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Abstract 

The new health care reform in China aims to replace the old payment system that is 

based on service items with a new Diagnosis Related Groups (DRGs) payment system. 

The DRGs payment system categorizes different diseases and set a single price for 

each group of disease. This payment system is expected to overcome flaws in the old 

one such as hospital overcharging patients with unnecessary items, and increase the 

allocation efficiency of medical resources. In this paper we aim to answer two 

fundamental questions while establishing DRGs payment system: how to set prices, 

and how to coordinate prices and government subsidies to optimize the welfare of 

both patients and hospitals.  

To answer the first question, we first take the disease Cerebral Infraction (CI) as 

an example, and estimate the distribution of 306 CI patients’ medical costs with 

Gaussian Mixture Model. Then, based on the estimated distribution, we propose two 

pricing methods and compare them in terms of advantages and disadvantages, 

offering suggestions to hospitals. Last, we utilize Hierarchical Multinomial Logistic 

Regression to analyze factors that potentially influence the medical cost. 

To answer the second question, we construct a model for individual patients 

based on Lundberg-Cramer Ruin Theory, and discuss the ruin probability caused by 

high medical fees for patients with different income levels. We also construct a second 

model to illustrate the relation among medical prices, government subsidies and 

hospital income. Finally, we combine the welfare of individual patients and hospital to 

obtain a utility function, using which we could optimize medical prices and 

government subsidies. In the end, based on the analysis and optimization, we offer our 

suggestions.  

Keywords:  

Diagnosis Related Groups；Gaussian Mixture Model；Hierarchical Multinomial 

Logistic Regression Model；Lundberg-Cramer Ruin Model；Monte Carlo Simulation 
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1. Background and problem restatement 

 

China has established a basic health care system and has been extending the coverage 

of basic health insurance. Until 2015, over 1.3 billion people had been covered by 

health insurance, raising the coverage rate to 96.5 percent. Along with the constant 

growth of coverage and rising level of insurance, the health insurance system also 

faces emerging problems such as unreasonable growth of medical expenses and 

increased pressure on maintaining the insurance funds. In 2015, national health care 

expenses had gone up to 4.05 trillion Chinese yuan, and medical expenses per capita 

had reached 2952 Chinese yuan [1]. The unreasonable growth of healthcare expenses 

offset part of government spending in healthcare, and increased the burdens of 

patients. Hence, determining the adequate health care payment system is essential to 

guarantee the effective usage of healthcare resources, controlling the growth of 

medical costs, and lessening the economical burdens of patients. 

 

The existing payment system in China is based on separate items during the 

medical treatment. Each item is separately priced and patients are charged when they 

are provided with the service. Although this payment mode is easy to operate, and the 

relation between patients, healthcare providers and health insurance funds is relatively 

simple, the price of each item could not be accurately determined. Furthermore, this 

payment mode stimulates the hospital to include many unnecessary items during the 

treatment to increase income, which ultimately leads to uncontrolled growth of 

healthcare costs.  

 

To amend the flaws of the old payment mode based on separate items, the new 

healthcare reform in China aims to introduce Diagnosis Related Groups (DRGs). This 

new payment mode categorizes patients into different groups (sometimes more than 

five hundreds of them) according to their respective diagnosis. Then different patients 

would be charged by different standards, mostly preset payments, according to their 

related DRGs. In the meanwhile, hospitals would be subsidized by the authority with 

respect to their usage of medical resources for patients in different DRGs. In this way, 

payment mode based on DRGs could maximize the allocation efficiency of medical 

resources while significantly control the unreasonable growth of healthcare costs. 

China has begun to experiment this new payment mode in several provinces.  

 

However, during the implementation of DRGs, several questions need immediate 

attention. For instance, we need a quantitative method to set the price for each group 

of patients, considering factors such as reasonable healthcare expenses, incomes of 

hospitals, and means of government subsidies. In this paper, we aim to study hospital 

pricings and government subsidies of DRGs. Specifically, we address the following 

two questions: 

1. How to set prices in the DRGs payment mode? 

2. How to coordinate prices and governmental subsidies to maximize the welfare 
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of both hospitals and patients? 

 

2. Assumptions 

 

1. Due to limited data, we select Cerebral Infractions (CI) patients as an example of 

a certain DRG, and utilize the data of total medical costs of 306 CI patients 

discharged from a hospital in 2017 as the training set. 

2. For simplicity, assume the incidence rate of disease is constant. 

3. Only the direct expenses and costs during the treatment are accounted for. We do 

not consider other indirect income or expenses of both hospitals and patients. 

