
1

Evans Triangles and Edwards Curves

Wensen Wu

Abstract. We reduced the unsolved problem of Evans triangles to
the problem of rational points on a class of elliptic curves, that is,
the twisted Edwards curves and show there is a group structure on
the set of Evans triangles. Using this, we obtain a large class of new
Evans triangles, and also give an effective way to test if the rank of
an Edwards curve is positive or not.

1. Introduction

An Evans triangle is a triangle with integer side length such that one of its
attitudes is n times of the corresponding base, where n ∈ Z is called the
Evans ratio of the Evans triangle. The problem of finding Evans triangles was
raised by Ron J. Evans in 1977 when he proposed this problem in American
Mathematics Monthly [4]. Concretely, one can summarize the Evans problem
as

(a) Given n ∈ Z>0, if there is an Evans triangle whose Evans ratio is n?
(b) If the answer to (a) is positive, are there finitely or infinitely many such

Evans triangles?

Evans problem has drawn some interests but is still open today. During the last
40 years some progress were made. Among them, one most important result is
Xin Bian’s paper [5], where Bian concluded that the existence of Evans triangles
equals the existence of integral solutions to an indeterminate equation. Based
on Bian’s work, many sorts of Evans triangles have been found, see [6], [9], and
[7]. In [7], when some extra conditions is put on the indeterminate equation,
the author discovered that some of their integral solutions are given by the
integral solutions to Pell equations. Therefore, for certain n, the existence of
solutions to pell equation implies that n is an Evans ratio.

However, all the previous works on Evans problems are basically “elementary
mathematics”, and the problem has never been understood from the point of
view of modern mathematics. One can even hardly estimate the difficulty of
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this problem. In this paper, we discover an intrinsic connection between Evans
triangles and a class of elliptic curves, that is, the Edwards curves. Concretely,
we find there is “almost” a one to one correspondence between Evans triangles
and the rational solution class of elliptic curves. In particular, given n, the
set of all Evans triangles with Evans raito n is a group (See Theorem 4.2
below). On the one hand, using this group law, we can produce a large class of
Evans triangles (See Section 5 below). On the other hand, once we construct
an Evans triangle through elementary mathematics, we can test the rank of
Edwards curves. For example, as a consequence of all earlier works mentioned
in the last paragraph, we know a large class of Edwards curves having a positive
rank (See Thm 5.1 below).

Via this paper, we put the Evans problem into the framework of modern math-
ematics and obtain a much better understaning of this problem. From the
point of view of elliptic curves, the meaningfulness and difficulty of Evans tri-
angle problem was underrated. On the one hand, to solve the Evans problem
completely, one must have a deep understanding of Edwards curves, which is
a central problem of modern mathematics and can never be easy. On the oth-
er hand, the fact that Evans triangles can be approached through elementary
methods gives us more numerical and intuitive understanding of elliptic curves.

2. Evans Triangles and Algebraic Curves

Apparently, in the Evans problems (a), (b) in §1, we should consider two Evans
triangles that are similar as the same. It is an easy observation that if ∆ABC
is an Evans triangle with the attitude h on the base BC such that h = n|BC|,
BC must be the strictly shortest side of ∆ABC. One can also verify that
|AB| 6= |BC| (see also lemma 3.2 below). It is obvious that every Evans triangle
of ratio n is similar to a triangle side length a, b and 1 such that a, b ∈ Q>0,
a > b and the attitude on the length 1 side is n. We write such a triangle
∆(a, b;n). So two Evans triangles are similar if and only if they similar to a
same ∆(a, b;n).

Given n ∈ Z>0, let ∆(n) be the set of all triangles ∆(a, b;n) described as above.

