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THE ASYMMETRIC COLONEL BLOTTO GAME

Abstract. This paper explores the Nash equilibria of a variant of the Colonel Blotto game,

which we call the Asymmetric Colonel Blotto game. In the Colonel Blotto game, two players

simultaneously distribute forces across n battlefields. Within each battlefield, the player that

allocates the higher level of force wins. The payo↵ of the game is the proportion of wins

on the individual battlefields. In the asymmetric version, the levels of force distributed to

the battlefields must be nondecreasing. In this paper, we find a family of Nash equilibria

for the case with three battlefields and equal levels of force and prove the uniqueness of the

marginal distributions. We also find the unique equilibrium payo↵ for all possible levels of

force in the case with two battlefields, and obtain partial results for the unique equilibrium

payo↵ for asymmetric levels of force in the case with three battlefields.

1



THE ASYMMETRIC COLONEL BLOTTO GAME 2

1. Introduction

In this section we discuss the background and origins of the Asymmetric Colonel Blotto
game.

The Colonel Blotto game, which originates with Borel in [Bor53], is a constant-sum game
involving two players, A and B, and n independent battlefields. A distributes a total of XA

units of force among the battlefields, and B distributes a total of XB units of force among
the battlefields, in such a way that each player allocates a nonnegative amount of force to
each battlefield. The player who sends the higher level of force to a particular battlefield
wins that battlefield. The payo↵ for the whole game is the proportion of the wins on the
individual battlefields.

Roberson in [Rob06] characterizes the unique equilibrium payo↵s for all (symmetric and
asymmetric) configurations of the players’ aggregate levels of force, and characterizes the
complete set of equilibrium univariate marginal distributions for most of these configurations
for the Colonel Blotto game.

A possible variant of the Colonel Blotto game, which has not been studied before, is the
Asymmetric Colonel Blotto game, where the forces distributed among the battlefields must
be in non-decreasing order.

The Asymmetric Colonel Blotto game is a constant-sum game involving two players, A and
B, and n independent battlefields. A distributes XA units of force among the battlefields
in a nondecreasing manner and B distributes XB units of force among the battlefields in
a non-decreasing manner. Each player distributes forces without knowing the opponent’s
distribution. The player who provides the higher amount of force to a battlefield wins that
battlefield. If both players deploy the same amount of force to a battlefield, we declare that
battlefield to be a draw, and the payo↵ of that battlefield is equally distributed among the
two players.1 The payo↵ for each player is the proportion of battlefields won.

In this paper, we study the Nash equilibria and equilibrium payo↵s of Asymmetric Colonel
Blotto games.

In Section 3, we find a family of equilibria for the game with three battlefields and equal
levels of force, and we prove the uniqueness of the marginal distribution functions. We also
prove that in any equilibrium strategies for a game with equal levels of force and at least
three battlefields, there are no atoms in the marginal distributions.

In Section 4, we find the unique equilibrium payo↵s of all cases of the Asymmetric Colonel
Blotto game involving only two battlefields, and in Section 5 we find the unique equilibrium
payo↵s in the case of three battlefields in certain cases. We conclude with Section 6, where
we discuss the di�culties in extending our work to the case of n � 4 battlefields.

2. The model

In this section we introduce the model and related concepts. The definitions in this section
are adaptations from those in [Rob06] to the asymmetric version.

1As we show in Theorem 3.5, Nash equilibria of games with equal levels of force do not contain atoms, so

the probability that the two players place equal force on some battlefield is 0. Thus we may, if we choose,

use a di↵erent tie-breaking rule without altering the result in this case.
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2.1. Players. Two players, A and B, simultaneously allocate their forces XA and XB across
n battlefields in a nondecreasing manner. Each player distributes forces without knowing the
opponent’s distribution. The player who provides the higher level of force to a battlefield
wins that battlefield, gaining a payo↵of 1

n
. If both players deploy the same level of force

to a battlefield, that battlefield is a draw and both players gain a payo↵of 1
2n . The payo ↵

for each player is the proportion of battlefields won, or equivalently, the sum of the payo↵s
across all the battlefields.2

Player i sends xk
i units to the kth battlefield. For player i, the set of feasible allocations

of force across the n battlefields in the Asymmetric Colonel Blotto game is denoted by Bi:

Bi =

(

x 2 Rn

�

�

�

�

�

n
X

j=1

xj
i = Xi, 0  x1  x2  · · ·  xn

)

.

Definition 2.1. Given an n-variate cumulative distribution function H, for every x,y 2 Rn

such that xk  yk for all k 2 {1, . . . , n}, the H-volume of the n-box [x1, y1]⇥ · · ·⇥ [xn, yn] is,

VH ([x,y]) =�
n

yn

xn

�
n�1

yn�1

xn�1

. . .�
2

y2

x2

�
1

y1

x1

H(t),

where

�
k

yk

xk

H(t) = H(t1, . . . , tk�1, yk, tk+1, . . . , tn)�H(t1, . . . , tk�1, xk, tk+1, . . . , tn).

Intuitively, the H-volume of a n-box just measures the probability that a point within that
n-box will be chosen given the cumulative distribution function H.

Definition 2.2. The support of an n-variate cumulative distribution function H is the com-
plement of the union of all open sets of Rn with H-volume zero. Intuitively, the support of
a mixed strategy is just the closure of the set of pure strategies that might be chosen.

2.2. Strategies. A mixed strategy, or a distribution of force, for player i is an n-variate
cumulative distribution function (cdf) Pi : Rn

+ ! [0, 1] with support in the set of feasible
allocations of force Bi. This means that if player i chooses strategy (Xj)nj=1, then the
probability that Xj  xj (j = 1, . . . , n) is Pi(x1, . . . , xn). Pi has marginal cumulative
distribution functions

�

F j
i

 n

j=1
, one univariate marginal cumulative distribution function

for each battle field j. F j
i (x

j) is the probability that Xj  xj. Equivalently, F j
i (x) =

Pi(Xi, Xi, . . . , x,Xi, . . . , Xi), where the jth argument is x, and the rest of the arguments are
Xi, the player’s entire allocation of force. We write Pi =

�

F j
i

�n

j=1
.

In the case where the mixed strategy is the combination of finite pure strategies, the
mixed strategy Pi where (i1j , i

2
j , . . . , i

n
j ) units of force are distributed the battlefields 1, 2, . . . , n

respectively with probability pj is denoted by

Pi =
���

i1j , i
2
j , . . . , i

n
j

�

, pj
� 

.

Here i1j + i2j + · · ·+ inj = Xi and
P

j pj = 1.

2That the payo↵ for each player is the sum of the payo↵s across all the battlefields means that two di↵erent

joint distributions are equivalent if they have the same marginal distributions. Hence, this definition makes

it possible to separate a joint distribution into the marginal distributions and a n-copula later in this paper.
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2.3. The Asymmetric Colonel Blotto Game. The Asymmetric Colonel Blotto game
with n battlefields, denoted by

ACB(XA, XB, n),

is a one-shot game in which players simultaneously and independently announce distributions
of force (x1

i , . . . , x
n
i ) subject to their budget constraints

Pn
j=1 x

j
1 = XA and

Pn
j=1 x

j
2 = XB,

xj
i � 0 for each i, j, and such that x1

i  x2
i  · · · xn

i for i = 1, 2. Each battlefield, providing
a payo↵ of 1

n
, is won by the player that provides the higher allocation of force on that

battlefield (and declared a draw if both players allocate the same level of force to a battlefield,
each gaining a payo↵ of 1

2n), and players’ payo↵s equal the sum of the payo↵s over all the
battlefields.

