inequality, we note that that the maximum of Q in the unit ball is achieved on the unit
sphere. Noting R(qi1) = Q(qi1 , . . . , qiℓ) with the coefficients of the polynomial R depending on qi2 , . . . , qiℓ ,
the above bound implies that all the coefficients of R are bounded by C1N

−ε for some universal constant
C1 (indeed, one recovers the coefficients of R from its evaluation at ℓ + 1 different points, by inverting a
Vandermonde matrix).

By iterating the above bound on the coefficients finitely many times (ℓ iterations), we conclude that there
is a universal constant Cℓ such that all coefficients of Q are bounded by CℓN

−ε. This means that for any
k ∈ TN and J ⊂ J1, NK with |J | = ℓ,

∣∣∣∣∣E
(
∏

α∈J

(√
Nuk(α)

)mα

)
− E

(
∏

α∈J
(Nα)

mα

)∣∣∣∣∣ 6 C N−ε

whenever the integer exponents mα satisfy
∑
mα = m. Here C depends only on m, not on the choice of k

or J . This concludes the proof of (1.6), in the case of a monomial P with even degree. If P is a monomial
of odd degree, (1.6) is trivial: the left hand side vanishes thanks to the uniform phase choice eiω. This
concludes the proof of Corollary 1.3.

5.4 Proof of Corollary 1.4. A second moment calculation yields

E

((
N

|aN | 〈uk, aNuk〉
)2
)

=
1

|aN |2E



(
∑

α

aN (α)(N |uk(α)|2 − 1)

)2



6 max
α 6=β

E
((
N |uk(α)|2 − 1

) (
N |uk(β)|2 − 1

))
+

1

|aN | max
α

E

((
N |uk(α)|2 − 1

)2)
.

From (1.6), the first term of the right hand side is bounded by N−ε and the second term is bounded by
1/|aN |. The Markov inequality then allows us to conclude the proof of Corollary 1.4.
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6 Finite speed of propagation

In this section, we prove a finite speed of propagation estimate for the dynamics (3.6). This estimate
will be a key ingredient for proving optimal relaxation time for eigenvectors in the bulk. Finite speed of
propagation was first proved in [15, Section 9.6] for (3.6) when the number of particle n = 1. But it requires
a level repulsion estimate which is difficult to prove. Our estimate requires only the rigidity of eigenvalues
(which holds with very high probability) and the speed of propagation obtained is nearly optimal. Our
key observation is that we can construct weight functions used in the finite speed estimate depending on
eigenvalues so that the singularities in the equation (3.6) are automatically cancelled by the choices of these
weight functions.

We will follow the approach of [15] by decomposing the dynamics into a long range part and a short
range part. The long range part can be controlled by a general argument based on decay estimate; the main
new idea is in the proof of a finite speed of propagation for the short range dynamics, which is the content
of Lemma 6.2.

6.1 Long and short range dynamics. We assume that for some (small) fixed parameter ξ > 0 there is a
constant C such that for any |i − j| > N ξ and 0 6 s 6 1 the quantity cij defined in (2.7) satisfies the
following estimate

cij(s) 6 C
N

(i− j)2
. (6.1)

If MN is distributed as a generalized Wigner matrix, then for any ξ > 0, (6.1) holds [19] with probability

1− e−c(logN)2 for some c > 0. In this section MN is not assumed to be distributed as a generalized Wigner
matrix. Instead, we assume that (6.1) holds.

The following cutoff of the dynamics will be useful. Let 1 ≪ ℓ ≪ N be a parameter to be specified
later. We split the time dependent operator B defined in (3.7) into a short-range and a long-range part:
B = S + L , with

(S f)(η) =
∑

|j−k|6ℓ
cjk(s)2ηj(1 + 2ηk)

(
f(ηj,k)− f(η)

)
, (6.2)

(L f)(η) =
∑

|j−k|>ℓ
cjk(s)2ηj(1 + 2ηk)

(
f(ηj,k)− f(η)

)
.

Notice that S and L are time dependent. Moreover, S is also reversible with respect to π (the proof of
Proposition 3.2 applies to any symmetric cij ’s). Denote by US (s, t) the semigroup associated with S from
time s to time t, i.e.

∂tUS (s, t) = S (t)US (s, t)

for any s 6 t, and US (s, s) = Id. The notation UB(s, t) is analogous. In the following lemma, we prove
that the short-range dynamics provide a good approximation of the global dynamics. Lemmas 6.1 follows
the same proof as in [15], where they were shown for n = 1.

Lemma 6.1. Suppose that the coefficients of B satisfy (6.1) for some ξ > 0 and let ℓ ≫ N ξ. Suppose that
the initial data is the delta function at an arbitrary configuration η. Then for any s > 0 we have

‖ (UB(0, s)−US (0, s)) δη‖1 6 C
Ns

ℓ
,

where C only depends on ξ (in particular not on η).
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Proof. By the Duhamel formula we have

UB(0, s)δη = US (0, s)δη +

∫ s

0

UB(s′, s)L (s′)US (0, s′)δηds
′.

Notice that for ℓ≫ N ξ we can use (6.1) to get

‖L f‖1 6
∑

η

∑

|j−k|>ℓ
cjkηj(1 + 2ηk)

(
|f(ηj,k)|+ |f(η)|

)
6 C Nℓ−1‖f‖1.

Since UB and US are contractions in L1, this yields

∫ s

0

‖UB(s′, s)L (s′)US (0, s′)δη‖1 ds′ 6 C Nℓ−1

∫ s

0

‖δη‖1 ds′ 6 C
Ns

ℓ
,

which concludes the proof.

6.2 Finite speed of propagation for the short range dynamics. Suppose that η is a configuration with n
particles. We denote the particles in nondecreasing order by x(η) = (x1(η), . . . , xn(η)) with αN 6 x1 6

. . . 6 xn 6 (1− α)N . We will drop the dependence on η and simply use (x1, . . . , xn). In the same way, we
also denote the configuration ξ by y with 1 6 y1 6 . . . 6 yn 6 N where we have dropped the dependence of
ξ in yα(ξ). This convention will be followed for the rest of this paper.

We define the following distance on the set of configurations with n particles:

d(η, ξ) =
n∑

α=1

|xα − yα| = min
σ∈Sn

n∑

α=1

|xα − yσ(α)|. (6.3)

For the second equality, observe that for any x 6 y and a 6 b, we have |x− a|+ |y − b| 6 |x− b|+ |y − a|.
Before stating our finite speed result, we also need the notation rs(η, ξ) = (US (0, s)δη)(ξ).

Lemma 6.2. Suppose that the eigenvalue λ satisfies the condition (4.5) with exponent ω such that Nω ≪ ℓ.
Let α, ε > 0 and choose ℓ > Nt for the short range dynamics cutoff.

(i) Uniformly in η supported on JαN, (1− α)NK and t > 0, if d(η, ξ) > Nεℓ, we have

P

(
rs(η, ξ) > e−N

ε/2
)
= O

(
N−D) (6.4)

for any D > 0. Here P denotes integration with respect to the Dyson Brownian Motion.

(ii) Uniformly in η supported on J1, NK and t > 0, if d(η, ξ) > N
1
3+εℓ

2
3 , the finite speed estimate (6.4)

holds.

Proof. We first consider the case (i) corresponding to η supported in the bulk, but the reader may want to
read first the proof of (ii), written for the simpler case n = 1 for the sake of simplicity.

First step: definitions and dynamics. Let ν = N/ℓ and κ > 0 be a fixed parameter such that −2+ κ < γαN .
For any 1 6 i 6 N and x ∈ R, let di(x) = |x− γi|. Let gi(x) = di(2− κ) if x > 2− κ, gi(x) = d(−2 + κ) if
x < −2 + κ and gi(x) = di(x) if −2 + κ 6 x 6 2− κ. Take χ a smooth, nonnegative, compactly supported
function with

∫
χ = 1, and ψi(x) =

∫
gi(x− y)νχ(νy)dy. Then ψi is smooth, ‖ψ′

i‖∞ 6 1 and ‖ψ′′
i ‖∞ 6 ν.
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Moreover, consider the stopping time

τ = inf
{
s > 0 | ∃k ∈ J1, NK : |λk(s)− γk| > N− 2

3 (k̂)−
1
3 ℓ
}
. (6.5)

For any configuration ξ with n particles we define

ψs(ξ) =
n∑

α=1

ψxα
(λyα(s ∧ τ)) = min

σ∈Sn

n∑

α=1

ψxα
(λyσ(α)

(s ∧ τ)), (6.6)

similarly to (6.3). For the second equality, observe that if α 6 β and a 6 b, then ψα(a)+ψβ(b) 6 ψα(b)+ψβ(a)
(the function a 7→ ψα(a)− ψβ(a) is nondecreasing).

We define
φs(ξ) = eνψs(ξ), vs(ξ) = φs(ξ)rs∧τ (η, ξ).