For later use, we write ∆̃(n) be the set of all triangles ∆(a, b;n) with the a > b
replaced by a 6= b. Apparently, every two triangles in ∆(n) are not similar,

∆(n) ⊂ ∆̃(n) and every triangle ∆(a, b;n) ∈ ∆(n) is similar to (and therefore

congruent to) a unique triangle in ∆̃(n)\∆(n), which is, ∆(b, a;n). With these
simple argument, we lead to our first observation:

to find all Evans trianles with ratio n, we only have to find all

triangles in ∆(n) or, equivalently, ∆̃(n).
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From now on, when we mention an Evans triangle, we always means a triganle
∆(a, b;n) ∈ ∆(n) for some n. Now given ∆(a, b;n) ∈ ∆(n), it is obviously that
the area of the triangle is n

2 . On the other hand, by Heron’s formula, the area
can be computed by

(2.1)
n

2
=

√

(
a+ b+ 1

2
)(
a+ b− 1

2
)(
a− b+ 1

2
)(
−a+ b+ 1

2
).

Set

(2.2) x = a+ b, y = a− b.

we have x, y ∈ Q and

(2.3) (x2 − 1)(1− y2) = 4n2.

Apparently, equation (2.3) defines an algebraic curve, and we know that every
Evans triangle gives a rational point on this curve. So we expect that every
rational point on this curve will provide us an Evans triangle. However, an
obvious observation on the solution of this curve keeps us away from this ex-
pectation: once we have a solution (x, y) on the curve (2.3), we can immediately
have another 7 solutions, that are, (±x,±y), (±y,±x). To cure this issue, we
make the definition of a solution class:

Definition 1. If (x, y) is a solution of curve (2.3), we define its solution class
to be the set of 8 solutions {(±x,±y), (±y,±x)}. We write this class as [x, y].

Lemma 2.1. For every rational solution class to the curve (2.3), it has exactly
one representative [x, y] such that

(2.4) x > y > 0.

proof: Let (x, y) be a rational solution to (2.3). We can firstly exclude the
situation x = y. Indeed, if it is the case, (2.3) turns to be

(2.5) (x2 − 1)(1− x2) = −(x2 − 1)2 = 4n2.

This is not possible. If x or y equals 0, (2.3) turns to be

(2.6) x2 − 1 = 4n2.

This means that x ∈ Z and (x+ 2n)(x− 2n) = 1, which is not possible. So we
must have xy 6= 0. consider the set {(±x,±y)}, there must be exactly one of the
four points having both two coordinates positive. Without loss of generality,
assume x > 0 and y > 0, then among the set {(±y,±x)}, (y, x) is the only
point with two coordinates positive. So we can choose the representative [x, y]
if x > y > 0, otherwise, choose the representative [y, x]. �

From now on, throughout this paper, we always fix a representative [x, y] of a
rational solution class of (2.3) such that x > y > 0. With this setting, we have
the following important observation:
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Proposition 2.2. There is a one to one correspondence between the set ∆(n)
and the rational solution classes [x, y] on (2.3). This correspondence is explicitly
given by (a, b) 7→ [a+ b, a− b], or equally,

(2.7) a =
x+ y

2
, b =

x− y

2
,

by our convention on x, y it is easy to see that a > b > 0.

Proof: By (2.2), the map (a, b) 7→ [a+ b, a− b] defines a map from ∆(n) to
the rational solution classes of (2.3). Obviously a + b > a − b > 0, by Lemma
2.1, the uniqueness of representative [x, y] with x > y > 0, if ∆(a1, b1;n) and
∆(a2, b2;n) ∈ ∆(n) maps to the same solution class, one must have a1 + b1 =
a2 + b2 and a1 − b1 = a2 − b2. This implies that a1 = a2 and b1 = b2. So the
map is injective. To see the map is surjective, once we have a rational solution
class, fix its representative [x, y] as in the last lemma. Then it is easily solve
a + b = x and a − b = y by (2.7). Since x > y > 0, it is directly from (2.3)
that x = a + b > 1 and 1 > y = a − b > 0. So a, b, 1 could be the three sides
of a triangle, say ∆. Substituting a, b into (2.3), dividing both sides by 16 and
taking square root, we return to the Heron formula (2.1). This implies that
the attitude of ∆ on the length 1 side is n, i.e. ∆ = ∆(a, b;n) ∈ ∆(n). �

3. Reduction to twisted Edwards curves

The proposition 2.2 tells us

to study ∆(n), one only has to study the rational solution classes

of algebraic curve (2.3).