2.4. Nash equilibrium. Mixed strategies PA and PB form a Nash equilibrium if and only
if neither player can increase payo↵ by changing to a di↵erent strategy.

Since this particular game is two-player and constant-sum, it has the interesting property
that the equilibrium payo↵ is always unique:

Theorem 2.1. The Nash equilibrium payo↵ for both players of any two-player and constant-
sum game is unique.

Proof. Suppose PA and PB is a pair of Nash equilibrium strategies. Let wi be the payo↵ for
player i. For any pair of Nash equilibrium strategies P 0

A and P 0
B, let w0

i be the payo↵ for
player i.

Let us consider the payo↵ for both players when player A plays strategy PA and player B
plays strategy P 0

B. Call the payo↵ for player A vA and the payo↵ for player B vB. Since PA

is a strategy in a Nash equilibrium, wA � vA. Similarly, w0
B � vB. So wA + w0

B � vA + vB.
Since we are considering a constant sum game, wA + w0

B � vA + vB = wA + wB. Hence,
w0

B � wB. Similarly, we must have wB � w0
B. So wB = w0

B. Similarly wA = w0
A. ⌅

3. Optimal univariate marginal distributions for three battlefields

In this section we use copulas to separate the joint distributions of players into the marginal
distributions and suitable copula. We also find and prove the unique univariate marginal
distribution for ACB(1, 1, 3).

Let us first introduce the concept of copulas:

Definition 3.1. Let I denote the unit interval [0, 1]. An n-copula is a function C from In

to I such that

(1) For all x 2 In, C(x) = 0 if at least one coordinate of x is 0; and if all coordinates of
x are 1 except xk, then C(x) = xk.

(2) For every x,y 2 In such that xk  yk for all k 2 {1, . . . , n}, the C-volume of the
n-box [x1, y1]⇥ · · ·⇥ [xn, yn] satisfies

VC([x,y]) � 0.

The crucial property of n-copulas that we need is the following theorem of Sklar:
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Theorem 3.1 (Sklar, [Skl59]). Let H be an n-variate distribution function with univariate
marginal distribution functions F1, F2, . . . , Fn. Then there exists an n-copula C such that for
all x 2 Rn,

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (1)

Conversely, if C is an n-copula and F1, F2, . . . , Fn are univariate distribution functions, then
the function H defined by equation (1) is an n-variate distribution function with univariate
marginal distribution functions F1, F2, . . . , Fn.

The proof of this theorem can be found in [SS83].
This theorem establishes the equivalence between a joint distribution on the one hand, and

a combination of a complete set of marginal distributions and a n-copula on the other hand.
We will now show that the univariate marginal distribution functions and the n-copula are
separate components of the players’ best responses.

Proposition 3.2. In the game ACB(XA, XB, n), suppose that the opponent’s strategy is fixed
as the distribution P�i, and that XA = XB. Then, in order for player i to maximize payo↵
under the constraint that the support of the chosen strategy must be in Bi, player i must
solve an optimization problem. Given that there are no atoms in Nash equilibrium strategies
(Theorem 3.5), we can write the Lagrangian for this optimization problem as

max
{F j

i }n

j=1

�i

n
X

j=1



Z 1

0



1

n�i

F j
�i(x)� x

�

dF j
i

�

+ �iXi, (2)

where the set of univariate marginal distribution functions
�

F j
i

 n

j=1
satisfy the constraint that

there exists an n-copula C such that the support of the n-variate distribution

C
�

F 1
i

�

x1
�

, . . . , F n
i (xn)

�

is contained in Bi.
3

Proof. The payo↵ for player i given the opponent’s marginal distribution functions
�

F j
�i

 n

j=1

is the sum of the payo↵s across all the battlefields:

n
X

j=1

Z 1

0

1

n
F j
�i(x) dF

j
i .

Here, the integral is the Riemann-Stieltjes integral, so the integrand is 0 for x > Xi. We
also use the Riemann-Stieltjes integral for other integrals later in the paper.

max
Pi

n
X

j=1

Z 1

0

1

n
F j
�i(x) dF

j
i .

That Pi is contained in Bi implies that the sum of the levels of force across all battlefields is
Xi:

n
X

j=1

Z 1

0

x dF j
i = Xi.

3Here we only maximize over the set of
n

F j
i

on

j=1
that satisfy the constraint, not all of them.
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Hence, the Lagrangian is

max
Pi

"

n
X

j=1

Z 1

0

1

n
F j
�i(x)dF

j
i � �i

"

n
X

j=1

Z 1

0

x dF j
i �Xi

##

= max
{F j

i }n

j=1

�i

n
X

j=1



Z 1

0



1

n�i

F j
�i(x)� x

�

dF j
i

�

+ �iXi.

Finally, from Theorem 3.1 the n-variate distribution function Pi is equivalent to the set of
univariate marginal distribution functions

�

F j
i

 n

j=1
combined with an appropriate n-copula,

C, so the result follows directly. ⌅

Theorem 3.3. The unique Nash equilibrium univariate marginal distribution functions of the
game ACB(1, 1, 3) are for each player to allocate forces according to the following univariate
distribution functions:

F 1(u) =

⇢

3u 0  u  1
3

1 1
3 < u  1

F 2(u) =

8

<

:

0 0  u < 1
6

�1
2 + 3u 1

6  u  1
2

1 1
2 < u  1

F 3(u) =

8

<

:

0 0  u < 1
3

�1 + 3u 1
3  u  2

3
1 2

3 < u  1

The expected payo↵ for both players is 1
2 .

This means that any equilibrium strategies must have the marginal distributions described
above, and that any joint distribution with support in Bi with such marginal distributions is
an equilibrium strategy.

Intuitively, it is easy to see why this particular set of marginal distributions might guarantee
a Nash equilibrium. Since the distribution density is the same among the three battlefields,
the payo↵ of a pure strategy p = (a, b, c) remains constant at 1

2 when it changes inside the
region 0  a  1

3 ,
1
6  b  1

2 , and
1
3  c  2

3 . A player can only hope to increase payo ↵
above that given by p by moving below the lower bound of the marginal distribution in
some battlefield and staying inside the bounds of the marginal distributions in the other
battlefields. However, this is impossible: a cannot be negative; any attempt to bring b below
1
6 would result in c being above the upper bound 2

3 ; c, as the biggest of the 3, cannot be
below 1

3 . (The rigorous proof of this can be found in Lemma 3.6.)
Before we give the formal proof of this theorem, let us first examine some joint distributions

that satisfy the conditions in Theorem 3.3.
Consider the 3-variate distribution function P1 that uniformly places mass 1

3 on each of
the three sides of the equilateral triangle with vertices

�

1
3 ,

1
3 ,

1
3

�

,
�

0, 12 ,
1
2

�

, and
�

1
6 ,

1
6 ,

2
3

�

to
�

1
3 ,

1
3 ,

1
3

�

(Depicted in Figure 1b). Clearly its marginal distributions are those described in
Theorem 3.3.
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Similarly, as in Figure 1c, divide the original equilateral triangle into three smaller equi-
lateral triangles with side lengths 1

3 of the original, and let P2 be the strategy that uniformly
distribute on the sides of the smaller triangles. Clearly P2 has the same marginal distributions
as P1, and is thus a joint distribution as described in Theorem 3.3. As shown in Figure 1d,
we can continue this process on the smaller triangles (or only on some of the smaller trian-
gles), and thus we obtain an countably-infinite family of joint distributions with marginal
distributions as described in Theorem 3.3. Furthermore, given any two such suitable joint
distributions, their weighted average is also a suitable joint distribution, and thus we obtain
a continuum of suitable joint distributions.

