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THE Lp MINKOWSKI PROBLEM FOR THE
ELECTROSTATIC p-CAPACITY

Du Zou∗ & Ge Xiong∗

Abstract

Existence and uniqueness of the solution to the Lp Minkowski
problem for the electrostatic p-capacity are proved when p > 1
and 1 < p < n. These results are nonlinear extensions of the very
recent solution to the Lp Minkowski problem for p-capacity when
p = 1 and 1 < p < n by Colesanti et al. and Akman et al., and
the classical solution to the Minkowski problem for electrostatic
capacity when p = 1 and p = 2 by Jerison.

1. Introduction

The setting for this article is the Euclidean n-space, Rn. A convex
body in Rn is a compact convex set with nonempty interior. The Brunn-
Minkowski theory of convex bodies, which was developed by Minkowski,
Aleksandrov, Fenchel, and many others, centers around the study of
geometric functionals of convex bodies and the differentials of these
functionals. Usually, the differentials of these functionals produce new
geometric measures. The theory depends heavily on analytic tools such
as the cosine transform on the unit sphere Sn−1 and Monge-Ampère
type equations.

A Minkowski problem is a characterization problem for a geometric
measure generated by convex bodies: It asks for necessary and suffi-
cient conditions in order that a given measure arises as the measure
generated by a convex body. The solution of a Minkowski problem, in
general, amounts to solving a degenerate fully nonlinear partial differ-
ential equation. The study of Minkowski problems has a long history
and strong influence on both the Brunn-Minkowski theory and fully
nonlinear partial differential equations, see [67].
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The classical Brunn-Minkowski theory begins with the variation of
volume functional.

1.1. Volume, surface area measure and the classical Minkowski
problem. Without doubt, the most fundamental geometric functional
in the Brunn-Minkowski theory is the volume functional. Via the vari-
ation of volume functional, it produces the most important geometric
measure: surface area measure.

Specifically, if K and L are convex bodies in Rn, then there exists
a finite Borel measure S(K, ·) on the unit sphere Sn−1 known as the
surface area measure of K, so that

(1.1)
dV (K + tL)

dt

∣∣∣∣
t=0+

=

∫
Sn−1

hL(ξ)dS(K, ξ),

where V is the n-dimensional volume (i.e., Lebesgue measure in Rn);
the convex body K + tL = {x + ty : x ∈ K, y ∈ L} is the Minkowski
sum of K and tL; hL : Sn−1 → R is the support function of L, defined
by hL(ξ) = max{ξ · x : x ∈ L}, with ξ · x denoting the standard inner
product of ξ and x in Rn.

Formula (1.1), called the Aleksandrov variational formula, suggests
that the surface area measure can be viewed as the differential of volume
functional. The surface area measure S(K, ·) can be defined directly, for
each Borel set ω ⊂ Sn−1, by

(1.2) S(K,ω) = Hn−1(g−1
K (ω)),

where Hn−1 is the (n − 1)-dimensional Hausdorff measure. Here, gK :
∂′K → Sn−1 is the Gauss map defined on ∂′K of those points of ∂K
that have a unique outer normal and is hence defined Hn−1-a.e. on ∂K.
The integral in (1.1), divided by the ambient dimension n, is called the
first mixed volume V1(K,L) of (K,L), i.e.,

V1(K,L) =
1

n

∫
Sn−1

hL(ξ)dS(K, ξ),

which is a generalization of the well-known volume formula

(1.3) V (K) =
1

n

∫
Sn−1

hK(ξ)dS(K, ξ).

The classical Minkowski problem, which characterizes the surface area
measure, is one of the cornerstones of the Brunn-Minkowski theory of
convex bodies. It reads: Given a finite Borel measure µ on Sn−1, what
are the necessary and sufficient conditions on µ so that µ is the sur-
face area measure S(K, ·) of a convex body K in Rn? More than a
century ago, Minkowski himself [62] solved this problem for the case
when the given measure is either discrete or has a continuous density.
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Aleksandrov [2], [3] and Fenchel-Jessen [22] independently solved the
problem in 1938 for arbitrary measures: If µ is not concentrated on
any closed hemisphere of Sn−1, then µ is the surface area measure
of a convex body if and only if its centroid is at the origin o, i.e.,∫
Sn−1 ξdµ(ξ) = o.

Since for strictly convex bodies with smooth boundaries, the density
of the surface area measure with respect to the spherical Lebesgue mea-
sure is just the reciprocal of the Gauss curvature, the classical Minkowski
problem in differential geometry is to characterize the Gauss curvature
of closed convex hypersurfaces. Analytically, the classical Minkowski
problem is equivalent to solving a degenerate Monge-Ampère equation.
Establishing the regularity of the solution to the Minkowski problem
is difficult and has led to a long series of highly influential works, see,
e.g., Lewy [43], Nirenberg [64], Cheng and Yau [15], Pogorelov [65],
Caffarelli [9, 10].

1.2. Lp surface area measures and the Lp Minkowski problem
for volume. The Lp Brunn-Minkowski theory is an extension of the
classical Brunn-Minkowski theory; see [23, 45, 46, 48–50, 52, 55–58,
73]. In the Lp theory, the Lp surface area measure introduced by Lutwak
[48] is one of the most fundamental notions.

For an index p ∈ R and a convex body K in Rn with the origin in its
interior, the Lp surface area measure Sp(K, ·) of K is a Borel measure
on Sn−1 defined, for each Borel set ω ⊂ Sn−1, by

Sp(K,ω) =

∫
x∈g−1

K (ω)

(x · gK(x))1−pdHn−1(x).

The measure Sp(K, ·) can also be defined directly, for each Borel set
ω ⊂ Sn−1, by

(1.4) Sp(K,ω) =

∫
ω

hK(ξ)1−pdS(K, ξ).

Note that S1(K, ·) is just the surface area measure S(K, ·). The
measure n−1S0(K, ·) is the cone-volume measure of K, which is the
only SL(n) invariant measure among all the Lp surface area measures.
In recent years, the cone-volume measure has been greatly investigated,
e.g., [5, 30, 46, 47, 63, 66, 69, 74]. The measure S2(K, ·) is called
the quadratic surface area measure of K, which was studied in [45]
and [53, 54, 60]. Applications of the Lp surface area measure to affine
isoperimetric inequalities were given in, e.g., [13, 51, 52, 57].

In 1962, Firey [23] introduced the Lp sum of convex bodies. Let
1 ≤ p <∞. If K and L are compact convex sets containing the origin,
their Lp sum K +p L is the compact convex set with support function



558 D. ZOU & G. XIONG

hK+pL =
(
hpK + hpL

)1/p
. See also, [23, 28, 48, 61, 78]. Clearly, K +1

L = K + L. For t > 0, the Lp scalar multiplication t ·p K is the set

t1/pK.
Using the Lp combination, Lutwak [48] established the Lp variational

formula for volume

(1.5)
dV (K+pt ·p L)

dt

∣∣∣∣
t=0+

=
1

p

∫
Sn−1

hL(ξ)pdSp(K, ξ),

where K is a convex body with the origin in its interior, and L is a
compact convex set containing the origin. Clearly, (1.5) reduces to (1.1)
when p = 1. Formula (1.5) suggests that the Lp surface area measure
can be viewed as the differential of volume functional of Lp combinations
of convex bodies.

Lutwak [48] initiated the following Lp Minkowski problem.

Lp Minkowski problem for volume. Suppose µ is a finite Borel
measure on Sn−1 and p ∈ R. What are the necessary and sufficient
conditions on µ so that µ is the Lp surface area measure Sp(K, ·) of a
convex body K in Rn?

The L1 Minkowski problem is just the classical Minkowski problem.
The L0 Minkowski problem, also known as the logarithmic Minkowski
problem, characterizes the cone-volume measure and is regarded as the
most important case. Andrews [4] proved Firey’s conjecture [24] that
convex surfaces moving by their Gauss curvature become spherical as
they contract to points. A major breakthrough was made by Böröczky,
Lutwak, Yang and Zhang [8], who established the sufficient and nec-
essary conditions for the existence of a solution to the even logarith-
mic Minkowski problem. The L−n Minkowski problem is the centro-
affine Minkowski problem. See Chou and Wang [16], and Zhu [71,
73].

By now, the Lp Minkowski problems for volume have been intensively
investigated and achieved great developments. See, e.g., [14, 16, 34,
39, 41, 44, 48, 50, 56, 68, 73]. Their solutions have been applied
to establish sharp affine isoperimetric inequalities, such as the affine
Moser-Trudinger and the affine Morrey-Sobolev inequalities, the affine
Lp Sobolev-Zhang inequality, etc. See, e.g., [7, 17, 35, 36, 55, 59, 70],
for more details.

1.3. p-capacitary measures and the Minkowski problem for p-
capacity. It is worth mentioning that the Minkowski problem for elec-
trostatic p-capacity is doubtless an extremely important variant among
Minkowski problems. For 1 < p < n, the electrostatic p-capacity of a



THE Lp MINKOWSKI PROBLEM FOR p-CAPACITY 559

compact set K in Rn is defined by

Cp(K) = inf


∫
Rn

|∇u|pdx : u ∈ C∞c (Rn) and u ≥ χK

 ,

where C∞c (Rn) denotes the set of functions from C∞(Rn) with compact
supports, and χK is the characteristic function of K. The quantity
C2(K) is the classical electrostatic (or Newtonian) capacity of K.

For convex bodies K and L, via the variation of capacity functional
C2(K), there appears the classical Hadamard variational formula

(1.6)
dC2(K + tL)

dt

∣∣∣∣
t=0+

=

∫
Sn−1

hL(ξ)dµ2(K, ξ)

and its special case, the Poincaré capacity formula

(1.7) C2(K) =
1

n− 2

∫
Sn−1

hK(ξ)dµ2(K, ξ).

Here, the new measure µ2(K, ·) is a finite Borel measure on Sn−1, called
the electrostatic capacitary measure of K. Formula (1.6) suggests that
the electrostatic capacitary measure can be viewed as the differential of
capacity functional.

In his celebrated article [40], Jerison pointed out the resemblance
between the Poincaré capacity formula (1.7) and the volume formula
(1.3) and also a resemblance between their variational formulas (1.6)
and (1.1). Therefore, he initiated to study the Minkowski problem for
electrostatic capacity: Given a finite Borel measure µ on Sn−1, what are
the necessary and sufficient conditions on µ so that µ is the electrostatic
capacitary measure µ2(K, ·) of a convex body K in Rn?

Jerison himself [40] solved, in full generality, the above Minkowski
problem. He proved that the necessary and sufficient conditions for
existence of a solution are unexpectedly identical to the corresponding
conditions in the classical Minkowski problem. The uniqueness part was
settled by Caffarelli, Jerison and Lieb [12]. The regularity part of the
proof depends on the ideas of Caffarelli [11] for regularity of solutions
to Monge-Ampère equation.