To do so, by a general strategy of studying algebraic curves [8], we consider
the homogeneous equation of (2.3), which is

(3.1) −x2y2 + x2z2 + y2z2 − (1 + 4n2)z4 = 0.

From this we see it is not smooth at infinite, since when the equation is given
by

(3.2) x2y2 = 0,

and it has a node. So we expect a rational model of (2.3) which could be clearer
to us.

Theorem 3.1. The curve (3.1) is bi-rational to a twisted Edwards curve

(3.3) En : Y 2 + Z2 = 1 + (1 + 4n2)Y 2Z2.

Lemma 3.2. There is no finite rational point (x, y, z) on curve (3.1) such that
x or y equals 0.
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Proof of the lemma: Since the equation is symmetric for x and y, we
assume y = 0. Then the curve (3.1) is

(3.4) x2z2 = (1 + 4n2)z4.

Since z 6= 0, we only have to solve equation x2 = (2n)2 + 1 in Q. This is not
possible. �

Remark 1. From Proposition 2.2, the lemma also implies there is no Evans
triangles of the form ∆(a, a;n) for any a ∈ Q and n ∈ Z>0. This explains our
convention a > b in the setting ∆(a, b;n).

proof of the theorem: By the lemma above, we know that x 6= 0. So
set

(3.5) v =
y

x
, w =

z

x
,

we can translate the curve (3.1) into

(3.6) w2 + v2w2 − (1 + 4n2)w4 − v2 = 0.

By the lemma again we know v 6= 0, we set

(3.7) Y =
w

v
, Z = w,

We further have

(3.8) Y 2 + Z2 − (1 + 4n2)Y 2Z2 − 1 = 0,

i.e.

(3.9) Y 2 + Z2 = 1 + (1 + 4n2)Y 2Z2.

�

We are delight to have this rational model (3.3) of curve (3.1), since it is
the so-called twisted Edwards curve which has been well-studied by Edwards
and Bernstein, and many other mathematicians (see, for example, [1] and [2]).
Concretely, it is a rational model of elliptic curves. It has the advantage that
its group structure can be computed faster than the standard ones. Now, by
lemma 3.2 and theorem 3.1, to find the rational points on the algebraic curve
(2.3), it is equivalent to find the rational solutions (Y, Z) on the new curve En

such that Y Z 6= 0. Before we start our calculation on En, we need to make a
similar observation as Definition 1.

Definition 2. If (Y, Z) is a solution of En with Y, Z 6= 0, we define its solution
class to be the set of 8 solutions {(±Y,±Z), (±Z,±Y )}. We write this class as
[Y, Z].
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Corollary 3.3. There is a one to one correspondence between rational solu-
tions (x, y) of the curve (2.3), and rational solutions (Y, Z) of En with Y Z 6= 0.
This correspondence is explicitly given by x = 1

Z
and y = 1

Y
. Moreover, this

gives us a one to one correspondence between rational classes of solutions of
curve (2.3) and En.

proof: This corollary follows from the proof of Theorem 3.1 directly. In
equation (2.3), we use the affine coordinate (x, y), which corresponds to the
projective coordinate [x : y : 1]. By the bi-rational transformation (3.5), we
change the coordinate by v = y

x
, w = 1

x
, so the resulting projective coordinate

is [1 : y

x
: 1
x
]. Then, by transformation (3.7), we get

(3.10) Y =
w

v
=

z
x
y

x

=
1

y
, Z = w =

z

x
=

1

x
.

This gives us the explicit bijection between rational solutions (x, y) of the curve
(2.3) and rational solutions (Y, Z) of En with Y Z 6= 0. Apparently, this map
(x, y) 7→ ( 1

y
, 1
x
) induces an bijection between [x, y] and [ 1

y
, 1
x
]. �

From now on, we make the convention that we always fix for every rational
solution class of En a representative [Y, Z] such that Y > Z > 0. This is
consistent to our convention for rational solution classes of (2.3).

