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Abstract

By using the method of mixed volumes, we give sharp bounds for inclusion measures of convex bodies in
n-dimensional Euclidean space. In the special cases where the random convex body is the unit ball or when
n = 3, neater and simpler bounds are obtained. All the associated inequalities proved are new isoperimetric-
type inequalities.
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1. Introduction

The setting for this paper is in the n-dimensional Euclidean space R
n. A convex figure is

a compact convex subset of R
n, and a convex body is a convex figure with nonempty interior.

The principal kinematic formula in integral geometry gives the measure of the set of congruent
convex bodies intersecting with a fixed convex body. These formulas can be viewed as integral
formulas for various intersection measures. They are useful for solving problems in geometric
probability and stochastic geometry. Some problems in geometric probability require more tools
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than merely intersection measures. For instance, solutions to the Buffon needle problem of lat-
tices need to compute the measure of the needle that is contained in a fundamental region of the
lattice. The kinematic measure of a moving geometric figure that is contained in a fixed geo-
metric figure is called the inclusion measure. Specifically, let K,L be two convex bodies in R

n

and G(n) be the group of special motions in R
n. Each element g : R

n → R
n of G(n) can be

represented by

x �→ g(x) = ex + b,

where b ∈ R
n and e is an orthogonal matrix of determinant 1. Let μ be the Haar measure on G(n)

normalized as follows. Let ϕ : R
n × SO(n) → G(n) be defined by ϕ(t, e)x = ex + t , x ∈ R

n,
where SO(n) is the rotation group of R

n. If ν is the unique invariant probability measure on
SO(n), and η is the Lebesgue measure on R

n, then μ is chosen as the pull back measure of η ⊗ ν

under ϕ−1.
The inclusion measure of a convex figure L contained in a convex body K is defined by

mK(L) = m(L ⊆ K) =
∫

{g∈G(n): gL⊆K}
dμ(g).

It gives the measure of the set of copies congruent to L which are contained in a fixed convex
body K . Ref. [16] is an excellent survey paper on inclusion measures for which one can con-
sult. The first important work on inclusion measures is due to Hadwiger, who gave bounds for
inclusion measures and used the bounds to derive Bonnesen-type isoperimetric inequalities. Had-
wiger’s work was generalized to higher dimensions in [15]. In [7], D. Ren introduced the notion
of generalized support function of a convex body in the plane and used it to establish integral
formulas for the inclusion measure of a line segment inside a convex body. He then applied his
formulas to solving generalized Buffon needle problems of lattices in [8]. In [12], Xiong showed
that if Ki , i = 1, . . . , s, s > 1, s ∈ N, are convex bodies and L is a convex figure in R

n, then

mK1+···+Ks (L) > mK1(L) + · · · + mKs (L).

Specifically, when L is a line segment, then

mα1K1+···+αsKs (L) > αn
1mK1

(
L

α1

)
+ · · · + αn

s mKs

(
L

αs

)

for αi � 1. In particular, the inclusion measure mK(L) is not linear with respect to the convex
body K .

In this paper, we continue to investigate the inclusion measures of convex bodies and ob-
tain upper and lower bounds for inclusion measures by using the theory of mixed volumes. All
the associated inequalities proved are new isoperimetric-type inequalities. For the new progress
of isoperimetric inequalities, see Refs. [3,5,6,9,13,14]. In some sense, this paper illustrates the
powerful and effective applications of the theory of mixed volume to the theory of inclusion
measures.
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2. Notations and preliminaries

Let K be a convex figure in R
n. Associated with K is its support function hK defined on R

n

by

hK(x) = max
{〈x, y〉: y ∈ K

}
,

where 〈x, y〉 is the usual inner product of x and y in R
n. The function hK is positively homoge-

neous of degree 1. We will usually be concerned with the restriction of the support function to
the unit sphere Sn−1.

The Minkowski addition of two convex figures K and L is defined as

K + L = {x + y: x ∈ K, y ∈ L}.

The Minkowski difference of two convex figures K and L is defined as

K ∼ L = {
x ∈ R

n: x + L ⊆ K
}
.