Then we have (we omit the s index)

dv(ξ) =
∑

|j−k|6ℓ
2ξk(1 + 2ξj)cjk

(
(v(ξkj)− v(ξ)) +

(
φ(ξ)

φ(ξkj)
− 1

)
v(ξkj)

)
d(s ∧ τ) + (dφ(ξ)) r(η, ξ)

dφ(ξ)

φ(ξ)
=

n∑

α=1


νψ′

xα
(λyα)

dByα(s ∧ τ)√
N

+ ν
ψ′
xα

(λyα)

N

∑

j 6=yα

d(s ∧ τ)
λyα − λj

+c1
ν

2N
ψ′′
xα

(λyα)d(s ∧ τ) + c2
ν2

2N
ψ′
xα

(λyα)
2d(s ∧ τ)

)

The coefficients c1 and c2 are non-random positive combinatorial factors depending on the locations of i,
η, ξ, but we will only need that they are uniformly bounded in N . We will adopt the convention to use
indices 1 6 α, β 6 n, 1 6 i, j, k 6 N . We define

Xs =
∑

ξ

π(ξ)vs(ξ)
2,

where π = π(s) is the reversible measure defined in (3.9) for the symmetric eigenvector moment flow (which
is also reversible w.r.t its short-range cutoff version). Then

dXs =2
∑

ξ

π(ξ)v(ξ)
∑

|j−k|6ℓ
2ξk(1 + 2ξj)cjk

(
(v(ξkj)− v(ξ)) +

(
φ(ξ)

φ(ξkj)
− 1

)
v(ξkj)

)
d(s ∧ τ) (6.7)

+ 2
∑

ξ

π(ξ)v(ξ) (dφ(ξ)) r(η, ξ) (6.8)

+
∑

ξ

π(ξ)d〈v(ξ)〉s∧τ . (6.9)

Second step: bound on (6.7) and (6.9). Using reversibility with respect to π, the first term can be written

(6.7) =−
∑

ξ

π(ξ)
∑

|j−k|6ℓ
2ξk(1 + 2ξj)cjk(v(ξ

kj)− v(ξ)))2d(s ∧ τ) (6.10)

+
∑

ξ

π(ξ)
∑

|j−k|6ℓ
2ξk(1 + 2ξj)cjk

(
φ(ξkj)

φ(ξ)
+

φ(ξ)

φ(ξkj)
− 2

)
v(ξ)v(ξkj)d(s ∧ τ). (6.11)
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Here the equality (6.10) is a direct application of the reversibility property, while (6.11) also follows from
the reversibility as follows. Notice that

∑

ξ

π(ξ)v(ξ)
∑

|j−k|6ℓ
2ξk(1 + 2ξj)cjk

φ(ξ)

φ(ξkj)
v(ξkj) = 〈g,S r〉π + 〈g, r〉π, g = φ2r (6.12)

One can check that (6.11) follows from 〈g,S r〉π = 〈S g, r〉π.
We now estimate the term φ(ξkj)

φ(ξ) + φ(ξ)
φ(ξkj)

− 2 in (6.11). If it is nonzero (and we assume first that j < k)

then there exists 1 6 p < q 6 n such that yp 6 j < yp+1, yq−1 < k = yq (recall yq = yq(ξ)) and

|ψs(ξkj)− ψs(ξ)| = |(ψxp+1(λj) + ψxp+2(λyp+1)) + · · ·+ ψxq (λyq−1)− (ψxp+1(λyp+1) + · · ·+ ψxq (λyq ))|

6

q∑

α=p+1

∣∣ψxα
(λyα−1∨j)− ψxα

(λyα)
∣∣

6 Cmin(|λj(s ∧ τ)− λk(s ∧ τ)|, ν−1). (6.13)

Here we have used the definition (6.6) in the first equality and for the second inequality we used: (i) |ψ′
xα

|∞ 6

1, (ii) ψxα
is flat close to the edges and (iii) if |k− j| 6 ℓ are bulk indices, then |λk(s∧ τ)−λj(s∧ τ)| 6 Cν−1

by definition of the stopping time τ . Note that (6.13) also holds if j > k, with a proof being identical to the
case j < k up to notations.

Thanks to (6.13), we obtain

∣∣∣∣
φ(ξkj)

φ(ξ)
+

φ(ξ)

φ(ξkj)
− 2

∣∣∣∣ 6 C ν2|λk − λj |2.

This allows us to bound

(6.11) 6 C
ν2

N

∑

ξ

π(ξ)
∑

k:ξk>0

∑

|j−k|6ℓ
ν(ξ)ν(ξkj)d(s ∧ τ) 6 ν2ℓ

N
eν

ℓ
NXsd(s ∧ τ).

Moreover, the bracket term (6.9) is easily bounded by

(6.9) 6 C
∑

ξ

π(ξ)v(ξ)2
n∑

α=1

ν2
ψ′
xα

(λyα)
2

N
d(s ∧ τ) 6 C

ν2

N
Xsd(s ∧ τ).

Third step: bound on (6.8). We can bound (6.8) by

2
∑

ξ

π(ξ)v(ξ)2
n∑

α=1


ν

ψ′
xα

(λyα)

N

∑

j 6=yα

1

λxα
− λj

+ c1
ν

2N
ψ′′
xα

(λξ(i)) + c2
ν2

2N
ψ′
xα

(λξ(i))
2


 d(s ∧ τ)

6 C
ν2

N
Xsd(s ∧ τ) + 2

∑

ξ

π(ξ)v(ξ)2
∑

16α6n,|j−yα|>ℓ
ν
|ψ′
xα

(λyα)|
N

d(s ∧ τ)
|λyα − λj |

+ 2
∑

ξ

π(ξ)v(ξ)2
∑

16α6n,|j−yα|6ℓ

ν

N

ψ′
xα

(λyα)

λyα − λj
d(s ∧ τ). (6.14)

As rigidity holds when τ > s, the above sum over |j − yα| > ℓ is at most C ν(logN)d(s ∧ τ).
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To bound the contribution of |j − yα| 6 ℓ, we symmetrize the summands of (6.14) into

ν

N

∑

i<j:|i−j|6ℓ

1

λi − λj

∑

ξ

π(ξ)v(ξ)2
∑

α:yα=i

ψ′
xα

(λi) +
ν

N

∑

i>j:|i−j|6ℓ

1

λi − λj

∑

ξ

π(ξ)v(ξ)2
∑

α:yα=i

ψ′
xα

(λi)

=
ν

N

∑

i<j:|i−j|6ℓ

1

λi − λj

∑

ξ

π(ξ)v(ξ)2



∑

α:yα=i

ψ′
xα

(λi)−
∑

i:yα=j

ψ′
xα

(λj)




6
ν

N

∑

i<j:|i−j|6ℓ

1

λi − λj

∑

ξ

π(ξ)v(ξ)2



∑

α:yα=i

ψ′
xα

(λi)−
∑

i:yα=j

ψ′
xα

(λi)


+ C ν2

ℓ

N
Xs, (6.15)

where we just replaced ψ′
xα

(λj) with ψ
′
xα

(λi), up to an error at most C ν2 ℓ
NXs, obtained by using |ψ′

xα
(λj)−

ψ′
xα

(λi)|/|λj − λi| 6 ‖ψ′
xα

‖∞ 6 ν. In all the following bounds, we consider i and j as fixed indices. We also
introduce the following subsets of configurations with n particles, for any 0 6 q 6 p 6 n:

Ap = {ξ : ξi + ξj = p}, Ap,q = {ξ ∈ Ap : ξi = q}.
Denote ξ̄ the configuration exchanging all particles from sites i and j, i.e. ξ̄i = ξj , ξ̄j = ξi and ξ̄k = ξk if
k 6= i, j. Using π(ξ) = π(ξ̄), we can bound the sum over ξ in (6.15) by

1

λi − λj

n∑

p=0

p∑

q=0

∑

ξ∈Ap,q

π(ξ)v(ξ)2



∑

α:yα=i

ψ′
xα

(λi)−
∑

α:yα=j

ψ′
xα

(λi)




=
1

λi − λj

n∑

p=0

⌊p/2⌋∑

q=0

cq
∑

ξ∈Ap,q

π(ξ)

[
v(ξ)2



∑

α:yα=i

ψ′
xα

(λi)−
∑

α:yα=j

ψ′
xα

(λi)




− v(ξ̄)2



∑

α:ȳα=j

ψ′
xα

(λi)−
∑

α:ȳα=i

ψ′
xα

(λi)



]
, (6.16)

where the constant cq = 0 if p is even and q = p/2, and cq = 1 otherwise. Remember that for any
a 6 b, we have ψ′

a > ψ′
b. This implies that

∑
α:yα=i ψ

′
xα

(λi) >
∑
α:ȳα=j ψ

′
xα

(λi) and
∑
α:ȳα=i ψ

′
xα

(λi) >∑
α:yα=j ψ

′
xα

(λi) so that
∑

α:yα=i

ψ′
xα

(λi)−
∑

α:yα=j

ψ′
xα

(λi) >
∑

α:ȳα=j

ψ′
xα

(λi)−
∑

α:ȳα=i

ψ′
xα

(λi). (6.17)