Jerison’s work inspired much subsequent research on this topic. In
the very recent article [20], Colesanti, Nyström, Salani, Xiao, Yang and
Zhang extended Jerison’s work to electrostatic p-capacity. Let K,L be
convex bodies in Rn and 1 < p < n. Colesanti et al. established the
Hadamard variational formula for p-capacity

(1.8)
dCp(K + tL)

dt

∣∣∣∣
t=0+

= (p− 1)

∫
Sn−1

hL(ξ)dµp(K, ξ)
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and therefore the Poincaré p-capacity formula

(1.9) Cp(K) =
p− 1

n− p

∫
Sn−1

hK(ξ)dµp(K, ξ).

Here, the new measure µp(K, ·) is a finite Borel measure on Sn−1, called
the electrostatic p-capacitary measure of K. Formula (1.8) suggests that
µp(K, ·) can be viewed as the differential of p-capacity functional.

Consequently, the Minkowski problem for p-capacity was posed [20]:
Given a finite Borel measure µ on Sn−1, what are the necessary and
sufficient conditions on µ so that µ is the p-capacitary measure µp(K, ·)
of a convex body K in Rn?

Colesanti et al. [20] proved the uniqueness of the solution when
1 < p < n, and existence when 1 < p < 2 with an extra technical
condition. Very recently, the existence for the case 2 < p < n was
solved by Akman, Gong, Hineman, Lewis and Vogel [1].

1.4. Lp p-capacitary measures and the Lp Minkowski problem
for p-capacity. By reviewing the Minkowski problems for volume and
capacity respectively, we find that they have been intensively investi-
gated along two parallel tracks, and their similarities are greatly high-
lighted therein. However, compared with a series of remarkable results
on Lp Minkowski problem for volume, the general Lp Minkowski prob-
lem for capacity is hardly ever proposed yet. The time is ripe to initiate
the research on general Lp Minkowski problem for capacity.

In this article, we aim to generalize the Minkowski problem for p-
capacity to general Lp Minkowski problems for p-capacity. In some
sense, this is the first paper to push the Minkowski problem for p-
capacity to Lp stage. Here, it is worth mentioning that to comply with
the habits, we stick to using the terminology “Lp” Minkowski problem
in our paper. But to avoid the confusion, we use “p-capacity”, instead
of “p-capacity”, to distinguish the “p” in “Lp”.

In light of the significant role of Lp surface area measure Sp(K, ·) in
the Lp theory of convex bodies, we introduce the important geometric
measure: Lp p-capacitary measure.

Definition. Let p ∈ R and 1 < p < n. For a convex body K in Rn
with the origin in its interior, the Lp p-capacitary measure µp,p(K, ·) of
K is a finite Borel measure on Sn−1 defined, for each Borel set ω ⊆ Sn−1,
by

µp,p(K,ω) =

∫
ω

hK(ξ)1−pdµp(K, ξ).

Later, we shall see that the Lp p-capacitary measure µp,p(K, ·) arises
as the variation of p-capacity functional Cp of Lp sum of convex bodies.
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Specifically, if K,L are convex bodies in Rn with the origin in their
interiors, then

dCp(K+pt ·p L)

dt

∣∣∣∣
t=0+

=
(p− 1)

p

∫
Sn−1

hL(ξ)pdµp,p(K, ξ),

where 1 ≤ p <∞. See Corollary 3.1 for details.
Naturally, we pose the following Lp Minkowski problem for p-capacity.

Lp Minkowski problem for p-capacity. Suppose µ is a finite Borel
measure on Sn−1, 1 < p < n and p ∈ R. What are the necessary
and sufficient conditions on µ so that µ is the Lp p-capacitary measure
µp,p(K, ·) of a convex body K in Rn?

Recall that Jerison [40] solved the classical case when p = 1 and
p = 2. Colesanti et al. [20] and Akman et al. [1] solved the case when
p = 1 and 1 < p < n. For p 6= 1, this problem is completely new.

1.5. Main results. Our main goal in this article is to solve the Lp
Minkowski problem for p-capacity when p > 1. It is interesting that the
necessary and sufficient conditions for existence and uniqueness of the
solution is surprisingly identical to the conditions in the Lp Minkowski
problem for volume when p > 1.

Theorem 1.1. Suppose 1 < p <∞, 1 < p < n, and that µ is a finite
positive Borel measure on Sn−1. If µ is not concentrated on any closed
hemisphere, there exists a unique convex body K containing the origin,
such that

dµp(K, ·) = chp−1
K dµ,

where c = 1 if p + p 6= n, or Cp(K) if p + p = n. Furthermore,
if in addition p ≥ n, then K contains the origin in its interior, and
µp,p(K, ·) = cµ.

Concerning the discrete Lp Minkowski problem for p-capacity, we
prove the following.

Theorem 1.2. Suppose 1 < p < ∞, 1 < p < n, and that µ is
a finite positive Borel measure on Sn−1. If µ is discrete and is not
concentrated on any closed hemisphere, there exists a unique convex
polytope K containing the origin in its interior, such that

µp,p(K, ·) = cµ,

where c = 1 if p+ p 6= n, or Cp(K) if p+ p = n.

Concerning the even Lp Minkowski problem for p-capacity, we prove
the following.

Theorem 1.3. Suppose 1 < p <∞, 1 < p < n, and that µ is a finite
positive Borel measure on Sn−1. If µ is even and is not concentrated on
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any great subsphere, there exists a unique origin-symmetric convex body
K, such that

µp,p(K, ·) = cµ,

where c = 1 if p+ p 6= n, or Cp(K) if p+ p = n.

We emphasize that, for p > 1, the Lp Minkowski problem for the
p-capacity is considerably more complicated than the p = 1 case, re-
quiring both new ideas and techniques. Our approach to this problem
is rooted in the ideas and techniques from convex geometry. So its
proof exhibits rich geometric flavour. Specifically, techniques developed
Hug, Lutwak, Yang and Zhang [39], Klain [42] and Lutwak [48, 56] are
comprehensively employed. In particular, a crucial technique based on
the interplay between two dual extremum problems of convex bodies is
adopted, which was first used by Lutwak et al. [58] to establish the Lp
John ellipsoids and then developed by the authors themselves in [74–77]
to establish the Orlicz-John ellipsoids and Orlicz-Legendre ellipsoids.

It is worth mentioning that to remove the technical assumption that
the given measure µ does not have a pair of antipodal point masses,
we take an ingenious approximation tactics, which makes fully use of
solutions to the Lp Minkowski problem for volume. For more details,
see Section 5.

This article is organized as follows. In Section 2, we introduce the
necessary notations and collect some basic facts on convex bodies, the
p-capacity and the Aleksandrov body. In Section 3, we prove some basic
results on the Lp p-capacitary measure. To characterize the uniqueness
of µp,p(K, ·), the Lp Minkowski inequality for p-capacity is established.
To solve the existence of solution to the Lp Minkowski problem for p-
capacity, more tools and techniques are introduced and developed in
Sections 4–6. Section 4 first focuses on two dual extremum problems
for p-capacity (Problem 1 and Problem 2), then demonstrates clearly
the relations of Problem 1, Problem 2, the normalized Lp Minkowski
problem for p-capacity (Problem 3), and our concerned original problem:
the Lp Minkowski problem for p-capacity (Problem 4). More technical
preparations for approximations are provided in Section 6. The formal
proofs of the main results are presented in Section 7.

2. Preliminaries

2.1. Basics of convex bodies. For quick reference, we collect some
basic facts on convex bodies. Excellent references are the books by
Gardner [26], Gruber [31] and Schneider [67].

Write x · y for the standard inner product of x, y ∈ Rn. A compact
convex set K in Rn is uniquely determined by its support function
hK : Rn → R, given for x ∈ Rn by

hK(x) = max {x · y : y ∈ K} .
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The support function is positively homogeneous of degree 1, and is usu-
ally restricted to the sphere Sn−1. The set of compact convex sets in Rn
is equipped with the Hausdorff metric δH , which is defined for compact
convex sets K,L by

δH(K,L) = max
{
| hK(ξ)− hL(ξ) |: ξ ∈ Sn−1

}
.

Denote by Kn the set of convex bodies in Rn. Write Kno for the set
of convex bodies with the origin o in their interiors.

For compact convex sets K and L, they are said to be homothetic,
provided K = sL + x, for some s > 0 and x ∈ Rn. Their Minkowski
sum is the set K + L = {x + y : x ∈ K, y ∈ L}. For s > 0, the set
sK = {sx : x ∈ K} is called a dilate of K. The reflection of K is
−K = {−x : x ∈ K}.

Let C(Sn−1) be the set of continuous functions defined on Sn−1,
which is equipped with the metric induced by the maximal norm. Write
C+(Sn−1) for the set of strictly positive functions in C(Sn−1). For non-
negative f, g ∈ C(Sn−1) and t ≥ 0, define

f +p t · g = (fp + tgp)1/p ,

where, without confusion and for brevity, we omit the subscript p under
the dot thereafter. If in addition f > 0 and g is nonzero, the definition

holds when t > −
(

minSn−1 f

maxSn−1 g

)1/p
.

Recall that for compact convex sets K,L which contain the origin,
the Lp combination K+p t·L, with 1 < p <∞ and t ≥ 0, is the compact
convex set defined by

hK+pt·L = hK +p t · hL.

For nonnegative f ∈ C(Sn−1), define

[f ] =
⋂

ξ∈Sn−1

{x ∈ Rn : x · ξ ≤ f(ξ)}.

The set is called the Aleksandrov body (also known as Wulff shape)
associated with f . Obviously, [f ] is a compact convex set containing
the origin. For a compact convex set containing the origin, say K, we
have K = [hK ]. If f ∈ C+(Sn−1), then [f ] ∈ Kno .

The Aleksandrov convergence lemma reads: If the sequence {fj}j ⊂
C+(Sn−1) converges uniformly to f ∈ C+(Sn−1), then limj→∞ [fj ] = [f ].

2.2. Basic facts on p-capacity. This part lists some necessary facts
on p-capacity. For more details, see, e.g., [20, 21, 29, 40].

Let 1 < p < n. The p-capacity Cp has the following properties. First,
it is increasing with respect to set inclusion; that is, if E ⊆ F , then
Cp(E) ≤ Cp(F ). Second, it is positively homogeneous of degree (n− p),
i.e., Cp(sE) = sn−pCp(E), for s > 0. Third, it is rigid invariant, i.e.,
Cp(gE + x) = Cp(E), for x ∈ Rn and g ∈ O(n).
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Let K ∈ Kn. The p-capacitary measure µp(K, ·) has the following
properties. First, it is positively homogeneous of degree (n − p − 1),
i.e., µp(sK, ·) = sn−p−1µp(K, ·), for s > 0. Second, it is translation
invariant, i.e., µp(K + x, ·) = µp(K, ·), for x ∈ Rn. Third, its centroid
is at the origin, i.e.,

∫
Sn−1 ξdµp(K, ξ) = o. Moreover, it is absolutely

continuous with respect to the surface area measure S(K, ·).
For convex bodies Kj ,K ∈ Kn, j ∈ N, if Kj → K ∈ Kn, then

µp(Kj , ·)→ µp(K, ·) weakly, as j →∞. This important fact was proved
by Colesanti et al. [20, p. 1550].

