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Geometric Data Analysis based on Optimal Mass
Transportation

Simon Kai Hung Lama

aDeerfield Academy

Abstract

3D shape classification plays a fundamental role in geometric big data analysis. This
work proposes a novel method for shape classification based on optimal mass trans-
portation theory. The Riemann surfaces are mapped onto canonical domains confor-
mally based on uniformization theorem. The conformal factor function is treated as
probability distribution on the canonical domain. For each pair of probability distri-
butions, the optimal mass transportation map is computed by solving Monge-Amperé
equation. The transportation cost is the Wasserstein distance between two distributions.
By using this distance, geometric classification based on clustering can be performed.
The method is applied to 3D human facial expression recognition, which demonstrates
the efficiency and efficacy of the method.

Contributions

1. A novel geometric analysis method based on conformal mapping and optimal
mass transportation theorem is proposed.

2. Efficient algorithms for discrete surface Yamabe flow and discrete optimal mass
transportation map have been developed.5

3. The method is verified by recognizing facial expressions using real 3D human
facial surfaces.
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Abstract

3D shape classification plays a fundamental role in geometric big data analysis. This
work proposes a novel method for shape classification based on optimal mass trans-
portation theory. The Riemann surfaces are mapped onto canonical domains confor-
mally based on uniformization theorem. The conformal factor function is treated as
probability distribution on the canonical domain. For each pair of probability distri-
butions, the optimal mass transportation map is computed by solving Monge-Amperé
equation. The transportation cost is the Wasserstein distance between two distributions.
By using this distance, geometric classification based on clustering can be performed.
The method is applied to 3D human facial expression recognition, which demonstrates
the efficiency and efficacy of the method.

1. Introduction

1.1. Central Task

Recent years have witnessed the rapid development of 3D geometric acquisition
technologies. Nowadays, the large scale geometric data sets are ubiquitous. Geomet-
ric data analysis plays an important role, which has great potentials to be applied in5

entertainment, security, finance, education, medicine and many fields in real life. In
geometric analysis, geometric clustering is one of the most fundamental problems. In
the current work, we propose an effective method for geometric clustering based on
optimal mass transportation theory and apply it to human facial expression classifica-
tion.10

The 3D scanning system based on phase shifting structured light is capable of cap-
turing dynamic facial surfaces with high speed and accuracy, which allows the system
to capture 3D human facial expressions in real time. Fig. 1 shows one frame of the
scanned human face viewed from three different angles. Fig. 2 illustrates the scanned
facial surface with different expressions.15

Problem 1.1 (Expression Classification). How to find rigorous and efficient algorithms
for classifying 3D human facial surface according to their expressions ?
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Figure 1: One 3D facial surface viewed from different angles.

Figure 2: The same facial surface with different expressions.

1.2. Conformal Mapping

A conformal mapping is an angle-preserving diffeomorphism, which maps a simply
connected human facial surface onto the planar unit disk, such that the local shapes
are well-preserved. Intuitively, in each neighborhood, the conformal map is a scaling
transformation, but the scaling factor varies from point to point. As shown in Fig. 3, the
conformal mapping maps infinitesimal circles to infinitesimal circles. The conformal
mapping from the facial surface to the disk is not unique, as all conformal mappings
differ by a Möbius transformation. By mapping the nose tip to the center, and the
middle point of the inner eye corners to the imaginary axis, the mapping is unique. The
area ratio between the infinitesimal disks is defined as the conformal factor function
defined on the disk, the conformal factor can be treated as a probability measure. More
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Figure 3: A conformal mapping from the 3D facial surface to the planar disk.

explicitly, suppose the human facial surface is denoted as (S,g) where g is the induced
Euclidean metric, the conformal mapping is denoted as ϕ : (S,g)→ D, where D is the
unit planar disk D = {|z| < 1|z ∈ C}. The mapping is conformal, then the metric has
the representation

g(z) = λ (z)dx∧dy = λ (z)
i
2

dz∧dz̄,

where λ : D→ R is the conformal factor.
By this procedure, we can convert a 3D human facial surface (S,g) to a probability20

measure λ (z) i
2 dz∧dz̄ defined on the planar unit disk.