If L is empty, K ∼ L is, by convention, equal to R
n.

The scalar multiplication λK of K , where λ � 0, is defined as

λK = {λx: x ∈ K}.

For convex figure λK + μL, the support function satisfies

hλK+μL = λhK + μhL.

If the convex body K in R
n is a Minkowski linear combination of m convex bodies, i.e.,

K = λ1K1 + λ2K2 + · · · + λmKm,λ1, . . . , λm � 0, then the volume of K can be expressed as an
nth degree homogeneous polynomial in the λi as follows:

V (K) =
∑

1�p1,...,pn�m

V (Kp1 ,Kp2 , . . . ,Kpn)λp1λp2 · · ·λpn.

Here the summation is extended over all pi independently as i varies from 1 to n. The coefficients
V (Kp1 ,Kp2 , . . . ,Kpn) are called mixed volumes. Specifically, for convex figure λK + μL, its
volume is a homogeneous polynomial in λ and μ given by

V (λK + μL) =
n∑

i=0

(
n

i

)
Vi(K,L)λn−iμi .

The coefficients Vi(K,L) are called mixed volumes of K and L. In particular, if B is the unit ball,
then the mixed volumes V (K, . . . ,K︸ ︷︷ ︸

n−i

,B, . . . ,B︸ ︷︷ ︸
i

) = Vi(K,B) are called the quermassintegrals

of K and denoted by Wi(K).
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The quermassintegrals are generalizations of the surface area and the volume. Indeed, it can
be shown that

W0(K) = V (K),

nW1(K) = S(K),

2

ωn

Wn−1(K) = M(K),

Wn(K) = ωn,

where ωn is the volume of the unit ball in R
n and M(K) is the mean width of K , i.e.,

M(K) = 2

nωn

∫
Sn−1

hK(u)dS(u). (2.0)

The quermassintegrals arise in many areas of mathematics and have different definitions. If
K has a C2 boundary, they are the integrals of elementary symmetric functions of the principal
curvatures over the boundary. In the theory of mixed volumes, the quermassintegrals are called
simple mixed volumes. They are also called projection measures, intrinsic volumes, etc. The
reader should consult [10] and [11] for details.

The following elementary properties of mixed volumes will be used later. For any convex
figures K,L,Ki (1 � i � n) in R

n, K ⊇ L, and for any a, b � 0,

V (K1, . . . ,Kn−1, aKn + bL) = aV (K1, . . . ,Kn−1,Kn) + bV (K1, . . . ,Kn−1,L), (2.1)

V (K1, . . . ,Kn−1,K) � V (K1, . . . ,Kn−1,L). (2.2)

The mixed volume V1(K,L) has an integral representation given by

V1(K,L) = 1

n

∫
Sn−1

hL(u)dSK(u), (2.3)

where SK is the surface area measure of K (see [4, p. 166]).
The Minkowski inequality states that if K and L are convex bodies in R

n, then

V1(K,L)n � V (K)n−1V (L), (2.4)

with equality if and only if K and L are homothetic. The Minkowski inequality has an equivalent
form

V (K + L)
1
n � V (K)

1
n + V (L)

1
n , (2.5)

which is called the Brunn–Minkowski inequality.
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If K1, . . . ,Kn are convex bodies in R
n and m < n is a natural number, then

V (K1, . . . ,Kn)
m �

m∏
i=1

V (Ki, . . . ,Ki︸ ︷︷ ︸
m

,Km+1, . . . ,Kn). (2.6)

Inequality (2.6) is due to Alexandrov [1].
The inradius r(K,L) of K with respect to L is defined by

r(K,L) = sup
{
λ: x ∈ R

n and x + λL ⊆ K
}
.

If L is the unit ball B in R
n, then r(K,L) will denote the radius of the maximal inscribable ball

of K .
Let hK and hL be the support functions of K and L, respectively. First, we assume that

L is a convex body. For a fixed λ ∈ [0, r], consider the function hλ = hK − λhL on the unit
sphere, where r = r(K,L) is the inradius of K with respect to L. In general, hλ is not the
support function of a convex body. Denote by C(K,L,λ) the intersection of halfspaces {x ∈ R

n:
〈x,u〉 � hλ(u)}, u ∈ Sn−1. The boundaries ∂C(K,L,λ) are pairwise disjoint and

⋃
0�λ�r(K,L)

∂C(K,L,λ) = K.