4. The government subsidies go either to the hospitals or to the patients. 

 

3. Medical costs of cerebral infraction patients and pricing methods 

 

In this section we take CI patients as an example, and utilize the data of total medical 

costs of 306 CI patients in 2017 as the training set. We first estimate the distribution 

of medical costs of CI. Then, based on the distribution model, we propose two pricing 

methods for hospitals, and present a comparison between the two methods. Last, we 

apply Hierarchical Multinomial Logistic Regression to analyze factors that potentially 

lead to high medical costs.  

 

3.1 Estimation of the distribution of CI medical costs based on Gaussian Mixture 

Model 

 

The medical costs in CI treatment could be influenced or be related to many factors, 

such as surgeries, medicine, and examinations during the treatment. In this part we 

estimate the distribution of the medical costs in the training set. 

 

The training set includes the total medical costs of 306 CI patients in a public 

hospital in 2017. The costs vary from 1227 Chinese yuan to 100271 Chinese yuan, 

with an average cost of 19119.5 yuan. A histogram of the data is shown below:  
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Figure 3.1: Histogram of the total costs of 306 CI patients 

 

Let the cost of a CI patient be a random variable X. Observing that the histogram 

includes multiple peak values, we choose to fit its distribution with Gaussian Mixture 

Model (GMM). Thus the probability density function of X is: 

1
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where g is the order of the model, 0j 
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The expectation and variance of a Gaussian Mixture Model are: 

Histogram of CI patients’ medical costs 
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For a GMM with given order g, we need to estimate the following parameters: 

mixing coefficients  1, , g    and the parameter , )j j （ for each Gaussian 

distribution. We use the Expectation Maximization Algorithm to estimate the 

parameters, which maximizes the likelihood function [2, 3]: 

1 1 1

11

( , , , , , , , , ) ( ; , )
gn

g g g j i j j

ji

L x         


 
  

 
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We could also apply Akaike Information Criterion (AIC) to determine the order g: 

2log( ( )) 2 dAIC L k                   (3.5) 

where ( )L   is the likelihood function of the model, dk  is the number of unknown 

parameters. Let =1,2,3,4g , and apply EM algorithm to estimate parameters for each 

g. Then compare the AIC of each model, and select the model with the least AIC. 

Table 3.1 

Number of Distributions 1 2 3 

AIC 6820 6471 6446 

We select the model with g=3. When g=3, we estimate the parameters to be: 

1 2 3

1 2 3

1 2 3

= 0.7185, =0.2151, 0.0664

= 12264.8, =25354.94, 73117.98

=10046, =9658, 4256.

  

  

  







，

， 
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The estimated expectation and variance of X are: 

8

=19121

( ) 3.2951 10

EX

Var X  
 

Using GMM with order 3 to fit the distribution of medical costs of CI patients, we 

obtain the graph of the probability density function:  

 

 

Figure 3.2: probability density function of cost of CI patients 

3.2 Pricing methods in DRGs system for CI patients 

Without government subsidies, the hospital must set the price for each group of 

patients such that the risk of treatment cost exceeding the set payment (the amount 

patients pay) is lowered. Based on the distribution model established in section 3.1, 

we propose two pricing methods and briefly discuss their advantages and 

disadvantages. 

GMM fitting of the distribution of CI patients’ medical costs 
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3.2.1 Pricing method I 

Let the actual medical cost of a single patient be random variable X. We set the price 

at K, so that the probability of X exceeding K is less than p: 

( )P X K p   

To determine the lower limit of K, we utilize Monte-Carlo method. First we generate 

10000 random numbers based on the PDF of GMM we established in section 3.1. 

Next, we arrange the generated numbers in decreasing order. For given p, we select 

the 10000 p -th to be the estimated value of K. Repeating the aforementioned 

procedures and take the average to obtain a more accurate lower limit of K. We let 

p=0.2, 0.15, 0.1, 0.05 and 0.01. The result is shown as 

Table 3.2 

p 0.2 0.15 0.1 0.05 0.01 

K 23082 27978 35611 67592 82962 

 

3.2.2 Pricing method II 

Consider N patients in a period of time, with actual costs denoted as random variables 

1 2 NX X X， ， ， , which are independent and identically distributed. Let the price be 

set at K, so that the probability of the total amount of medical costs exceeding the 

total payment received is less than p: 

1

N

i

i

P X NK p


 
  

 
                         (3.6) 



10 
 

As 1 2 NX X X， ， ，  are independent and identically distributed, their expectation 

and variance both exist. If the number of patients, N, is sufficiently large, we could 

apply central limit theorem. It follows that 1

( )

var( )

N

i

i

X NE X

N X




 approximately obeys 

standard normal distribution. Thus 

1

1

( )
( ))

var( ) var( )

N

iN
i

i

i

X NE X
N K E X

P X NK P p
N X X





 
    

      
   

  




(
       （3.7） 

Solving for K yields 

1var( )
( )+ (1 )

X
K E X p

N

                        （3.8） 

Where 1  stands for the inverse function of 

2

2
1

( )
2

t
x

x e dt





   , the cumulative 

distribution function of standard normal distribution. 

