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Moment-entropy inequalities for a random vector
Erwin Lutwak, Deane Yang, and Gaoyong Zhang

Abstract—The p-th moment matrix is defined for a real
random vector, generalizing the classical covariance matrix.
Sharp inequalities relating the p-th moment and Renyi entropy
are established, generalizing the classical inequality relating
the second moment and the Shannon entropy. The extremal
distributions for these inequalities are completely characterized.

Index Terms—random vector, entropy, Renyi entropy, covari-
ance, covariance matrix, moment, moment matrix, information
theory, information measure

I. INTRODUCTION

In [1] the authors demonstrated how the classical informa-
tion theoretic inequality for the Shannon entropy and second
moment of a real random variable could be extended to
inequalities for Renyi entropy and the p-th moment. The
extremals of these inequalities were also completely charac-
terized. Moment-entropy inequalities, using Renyi entropy, for
discrete random variables have also been obtained by Arikan
[2].

We describe how to extend the definition of the second mo-
ment matrix of a real random vector to that of the p-th moment
matrix. Using this, we extend the moment-entropy inequalities
and the characterization of the extremal distributions proved
in [1] to higher dimensions.

The results in this paper extend earlier work of the authors
(with O. Guleryuz) [3] and Costas-Hero-Vignat [4] (also, see
recent work of Johnson-Vignat [5]). Variants and generaliza-
tions of the theorems presented can be found in work of the
authors [6], [7], [8], [9] and Bastero-Romance [10].

The authors would like to thank Christoph Haberl for his
careful reading of this paper and valuable suggestions for
improving it.

II. THE p-TH MOMENT MATRIX OF A RANDOM VECTOR

A. Basic notation

Throughout this paper we denote:

Rn = n-dimensional Euclidean space
x · y = standard Euclidean inner product of x, y ∈ Rn

|x| =
√
x · x

S = positive definite symmetric n-by-n matrices
|A| = determinant of an n-by-n matrix A

For each A ∈ S, define the norm | · |A by

|x|A = |Ax| =
√
Ax ·Ax,
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for each x ∈ Rn.
Throughout this paper, we will denote the standard

Lebesgue density on Rn by dx.
If X is a random vector in Rn, then the associated probabil-

ity measure on Rn will be denoted by mX . If the measure mX

is absolutely continuous with respect to Lebesgue measure,
then the corresponding Radon-Nikodym derivative is called
the density function of the random vector X and denoted by
fX .

If A is an invertible n-by-n matrix, then

fAX(y) = |A|−1fX(A−1y), (1)

for each y ∈ Rn.
If Φ is a continuous scalar-, vector-, or matrix-valued

function on Rn, then the expected value of Φ(X) is given
by

E[Φ(X)] =

∫
Rn

Φ(x) dmX(x).

If v ∈ Rn, we denote by v ⊗ v the n-by-n matrix whose
(i, j)-th component is vivj . We call a random vector X
nondegenerate, if the matrix E[X ⊗X] is positive definite.

B. The p-th moment of a random vector

For p ∈ (0,∞), the standard p-th moment of a random
vector X is given by

E[|X|p] =

∫
Rn
|x|p dmX(x). (2)

More generally, the p-th moment with respect to the norm |·|A
is

E[|X|pA] =

∫
Rn
|x|pA dmX(x).

C. The p-th moment matrix

The second moment matrix of a random vector X is defined
to be

M2[X] = E[X ⊗X].

Recall that M2[X − E[X]] is the covariance matrix. An
important observation is that the definition of the moment
matrix does not use the inner product on Rn.

A characterization of the second moment matrix is the
following: The matrix M2[X]−1/2 is the unique positive
definite symmetric matrix with maximal determinant among
all matrices A ∈ S satisfying E[|X|2A] = n.

We extend this characterization to a definition of the p-th
moment matrix Mp[X] for all p ∈ (0,∞).

Theorem 1: If p ∈ (0,∞) and X is a nondegenerate random
vector in Rn with finite p-th moment, then there exists a unique
matrix A ∈ S such that

E[|X|pA] = n
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and
|A| ≥ |A′|,

for each A′ ∈ S such that E[|X|pA′ ] = n. Moreover, the matrix
A is the unique matrix in S satisfying

I = E[|AX|p−2(AX)⊗ (AX)]. (3)

We define the p-th moment matrix of a random vector X to
be Mp[X] = A−p, where A is given by the theorem above.