1.3. Optimal Mass Transportation

The Optimal Mass Transportation theory offers a powerful tool to measure the dis-
tance between two probability measures. Suppose on a planar convex domain Ω⊂R2,
there are two probability measures µ and ν , with equal total mass µ(Ω) = ν(Ω). A
differential mapping ϕ : Ω→Ω is measure-preserving, if for any Borel set B⊂Ω,∫

ϕ−1(B)
dµ =

∫
B

dν . (1)

The measure-preserving condition is denoted as ϕ#µ = ν . The transportation cost for
ϕ is defined as

C (ϕ) :=
∫

Ω

c(p,ϕ(p))dµ(p). (2)

where c(p,q) is the transportation cost for moving a point p to q. Among all the
measure preserving mappings, the one that minimizes the transportation cost is called
the optimal mass transportation map.

ϕ
∗ = argminϕ#µ=νC (ϕ). (3)
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The transportation cost of the optimal mass transportation map is called the Wasserstein
distance between the two probability measures µ and ν

dw(µ,ν) = C (ϕ∗). (4)

Figure 4: An area-preserving mapping from the facial surface onto the planar disk.

1.4. Proposed Method

In order to classify 3D human expression, we propose the following algorithmic
pipeline:25

1. The 3D human facial surfaces with different expressions are captured using 3D
scanning system as described in [1]. Each facial surface is scaled to have the unit
total area.

2. Each surface is conformally mapped onto the planar disk with the normalization
condition. The conformal mapping induces conformal factor. Therefore, each30

facial surface with expression is converted to a probability measure.
3. For each pair of facial surfaces, compute the Wasserstein distance between the

corresponding probability measures, which gives the shape distance between the
facial surfaces.

4. Treat each facial surface as an abstract point and use shape distance for geometric35

clustering. Each cluster represents a expression.

2. Theoretic Background

In this section, we briefly introduce the theoretic foundation of our framework. We
refer readers to [2] and [3] for detailed treatments.
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Figure 5: 3D facial surfaces with different expressions captured using the 3D scanning system.

Figure 6: Same surfaces as in Fig.5, viewed from different angles.

2.1. Conformal Mapping40

Suppose (S,g) is a simply connected metric surface with a single boundary. Sup-
pose a diffeomorphic map from the surface to a planar domain is ϕ : S→ D, which
parameterizes the surface. Assume the local parameters of D is (u,v), then the Rie-
mannian metric has the form

g(u,v) = e2λ (u,v)(du2 +dv2),

where λ : S→ R is a smooth function, and ϕ is called a conformal mapping. A con-
formal mapping preserves angles and infinitesimal circles.

2.2. Surface Ricci Flow
Suppose (S,g) is a closed surface with a Riemannian metric g. Hamilton devel-

oped the surface Ricci flow, which deforms the Riemannian metric proportional to the
Gaussian curvature, such that the curvature evolves according to diffusion-reaction e-
quation, and eventually becomes constant everywhere. More explicitly, Hamilton’s
surface Ricci flow is defined as:

∂gi j(p, t)
∂ t

= 2
(

2πχ(S)
A(0)

−K(p, t)
)

gi j(p, t),
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where the metric tensor g = (gi j), K is the Gaussian curvature induced by the current
metric, χ(S) is the Euler characteristic number of the surface, and A(0) is the initial45

total area of the surface. Hamilton and Chow [4] proved that the surface Ricci flow
converges to the constant curvature metric, the constant is 2πχ(S)/A(0).

In our current work, we use the discrete surface Ricci flow. The existence of the
solution to the flow and the uniqueness of the solution have been proved in [2].

2.3. Optimal Mass Transportation50

In 18th century, Monge [5] raised the optimal mass transportation problem: how
to find a measure preserving map that minimizes the transportation cost in Eqn. 2. In
1940’s, Kantorovich [6] introduced the relaxation of Monge’s problem and solved it
using linear programming. At the end of 1980’s, Brenier [7] proved the following
theorem.55

Theorem 2.1 (Brenier). Suppose the transportation cost is the quadratic Euclidean
distance, c(x,y) = |x− y|2. Given probabilities measures µ and ν on a convex domain
Ω ⊂ Rn, then there is a unique optimal transportation map T : (Ω,µ)→ (Ω,ν), fur-
thermore there is a convex function f : Ω→R, unique up to a constant, and the optimal
mass transportation map is given by the gradient map ϕ : x 7→ ∇ f (x).60

