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Abstract: The BMS (Bondi-van der Burg-Metzner-Sachs) symmetry arises as the asymp-

totic symmetry of flat spacetime at null infinity. In particular, the BMS algebra for three

dimensional flat spacetime (BMS3) is generated by the super-rotation generators which

form a Virasoro sub-algebra with central charge cL, together with mutually-commuting

super-translation generators. The super-rotation and super-translation generators have

non-trivial commutation relations with another central charge cM . In this paper, we study

a free scalar theory in two dimensions exhibiting BMS3 symmetry, which can also be un-

derstood as the ultra-relativistic limit of a free scalar CFT2. Upon canonical quantization

on the highest weight vacuum, the central charges are found to be cL = 2 and cM = 0.

Because of the vanishing central charge cM = 0, the theory features novel properties: there

exist primary states which form a multiplet, and the Hilbert space can be organized by

an enlarged version of BMS modules dubbed the staggered modules. We further calculate

correlation functions and the torus partition function, the later of which is also shown

explicitly to be modular invariant.
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1 Introduction

As the first example of unified space and time, Minkowski spacetime is in some sense

the starting point of both quantum field theory and general relativity: it is usually the

spacetime background for Lorentzian invariant quantum field theories, and it also provides

the simplest solution to Einstein equation. Yet it is still a mystery what the full-fledged

quantum theory of gravity on asymptotically Minkowski spacetime should be.

In quest of quantum gravity, one fruitful effort over the past two decades has been holo-

graphic duality, whose most well-known incarnation is the AdS/CFT correspondence [1–3].

The AdS/CFT correspondence states that gravity in asymptotically Anti-de Sitter space-

time is equivalent to quantum field theory with conformal invariance, and it has become

a thriving research field involving many interdisciplinary studies including string theory,

black hole physics, condensed matter physics, quantum chromodynamics, and quantum

information theory.

It is a tantalizing idea to extend the success of the AdS/CFT correspondence to

asymptotically flat spacetime. To this end, asymptotic symmetries play an important

role. Recall that in AdSd+1/CFTd, one basic item in the holographic dictionary is that the

asymptotic symmetry of the bulk theory agrees with the global symmetry of the dual field

theory, and both are the conformal symmetry in d dimensions. For instance, under the

Brown-Henneaux boundary conditions [4], the asymptotic symmetry for Einstein gravity

with negative cosmological constant − 1
`2

agrees with that of a CFT2 with central charges

cL = cR = 3`
2G , where G is Newton’s constant in three dimensions. The symmetry argument

is especially powerful in the case of AdS3/CFT2, using which one can provide a microscopic

explanation of the Bekenstein-Hawking entropy of the black holes using Cardy’s formula

[5, 6]. The asymptotic symmetry for four-dimensional Minkowski spacetime in Einstein

gravity, first studied by Bondi-van der Burg-Metzner-Sachs (BMS) [7, 8], is the so-called

BMS symmetry. The original BMS symmetry only contains generators that are smooth

on S2. In a recent resurgence [9–12], the extended version of BMS group also admits gen-

erators that are singular at the south or north poles. The extended BMS symmetry in

four dimensions is related to Weinberg’s soft theorem and the memory effect [13], and has

recently prompted the study of celestial CFTs, see [14–16].

A simpler version of the BMS group appears in three dimensions [17–19]. Under certain

boundary conditions at null infinity, the asymptotic symmetry for flat spacetime in Einstein

gravity is generated by the superrotations Ln and supertranslations Mn, where n can be

arbitrary integers. The BMS algebra is,

[Ln, Lm] = (n−m)Lm+n +
cL
12
n(n2 − 1)δm+n,0,

[Ln, Mm] = (n−m)Mm+n +
cM
12
n(n2 − 1)δm+n,0, (1.1)

[Mn, Mm] = 0 .

The superrotation generators form a Virasoro subgroup, with central charge denoted by

cL. The supertranslation generators Mn commute with each other, but have a non-trivial

commutation relation with the Virasoro generators with central charge cM . The BMS3
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algebra (1.1) is isomorphic to the Galilean conformal algebra (GCA) in two dimensions

[20–22]. While the GCA can be obtained from the non-relativistic (NR) limit of the two-

dimensional conformal algebra, the BMS3 algebra is the ultra-relativistic (UR) limit, and

thus is also an example of a Carrollian algebra [23, 24]. Like their CFT2 cousins, field

theories invariant under BMS or Galilean conformal symmetries are highly constrained.