Equations (6.16) and (6.17) together with λi < λj give

1

λi − λj

n∑

p=0

p∑

q=0

∑

ξ∈Ap,q

π(ξ)v(ξ)2



∑

α:yα=i

ψ′
xα

(λi)−
∑

α:yα=j

ψ′
xα

(λi)




6
C

λi − λj

n∑

p=0

⌊p/2⌋∑

q=0

∑

ξ∈Ap,q

π(ξ)
(
v(ξ)2 − v(ξ̄)2

)


∑

α:yα=i

ψ′
xα

(λi)−
∑

α:yα=j

ψ′
xα

(λi)




6
C

|λi − λj |
∑

ξ

π(ξ)
∣∣v(ξ)2 − v(ξ̄)2

∣∣ .
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where we used, in the second inequality, ‖ψ′
xα

‖∞ 6 1. Note that transforming ξ into ξ̄ can be achieved by
transferring a particle for i to j (or j to i) one by one at most n times, so that

1

|λi − λj |
∑

ξ

π(ξ)
∣∣v(ξ)2 − v(ξ̄)2

∣∣ 6 C

|λi − λj |
∑

ξ

π(ξ)
(
|v(ξ)2 − v(ξij)2|+ |v(ξ)2 − v(ξji)2|

)

6 CM
∑

ξ

π(ξ)
(v(ξ)− v(ξij))2 + (v(ξ)− v(ξji))2

(λi − λj)2
+ CM−1

∑

ξ

π(ξ)
(
(v(ξ) + v(ξ)ij)2 + (v(ξ) + v(ξ)ji)2

)

for any M > 0. We finally proved that the drift term from (6.8) is bounded above by

C M
ν

N

∑

ξ

π(ξ)
∑

|i−j|6ℓ

(v(ξ)− v(ξij))2

(λi − λj)2
+ CM−1 ν

N

∑

ξ

π(ξ)
∑

|i−j|6ℓ
(v(ξ) + v(ξij))2 + C(ν logN + ν2

ℓ

N
)Xs.

We chose M = cν−1 with c small enough so that the first sum above can be absorbed into the dissipative

term (6.10). The second sum above is then bounded by ν2ℓ
N eν

ℓ
NXs.

Fourth step: conclusion. All together, the above estimates give

d

ds
E(Xs) 6 C(ν logN +

ν2ℓ

N
)eν

ℓ
N E(Xs),

so for our choice ν = N/ℓ we have E(Xs) 6 CeC
N
ℓ (logN)s. In particular,

E(e2
N
ℓ

∑n
α=1 ψxα (λyα (s∧τ))rt∧τ (η, ξ)

2) 6 Ce
N
ℓ (logN)t.

If d(ξ,η) > Nεℓ, then
∑n
α=1 ψxα

(λyα(s ∧ τ)) > ℓN
ε

N , so that (remember ℓ > Nt)

E
(
rt∧τ (η, ξ)

2
)
6 Ce−cN

ε

.

One concludes using Markov’s inequality and P(τ < t) 6 N−D.

The proof of (ii) proceeds in exactly the same way with only two differences: 1. gi(x) = di(x) for any x ∈ R

(in particular ψi is not made flat near the edges); 2. ν is chosen to be ν = (N/ℓ)2/3. Since the full proof for
edge case is parallel to the bulk case, we give all details hereafter only for n = 1.

Let ν = (N/ℓ)2/3. Assume that the initial configuration η consists in one particle at k0 ∈ J1, NK. Let
d(x) = |x− γk0 | and χ as in the proof of (i). Define ψ(x) =

∫
d(x− y)νχ(νy)dy and

ψs(k) = ψ(λk(s ∧ τ)), φs(k) = eνψs(k), vs(k) = φs(k)rs∧τ (k0, k),

where τ is defined by (6.5). Then by definition of the dynamics and the Itô formula, we have (here we drop
the time parameter s whenever it is obvious)

dv(k) =2
∑

|j−k|6ℓ
cjk

(
(v(j)− v(k)) +

(
φ(k)

φ(j)
− 1

)
v(j)

)
d(s ∧ τ) + (dφ(k)) r(k0, k)

dφ(k)

φ(k)
=νψ′(λk)

dBk(s ∧ τ)√
N

+


ν ψ

′(λk)
N

∑

j 6=k

1

λk − λj
+

ν

2N
ψ′′(λk) +

ν2

2N
ψ′(λk)

2


 d(s ∧ τ)
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Thus if we define Xs =
∑N
k=1 vs(k)

2, we obtain

dXs =− 2
∑

|j−k|6ℓ
cjk(v(j)− v(k))2d(s ∧ τ) (6.18)

+ 2
∑

|j−k|6ℓ
cjk

(
φ(k)

φ(j)
+
φ(j)

φ(k)
− 2

)
v(j)v(k)d(s ∧ τ) (6.19)

+
ν

N

∑

k

ψ′′(λk)v(k)
2d(s ∧ τ) (6.20)

+
ν2

N

∑

k

ψ′(λk)
2v(k)2d(s ∧ τ) (6.21)

+ 2
ν

N

∑

j<k

ψ′(λj)v(j)2 − ψ′(λk)v(k)2

λj − λk
d(s ∧ τ) (6.22)

+ 2ν
∑

k

dBk(s ∧ τ)√
N

ψ′(λk)v(k)
2.

From ‖φ′‖∞ 6 1, the definition of τ and ν, we have ν|φ(λk)− φ(λj | 6 ν|λk − λj | 6 Cν|γℓ + 2| = O(1) (this

is where we critically used that ν 6 (N/ℓ)2/3), so that
∣∣∣φ(k)φ(j) +

φ(j)
φ(k) − 2

∣∣∣ 6 C ν2|λk − λj |2. One concludes

easily that (6.19) is bounded above by Cν2 ℓ
N d(s ∧ τ)Xs. The terms (6.20) and (6.21) are of smaller order

by ‖ψ′‖∞ 6 1 and ‖ψ′′‖∞ 6 ν.
Finally, (6.22) is of order at most

ν

N

∑

j<k:|j−k|>ℓ

v(k)2

|λj − λk|
+
ν

N

∑

j<k:|j−k|6ℓ
|ψ′(λj)|

|v(j)2 − v(k)2|
|λj − λk|

+
ν2

N

∑

|j−k|6ℓ
‖ψ′′‖∞v(k)2

By rigidity, the first sum above has order ν(logN)Xs. The third sum is at most ν2ℓ/NXs. Finally, the
second sum is bounded using

2
|v(j)2 − v(k)2|

|λj − λk|
6M−1(v(j) + v(k))2 +M

(v(j)− v(k))2

(λj − λk)2

Choosing M = cν−1 for c small enough, this proves that (6.22) can be absorbed into the dissipative term
(6.18) plus an error of order (ν2ℓ/N)Xs.

Using ν 6 (N/ℓ)2/3, we have thus proved that d
dsE(Xs) 6 C

(
ν logN + ν2ℓ

N

)
E(Xs) 6 Cν(logN)E(Xs).

In particular,
E(e2νψ(λk(s∧τ))rt∧τ (k0, k)

2) 6 eCν(logN)t.

If |k − k0| > N1/3+εℓ2/3, then ψ(λk(s ∧ τ)) > Nε(ℓ/N)2/3 = Nεν−1, so we obtained

E(rt∧τ (k0, k)
2) 6 eCν(logN)t−Nε

,

which is exponentially small: (N/ℓ)2/3(logN)t = O(logN) as ℓ > Nt and t 6 1. By the Markov inequality,
we have thus proved the part (ii) of the lemma.
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7 Relaxation to equilibrium for t&N
−1

The maximum inequality (4.17) allowed to prove convergence of the eigenvector moment flow along the whole
spectrum, in Section 4, for t & N−1/4. Assume that, for some reason, the maximum of this flow is always
obtained for configurations supported in the bulk. Then we can make the approximation ℑm(λk + iη) ∼ 1
in (4.17), and we obtain

S′
t 6 −1

η
St +

N ξ

N1/2η3/2

assuming the optimal isotropic local semicircle law with a tiny error N ξ/
√
Nη. Choosing η = N−1+ε for

some small ε > 0 then gives, by Gronwall, a relaxation time of order & N−1. The purpose of this section
is to make this argument rigorous by using the finite speed of propagation for the eigenvector moment flow,
i.e., Lemma 6.2.

7.1 Statement of the result. The initial matrix is denotedMN =MN (0), it satisfies the local semicircle law,
and its eigenvalues follow the usual Dyson Brownian motion dynamics.

Let G
(s)
N (resp. G

(h)
N ) be a sequence of N × N random matrices from the Gaussian orthogonal (resp.

unitary) ensemble (normalized with limiting spectral measure supported on (−2, 2), for example). Note that
in this section G stands for a Gaussian matrix, not its Green function.