Assume the measures µ and ν are smooth, and f is with second order smoothness,
f ∈C2(Ω,R). If f is measure-preserving, then it satisfies the Monge-Ampère equation.
The two-dimensional Monge-Ampère equation is as follows:

det

 ∂ 2 f
∂x2

1

∂ 2 f
∂x1∂x2

∂ 2 f
∂x2∂x1

∂ 2 f
∂x2

2

=
µ(x1,x2)

ν ◦∇ f (x1,x2)
. (5)

In general, since Monge-Amperé equation is highly non-linear, conventional finite ele-
ment method is incapable of solving this type of partial differential equation. Instead,
[3] introduces a discrete method to solve it based on a convex optimization.

3. Computational Algorithms

In this section, we explain the computational algorithms in detail. There are two65

major algorithms: one computes the conformal mapping, while the other finds the
optimal mass transportation map, and in turn, the Wasserstein distance.

3.1. Dynamic Discrete Surface Yamabe Flow
Suppose M is the input mesh with vertex, edge and face sets V,E,F respectively.

We use vi to represent a vertex, [vi,v j] to represent the edge connecting vi and v j, and70

[vi,v j,vk] to represent the face consisting of the vertices vi,v j and vk.
The edge length of [vi,v j] is denoted as li j, the corner angle at vi in triangle [vi,v j,vk]

is denoted as θ
jk

i . θ
jk

i can be obtained using cosine law:

θ
jk

i = cos−1 l2
i j + l2

ki− l2
jk

2li jlki
(6)
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The triangulation is Delaunay, if for each edge [vi,v j] shared by two faces [vi,v j,vk]
and [v j,vi,vl ],

θ
i j
k +θ

ji
l ≤ π.

The discrete Gaussian curvature at each vertex is defined as the angle deficit

K(vi) =

{
2π−∑ jk θ

jk
i vi 6∈ ∂M

π−∑ jk θ
jk

i vi ∈ ∂M
(7)

It can be easily shown that the discrete Gaussian curvature satisfies the discrete Gauss-
Bonnet theorem:

∑
vi∈V

K(vi) = 2πχ(M),

where χ(M) = |V |+ |F | − |E| is the Euler characteristic number of the mesh. The
discrete conformal factor is a function defined on the vertex set u : V → R. The edge
length is given by

li j = euiβi jeu j , (8)

where βi j is the initial edge length. Given the target curvature K̄ : V → R such that the
target curvature satisfies the discrete Gauss-Bonnet theorem. The discrete Yamabe flow
is defined as follows: for each vertex vi,

dui

dt
= K̄(vi)−K(vi).

Initially, the conformal factor is set to be zero. The edge length induces the curvature K,
and the flow deforms the conformal factor, changes the edge length, then the curvature
in turn. It has been shown that the discrete yambe flow is the gradient flow of the
following Yamabe energy

E(u) =
∫ u

∑
i
(K̄i−Ki)dui,

where u is the vector representation of the conformal factors (u1,u2, · · · ,un). The gra-
dient of the Yamabe energy is given by

∇E(u) = (K̄1−K1, K̄2−K2, · · · , K̄n−Kn)
T . (9)

It has been proven in [2] that the Yamabe energy is convex.
Given a triangulation of the vertices of the mesh M, we can construct its dual mesh

M̄ as follows: for each face f ∈ M, its dual is a vertex f̄ ∈ M̄ which is the circum-
center of the face; for each edge e ∈ M shared by two faces fi and f j, its dual is an
edge ē ∈ M̄ connecting circum-centers of fi and f j; for each vertex v ∈M, its dual is a
face v̄ ∈ M̄ consisting of the circum-centers of all the neighboring faces. We define the
edge weight as follows: suppose the edge [vi,v j] is shared by two faces [vi,v j,vk] and
[v j,vi,vl ], then

wi j = cotθ
i j
k + cotθ

ji
l . (10)
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For Delaunay mesh, the edge weight is always non-negative. The Hessian matrix for
the Yamabe energy can be formulated explicitly as

∂ 2E(u)
∂ui∂u j

=

 −wi j vi ∼ v j, i 6= j
0 vi 6∼ v j, i 6= j
∑k wik i = j

(11)