 

With the help of MATLAB, we calculate the lower limit of K for different N and 

p as the following: 

Table 3.3 

 0.2 0.15 0.1 0.05 0.01 

50 21282 21782 22411 23344 25093 

500 19804 19963 20162 204546 21010 

5000 19337 19387 19450 19543 19718 

10000 19274 19309 19354 19420 19543 

P 
N 
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It could be seen that as N increases, K decreases. As p decreases, K increases. 

 

3.2.3 Comparison of the two pricing methods 

The two pricing methods are both based on the GMM established in section 3.1 that 

describes the distribution of actual medical costs of patients.  

 

For the first method, we only consider the payment and cost of a single patient, 

and control the risk. It is thus safer for the hospital, as this method take patients with 

extremely high costs into account. However, as the distribution of medical cost is 

skewed to the left, meaning that most patients have a lower cost than average cost, 

this pricing method harms the welfare of low-cost patients, who take up the majority 

of CI patients. 

 

For the second method, however, we consider the case of N patients, and their 

total amount of costs and payments. This method significantly lowers the set price as 

the number of patient increases, and seems to be friendlier to the welfare of majority 

of patients. However, the hospital needs to bear greater risks due to some high-cost 

patients. Additionally, when N is small, central limit theorem is no longer accurate, 

and so is our second method.  

 

3.3 Factor analysis of costs of CI patients based on Hierarchical Multinomial 

Logistic Regression Model 
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In this part we apply Hierarchical Multinomial Logistic Regression Model to analyze 

factors affecting the costs of CI patients, based on the data of 306 CI patients. We 

hope to estimate the cost range based on the information of the patient, and thus 

provide suggestions to public hospitals. 

 

We first divide patients into three groups according to their costs: low-cost 

(0~15000 Chinese yuan), mid-cost (15001~45000 yuan), and high-cost (more than 

45000 yuan). Then, we consider five factors: gender, age, surgery, length of stay, and 

infection. We aim to study the influence of these five factors on the medical costs of 

CI patients.  

 

Thus let the response variable be the cost group, and the five independent 

variables areGender , Age , Surgery , Length  and Infection . 0Gender  for female, 

1Gender  for male. 1Surgery   for surgery performed, 0 for no surgery. 

1Infection   for infection having occurred, 0 for no infection. We construct the 

following regression model: 

10 11 12 13 14 15

( 15000)
ln

( 15000)

P X
Age Gender Surgery Length Infection

P X
     

 
      

 

20 21 22 23 24 25

(15001 45000)
ln

( 45000)

P X
Age Gender Surgery Length Infection

P X
     

  
      

 

                                                            （3.11） 

where , 1,2, 0,1,2, ,5,ij i j    stand for the intercepts and regression coefficients 
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in the model. Based on our patient data, we utilize MATLAB to conduct the 

regression. We obtained the estimation of intercepts and regression coefficients as: 

10 20

11 21

12 22

13 23

14 24

15 25

2.9452    1.7298

-0.0028    0.0279

-0.5437    0.0109

-102.27    -3.8236

-0.1440   -0.0786

-2.2708   -1.5902

B

 

 

 

 

 

 

 
   
   
   
   
    
   
   
       
 
 

， 

After running the significance test, we further obtain the P-value 

0.0014     0.3499

0.8095     0.2151

0.0780     0.9862

1.0000     0.0028

0.0000     0.0010

0.0383     0.0638

p

 
 
 
 

  
 
 
  
 

 

For P-values 0.0000, 0.0010 and 0.0383, 0.0638, we conclude that length of stay 

and infection significantly affect the medical costs of CI patients. P-values 0.8095, 

0.2151 tell that age of patients does not significantly affect medical costs. In fact, 

most CI patients are above fifty years old. P-values 0.0780, 0.9862 show that gender 

does affect the ratio between low-cost group and mid-to-high-cost group. The 

coefficient -0.5437 further tells that a patient is -0.5437e times more likely to fall into a 

mid-cost or high-cost group if the gender changes from female to male. However, 

gender does not significantly affect the ratio between mid-cost and high-cost groups. 