The following formula is known (see [1,4]),

d

dλ
V

(
C(K,L,λ)

) = −nV1
(
C(K,L,λ),L

)
. (2.7)

By integrating both sides of (2.7), we get

V (K) − V
(
C(K,L,λ)

) = n

λ∫
0

V1
(
C(K,L,σ ),L

)
dσ (2.8)

and

V
(
C(K,L,λ)

) = n

r(K,L)∫
λ

V1
(
C(K,L,σ ),L

)
dσ. (2.9)

By a limit process, (2.8) and (2.9) are seen to hold for any convex figure L. The following lemma
asserts that C(K,L,λ) = φ if λ > r(K,L), and thus (2.8) and (2.9) hold for any λ � 0.

Lemma 1. (See [15].) The intersection C(K,L,λ) of halfspaces {x ∈ R
n: 〈x,u〉 � hλ(u)} is

equal to the set {x ∈ R
n: x + λL ⊆ K}, i.e.,

C(K,L,λ) = {
x ∈ R

n: x + λL ⊆ K
}
, λ � 0.
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According to the definition of Minkowski difference, the set C(K,L,λ) is actually equal to
the set K ∼ λL, that is, C(K,L,λ) = K ∼ λL.

The following lemma will also be useful in the sequel.

Lemma 2. (See [15].) If K is a convex body and L is a convex figure in R
n, then the inclusion

measure of L contained in K is

mK(L) =
∫

SO(n)

V
(
C(K,eL,1)

)
dν(e),

where ν is the unique invariant probability measure on SO(n).

3. Main results

For simplicity, if no confusion may arise, we shall abbreviate C(K,L,λ) as C(K). In the
following, we obtain the lower and upper bounds of the volume for the set C(K).

Lemma 3. If L is a fixed convex figure and K is any convex body in R
n, then for any 0 � λ �

r(K,L), we have

Vi

(
C(K),L

)
� Vi(K,L) − λVi+1(K,L)

− λ

n−i−1∑
k=1

V
(
C(K), . . . ,C(K)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−i−1

,L, . . . ,L︸ ︷︷ ︸
i+1

)
. (3.0)

Moreover, if C(K) + λL = K, then equality (3.0) holds.

Proof. From Lemma 1, we have K ⊇ C(K) + λL, for 0 � λ � r(K,L). Using properties (2.1)

and (2.2) of mixed volumes, we have

Vi(K,L) = V (K, . . . ,K︸ ︷︷ ︸
n−i

,L, . . . ,L︸ ︷︷ ︸
i

) � V
(
C(K) + λL,K, . . . ,K︸ ︷︷ ︸

n−i−1

,L, . . . ,L︸ ︷︷ ︸
i

)
= V

(
C(K),K, . . . ,K︸ ︷︷ ︸

n−i−1

,L, . . . ,L︸ ︷︷ ︸
i

) + λV (K, . . . ,K︸ ︷︷ ︸
n−i−1

,L, . . . ,L︸ ︷︷ ︸
i+1

)

= V
(
C(K),K, . . . ,K︸ ︷︷ ︸

n−i−1

,L, . . . ,L︸ ︷︷ ︸
i

) + λVi+1(K,L)

� V
(
C(K),C(K) + λL,K, . . . ,K︸ ︷︷ ︸

n−i−2

,L, . . . ,L︸ ︷︷ ︸
i

) + λVi+1(K,L)

= V
(
C(K),C(K),K, . . . ,K︸ ︷︷ ︸

n−i−2

,L, . . . ,L︸ ︷︷ ︸
i

) + λV
(
C(K),K, . . . ,K︸ ︷︷ ︸

n−i−2

,L, . . . ,L︸ ︷︷ ︸
i+1

)
+ λVi+1(K,L)

� V
(
C(K),C(K),C(K),K, . . . ,K︸ ︷︷ ︸,L, . . . ,L︸ ︷︷ ︸ )
n−i−3 i
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+ λV
(
C(K),C(K),K, . . . ,K︸ ︷︷ ︸

n−i−3

,L, . . . ,L︸ ︷︷ ︸
i+1

)
+ λV

(
C(K),K, . . . ,K︸ ︷︷ ︸

n−i−2

,L, . . . ,L︸ ︷︷ ︸
i+1

) + λVi+1(K,L)

...