Corollary 3.4. There is a one to one correspondence between the set ∆(n)
and the rational solution classes [Y, Z] on En. This correspondence is explicitly
given by (a, b) 7→ ( 1

a−b
, 1
a+b

), or equally,

(3.11) a =
1

2
(
1

Z
+

1

Y
), b =

1

2
(
1

Z
−

1

Y
).

by our convention on Y , Z, we can easily find a > b > 0.

Proof: It follows directly from Proposition 2.2 and Corollary 3.3. �

4. Group law on twisted Edwards curve

As mentioned in §3, En is an elliptic curve, so its rational points En(Q) is an
abelian group. By the standard theory of rational points on elliptic curves,
(see, for example, [3])

(4.1) En(Q) ∼= Zr ⊕ En(Q)tor,

where r is the rank of En(Q) and En(Q)tor is its torsion part, which is a finite
group. Noting that the rational points (±1, 0) on En are necessarily torsion,
we have the next theorem easily. However, this result seems not easy to prove
directly without advanced mathematical technique.
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Theorem 4.1.

(4.2) rank(E1(Q)) = rank(E2(Q)) = 0.

Proof: Since there is no Evans triangles with ratio n = 1 or n = 2, it
follows from Corollary 3.4 immediately. �

To explore more information on En(Q) for general n, and to find more Evans
triangles, we need to study the structure of En(Q) in detail. Indeed, the group
law of En(Q) is explicitly given in [2, §3], as for two points (Y1, Z1), (Y2, Z2)
in En(Q),

(4.3) (Y1, Z1)+(Y2, Z2) = (
Y1Z2 + Z1Y2

1 + (1 + 4n2)Y1Y2Z1Z2
,

Z1Z2 − Y1Y2

1− (1 + 4n2)Y1Y2Z1Z2
).

The point (0, 1) is the identity element of the group law, (0,−1) has order 2,
and (±1, 0) both have order 4. The inverse of a point (x, y) on En is (−x, y).
Actually, C := {(1, 0), (0,−1), (−1, 0), (0, 1)} is a torsion subgroup of En(Q)
of order 4 generated by (1, 0). Moreover, since 1 + 4n2 cannot be a square, it
follows from [2, §3] that the addition law is complete, that is, it can be used to
compute 2(x, y), 3(x, y) and so on.

Since we have defined the solution class in last section we would like to see
the relations between the points in a same solution class under group law.
It is easy to check that if P is an element in En(Q), then its solution class
[P ] is a union of P + C and −P + C. Indeed, if P = (Y, Z), P + (1, 0) =
(Z,−Y ), P + (0,−1) = (−Y,−Z), P + (−1, 0) = (−Z, Y ); and −P = (−Y, Z)
−P + (1, 0) = (Z, Y ), P + (0,−1) = (Y,−Z), P + (−1, 0) = (−Z,−Y ).

Theorem 4.2. Given n ∈ Z>0. There is a one to one correspondence between
the set ∆(n) := ∆̃(n)∪{0} and the quotient group En(Q)/C. Therefore we can
define an abelian group structure on ∆(n) by:

(4.4) ∆(a1, b1;n) + ∆(a2, b2;n) = ∆(a, b;n),

such that in En(Q), ( 1
a−b

, 1
a+b

) is in the coset of

(4.5) (
2a1a2 − 2b1b2

(a21 − b21)(a
2
2 − b22) + (1 + 4n2)

,
2a1b2 + 2a2b1

(1 + 4n2)− (a21 − b21)(a
2
2 − b22)

).

Under this group structure, the opposite of ∆(a, b;n) is ∆(b, a;n).

Proof: We first show there is a one to one correspondence between ∆(n)
and En(Q)/C. Indeed, we define γ : ∆(n) → En(Q) by setting γ(0) = 0 and

(4.6) γ : ∆̃(n) → En(Q) ∆(a, b;n) 7→ (
1

a− b
,

1

a+ b
) + C.