(0, 0, 1) (0, 1, 0)

(1, 0, 0)

x2  x3

x1  x2

(a) The support,Bi, is the shaded trian-
gle, which is the triangle shown in Fig-
ures 1b to 1d.

(0, 0, 1)

�

1
3 ,

1
3 ,

1
3

�

�

0, 12 ,
1
2

�

�

1
6 ,

1
6 ,

2
3

�

(b) The strategy that distributes uni-
formly on the blue lines is an equilib-
rium strategy.

(0, 0, 1)

�

1
3 ,

1
3 ,

1
3

�

� 2
9 ,

7
18 ,

7
18

�

� 5
18 ,

5
18 ,

4
9

�

�

0, 12 ,
1
2

�

� 1
9 ,

4
9 ,

4
9

�

( 1
18 , 7

18 , 59 )

�

1
6 ,

1
6 ,

2
3

�

� 2
9 ,

2
9 ,

5
9

�

� 1
9 ,

5
18 ,

11
18

�

(c) The strategy that distributes uni-
formly on the red lines is an equilibrium
strategy.

�

0, 12 ,
1
2

�

�

1
3 ,

1
3 ,

1
3

�

(0, 0, 1)

(d) The strategy that distributes uni-
formly on the green lines is an equilib-
rium strategy.

Figure 1. Equilibrium strategies.

Given these joint distributions that have marginal distributions as characterized by The-
orem 3.3, we have the following theorem:

Theorem 3.4. For the unique set of equilibrium univariate marginal distribution functions
�

F j
i

 3

j=1
characterized in Theorem 3.3, there exists a 3-copula C such that the support of the

3-variate distribution function

C
�

F 1
i

�

x1
�

, F 2
i

�

x2
�

, F 3
i

�

x3
��

is contained in Bi.
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Proof. Consider the 3-variate distribution function P1 that uniformly places mass 1
3 on each

of the three sides of the equilateral triangle with vertices
�

1
3 ,

1
3 ,

1
3

�

,
�

0, 12 ,
1
2

�

, and
�

1
6 ,

1
6 ,

2
3

�

to
�

1
3 ,

1
3 ,

1
3

�

(depicted in Figure 1b). Clearly its marginal distributions are those described in
Theorem 3.3, and its support is in Bi. Hence, according to Sklar’s theorem (Theorem 3.1),

for the unique set of equilibrium univariate marginal distribution functions
�

F j
i

 3

j=1
char-

acterized in Theorem 3.3, there exists a 3-copula C such that the support of the 3-variate
distribution function C (F 1

i (x
1) , F 2

i (x
2) , F 3

i (x
3)) is contained in Bi.

⌅
Before we provide the formal proof of Theorem 3.3, we first seek to provide some intuition

for the outline of the proof, which takes inspiration from the proofs in [Rob06] and [BKdV96].
From equation (2) in Proposition 3.2, we know that in an Asymmetric Colonel Blotto game

ACB(1, 1, 3), each player’s Lagrangian can be written as

max
{F j

i }3

j=1

�i

3
X

j=1



Z 1

0



1

3�i

F j
�i(x)� x

�

dF j
i

�

+ �iXi,

subject to the constraint that there exists an n-copula, C, such that the support of the
n-variate distribution C (F 1

i (x
1) , . . . , F n

i (xn)) is contained in Bi. If there exists a suitable
3-copula, then, for di↵erent j, F j

i is independent. So equation (3) is the maximization of
three independent sums, hence the sum of three independent maximizations:

max
{F j

i }3

j=1

�i

3
X

j=1



Z 1

0



1

3�i

F j
�i(x)� x

�

dF j
i

�

+ �iXi

=
3
X

j=1

max
F j
i

�i

Z 1

0



1

3�i

F j
�i(x)� x

�

dF j
i + �iXi.

Hence we have reduced the maximization problem over a joint distribution to separate max-
imization problems over univariate distributions, which can be easily solved.

Note that each separate maximization problem has the same form as that of an all-pay
auction. An all-pay auction is an auction where several players simultaneously call out a bid
for a prize, and all bidders pay regardless of who wins the prize; the prize is awarded to the
highest bidder. In an all-pay auction with two bidders, let Fi represent bidder i’s distribution
of the bid, and vi represent the value of the auction for bidder i. Each bidder i’s problem is

max
Fi

Z 1

0

[viF�i(x)� x] dFi.

In the separate maximization problems for the Asymmetric Colonel Blotto game, the quan-
tity 1

3�i
acts as the value vi for the all-pay auctions. Lemma 3.13 establishes the uniqueness

of the Lagrange multipliers, hence the uniqueness of the value vi.
A potential issue that arises is whether the constraint that the strategy Pi must be in

Bi leads to equilibria outside those characterized by Theorem 3.3. From Sklar’s Theorem
(Theorem 3.1), we know that the joint distribution Pi is equivalent to a set of marginal

distributions
�

F j
i

 3

j=1
, together with a suitable 3-copula C. So if a suitable 3-copula exists,

the constraint that Pi be in Bi places no restraint on the set of potential univariate marginal
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distribution functions,
�

F j
i

 3

j=1
; instead, this constraint and the set of univariate marginal

distributions places a restraint on the set of feasible 3-copulas. Since Theorem 3.4 establishes
the existence of suitable 3-copula, this is not an issue.

On the other hand, the restriction on the 3-copula implies that the set of equilibrium 3-
variate distributions for the game forms a strict subset of the set of all 3-variate distribution
functions with univariate marginal distribution functions characterized by Theorem 3.3.

The proof of Theorem 3.3 under the assumption that suitable 3-copula exists is contained
in the results that fill up the rest of this section. The proof takes inspiration from the proofs
found in [Rob06] and [BKdV96].

First, for the form of the Lagrangian in Proposition 3.2 to be accurate, we need show that
there are no atoms in any Nash equilibrium strategies. The following theorem proves this in
the more general case of equal levels of force for both players and any n number of battlefields
where n � 3:

Theorem 3.5. If n � 3, then Nash equilibrium strategies for ACB(1, 1, n) cannot contain
atoms.

Proof. Suppose that we have an equilibrium strategy PA with an atom in battlefield j on aj.
Let p = (b1, b2, . . . , bj�1, bj = aj, bj+1, . . . , bn) be any pure strategy in the support of PA

that contains playing aj on battlefield j. The general idea of this proof will be to find a pure
strategy p0 that does strictly better against PA than p, thus reaching a contradiction that PA

cannot be an equilibrium strategy as we supposed.
Let fk(a) denote the possibility of choosing a on battlefield k in PA. If bk is any point that

is not an atom and bk is greater than bk�1 (or greater than 0 in the case of b1), then consider
the pure strategy p0 that plays " lower on battlefield k and plays "0 = "

n�1 higher on all other
battlefields. We can always find su�ciently small positive " and "0 such that there is no atom
between bk and bk � " in PA. So the payo↵ of p0 against PA minus the payo↵of p against PA

is at least
1

n
fk(aj)� �

for any � > 0. Hence, p0 does strictly better than p against PA.
Therefore, for PA to be an equilibrium strategy, all such bk that are not atoms must be

equal to bk�1 (or 0 if k = 1). So every pure strategy p in the support of PA containing
the atom aj on battlefield j must be of the following form: a series of zeros in the first few
battlefields (possibly none), an atom, the same level of force in the next few battlefields (also
possibly none), another atom, the same level of force (as in the previous atom) in the next
few battlefields, and so forth.

Now, one of the following statements must be true:

(1) All p in the support of PA containing the atom aj on battlefield j is played with
probability 0.