� Vi

(
C(K),L

) + λVi+1(K,L) + λ

n−i−1∑
k=1

V
(
C(K), . . . ,C(K)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−i−1

,L, . . . ,L︸ ︷︷ ︸
i+1

)
.

Hence the inequality (3.0).
If C(K) + λL = K, from the property (2.1) of mixed volume, each equality in the above

derivation holds, so equality (3.0) holds too.
This completes the proof. �

Theorem 1. Let L be a convex figure and K a convex body in R
n. If r(K,L) � 1, then

mK(L) � V (K) − 1

2n
S(K)M(L)

−
∫

SO(n)

n−1∑
k=1

V
(
C(K,eL,1), . . . ,C(K, eL,1)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−1

, eL
)
dν(e). (3.1)

Moreover, if C(K,eL,1) + eL = K for any e ∈ SO(n), then equality (3.1) holds.

Proof. From Lemma 3, when i = 0 we have

V
(
C(K)

)
� V (K) − λV1(K,L) − λ

n−1∑
k=1

V
(
C(K), . . . ,C(K)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−1

,L
)
.

With the condition r(K,L) � 1, from Lemma 2 we have

mK(L) =
∫

SO(n)

V
(
C(K,eL,1)

)
dν(e)

�
∫

SO(n)

[
V (K) − V1(K, eL)

−
n−1∑
k=1

V
(
C(K,eL,1), . . . ,C(K, eL,1)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−1

, eL
)]

dν(e)

= V (K) −
∫

V1(K, eL)dν(e)
SO(n)
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−
∫

SO(n)

n−1∑
k=1

V
(
C(K,eL,1), . . . ,C(K, eL,1)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−1

, eL
)
dν(e). (∗)

From (2.3), (2.0), and Fubini’s theorem, we obtain

∫
SO(n)

V1(K, eL)dν(e) = 1

n

∫
Sn−1

dSK(u)

∫
SO(n)

heL(u)dν(e)

= 1

n

∫
Sn−1

dSK(u) · 1

nωn

∫
Sn−1

hL(u)dS(u) = 1

2n
S(K)M(L).

This gives (3.1).
If C(K,eL,1)+eL = K for any e ∈ SO(n), by Lemma 3, equality (∗) holds. So equality (3.1)

holds too.
This completes the proof. �

Theorem 2. Let L be a convex figure and K a convex body in R
n. If r(K,L) � 1, then

mK(L) � V (K) − 1

2
S(K)M(L) + n

2ωn

W2(K)Wn−2(L)

+ n

∫
SO(n)

[
n−2∑
k=1

1∫
0

tV
(
C(K,eL, t), . . . ,C(K, eL, t)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−2

, eL, eL
)
dt

]
dν(e).

(3.2)

Moreover, if C(K,eL,1) + eL = K for any e ∈ SO(n), then equality (3.2) holds.

Proof. From Lemma 3, when i = 1 we have

V1
(
C(K),L

)
� V1(K,L) − λV2(K,L) − λ

n−2∑
k=1

V
(
C(K), . . . ,C(K)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−2

,L,L
)

for all 0 � λ � r(K,L). By integrating both sides of this inequality from 0 to t with respect to λ,

and applying (2.8) we have

1

n

[
V (K) − V

(
C(K,L, t)

)]

� tV1(K,L) − t2

2
V2(K,L) −

n−2∑
k=1

t∫
0

λV
(
C(K), . . . ,C(K)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−2

,L,L
)
dλ.

Write t = λ. Then
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V
(
C(K)

)
� V (K) − nλV1(K,L)

+ n
λ2

2
V2(K,L) + n

n−2∑
k=1

λ∫
0

tV
(
C(K,L, t), . . . ,C(K,L, t)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−2

,L,L
)
dt.