According to Corollary 3.4, γ is well-defined. Since a, b ∈ Q>0 and a 6= b,
that γ(∆(a, b;n)) /∈ C. So 0 ∈ ∆(n) is the only element which maps to 0 ∈
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En(Q)/C. Now if γ(∆(a1, b1;n)) = γ(∆(a, b;n)), by the computation before
the Theorem, we must have ( 1

a1−b1
, 1
a1+b1

) lying in the set

(4.7) {(
1

a− b
,

1

a+ b
), (

1

a+ b
,−

1

a− b
), (−

1

a− b
,−

1

a+ b
), (−

1

a+ b
,

1

a− b
)}.

Without loss of generality, assume a > b > 0. If a1 > b1 > 0, both 1
a1−b1

and
1

a1+b1
are positive. Then ( 1

a1−b1
, 1
a1+b1

) = ( 1
a−b

, 1
a+b

). This implies a = a1 and

b = b1. If b1 > a1 > 0, 1
a1−b1

< 0 and 1
a1+b1

> 0. So the only possibility

is ( 1
a1−b1

, 1
a1+b1

) = (− 1
a+b

, 1
a−b

). However, this implies that b = −a1 < 0.
So it is not possible. So we proved the injectivity of γ. Now we show that
γ is surjective. Let P /∈ C be any rational solution of En, then we can find
Y, Z ∈ Q>0 such that P ∈ (Y, Z) + C. If Y > Z > 0, set a = 1

2 (
1
Z
+ 1

Y
) and

b = 1
2 (

1
Z
− 1

Y
), then a > b > 0 and γ(∆(a, b;n)) = (Y, Z) + C. If Z > Y > 0,

then (Y, Z) ∈ (−Z, Y ) + C, set a = 1
2 (

1
Y

− 1
Z
) and b = 1

2 (
1
Y

+ 1
Z
). Then

b > a > 0 and γ(∆(a, b;n)) = (Y, Z) + C.

Now since γ is bijective, we can define group structure on ∆(n) by translating
the group structure of En(Q)/C via γ as

(4.8) ∆(a1, b1;n) + ∆(a2, b2;n) := γ−1(γ(∆(a1, b1;n)) + γ(∆(a2, b2;n))),

so that the image of (∆(a1, b1;n) +∆(a2, b2;n)) under γ is the sum of the im-
age of ∆(a1, b1;n) and ∆(a2, b2;n). Concretely, if ∆(a1, b1;n) + ∆(a2, b2;n) =
∆(a, b;n), then ( 1

a−b
, 1
a+b

) is belong to the coset of ( 1
a1−b1

, 1
a1+b1

) +

( 1
a2−b2

, 1
a2+b2

), which is

(4.9) (
2a1a2 − 2b1b2

(a21 − b21)(a
2
2 − b22) + (1 + 4n2)

,
2a1b2 + 2a2b1

(1 + 4n2)− (a21 − b21)(a
2
2 − b22)

).

Finally,

(4.10) γ(∆(b, a;n)) = (
1

b− a
,

1

a+ b
) + C,

so γ(∆(b, a;n)) + γ(∆(a, b;n)) = 0 in En(Q)/C. Then

(4.11) ∆(a, b;n) + ∆(b, a;n) = 0 ∈ ∆(n).

This completes the proof. �

Remark 2. There are actually two more observations from the proof above:

(1) If we write Y = 2a1a2−2b1b2
(a2

1
−b2

1
)(a2

2
−b2

2
)+(1+4n2)

, Z = 2a1b2+2a2b1
(1+4n2)−(a2

1
−b2

1
)(a2

2
−b2

2
)
, it is

not possible to verify Y > Z > 0 since we can easily find a counterex-
ample by computer (see the computation in the next section). So we
have to leave the last theorem in this cumbersome form. However, once
we know this point, it is easy to compute all the elements in its coset as
the paragraph before Theorem 4.2. Actually, we only have to pick up
one pair among the four pairs {(Y, Z), (Z,−Y ), (−Y,−Z), (−Z, Y )}.
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(2) By the proof of Theorem 4.2, to compute the inverse of γ, one should
always choose the representative [Y, Z] for a coset such that |Y | > Z >
0. If Y > 0, its preimage under γ is in ∆(n); if Y < 0, its preimage
under γ is in −∆(n). This observation can simply our program for
computation in the next section.