Theorem 7.1. Let ε be any arbitrarily small positive constant and t = N−1+ε. Assume that, for a
deterministic sequence of matrices (MN )N>1 and a sequence of unit vectors q = qN , we have, for any
ω > ξ > 0, D > 0 and N large enough (depending on these parameters),

P (A1(q, ω, ξ,N) |MN ) > 1−N−D. (7.1)

Here we used the notation (4.4) and P(· |MN ) denotes probability with respect to the matrix Dyson Brownian
motion path with the initial condition fixed by MN . Then the asymptotic normality of bulk eigenvectors of

MN +
√
tG

(s)
N holds. More precisely, if u is the eigenbasis of MN +

√
tG

(s)
N , for any polynomial P there

exists c > 0 such that

sup
I⊂JαN,(1−α)NK,|I|=m,|q|=1

∣∣∣E
(
P
((
N |〈q, uk〉|2

)
k∈I

))
− E

(
P
(
(|Nj |2)mj=1

))∣∣∣ 6 N−c. (7.2)

If moreover (7.1) holds for any given sequence (qN )N>1, then any bulk eigenvector of MN +
√
tG

(s)
N have

asymptotically independent normal entries (the analogue of Corollary 1.3) and each eigenvector satisfy local
quantum unique ergodicity (the analogue of Corollary 1.4).

Similar results hold for the Hermitian matrices MN +
√
tG

(h)
N .

The Green function in A1 appearing in (7.1) is with respect to the matrix (MN (s))s>0 withMN =MN (0)
being the initial matrix and MN (s) the value at time t of a (matrix) Dyson Brownian Motion.

Theorem 7.1 means that, the initial structure of bulk eigenvectors completely disappears with the addi-
tion of a small noise, provided that the initial matrix satisfies a strong form of semicircle law. If the initial
condition is a generalized Wigner matrix, the matrix Dyson Brownian motion is again a generalized Wigner
ensemble after rescaling. In this case, the asymptotic normality of the eigenvectors was already proved in
Theorem 1.2 and therefore the conclusion of Theorem 7.4 was proved as well. The key point of Theorem
7.1 lies in that it holds for deterministic initial matrices, provided that the local isotropic semicircle law holds.
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Note that by standard perturbation theory Theorem 7.1 in general does not hold for t ≪ N−1. Recall
that Dyson’s conjecture states that the relaxation time to local equilibrium for bulk eigenvalues under the
DBM is t ∼ N−1. Thus Theorem 7.1 is the analogue of this conjecture in the context of bulk eigenvectors.

Remark 7.2. Theorem 7.1 gives optimal relaxation speed for dynamics of bulk eigenvectors provided that the
local law holds along the whole spectrum, i.e. condition (7.1) holds. One may be interested in the dynamics
relaxation only locally, i.e. proving QUE only for certain eigenvectors with corresponding energy λi around
E0 = γk0 ∈ (−2.2). Then as an input, the local law is only needed in a small window around E.

More precisely, let c > ε > 0 be fixed (remember t = N−1+ε). Assume that (7.1) holds in the sense that:

(i) for any ω > ξ > 0 in the smaller domain (replacing the original domain defined in (4.1))

S̃ = S̃(ω,N) =
{
z = E + iη ∈ C : |E − E0| 6 N−1+c , N−1+ω 6 η 6 ω−1

}
. (7.3)

(ii) replacing the Stieltjes transform m(z) in (4.4) by any smooth function uniformly bounded away from

zero, uniformly in N and S̃(ω,N).

Then the conclusion (7.2) holds after restricting the sup to I ⊂ Jk0 −N c/10, k0 +N c/10K.
To summarize, the optimal time relaxation result, Theorem 7.1, can be made local in the spectrum, because

the key input in this result, the finite speed of propagation Lemma 6.2, holds locally. The modifications needed
to prove these local versions are obvious and we leave them to interested readers.

We will prove Theorem 7.1 by using the maximum principle locally. For this purpose, we will use the
finite speed of propagation estimate, Lemma 6.2. This will be explained in the next subsections.

7.2 Flattening of initial condition at the edge. Let α > 0 be a fixed small number. We define the following
flattening and averaging operators on the space of functions of configurations with n points: any a ∈ J1, N/2K,

(Flata(f))(η) = f(η) if η ⊂ Ja,N + 1− aK, 1 otherwise,

Av(f) =
1

|JαN, 2αNK|
∑

a∈JαN,2αNK

Flata(f).

We can write
Av(f)(η) = aηf(η) + (1− aη) (7.4)

for some coefficient aη ∈ [0, 1] (aη = 0 if η 6⊂ JαN, (1− α)NK, 1 if η ⊂ J2αN, (1− 2α)NK). We will only use
the elementary property

|aη − aξ| 6 C
d(η, ξ)

N
. (7.5)

For a general number of particles n, consider now the following modification of the eigenvector moment
flow (3.6). We only keep the short-range dynamics (depending on a parameter ℓ) and modify the initial
condition to be flat when there is a particle close to the edge:

∂tgλ,t = S (t)gλ,t, (7.6)

gλ,0(η) = (Avfλ,0)(η),

We will abbreviate gλ,t(η) by gt(η), and fλ,t(η) by ft(η) (for n = 1, we write these functions as ft(k) and
gt(k) where η is the configuration with 1 particle at k). We remind the reader that ft(η) can be define
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either by (3.5) or by the solution of the equation (3.6). In particular, ft(k) is the conditional expectation of
|〈q, uk(t)〉|2 given λ, i.e.,

ft(k) = NE
(
|〈q, uk(t)〉|2 | λ

)
(7.7)

where q is a fixed unit vector. In all our application, the initial data fλ,0)(η) is independent of λ and given
by (3.5) with t = 0. For gλ,t, we can only understand it as the solution to (7.6).

For small time t, by finite speed of propagation we will prove that g = 1 (up to exponentially small
corrections) close to the edge, so that the maximum principle for the dynamics (7.6) can be localized in the
bulk.

We first prove that for these modified dynamics, the isotropic law holds in the following sense. The
following result is deterministic.

Lemma 7.3. Let ε > 0 be a fixed small number, t = N−1+ε and ℓ = N δNt for some δ > 0 (here ℓ is
the short-range dynamics cutoff parameter). Then there exist (small) positive constants ω0, ξ0 such that the
following holds. Assume that for some 0 < ω < ω0, 0 < ξ < ξ0, (MN (s))06s61 is in A1(q, ω, ξ,N). Assume
moreover that (7.17) holds. Let z satisfy −3 < ℜ(z) < 3 and N−1+2ω < ℑ(z) < min(N−1+δ/2, N−3/4). Then
we have ∣∣∣∣∣ℑ

N∑

k=1

1

N

gt(k)

z − λk
−ℑm(z)

∣∣∣∣∣ 6 CN ξ+ω

(√
ℑm(z)

Nη
+

1

Nη

)
+ C

ℓN2ω

N
(7.8)

where C depends only on ξ, ω, ν, ε. Moreover, consider the case of n particles. Let k0 ∈ J1, NK and z =
λk0 + iη. Then for any configuration η containing at least one particle at k0 we have

ℑ
N∑

k=1

1

N

gt(η
k0k)

z − λk
−ℑm(z) (aηft(η\k0) + (1− aη)) 6 C

(
N ξ+nω

(√
ℑm(z)

Nη
+

1

Nη

)
+
ℓN2ω

N

)

(7.9)

where η\k0 stands for the configuration η with one particle removed from site k0.

Proof. We first show that the difference between gt(k) = (US (0, t)Avf0)(k) and (AvUB(0, t)f0)(k) is small.
More precisely, we can bound the left hand side of (7.8) by |(i)|+ |(ii)|+ |(iii)| where

(i) = ℑ
N∑

k=1

1

N

(US (0, t)Avf0)(k)− (AvUS (0, t)f0)(k)

z − λk
,

(ii) = ℑ
N∑

k=1

1

N

(AvUS (0, t)f0)(k)− (AvUB(0, t)f0)(k)

z − λk
,

(iii) = ℑ
N∑

k=1

1

N

(AvUB(0, t)f0)(k)

z − λk
−ℑm(z).

The term (i) will be controlled by finite speed of propagation; (ii) will be controlled by Lemma 6.1, and (iii)
by the isotropic local semicircle law.

To bound (i), we write

(US (0, t)Avf0)(k)− (AvUS (0, t)f0)(k) =
1

αN

∑

a∈JαN,2αNK

(US (0, t)Flataf0 − FlataUS (0, t)f0) (k). (7.10)
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To control the above terms, first assume that a+ ℓNω < k Denote (f1>a)(x) = f(x)1x>a, and similarly for
f1<a. Then

(US (0, t)Flataf0)(k) = (US (0, t)(f01>a)) (k) + (US (0, t)1<a) (k)

= (US (0, t)(f01>a)) (k) + O(e−N
c

)

= (US (0, t)(f01>a)) (k) + (US (0, t)(f01<a)) (k) + O(e−N
c

)

= (US (0, t)f0) (k) + O(e−N
c

)

= (FlataUS (0, t)f0)(k) + O(e−N
c

) (7.11)

In the above lines, we used the finite speed of propagation Lemma 6.2 in the second and third equalities,
namely (US (0, t)δx)(k) = O(e−N

c

) for any x 6 a and k > a + ℓNω (the case x > a/2 follows from part (i)
of Lemma 6.2, the case x 6 a/2 from part (ii) and a ∈ JαN, 2αNK).