In particular, symmetry and other consistency conditions make it possible to initiate a

bootstrap program [25–30].

It is reasonable to conjecture that the holographic dual of Einstein gravity in asymp-

totically flat three-dimensional spacetimes is a quantum field theory invariant under the

BMS3 symmetry (BMSFT). As evidence, the torus partition function for BMSFTs has been

argued to be modular invariant and a Cardy-like formula can be used to explain the en-

tropy of cosmological solutions with Cauchy horizons [31, 32]. Furthermore, entanglement

entropy and its holographic dual has been calculated in [33–37]. Other interesting proper-

ties in flat holography include geometric Witten diagrams [38], quantum energy conditions

[39], etc.

Despite this progress, we know little about the putative dual field theory other than

properties that can be implied by the symmetries. In particular, we do not even know

if a field theory with BMS invariance really exists at the full quantum level. Thus, it

is necessary to construct and study in detail an explicit model of BMSFT. Besides the

motivation from flat holography, a model of BMSFT is also interesting from a purely field

theoretic perspective, as it provides a playground for further understanding both non-

relativistic and ultra-relativistic quantum systems.

In this paper, we study a free scalar BMSFT model in two dimensions with the action

S =
1

4π

∫
dσdτ (∂τφ)2 . (1.2)

The classical theory is invariant under the BMS symmetry (1.1) with zero central charges.

This model also appears in the tensionless limit of string theory [40], and a
√
T T̄ deforma-

tion of a free scalar CFT2 [41].

After canonical quantization and a choice of the vacuum compatible with the highest

weight representation, the BMS algebra of the model (1.2) has central charges

cL = 2, cM = 0. (1.3)

Due to the non-trivial commutation relations between Lm and Mn, the action of M0 is not

necessarily diagonal, and there can exist multiplets on which the action of M0 is a Jordan

cell with all the diagonal components equal and denoted by ξ. Multiplets are thus labeled

by the conformal weight ∆, which is the eigenvalue of L0, and the boost charge ξ which

comes from the Jordan cell of M0. The model (1.2) has the following key features,

• The fundamental primary operators are

I, O = (O0 = i∂yφ, O1 = i∂xφ), Vα =: eαφ :, (1.4)

where I is the identity operator, O is a primary multiplet with ∆ = 1, ξ = 0, and

Vα is the vertex operator with ∆ = 0, ξ = −α2

2 . Correlation functions between these

operators can be calculated explicitly.
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• States are organized in terms of an enlarged version of BMS highest weight module

dubbed the staggered BMS module.

• The torus partition function can be calculated and is found to be modular invariant,

confirming earlier statements based on symmetry arguments [31, 32, 35, 42].

The appearance of primary multiplets and staggered modules are both unexpected.

In [21, 28], it has been noticed that the commutation relations (1.1) between M0 and Ln
imply that the action of M0 is not diagonal within a BMS highest weight module, and

descendants have to form multiplets. In particular, the current T which generates the

superroations, and the current M which generates the supertranslations form a multiplet

with conformal weight ∆ = 2 and boost charge ξ = 0. While the algebra (1.1) implies that

multiplets at the level of BMS descendants are inevitable, there is no a priori reason that

multiplets for primary operators have to exist as well. Our model thus provides the first

example of this novel representation.

The appearance of the staggered module is closely related to the subtlety with cM = 0,

at which point it was argued that the BMS highest weight module is truncated to the

Virasoro module in [21]. Instead of a truncation, however, here the BMS highest weight

module is enlarged. The reason for this is that there is an extra quasi-primary K with

conformal weight ∆ = 2 in our model that was not assumed to exist in the general argument

[21]. The new quasi-primary K forms a BMS triplet together with the Virasoro stress tensor

T and supertranslation stress tensor M . This structure is reminiscent of logarithmic CFTs

[43–48], where the Virasoro stress tensor acquires a logarithmic partner whose presence

makes the action of L0 non-diagonal. In that case, multiplets also appear and the states

are also organized into staggered modules [43, 48]. It would be interesting to further

understand the staggered module from a general analysis, and also to study the implications

to holography. We will leave these questions for further study.