P-value 0.0028 shows that surgeries significantly affect the ratio between mid-cost 

and high-cost groups. 
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Taking a step further, we eliminate the insignificant variable Age , and establish a 

new Logistic regression: 

10 12 13 14 15

( 15000)
ln surgery Infection

( 15000)

P X
Gender length

P X
    

 
     

 
 

20 22 23 24 25

(15001 45000)
ln surgery Infection

( 45000)

P X
Gender length

P X
    

  
     

 

                                                     (3.12) 

Conduct the regression by calculating the estimation of coefficients and the P-value: 

10 20

12 22

13 23

14 24

15 25

2.7447    3.8314

-0.5385   -0.1907

 -102.27   -3.8441

-0.1445   -0.0758

-2.2706   -1.4775

B

 

 

 

 

 

 
 

  
  
  
   
  
  
 

   
 
 

，    

0.0000    0.0000

0.0800    0.7527

1.0000    0.0023

0.0000    0.0011

0.0383   0.0856

p

 
 
 
 
 
 
 
 

 

The regression shows that length of stay and infections significantly affect the cost 

groups, and gender has a significant influence on the ratio of low-cost groups. Thus 

male patients have a higher probability of falling into the mid-cost or high-cost 

category. Surgeries have a more significant effect when distinguishing mid-cost and 

high-cost patients. Specifically, the ratio between mid-cost and high-cost is changed 

by -3.8441e  if surgeries are performed. 

 

3.4 Summary 

We first determine the distribution of medical costs of CI. Then, based on the 

distribution model, we propose two pricing methods for hospitals, and present a 

comparison between the two methods. Last, we apply Hierarchical Multinomial 

Logistic Regression to analyze five factors’ respective influence on the medical cost, 

providing a theoretical approach for hospitals to predict the patient’s cost. Again, due 
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to limited data, we could only examine the instance of cerebral infarction patients. 

However, the same methods could be utilized when analyzing other diseases. 

 

4. The model for government subsidies based on DRGs payment 

system 

In this section we take government subsidies into consideration. As the role of 

government spending is crucial to the existing healthcare system, we must study the 

proper way of subsidizing hospitals and patients under the DRGs payment system. We 

would first establish a model for individual patients in the light of Lundberg-Cramer 

Ruin Theory. Then we would discuss the influence of government subsidies on 

hospital income. Finally, we combine the welfare for patients and the hospital, and 

define a utility function that would describe the combined welfare. We would then 

maximize the utility function to determine the optimal government subsidies and 

hospital pricing. 

 

4.1 A brief introduction to Lundberg-Cramer Ruin theory 

The Lundberg-Cramer Ruin theory [2, 3] is a common model in stochastic process. It 

describes the following situation: 

An insurance company starts with some amount of capital and its income in unit time 

is constant. However, the insurance company has to pay for the insurance claims from 

time to time. We are interested in the probability that the insurance company 

ultimately goes bankrupt. We express the situation above in mathematical language:  

u : The initial capital 
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c : The income of insurance company in unit time 

kX : The payment to the n-th insurance claim 

( )N t :The total amount of insurance claims at time t, a Poisson Process with 

parameter   

Thus the balance of the insurance company at time t ( )U t : 

( )

1

( )
N t

k

k

U t u ct X


                     （4.1） 

For this model, we define a function ( )u  that describes the probability that the 

insurance company ultimately goes bankrupt. 

Let  inf : ( ) 0T t U t   be the first time the insurance company goes bankrupt, then 

 ( ) 0 (0) , 0u P T U u u      

which is the ruin probability. 

 

For the model above, we have the following theorems: 

1. ( ) , 0Ruu e u                                              (4.2) 

2. There exists a positive constant C, such that ( ) ,Ruu Ce u      (4.3) 

where R is the adjustment coefficients, and satisfies  

0
(1 ( )) 1Rxe F x dx

A

 

                           (4.4) 

 

For proofs of the two theorems above, see reference [4]. 