The proof of the theorem is given in §IV

III. MOMENT-ENTROPY INEQUALITIES

A. Entropy

The Shannon entropy of a random vector X is defined to
be

h[X] = −
∫
Rn
fX log fX dx,

provided that the integral above exists. For λ > 0 the λ-Renyi
entropy power of a density function is defined to be

Nλ[X] =


(∫

Rn
fλX

) 1
1−λ

if λ 6= 1,

eh[f ] if λ = 1,

provided that the integral above exists. Observe that

lim
λ→1

Nλ[X] = N1[X].

The λ–Renyi entropy of a random vector X is defined to be

hλ[X] = logNλ[X].

The entropy hλ[X] is continuous in λ and, by the Hölder
inequality, decreasing in λ. It is strictly decreasing, unless X
is a uniform random vector.

It follows by (1) that

Nλ[AX] = |A|Nλ[X], (4)

for each A ∈ S.

B. Relative entropy

Given two random vectors X,Y in Rn, their relative Shan-
non entropy or Kullback–Leibler distance [11], [12], [13] (also,
see page 231 in [14]) is defined by

h1[X,Y ] =

∫
Rn
fX log

(
fX
fY

)
dx, (5)

provided that the integral above exists. Given λ > 0, we define
the relative λ–Renyi entropy power of X and Y as follows. If
λ 6= 1, then

Nλ[X,Y ] =

(∫
Rn
fλ−1Y fX dx

) 1
1−λ

(∫
Rn
fλY dx

) 1
λ

(∫
Rn
fλX dx

) 1
λ(1−λ)

, (6)

and, if λ = 1, then

N1[X,Y ] = eh1[X,Y ],

provided in both cases that the righthand side exists. Define
the λ–Renyi relative entropy of random vectors X and Y by

hλ[X,Y ] = logNλ[X,Y ].

Observe that hλ[X,Y ] is continuous in λ.
Lemma 2: If X and Y are random vectors such that hλ[X],

hλ[Y ], and hλ[X,Y ] are finite, then

hλ[X,Y ] ≥ 0.

Equality holds if and only if X = Y .
Proof: If λ > 1, then by the Hölder inequality,∫
Rn
fλ−1Y fX dx ≤

(∫
Rn
fλY dx

)λ−1
λ
(∫

Rn
fλX dx

) 1
λ

,

and if λ < 1, then we have∫
Rn
fλX =

∫
Rn

(fλ−1Y fX)λf
λ(1−λ)
Y

≤
(∫

Rn
fλ−1Y fX

)λ(∫
Rn
fλY

)1−λ

.

The inequality for λ = 1 follows by taking the limit λ→ 1.
The equality conditions for λ 6= 1 follow from the equality

conditions of the Hölder inequality. The inequality for λ =
1, including the equality condition, follows from the Jensen
inequality (details may be found, for example, on page 234 in
[14]).

C. Generalized Gaussians

We call the extremal random vectors for the moment-
entropy inequalities generalized Gaussians and recall their
definition here.

Given t ∈ R, let

t+ = max(t, 0).

Let
Γ(t) =

∫ ∞
0

xt−1e−x dx

denote the Gamma function, and let

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

denote the Beta function.
For each p ∈ (0,∞) and λ ∈ (n/(n + p),∞), let Z be

the random vector in Rn whose density function fZ : Rn →
[0,∞) is given by

fZ(x) =


ap,λ(1 + (1− λ)|x|p)1/(λ−1)+ if λ 6= 1

ap,1e
−|x|p if λ = 1,

(7)

where

ap,λ =



(1− λ)
n
p+1Γ(n2 + 1)

π
n
2 β(np + 1, 1

1−λ −
n
p )

if λ < 1,

Γ(n2 + 1)

π
n
2 Γ(np + 1)

if λ = 1,

(λ− 1)
n
p+1Γ(n2 + 1)

π
n
2 β(np + 1, 1

λ−1 )
if λ > 1,
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Define the standard generalized Gaussian to be the random
vector Ẑ defined by

Ẑ = [λ(n+ p)− n]1/pZ. (8)

Any random vector Y in Rn that can be written as Y = AZ,
for some invertible n-by-n matrix A is called a generalized
Gaussian.

D. Information measures of generalized Gaussians

If 0 < p < ∞ and λ > n/(n + p), then the p-th moment
of the random vector Z is

E[|Z|p] =
n

λ(n+ p)− n
,

and therefore the standard generalized Gaussian Ẑ is

E[|Ẑ|p] = n.

Its p-th moment matrix is Mp[Ẑ] = I .
If 0 < p < ∞ and λ > n/(n + p), the λ-Renyi entropy

power of the random vector Z is given by

Nλ[Z] =


(

1 +
n(λ− 1)

pλ

) 1
λ−1

a−1p,λ if λ 6= 1

e
n
p a−1p,1 if λ = 1

It follows by (4) and (8) that

Nλ[Ẑ] = [λ(n+ p)− n]
n
pNλ[Z].