Let K ∈ Kno and f ∈ C(Sn−1). There is t0 > 0 so that hK + tf ∈
C+(Sn−1), for |t| < t0. The Aleksandrov body [hK + tf ] is continuous
in t ∈ (−t0, t0). The Hadamard variational formula for p-capacity (see
[20, Theorem 1.1]) states that

(2.1)
dCp([hK + tf ])

dt

∣∣∣∣
t=0

= (p− 1)

∫
Sn−1

f(ξ)dµp(K, ξ).

For K,L ∈ Kn, the mixed p-capacity Cp(K,L) (see [20, p. 1549]) is
defined by
(2.2)

Cp(K,L) =
1

n− p

dCp(K + tL)

dt

∣∣∣∣
t=0+

=
p− 1

n− p

∫
Sn−1

hL(ξ)dµp(K, ξ).

When L = K, it reduces to the Poincaré p-capacity formula (1.9). From
the weak convergence of p-capacitary measures, it follows that Cp(K,L)
is continuous in (K,L).

The p-capacitary Brunn-Minkowski inequality, proved by Colesanti-
Salani [19], reads: If K,L ∈ Kn, then

(2.3) Cp(K + L)
1

n−p ≥ Cp(K)
1

n−p + Cp(L)
1

n−p ,

with equality if and only if K and L are homothetic. When p = 2, the
inequality was first established by Borell [6], and the equality condition
was shown by Caffarelli, Jerison and Lieb [12]. For more details, see,
e.g., Colesanti [18], Gardner [25], and Gardner and Hartenstine [27].

The p-capacitary Brunn-Minkowski inequality yields the p-capacitary
Minkowski inequality,

(2.4) Cp(K,L)n−p ≥ Cp(K)n−p−1Cp(L),

with equality if and only if K and L are homothetic. See [20, p. 1549]
for its proof.

2.3. Basic facts on Aleksandrov bodies. For nonnegative f ∈
C(Sn−1), define

(2.5) Cp(f) = Cp([f ]).
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Obviously, Cp(hK) = Cp(K), for a compact convex set K that contains
the origin.

By the Aleksandrov convergence lemma and the continuity of Cp on
Kn, we see that Cp : C+(Sn−1)→ (0,∞) is continuous.

Let 1 ≤ p < ∞ and 1 < p < n. For K ∈ Kno and nonnegative
f ∈ C(Sn−1), define

(2.6) Cp,p(K, f) =
p− 1

n− p

∫
Sn−1

f(ξ)phK(ξ)1−pdµp(K, ξ).

For brevity, write Cp(K, f) for C1,p(K, f). Obviously, Cp,p(K,hK) =
Cp(K).

Lemma 2.1. Let 1 ≤ p <∞ and 1 < p < n. If f ∈ C+(Sn−1), then

Cp,p([f ], f) = Cp([f ]) = Cp(f).

Note that Cp(K,h[f ]) ≤ Cp(K, f), for K ∈ Kno and f ∈ C+(Sn−1).

Proof. Note that h[f ] ≤ f . A basic fact established by Aleksandrov
is that h[f ] = f , a.e. with respect to S([f ], ·). That is, S([f ], {h[f ] <
f}) = 0. Since µp([f ], ·) is absolutely continuous with respect to S([f ], ·),
it follows that µp([f ], {h[f ] < f}) = 0. Combining this fact and the
inequality h[f ] ≤ f , it follows that

Cp,p([f ], f)− Cp(f) =
p− 1

n− p

∫
{f>h[f]}

(
fp − hp[f ]

)
h1−p
[f ] dµp([f ], ·) = 0,

as desired. q.e.d.

The following important result is the Theorem 5.2 [20] established
by Colesanti et al.

Lemma 2.2. Let I ⊂ R be an interval containing 0 in its interior,
and let ht(ξ) = h(t, ξ) : I × Sn−1 → (0,∞) be continuous, such that the
convergence in

h′(0, ξ) = lim
t→0

h(t, ξ)− h(0, ξ)

t

is uniform on Sn−1. Then

dCp(ht)

dt

∣∣∣∣
t=0

= (p− 1)

∫
Sn−1

h′(0, ξ)dµp([h0], ξ).

The following lemma will be used in Sections 4 and 6.

Lemma 2.3. Suppose µ is a finite positive Borel measure on Sn−1

which is not concentrated on any closed hemisphere, and 0 < p <∞. If
Q is a compact convex set in Rn containing the origin and dim(Q) ≥ 1,
then 0 <

∫
Sn−1 h

p
Qdµ <∞.
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Proof. Since µ is finite and hQ is nonnegative and bounded, the in-
tegral is obviously finite. To prove the positivity of the integral, we can
take a line segmentQ0 ⊂ Q, which is of the formQ0 = l{tξ0 : 0 ≤ t ≤ 1},
with 0 < l <∞ and ξ0 ∈ Sn−1. Since µ is not concentrated on any closed
hemisphere, this implies that µ

(
{ξ ∈ Sn−1 : ξ · ξ0 > 0}

)
> 0. Thus,∫

Sn−1

hpQdµ ≥
∫

Sn−1

hpQ0
dµ

= lp
∫

{ξ∈Sn−1: ξ·ξ0>0}

(ξ · ξ0)pdµ(ξ)

> 0,

as desired. q.e.d.

3. The Lp p-capacitary measure µp,p(K, ·)

3.1. The first Lp variational of p-capacity. Let K ∈ Kno and 1 ≤
p <∞. Consider a nonnegative and nonzero function f ∈ C(Sn−1), and
take the interval

I =

(
−(min

Sn−1
hK/max

Sn−1
f)1/p,∞

)
.

Since ht(ξ) = h(t, ξ) = (hK +p t ·f)(ξ) : I×Sn−1 → (0,∞) is continuous
and

lim
t→0

(hK+pt · f)− hK
t

=
fph1−p

K

p

holds uniformly on Sn−1, according to Lemma 2.2 and (2.6), we have

dCp(hK+pt · f)

dt

∣∣∣∣
t=0+

=
n− p

p
Cp,p(K, f).

Note that it is precisely the Hadamard variational formula (2.1) when
p = 1. For a compact convex set L containing the origin, letting f = hL,
we obtain the following.

Corollary 3.1. Suppose 1 ≤ p <∞ and 1 < p < n. If K ∈ Kno and
L is a compact convex set containing the origin, then

dCp(K+pt · L)

dt

∣∣∣∣
t=0+

=
p− 1

p

∫
Sn−1

hL(ξ)phK(ξ)1−pdµp(K, ξ).

Definition 3.2. Let 1 < p < n and p ∈ R. For K ∈ Kno , the finite
Borel measure µp,p on Sn−1, defined by

dµp,p(K, ·) = h1−p
K dµp(K, ·),

is called the Lp p-capacitary measure µp,p(K, ·) of K.
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Definition 3.3. Let 1 < p < n and p ∈ R. For K,L ∈ Kno , if p 6= 0,
then define

Cp,p(K,L) =
p− 1

n− p

∫
Sn−1

hL(ξ)phK(ξ)1−pdµp(K, ξ),

and call it the Lp mixed p-capacity of (K,L).

If in addition p > 0 and L is a compact convex set containing the
origin, the Lp mixed p-capacity Cp,p(K,L) is also well defined.

For p = 0, we call µ0,p(K, ·) the logarithmic p-capacitary measure of
K. Let µ̄0,p(K, ·) be the probability normalization of µ0,p(K, ·). That
is,

(3.1) dµ̄0,p(K, ·) =
(p− 1)hK

(n− p)Cp(K)
dµp(K, ·).

Then, Cp,p(K,L) can be normalized as

Cp,p(K,L) =

[
Cp,p(K,L)

Cp(K)

]1/p

=

 ∫
Sn−1

(
hL
hK

)p
dµ̄0,p(K, ·)

1/p

.

For p = 0, let

C0,p(K,L) = lim
p→0

Cp,p(K,L) = exp

∫
Sn−1

log
hL(ξ)

hK(ξ)
dµ̄0,p(K, ξ),

and call it the normalized logarithmic mixed p-capacity of (K,L).
From the Definitions 3.2 and 3.3, several facts follow directly. For

µp,p(K, ·), we have µ1,p(K, ·) = µp(K, ·), and p−1
n−pµ0,p(K,Sn−1) = Cp(K).

For Cp,p(K,L), we have C1,p(K,L) = Cp(K,L), Cp,p(K,K) = Cp(K)
and Cp,p(K,hL) = Cp,p(K,L). Besides, Cp,p(gK, gL) = Cp,p(K,L), for
g ∈ O(n). Similar to the proof of Theorem 3.1 in [74], Cp,p(K,L) is
continuous in (K,L, p).

As the Lp mixed volume Vp(K,L) and the Lp surface area measure
Sp(K, ·) significantly extend the first mixed volume V1(K,L) and the
classical surface area measure S(K, ·) in convex geometry, respectively,
Cp,p(K,L) and µp,p(K, ·) are precisely the Lp extensions of the mixed
p-capacity Cp(K,L) and the p-capacitary measure µp(K, ·), respectively.

From Definition 3.2, together with the weak convergence and the
positive homogeneity of µp, we obtain the following results.

Lemma 3.4. Suppose Kj ,K ∈ Kno , j ∈ N. Let 1 ≤ p < ∞ and
1 < p < n. If Kj → K, then µp,p(Kj , ·)→ µp,p(K, ·) weakly, as j →∞.

Lemma 3.5. Suppose K ∈ Kno . Let −∞ < p < ∞ and 1 < p < n.
Then, µp,p(sK, ·) = sn−p−pµp,p(K, ·), for s > 0
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3.2. The Lp Minkowski inequality for p-capacity. In this part, we
show that associated with Cp,p(K,L), there is a natural Lp extension
of the p-capacitary Minkowski inequality. Then we use it to extend
the p-capacitary Brunn-Minkowski inequality to the Lp setting. It is
noted that the Lp Brunn-Minkowski type inequality for p-capacity was
previously established in [78] by the authors’ Lp transference principle.

Theorem 3.6. Let 1 < p < ∞ and 1 < p < n. If K ∈ Kno and
f ∈ C+(Sn−1), then

(3.2) Cp,p(K, f)n−p ≥ Cp(K)n−p−pCp(f)p,

with equality if and only if K and [f ] are dilates.

Proof. From (2.6) combined with (3.1), the fact f ≥ h[f ], Jensen’s
inequality, (3.1) again combined with (2.2), and finally the p-capacitary
Minkowski inequality (2.4) combined with (2.5), it follows that[

Cp,p(K, f)

Cp(K)

]1/p

=

 ∫
Sn−1

(
f

hK

)p
dµ̄0,p(K, ·)

1/p

≥

 ∫
Sn−1

(
h[f ]

hK

)p
dµ̄0,p(K, ·)

1/p

≥
∫

Sn−1

h[f ]

hK
dµ̄0,p(K, ·)

=
Cp,p(K, [f ])

Cp(K)

≥ Cp(f)1/(n−p)

Cp(K)1/(n−p)
,

as desired. In the next, we prove the equality condition.
Assume the equality holds in (3.2). By equality conditions of p-

capacitary Minkowski inequality, there exist x ∈ Rn and s > 0, such
that [f ] = sK + x. By the equality conditions of Jensen inequality,
Cp(K, [f ])hK(ξ) = Cp(K)h[f ](ξ), for µp(K, ·)-a.e. ξ ∈ Sn−1. Hence, for

µp(K, ·)-a.e. ξ ∈ Sn−1,sCp(K) +
p− 1

n− p
x ·

∫
Sn−1

ξdµp(K, ξ)

hK(ξ) = Cp(K)(shK(ξ) + x · ξ).