(2) There exists some p = (c1, . . . , cn) in the support of PA containing the atom aj on
battlefield j that is played with a positive probability, hence every ck is an atom on
battlefield k.

Suppose that statement 1 is true. For aj to be played with some positive probability, there
must be a continuum of such p. Hence there must also be a continuum of atoms, which is
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clearly impossible. So statement 2 must be true. Let q = (c1, . . . , cn) be such a pure strategy
in the support of PA where every ck is an atom on battlefield k. Some casework is needed
here:

(1) All the ck are the same. Then they must all be 1
n
. In any pure strategy where player

A plays 1
n
on the first battlefield, he must also play 1

n
on all the other battlefields. So

f1
�

1
n

�

 fk
�

1
n

�

for all k � 2. Hence,

f1

✓

1

n

◆

<
n
X

k=2

fk

✓

1

n

◆

.

Consider the pure strategy q0 that plays
�

1
n
� "
�

on battlefield 1 and plays
�

1
n
+ "

n�1

�

on all the other battlefields. We can find a su�ciently small positive " such that there
are no atoms between 1

n
and

�

1
n
� "
�

on battlefield 1. The payo↵of q0 against PA

minus the payo↵of q against PA is at least

1

n
·
 

n
X

k=2

fk

✓

1

n

◆

� f1

✓

1

n

◆

!

� �

for any � > 0. So q0 does strictly better against PA than q.
(2) All the ck fall into exactly two values, d0 and d1. (d0 < d1) Suppose q contains m

battlefields with level of force d0 and then (n�m) battlefields with level of force d1.i
(a) If d0 = 0, then d1 =

1
n�m

. Given any pure strategy in the support of PA that plays
d1 on battlefield (m + 1), it must also play d1 on all the battlefields after that,
and play 0 on the battlefields 1 to m. So fm+1(d1)  fk(ck) where k 6= m + 1.
Hence,

X

k 6=m+1

fk(ck) > fm+1(d1 = cm+1).

Consider the pure strategy q0 that plays d1 � " on battlefield (m+ 1) and plays
ck+

"
n�1 on battlefield k for all k 6= m+1. We can find a su�ciently small positive

" such that there are no atoms between d1 and d1� " on battlefield (m+1). The
payo↵of q0 against PA minus the payo↵of q against PA is at least:

1

n
·
 

X

k 6=m+1

fk(ck)� fm+1(d1)

!

� �

for any � > 0. So q0 does strictly better against PA than q.
(b) If d0 > 0, then at least one of the following two must be true:

(i)

fm+1(cm+1) <
X

k 6=m+1

fk(ck).

(ii)
n
X

k=m+1

fk(ck) >
m
X

k=1

fk(ck).

Similar to the arguments above, if the first one is true, then we can construct
a q0 by playing " lower on battlefield (m + 1) and "0 higher on all the other
battlefields; if the second one is true, then we can construct a q0 by playing "
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higher on battlefield (m + 1) and all the battlefields after that, and playing "0

lower on battlefields 1 to m. In either case, q0 does strictly better than q against
PA.

(3) All the ck fall into at least three di↵erent values. So from these values we can choose
two di↵erent values that are not zero. Then we apply the proof in item 2b and obtain
the needed pure strategy q0.

In all the cases, a contradiction is reached, showing that PA cannot be an equilibrium strategy.
⌅

In the following discussions, let P = {F j}3j=1 be any joint distribution characterized in

Theorem 3.3, and let P 0 = {f j}3j=1 be any equilibrium strategy. Our goal is to prove that P
is an equilibrium strategy, and that P and P 0 have the same marginal distributions.

Lemma 3.6. Suppose p = (a, b, c) is any pure strategy in BA = BB = B. Then the payo↵
of p against P is 1

2 if 0  a  1
3 ,

1
6  b  1

2 , and
1
3  c  2

3 ; and the payo↵ is less than 1
2

otherwise.

Proof. Suppose A plays the mixed strategy P and B plays the pure strategy p = (a, b, c),
where 0  a  b  c and a+ b+ c = 1. Then, let W (a, b, c) be the payo↵ for B. So

W (a, b, c) =
1

3

�

F 1(a) + F 2(b) + F 3(c)
�

Our goal is to find the maximum value of W (a, b, c) in B and to show that it is no greater
than 0.

Clearly, 0  a  a+b+c
3 = 1

3 , so F 1(a) = 3a. And b  b+c
2  1

2

• If b < 1
6 , then c = 1� a� b � 1� 2b > 2

3 , so F 2(b) = 0 and F 3(c) = 1. And a  b < 1
6

W (a, b, c) =
1

3
(3a+ 0 + 1)

<
1

3
(3 · 1

6
+ 0 + 1)

=
1

2
.

So W (a, b, c) < 1
2 .

• If b � 1
6 , then F 2(b) = �1

2 + 3b. Since c � 1
3 , F

3(c)  3c� 1.

W (a, b, c)  1

3
(3a� 1

2
+ 3b+ 3c� 1)

= (a+ b+ c)� 1

2

=
1

2
.

Equality holds if and only if F 3(c) = 3c� 1, which is equivalent to 1
3  c  2

3 . In this
case 0  a  1

3 ,
1
6  b  1

2 , and
1
3  c  2

3 .
Otherwise, equality does not hold, and the payo↵ is less than 1

2 .

⌅
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Lemma 3.7. Any joint strategy P as characterized in Theorem 3.3 is a Nash equilibrium
strategy.

Proof. We know that the game ACB(1, 1, 3) is symmetrical and has constant sum 1, and
since Lemma 3.6 indicates that P gives a payo↵ of at least 1

2 against any pure strategy, so P
must be an equilibrium strategy. ⌅

Let s̄1 = 1
3 , s

1 = 0, s̄2 = 1
2 , s

2 = 1
6 , s̄

3 = 1
3 , s

3 = 2
3 . Clearly, s̄j is just the upper bound of

P on battlefield j, and sj is the lower bound.

Lemma 3.8. F j(xj) = xj�sj

s̄j�sj
for sj  xj  s̄j and all j.

Proof. This is self-evident from the representation of F j in Theorem 3.3:

F 1(u) =

(

3u 0  u  1
3

1 1
3 < u  1

F 2(u) =

8

>

<

>

:

0 0  u < 1
6

�1
2 + 3u 1

6  u  1
2

1 1
2 < u  1

F 3(u) =

8

>

<

>

:

0 0  u < 1
3

�1 + 3u 1
3  u  2

3

1 2
3 < u  1.

⌅
Lemma 3.9. If x < sj, then f j(x) = 0. If x > s̄j, then f j(x) = 1. Or, in other words, P 0

does not place any strategy outside [sj, s̄j].

Proof. Since ACB(1, 1, 3) is a two player symmetric constant sum 1 game, every pure strategy
in the support of P 0, an equilibrium strategy, must give the unique equilibrium payo↵ ,12 ,
when played against another equilibrium strategy, P . From Lemma 3.6 we know that a pure
strategy p only gives payo↵ 1

2 against P when p plays a level of force between sj and s̄j on
battlefield j for all j. So P 0 cannot play any strategy outside that range. ⌅
Corollary 3.10. f j(sj) = 0 and f j(s̄j) = 1.