5. Applications

With the help of Theorem 4.2, once we have an Evans triangle ∆(a, b;n),
we can obtain some new Evans triangles, simply by computing the doubling,
tripling...of ∆(a, b;n). This also gives us a way to test the Evans problem (b)
in §1, as long as we have a positive answer to the problem (a).

Let’s compute the simplest example of Bian to illustrate the situation. Recall
in [5], for Evans ratio n = k2 − 1, Bian constructed an Evans triangle whose
three sides are a = k2 − 1

2 + 1
2k , b = k2 − 1

2 − 1
2k and c = 1. By Theorem 4.2,

this Evans triangle corresponds to the coset of point (k, 1
2k2

−1 ) in E3(Q)/C.

In the tables below we give the simple cases, k = 2 and therefore n = 3. For
general n, a code for computation is given in the Appendix. If k = 2 then
n = 3, a = 15

4 , b = 13
4 . This gives a coset of P = (2, 1

7 ) in E3(Q),. Let’s write

the coset by P . Via Mathematica, we have:

Coset (Y, Z), |Y | > Z > 0, the coordinate Y

P 2

2P −(65/33)

3P 25742/25741

4P 163114249
80295799

5P − 4199554676462
2164213391339

6P 1756423080172572305
1756150157671681167

7P 8815340424383213332291682
4270984810619844955517881

8P − 719181280906723610128758175428001
376098086200404145118937516463199

9P 238243911955380615159279760246134289737122
238160620195410389244969428691678240020279

10P 1262791227064699640336643165502128464053323384587825
601950763998877479586577183592618555151013261276433

11P − 81612891084824610496929341969266534162205906393724187911755822
43297303780850008446187016204949465275022964402741765496531579

12P 85656248924466060638719780383134373778586841016678927046760453322703218249
85603013679751445799289823565450360205297210385759149519598432627081657801

· · · · · ·
Table 1. k = 2, Y
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Coset (Y, Z), |Y | > Z > 0 the coordinate Z

P 1/7

2P 28/197

3P 131/89173

4P 23663640
164821801

5P 2077854653029
14695325574013

6P 15481119732077972
5269291982243374997

7P 4452299613503841861401639
30860098726698594287374447

8P 102167066932743529293841651667280
726401971619209876030783492807201

9P 3636874662886228692156003570477408399959
825309133514800833717894623483808605492767

10P 555044358784218595507157896757874720590661394673972
3828818275732384850727236407424381518167278093804597

11P 39941655267536738848424543773873972462969447633886463800755691
285522860240983292756565411153711569209276961842168642983273133

12P 503240299193911846214773366187601622963721393579934226303141527854449080
85657727208984630797997571871376449620207917270464140514721551327188516201

· · · · · ·
Table 2. k = 2, Z

Evans triangles ∆(a, b; 3) ∈ ∆(3), the side length a

P 15/4

2P 11881/3640

3P 2298863437/6744404

4P 28784875169990809
7719753734412720

5P 57216902371136505411266175
17452128450272526726606796

6P 9282293224638970789951639517779611409
54382792008673557793078876135530920

7P 291057979827526562475948989562279543035363144656813
78497073528772348022738097333859535746537001733596

8P 483989862056159413539413394918362672489215994173020492436037406481
146953284126346914149572440751863858151467787139516401538495014560

9P 197491036866357632993249886686686978395532616132429053343860577124298235642805165135
1732926493954842448690209360105818513719091447928041144145579001607968657491155996

10P 5169107504443273200725760446233570305120134538821867871327127371038460727029608208440441637143537333401
1401810293808925597681844556950906290143041956075014076538166383305011310929531186264778596170951181800

11P

2157298011344644251391040211557489378610734077795536584082031009
6535364817865455187326362577270363347450533130356418983464237/

6519507922194174113606735630983372603015544743971253337144656165849391
162022260428090311242307738483777236563858932537766004