Since the centroid of µp(K, ·) is at the origin, this implies that x · ξ = 0,
for µp(K, ·)-a.e. ξ ∈ Sn−1. Note that the p-capacitary measure µp(K, ·)
is not concentrated on any great subsphere of Sn−1. Hence, x = o, which
in turn implies that K and [f ] are dilates.
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Conversely, assume that K and [f ] are dilates, say, K = s[f ], for some
s > 0. From (2.6), the fact that µp(s[f ], ·) = sn−p−1µp([f ], ·), Lemma
2.1, and the fact that Cp(K) = Cp(s[f ]) = sn−pCp([f ]) = Cp(f), it
follows that

Cp,p(K, f) = Cp,p(s[f ], f)

= sn−p−pCp,p([f ], f)

= sn−p−pCp([f ])

= Cp(K)
n−p−p
n−p Cp(f)

p
n−p .

This completes the proof. q.e.d.

Theorem 3.6 directly yields that for K,L ∈ Kno ,

(3.3) Cp,p(K,L)n−p ≥ Cp(K)n−p−pCp(L)p,

with equality if and only if K and L are dilates.

Corollary 3.7. Suppose K ∈ Kno , 1 < p <∞ and 1 < p < n. Then

µp,p(K,Sn−1)n−p ≥ npωnp
(
n− p

p− 1

)(p−1)p

Cp(K)n−p−p,

with equality if and only if K is an origin-symmetric ball.

Proof. Let L be the unit ball B in Rn. Since Cp(B) = nωn

(
n−p
p−1

)p−1
,

from Theorem 3.6, the desired inequality with its equality condition is
obtained. q.e.d.

Suppose f1, f2, g ∈ C+(Sn−1). From the definition of f1 +p f2 and
(2.6), it follows that

Cp,p([g], f1 +p f2) = Cp,p([g], f1) + Cp,p([g], f2).

This, together with Theorem 3.6, gives

Cp,p([g], f1 +p f2) ≥ Cp([g])
n−p−p
n−p

(
Cp(f1)

p
n−p + Cp(f2)

p
n−p

)
,

with equality if and only if [f1] and [f2] are dilates of [g]. Letting
g = f1 +p f2, it yields an Lp extension of the Colesanti-Salani Brunn-
Minkowski inequality.

Theorem 3.8. Let 1 < p <∞ and 1 < p < n. If f1, f2 ∈ C+(Sn−1),
then

Cp(f1+pf2)p/(n−p) ≥ Cp(f1)p/(n−p) + Cp(f2)p/(n−p),

with equality if and only if [f1] and [f2] are dilates.

Consequently, for K,L ∈ Kno , we have

(3.4) Cp(K+pL)p/(n−p) ≥ Cp(K)p/(n−p) + Cp(L)p/(n−p),

with equality if and only if K and L are dilates.



570 D. ZOU & G. XIONG

The Lp p-capacitary Brunn-Minkowski inequality (3.4) also yields
the Lp p-capacitary Minkowski inequality (3.3). Indeed, consider the
nonnegative concave function

h(t) = Cp(K +p t · L)
p

n−p − Cp(K)
p

n−p − tCp(L)
p

n−p .

Using Corollary 3.1 and (3.4), we have

lim
t→0+

h(t)− h(0)

t
= Cp(K)

p
n−p
−1Cp,p(K,L)− Cp(L)

p
n−p ≥ 0.

If the equality holds on the right, then h must be linear, and therefore
K, L must be dilates.

3.3. Uniqueness of the Lp p-capacitary measures. In this part,
by using the Lp p-capacitary Minkowski inequality (3.3), we show the
uniqueness of solution to the Lp Minkowski problem for p-capacity,
which is closely related with the following question: If K,L ∈ Kno are
such that µp,p(K, ·) = µp,p(L, ·), then is this the case that K = L?

Theorems 3.9 (2) and 3.11 (2) affirm this question.

Theorem 3.9. Suppose K,L ∈ Kno and C is a subset of Kno such that
K,L ∈ C. Let 1 < p <∞, 1 < p < n and p+ p 6= n. Then the following
assertions hold.
(1) If Cp,p(K,Q) = Cp,p(L,Q) for all Q ∈ C, then K = L.
(2) If µp,p(K, ·) = µp,p(L, ·), then K = L.
(3) If Cp,p(Q,K) = Cp,p(Q,L) for all Q ∈ C, then K = L.

Proof. Since Cp,p(K,K) = Cp(K), by the assumption it follows that
Cp,p(L,K) = Cp(K). By (3.3),

Cp(K)(n−p−p)/(n−p) ≥ Cp(L)(n−p−p)/(n−p),

with equality if and only if K and L are dilates. This inequality is
reversed if interchanging K and L. So Cp(K) = Cp(L). Since Cp is
positively homogeneous of degree (n− p), it follows that K = L.

If µp,p(K, ·) = µp,p(L, ·), then Cp,p(K,Q) = Cp,p(L,Q) for all Q ∈ C.
So, (2) follows from (1) immediately. The third assertion can be proved
similarly to (1). q.e.d.

Theorem 3.10. Suppose K,L ∈ Kno are such that µp,p(K, ·) ≤
µp,p(L, ·). Let 1 < p < ∞, 1 < p < n, and p + p 6= n. Then the
following assertions hold.
(1) If Cp(K) ≥ Cp(L) and p+ p < n, then K = L.
(2) If Cp(K) ≤ Cp(L) and p+ p > n, then K = L.

Proof. From Cp,p(L,L) = Cp(L), the assumption µp,p(K, ·) ≤
µp,p(L, ·), the inequality (3.3) and the assumptions in (1) or (2), we
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have

Cp(L) ≥ Cp,p(K,L)

≥ Cp(K)
n−p−p
n−p Cp(L)

p
n−p

≥ Cp(L)
n−p−p
n−p Cp(L)

p
n−p

= Cp(L).

Thus Cp(K) = Cp(L), and K and L are dilates. Hence, K = L. q.e.d.

When p+ p = n, we obtain the following result.

Theorem 3.11. Suppose K,L ∈ Kno and C is a subset of Kno such
that K,L ∈ C. Let 1 < p < ∞ and 1 < p < n − 1. Then the following
assertions hold.
(1) If Cn−p,p(K,Q) ≥ Cn−p,p(L,Q) for all Q ∈ C, then K and L are
dilates.
(2) If µn−p,p(K, ·) ≥ µn−p,p(L, ·), then K and L are dilates.

Proof. Take Q = K. From the fact Cn−p,p(K,K) = Cp(K), the
assumption in (1) and the inequality (3.3), we have

Cp(K) ≥ Cn−p,p(L,K) ≥ Cp(K).

Thus, all the equalities above hold, and K,L are dilates. With the first
assertion in hand, the second is obtained directly. q.e.d.

4. Two dual extremum problems for p-capacity

Throughout this section, let 1 < p <∞ and 1 < p < n. Suppose µ is
a finite Borel measure on Sn−1 which is not concentrated on any closed
hemisphere. For a compact convex set Q containing the origin, define

Fp(Q) =
p− 1

n− p

∫
Sn−1

hpQdµ.

To prove main results of this article, we start from the following
extremum problems, which are closely connected with our concerned
Lp Minkowski problem for p-capacity.

Problem 1. Among all convex bodies Q in Rn containing the origin,
find one to solve the following constrained minimization problem

inf
Q
Fp(Q) subject to Cp(Q) ≥ 1.

Problem 2. Among all convex bodies Q in Rn containing the origin,
find one to solve the following constrained maximization problem

sup
Q

Cp(Q) subject to Fp(Q) ≤ 1.
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Some basic facts are observed. Let Q be a convex body in Rn con-
taining the origin. By Lemma 2.3, it follows that

(4.1) 0 < Fp(Q) <∞.
Since Fp(αQ) = αpFp(Q) and Cp(αQ) = αn−pCp(K), for α > 0, two
necessary conditions of solutions to Problems 1 and 2 are seen. If Q
solves Problem 1, then Cp(Q) = 1. Similarly, if Q solves Problem 2,
then Fp(Q) = 1.

The following lemma shows the duality between Problems 1 and 2.

Lemma 4.1. For Problems 1 and 2, the following assertions hold.
(1) If convex body K̄ solves Problem 1, then

K := Fp(K̄)−1/pK̄

solves Problem 2.
(2) If convex body K solves Problem 2, then

K̄ := Cp(K)−1/(n−p)K

solves Problem 1.

Proof. (1) Assume K̄ solves Problem 1. Let Q be a convex body con-
taining the origin such that Fp(Q) ≤ 1. From the positive homogeneity
of Cp together with that Cp(K̄) = 1, the assumption together with that

Cp(Cp(Q)−1/(n−p)Q) = 1, the positive homogeneity of Fp, and finally
that Fp(Q) ≤ 1, we have

Cp(K)p/(n−p) = Fp(K̄)−1

≥ Fp
(

Cp(Q)−1/(n−p)Q
)−1

= Fp(Q)−1Cp(Q)p/(n−p)

≥ Cp(Q)p/(n−p).

Thus, K solves Problem 2.
(2) Assume K solves Problem 2. Let Q be a convex body containing

the origin such that Cp(Q) ≥ 1. From the positive homogeneity of
Fp together with that Fp(K) = 1, the assumption together with that

Fp(Fp(Q)−1/pQ) = 1, the positive homogeneity of Cp, and finally that
Cp(Q) ≥ 1, we have

Fp(K̄) = Cp(K)−p/(n−p)

≤ Cp

(
Fp(Q)−1/pQ

)−p/(n−p)

= Fp(Q)Cp(Q)−p/(n−p)

≤ Fp(Q).

Thus, K̄ solves Problem 1. q.e.d.
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The next lemma confirms the uniqueness of solution to Problem 2.
Equivalently, the uniqueness of solution to Problem 1 is shown.

Lemma 4.2. Suppose µ is a finite Borel measure on Sn−1 and is not
concentrated on any closed hemisphere. Let 1 < p <∞ and 1 < p < n.
If K1 and K2 are convex bodies in Rn containing the origin and solving
Problem 2 for (µ, p, p), then K1 = K2.

Proof. Consider the convex body 2−1(K1 +K2). Clearly, it also con-
tains the origin. Since

Fp

(
K1 +K2

2

)
≤ Fp (K1) + Fp (K2)

2
≤ 1,

the convex body 2−1(K1 +K2) still satisfies the constraint in Problem 2.
So,

Cp

(
K1 +K2

2

)
≤ Cp(K1) = Cp(K2).

Consequently,

(4.2) Cp

(
K1 +K2

2

)1/(n−p)

≤ 1

2
Cp(K1)1/(n−p) +

1

2
Cp(K2)1/(n−p).

On the other hand, the reverse of (4.2) always holds, since it is just
the Colesanti-Salani Brunn-Minkowski inequality. So, equality occurs
in (4.2), and K1 = αK2 + x, for some α > 0 and x ∈ Rn. From
that Cp(K1) = Cp(K2) together with the positive homogeneity and
translation invariance of Cp, it follows that α = 1. Thus, K1 = K2 + x.