Define the constant

c(n, p, λ) =
E[|Z|p]1/p

Nλ[Z]1/n

= a
1/n
p,λ

[
λ
(

1 +
p

n

)
− 1
]− 1

p

b(n, p, λ),

(9)

where

b(n, p, λ) =


(

1− n(1−λ)
pλ

) 1
n(1−λ)

if λ 6= 1

e−1/p if λ = 1.

Observe that if λ 6= 1 and 0 < p <∞, then∫
Rn
fλZ = aλ−1p,λ (1 + (1− λ)E[|Z|p]), (10)

and if λ = 1, then

h[Z] = − log ap,1 + E[|Z|p]. (11)

We will also need the following scaling identities:

ftZ(x) = t−nfZ(t−1x), (12)

for each x ∈ Rn. Therefore,∫
Rn
fλtZ dx = tn(1−λ)

∫
Rn
fλZ dx. (13)

E. Spherical moment-entropy inequalities

The proof of Theorem 2 in [1] extends easily to prove the
following. A more general version can be found in [7].

Theorem 3: If p ∈ (0,∞), λ > n/(n + p), and X is a
random vector in Rn such that Nλ[X], E[|X|p] <∞, then

E[|X|p]1/p

Nλ[X]1/n
≥ c(n, p, λ),

where c(n, p, λ) is given by (9). Equality holds if and only if
X = tZ, for some t ∈ (0,∞).

Proof: For convenience let a = ap,λ. Let

t =

(
E[|X|p]
E[|Z|p]

)1/p

(14)

and Y = tZ.
If λ 6= 1, then by (12) and (7), (2), (14), and (10),∫

Rn
fλ−1Y fX

= aλ−1tn(1−λ)
∫
Rn

(1 + (1− λ)|t−1x|p)+fX(x) dx

≥ aλ−1tn(1−λ)
(

1 + (1− λ)t−p
∫
Rn
|x|pfX(x) dx

)
= aλ−1tn(1−λ)(1 + (1− λ)t−pE[|X|p])
= aλ−1tn(1−λ)(1 + (1− λ)E[|Z|p])

= tn(1−λ)
∫
Rn
fλZ , (15)

where equality holds if λ < 1. It follows that if λ 6= 1, then
by Lemma 2, (6), (13) and (15), and (14), we have

1 ≤ Nλ[X,Y ]λ

=

(∫
Rn
fλY

)(∫
Rn
fλX

)− 1
1−λ

(∫
Rn
fλ−1Y fX

) λ
1−λ

≤ tn Nλ[Z]

Nλ[X]

=
E[|X|p]n/p

Nλ[X]

Nλ[Z]

E[|Z|p]n/p
.

If λ = 1, then by Lemma 2, (5) and (7), and (11) and (14),

0 ≤ h1[X,Y ]

= −h[X]− log a+ n log t+ t−pE[|X|p]

= −h[X] + h[Z] +
n

p
log

E[|X|p]
E[|Z|p]

.

Lemma 2 shows that equality holds in all cases if and only
if Y = X .

F. Elliptic moment-entropy inequalities

Corollary 4: If A ∈ S, p ∈ (0,∞), λ > n/(n + p), and
X is a random vector in Rn satisfying Nλ[X], E[|X|p] <∞,
then

E[|X|pA]1/p

|A|1/nNλ[X]1/n
≥ c(n, p, λ), (16)

where c(n, p, λ) is given by (9). Equality holds if and only if
X = tA−1Z for some t ∈ (0,∞).
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Proof: By (4) and Theorem 3,

E[|X|pA]1/p

|A|1/nNλ[X]1/n
=
E[|AX|p]1/p

Nλ[AX]1/n

≥ E[|Z|p]1/p

Nλ[Z]1/n
,

and equality holds if and only if AX = tZ for some t ∈
(0,∞).

G. Affine moment-entropy inequalities

Optimizing Corollary 4 over all A ∈ S yields the following
affine inequality.

Theorem 5: If p ∈ (0,∞), λ > n/(n + p), and X is a
random vector in Rn satisfying Nλ[X], E[|X|p] <∞, then

|Mp[X]|1/p

Nλ[X]
≥ n−n/pc(n, p, λ)n,

where c(n, p, λ) is given by (9). Equality holds if and only if
X = A−1Z for some A ∈ S.

Proof: Substitute A = Mp[X]−1/p into (16)
Conversely, Corollary 4 follows from Theorem 5 by Theo-

rem 1.