 

4.2 The model for government subsidies and individual patients 

Based on the model of insurance company presented in section 4.1, we construct a 



17 
 

similar model for patients encountering serious diseases. For a single kind of disease, 

we propose the following: 

a : The initial capital in the healthcare fund 

I : The patient’s income in unit time, which we assume is constant 

( )N t : The number of times in hospital till time t, a Poisson Process with parameter 

  

K : The set price for each treatment, which we assume is constant for a single disease 

under DRGs payment system 

 : The government subsidiary coefficient, i.e. the fraction of medical fees paid by the 

government 

Thus, the balance of individual healthcare fund ( )V t  at time t is [5] 

( )

1

( ) (1 )
N t

i

V t a It K


                 (4.5) 

Similarly, let  inf : ( ) 0T t V t  , we consider the function ( , )f K   that describes 

the probability of failing to pay the medical fees in unit time: 

( , ) { 1}f K P T   , ( 0,0 1)K             (4.6) 

In other words, we use ( , )f K   to represent the welfare of individual patients as it 

stands for the probability that the patient goes ‘bankrupt’ because of serious illness in 

unit time. We assume that unit time is one year. 

 

We utilize MATLAB to simulate this process [6], and in this way we are able to 

calculate ( , )f K   with given ( , )K  . We apply the following algorithm: 

1.  Initialize the value of a , I , ( )N t , K ,   



18 
 

2. Divide the unit time equally into many small sections 1, , nt t  , thus the 

increment of Poisson Process ( )N t  is independent and obeys Poisson 

distribution with parameter t . 

3.  We simulate a sample path for ( )N t  according to the division. 

4.  Using the simulated sample path, and the initial values of other parameters, we 

could now calculate ( )V t  for 1, , nt t  . And then we could examine whether 

( ) 0V t   occurs in unit time. 

5.  repeat step 3 and 4, and use the frequency of ruin as the approximation of ruin 

probability in unit time. 

 

The average resident hospitalization rate in the province where the CI patient data 

is taken from is 0.167, so we let =0.167 . Additionally, we consider the income level 

of residents in the province. We consider the quintiles of disposable income in the 

province. 

Table 4.1 

Quintiles Low Medium-low  Medium Medium-high High 

Income/yuan 5221.2 11894.0 19320.1 29437.6 54543.5 
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Figure 4.1: Low income, 5221.2, 0.5I a I   

 

Figure 4.2: Medium-low income, 11894.0, 0.5I a I   

Medical price K Government Subsidiary Coefficient   

Ruin Probability f 

Ruin Probability f 

Medical price K Government Subsidiary Coefficient   
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Figure 4.3: Medium income, 19320, 0.5I a I   

 

 

Figure 4.4: Medium-high income, 29437, 0.5I a I   

Ruin Probability f 

Medical price K 

Medical price K 

Government Subsidiary Coefficient   

Government Subsidiary Coefficient   

Ruin Probability f 
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Figure 4.5: High income, 54543, 0.5I a I   

 

From the graphs of ( , )f K   of different income groups, we could make a few 

conclusions.  

First, as K  increases, ( , )f K   increases. As   increases, ( , )f K   

decreases, i.e. 0
f

K





, 0

f







. Thus, to increase patient’s welfare, the set price K  

must be lowered while the subsidiary coefficient   must be increased. Second, the 

income level affects the ruin probability ( , )f K   significantly. Low income patients 

would be ten to twenty times more fragile when encountering serious illness. 

Compared to medium income patients, they are still more susceptible to ‘bankruptcy’ 

for large range of ( , )K  . Thus to improve the situation, besides raising the income 

level of residents, the government must also seek to further expand the coverage of 

health insurance to increase healthcare fund for low income patients. 

 

Ruin Probability f 

Medical price K Government Subsidiary Coefficient   
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4.3 The model for government subsidies and hospital income 

 

In this part we discuss the relation between government subsidies and hospital 

income. Public hospitals are non-for-profit, thus they would need government 

funding, aside from medical fees, to support its operation and development. We would 

need to determine the proper amount of government subsidies that would maintain 

hospital income in reasonable range. We first construct a theoretical model. 

 

In unit time, assume that N  patients received medical treatment, each with 

actual medical cost of 1 2, , NX X X . Based on our conclusion in section 3.1, 

1 2, ,..., NX X X  are independent and identically distributed, and they obey the GMM 

model 

3

1

( ) ( ; , ),j j j

j

p x x   


  

with parameters 

1 2 3

1 2 3

1 2 3

= 0.7185, =0.2151, 0.0664

= 12264.8, =25354.94, 73117.98

=10046, =9658, 4256.

  

  

  







，

，. 