To complete the proof, it remains to prove that x = o.
Since

Cp

(
K1 +K2

2

)
= Cp(K1) = Cp(K2),

the body 2−1(K1 + K2) is also a solution to Problem 2. Necessarily,
Fp
(
2−1(K1 +K2)

)
= 1. In other words,∫

Sn−1

(
hK1 + hK2

2

)p
dµ =

∫
Sn−1

hpK1
+ hpK2

2
dµ.

Since these integrands are nonnegative continuous and(
hK1 + hK2

2

)p
≤
hpK1

+ hpK2

2
,

it follows that for all ξ ∈ supp µ,
(4.3)

hK2(ξ) + (hK2(ξ) + (ξ · x))

2
=

(
hK2(ξ)p + (hK2(ξ) + (ξ · x))p

2

)1/p

.
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Let U = {ξ ∈ Sn−1 : x · ξ > 0}. Since µ is not concentrated on any
closed hemisphere, it follows that µ(U ∩ supp µ) > 0. If x is nonzero,
then for any ξ ∈ U ∩ supp µ,

hK2(ξ) + (hK2(ξ) + (ξ · x))

2
<

(
hK2(ξ)p + (hK2(ξ) + (ξ · x))p

2

)1/p

,

which will obviously contradict (4.3). Hence, K1 = K2. q.e.d.

Lemma 4.3. Suppose µ is a discrete measure on Sn−1 and is not
concentrated on any closed hemisphere. Let 1 < p <∞ and 1 < p < n.
If K is a convex body in Rn containing the origin and solving Problem
2 for (µ, p, p), then K is a convex proper polytope containing the origin
in its interior.

We need to make some preparations. Represent the discrete measure
µ by the form

(4.4) µ =

m∑
i=1

ciδξi ,

where ξi ∈ Sn−1 and ci > 0, for all i. Then, for a convex body Q
containing the origin,

(4.5) Fp(Q) =
p− 1

n− p

m∑
i=1

cihQ(ξi)
p.

For nonzero y = (y1, . . . , ym) ∈ [0,∞)m, define

(4.6) P (y) =
m⋂
i=1

{x ∈ Rn : x · ξi ≤ yi} .

Proof. We first verify that K is a convex proper polytope. Let

(4.7) h = (h1, . . . , hm) = (hK(ξ1), . . . , hK(ξm)).

Since K ⊆ P (h), we have Cp(K) ≤ Cp(P (h)). Since Fp(P (h)) = Fp(K),
the proper polytope P (h) satisfies the constraint in Problem 2. Since
the convex body K solves Problem 2, it follows that Cp(K) = Cp(P (h)).
This in turn implies that P (h) also solves Problem 2. By Lemma 4.2,
it follows that P (h) = K.

In the following, we prove that P (h) contains the origin in its interior.
For this aim, we argue by contradiction and assume that o ∈ ∂P (h).
We will construct a new convex proper polytope P (z), such that

(4.8) o ∈ intP (z), Fp(P (z)) ≤ 1, but Cp(P (z)) > Cp(P (h)).

To prove the existence of such P (z), we adopt the elegant deformation
technique, which was previously employed by Hug et al. [39].

Since o ∈ ∂P (y), without loss of generality, we assume
(4.9)
h1 = · · · = hk = 0, and hk+1, . . . , hm > 0, for some 1 ≤ k < m.
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Let

(4.10) c =

∑k
i=1 ci∑m

i=k+1 ci

and let 0 < t0 < min {hpi /c : 1 ≤ i ≤ k}1/p. For 0 ≤ t < t0, consider
(4.11)

yt = (y1,t, . . . , ym,t) =
(
t, . . . , t, (hpk+1 − ct

p)
1/p
, . . . , (hpm − ctp)

1/p
)
.

Then, P (y0) = P (h). Moreover, since yt ∈ (0,∞)m, for 0 < t < t0, the
convex polytope P (yt) is proper and contains the origin in its interior
by (4.6).

For further discussion, four facts are listed.
First, P (yt) is continuous in t ∈ [0, t0]. In particular,

(4.12) lim
t→0+

P (yt) = P (h).

Second, since the facet normals of the proper polytope P (yt) belong to
{ξ1, . . . , ξm}, and since hP (yt)(ξi) ≤ yi,t with equality if S(P (yt), {ξi}) >
0, for i = 1, . . . ,m, added the absolute continuity of µp(P (yt), ·) with
respect to S(P (yt), ·), we have

(4.13) Cp(P (yt)) =
p− 1

n− p

m∑
i=1

yi,tµp(P (yt), {ξi}).

Third, for t1, t2 ∈ [0, t0], we have

(4.14) Cp(P (yt1), P (yt2)) =
p− 1

n− p

m∑
i=1

hP (yt2 )(ξi)µp(P (yt1), {ξi}).

Fourth, we have

(4.15)

k∑
i=1

µp(P (y0), {ξi}) > 0.

Indeed, since there is at least one facet of P (y0) containing o,

k∑
i=1

S(P (y0), {ξi}) > 0.

Also, by Colesanti et al. [20, Lemma 2.18], there exists a positive
constant c depending on n, p and the radius of a ball containing P (y0),
such that µp(P (y0), ·) ≥ c−pS(P (y0), ·). Thus, (4.15) holds.
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From (4.14) combined with (4.13), (4.12) combined with the weak
convergence of p-capacitary measures, and finally (4.15), it follows that

n− p

p− 1
lim
t→0+

Cp(P (yt))− Cp(P (yt), P (y0))

t

=
k∑
i=1

lim
t→0+

t− 0

t
µp(P (yt), {ξi})

+
m∑

i=k+1

lim
t→0+

(hpi − ctp)
1/p − hi
t

µp(P (yt), {ξi})

=
k∑
i=1

µp(P (y0), {ξi})

> 0.

Hence, by the p-capacitary Minkowski inequality (2.4) and continuity
of Cp(P (yt)) in t, it follows that

Cp(P (y0))
n−p−1
n−p lim inf

t→0+

Cp(P (yt))
1

n−p − Cp(P (y0))
1

n−p

t

= lim inf
t→0+

Cp(P (yt))− Cp(P (yt))
n−p−1
n−p Cp(P (y0))

1
n−p

t

≥ lim inf
t→0+

Cp(P (yt))− Cp(P (yt), P (y0))

t
> 0.

Consequently, for sufficiently small t > 0, we have Cp(P (yt)) >
Cp(P (y0)).

Now, take a sufficiently small t > 0 and let z = yt. To show that
P (z) is a desired convex polytope satisfying (4.8), it remains to verify
Fp(P (z)) ≤ 1.

Indeed, from (4.5) combined with that P (z) = P (yt), the fact that

hP (yt)(ξi) ≤ yi,t for all i, (4.11), that Fp(P (h)) = p−1
n−p

∑m
i=k+1 cih

p
i (from

(4.5), (4.6), (4.7) and (4.9)), (4.10), and finally that P (h) is a solution
to Problem 2, it follows that

Fp(P (z)) =
p− 1

n− p

m∑
i=1

cihP (yt)(ξi)
p

≤ p− 1

n− p

m∑
i=1

ciy
p
i,t

=
p− 1

n− p

k∑
i=1

cit
p +

p− 1

n− p

m∑
i=k+1

ci(h
p
i − ct

p)
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= Fp(P (h)) +
p− 1

n− p

(
k∑
i=1

ci − c
m∑

i=k+1

ci

)
tp

= Fp(P (h))

= 1,

as desired. q.e.d.

The following is the normalized Lp Minkowski problem for p-capacity.

Problem 3. Among all convex bodies in Rn that contain the origin,
find a convex body K such that

dµp(K, ·)
Cp(K)

= hp−1
K dµ.

The following lemma presents relations between Problems 2 and 3.

Lemma 4.4. Suppose µ is a finite Borel measure on Sn−1 and is not
concentrated on any closed hemisphere. Let 1 < p < ∞, 1 < p < n
and K be a convex body in Rn containing the origin. Then the following
assertions hold.

(1) If K contains the origin in its interior and solves Problem 2 for
(µ, p, p), then it precisely solves Problem 3 for (µ, p, p).

(2) If K solves Problem 3 for (µ, p, p), then it solves Problem 2 for
(µ, p, p).

Proof. First, assume K ∈ Kno is the solution to Problem 2. We prove
that it also solves Problem 3. Take a nonnegative f ∈ C(Sn−1). For
t ∈ (−t0, t0), let

Kt = [hK + tf ] and Fp(hK + tf) =
p− 1

n− p

∫
Sn−1

(hK + tf)pdµ,

where t0 > 0 is chosen so that hK + tf > 0. For t ∈ (−t0, t0), let

G(t) = Cp

(
Kt

Fp(hK + tf)1/p

)
.

Several observations are in order. First, G(t) is continuous in t, since
Cp, Kt and Fp(hK + tf) are continuous in t. Second, G(t) ≤ G(0) =
Cp(K), since Fp(hK+tf) ≥ Fp(Kt) > 0 and K solves Problem 2. Third,
from

dFp(hK + tf)

dt

∣∣∣∣
t=0

=
p(p− 1)

n− p

∫
Sn−1

fhp−1
K dµ

and
dCp(Kt)

dt

∣∣∣∣
t=0

= (p− 1)

∫
Sn−1

fdµp(K, ·),
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it follows that the derivative of G exists at t = 0. Thus, G′(0) = 0.
Moreover,

Cp(K)−1

∫
Sn−1

fdµp(K, ·) =

∫
Sn−1

fhp−1
K dµ.

Since the equation holds for any nonnegative f ∈ C(Sn−1), it holds for

any f ∈ C(Sn−1). Thus, Cp(K)−1dµp(K, ·) = hp−1
K dµ. Alternatively, K

solves Problem 3.
We now prove assertion (2). Assume K solves Problem 3. Let Q be

a convex body containing the origin, such that 1 = p−1
n−p

∫
Sn−1 h

p
Qdµ. It

suffices to prove
Cp(K) ≥ Cp(Q).

Since Cp(K)hp−1
K dµ = dµp(K, ·), it follows that

1 =
p− 1

n− p

∫
{hK>0}

hpQdµ+
p− 1

n− p

∫
{hK=0}

hpQdµ

≥ p− 1

n− p

∫
{hK>0}

hpQdµ

=
p− 1

n− p

∫
{hK>0}

(
hQ
hK

)p hK
Cp(K)

dµp(K, ·).

Meanwhile, by the Poincaré p-capacity formula, it gives that

Cp(K) =
p− 1

n− p

∫
{hK>0}

hKdµp(K, ·).