12P

7380198490332895646231726872911660756586376902374033651658510791057585
039324594736403009636000602483565694838778599745277877811411308911897714625129/

8621135267315298027991376511307135083934856112383127384992337914844504
1304200067993136795221615328484729691240208916107781907887565668337794521840

· · · · · ·
Table 3. k = 2, a
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Evans triangles ∆(a, b; 3) ∈ ∆(3), the side length b

P 13/4

2P 13729/3640

3P 2292119295/6744404

4P 24984693407894089
7719753734412720

5P 66210744101819331888697837
17452128450272526726606796

6P 9227918882922124979887338590643704761
54382792008673557793078876135530920

7P 253026571784319532630802803351975166455551570242895
78497073528772348022738097333859535746537001733596

8P 560839538748386285147942421872097561427839400268263894210262263921
146953284126346914149572440751863858151467787139516401538495014560

9P 195758716215785716376659030952817461346104697831488452577018351420893098528599628013
1732926493954842448690209360105818513719091447928041144145579001607968657491155996

10P 4500888752796418308554860045584357594634858565695502589775439173234655988535249830952395947430333129649
1401810293808925597681844556950906290143041956075014076538166383305011310929531186264778596170951181800

11P

2503171207670349471103612451679353524450627769782408725759628691216809
5562477770404172399687880558711099611340056778274396415/

6519507922194174113606735630983372603015544743971253337144656165849391
162022260428090311242307738483777236563858932537766004

12P

7294040717900698353723914857154366258845278298472530751550516238747756
566486330025337180990850559574975224784699800704576671261305031896457836078969/

862113526731529802799137651130713508393485611238312738499233791484450
41304200067993136795221615328484729691240208916107781907887565668337794521840

· · · · · ·
Table 4. k = 2, b

Surely we can keep computing the higher multiples of P , however, we choose
to stop at the step 12. There are two reasons. Firstly, the number is even more
terrible if we keep computing. Secondly, and most importantly, it is easy to
see from our computation above that P is not of order less than or equal to
12. According to Mazur’s famous Theorem [3, §2.5], that any torsion point of
an elliptic curve has an order less than or equal to 12. So our computation is
enough to verify that P is not torsion. So we have verified the next theorem
for the case n = 3.

Theorem 5.1. There are infinitely many Evans triangles with the ratios
3, 8, 15, and rank of E3, E8, E15 > 0

Proof: The theorem is verify via a computation via Mathematica, the
program is given in the Appendix. The precise results of the computation is
too large to be fit in a table. So in the tables below, we only compute the results
upto 15-digital decimal. However, it is enough to see they are not torsion. In
case k = 3, then n = 8, a = 26/3 and b = 25/3. So the rational point in E8(Q)
is (3, 1/17). In case k = 4, then n = 15, a = 125/8 and b = 123/8. So the
rational point in E15(Q) is (4, 1/31).
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Coset (Y, Z), |Y | > Z > 0 Evans triangle ∆(a, b; 8), (a, b)

P (3.000000000000000, 0.058823529411764) (8.66666666666667, 8.33333333333333)

2P (−1.28458498023715, 0.0392006149116065) (12.3656711915535, 13.1441327300151)

3P (1.17426203512330, 0.0327445764898540) (15.6955036272942, 14.8439049465151)

4P (−4.73327432073915, 0.0609755593073093) (8.09437166454124, 8.30564190417608)

5P (−1.00808501383545, 0.00789952065648606) (62.7989898369691, 63.7909696663243)

6P (2.22215820573825, 0.0557271436079622) (9.19729480722687, 8.74728184351541)

7P (−1.44341877680018, 0.0450249254945549) (10.7585602581648, 11.4513598919737)

8P (1.09763831072356, 0.0257603670124760) (19.8651848103736, 18.9541378924314)

9P (−11.6559204202252, 0.0621491847030033) (8.00226117568193, 8.08805448620117)

10P (−1.03300876033239, 0.0156713679976759) (31.4212963098427, 32.3893423113870)

11P (1.78753437475464, 0.0517354824950684) (9.94426185923725, 9.38483205798531)