For k < a− ℓNω, in the same way we obtain

(US (0, t)Flataf0)(k) = 1 + O(e−N
c

) = (FlataUS (0, t)f0)(k) + O(e−N
c

). (7.12)

For a− ℓNω 6 k 6 a+ ℓNω, as US is a bounded in L∞ we have

|(US (0, t)Flataf0)(k)− (FlataUS (0, t)f0)(k)| 6 2 sup
k
f0(k) 6 CNω. (7.13)

Equations (7.11), (7.12), (7.13) together imply that (7.10) and therefore (i) are bounded by C ℓN2ω/N .

To bound the term (ii), define the reversed dynamics U∗
S

by

∂σU
∗
S (s, σ) = S (t− σ)U∗

S (s, σ), (7.14)

and s is always set to be = 0 ] and similarly for U∗
B
. Notice that Lemma 6.1 holds for these time-reversed

dynamics, the proof is unchanged. Thus we have

|(AvUS (0, t)f0)(k)− (AvUB(0, t)f0)(k)| 6 |(US (0, t)f0)(k)− (UB(0, t)f0)(k)|

=
1

π(k)
|〈f0, (U∗

S (0, t)−U∗
B(0, t))δk〉π| 6 C NωNt

ℓ
,

where the first inequality follows from (7.4), and the second follows from Lemma 6.1. This proves that

|(ii)| 6 Nω Nt
ℓ (N

ξ

Nη +
√

ℑm(z)
Nη + Imm(z)), where we used the local semicircle law, i.e. our matrix is in

A1(q, ω, ξ,N) from (4.4). We therefore have |(ii)| 6 N ξ+ω
√

ℑm(z)
Nη provided that Nt/ℓ 6 1/(Nη)1/2, which

follows from our assumptions on t, ℓ and ℑ(z) > N−1+2δ.

Concerning the error term (iii), we proceed as follows. Let m0 be the index such that |ℜ(z) − γm0 | =
inf16i6N{|ℜ(z)− γi|}. Then

ℑ
N∑

k=1

1

N

(AvUB(0, t)f0)(k)

z − λk
= ℑ

∑

|k−m0|6N√
η

1

N

(AvUB(0, t)f0)(k)

z − λk
+O


N

ω

N

∑

i>N
√
η

η

η2 + (i/N)2
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where we use that ‖f0‖∞ 6 Nω (which follows from the condition (4.6)). For any function f we write
(Av)f(k) = akf(k) + (1− ak) with the notation from (7.4). We obtain

ℑ
N∑

k=1

1

N

(AvUB(0, t)f0)(k)

z − λk
= ℑ

∑

|k−m0|6N√
η

1

N

akft(k) + (1− ak)

z − λk
+O(Nω√η)

= ℑ
∑

|k−m0|6N√
η

1

N

am0ft(k) + (1− am0)

z − λk
+ ℑ

∑

|k−m0|6N√
η

1

N

(ak − am0)ft(k) + (am0 − ak)

z − λk
+O(Nω√η).

(7.15)

Moreover, the first sum above is equal to

am0
ℑ

N∑

k=1

1

N

ft(k)

z − λk
+ (1− am0

)ℑ
N∑

k=1

1

N

1

z − λk
+O(Nω√η) = ℑm(z) + O

(
N ξ

√
ℑm(z)

Nη

)
+O(Nω√η)

where we used (MN ,λ) ∈ A(q, ω, ξ, ν,N). From (7.5), we have |ak − am0
| 6 √

ηNω and the second sum

in (7.15) can be bounded by O(Nω√η), which is smaller than Nω/(Nη) for η 6 N−3/4. Gathering all
estimates, we obtain that (7.8) holds.

In the case of general n, to prove (7.9), we proceed in the same way. As the term of type (i) is also
bounded by finite speed of propagation, we just need to prove that

ℑ
N∑

k=1

1

N

AvUS (0, t)f0(η
k0k)

z − λk
= m(z) (aηft(η/k0) + (1− aη)) + O

(
N ξ+nω

(√
ℑm(z)

Nη
+

1

Nη

))
.

Thanks to Lemma 6.1 it is sufficient to prove the above estimate replacing US by UB. We also can restrict
the summation to |k − k0| 6 N

√
η. Then, similarly to the n = 1 case, we write

AvUB(0, t)f0(η
k0k) = Avft(η

k0k) = aηk0kft(η
k0k) + (1− aηk0k)

=
(
aηft(η

k0k) + (1− aη)
)
+
(
(aηk0k − aη)ft(η

k0k) + (aη − aηk0k)
)
.

Using (7.5) and |k − k0| 6 N
√
η to bound the above second term, we are left with proving that

aηℑ
N∑

k=1

1

N

ft(η
k0k)

z − λk
+(1−aη)ℑ

N∑

k=1

1

N

1

z − λk
= m(z) (aηft(η/k0) + (1− aη))+O

(
N ξ+nω

(√
ℑm(z)

Nη
+

1

Nη

))
.

The second sum above is properly estimated by m(z) because we are in a good set. Concerning the first
sum, its contribution is not trivial if aη 6= 0, in particular k0 ∈ JαN, (1 − α)NK. Then ℑm(z) ∼ 1 and this
first sum can be estimated exactly as in (4.15), (4.16). This concludes the proof.

7.3 Localized maximum principle. The following result states that, for a typical initial conditions and a
generic eigenvalue path, the relaxation time of the bulk eigenvectors is of order at most N−1+ε for any small
ε > 0.

Theorem 7.4. Let n ∈ N, α, ε > 0 be arbitrarily small constants and t = N−1+ε. Then there exists a
constant ω0 such that the following holds.
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Assume that for some 0 < ξ < ω < ω0, (MN (s))06s61 is in A1(q, ω, ξ,N). Assume moreover that (7.17)
holds. Let f be a solution of the eigenvector moment flow (3.6) with initial matrix MN and path λ. Then
there exists c > 0 such that for large enough N we have

sup
η:N (η)=n,η⊂JαN,(1−α)NK

|ft(η)− 1| 6 CN−c. (7.16)

Proof. As α is arbitrary we just need to prove the result for α replaced by 3α. Moreover, we only need to
prove (7.16) with ft(η) replaced by gt(η) solving the cutoff dynamics (7.6). Indeed, we have

ft(η)− gt(η) =
1

π(η)
〈f0, (U∗

B(0, t)−U∗
S (0, t))δη〉π +

1

π(η)
〈US (0, t)(f0 − g0), δη〉π.

where we used the notation (7.14) for the time-reversed dynamics. From Lemma 6.1 (which holds also for the
time-reversed dynamics) and the bound ‖f0‖∞ 6 Nω, the first term on the right hand side of the equation
is bounded by N1+ωt/ℓ. By the finite speed of propagation Lemma 6.2, the second term is exponentially
small (remember that f0(ξ)− g0(ξ) = 0 if ξ ⊂ J2αN, (1− 2α)NK and η is supported in J3αN, (1− 3α)NK).
We therefore just need to show that

sup
η:N (η)=n,η⊂J3αN,(1−3α)NK

|gt(η)− 1| 6 CN−ε.

We will prove that such an estimate holds for any α > 0 by induction on n. Assume there is just one
particle. Following the idea from the proof of Theorem 4.3, for a given 0 6 s 6 t let k0 be an index such
that gs(k0) = supk{gs(k)}. We consider two possible cases: if gs(k0) − 1 6 N−10 then there is nothing to
prove. If gs(k0) − 1 > N−10, then from the finite speed of propagation assumption (i.e., we are in the set
A), k0 is in the bulk, i.e., k0 ∈ Jα2N, (1− α

2 )NK (the reason is that if k0 were near the edges, then gs(k0)− 1
is exponentially small). We then have

∂sgs(k0) = (S (s)gs)(k0) =
1

N

∑

j 6=k0,|j−k0|6ℓ

gs(j)− gs(k0)

(λj − λk0)
2

6
1

η

∑

j 6=k0,|j−k0|6ℓ

1

N

ηgs(j)

(λj − λk0)
2 + η2

− gs(k0)

η

∑

j 6=k0,|j−k0|6ℓ

1

N

η

(λj − λk0)
2 + η2

.

If ℓ ≫ Nη (which we obviously can assume, as we will chose η = N−1+c for some small c > 0, extending
the above sums to all indices j induces an error ηN1+ω/ℓ where we have used that ‖gs‖∞ 6 ‖g0‖∞ 6 Nω.
Combining this fact with Lemma 7.3 and the rigidity of eigenvalues which follows from that the path λ is
assumed to be in the set A2(ω,N) defined in (4.5), we have proved (here z = λk0 + iη) that

∂s(gs(k0)− 1) 6 −ℑm(z)

η
(gs(k0)− 1) + O

(
Nω+ξ

(
(ℑm(z))1/2

η3/2N1/2
+

1

Nη2

)
+
ℓN2ω

Nη

)
+O

(
N1+ω

ℓ

)
.