So, the measure p−1
(n−p)Cp(K)hKdµp(K, ·) is a Borel probability measure

on {hK 6= 0}. Thus, from the Jensen inequality, the definition of mixed
p-capacity (2.2), and the p-capacitary Minkowski inequality (2.4), it
follows that

1 ≥

 p− 1

(n− p)Cp(K)

∫
{hK>0}

(
hQ
hK

)p
hKdµp(K, ·)


1/p

≥ p− 1

(n− p)Cp(K)

∫
{hK>0}

hQ
hK

hKdµp(K, ·)

=
p− 1

(n− p)Cp(K)

∫
{hK>0}

hQdµp(K, ·)

=
Cp(K,Q)

Cp(K)
− p− 1

(n− p)Cp(K)

∫
{hK=0}

hQdµp(K, ·)
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≥
(

Cp(Q)

Cp(K)

) 1
n−p

− p− 1

(n− p)Cp(K)

∫
{hK=0}

hQdµp(K, ·).

Since Cp(K)hp−1
K dµ = dµp(K, ·), it yields that∫

{hK=0}

hQdµp(K, ·) = Cp(K)

∫
{hK=0}

hQh
p−1
K dµ = 0.

Hence,

1 ≥
(

Cp(Q)

Cp(K)

) 1
n−p

,

as desired. q.e.d.

By Lemma 4.4 (2) and Lemma 4.2, we obtain the following.

Lemma 4.5. Suppose 1 < p < n, 1 < p < ∞, and that µ is a
finite Borel measure on Sn−1 and is not concentrated on any closed
hemisphere. If Problem 3 for (µ, p, p) has a solution, then such solution
is unique.

Recall that our original concerned Lp Minkowski problem for p-capaci-
ty is as follows.

Problem 4. Among all convex bodies in Rn that contain the origin,
find a convex body K such that

dµp(K, ·) = hp−1
K dµ.

The next lemma shows the equivalence between Problems 4 and 3.

Lemma 4.6. Suppose K is a convex body in Rn containing the origin,
and p+ p 6= n. Then the following assertions hold.

(1) If K solves Problem 3, then

K∗ := Cp(K)1/(p+p−n)K

solves Problem 4.
(2) If K solves Problem 4, then

K̃ := Cp(K)−1/pK

solves Problem 3.

Proof. We only prove the first assertion. Assertion (2) can be proved
similarly.

From the positive homogeneity of µp, that dµp(K, ·) = Cp(K)hp−1
K dµ,

and the positive homogeneity of support functions, it follows that

dµp (K∗, ·) = dµp

(
Cp(K)1/(p+p−n)K, ·

)
= Cp(K)(n−p−1)/(p+p−n)dµp (K, ·)
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= Cp(K)(n−p−1)/(p+p−n)Cp(K)hp−1

Cp(K)1/(n−p−p)K∗
dµ

= hp−1
K∗ dµ,

which proves the first assertion. q.e.d.

5. An approximation lemma: applications of Lp Minkowski
problems for volume

In light of the important works [40] by Jerison and [20] by Colesanti
et al., for a finite Borel measure µ on the sphere Sn−1, we consider the
following conditions.

(A1) The measure µ is not concentrated on any closed hemisphere.
(A2) The measure µ does not have a pair of antipodal point masses;

that is, if µ({ξ}) > 0, then µ({−ξ}) = 0, for ξ ∈ Sn−1.

In Section 7, to prove the existence of Theorem 1.1, we first deal
with the discrete measure case under the conditions (A1) and (A2).
In order to remove the condition (A2) for general measures, we prove
and make good use of the following Lemma 5.1, which is one of the
crucial ingredients in our approximation strategy. Thanks to the already
important developments on Lp Minkowski problems for volume, we can
provide a geometric proof for Lemma 5.1.

Lemma 5.1. Suppose µ is a finite positive Borel measure on Sn−1

satisfying condition (A1). Then there exists a sequence of finite and dis-
crete measures {µj}j on Sn−1, which satisfy conditions (A1) and (A2),
converging weakly to µ.

To prove Lemma 5.1, we need to make some preparations. The next
lemma is due to Hug et al. [39]. See also Chou and Wang [16].

Lemma 5.2. Suppose 1 < p <∞ and that µ is a finite Borel measure
on Sn−1. Then the following assertions hold.

(1) If µ is discrete and satisfies condition (A1), there is a unique
convex polytope P ∈ Kno , such that V (P )−1Sp(P, ·) = µ.

(2) If µ satisfies condition (A1) and p ≥ n, there is a unique convex
body K ∈ Kno , such that V (K)−1Sp(K, ·) = µ.

Lemma 5.3. Suppose K is a smooth and strictly convex body in Rn
containing the origin in its interior. Then K can be approximated by
a sequence of convex polytopes {Pj}j with the origin in their interiors
and each Sp(Pj , ·) satisfying condition (A2), where 1 < p <∞.

Proof. Let µ = V (K)−1Sp(K, ·). Clearly, it satisfies conditions (A1)
and (A2). Then, we can take a sequence of discrete measures {µk}k,
which satisfy conditions (A1) and (A2), converging weakly to µ. By
Lemma 5.2 (1), for each µk, there is a unique convex polytope Qk with
the origin in its interior, such that µk = V (Qk)

−1Sp(Qk, ·). In the proof



THE Lp MINKOWSKI PROBLEM FOR p-CAPACITY 581

of Lemma 5.2, Hug et al. [39] proved that {Qk}k has a convergent
subsequence {Qkj}j , converging to K. Let Pj = Qkj , for each j. Then
{Pj}j satisfies the requirements. q.e.d.

By (1.4) and the weak continuity of surface area measure, we obtain
the following.

Lemma 5.4. Suppose Kj ,K ∈ Kno , j ∈ N. If Kj → K, then
Sp(Kj , ·)→ Sp(K, ·) weakly, as j →∞.

Proof of Lemma 5.1. Take a fixed p ∈ [n,∞). By Lemma 5.2 (2), there
is a unique convex body K with the origin in its interior, such that
V (K)−1Sp(K, ·) = µ. Consider the space of all compact convex sets in
Rn with the Hausdorff metric. In this complete metric space, the set of
smooth and strictly convex bodies is dense. See Schneider [67, Sections
2.7 and 3.4]. Thus, for each j ∈ N, we can take a smooth and strictly
convex body Kj with the origin in its interior, such that

δH(K,Kj) ≤ 1/2j.

Meanwhile, by Lemma 5.3 we can take a convex polytope Pj with
the origin in its interior, such that its Lp surface area measure Sp(Pj , ·)
satisfies condition (A2), and

δH(Kj , Pj) ≤ 1/2j.

So,
δH(K,Pj) ≤ δH(K,Kj) + δH(Kj , Pj) ≤ 1/j.

Thus, Pj → K, as j → ∞. From Lemma 5.4 and the continuity of
volume functional, it follows that

V (Pj)
−1Sp(Pj , ·)→ V (K)−1Sp(K, ·),

weakly. For each j, let

µj = V (Pj)
−1Sp(Pj , ·).

Then each µj is discrete and satisfies conditions (A1) and (A2). q.e.d.

6. More technical preparations for approximations

In light of the relations of Problems 2 and 3, we solve Problem 3 for
general measures via the passage by solving Problem 2 in Section 7. For
this aim, we need to make more preparatory works.

Throughout this section, let 1 < p < ∞ and 1 < p < n. Suppose µ
and µj , j ∈ N, are finite Borel measures on Sn−1 and not concentrated
on any closed hemisphere. Suppose µj → µ weakly, as j →∞. For each
j, let Kj be the solution to Problem 3 for (µj , p, p), and

(6.1) K̄j = Cp(Kj)
−1/(n−p)Kj .

Then, by Lemma 4.4 (2), Kj is the solution to Problem 2 for (µj , p, p);
and K̄j is the solution to Problem 1 for (µj , p, p), by Lemma 4.1 (2).
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For a convex body Q in Rn containing the origin, let

Fp,j(Q) =
p− 1

n− p

∫
Sn−1

hpQdµj and Fp(Q) =
p− 1

n− p

∫
Sn−1

hpQdµ.

Lemma 6.1. The sequences {Kj}j and {K̄j}j are bounded from
above.

Proof. For each j, there is a ξj ∈ Sn−1 such that hKj (ξj) =
maxSn−1 hKj . Since the segment joining the origin and (maxSn−1 hKj )ξj
is contained in Kj , it follows that for all ξ ∈ Sn−1

hKj (ξ) ≥ (max
Sn−1

hKj )(ξj · ξ)+,

where (ξj · ξ)+ = max{0, ξj · ξ}. Thus,

1 =
p− 1

n− p

∫
Sn−1

hpKj
dµj

≥ (max
Sn−1

hKj )
p · p− 1

n− p

∫
Sn−1

(ξj · ξ)p+dµj(ξ)

≥ (max
Sn−1

hKj )
p · p− 1

n− p
min

ξ′∈Sn−1

∫
Sn−1

(ξ′ · ξ)p+dµj(ξ).

Consider the function Rn → R,

x 7→

 p− 1

n− p

∫
Sn−1

(x · ξ)p+dµj(ξ)

1/p

.

By ((x + x′) · ξ)+ ≤ (x · ξ)+ + (x′ · ξ)+ and the Minkowski integral
inequality, this function is convex; Since µj is not concentrated on any
closed hemisphere, this function is strictly positive for any nonzero x.
Thus, it is the support function of a unique convex body containing the
origin in its interior, say Πp,pµj ∈ Kno . So, minSn−1 hΠp,pµj > 0 and

max
Sn−1

hKj ≤
1

minSn−1hΠp,pµj

<∞.

Similarly, define the convex body Πp,pµ ∈ Kno by

hΠp,pµ(x) =

 p− 1

n− p

∫
Sn−1

(x · ξ)p+dµ(ξ)

1/p

.

Since µj → µ weakly, it follows that hΠp,pµj → hΠp,pµ uniformly on

Sn−1. Since the functions hΠp,pµj , hΠp,pµ are strictly positive on Sn−1,
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the sequence {hΠp,pµj}j on Sn−1 is uniformly bounded from below by a
constant m > 0. See, e.g., [74, Theorem 3.1] for its proof. Thus,

(6.2) sup
j

max
Sn−1

hKj ≤
1

infj minSn−1 hΠp,p

≤ 1

m
<∞.

Consequently, the sequence {Kj}j is bounded from above.
To prove the boundedness of the sequence {K̄j}j , two observations are

listed. First, since Fp,j

(
( p−1
n−p |µj |)

−1/pB
)

= 1, where |µj | = µj(Sn−1),

it follows that

(6.3) Cp(Kj) ≥ Cp

((
p− 1

n− p
· |µj |

)−1/p

B

)
.

Second, since µj → µ weakly, it follows that

(6.4) sup
j
|µj | <∞.

Let

(6.5) M =

(
p− 1

n− p

)1/p

Cp(B)−1/(n−p) sup
j
|µj |1/p sup

j
max
Sn−1

hKj .

From (6.1), (6.3), (6.5), and finally (6.2) together with (6.4), it follows
that

max
Sn−1

hK̄j
=

maxSn−1hKj

Cp(Kj)
1/(n−p)

≤
maxSn−1hKj

Cp

((
p−1
n−p |µj |

)−1/p
B

)1/(n−p)

≤M
<∞,

which concludes that the sequence {K̄j}j is bounded from above. q.e.d.