12P (−1.67790757997724, 0.0501243507574858) (9.67720135664176, 10.2731817383583)
· · · · · · · · ·

Table 5. k = 3

Coset (Y, Z), |Y | > Z > 0 Evans triangle ∆(a, b; 8), (a, b)

P (4.00000000000000, 0.0322580645161290) (15.6250000000000, 15.3750000000000)

2P (−1.14269788182832, 0.0161279833517591) (30.5644551534225, 31.4395771046420)

3P (1.45464220675284, 0.0242004990779207) (21.0044580736648, 20.3170038011586)

4P (−1.88117183528003, 0.0282222825384067) (17.4507057952180, 17.9822893439645)

5P (1.04926557255756, 0.0100935069689079) (50.0133202146205, 49.0602726486334)

6P (−18.1470815261894, 0.0332642660589389) (15.0035921663228, 15.0586974458443)

7P (−1.01981331872933, 0.00653857350956616) (75.9789928885131, 76.9595645104311)

8P (2.29800068268954, 0.0299982503536006) (16.8852191892855, 16.4500583089895)

9P (−1.31031588050509, 0.0215347432758587) (22.8367065953550, 23.5998813495330)

10P (1.22461622645142, 0.0192374043348572) (26.3993236099268, 25.5827412566962)

11P (−2.81670117200166, 0.0311467714920034) (15.8755155463843, 16.2305407829767)

12P (1.00610351084978, 0.00366606104045919) (136.883130131149, 135.889196615148)
· · · · · · · · ·

Table 6. k = 4

�
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Apparantly, once we have an Evans triangle in ∆(n), the stradegy above gives
a way to produce more Evans triangles with the same ratio, and to test the
positivity of rank of En. Since we already have lots of examples of Evans
triangles from elementary methods, it gives us an opportunity to verify the
rank of a large class of Edwards curves. For example, given any integer m,
consider the Pell equation

(5.1) x2 − (m2 − 2)y2 = 1,

which has the primal solution (m2 − 1,m). So the relation

(5.2) xk + yk
√

m2 − 2 = ((m2 − 1) +m
√

m2 − 2)k

gives us an algorithm to compute the k-th solution (xk, yk) of (5.1). The
Author’s early work [7] then gives a way to attach the kth solution an Evans
triangle with distinct Evans ratio.

6. Appendex

In this Appendex, we give the Mathematica codes used in computing Theorem
5.1. Given k,

f [k , {x , y }] := {(k∗y+1/(2∗k2−1)∗x)/(1+(1+4∗(k2−1)2)∗k/(2∗k2−1)∗x∗y),

(−k ∗ x+ 1/(2 ∗ k2 − 1) ∗ y)/(1− (1 + 4 ∗ (k2 − 1)2) ∗ k/(2 ∗ k2 − 1) ∗ x ∗ y)}

g[{x , y }] := f [k, {x, y}]

h[{a , b }] := If [Abs[a] > b > 0, {a, b}, {b,−a}]

l[{x , y }] := Nest[h[#]&, {x, y}, 4]

d[{x , y }] := l[g[{x, y}]]

coset[{x , y },m ] := Nest[d[#]&, {x, y},m− 1]

cor[{y , z }] := {1/2 ∗ (1/z + 1/y), 1/2 ∗ (1/z − 1/y)}

tri[{x , y },m ] := cor[coset[{x, y},m]

Now if P = (Y, Z) ∈ Ek2
−1(Q), Y Z 6= 0, to compute the mP in Ek2

−1(Q)/C,
one only has to input

coset[{Y, Z},m]
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To compute ∆(a, b; k2 − 1) corresponding to mP , one has to input

tri[{Y, Z},m]

To draw a table for m from 1 to 12.

Table[coset[{Y, Z}, i], i, 12]

Table[tri[{Y, Z}, i], i, 12]

To obtain an approximation of 15-digital decimal, one only has to input

N [Table[coset[{Y, Z}, i], i, 12], 15]

N [Table[tri[{Y, Z}, i], i, 12], 15]
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