From the Hessian formula, it is obvious that if the mesh is Delaunay, then on the
hyperplane ∑i ui = 0, the Hessian matrix is positive definite, therefore the Yamabe
energy is strictly convex. The solution is the unique global minimal point.75

Given any target curvature K̄ satisfying the discrete Gauss-Bonnet theorem, one
can use Yamabe flow to find the desired edge length. During the Yamabe flow, it may
happen that some triangles are degenerated, therefore the flow has to terminate, and
the solution cannot be obtained. In order to guarantee the existence of the solution we
add one constraint to the flow: during the flow, the triangulation can be modified to be80

Delaunay all the time. At each time, the mesh is composed by gluing many Euclidean
triangles. In generic cases, there is a unique Delaunay triangulation under this piece-
wise Euclidean metric, which can be obtained by simple edge swapping algorithm.
Therefore, the dynamic Yamabe flow algorithm can be summarized in Alg. 1.

Algorithm 1: Dynamic Discrete Surface Yamabe Flow.
Input: The input mesh M and the target curvature K̄, threshold ε

Output: The edge length which realizes the target curvature
1 Compute the initial edge lengths {βi j};
2 Initialize the conformal factor to be zeros;
3 while true do
4 Compute the edge lengths using Eqn.8;
5 Update the triangulation to be Delaunay by edge swapping;
6 Compute the corner angles using Eqn.6;
7 Compute the edge weights using Eqn.10;
8 Compute the vertex curvature using Eqn.7;
9 if ∀|K̄i−Ki(h)|< ε then

10 Break;
11 end
12 Compute the gradient of the Yamabe energy using Eqn.9;
13 Compute the Hessian of the Yamabe energy using Eqn.11;
14 Solve the linear system Hess(u)δu = ∇E(u)
15 u← u+δu;
16 end
17 return the edge length {li j}
18 ;

The dynamic Yamabe flow can handle meshes with low qualities. The existence of85

the solution has been proven in [2]. In our current work, we set the target curvature of
the interior vertices to be zero everywhere, and the target curvatures of the boundary
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vertices to be constant. After obtaining the target edge length, we can flatten the whole
mesh face by face, such that the input simply connected mesh is mapped onto a planar
convex domain.

uh u∗

∇uh

Wi
qi

πi
π∗
i

Ω,V Ω, T

proj proj∗

E(h) C(h)

Figure 7: The upper envelope E (h) of {πi(h)} is the dual to the convex hull C (h) of {π∗i (h)}. The projection
of E (h) induces the power Voronoi cell decomposition V (h) of Ω. The projection of C (h) induces the
power Delaunay triangulation T (h) of the discrete samples {qi}. The upper envelope E (h) is the graph
of a piecewise linear convex function uh. The gradient map of the convex function ∇uh maps each power
Voronoi cell Wi(h) to a sample point qi.

90

3.2. Optimal Mass Transportation Map
In the current work, the source domain Ω is the canonical convex domain in R2,

the target is a set of discrete points Y = {q1,q2, · · · ,qk} which densely samples Ω. The
source measure on Ω is represented by the conformal factor function µ . The target
measure on Y is prescribed by the user, ν = {ν1,ν2, · · · ,νk}, such that ∑

k
i=1 νi is equal95

to the total area of Ω,
∫

Ω
dµ .

For each target point qi ∈ Y , we construct a plane in R3, πi(h,p) := 〈qi,p〉+ hi,
i = 1,2, · · · ,k. Then we compute the upper envelope of these planes.

3.2.1. Power Voronoi Diagram
For each plane πi(h), we construct a dual point π∗i (h) ∈ R3 as follows: assume100

the coordinates of qi ∈ R2 are (xi,yi), then the dual point is π∗i (h) = (xi,yi,−hi),
i = 1,2, · · · ,k. Then we compute the convex hull of {π∗1 (h),π∗2 (h), · · · ,π∗k (h)} using
incremental convex hull algorithm as described in [8], and denote the resulting convex
hull as C (h). The boundary faces of C (h), whose normals are pointing downwards,
form the lower part of the convex hull. We project the lower part of the convex hull105