As k0 ∈ Jα2N, (1− α
2 )NK, we have ℑm(z) ∼ 1. Moreover, the second error term O

(
N1+ω

ℓ

)
is dominated by

the first one ( recall that the cutoff parameter ℓ in Lemma 7.3 satisfies ℓ = N δNt and η 6 N−1+δ/2). Denote
by Ss = supk(gs(k)− 1) and we choose the parameters so that η = N−1+ ε

2 and ω0 6 ε/10. We proved that
if Ss > N−10 then

∂sSs 6 − c

η
Ss + C

(
Nω+ξ

η3/2N1/2
+
ℓN2ω

Nη

)
6 −cN1− ε

2Ss + CN1−3ε/4.
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By Gronwall’s lemma, we obtain St = O(N−ε/4). This concludes the proof for n = 1.

For general n, as in the 1-particle case we can assume that supη gt(η) is achieved for some ξ ⊂ Jα2N, (1−
α
2 )NK. Then the analogue of (4.14) holds with f replaced by g. The first sum in (4.14) then can be evaluated
using (7.9):

1

Nη

∑

j 6=kr

ηgs(ξ
krj)

(λkr − λj)2 + η2
= ℑm(λkr + iη)(aξfs(ξ\kr) + (1− aξ)).

From the result at rank n− 1 with α replaced by α/10, we know that for s ∈ [t/2, t] we have

fs(ξ\kr) = gs(ξ\kr) + O(N−c) = 1 + O(N−c).

This proves that

∂s(gs(ξ)− 1) 6 −ℑm(z)

η
(gs(ξ)− 1) + O

(
(ℑm(z))1/2

η3/2N1/2
ℓNnω+ξ +

ℑm(z)

η
N−c +

ℓN2ω

Nη

)
.

One now can conclude the proof as in the n = 1 case.

Proof of Theorem 7.1We can assume that the trajectory (Mt)06t61 is in A1(q, ω, ξ,N)∩A2(ω,N)∩A3(ω,N).
Indeed, as noted in Section 4, A1 ⊂ A2 ∩ A3, and the complement of A1 has measure at most N−D, which
induces negligible error terms in the universality statements. For the same reason, thanks to Lemma 6.2,
we can assume that the following finite speed of propagation holds: for any small c, α > 0, uniformly η

supported in the JαN, (1− α)NK and d(η, ξ) > N cℓ, for large enough N we have

rs(η, ξ) < e−N
c/2

. (7.17)

Under the above two assumptions, we apply Theorem 7.4, which proves the first statement of Theorem 7.1.
The last two statements of Theorem 7.1 easily follow by the arguments used in Sections 5.3 and 5.4.

Appendix A Continuity estimate for t.N
−1/2

The main result in Section 7, Theorem 7.4, asserts the asymptotic normality of eigenvector components for
Gaussian divisible ensembles for t & N−1. To prove Theorem 1.2 for bulk eigenvectors, in this appendix
we remove the small Gaussian components of the matrix elements. As we saw in Section 5, one way to
proceed consists in a Green function comparison theorem. Here, we proceed in a different way: the Dyson
Brownian motion preserves the local structure of generalized Wigner matrices up to time N−1/2 (see the
lemma hereafter). This approach is much more direct and there is no need to construct moment matching
matrices. It provides a completely dynamical proof of Theorem 1.2 for bulk eigenvectors.

We remark that although this proof is very simple, the fact that the Dyson Brownian motion preserves
the detailed behaviour of eigenvalues and eigenvectors is surprising and even contradictory. Consider for
example the eigenvalue flow. It was proved that this spectral dynamics take very general initial data to
local equilibrium for any time t & N−1. So how can we prove that the changes of the eigenvalues up to
time N−1/2 is less than the accuracy N−1? The answer is that we only prove the preservation of the Dyson
Brownian motion for matrix models. In other words, the matrix structure gives this preservation of the local
structure.
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We start with the following matrix stochastic differential equation which is an Ornstein-Uhlenbeck version
of the Dyson Brownian motion. Let Ht = (hij(t)) be a symmetric N × N matrix. The dynamics of the
matrix entries are given by the stochastic differential equations

dhij(t) =
dBij(t)√

N
− 1

2Nsij
hij(t)dt, (A.1)

where B is symmetric with (Bij)i6j a family of independent Brownian motions. The parameter sij > 0 can
take any positive values, but in this paper, we choose sij to be the variance of hij(0). Clearly, for any t > 0
we have E(hij(t)

2) = sij and thus the variance of the matrix element is preserved in this flow. We will call
this system of stochastic differential equations (A.1) a generalized Dyson Brownian motion. For this flow,
the following continuity estimate holds.

Lemma A.1. Suppose that we have c/N 6 sij 6 C/N for some fixed constants c and C, uniformly in i and
j. Denote ∂ij = ∂hij . Suppose that F is a smooth function of the matrix elements (hij)i6j satisfying

sup
06s6t,i6j,θ

E

(
(N3/2|hij(s)3|+

√
N |hij(s)|)

∣∣∂3ijF (θHs)
∣∣
)
6M, (A.2)

where (θH)ij = θijhij, θkℓ = 1 unless {k, ℓ} = {i, j} and 0 6 θij 6 1. Then

EF (Ht)− EF (H0) = O(tN1/2)M.

Proof. By Itô’s formula, we have

∂tEF (Ht) = − 1

2N

∑

i6j

(
1

sij
E (hij(t)∂ijF (Ht))− E

(
∂2ijF (Ht)

))
.

A Taylor expansion yields

E (hij(t)∂ijF (Ht)) = Ehij(t)∂ijFhij(t)=0 + E
(
hij(t)

2∂2ijFhij(t)=0

)
+O

(
sup
θ

E
(
|hij(t)3∂3ijF (θHt)|

))

= sijE
(
∂2ijFhij(t)=0

)
+O

(
sup
θ

E
(
|hij(t)3∂3ijF (θHt)|

))
,

E
(
∂2ijF (Ht)

)
= E

(
∂2ijFhij(t)=0

)
+O

(
sup
θ

E
(
|hij(t)(∂3ijF (θH)|)

))
.

Together with the condition c/N 6 sij 6 C/N , we have

∂tEF (Ht) = N1/2 O

(
sup
i6j,θ

E(N3/2|hij(t)3|+N1/2|hij(t)|)|∂3ijF (θHt)|
)
.

Integration over time finishes the proof.

The previous lemma implies the following eigenvalues and eigenvectors continuity estimate for the dy-
namics (A.1).
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Corollary A.2. Let α > 0 be arbitrarily small, δ ∈ (0, 1/2) and t = N−1+δ. Denote by Ht the solution of
(A.1) with a symmetric generalized Wigner matrix H0 as the initial condition. Let µt be the law of Ht. Let
m be any positive integer and Θ : R2m → R be a smooth function satisfying

sup
k∈J0,5K,x∈R

|Θ(k)(x)|(1 + |x|)−C <∞ (A.3)

for some C > 0. Denote by (u1(t), . . . , uN (t)) the eigenvectors of Ht associated with the eigenvalues λ1(t) 6
. . . 6 λN (t). Then there exists ε > 0 (depending only on Θ, δ and α) such that, for large enough N ,

sup
I⊂JαN,(1−α)NK,|I|=m,|q|=1

∣∣(Eµt − E
µ0)Θ

(
(N(λk − γk), N〈q, uk〉2)k∈I

)∣∣ 6 N−ε.

Proof. One may try to apply Lemma A.1 directly for F (H) = (λ,u), but the third derivative of this function
seems hard to bound. Instead, we can prove the continuity estimate when F is a product of Green functions
of H, which in turn implies the continuity estimate for eigenvalues and eigenvectors. In the following, the fact
that (i) and (ii) imply (A.4) relies on classical techniques [22]. The crucial condition is (i), i.e., comparison
of Green functions up to some scale smaller than microscopic, η = N−1−ε. In Section 5 such a comparison
was shown by moment matching. Hereafter, Lemma A.1 allows to prove this Green function comparison by
a dynamic approach.

Let v and w refer to two generalized Wigner ensembles. Consider the following statements.

(i) Green functions comparison up to a very small scale. For any κ > 0 there exists ξ, ε > 0 such that for
any N−1−ξ < η < 1 and any smooth function F with polynomial growth, we have

sup
|q|=1,E1,...,Em∈(−2+κ,2−κ)m

|(Ev − E
w)F ((〈q, G(zk)q〉)mk=1)| 6 CN−ε

(
1

Nη
+

1√
Nη

)
,

for some C = C(κ, F ) > 0. Here zk = Ek + iη.