This paper is organized as follows. Section 2 is a general analysis of BMSFTs. In

section 2.1, we first briefly review the general properties of BMSFTs, in section 2.2 we

discuss the representations, and introduce a novel highest weight representation where the

action of M0 is a Jordan cell, and in section 2.3 we calculate the correlators. In section

3, we study the free BMS scalar model in detail. We introduce the classical theory and

write down its symmetries in section 3.1, perform a canonical quantization with the highest

weight vacuum in section 3.2, and calculate correlation functions in section 3.3. In section 4,

we arrive at the key result of this paper, the staggered BMS module. We find the operators

outside the ordinary BMS highest weight module, and organize them into the staggered

module. We further illustrate the properties of this module by diagrams. In section 5, we

review the UR limit from two-dimensional CFTs to BMSFTs, and point out a subtlety on

the consistent plane UR limit. Then we take the UR limit of the free relativistic scalar

model to get the free BMS scalar in the highest weight representation. In section 6, we

calculate the torus partition function of the free BMS scalar model in the highest-weight

representations, and find that it is invariant under modular S-transformations.
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2 General properties of BMSFTs

In this section we discuss generic features of BMSFTs. We first provide a short review

of the BMS algebra in section 2.1. Section 2.2 is dedicated to the representation theory

where we introduce a novel type of highest-weight representations, where the primary

states lie in multiplets. In section 2.3 we calculate the correlation functions for general

quasi-primary multiplets, paying special attention to multiplets with ξ = 0 which we will

encounter later in the free scalar model.

2.1 Quick Review

A BMSFT (BMS-invariant field theory) is a two dimensional quantum field theory

invariant under the following BMS transformation,

σ → f(σ), τ → f ′(σ)τ + g(σ). (2.1)

Note that although the theory is not Lorentz invariant, there is still a notion of time and

space. For BMSFT, σ should be regarded as a spatial direction, whereas τ is a timelike

direction. This interpretation will become clearer if we view BMSFT as the ultra-relativistic

(UR) limit of a CFT2, to be described momentarily.

Now let us consider a BMSFT on a cylinder parameterized by the coordinates (τ, σ)

with the identification

σ ∼ σ + 2π. (2.2)

Then the infinitesimal BMS transformation is generated by the Fourier modes,

ln = ieinσ∂σ − neinστ∂τ (2.3)

mn = ieinσ∂τ (2.4)

Under the Lie bracket, the generators (2.4) form the BMS algebra

[ln, lm] = (n−m)lm+n (2.5)

[ln,mm] = (n−m)mm+n, (2.6)

[mn,mm] = 0. (2.7)

The generators that implement the transformations (2.4) on the fields will be denoted as

Lm and Mn, and they form the centrally extended BMS algebra,

[Ln, Lm] = (n−m)Lm+n +
cL
12
n(n2 − 1)δm+n,0,

[Ln, Mm] = (n−m)Mm+n +
cM
12
n(n2 − 1)δm+n,0,

[Mn, Mm] = 0, (2.8)

where cL and cM are central charges. As a side remark, it is conjectured that Einstein grav-

ity in asymptotically-flat three-dimensional spacetime is holographically dual to a BMSFT
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with cL = 0, cM = 3
G [18], while gravitational theories where both central charges do not

vanish can be constructed by adding a Chern-Simons term [49].

The general form of the BMS transformation (2.1) allows the map

x = eiσ, y = iτeiσ (2.9)

By analytic continuation, x can be viewed as a holomorphic coordinate on the plane. The

above map (2.9) is usually regarded as the map from the cylinder to the plane [40], using

which we can further discuss the state-operator correspondence. For later convenience, we

also write down the BMS generators on the plane,

ln = −xn+1∂x − (n+ 1)yxn∂y, (2.10)

mn = −xn+1∂y. (2.11)

Let T be the Noether current of the translational symmetry along x, and M be the

Noether current of the translational symmetry along y. The BMS charges on the plane

can then be written as

Ln =
1

2πi

∮ (
xn+1T + (n+ 1)xnyM

)
, (2.12)

Mn =
1

2πi

∮
xn+1M, (2.13)

where
∮

denotes the contour integration around the origin on the complexified x plane.