Since Kj = Fp,j(K̄j)
−1/pK̄j , and Cp(Kj)h

p−1
Kj

dµj = dµp(Kj , ·), we

have

Cp

(
K̄j

Fp,j
(
K̄j

)1/p
)
hp−1

K̄j

Fp,j(K̄j)
1/p

dµj = dµp

(
K̄j

Fp,j
(
K̄j

)1/p , ·
)
.

Since Cp(K̄j) = 1, by the positive homogeneity of p-capacity, support
function and p-capacitary measure, we obtain

(6.6) hp−1
K̄j

dµj = Fp,j
(
K̄j

)
dµp

(
K̄j , ·

)
.

Lemma 6.2. If {K̄j}j converges to a compact convex set K̄, then
dim(K̄) 6= n− 1.
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Proof. We argue by contradiction and assume that dim(K̄) = n− 1.
Let f ∈ C(Sn−1) be nonnegative. By Colesanti et al. [20, Lemma

2.18], there is a positive constant c depending on n, p and M (given by
(6.5)), such that µp(K̄j , ·) ≥ c−pS(K̄j , ·). Thus,

(6.7)

∫
Sn−1

fhp−1
K̄j

dµj ≥ c−pFp,j(K̄j)

∫
Sn−1

fdS(K̄j , ·).

Now, several facts are in order. First, the convergence K̄j → K̄ is
equivalent to the uniform convergence hK̄j

→ hK̄ on Sn−1. Second, the

uniform convergence hK̄j
→ hK̄ together with the weak convergence

µj → µ yields the convergence Fp,j(K̄j) → Fp(K̄). Third, the conver-
gence K̄j → K̄ again yields the weak convergence S(K̄j , ·) → S(K̄, ·).
Hence, letting j →∞, (6.7) yields the inequality

(6.8)

∫
Sn−1

fhp−1
K̄

dµ ≥ c−pFp(K̄)

∫
Sn−1

fdS(K̄, ·).

Recall that K̄ is contained in an (n − 1)-dimensional subspace with
normal ξ0 ∈ Sn−1. So, S(K̄, ·) = Vn−1(K̄)(δξ0 + δ−ξ0), where Vn−1(K̄)
is the (n − 1)-dimensional volume of K̄. Let µ̃ be the Borel measure

on Sn−1 given by dµ̃ = hp−1
K̄

dµ. And let c′ = c−pF (K̄)Vn−1(K̄). Then,

c′ is a positive constant (by Lemma 2.3) and is independent of f . The
inequality (6.8) can be reformulated as

(6.9)

∫
Sn−1

fdµ̃ ≥ c′ · (f(ξ0) + f(−ξ0)).

Consider the set

F =

{
f ∈ C(Sn−1) : f ≥ 0 and f(ξ0) = f(−ξ0) =

1

2

}
.

Since the inequality (6.9) holds for all nonnegative continuous functions
f , we obtain

inf
f∈F

∫
Sn−1

fdµ̃ ≥ c′ > 0.

On the other hand, since dµ̃ = hp−1
K̄

dµ and hK̄(±ξ0) = 0, it follows
that ∫

Sn−1

fdµ̃ =

∫
Sn−1\{±ξ0}

fdµ̃.

Take a decreasing sequence {fk}k ⊂ F, which converges pointwise to
χ{±ξ0}/2. Then, limk→∞

∫
Sn−1 fkdµ̃ = 0. Therefore,

inf
f∈F

∫
Sn−1

fdµ̃ = 0 < c′.
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A contradiction occurs. Hence, dim(K̄) 6= n− 1. q.e.d.

Lemma 6.3. If {K̄j}j converges to a compact convex set K̄, and in
addition each µj is discrete and satisfies condition (A2), then dim(K̄) =
n.

Proof. Let dim(K̄) = k. We argue by contradiction. In light of
Lemma 6.2, we may assume k < n−1. Then, it necessarily has n−p < k.
Otherwise, Cp(K̄) = 0, which is impossible because of the continuity of
Cp and the fact that Cp(K̄j) = 1 for each j.

By Lemma 6.1, we can take some ρ > 0 so that K̄j ⊆ ρB. For each
j, let tj = δH

(
K̄j , K̄

)
. Then, tj > 0 for each j; and tj → 0, as j →∞.

We show that there appears

(6.10) lim
j→∞

µj(Sn−1) =∞,

which will contradict that µj → µ weakly. Then, the proof is completed.
The limit (6.10) follows from the recent work [1] of Akman et al..

We only need to repeat their argument on page 94, where Ej and E
are replaced by K̄j and K̄, respectively. What we require modifying
slightly is the proof of their inequality (13.48), i.e.,

(6.11) tψ−1
j νj(∂Ej ∩ aB) ≤ C ′µ∗j (g∂Ej

(∂Ej ∩ aB)).

This inequality still holds in the Lp setting. In fact, from Akman’s et al.
inequality (13.47), an application of Akman’s et al. equation (13.39) to
f(y) = ‖y‖p for y ∈ Rn, and our identity (6.6), it follows that

tψ−1
j νj(∂Ej ∩ aB) ≤ C ′

Fp,j(Ej)

∫
g∂Ej

(∂Ej∩aB)

hp−1
Ej

dµ∗j ,

which reduces to (13.48) when p = 1. This inequality yields (6.11)
when p > 1. Indeed, since hEj ≤ ρ (i.e., Ej = K̄j ⊆ ρB), and
c := min {Fp,j(Ej), Fp(E) : j ∈ N} > 0 (by the convergence Fp,j(Ej) →
Fp(E) and Lemma 2.3), it follows that

1

Fp,j(Ej)

∫
g∂Ej

(∂Ej∩aB)

hp−1
Ej

dµj ≤
ρp−1

c
µ∗j (g∂Ej

(∂Ej ∩ aB)).

Repeating Akman’s et al. argument after (13.48), we will arrive at
(6.10). In fact, Akman et al. proved that there is a positive constant c′

such that

lim inf
j→∞

νj(∂Ej ∩ aB) ≥ c′.

This, together with (6.11) (i.e. Akman’s et al. inequality (13.48)),
directly gives

∞ = c′ lim
j→∞

tψ−1
j ≤ C ′ lim

j→∞
µj(Sn−1),
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where C ′ is a positive constant independent of j, and ψ − 1 = (1− n+
k)/(p− 1) < 0. q.e.d.

Lemma 6.4. If {K̄j}j converges to a compact convex set K̄, and in
addition 1 < p ≤ 2, then dim(K̄) = n.

Proof. The arguments here are similar to those of Colesanti et al. [20,
p. 1571]. If 1 < p ≤ 2 and dim(K̄) ≤ n − 2, then dim(K̄) ≤ n − p and
thus Hn−p(K̄) <∞. According to Evans and Gariepy [21, Theorem 3,
p. 154]: If Hn−p(K̄) <∞, then Cp(K̄) = 0. It follows that Cp(K̄) = 0.
But this is impossible, because of the continuity of Cp and the fact that
Cp(K̄j) = 1 for each j. q.e.d.

Lemma 6.5. Suppose {K̄j}j converges to a compact convex set K̄. If
in addition each µj is discrete and satisfies condition (A2), or 1 < p ≤ 2,
then

K :=

 p− 1

n− p

∫
Sn−1

hp
K̄
dµ

−1/p

K̄

is the unique convex body solving Problem 3 for (µ, p, p).

Proof. From Lemma 6.3 or 6.4, together with (4.1) (or Lemma 2.3),
it follows that K is a convex body containing the origin. Since

Kj =

 p− 1

n− p

∫
Sn−1

hp
K̄j
dµj

−1/p

K̄j ,

and

lim
j→∞

∫
Sn−1

hp
K̄j
dµj =

∫
Sn−1

hp
K̄
dµ,

it follows that Kj → K. Since Cp(Kj)h
p−1
Kj

dµj = dµp(Kj , ·), and

the uniform convergence hKj → hK yields the convergence Cp(Kj) →
Cp(K) and µp(Kj , ·)→ µp(K, ·) weakly, it follows that Cp(K)hp−1

K dµ =
dµp(K, ·). Thus, K is a solution to Problem 3 for µ. The uniqueness of
such body K is guaranteed by Lemma 4.5. q.e.d.

From Lemma 6.1, the Blaschke selection theorem and Lemma 6.5, we
obtain the following main lemma in this section, which is a crucial tool
to establish Theorem 1.1.

Lemma 6.6. Suppose µ and µj, j ∈ N, are finite Borel measures on
Sn−1 that are not concentrated on any closed hemisphere, and µj → µ
weakly as j → ∞. Let 1 < p < ∞ and 1 < p < n. For each j, assume
Problem 3 for (µj , p, p) has a unique solution. If in addition each µj is
discrete and satisfies condition (A2), then Problem 3 for (µ, p, p) has a
unique solution.
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Theorem 6.7. Suppose µ and µj, j ∈ N, are finite Borel measures on
Sn−1 that are not concentrated on any closed hemisphere. Let 1 < p <∞
and 1 < p ≤ 2. Assume K and Kj, j ∈ N, are the unique solution to
Problem 3 for (µ, p, p) and (µj , p, p), respectively. If µj → µ weakly,
then Kj → K, as j →∞.

Proof. By Lemma 4.4 (2), Kj and K are the unique solution to Prob-
lem 2 for (µj , p, p) and (µ, p, p), respectively. By Lemma 6.1, {Kj}j is
bounded from above. To prove limj→∞Kj = K, it suffices to prove that
each convergent subsequence {Kjl}l of {Kj}j converges to K. For such

subsequence, let K̄jl = Cp(Kjl)
−1/(n−p)Kjl , for l ∈ N.

By Lemma 4.1 (2) and Lemma 4.2, K̄jl is the unique solution to
Problem 1 for (µjl , p, p). By Lemma 6.1, {K̄jl}l is bounded from above.
By the Blaschke selection theorem, {K̄jl}l has a subsequence {K̄jli

}i
converging to a compact convex set K̄0. By Lemma 6.5, the set K0 :=(

p−1
n−p

∫
Sn−1 h

p
K̄0
dµ
)−1/p

K̄0 is the unique convex body solving Problem 3

for (µ, p, p). This in turn ensures K0 = K. Therefore, limi→∞Kjli
= K.

Recall that {Kjl}l is convergent. Hence, liml→∞Kjl = K. q.e.d.

Theorem 6.7 and Lemma 4.6 directly yield the following corollaries.

Corollary 6.8. Suppose µ and µj, j ∈ N, are finite Borel measures
on Sn−1 that are not concentrated on any closed hemisphere. Let 1 <
p < ∞ and 1 < p ≤ 2. Assume K and Kj, j ∈ N, are convex bodies

containing the origin such that dµp(K, ·) = chp−1
K dµ and dµp(Kj , ·) =

cjh
p−1
Kj

dµj, where c = cj = 1 if p+p 6= n, or c = Cp(K) and cj = Cp(Kj)

if p+ p = n. If µj → µ weakly, then Kj → K, as j →∞.

Corollary 6.9. Suppose K,Kj ∈ Kno , j ∈ N, 1 < p < ∞ and 1 <
p ≤ 2. Then the following assertions hold.

(1) If p + p 6= n and µp,p(Kj , ·) → µp,p(K, ·) weakly, then Kj → K,
as j →∞.