Proof. Theorem 3.5 implies that f j is continuous. This, together with Lemma 3.9, gives the
desired result. ⌅

Let us recall player i’s optimization problem for ACB(1, 1, 3) (equation (2) in Proposi-
tion 3.2):

max
{F j

i }3

j=1

�i

3
X

j=1



Z 1

0



1

3�i

F j
�i(x)� x

�

dF j
i

�

+ �iXi (3)

where the set of univariate marginal distribution functions
�

F j
i

 3

j=1
satisfy the constraint

that there exists a 3-copula C such that the support of the 3-variate distribution

C
�

F 1
i

�

x1
�

, F 2
i

�

x2
�

, F 3
i

�

x3
��



THE ASYMMETRIC COLONEL BLOTTO GAME 13

is contained in Bi.
From the lemmas above, we can add some further restrictions to it. From Lemma 3.9, we

know that Pi must be played within
h

sj, sj
i

for every battlefield j. From Lemma 3.7, we

know that P is an equilibrium strategy, so Pi must be a best response against P and vice
versa. Since Theorem 3.4 establishes the existence of suitable 3-copula, we can disregard that
restriction for now and focus on the rest.

For di↵erent j, F j
i is independent. So equation (3) is the maximization of three independent

sums, hence the sum of three independent maximizations:

max
{F j

i }3

j=1

�i

3
X

j=1



Z 1

0



1

3�i

F j
�i(x)� x

�

dF j
i

�

+ �iXi

=
3
X

j=1

max
F j
i

�i

Z 1

0



1

3�i

F j
�i(x)� x

�

dF j
i + �iXi.

The term �iXi is just a constant, so we could throw that away. Thus the problem for player
i becomes:

max
F j
i

�i

Z 1

0



1

3�i

F j
�i(x)� x

�

dF j
i

for all battlefields j, under the constraint that PA is a best response against P , P is a best
response against PA, and PA is played within [sj, s̄j]. Let us set PA = P 0 = {f j}3j=1. Since we
assume the existence of a suitable 3-copula, the di↵erent f j can be considered independent
and the di↵erent maximizations for di↵erent battlefields can also be considered independent.
Hence, f j and F j form an equilibrium for all j.

Let Bj
i (x

j
i , F

j
�i) = �i

�

1
3�F

j
�i

�

xj
i

�

� xj
i

�

. This is the payo↵ for player i by playing xj
i when

player �i plays F j
�i in the maximization problem for battlefield j.

Lemma 3.11. Bj
i (x

j, f j) = �i

⇣

1
3�i

f j (xj)� xj
⌘

is constant for all sj  xj  s̄j.

Proof. Since F j is an equilibrium strategy against f j, every strategy in the support of F gives
a constant payo ↵against f j. Since the support of F j is [sj, s̄j], the result directly follows. ⌅

Lemma 3.12. Bj
i (x

j, f j) = �i

⇣

1
3�i

f j (xj)� xj
⌘

= ��is
j = 1

3 � �is̄
j for all sj  xj  s̄j.

Proof. From Corollary 3.10, Bj
i (s

j, f j) = ��is
j, and Bj

i (s̄
j, f j) = 1

3��is̄
j. The result directly

follows from Lemma 3.11. ⌅
Lemma 3.13. �i = 1 for all i.

Proof. From Lemma 3.12, we have �i =
1

3(s̄j�sj) . Note that (s̄j � sj) is always 1
3 for all j, so

�i = 1. ⌅
Lemma 3.14. f j(xj) = F j(xj) for all j and all xj.

Proof. From Lemmas 3.12 and 3.13, we have f j(xj) = xj�sj

s̄j�sj
for sj  xj  s̄j and all j. From

Lemma 3.8, the value of f j coincides with the value of F j here. Corollary 3.10 ensures that
f j and F j are the same elsewhere. ⌅
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With these lemmas, we can prove the uniqueness of the marginal distributions in the Nash
equilibria of the game ACB(1, 1, 3). We restate the theorem here for convenience.

Theorem 3.3. The unique Nash equilibrium univariate marginal distribution functions of the
game ACB(1, 1, 3) are for each player to allocate forces according to the following univariate
distribution functions:

F 1(u) =

⇢

3u 0  u  1
3

1 1
3 < u  1

F 2(u) =

8

<

:

0 0  u < 1
6

�1
2 + 3u 1

6  u  1
2

1 1
2 < u  1

F 3(u) =

8

<

:

0 0  u < 1
3

�1 + 3u 1
3  u  2

3
1 2

3 < u  1

The expected payo↵ for both players is 1
2 .

This means that any equilibrium strategies must have the marginal distributions described
above, and that any joint distribution with support in Bi with such marginal distributions is
an equilibrium strategy.

Proof of Theorem 3.3. From Lemma 3.7 we know that every joint distribution with marginal
distribution functions as characterized above is a Nash equilibrium strategy, hence the second
part of the theorem is proved.

Lemma 3.14 establishes the uniqueness of marginal distributions of Nash equilibrium strate-
gies, and proves that these marginal distributions are exactly those characterized above.
Hence, we have proven the first part of the theorem. ⌅

4. Unique equilibrium payoffs of the game ACB(XA, XB, 2)

In this section we find the unique equilibrium payo↵s of all cases of the Asymmetric Colonel
Blotto game involving only two battlefields.

Suppose without loss of generality that XA = 1 and XB = t  1.
Let Wn(t) denote the payo↵ for A in a Nash equilibrium in such a game with n battlefields.

From Theorem 2.1, we know that Wn(t) is well-defined.

Theorem 4.1.

W2(t) =
k+2
2k+2 ,

2k
2k+1  t < 2k+2

2k+3 where k = 0, 1, 2, . . .

See Figure 2 for a graphical representation.

The proof for W2(t) and constructions of Nash equilibriums can be found later in this
section. Before we go on to prove this, let us first prove a lemma regarding the Asymmetric
Colonel Blotto game with two battlefields:
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0.6
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1

t

W
2
(t
)

Figure 2. W2(t), the payo↵ for Asymmetric Colonel Blotto Game with 2
battlefields

Lemma 4.2. Suppose that XA > XB. If player A deploys the pure strategy (a,XA � a) and
B deploys the pure strategy (b,XB � b), then

WA =

8

>

<

>

:

1
2 a� b < 0 or a� b > XA �XB

3
4 a� b = 0 or a� b = XA �XB

1 0 < a� b < XA �XB

where WA is the payo↵ for player A.

Proof.

• If a� b < 0, then XA � a > XB � b, so WA = 1
2 .

• If a� b = 0, then XA � a > XB � b, so WA = 3
4 .

• If 0 < a� b < XA �XB, then XA � a > XB � b, so WA = 1.
• If a� b = XA �XB > 0, then WA = 3

4 .
• If a� b > XA �XB, then XA � a < XB � b, so WA = 1

2 .

Hence,

WA =

8

>

<

>

:

1
2 a� b < 0 or a� b > XA �XB

3
4 a� b = 0 or a� b = XA �XB

1 0 < a� b < XA �XB.

⌅
With the help of Lemma 4.2, we can prove Theorem 4.1:

Proof of Theorem 4.1.

(1) Suppose that t < 2
3 . In this case player A can simply overwhelm player B in all the

battlefields. Take PA =
��

1
3 ,

2
3

�

, 1
�

and PB to be any strategy. PA and PB form a
Nash equilibrium and W2(t) = 1.

Given any pure strategy (x, t�x) of B, we must have x  t�x, so x  t
2 ,

1
3 > t

2 � x,
and 2

3 > t � t� x. Thus in this case, the payo↵ to B is 0. This means that B cannot
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increase payo↵ regardless of the strategy (or mixed strategy) chosen. On the other
hand, the payo↵of A is 1, which is the maximum possible value, so clearly neither
can A increase payo↵ by changing strategy. Hence, PA =

��

1
3 ,

2
3

�

, 1
�

and any PB form
a Nash equilibrium and W2(t) = 1.