T =
∑
n

Lnx
−n−2 −

∑
n

(n+ 1)yMn−1x
−n−2, (2.14)

M =
∑
n

Mnx
−n−2. (2.15)

From the algebra (2.8) we expect the following OPEs between the currents,

T (x′, y′)T (x, y) ∼ cL
2(x′ − x)4

+
2T (x, y)

(x′ − x)2
+
∂xT (x, y)

x′ − x
(2.16)

− 2cM (y′ − y)

(x′ − x)5
− 4(y′ − y)M(x, y)

(x′ − x)3
− (y′ − y)∂yT (x, y)

(x′ − x)2
,

T (x′, y′)M(x, y) ∼ cM
2(x′ − x)4

+
2M(x, y)

(x′ − x)2
+
∂xM(x, y)

x′ − x
,

M(x′, y′)M(x, y) ∼ 0.

The transformation laws of the currents under the BMS transformation

x̃ = f(x), ỹ = f ′(x)y + g(x) (2.17)

are given by 1

M̃(x) = f ′2M (x̃) +
cM
12
{f, x}, (2.18)

T̃ (x, y) = f ′2T (x̃, ỹ) + 2f ′
(
g′ + yf ′′

)
M (x̃) +

cL
12
{f, x}+

cM
12

(
y
d

dx
{f, x}+ f ′2

∂3g

∂f3

)
.

1The transformation law (2.18) is consistent with the OPE (2.16) and successive transformations. (2.18)

is also compatible with [35], after we match the conventions Jthere = T here − y∂xM
here. We also note that

the results of [34] differ from ours in the term proportional to cM .
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In Eq.(2.18), { , } denotes the usual Schwarzian derivative, and the last term is the so-called

BMS Schwarzian derivative [34, 35],

{f, x} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

, (2.19)

f ′2
∂3g

∂f3
= f ′−1

(
g′′′ − g′ f

′′′

f ′
− 3f ′′

(
g′

f ′

)′)
. (2.20)

2.2 Representations

In this subsection we discuss different representations of the BMS algebra (2.8). We

first review the usual highest weight representation discussed previously in the literature

[50], which we refer to as the singlet version. Then we will introduce a novel multiplet

version of the highest weight representation. In section 3 we will see that this representation

arises naturally in the free scalar model (1.2).

2.2.1 Highest weight representations: the singlet

The singlet version of the highest weight representation of the BMS algebra [50] is a

straightforward generalization of the highest weight representation of the Virasoro algebra.

This amounts to considering the BMS module on the plane which consists of primary

operators and their descendants. A primary operators at the origin O = O(0, 0) can be

labelled by the eigenvalues (∆, ξ) of (L0,M0)

[L0, O] = ∆O, [M0, O] = ξO. (2.21)

∆ and ξ are referred to as the conformal weight and the boost charge of the operator

respectively. The highest weight conditions are

[Ln, O] = 0, [Mn, O] = 0, n > 0. (2.22)

The descendant operators can be obtained by acting L−n,M−n with n > 0 successively on

the primary operators. The primary operator together with its descendants form a highest

weight module.

2.2.2 Highest weight representations: the multiplet

In any unitary theory, if two Hermitian operators commute, then we can go to a

basis in which the commuting operators are simultaneously diagonalized. Therefore it

is natural to consider highest weight representations in CFT2, and organize states into

Virasoro modules. For BMSFT, however, several subtleties arise in the highest weight

representation of the form (2.21) and (2.22). As noticed in [21], the Kac determinant for

the highest weight representation with ξ 6= 0 is negative, and hence the representation

is not unitary. In a state space equipped with an indefinite inner product, a Hermitian

operator is not necessarily diagonalizable. With an abuse of terminology, we still refer to

such state space as a Hilbert space in this paper. In addition, it has been observed in [50]

that if we organize the highest weight module in terms of quasi-primaries and their global
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descendants, the quasi-primaries will generically form multiplets, on which the action of L0

and M0 cannot be simultaneously diagonalized within a BMS module even assuming the

primary state is a common eigenstate of L0 and M0. These observations then open up the

possibility that the action of L0 and M0 is not diagonal even on the primary states. This

feature is very similar to logarithmic CFTs [43–48]. In this case, the representation matrix

can be written in the Jordan canonical form. Similar to the discussion in [45], we can

choose a basis so that the action of L0 is diagonal and the action of M0 is block diagonal,

with each block being a Jordan cell. The primary operators in a Jordan chain form a

multiplet, which, together with their descendants, form a reducible but indecomposable

module. If there are r operators related to each other in a Jordan chain, the multiplet

they form will be referred to as having rank r , the same rank as the Jordan block. The

primary operators with diagonal action under M0 will be referred to as singlets or rank-1

multiplets.