According to DRGs payment system, the price each patient pays is constant. Assume 

the price is set at K . We further assume that the total government subsidies for 

healthcare are directly proportional to the number of patients in the region. For each 

patient, the government provides an additional funding of k . We also consider the 

government subsidiary coefficient   that we introduced in section 4.2. Because the 

government subsides go either to the patient or to the hospital. With K  subsidized 



23 
 

to each patient, the hospital receives a subsidy of ( )k K  per patient. We also 

include a coefficient m  to describe the ratio between the price that patients pay (in 

our data set, without DRGs) and the real medical cost of hospital.  

With the assumptions and variables above, we obtain the balance of hospital in 

unit time 

1

( )
N

i

i

NK N k K m X


                       (4.7) 

Take the expectation of the expression, we obtain: 

1

1
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  (4.8) 

We let a function ( , )g K   describe the expected surplus rate of a hospital 

[(1 ) ]
( , )

(1 )

EN K k mEX
g K

mENEX

K k mEX

mEX






  


  


              (4.9) 

Then if ( , ) 0g K   , the hospital is suffering economical losses and requires more 

proportion of total government subsidies. ( , )g K   must maintain in a certain range 

to ensure regular operation of the hospital. 

 

We estimate 5464k  by the ratio between the total government spending in 

healthcare province-wide and the total number of hospitalized patients in the province 

in 2016. Then we estimate that 0.928m   by the ratio between the total medical 
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income and the expenditure of public hospitals in the province. 

 

We graph ( , )g K   as the following: 

 

Figure 4.6 

We could also conclude from the above graph (or the definition of function ( , )g K  ) 

that 0
g

K





, 0

g







. Thus the authorities could adjust ,K   to keep the profit rate 

in reasonable range, ensuring the operation and development of the hospital.  

 

4.4 Combined consideration of hospital and patient benefits 

To consider the welfare for both hospital and individual patient and maximize the 

total benefit, we consider the combination of function ( , )f K   and ( , )g K  . 

 

We first introduce utility function ( , )U K   to express the combined utility of 

Medical price K Government Subsidiary Coefficient   

Hospital Income g 
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hospital and individual patient. 

( , ) (1 ( , )) ( , )U K q f K g K            (4.10) 

1 ( , ))f K （  is the probability that the patient could afford the medical fees, thus 

describes individual patient’s utility. ( , )g K   is the expected profit rate for hospital, 

thus describes hospital’s utility.  

We adjust q , so that the difference between maximum and minimum value for 

1 ( , ))q f K （  and ( , )g K   is the same for the range (0,30000], [0,0.8]K   . 

We let 23.99 24q    to compare the functions on the same quantitative level. We 

use MATLAB to graph ( , )U K  : 

 

Figure 4.7 

Then we select ( , )K   of large ( , )U K   ( ( , ) 24.2U K   ), and apply polynomial 

curve fitting (degree 2) to study the relation between ,K  .  

Medical price K 

Government Subsidiary Coefficient   
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Figure 4.8 

We get  

239311 10819 16242K                    (4.11) 

Furthermore, we also aim to minimize the medical fees paid by each patient, 

(1 )K  . To minimize (1 )K  , we obatian that when 0.13, 18313K   , 

(1 )K   reaches a minimum of (1 ) 15932K   . This cost is about 3000 yuan less 

than the original average which is greater than 19000 yuan. Meanwhile, we calculate 

( , ) 0.2058 0g K     in this case, which means that hospitals are also benefitted.  

 

Hence, optimizing hospital pricing and government subsidies would maximize 

benefit for both hospital and patients, lessening the economical burdens of patients 

while increasing the income and development of public hospital. 

 

4.5 Summary 
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In this section we first introduce Lundberg-Cramer Ruin Theory, and construct a 

model for patients in a similar way. The two key variables are hospital pricing K  

and government subsidiary coefficient  . We first define a function ( , )f K  , which 

is the probability for patients to go bankrupt in unit time. Utilizing Monte-Carlo 

method we are able to determine the value of and plot the graph of ( , )f K   for 

patients with different income. We then construct a model for the hospital. We build 

another function ( , )g K   that describes the expected profit rate for hospitals. Lastly 

we combine the two functions, and introduce a utility function ( , )U K  , which is 

about 1 f  and g , combing the welfare of hospital and individual patients. To 

maximize total utility and minimize the cost burden for patients, we finally obtain 

optimized value for ,K  . 

 

5. Conclusions and suggestions 

1. DRGs payment system must be supported by scientific pricing and subsidiary 

method in order to function regularly. Meticulously planned hospital pricing would 

help lessen the burdens of patients and boost efficiency of medical resources. 