With the condition r(K,L) � 1, from Lemma 2 we have

mK(L) =
∫

SO(n)

V
(
C(K,eL,1)

)
dν(e)

�
∫

SO(n)

[
V (K) − nV1(K, eL) + n

2
V2(K, eL)

+ n

n−2∑
k=1

1∫
0

tV
(
C(K,eL, t), . . . ,C(K, eL, t)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−2

, eL, eL
)
dt

]
dν(e)

= V (K) − 1

2
S(K)M(L) + n

2

∫
SO(n)

V2(K, eL)dν(e)

+ n

∫
SO(n)

[
n−2∑
k=1

1∫
0

tV
(
C(K,eL, t), . . . ,C(K, eL, t)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−2

, eL, eL
)
dt

]
dν(e).

(∗)

Using the formula ∫
SO(n)

Vi(K, eL)dν(e) = 1

ωn

Wi(K)Wn−i (L),

we have ∫
SO(n)

V2(K, eL)dν(e) = 1

ωn

W2(K)Wn−2(L).

From this (3.2) follows.
If C(K,eL,1) + eL = K for any e ∈ SO(n), then by Lemma 3, equality (∗) holds, so equal-

ity (3.2) holds too.
This completes the proof. �
For the case n = 3, we have a comparatively simpler estimate than (3.1) and (3.2). The fol-

lowing lemma is useful to our proof.

Lemma 4. (See [2,15].) If the convex body C(λ) = C(K,L,λ) is defined as in Lemma 1, then

the functions Vn−i (C(λ),L)
1
i and V (C(λ))

1
n are concave functions of λ.
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Corollary 1. Let L be a convex figure and K a convex body in R
3. If r(K,L) � 1, then

mK(L) � V (K) − 1

6
S(K)M(L) − 2V

1
3 (L)

∫
SO(3)

V
2
3
(
C(K,eL,1)

)
dν(e)

− V
2
3 (L)

∫
SO(3)

V
1
3
(
C(K,eL,1)

)
dν(e). (3.3)

Moreover, if C(K,eL,1) + eL = K and C(K,eL,1) is homothetic to eL for any e ∈ SO(3),

then equality (3.3) holds. Specifically, if K and L are balls, or L is a point, then equality (3.3)
holds.

Proof. From Theorem 1, with the properties (2.1) and (2.2) of mixed volumes and the fact that
C(K,eL,1) + eL ⊆ K , we have

mK(L) � V (K) − 1

6
S(K)M(L) −

∫
SO(3)

V1
(
C(K,eL,1), eL

)
dν(e)

−
∫

SO(3)

V
(
C(K,eL,1),K, eL

)
dν(e)

� V (K) − 1

6
S(K)M(L) − 2

∫
SO(3)

V1
(
C(K,eL,1), eL

)
dν(e)

−
∫

SO(3)

V2
(
C(K,eL,1), eL

)
dν(e).

Using the Minkowski inequality, we have

V1
(
C(K,eL,1), eL

)
� V

2
3
(
C(K,eL,1)

)
V

1
3 (eL) = V

2
3
(
C(K,eL,1)

)
V

1
3 (L)

and

V2
(
C(K,eL,1), eL

)
� V

1
3
(
C(K,eL,1)

)
V

2
3 (eL) = V

1
3
(
C(K,eL,1)

)
V

2
3 (L).

Therefore,

mK(L) � V (K) − 1

6
S(K)M(L) − 2V

1
3 (L)

∫
SO(3)

V
2
3
(
C(K,eL,1)

)
dν(e)

− V
2
3 (L)

∫
V

1
3
(
C(K,eL,1)

)
dν(e).
SO(3)
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Assume that C(K,eL,1) + eL = K and C(K,eL,1) is homothetic to eL for any e ∈ SO(3).

According to Theorem 1 and the equality condition of the Minkowski inequality, each equality
in the above arguments has to hold, so equality (3.3) holds too.

Specifically, when L is a point, then mK(L) = V (K). It is easy to compute the right-hand
side of (3.3) directly and it is precisely equal to V (K).