C (h) to produce the power Delaunay triangulation of the point set Y , denoted as T (h).
The upper envelope of the planes {πi(h)} is denoted as E (h), which is the dual

to the lower part of the convex hull C (h). We project the upper envelope onto the
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(x,y)-plane to obtain the power Voronoi diagram of the plane. Each power Voronoi
cell intersects Ω to obtain the power Voronoi cell decomposition of Ω, Ω = ∪Wi(h),110

denoted as V (h).
In fact, the upper envelope E (h) is exactly the graph of the convex function

G(h,p) = max
1≤i≤k

{πi(h,p)}, (12)

the power Voronoi diagram V (h) is the polyhedral partition of Ω by the gradient map
of G(h), p 7→ ∇G(h).

3.2.2. Volume Energy
Let the area of each cell Wi(h) in the power Voronoi cell decomposition V (h) be

denoted as wi(h).We define the admissible space of the height vector as follows:

H :=

{
h|

k

∑
i=1

hi = 0,∀1≤ i≤ k,wi(h)> 0

}
. (13)

It can be proven that the admissible space is convex, as the details can be found in [3].115

Furthermore, we define the volume energy on the admissible space as follows:

E(h) =
∫ h k

∑
i=1

(νi−wi(η))dηi. (14)

The gradient of the energy is the difference between the target measure and the current
cell area

∇E(h) = (ν1−w1(h),ν2−w2(h), · · · ,νk−wk(h))T . (15)

We define the edge weight of the power Voronoi cell decomposition V (h) as follows:
suppose Wi(h) and Wj(h) two adjacent cells, intersecting at the edge ei j(h)

λi j(h) =
|ei j(h)|µ
|pi− p j|

(16)

where
|ei j(h)|µ =

∫
ei j(h)

dµ

The Hessian matrix of the volume energy is given by

∂ 2E(h)
∂hi∂h j

=

 −λi j(h) Wi(h)∼Wj(h), i 6= j
0 Wi(h) 6∼Wj(h), i 6= j

∑k λik(h) i = j
(17)

Because the edge weight is always positive, the volume energy is positive definite in
the admissible space. The global maximizer of volume energy gives the power Voronoi
cell decomposition V (h), in which the area of each cell Wi(h) is equal to the desired
measure νi. Furthermore, the mapping Wi(h) 7→ qi is the gradient map of the convex
function G(h) and according to Brenier theorem, this mapping is the optimal mass120

transportation map.
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3.3. Optimal Transportation Map Algorithm

In our current setting, the discrete point set Y is contained in the unit disk Ω. The
initial height vector is set as follows: hi =

1
2 〈qi,qi〉, i = 1,2, · · · ,k. The initial pow-

er Delaunay triangulation T (h) is the traditional Delaunay triangulation, the power125

Voronoi cell decomposition of the unit disk is the traditional Voronoi cell decomposi-
tion.

At each step, we compute the power Delaunay triangulation T (h) and the power
Voronoi cell decomposition V (h). The gradient of the volume energy in Eqn. 14 is
given in Eqn. 15, and the Hessian of the volume energy is given by Eqn. 17. Then we
solve the following linear equation

∇E(h) =
(

∂ 2E(h)
∂hi∂h j

)
δh (18)

with the linear constraint ∑
k
i=1 hi = 0, the solution exists and is unique. Then we can

update the height vector by using Newton’s method h← h+ λ (δh), where λ is the
step length parameter. In theory, the step length parameter should be chosen such that130

the height vector is kept inside the admissible space H (Eqn.13), namely, in the power
Voronoi cell decomposition V (h) with each cell Wi(h) being non-empty. In practice,
in the middle of the optimization, we allow h to exceed the admissible space H. The
convexity of the volume energy automatically guides the height vector to return to the
admissible space. The details of the algorithm can be found in Alg.2.135

4. Experiment

We implemented proposed algorithms in Matlab. All the experiments are carried
out on a Windows laptop with 2.3GHz dual core CPU and 8GB memory. We report our
results in the following four subsections, which demonstrate that our algorithm allows
users to classify 3D human facial expressions effectively.140

Figure 8: One 3D facial surface viewed from different angles.