(2) Suppose k is such that 2k
2k+1  t < 2k+2

2k+3 , where k 2 Z+. Take

PA =

⇢✓

("+ j(1� t), 1� "� j(1� t)) ,
1

k + 1

◆

�

�

�

�

0  j  k

�

and

PB =

⇢✓

(j(1� t), t� j(1� t)) ,
1

k + 1

◆

�

�

�

�

0  j  k

�

,

where " is such that
2k + 1

2
t� k < " < min

✓

1� t, tk � k +
1

2

◆

. (4)

The notation here just means that player A plays pure strategy

("+ j(1� t), 1� "� j(1� t))

with probability 1
k+1 for all j such that 0  j  k; and player B plays pure strategy

(j(1� t), t� j(1� t))

with probability 1
k+1 for all j such that 0  j  k. Then we claim that PA and PB

form a Nash equilibrium and W2(t) =
k+2
2k+2 .

First we will show that these mixed strategies are legitimate. If t < 2k+2
2k+3 , then

2k+3
2 t < k + 1, so 2k+1

2 t� k < 1� t. Now t
2 < 1

2 , so
2k+1
2 t� k < tk � k + 1

2 , which in
turn implies that

2k + 1

2
· t� k � k � k = 0.

Hence, a positive " satisfying equation (4) exists. Further, we need to check that the
level of force distributed on the first battlefield, x1, is less than or equal to the force
distributed on the second battlefield, x2; or, equivalently, for player i, we need to
check that x1  Xi

2 . First, let’s check player A’s strategy. Since j  k, we must have

"+ j(1� t)  "+ k(1� t).

Then we plug in the upper bound of " in equation (4) and get

"+ k(1� t) < t · k � k +
1

2
+ k(1� t) =

1

2
.

So " + j(1 � t) < 1
2 . Now let’s check player B’s strategy. We already know that

t � 2k
2k+1 , rearrange and we would get

k(1� t)  t

2
.

Since j(1� t)  k(1� t), we must have

j(1� t)  t

2
.

So both PA and PB are legitimate mixed strategies.
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Suppose A chooses some pure strategy p0A = (x, 1� x). Set a =
⌅

x
1�t

⇧

. Hence,

(1� t)a  x < (1� t)(a+ 1)

where 0  a  k+ 1. Now let us expand PB into pure strategies in the calculation of
WA (p0A, PB):

(k + 1)WA(p
0
A, PB) =

k
X

j=0

WA ((x, 1� x), (j(1� t), t� j(1� t)))


a�2
X

j=0

WA ((x, 1� x), (j(1� t), t� j(1� t)))

+
k
X

j=a+1

WA ((x, 1� x), (j(1� t), t� j(1� t)))

+WA ((x, 1� x), ((a� 1)(1� t), t� (a� 1)(1� t)))

+WA ((x, 1� x), (a(1� t), t� a(1� t))) .

There is a  sign on the second line since if a = k + 1, there is one additional
non-negative term on the right, WA ((x, 1� x), ((k + 1)(1� t), t� (k + 1)(1� t))),
compared with the original formula.

First let us consider the sum

a�2
X

j=0

WA ((x, 1� x), (j(1� t), t� j(1� t))) .

Here,

x� j(1� t) � x� (a� 2)(1� t)

� a(1� t)� (a� 2)(1� t)

> (1� t).

Hence, according to Lemma 4.2,

WA ((x, 1� x), (j(1� t), t� j(1� t))) =
1

2

if 0  j  a� 2. Thus,

a�2
X

j=0

WA ((x, 1� x), (j(1� t), t� j(1� t))) =
a� 1

2
.

Then let us consider the sum

k
X

j=a+1

WA ((x, 1� x), (j(1� t), t� j(1� t))) .
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Here,

x� j(1� t)  x� (a+ 1)(1� t)

< (a+ 1)(1� t)� (a+ 1)(1� t)

< 0.

Hence, according to Lemma 4.2,

WA ((x, 1� x), (j(1� t), t� j(1� t))) =
1

2

if a+ 1  j  k. Thus,

k
X

j=a+1

WA ((x, 1� x), (j(1� t), t� j(1� t))) =
k � a

2
.

If x = a(1� t), then according to Lemma 4.2,

WA ((x, 1� x), ((a� 1)(1� t), t� (a� 1)(1� t)))

+WA ((x, 1� x), (a(1� t), t� a(1� t))) =
3

4
+

3

4
=

3

2
.

If x > a(1� t), then according to Lemma 4.2,

WA ((x, 1� x), ((a� 1)(1� t), t� (a� 1)(1� t)))

+WA ((x, 1� x), (a(1� t), t� a(1� t))) =
1

2
+ 1 =

3

2
.

Hence, WA(p0A, PB)  1
k+1 ·

k+2
2 = k+2

2k+2 . So A cannot increase payo↵ above k+2
2k+2 by

changing strategy. Now let’s consider player B’s strategy. Suppose B chooses some
pure strategy p0B = (y, t� y). Set b = dy�"

1�t
e. Hence,

(1� t)(b� 1) + " < y  (1� t)b+ "

where 0  b  k.
(a) In the case where 0  b  k � 1, let’s expand PA into pure strategies in the

calculations of WA (PA, p
0
B):

(k + 1)WA(PA, p
0
B) =

k
X

j=0

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y))

=
b�1
X

j=0

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y))

+
k
X

j=b+2

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y))

+WA ((b(1� t) + ", 1� b(1� t)� "), (y, t� y))

+WA (((b+ 1)(1� t) + ", 1� (b+ 1)(1� t)� "), (y, t� y)) .
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First let us consider the sum
b�1
X

j=0

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y)) .

Here,

j(1� t) + "  (b� 1)(1� t) + " < y.

Hence, according to Lemma 4.2,

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y)) =
1

2

if 0  j  b� 1. Thus,

b�1
X

j=0

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y)) =
b

2
.

Then let us consider the sum
k
X

j=b+2

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y)) .

Here,

j(1� t) + "� y � (b+ 2)(1� t) + "� y

� (b+ 2)(1� t) + "� b(1� t)� "

> 1� t.

Hence, according to Lemma 4.2,

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y)) =
1

2

if b+ 2  j  k. Thus,

k
X

j=b+2

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y)) =
k � b� 1

2
.

If y = b(1� t) + ", then according to Lemma 4.2,

WA ((b(1� t) + ", 1� b(1� t)� "), (y, t� y))

+WA (((b+ 1)(1� t) + ", 1� (b+ 1)(1� t)� "), (y, t� y)) =
3

4
+

3

4
=

3

2
.

If y < b(1� t) + ", then according to Lemma 4.2,

WA ((b(1� t) + ", 1� b(1� t)� "), (y, t� y))

+WA (((b+ 1)(1� t) + ", 1� (b+ 1)(1� t)� "), (y, t� y)) = 1 +
1

2
=

3

2
.

Therefore, in either case, WA(PA, p
0
B) =

k+2
2k+2 .
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(b) If b = k, then

k(1� t) + " > k(1� t) +
2k + 1

2
t� k =

1

2
t � y.

So

(k + 1)WA(PA, p
0
B) =

k
X

j=0

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y))

=
k�1
X

j=0

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y))

+WA ((k(1� t) + ", 1� k(1� t)� "), (y, t� y)) .

Similarly,

k�1
X

j=0

WA ((j(1� t) + ", 1� j(1� t)� "), (y, t� y)) =
k

2
.

And since (1� t)(k � 1) + " < y < (1� t)k + ",

WA ((k(1� t) + ", 1� k(1� t)� "), (y, t� y)) = 1.