If both K and L are balls with the same radius r , then mK(L) = 0. Computing the right-hand
side of (3.3), we get

4πr3

3
− 8πr3

6
− 2r ×

(
4π

3

) 1
3 × 0 − r2 ×

(
4π

3

) 2
3 × 0 = 0.

Hence, the equality holds in this case.
Assume that both K and L are balls with radii rK and rL, rK > rL, respectively. From

Lemma 2, we have mK(L) = 4π(rK−rL)3

3 . Computing the right-hand side of (3.3), we arrive at

4πr3
K

3
− 8πr2

KrL

6
− 8πrL(rK − rL)2

3
− 4πr2

L(rK − rL)

3
,

which is precisely 4π(rK−rL)3

3 . Hence, the equality holds in this case.
This completes the proof. �

Corollary 2. Let L be a convex figure and K be a convex body in R
3. If r(K,L) � 1, then

mK(L) � V (K) − 1

2
S(K)M(L) + 1

3
M(K)S(L) + V

2
3 (L)

∫
SO(3)

V
1
3
(
C(K,eL,1)

)
dν(e).

(3.4)

Specifically, if K and L are balls, or L is a point, then equality (3.4) holds.

Proof. From Theorem 2, we have

mK(L) � V (K) − 1

2
S(K)M(L) + 3

2

∫
SO(3)

V2(K, eL)dν(e)

+ 3
∫

SO(3)

1∫
0

tV2
(
C(K,eL, t), eL

)
dt dν(e).

Using the formula ∫
SO(n)

Vi(K, eL)dν(e) = 1

ωn

Wi(K)Wn−i (L),

we have
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3

2

∫
SO(3)

V2(K, eL)dν(e) = 3

2
· 1

ω3
W2(K)W1(L) = 1

4
M(K)S(L).

For the set V2(C(K, eL, t), eL),0 � t � 1, since it is a concave function of t , by Lemma 4, we
have

tV2
(
C(K,eL, t), eL

)
� t

[
(1 − t)V2(K, eL) + tV2

(
C(K,eL,1), eL

)]
.

Therefore,

3
∫

SO(3)

1∫
0

tV2
(
C(K,eL, t), eL

)
dt dν(e)

� 3
∫

SO(3)

1∫
0

[(
t − t2)V2(K, eL) + t2V2

(
C(K,eL,1), eL

)]
dt dν(e)

= 1

2

∫
SO(3)

V2(K, eL)dν(e) +
∫

SO(3)

V2
(
C(K,eL,1), eL

)
dν(e)

= 1

12
M(K)S(L) +

∫
SO(3)

V2
(
C(K,eL,1), eL

)
dν(e).

Furthermore, for the set V2(C(K, eL,1), eL), using the Minkowski inequality, we have

V2
(
C(K,eL,1), eL

)
� V

1
3
(
C(K,eL,1)

)
V

2
3 (eL) = V

1
3
(
C(K,eL,1)

)
V

2
3 (L),

therefore,

∫
SO(3)

V2
(
C(K,eL,1), eL

)
dν(e) � V

2
3 (L)

∫
SO(3)

V
1
3
(
C(K,eL,1)

)
dν(e).

Hence

mK(L) � V (K) − 1

2
S(K)M(L) + 1

3
M(K)S(L) + V

2
3 (L)

∫
SO(3)

V
1
3
(
C(K,eL,1)

)
dν(e).

When L is a point, or K and L are balls, we can verify directly as in Corollary 1 that equal-
ity (3.4) holds.

This completes the proof. �
Problem 1. Assume that C(K,eL,1) is homothetic to eL for any e ∈ SO(3). Is it affirmative
that K and L are balls?
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If the answer to the problem is positive, then equalities (3.3) and (3.4) hold, if and only if K

and L are balls.
In the special case where L is the unit ball B in R

n, we can obtain beautiful bounds for
inclusion measures of convex bodies. For simplicity, in what follows we will denote r(K,L),
i.e., the radius of the maximal inscribable ball of K , by r .