 

2. Pricing methods could be determined after the distribution of medical cost for 

individual patient is estimated. The policy makers must consider the economic risks 

of hospital and the cost of patients. They must consider many factors such as the 

largest risk the hospital could bear and the estimated number of patients. 

Additionally, influencing factors of medical costs could be analyzed to predict 
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medical costs more accurately. 

 

3. When determining the allocation of government subsidies, policy makers must 

consider the welfare of patients and hospitals, especially those with relatively low 

income who are more negatively affected by exorbitant medical costs. 

 

6. Model evaluation 

Strengths: 

1. We utilize a variety of mathematical models in an effort to answer the two 

questions we proposed in the beginning, and give viable suggestions for policies 

and healthcare reforms. 

 

2. We utilize MATLAB to plot many graphs presented in the paper. Graphs make the 

conclusions and results more lucid and easier to understand and interpret. 

 

Weakness: 

1. Due to limited data available, we only discuss one kind of disease. More diseases 

should be analyzed in the future, in order to fully implement DRGs payment 

system. 

 

2. We assume that the incidence rate of disease is constant. In reality, we should also 

analyze the change in incidence rate with respect to time, region, and other factors.  
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8. Appendix 

Data 

1.  Average disposable income for residents in the province: 32,020 yuan 

Yearly hospitalization rate: 0.167 

Provincial public hospital income: 187,710,750,000 yuan, expenditure: 

174,286,070,000 yuan, ratio m=0.928 (2015) 

Provincial government spending in healthcare: 71,531,560,000 yuan, number of 

hospitalized patients: 13,110,000 , government spending per capita k=5,456 yuan 

Data sources: Official website of provincial department of finance, and provincial 

commission of health and family planning, 2016 Chinese health statistical 

yearbook 

2. 306 Cerebral Infraction Patients’ medical costs in a public hospital (2017.6) 

No. Age Gender Surgery Infection Length of 

stay /d 

Cost/ yuan 

1 57 M No No 10 12285 

2 83 M No No 14 15069 
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3 77 M No No 15 27473 

4 76 M No No 9 12480 

5 71 M No No 12 8888 

… … … … … … … 

306 64 M No No 34 17010 

 

MATLAB Code 

Code 1 

Data1mean=mean(Data1);  

Data1var=var(Data1); 

Data1sort=sort(Data1) 

L = length(Data1); 

[counts,centers] = hist(Data1,100); 

figure(1) 

bar(centers,counts/L);    

C = 3; 

GMM = fitgmdist(Data1,C);  

Wei = GMM.ComponentProportion; 

Mu = GMM.mu; 

Sig1=sqrt(GMM.Sigma); 

Sig =GMM.Sigma; 

x = 0:10:110000; 

y = 0; 

for i = 1:C 

   tmp = exp(-0.5*(x-Mu(i)).^2/Sig(:,:,i)); 

   tmpy = tmp/sqrt(2*pi*Sig(:,:,i));  

   y = y + Wei(i)*tmpy; 

end 

 

figure(2) 

plot(x,y,'r'); 

 

 

SamNum = 10000; 

Samp = zeros(SamNum,1); 

kk = rand(SamNum,1); 

Ind = cell(3,1); 

TmpVal = 0; 

for i = 1:C 

    TmpVal = TmpVal + Wei(i); 

    Ind{i} = find(kk >= TmpVal - Wei(i) & kk < TmpVal); 



31 
 

    N = length(Ind{i}); 

    Samp(Ind{i}) = sqrt(Sig(:,:,i))*randn(N,1) + Mu(i); 

end 

 

[counts,centers] = hist(Samp,100);  

figure(3) 

bar(centers,counts/SamNum);   

 

SortSamp = sort(Samp);  

level = 0.99; 

PValue = SortSamp(fix(SamNum*level)); 

Code 2 

function [ K ] = prob( p ) 

 

 

pi=[0.7185,0.2151,0.0664]; 

mu=[12264.8,25355,73118]; 

sigma=[10046,9658,4256]; 

N=10000; 

E=sum(pi.*mu); 

Var=sum(pi.*(mu.*mu+sigma.*sigma))-E^2; 

K=E+sqrt(Var/N)*norminv(1-p,0,1) 

 

end 

Code 3 

X=ordinal(Cost,{'1' '2' '3'},[],[0 15000 45000 150000]);  

Factors1=[Age Gender Surgery Stay Infection]; 

[B1h,devh,stats1h]=mnrfit(Factors1, X,'model','hierarchical') 

Factors2=[Gender Surgery Stay Infection];  

[B2h,dev,stats2h]=mnrfit(Factors2, X,'Model','hierarchical') 