Hence, WA(PA, p
0
B) � k+2

2k+2 , which means that B cannot increase payo↵ above k
2k+2 by

changing strategy. Hence, PA and PB form a Nash equilibrium, and the equilibrium
payo↵ for A is W2(t) =

k+2
2k+2 .

(3) Finally, suppose that t = 1. Take any mixed strategy PA and any mixed strategy PB.
Then they form a Nash equilibrium with W2(t) =

1
2 . To see this, suppose A plays the

pure strategy P 0
A = (a, 1� a) and B plays the pure strategy P 0

B = (b, 1� b).
• If a = b, clearly WA(P 0

A, P
0
B) =

1
2 .

• If a < b, then 1�a > 1�b, soWA(P 0
A, P

0
B) =

1
2 . Similarly, if a > b, WA(P 0

A, P
0
B) =

1
2 .

Hence, the payo↵ is 1
2 regardless of the pure strategies that both players play. As a

result, the payo↵ is also 1
2 regardless of what mixed strategies that the two players

play.

⌅

5. Unique equilibrium payoffs of the game ACB(XA, XB, 3)

In this section we find the unique equilibrium payo↵s of some cases of the Asymmetric
Colonel Blotto game involving three battlefields. The results that follow are ordered by
ascending values of t.

Suppose without loss of generality that XA = 1 and XB = t  1. The case where t = 1
is already solved in Section 3, and we have W3(1) =

1
2 . In the following discussions, let the

function s(x) be defined as follows:

s(x) =

8

>

<

>

:

0 x < 0
1
2 x = 0

1 x > 0.
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Theorem 5.1. In the case where t < 6
11 , w3(t) = 1.

Proof. In this case, player A can simply overwhelm player B in all the battlefields.
Take PA = {

�

( 2
11 ,

3
11 ,

6
11), 1

�

} and PB to be any strategy. PA and PB form a Nash equilib-
rium and W3(t) = 1. ⌅

Theorem 5.2. In the case where 6
11  t < 18

31 , take

PA =

⇢✓✓

t

3
+ ",

t

2
+ ", 1� 5

6
t� 2"

◆

,
1

3

◆

,

✓✓

t

3
+ ", 1� 4

3
t� 2", t+ "

◆

,
1

3

◆

,

✓✓

1� 3

2
t� 2",

t

2
+ ", t+ "

◆

,
1

3

◆�

and

PB =

⇢✓

(0, 0, t) ,
1

3

◆

,

✓✓

0,
t

2
,
t

2

◆

,
1

3

◆

,

✓✓

t

3
,
t

3
,
t

3

◆

,
1

3

◆�

where 0 < " < 1
2

�

1� 31
18t
�

.

PA and PB form a Nash equilibrium and W3(t) =
8
9 .

Proof. Since t < 18
31 , a real " satisfying the necessary condition must exist. From the range

of t and ", we can check that the strategies of A and B are legitimate, or in other words, the
levels of force of the battlefields are nondecreasing.

Suppose A plays the pure strategy p0A = (a, b, c) where a+ b+ c = 1. Then,

9WA (p0A, PB) = 3WA ((a, b, c) , (0, 0, t))

+ 3WA

✓

(a, b, c) ,

✓

0,
t

2
,
t

2

◆◆

+ 3WA

✓

(a, b, c) ,

✓

t

3
,
t

3
,
t

3

◆◆

= 2s (a� 0) + s

✓

a� t

3

◆

+ s (b� 0) + s

✓

b� t

2

◆

+ s

✓

b� t

3

◆

+ s

✓

c� t

3

◆

+ s

✓

c� t

2

◆

+ s

✓

c� t

3

◆

.

For WA(p0A, PB) to be more than 8
9 , none of the terms on the right can be 0. Hence, we must

have

a � t

3
, b � t

2
, c � t.

So

1 = a+ b+ c � 11

6
t.

This is only possible when t = 11
6 . In this case, p0A must be ( t3 ,

t
2 , t), so WA(p0A, PB) =

5
6 < 8

9 .
Hence, WA(p0A, PB)  8

9 for all pure strategies p0A.
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Suppose B plays the pure strategy p0B = (d, e, f) where d+ e+ f = t. Then,

9WA (PA, p
0
B) = 3WA

✓✓

t

3
+ ",

t

2
+ ", 1� 5

6
t� 2"

◆

, (d, e, f)

◆

+ 3WA

✓✓

t

3
+ ", 1� 4

3
t� 2", t+ "

◆

, (d, e, f)

◆

+ 3WA

✓✓

1� 3

2
t� 2",

t

2
+ ", t+ "

◆

, (d, e, f)

◆

.

Remember that d  t
3 , e 

t
2 , and f  t. So,

9WA (PA, p
0
B) = 6 + s

✓

1� 3

2
t� 2"� d

◆

+ s

✓

1� 4

3
t� 2"� e

◆

+ s

✓

1� 5

6
t� 2"� f

◆

.

From 6
11  t < 18

31 and 0 < " < 1
2

�

1� 31
18t
�

, we can show that

d � 1� 3

2
t� 2" ) e  t� d

2
 5

4
t+ "� 1

2
< 1� 4

3
t� 2",

e � 1� 4

3
t� 2" ) f  t� e  7

3
t� 1 + 2" < 1� 5

6
t� 2",

and f � 1� 5

6
t� 2" ) d  t� 2f  8

3
t� 2 + 4" < 1� 3

2
t� 2".

Hence, at least 2 terms on the right must be 1. So WA(PA, p
0
B) � 8

9 for all pure strategies p0B.
To conclude, player A cannot increase payo↵ above 8

9 by changing strategy, and player B
can also not increase payo↵ above 1

9 by changing strategy. So PA, PB form a Nash equilibrium
and the equilibrium payo↵ W3(t) =

8
9 . ⌅

Theorem 5.3. When 3
5 < t < 30

47 , take

PA =

⇢✓✓

30� 22t

75
,
15� 11t

25
,
11t

15

◆

,
1

2

◆

,

✓✓

2t

15
,
13t

30
, 1� 17t

30

◆

,
1

2

◆�

and

PB =

⇢✓✓

t

3
,
t

3
,
t

3

◆

,
1

2

◆

,

✓

(0, 0, t) ,
1

2

◆�

.

Then PA and PB form a Nash equilibrium and W3(t) =
5
6 .

Proof. Let’s begin with checking that the strategies distributed among the three battlefields
are non-decreasing. First, let’s check player A’s first strategy. x1

A is obviously smaller than
x2
A (xj

i means the level of force player i distributes on battlefield j):

30� 22t

75
 30� 22t

75
· 3
2
=

15� 11t

25
.

Since t > 3
5 and 3

5 > 45
88 , we must have 5 < 88t. Rearrange and we would get

15� 11t

25
<

11t

15
.

Now let’s check player A’s second strategy. Obviously, x1
A
0 is smaller than x2

A
0:

2t

15
<

13t

30
.
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Furthermore, since t < 1, we can rearrange and obtain

13t

30
< 1� 17t

30
.

Hence, PA is legitimate. And clearly PB is legitimate.
If player A plays the pure strategy p0A = (a, b, 1� a� b). Then,

6WA(P
0
A, PB) = 3WA

✓

(a, b, 1� a� b),

✓

t

3
,
t

3
,
t

3

◆◆

+ 3WA ((a, b, 1� a� b), (0, 0, t))

= s

✓

a� t

3

◆

+ s

✓

b� t

3

◆

+ s

✓

1� a� b� t

3

◆

+ s (a� 0) + s (b� 0) + s (1� a� b� t) .