Thus operators of BMSFT can be organized into highest-weight primary multiplets

and their descendants. A highest-weight primary multiplet O with rank r is defined by

[L0, Oa] = ∆Oa, [M0, Oa] = (ξO)a, a = 0, · · · r − 1

[Ln, Oa] = 0, [Mn, Oa] = 0, n > 0, (2.23)

where Oa denotes the a-th component of the multiplet O, and ξ is a Jordan cell with rank

r and diagonal component ξ,

ξ =


ξ

1 ξ
. . .

. . .

1 ξ


r×r

. (2.24)

The off-diagonal element can also be chosen to be any arbitrary constant, which amounts

to introducing a relative scaling among different components.

Similar to CFT2, it is also useful to introduce the notion of quasi-primary multiplets,

which satisfy (2.23) but only with n = 1 rather than arbitrary positive integers. Quasi-

primary multiplets are highest weight states under the action of the global subgroup of the

BMS3 group, which is isomorphic to the Poincaré group in three dimensions.

2.3 Correlation functions

Discussions on the correlation functions for quasi-primary operators of the Galilean

conformal algebra can be found in [21, 27]. The results in [21] directly apply to BMSFT,

as the algebras of GCFT and BMSFT are isomorphic. Interestingly, it has been found

that multiplets appear generically in GCFTs and BMSFTs [28], a feature also shared by

logarithmic CFTs [43, 44, 47]. Detailed discussions of multiplets in GCFT/BMSFT can be

found in [28] which focuses on quasi-primaries with non-vanishing boost charge, i.e. ξ 6= 0.

As we will show later in Section 3, however, our free scalar model also contains a multiplet

at the level of primary operators, and it has ξ = 0. In the following, we will first review

the correlation functions for singlets and multiplets in the ξ 6= 0 sector, and then provide

results for the ξ = 0 sector.
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2.3.1 Singlets

The singlet version of BMS primary operators at the origin is defined by (2.21) and

(2.22). The operators at other positions can be obtained by acting with the translation

operator U = exL−1+yM−1 ,

O(x, y) = UO(0, 0)U−1. (2.25)

Using the Baker-Campbell-Hausdorff (BCH) formula, the transformation law for the pri-

mary operators are,

[Ln, O(x, y)] = (xn+1∂x + (n+ 1)xny∂y + (n+ 1)(xn∆ + nxn−1yξ))O(x, y), (2.26)

[Mn, O(x, y)] = (xn+1∂y + (n+ 1)xnξ)O(x, y) n ≥ −1, (2.27)

and they can be integrated to derive the transformation laws under the finite transformation

(2.17),

Õ(x̃, ỹ) = |f ′|−∆ e
−ξ g

′+yf ′′
f ′ O(x, y). (2.28)

By requiring the vacuum to be invariant under the global symmetry, the two-point function

(G2) and three-point function (G3) of primary operators are respectively

G2(x1, x2, y1, y2) = d δ∆1,∆2δξ1,ξ2 |x12|−2∆1e
−2ξ1

y12
x12 , (2.29)

G3(x1, x2, x3, y1, y2, y3) = c123|x12|−∆123 |x23|−∆231 |x31|−∆312e
−ξ123

y12
x12 e

−ξ312
y31
x31 e

−ξ231
y23
x23 ,

(2.30)

where d is the normalization factor of the two-point function, c123 is the coefficient of

three-point function which encodes dynamical information of the BMSFTs, and

xij ≡ xi − xj , yij ≡ yi − yj , ∆ijk ≡ ∆i + ∆j −∆k, ξijk ≡ ξi + ξj − ξk. (2.31)

2.3.2 Multiplets

Similar to the discussion of the singlet, local operators corresponding to the highest

weight multiplets (2.23) are defined by

O(x, y) = UO(0, 0)U−1, U = exL−1+yM−1 (2.32)

where O(x, y) denotes a multiplet with rank r, whose components are denoted by Oa(x, y)

with a = 0, · · · r − 1. The BCH formula now leads to the following transformation law,