IV. PROOF OF THEOREM 1
A. Isotropic position of a probability measure

A Borel measure µ on Rn is said to be in isotropic position,
if ∫

Rn

x⊗ x
|x|2

dµ(x) =
1

n
I, (17)

where I is the identity matrix.
Lemma 6: If p ≥ 0 and µ is a Borel probability measure in

isotropic position, then for each A ∈ S,

|A|−1/n
(∫

Rn

|Ax|p

|x|p
dµ(x)

)1/p

≥ 1,

with equality holding if and only if A = aI for some a > 0.
Proof: By Hölder’s inequality,(∫
Rn

|Ax|p

|x|p
dµ(x)

)1/p

≥ exp

(∫
Rn

log
|Ax|
|x|

dµ(x)

)
,

so it suffices to prove the p = 0 case only.
By (17), ∫

Rn

(x · e)2

|x|2
dµ(x) =

1

n
, (18)

for any unit vector e.
Let e1, . . . , en be an orthonormal basis of eigenvectors of A

with corresponding eigenvalues λ1, . . . , λn. By the concavity
of log, and (18),∫

Rn
log
|Ax|
|x|

dµ(x) =
1

2

∫
Rn

log
|Ax|2

|x|2
dµ(x)

=
1

2

∫
Rn

log

n∑
i=1

λ2i
(x · ei)2

|x|2
dµ(x)

≥ 1

2

∫
Rn

n∑
i=1

(x · ei)2

|x|2
log λ2i dµ(x)

= log |A|1/n.

The equality condition follows from the strict concavity of log.

B. Proof of theorem

Lemma 7: If p > 0 and X is a nondegenerate random vector
in Rn with finite p-th moment, then there exists c > 0 such
that

E[|e ·X|p] ≥ c, (19)

for every unit vector e.
Proof: The assumption that X is nondegenerate and has

finite p-th moment implies that the left side of (19) is a positive
continuous function of e in the unit sphere, which is compact.

Theorem 8: If p ≥ 0 and X is a nondegenerate random
vector in Rn with finite p-th moment, then there exists A ∈ S,
unique up to a scalar multiple, such that

|A|−1/nE[|AX|p]1/p ≤ |A′|−1/nE[|A′X|p]1/p (20)

for every A′ ∈ S.
Proof: Let S′ ⊂ S be the subset of matrices whose

maximum eigenvalue is exactly 1. This is a bounded set inside
the set of all symmetric matrices, with its boundary ∂S′ equal
to positive semidefinite matrices with maximum eigenvalue
1 and minimum eigenvalue 0. Given A′ ∈ S′, let e be an
eigenvector of A′ with eigenvalue 1. By Lemma 7,

|A′|−1/nE[|A′X|p]1/p ≥ |A′|−1/nE[|X · e|p]1/p

≥ c1/p|A′|−1/n.
(21)

Therefore, if A′ approaches the boundary ∂S′, the left side
of (21) grows without bound. Since the left side of (21) is
a continuous function on S′, the existence of a minimum
follows.

Let A ∈ S be such a minimum and Y = AX . For each B ∈
S, let (BA)s = [(BA)t(BA)]1/2 and observe that |(BA)x| =
|(BA)sx|, for each x ∈ Rn. Therefore,

|B|−1/nE[|BY |p]1/p = |A|1/n|BA|−1/nE[|(BA)X|p]1/p

= |A|1/n|(BA)s|−1/nE[|(BA)sX|p]1/p

≥ |A|1/n|A|−1/nE[|AX|p]1/p

= E[|Y |p]1/p,
(22)

with equality holding if and only if equality holds for (20)
with A′ = (BA)s. Setting B = I + tB′ for B′ ∈ S, we get

|I + tB′|−1/nE[|(I + tB′)Y |p]1/p ≥ E[|Y |p]1/p,

for each t near 0. It follows that
d

dt

∣∣∣∣
t=0

|I + tB′|−1/nE[|(I + tB′)Y |p]1/p = 0,

for each B′ ∈ S. A straightforward computation shows that
this holds only if

1

n
E[|Y |p]I = E[Y ⊗ Y |Y |p−2]. (23)

Applying Lemma 6 to

dµ(x) =
|x|p dmY (x)

E[|Y |p]
,



5

implies that equality holds for (22) only if B = aI for some
a ∈ (0,∞). This, in turn, implies that equality holds for (20)
only if A′ = aA.

Theorem 1 follows from Theorem 8 by rescaling A so that
E[|Y |p] = n. Equation (3) follows by substituting Y = AX
into (23).
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