For WA(p0A, PB) to be greater than 5
6 , none of the six terms on the right can be 0. Hence, we

obtain the following inequalities:

a � t
3 a � 0

b � t
3 b � 0

1� a� b � t
3 1� a� b � t.

Add together a � t
3 , b �

t
3 , 1� a� b � t, and we get

1 � 5

3
· t.

Hence, t � 3
5 , contradicting our hypothesis on t. Therefore, we must have WA(p0A, PB)  5

6
given all pure strategy p0A.
If player B plays the pure strategy p0B = (c, d, t� c� d), then,

6WA (PA, p
0
B) = 3WA

✓✓

30� 22t

75
,
15� 11t

25
,
11t

15

◆

, (c, d, t� c� d)

◆

+ 3WA

✓✓

2t

15
,
13t

30
, 1� 17t

30

◆

, (c, d, t� c� d)

◆

= s

✓

30� 22t

75
� c

◆

+ s

✓

15� 11t

25
� d

◆

+ s

✓

11t

15
� t+ c+ d

◆

+ s

✓

2t

15
� c

◆

+ s

✓

13t

30
� d

◆

+ s

✓

1� 17t

30
� t+ c+ d

◆

.

Rearrange t < 30
47 and we get

30� 22t

75
>

t

3
� c.

Rearrange t < 30
47 and we also get

15� 11t

25
>

t

2
� d.

Similarly, rearrange t < 30
47 and we get

1� 17t

30
> t � t� c� d.



THE ASYMMETRIC COLONEL BLOTTO GAME 24

Hence,

6WA (PA, p
0
B) = 3 + s

✓

� 4t

15
+ c+ d

◆

+ s

✓

2t

15
� c

◆

+ s

✓

13t

30
� d

◆

• If c < 2t
15 ,

– and if d � 13t
15 , then c+ d > 4t

15 . So

6WA (PA, p
0
B) = 3 + s

✓

� 4t

15
+ c+ d

◆

+ s

✓

2t

15
� c

◆

+ s

✓

13t

30
� d

◆

� 3 + 1 + 1 + 0

= 5.

– and if d < 13t
15 , then

6WA (PA, p
0
B) = 3 + s

✓

� 4t

15
+ c+ d

◆

+ s

✓

2t

15
� c

◆

+ s

✓

13t

30
� d

◆

� 3 + 0 + 1 + 1

= 5.

• If c = 2t
15 , then, d  t�c

2 = 13t
30 , and c+ d � 2c = 4t

15 .
– If d = 13t

30 , then t� c� d = 13t
30 . So

6WA (PA, p
0
B) = 3 + s

✓

� 4t

15
+ c+ d

◆

+ s

✓

2t

15
� c

◆

+ s

✓

13t

30
� d

◆

= 3 + 1 +
1

2
+

1

2
= 5.

– If d < 13t
30 , then

6WA (PA, p
0
B) = 3 + s

✓

� 4t

15
+ c+ d

◆

+ s

✓

2t

15
� c

◆

+ s

✓

13t

30
� d

◆

� 3 +
1

2
+

1

2
+ 1

= 5.

• If c > 2t
15 , then, c+ d � 2c > 4t

15 , so

6WA (PA, p
0
B) = 3 + s

✓

� 4t

15
+ c+ d

◆

+ s

✓

2t

15
� c

◆

+ s

✓

13t

30
� d

◆

� 3 + 1 + 1 + 0

= 5.

Hence, WA(PA, p
0
B) � 5

6 for any pure strategy p0B.
To conclude, player A cannot increase payo↵ above 5

6 by changing strategy, and player B
can also not increase payo↵ above 1

6 by changing strategy. So PA, PB form a Nash equilibrium
and the equilibrium payo↵, W3(t), is

5
6 . ⌅
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Remark. To guarantee a Nash equilibrium, player A can play any strategy

PA =

⇢✓

(a, b, c) ,
1

2

◆

,

✓

(d, e, f) ,
1

2

◆�

satisfying
a+ b+ c = 1, a  b  c, d  e  f, d+ e+ f = 1,

a >
t

3
, b >

t

2
, f > t,

and 2d+ c � t, d+ 2e � t.

The strategy
���

30�22t
75 , 15�11t

25 , 11t15

�

, 12
�

,
��

2t
15 ,

13t
30 , 1�

17t
30

�

, 12
� 

is only one of the possible ones.

Theorem 5.4. W3(
2
3) 

4
5 .

Proof. Let B play the strategy

PB =

⇢✓✓

0,
1

16
,
29

48

◆

,
1

5

◆

,

✓✓

0, 0,
2

3

◆

,
1

5

◆

,

✓✓

1

16
,
1

16
,
13

24

◆

,
1

5

◆

,

✓✓

1

8
,
13

48
,
13

48

◆

,
1

5

◆

,

✓✓

5

24
,
11

48
,
11

48

◆

,
1

5

◆�

and let A play any pure strategy p, then we verified using a computer that the payo↵ for A,
WA (p, PB), is at most 4

5 . ⌅
Theorem 5.5. W3(

5
6) �

2
3 .

Proof. Let A play the strategy PA =
�

1
6 ,

1
3 ,

1
2

�

, and let B play any pure strategy p, then we
verified using a computer that the payo↵ for A, WA (PA, p), is at least

2
3 . ⌅

Note that in this case where t 6= 1 and in the general case for n = 2 (Section 4), there are
Nash equilibrium strategies with atoms. This is behavior very di↵erent from what we saw
in Section 3, and also very di↵erent from what we proved about Nash equilibria of the game
ACB(1, 1, n) where n � 3 in Theorem 3.5.

6. Open problems

Still much remains unknown about the Asymmetric Colonel Blotto game in the general
case. For example, what would a Nash equilibrium for the game ACB(1, 1, 4) look like? Or
a Nash equilibrium for the game ACB(1, 1, n) where n � 5? The methods used to prove the
uniqueness of the marginal distributions of the game ACB(1, 1, 3) in Section 3 cannot be used
here since these methods only prove the uniqueness of the marginal distributions given a Nash
equilibrium strategy, so these methods do not work when we cannot find a Nash equilibrium
in the first place. It is hard to find a Nash equilibrium for the game ACB(1, 1, 4), although
one can be approximated by means of computer simulation. What’s more, we can show that
the marginal distributions of Nash equilibrium strategies cannot be uniform. This makes it
di�cult to guess the correct Nash equilibrium strategy.

Another problem is to determine how the unique equilibrium payo↵ varies in the game
ACB(1, t, n) as t varies continuously in the general case. As we have shown in Section 4,
W2(t) is locally constant and discontinuous as a function of t. This is quite a surprising result,
as it indicates that there are phase changes in the game ACB(1, t, 2) as t changes. Our partial
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results in Section 5 also indicate that W3(t) is a discontinuous function (Theorem 5.1 and
Theorem 5.2). Computer simulation of discrete cases also indicates that sometimes it is not
di↵erentiable where the function itself is continuous. Maybe the phase changes in this case
correspond to discontinuous jumps in the equilibrium strategies. This can be illustrated by
the drastic di↵erence between the equilibrium strategies in Section 5 and those in Section 3.
Is it possible to find all the critical values of t where these phase changes occur?

Yet another fundamental question left unanswered is the existence of Nash equilibria for
the game ACB(XA, XB, n) in the general case. We have discussed Nash equilibria in special
cases, but we have not given a proof that guarantees the existence of Nash equilibria in the
general case.
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[Skl59] M. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris,

8:229–231, 1959.

[SS83] B. Schweizer and A. Sklar. Probabilistic metric spaces. North-Holland Series in Probability and

Applied Mathematics. North-Holland Publishing Co., New York, 1983.