(2) If Cp(Kj)
−1µn−p,p(Kj , ·) → Cp(K)−1µn−p,p(K, ·) weakly, then

Kj → K, as j →∞.

7. Proofs of the Lp Minkowski problem for p-capacity

Throughout this section, let 1 < p < ∞ and 1 < p < n. We finish
the proofs of Theorems 1.1, 1.2 and 1.3 by 4 steps.

Step I. We prove the existence of solution to Problem 3 for a discrete
measure satisfying conditions (A1) and (A2). Precisely, we prove the
following

Lemma 7.1. Let µ be a finite Borel measure on Sn−1. If µ is discrete
and satisfies condition (A1) and (A2), then there exists a unique convex
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proper polytope P containing the origin in its interior, such that

µp,p(P, ·)
Cp(P )

= µ.

Proof. Assume µ =
∑m

i=1 ciδξi , where ξi ∈ Sn−1 and ci > 0, for all i.
For a convex body Q containing the origin, let

Fp(Q) =
p− 1

n− p

m∑
i=1

cihQ(ξi)
p.

In light of the relations of solutions to Problems 1, 2 and 3, for conve-
nience, we aim to prove Problem 1 for (µ, p, p) has a solution P0, and
P0 is a convex proper polytope containing the origin.

First, we verify that there is a minimizing sequence {Pj}j for Problem
1, and each Pj is a convex proper polytope with facet normals belonging
to {ξ1, . . . , ξm}. For this aim, take a minimizing sequence {Qj}j of
convex bodies for Problem 1. Corresponding to each body Qj , we take
the Wulff shape

Pj =
{
x ∈ Rn : x · ξi ≤ hQj (ξi), i = 1, . . . ,m

}
.

Since µ is not concentrated on any closed hemisphere and Qj is a convex
body containing the origin, Pj is a bounded convex polytope containing
Qj . Moreover, hQj (ξi) = hPj (ξi), for all i. So,

Cp(Pj) ≥ Cp(Qj) ≥ 1 and Fp(Pj) = Fp(Qj).

Clearly, {Pj}j is a desired minimizing sequence for Problem 1.
Second, we show the boundedness of {Pj}j . If so, then {Pj}j has

a convergent subsequence {Pjk}k by the Blaschke selection theorem,
which converges to a convex polytope, say P0.

Since 0 < Cp(B) <∞ and Cp

(
Cp(B)−1/(n−p)B

)
= 1, it follows that

inf {Fp(Q) : o ∈ Q ∈ Kn,Cp(Q) ≥ 1}

≤M := Fp

(
Cp(B)−1/(n−p)B

)
<∞.

So, there is an index j0 such that Fp(Pj) ≤ M for all j ≥ j0. Without
loss of generality, assume Fp(Pj) ≤M for all j. Since each ci is positive
and each Pj contains the origin, it follows that for all i and j,

p− 1

n− p
min {ci : i = 1, . . . ,m}hPj (ξi)

p ≤ p− 1

n− p

m∑
i=1

cihPj (ξi)
p ≤M.

Thus,

hPj (ξi) ≤
(
n− p

p− 1
· M

min {ci : i = 1, . . . ,m}

)1/p

<∞.

It implies that the minimizing sequence {Pj}j is bounded from above.
Third, we show dim(P0) = n. So, P0 is a solution to Problem 1.
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Since the facet normals of P0 belong to the set {ξ1, . . . , ξm}, by condi-
tion (A2), no two vectors in {ξ1, . . . , ξm} are antipodal. This implies that
dim(P0) 6= n − 1. Moreover, n − p < dim(P0). Otherwise, Cp(P0) = 0,
which is impossible because of the continuity of Cp and that Cp(Pjk) ≥ 1
for each k. So, we assume n−p < dim(P0) < n−1 and prove that P0 is
not a solution to Problem 1 for (µ, p, p). Precisely, we prove that there
is another distinct polytope Q with Cp(Q) = 1, but Fp(Q) < Fp(P0).

Since some of the values hP0(ξ1), . . . , hP0(ξm) are zero, w.l.o.g., we
assume hP0(ξi) = 0 for 1 ≤ i ≤ i0, and hP0(ξi) > 0 for i0 + 1 ≤ i ≤ m,
where 3 ≤ i0 ≤ m − 2 (see, e.g., [1]). Let a = 1

4 min{hP0(ξi) : i0 + 1 ≤
i ≤ m}, and take the Wulff shape

D = {x ∈ Rn : x · ξi ≤ a, i = 1, . . . ,m}.
For small t > 0, let

Pt = P0 + tD and P̄t = Cp(Pt)
−1/(n−p)Pt.

Two observations are in order. First, since P0 is the limit of the mini-
mizing sequence {Pjk}k, it necessarily implies that Cp(P0) = 1. Second,
Pt is continuous in t, and Pt → P0 as t → 0+. So, by the continuity of
Cp, P̄t is continuous in t, and P̄t → P0 as t→ 0+.

For small t > 0, consider F (t) = n−p
p−1Fp(P̄t), i.e.,

F (t) = Cp(Pt)
−p/(n−p)

m∑
i=1

cihPt(ξi)
p.

Then, F (t) is positive and continuous in t; and F (t)→ F (0) = Fp(P0),
as t→ 0+. Moreover,

dF (t)

dt
= pCp(Pt)

−p/(n−p)
m∑
i=1

cihPt(ξi)
p−1hD(ξi)

− p

n− p
Cp(Pt)

−1−p/(n−p)dCp(Pt)

dt

m∑
i=1

cihPt(ξi)
p.

Note that in Akman et al. [1, Proposition 13.2], it was proved that
under the assumptions mentioned above, there appears

lim
t→0+

dCp(Pt)

dt
=∞.

Thus, for some sufficiently small t0 > 0 and for 0 < t < t0,

dF (t)

dt
< 0.

Consequently, for sufficiently small t > 0, we have F (t) < F (0); i.e.,

Fp(P̄t) < Fp(P0).

Recall that Cp(P̄t) = Cp(P0) = 1. Take Q = P̄t, as desired. This
completes the third step.
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Now, we turn to Problem 2 for (µ, p, p). Since P0 is a convex proper
polytope solving Problem 1, by (4.1) and Lemma 4.1 (1) we conclude

that P := Fp(P0)−1/pP0 is a convex proper polytope solving Problem 2.
From Lemmas 4.2 and 4.3, it follows that such solution P is unique and
contains the origin in its interior.

Finally, we return to Problem 3 for (µ, p, p). By Lemma 4.4 (1), the
polytope P is the unique solution to Problem 3 for (µ, p, p). Since P
contains the origin in its interior, the formula

Cp(P )−1dµp(P, ·) = hp−1
P dµ

can be readily rewritten as that in Lemma 7.1. q.e.d.

Step II. We prove the existence of solution to Problem 3 for a general
measure.

Lemma 7.2. Problem 3 for (µ, p, p) has a unique solution. If in
addition µ is discrete, the solution is a convex proper polytope containing
the origin in its interior.

Proof. By Lemma 5.1, we can choose a sequence of discrete measures
{µj}j satisfying conditions (A1) and (A2), converging weakly to µ. By
Lemma 7.1, Problem 3 for each (µj , p, p) has a unique solution. By
Lemma 6.6, it immediately implies that Problem 3 for each (µ, p, p) has
a unique solution. If in addition µ is discrete, by Lemma 4.4 (2) and
Lemma 4.3, such solution is a convex proper polytope containing the
origin in its interior. q.e.d.

Step III. We prove the following

Lemma 7.3. If in addition p ≥ n, then the unique solution K to
Problem 3 for (µ, p, p) contains the origin in its interior, and therefore,
µp,p(K, ·) = Cp(K)µ.

Proof. Let {µj}j be a sequence of discrete measures on Sn−1, which
satisfy conditions (A1) and (A2), and converge to µ weakly. For each
j, Problem 3 for (µj , p, p) has a unique solution Pj , and Pj is a convex
polytope with the origin in its interior. Similar to the proof of Theorem
6.7, we have Pj → K, as j →∞.

Several useful facts are listed. Firstly, supj |µj | < ∞. Secondly,

dµj = Cp(Pj)
−1h1−p

Pj
dµp(Pj , ·), for each j. Thirdly, from the convergence

Pj → K and Colesanti et al. [20, Lemma 2.18], there is a positive
constant c1 depending on n, p and max{hPj (ξ) : ξ ∈ Sn−1, j ∈ N}, such

that µp(Pj , ·) ≥ c−p1 SP̄j
. Finally, from the convergence Pj → K again

and the continuity of p-capacity, it follows that 0 < supj Cp(Pj) < ∞.
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Hence,

∞ > sup
j
|µj |

≥ |µj |

=
1

Cp(Pj)

∫
Sn−1

h1−p
Pj

dµp(Pj , ·)

≥ c2

∫
Sn−1

h1−p
Pj

dSPj ,

where c2 =
c−p
1

supj Cp(Pj) .

Assume the origin is on the boundary of K. We will conclude that
p < n by adapting the arguments of Hug et al. [39, p.713]. In fact, let
ξK ∈ Sn−1 be such that ∂K can be locally represented as the graph of
a convex function over (a neighborhood of) Br := ξ⊥K ∩ rB, r > 0, and
x · ξK ≥ 0 for any x ∈ K. Then there exists a subsequence {jl}l of N
tending to ∞, and a constant c3 > 0 independent of j, such that

lim
l→∞

∫
Sn−1

h1−p
Pjl

dSPjl
≥ c3

r∫
0

tn−p−1dt.

Hence,

∞ > sup
j
{|µj |} ≥ c2c3

r∫
0

tn−p−1dt,

which implies that p < n. q.e.d.

Step IV. We conclude the proofs of Theorems 1.1, 1.2 and 1.3.
In light of Lemma 4.6, when p + p 6= n, the solutions to Problems 3

and 4 for (µ, p, p) differ from each other only by a positive scalar. So,
by Lemma 7.2 and Lemma 7.3, the solution to Problem 4 contains the
origin in its interior if p ≥ n, or µ is discrete. Furthermore, when µ
is discrete, the solution is a convex proper polytope. So, Theorems 1.1
and 1.2 are proved.

For a finite even Borel measure µ on Sn−1, it is not concentrated on
any closed hemisphere, if and only if it is not concentrated on any great
subsphere. Thus, by Theorem 1.1, there exists a unique convex body
K containing the origin, such that dµp(K, ·) = chp−1

K dµ with constant c
given in Theorem 1.1. Since µ is even, for any Borel subset ω ⊆ Sn−1,
it follows that∫

ω

dµp(−K, ·) =

∫
−ω

dµp(K, ·) = c

∫
−ω

hp−1
K dµ = c

∫
ω

hp−1
−K dµ.
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By the uniqueness part of Theorem 1.1, it follows that K = −K. Thus,
Theorem 1.3 is proved.

8. Open problem

Since the logarithmic Minkowski problem is the most important case,
we pose the following

Logarithmic Minkowski problem for capacity. Suppose µ is a
finite Borel measure on Sn−1 and 1 < p < n. What are the necessary
and sufficient conditions on µ so that µ is the L0 p-capacitary measure
µ0,p(K, ·) of a convex body K in Rn?
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