 

Code 4 

function [ P ] = Part2_1c( Rho, K ) 

limit   = 1; 

steps   = 250; %number of sub intervals 

times   = 1000; %simulation times 

lambda  = 0.1641; %frequency in unit time 

 

salary      = 32020; 

dt          = limit/steps; 

dSALARY     = salary/steps; 
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initial     = 0.5*salary; 

 

% initinlization 

Len     = length(K); 

P       =  zeros(Len,1); 

count   = zeros(Len,1); 

rep_K   = repmat(K,1,steps); 

rep_Rho = repmat(Rho,1,steps); 

Const_Incre = 0:dSALARY:steps*dSALARY;  

rep_Const_Incre = repmat(Const_Incre,Len,1); 

 

for i= 1:times %simulation cycle 

    prnd = poissrnd(lambda*dt,[1,steps]); 

    rep_prnd = repmat(prnd,Len,1); 

    dN = rep_prnd .* rep_K .* 

(1-rep_Rho);   %poissrnd(lambda*dt,[1,steps]) * K * (1-Rho); 

    cdN = [zeros(Len,1), cumsum(dN,2)]; 

 

    RESULT = initial + rep_Const_Incre - cdN; 

 

    for k = 1:Len 

        if find(RESULT(k,:) < 0) 

            count(k) = count(k)+1; 

        end 

    end 

end 

 

P = count/times; 

 

end 

 

x=0:0.02:0.8; Lx = length(x); 

y=1000:500:30000; Ly = length(y); 

[X,Y]=meshgrid(x,y); 

 

F = Part2_1c(X(:),Y(:)); 

F = reshape(F,Ly,Lx); 

 

%  

figure(1) 

surf(X,Y,F) 

shading interp 

colorbar; 
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figure(2) 

imagesc(F(end:-1:1,:)); 

hold on 

% axis([0 0.6 1000 30000]) 

 

Code 5 

function [ profit_percentage ] = Hospital(rho, K ) 

k=5464; 

m=0.928; 

EX=19121;  

 

profit_percentage=((1-rho)*K+k-m*EX)/(m*EX); % 

end 

 

m=0:0.02:0.8; 

n=1000:200:30000; 

[M,N]=meshgrid(m,n); 

F=zeros(length(n),length(m)); 

for i= 1:length(n) 

for j= 1:length(m) 

F(i,j)=Hospital(M(i,j),N(i,j)); 

end 

end  

surf(M,N,F) 

 

shading interp 

colorbar; 

 

Code 6（section 4.4） 

P=0; 

limit=1; 

steps=250; %number of sub intervals 

times=10000; %simulation times 

lambda=0.1637; %frequency in unit time 

 

count=0; 

salary=32000; 

dt=limit/steps; 

dSALARY=salary/steps; 

initial= 16000; 

Simu = poissrnd(lambda*dt,[times,steps]); 

Const_Incre = repmat(dSALARY:dSALARY:steps*dSALARY,times,1); 
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x=0:0.02:0.8; 

y=1000:200:30000; 

[X,Y]=meshgrid(x,y); 

F=zeros(length(y),length(x)); 

c1=zeros(1,1000); 

c2=zeros(1,1000); 

pointer=0; 

m=(Hospital(0,30000)-Hospital(0.8,1000))/0.07; 

for i =1 : length(y) 

    for j= 1:length(x) 

        count=0; 

        Rho= X(i,j); 

        K= Y(i,j); 

        Result=Simu.*(-1).*K.*(1-Rho)+Const_Incre+initial; 

        for k= 1: times 

            if find(Result(k,:)<0) 

                count= count+1; 

            end 

        end 

        P=count/times; 

        F(i,j)=m*(1-P)+Hospital(X(i,j),Y(i,j)); 

        if F(i,j)>24.2 

            pointer=pointer+1; 

            c1(pointer)=Rho; 

            c2(pointer)=K; 

        end 

    end 

end 

figure(1) 

surf(X,Y,F) 

shading interp 

colorbar; 

 

c1( pointer+1:1000 )=[]; 

c2( pointer+1:1000 )=[]; 

p=polyfit(c1,c2,2) 

 

x1 = linspace(0,1,101); 

f1 = polyval(p,x1); 

figure(2) 

plot(c1,c2,'o') 

hold on 

plot(x1,f1) 

[pks,locs]=findpeaks(-f1.*(1-x1)); 
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kmin=polyval(p,(locs-1)*0.01) 

Hospital((locs-1)*0.01,kmin) 

(locs-1)*0.01 

 