The Wasserstein distance between two surfaces is a shape metric which can be used
for quantifying shape differences. We use Alg.1 and Alg.2 to compute the Wasserstein
distance. Fig. 8 shows the visualization results of Wasserstein distance. Figs. 8a and 8c
are two face surfaces of different facial expressions. Figs. 8b and 8d are the conformal

11



Algorithm 2: Discrete Optimal Mass Transportation Map

Input: A convex domain Ω⊂ R2 and a set of discrete points Y = {q1, · · · ,qn},
discrete target measure ν = {ν1, · · · ,νn}, such that ∑i νi = Area(Ω)

Output: A partition of Ω, Ω = ∪iWi, such that Wi 7→ qi is the optimal mass
transportation map.

1 Translate and scale Y , such that Y ⊂Ω

2 Initialize the height vector h, such that hi← 1/2〈qi,qi〉
3 while true do
4 for i← 1 to k do
5 Construct the plane πi(h) : 〈qi,p〉+hi
6 Compute the dual point of the plane π∗i (h)
7 end
8 Construct the convex hull C (h) of the dual points {π∗i (h)}
9 Compute the dual of the convex hull to obtain the upper envelope E (h) of

the planes {πi(h)}
10 Project C (h) to obtain the power Delaunay triangulation T (h) of Y
11 Project E (h) to obtain the power Voronoi cell decomposition V (h) of Ω

12 for i← 1 to k do
13 Compute the area of Wi(h), denoted as wi(h)
14 end
15 Construct the gradient Eqn. 15;
16 Construct the Hessian matrix Eqn. 17;
17 Solve the linear equation Hess(h)δh = ∇E(h)
18 λ ← 1
19 Compute the power Voronoi diagram A (h+λδh) of Ω

20 while ∃wi(h+λ (δh)) is empty do
21 λ ← 1/2λ

22 Compute the power Voronoi diagram A (h+λδh) of Ω

23 end
24 h← h+λδh
25 if ∀|wi(h)−νi|< ε then
26 Break
27 end
28 end
29 return the mapping {Wi(h) 7→ qi, i = 1,2, · · · ,k}

12



mapping results for Figs. 8a and 8c, respectively. Fig. 8e shows the optimal mapping145

from Figs. 8a to 8c, which induces Wasserstein distance. For better visualization of
Fig. 8e, we put straight grids on Fig. 8c, and draw the deformed grids on Fig. 8e. From
the grids deformation, we can clearly see how the surface around the mouth and nose
deforms when the facial expression changes from calm to smile.

Figure 9: Expression classification by Wasserstein distance.

As noted earlier that Wasserstein distance can be used to quantify shape differences,150

we applied Wasserstein distance for facial expressions clustering. Our experimental
dataset contains 10 people, each of which has three different facial expressions: “sad”,
“happy” and “surprise” shown in Fig. 9 row 1, 2, 3, respectively. The 3D face surfaces
are from Binghamton University 3D Facial Expression Database [9]. For each pair of
surfaces in the dataset, we compute the Wasserstein distance.155

Then we use classical multidimensional scaling (MDS) [10] to embed all 30 face
surfaces in R2 based on the Wasserstein distance between each pair of faces. Fig.
10 illustrates the visualization results of the MDS embedding. For all the surfaces,
we mark “sad” expressions as ‘+’ in blue color, and “happy” expressions as ‘x’ in
red color, and “surprise” expressions as ‘o’ in green color. We can see that almost160

all faces with the same expressions are clustered together, and faces with different
expressions are divided into different clusters. The facial expression clusters verify
the idea that physical expressions of emotions can be systematically categorized and
support the adoption to facial action coding system (FACS) [11] in computer vision
and animation research. The experimental results also demonstrate the feasibility and165

potential of comparing and quantifying shape differences by conformal Wasserstein
distance. More importantly, we anticipate that our approach may serve as novel shape
distance for shape analysis.

5. Conclusions

This work proposes a method for geometric data analysis based on conformal map-170

ping and optimal mass transportation theory and applies the method for 3D human
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Figure 10: Multidimensional scaling embedding of the face surfaces using Wasserstein distance. .

facial expression classification. Our experimental results demonstrate the efficiency
and efficacy of the proposed method.

The current method cannot handle surfaces with complicated topologies. In the
future, we will generalize the proposed method for surfaces with more complicated175

topologies. Furthermore, we will apply this method to the recognition of subtle facial
expressions.
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