Theorem 3. Let K be a convex body and B the unit ball in R
n. If r � 1, then

mK(B) � V (K) − 1

n
S(K) − (

(r − 1)rn−1 − (r − 1)n
)
ωn. (3.5)

Specifically, if K is a ball with radius r , then equality (3.5) holds.

Proof. When L = B , by (3.1) we have

mK(B) � V (K) − 1

n
S(K) −

∫
SO(n)

n−1∑
k=1

V
(
C(K,eB,1), . . . ,C(K, eB,1)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−1

, eB
)
dν(e).

Since rB ⊆ K and (r − 1)B ⊆ C(K,B,1), we have

V
(
C(K,eB,1), . . . ,C(K, eB,1)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−1

, eB
)

= V
(
C(K,B,1), . . . ,C(K,B,1)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−1

,B
)

� V
(
(r − 1)B, . . . , (r − 1)B︸ ︷︷ ︸

k

, rB, . . . , rB︸ ︷︷ ︸
n−k−1

,B
)

= (r − 1)krn−k−1ωn, k = 1,2, . . . , n − 1.

So,

mK(B) � V (K) − 1

n
S(K) − ωn

n−1∑
k=1

(r − 1)krn−k−1

= V (K) − 1

n
S(K) − (

(r − 1)rn−1 − (r − 1)n
)
ωn.

In case K is a ball with radius r , we can compute the right-hand side of (3.5) directly and get
(r − 1)nωn, which is precisely equal to mK(B).

This completes the proof. �
Theorem 4. Let K be a convex body and B the unit ball in R

n. If r � 1, then
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mK(B) � V (K) − S(K) + n

2
rn−2ωn +

(
n

2
− 1

)
rnωn

− nωn

n−2∑
k=1

rn−k−2(r − 1)k+1 r + k + 1

(k + 1)(k + 2)
. (3.6)

Specifically, if K is a ball with radius r , then equality (3.6) holds.

Proof. When L = B , by (3.2) we have

mK(B) � V (K) − S(K) + n

2
W2(K)

+ n

∫
SO(n)

[
n−2∑
k=1

1∫
0

tV
(
C(K,eB, t), . . . ,C(K, eB, t)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−2

, eB, eB
)
dt

]
dν(e).

Since rB ⊆ K and (r − t)B ⊆ C(K,B, t),0 � t � 1, we have

W2(K) = V2(K,B) � V ( rB, . . . , rB︸ ︷︷ ︸
n−2

,B,B) � rn−2ωn,

and

V
(
C(K,eB, t), . . . ,C(K, eB, t)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−2

, eB, eB
)

= V
(
C(K,B, t), . . . ,C(K,B, t)︸ ︷︷ ︸

k

,K, . . . ,K︸ ︷︷ ︸
n−k−2

,B,B
)

� V
(
(r − t)B, . . . , (r − t)B︸ ︷︷ ︸

k

, rB, . . . , rB︸ ︷︷ ︸
n−k−2

,B,B
) = (r − t)krn−k−2ωn, k = 1,2, . . . , n − 2.

So,

mK(B) � V (K) − S(K) + n

2
rn−2ωn + nωn

n−2∑
k=1

1∫
0

t (r − t)krn−k−2 dt

= V (K) − S(K) + n

2
rn−2ωn + nωn

n−2∑
k=1

rn−k−2

1∫
0

t (r − t)k dt

= V (K) − S(K) + n

2
rn−2ωn + nωnr

n
n−2∑
k=1

1
r∫

0

t (1 − t)k dt

= V (K) − S(K) + n
rn−2ωn + n

rnωn − rnωn

2 2
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− nωn

n−2∑
k=1

rn−k−2(r − 1)k+1 r + k + 1

(k + 1)(k + 2)

= V (K) − S(K) + n

2
rn−2ωn +

(
n

2
− 1

)
rnωn

− nωn

n−2∑
k=1

rn−k−2(r − 1)k+1 r + k + 1

(k + 1)(k + 2)
.

In case K is a ball with radius r , each equality in the arguments has to hold. So equality (3.6)
holds too.

This completes the proof. �
Problem 2. What is the necessary condition for equalities (3.5) and (3.6) to hold?
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