[Ln,O(x, y)] = [(xn+1∂x + (n+ 1)xny∂y) + (n+ 1)(xn∆ + nxn−1yξ)]O(x, y),

[Mn,O(x, y)] = (xn+1∂y + (n+ 1)xnξ)O(x, y), for n ≥ −1, (2.33)

where ξ is the Jordan cell (2.24). Note that the action of L0, L−1 and M−1 on the highest

weight multiplets remains diagonal, while the action of L1, M0 and M1 contains non-

diagonal parts. From (2.33), we can get the TO-OPE and MO-OPE for the primary
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multiplet O(x, y),

T (x̃, ỹ)O(x, y) ∼ ∆O

(x̃− x)2
+

2(ỹ − y)ξO

(x̃− x)3
− ∂xO

x̃− x
− (ỹ − y)∂yO

(x̃− x)2
,

M(x̃, ỹ)O(x, y) ∼ ξO

(x̃− x)2
+

∂yO

x̃− x
. (2.34)

where we organize the expansion in ascending order of the total power of (x̃− x) and

(ỹ − y), meanwhile put terms with higher power of (ỹ − y) behind.

As proved in [28, 51], from an equality for singlets, we can always get the analogue

multiplet version by applying the following replacement rule,

F (ξ,O)→
a∑
k=0

1

k!
∂kξF (ξ,Oa−k) (2.35)

where F (ξ,O) denotes any expression which explicitly depends on the operator O and its

boost charge ξ, and the replacement should be performed on both sides of the equality. In

particular, the finite transformation law for the multiplet can be obtained from (2.28) by

applying this replacement rule, and the result is

Õa(x̃, ỹ) =
a∑
k=0

1

k!
|f ′|−∆ ∂kξ e

−ξ g
′+yf ′′
f ′ Oa−k(x, y). (2.36)

Quasi-primaries Quasi-primary operators transform covariantly under the global part

of the BMS3 symmetry, which is isomorphic to the Poincaré group in three dimensions.

The infinitesimal transformations satisfy the rule (2.33), but now with n = −1, 0, 1, and

the OPE with the stress tensor takes the form

T (x′, y′)O(x, y) ∼ · · ·+ ∆O

(x′ − x)2
− 2(y′ − y)ξO

(x′ − x)3
+

∂xO

x′ − x
− (y′ − y)∂yO

(x′ − x)2
,

M(x′, y′)O(x, y) ∼ · · ·+ ξO

(x′ − x)2
+

∂yO

x′ − x
. (2.37)

where · · · denotes terms more singular than (x′ − x)−3. Terms of order (x′ − x)−3 do not

appear due to the conditions coming from M1 and L1. If ∆ = 2, the scaling of each term

in the right hand side must be the same as (x′ − x)−4 from dimensional analysis. On the

other hand, the weight of operators should be bounded from below. This means that the

most singular term in the OPE must be of order (x′ − x)−4. Further using the relation

L−1M = M−1T , we conclude that quasi-primary multiplets with ∆ = 2 have to satisfy

T (x′, y′)O(x, y) ∼ c

2(x′ − x)4
− 2c′(y′ − y)

(x′ − x)5
+

∆O

(x′ − x)2
− 2(y′ − y)ξO

(x′ − x)3
+

∂xO

x′ − x
− (y′ − y)∂yO

(x′ − x)2
,

M(x′)O(x, y) ∼ c′

2(x′ − x)4
+

ξO

(x′ − x)2
+

∂yO

x′ − x
, (2.38)

where c and c′ are constant vectors with the same rank as O. From the OPE (2.16), it

is straight forward to see that the stress tensor (2M, T ) form a rank-two multiplet, with

conformal weight ∆ = 2, and boost charge ξ =

(
0 0

1 0

)
. In this case, we have

c = (cM , cL)T , c′ = (0, 2cM )T . (2.39)
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Two-point functions Let us first consider two-point functions 〈OiaOjb〉, where Oia
belongs to a rank-ri multiplet Oi, and Ojb belongs to a rank-rj quasi-primary multiplet