(ii) Level repulsion estimate. For both ensembles v and w and for any κ > 0 the following holds. There
exists ξ0 > 0 such that for any 0 < ξ < ξ0 there exists δ > 0 satisfying

P
(
|{λi ∈ [E −N−1−ξ, E +N−1−ξ]}| > 2

)
6 N−ξ−δ,

for any E ∈ (−2 + κ, 2− κ). Here the probability measure can be either the ensemble v or w.

From Section 5 in [22], if (i) and (ii) hold then for any α > 0 and Θ satisffying (A.3) there exists ε > 0
such that for large enough N we have

sup
I⊂JαN,(1−α)NK,|I|=m,|q|=1

∣∣(Ev − E
w)Θ

(
(N(λk − γk), N〈q, uk〉2)k∈I

)∣∣ 6 N−ε. (A.4)

The level repulsion condition condition (ii) was proved in the generalized Wigner context [15, equation
(5.32)]. We therefore only need to check the main assumption (i), which is a consequence of Lemma A.1
and the isotropic local semicircle law, Theorem 4.1. Indeed, we need to find a good bound M in (A.2) for a
function F of type given in (i). For simplicity we only consider the case

F (H) = 〈q, G(z)q〉,

where z = E + iη with N−1−ξ < η < 1 and −2 + κ < E < 2− κ. The general case

F (H) = 〈q1, G(z1)q1〉 . . . 〈qk, G(zk)qk〉
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is analogous. We have

∂3ij〈q, G(z)q〉 = −
∑

a,b

∑

α,β

qaG(z)aα1
G(z)β1,α2

G(z)β2,α3
G(z)β3,b qb

where {αk, βk} = {i, j} or {j, i}. From the isotropic local semicircle law (4.2) the following four expressions
∑

a

qaG(z)aα1 , G(z)β1,α2 , G(z)β2,α3 ,
∑

b

G(z)β3,b qb

are bounded byN2ξ((Nη)−1+(Nη)−1/2) with very high probability provided thatN−1+ξ 6 η 6 1. Moreover,
by a dyadic argument explained in [18] Section 8, we have for any y 6 η

|〈q, G(E + iy)q〉| 6 C logN
η

y
ℑ〈q, G(E + iη)q〉.

Consequently, we proved that uniformly in E ∈ (−2 + κ, 2− κ), N−1−ξ 6 η 6 1, we have

∂3ij〈q, G(E + iη)q〉 = O(N5ξ(Nη)−1 + (Nη)−1/2))

with very high probability. The hypothesis (A.2) therefore holds with M = C(ε)N5ξ((Nη)−1 + (Nη)−1/2).
As ξ is arbitrarily small, Lemma A.1 proves that for any δ ∈ (0, 1/2) and t = N−1+δ there exists some ε > 0
with

|EF (Ht)− EF (H0)| 6 N−ε((Nη)−1 + (Nη)−1/2).

Thus assumption (i) holds and the Corollary is proved.

To complete the proof of Theorem 1.2 for bulk eigenvectors by a dynamical approach, we proceed as
follows. Let H0 be a generalized Wigner matrix. For δ ∈ (0, 1/2) and t = N−1+δ, let Ht be the solution of
(A.1) at time t. On the one hand, from Corollary A.2 we have

sup
I⊂JαN,(1−α)NK,|I|=m,|q|=1

∣∣E
(
P
(
(N〈q, uk(t)〉2)k∈I

))
− E

(
P
(
(N〈q, uk〉2)k∈I

))∣∣ 6 N−ε.

On the other hand, the entry hij(t) of Ht is distributed as

e
− t

2Nsij hij(0) +
(
sij

(
1− e

− t
Nsij

))1/2
N

(ij) (A.5)

where (N (ij))i6j are independent standard Gaussian random variables. For any ν < 1
2 infi,j sij

(
1− e

− t
Nsij

)
,

let W0 be a random matrix with entry (W0)ij distributed as

e
− t

2Nsij hij(0) +
(
sij

(
1− e

− t
Nsij

)
− ν
)1/2

N
(ij)

1 if i 6= j,

e
− t

2Nsij hij(0) +
(
sij

(
1− e

− t
Nsij

)
− 2ν

)1/2
N

(ij)
1 if i = j,

where (N
(ij)

1 )i6j are independent standard Gaussian random variables, independent from H0. Then W0 is
a generalized Wigner matrix modulo scaling: for any i we have

∑
j Var(W0)ij = 1 − (N + 1)ν. Moreover

from (A.5) hij(t) is distributed as

(W0)ij + ν1/2N
(ij)

2 if i 6= j,

(W0)ij + (2ν)1/2N
(ij)

2 if i = j,
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where (N
(ij)

2 )i6j are independent standard Gaussian random variables, independent of W0. This proves
that Ht is distributed as Wt′ , where (Ws)s>0 satisfies (2.1) and t′ = Nν. We choose ν = N−2+ξ for some
ξ ∈ (0, 1) and apply Theorem 7.4 to Wt′ : this yields

sup
I⊂JαN,(1−α)NK,|I|=m,|q|=1

∣∣E
(
P
(
(N〈q, uk(t)〉2)k∈I

))
− EP

(
(N 2

j )mj=1

)∣∣ 6 N−ε.

We have thus proved Theorem 1.2 by a dynamic approach, in the bulk case.

Appendix B Generator of the Dyson vector flow

B.1 Proof of Theorem 2.3. We first consider the symmetric case.

(a) For any ε > 0, let τε = inf{t > 0 | |λi − λj | = ε for some i 6= j or|λi| = ε−1 for some i} and φε be a
sooth function on R such that φε(x) = x−1 if x > ε. Then, as all of the following coefficients are Lipschitz,
pathwise existence and uniqueness holds for the system of stochastic differential equations

dλk =
dB

(s)
kk√
N

+
1

N

∑

ℓ 6=k
φε(λk − λℓ)dt,

duk =
1√
N

∑

ℓ 6=k
(dB

(s)
kℓ )φε(λk − λℓ)uℓ −

1

2N

∑

ℓ 6=k
φε(λk − λℓ)

2ukdt.

Consequently, if one can prove that τε → ∞ almost surely as ε → 0 , then existence and strong uniqueness
for the system (2.2), (2.3) easily follow. This non-explosion nor collision result follows from Proposition 1
in [29]. It immediately yields λt ∈ ΣN for ant t > 0.

To prove that ut ∈ O(N) for any t > 0, we consider the stochastc differential equations satisfied by ui ·uj ,
1 6 i 6 j 6 N . Itô’s formula yields

d(ui · uj) =
1√
N

∑

k 6∈{i,j}

(
dB

(s)
jk

λj − λk
ui · uk +

dB
(s)
ik

λi − λk
uj · uk

)
+

1√
N

dB
(s)
ji

λj − λi
(|ui|2 − |uj |2)

− 1

2N



∑

k 6=j

1

(λj − λk)2
+
∑

k 6=i

1

(λi − λk)2
+

1

(λi − λj)2


ui · ujdt, i 6= j,

d(|ui|2) =
2√
N

∑

k 6=i

dB
(s)
ik

λi − λk
ui · uk +

1

N

∑

k 6=i

|uk|2 − |ui|2
(λi − λk)2

.

For the same reason as previously, existence and strong uniqueness hold for the above system, and ui ·uj = 0
(i 6= j), |ui|2 = 1 is an obvious solution (remember that u0 ∈ O(N)), which completes the proof.

(b) Let H̃
(s)
t = utλtu

∗
t . On the one hand, Itô’s formula gives

dH̃
(s)
km = (uλ(du)∗ + u(dλ)u∗ + (du)λu∗)km +

∑

ℓ 6=s

1

N

λℓ
(λs − λℓ)2

us(k)us(m)dt. (B.1)
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On the other hand, the evolution equations for λ and u is

dλ = dMλ + dDλ (dMλ)ij =
dB(s)ii

√
N

1i=j , (dDλ)ij =


1

2

∑

ℓ 6=i

1

λi − λℓ


 dt1i=j ,

du = u(dMu + dDu) (dMu)ij =
1√
N

dB
(s)
ij

λi − λj
1i 6=j , (dDu)ij = − 1

2N

∑

ℓ 6=i

dt

(λi − λj)2
1i 6=j .

Consequently, after defining the diagonal matrix process D by

(dD)ij =
1

N

∑

ℓ 6=i

λℓ
(λℓ − λi)2

dt1i=j ,

the equation (B.1) can be written

dS̃ = u(λ(dMu)
∗ + (dMu)λ+ dMλ)u

∗ + u(λ(dDu)
∗ + (dDu)λ+ dDλ + dD)u∗.

We have λ(dMu)
∗ + (dMu)λ+ dMλ = 1√

N
dB(s) and λ(dDu)

∗ + (dDu)λ+ dDλ + dD = 0, so

dS̃ =
1√
N

u(dB(s))u∗.

As ut ∈ O(N) almost surely for any t > 0, by Lévy’s criterion, the process M defined by M0 = 0 and

dMt = u(dB(s))u∗ is a symmetric Dyson Brownian motion. This concludes the proof: (H̃
(s)
t )t>0 and

(H
(s)
t )t>0 have the same law, as they are both solution of the same stochastic differential equation, for which

weak uniqueness holds.
(c) Existence and strong uniqueness for (2.2) has a proof strictly identical to (a). For a given continuous

trajectory (λt)t>0 ⊂ ΣN , existence and strong uniqueness for (2.3) is elementary, because supt∈[0,T ],i 6=j |λi−
λj |−1 <∞ and the coefficients are Lipschitz for any given t ∈ [0, T ].

Let λ′ be the solution of (2.2), and (u
(λ′)
t )t>0 be the solution of (2.3) for given λ′. If the initial conditions

match, we have

P((λ′
t,u

(λ′)
t ) = (λt,ut) for all t > 0) = 1, (B.2)

because (λ′
t,u

(λ′)
t ) is a solution of the system of stochastic differential equations (2.2,2.3) for which strong

uniqueness holds. Equations (B.2) together with (b) yields

E(F ((H
(s)
t )06t6T )) = E(F ((u

(λ′)
t λ′

t(u
(λ′)
t )∗)06t6T )). (B.3)

As strong uniqueness holds, (λ′
t)06t6T is a measurable function (called f) of ((B

(s)
ii )06t6T )

N
i=1, and (uλ′

t )06t6T

is a measurable function of ((B
(s)
ij )06t6T )i<j and (λ′

t)06t6T (called g). We therefore have (for some Wiener
measures ω1, ω2) for any bounded continuous function G

E(G((λ′
t)06t6T , (u

(λ′)
t )06t6T )) =

∫∫
dω1(B1)dω2(B2)G(f(B1), g(f(B1), B2))

=

∫∫
dνT (λ)dω2(B2)G(λ, g(λ, B2)) =

∫∫
dνT (λ)dµT (u

(λ))G(λ,u(λ)).

Together with (B.3), this concludes the proof. We used the independence of the diagonal of B(s) with the
other entries in the first equality above.
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B.2 Proof of Lemma 2.4. We consider the Hermitian setting, the symmetric one being slightly easier. Let f
be a smooth function of the matrix entries, uk(α) = xkα+iykα, 1 6 k, α 6 N . We denote 〈·, ·〉′ = (d/dt)〈·, ·〉.
Itô’s formula yields

d

dt
E(f) = E((I) + (II) + (III)),

(I) =
∑

k,α

(−1

2

∑

ℓ 6=k
ckℓ)(xkα∂xkα

+ ykα∂ykα
)f,

(II) =
1

2

∑

k,α,β

(
〈xkα, xkβ〉′∂xkαxkβ

+ 〈ykα, ykβ〉′∂ykαykβ
+ 〈xkα, ykβ〉′∂xkαykβ

+ 〈ykα, xkβ〉′∂ykαxkβ

)
f,

(III) =
∑

k<ℓ,α,β

(
〈xkα, xℓβ〉′∂xkαxℓβ

+ 〈ykα, yℓβ〉′∂ykαyℓβ + 〈xkα, yℓβ〉′∂xkαyℓβ + 〈ykα, xℓβ〉′∂ykαxℓβ

)
f.

Substituting ∂x = ∂u + ∂u and ∂y = i(∂u − ∂u) gives

(I) = −1

2

∑

k<ℓ,α

ckℓ
(
uk(α)∂uk(α) + uk(α)∂uk(α) + uℓ(α)∂uℓ(α) + uℓ(α)∂uℓ(α)

)
f

= −1

2

∑

k<ℓ

ckℓ (uk∂uk
+ uk∂uk

+ uℓ∂uℓ
+ uℓ∂uℓ

) f.

Moreover, from the stochastic differential equation (2.5), we obtain

〈xkα, xkβ〉′ = 〈ykα, ykβ〉′ =
1

2

∑

ℓ 6=k
ckℓℜ(uℓ(α)uℓ(β)), 〈xkα, ykβ〉′ = −〈ykα, xkβ〉′ =

1

2

∑

ℓ 6=k
ckℓℑ(uℓ(α)uℓ(β)).

It implies that

(II) =
1

2

∑

k<ℓ,α,β

ckℓ
(
uℓ(α)uℓ(β)∂uk(α)uk(β) + uℓ(α)uℓ(β)∂uk(α)uk(β) + uk(α)uk(β)∂uℓ(α)uℓ(β) + uk(α)uk(β)∂uℓ(α)uℓ(β)

)
f

=
1

2

∑

k<ℓ

ckℓ (uℓ∂uk
uℓ∂uk

+ uℓ∂uk
uℓ∂uk

+ uk∂uℓ
uk∂uℓ

+ uk∂uℓ
uk∂uℓ

) f.

Finally, concerning the term (III), a calculation yields, for k 6= ℓ,

〈xkα, xℓβ〉′ = −〈ykα, yℓβ〉′ = −1

2
ckℓℜ(uℓ(α)uk(β)), 〈xkα, yℓβ〉′ = 〈xℓβ , ykα〉′ = −1

2
ckℓℑ(uℓ(α)uk(β)).

We therefore get

(III) = −1

2

∑

k<ℓ,α,β

ckℓ
(
uℓ(α)uk(β)∂uk(α)uℓ(β) + uℓ(α)uk(β)∂uk(α)uℓ(β) + uk(α)uℓ(β)∂uℓ(α)uk(β) + uk(α)uℓ(β)∂uℓ(α)uk(β)

)
f

= −1

2

∑

k<ℓ

ckℓ (uℓ∂uk
uk∂uℓ

− uℓ∂uℓ
+ uℓ∂uk

uk∂uℓ
− uℓ∂uℓ

+ uk∂uℓ
uℓ∂uk

− uk∂uk
+ uk∂uℓ

uℓ∂uk
− uk∂uk

) f.

Gathering our estimates for (I), (II) and (III) yields

d

dt
E(f) =

1

2

∑

k<ℓ

ckℓE (((uk∂uℓ
− uℓ∂uk

) (uk∂uℓ
− uℓ∂uk

) + (uk∂uℓ
− uℓ∂uk

) (uk∂uℓ
− uℓ∂uk

)) f) .

This completes the proof.
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Appendix C Covariance matrices

Because of motivations in statistics, we will only define the eigenvector moment flow for real-valued covariance
matrices. The eigenvector dynamics were already considered in [9]. The normalization constants follow our
convention and are different from [9].

Let B be a M ×N real matrix Brownian motion: Bij(1 6 i 6 N, 1 6 j 6M) are independent standard
Brownian motions. We define the M ×N matrix M by

Mt =M0 +
1√
N
Bt,

Then the real Wishart process is X is defined by Xt =M∗
tMt. In the following, we will assume for simplicity

that M > N , to avoid trivial eigenvalues of X (the case M 6 N admits similar results, up to trivial
adjustements). The eigenvalues and eigenvectors dynamics were given in [9], i.e. the direct analogue of
definitions (2.2), (2.3) and Theorem 2.3 hold for the following stochastic differential equations:

dλk = 2
√
λk

dB
(s)
kk√
N

+


 1

N

∑

ℓ 6=k

λk + λℓ
λk − λℓ

+
M

N


 dt,

duk =
1√
N

∑

ℓ 6=k

√
λk + λℓ
λk − λℓ

(dB
(s)
kℓ )uℓ −

1

2N

∑

ℓ 6=k

λk + λℓ
(λk − λℓ)2

(dt)uk. (C.1)

where B(s) is a (symmetric) N ×N Dyson Brownian motion.
After conditioning on the eigenvalues trajectory, in the same way as Lemma 2.4, the generator for the

above eigenvector dynamics can be shown to be

Lt =
∑

16k<ℓ6N

dkℓ(t)(X
(s)
kℓ )

2

where we used the notations (2.8) and

dkℓ(t) =
λk + λℓ

N(λk(t)− λℓ(t))2

The definition and utility of the eigenvector moment flow for covariance matrices are then summarized as
follows.

Theorem C.1 (Eigenvector moment flow for covariance matrices). Let q ∈ R
N , zk =

√
N〈q, uk(t)〉. Suppose

that u is the solution to the stochastic differential equation (C.1) and fλ,t(η) is defined analogously to (3.5),
where η denote the configuration {(i1, j1), . . . , (im, jm)}. Then fλ,t satisfies the equation

∂tfλ,t = B
(s)(t)fλ,t,

B
(s)(t)f(η) =

∑

i 6=j
dij(t)2ηi(1 + 2ηj)

(
f(ηi,j)− f(η)

)
.

As in the case of symmetric matrices, the above eigenvector moment flow is reversible with respect to
the measure π(s) defined in (3.9). Thus analogues of Theorems 1.2, Corollary 1.3, 1.4 and Theorem 7.1 for
covariance matrices can be proved with arguments parallel to those used in Sections 4, 5 and 6.
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[15] L. Erdős and H.-T. Yau, Gap universality of generalized Wigner and beta ensembles, preprint, arxiv:1211.3786 (2012).

[16] , Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 3, 377–
414.
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