Oj . The two point functions can be determined by the Ward identities with respect to

global symmetries. It is always possible to choose a basis so that the operators belonging

to different multiplets have vanishing two-point functions. The action of M−1 and L−1

imply translational invariance in x and y. Further using Wald identities with M0, M1, L0

and L1, we get

〈Oia(x1, y1)Ojb(x2, y2)〉 = δij |x12|−2∆ie
−2ξi

y12
x12Dab(

y12

x12
), (2.40)

where the function Dab(
y12

x12
) satisfies the following differential equations

D′ab +Da−1,b +Da,b−1 = 0, (2.41)

(x1 + x2)D′ab + 2x1Da−1,b + 2x2Da,b−1 = 0. (2.42)

In the above equation we have omitted the argument of Dab, and prime denotes derivative

with respect to the argument y12

x12
. Combing the above two equations, we learn that Dab

depends on the label a and b only through the the sum a+ b,

Da,b−1 = Da−1,b = · · · = Db,a−1 = Db−1,a, a, b = 1, · · · r − 1 (2.43)

and Dab vanishes whenever one of the indices is 0,

Da0 = D0b = 0, a, b = 0 · · · r − 2 (2.44)

where ri = rj = r. Denote q ≡ a+ b+ 1− r, and then the most general solution of (2.41)

satisfying the conditions (2.43) and (2.44) is then given by

Dab =

 0 for q ≡ a+ b+ 1− r < 0
q∑

k=0

d(r+q−k)
1
k! (−2y12

x12
)k for q ≥ 0,

(2.45)

where d(r+q−k) are r undetermined integration constants, which can be further fixed by

redefining the operators in the multiplet. To do so, we need to find the most general linear

transformations O → RO, where R is a r×r matrix, that leave the Jordan cell ξ invariant,

namely

ξR = Rξ (2.46)

The solution can be written as

Rab =

{
ca−b if a ≥ b
0 otherwise,

(2.47)

which contains r arbitrary constants ck, k = 0, · · · , r − 1. These (r − 1) independent

parameters ck, k = 1, · · · , r−1 can be used to eliminate r−1 degrees of freedom in (2.45),

and leave an overall normalization related to the diagonal element c0. This simplifies the

two-point functions to the following canonical form,

〈Oia(x1, y1)Ojb(x2, y2)〉 =

{
0 for q < 0

δij dr |x12|−2∆ie
−2ξi

y12
x12

1
q!

(
−2y12

x12

)q
, otherwise,

(2.48)

where dr is the overall normalization.
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In-states and out-states Using the state-operator correspondence2 on the plane,

|Oa〉 = lim
y→0
x→0

Oa(x, y)|0〉 (2.49)

we can define out-states as the Hermitian conjugate of the operator inserted at infinity,

〈Oa| = lim
y→0
x→∞

a∑
k=0

〈0|Oa−k(x, y)
1

k!
∂kξ e

2ξ y
xx2∆ (2.50)

where we have used the transformation rule (2.36) to move the operator from the origin to

the point x = ∞, y = 0. Note that the operators on the right hand side of (2.50) are to

be understood as acting to the right. For all singlets including the vacuum, the definition

of the out-state (2.50) is the same as in CFT2. For multiplets, however, the out-state 〈Oa|
becomes a mixture of operators in the multiplet with indices no bigger than a.

The inner product between different components of a rank-r multiplet primary can

then be calculated using (2.48) as,

〈Oa|Ob〉 = lim
x1→∞,x2→0,
y1→0,y2→0

1

k!
∂kξ e

2ξ
y1
x1 x2∆

1

a∑
k=0

〈Oa−k(x1, y1)Ob(x2, y2)〉

= δa+b,r−1 (2.51)

Unlike the case for singlets, for multiplets the two-point function (2.48) is different from

the inner product (2.51). This is a characteristic feature of multiplets. From (2.51), we

can see that the r-dimensional matrix 〈Oa|Ob〉 has two different eigenvalues ±1, within

which the eigenvalue −1 has algebraic multiplicity br/2c. This means that if the theory

contains highest weight multiplets, there must be primary states with negative norms in

the theory. Note that this is to be distinguished from earlier discussions of unitarity for the

highest weight singlets [20], where descendent states with negative norms have been found

assuming primary states have positive norms. Thus, we have found another indication that

BMSFT in the highest weight representation is not unitary. In section 6, we will introduce

a dual basis which is linear combination of the out-state (2.50) so that their inner products

with the in-states are diagonal. The dual basis is useful to define the trace.

Three-point functions The three-point functions involving multiplets can also be de-

termined by the Ward identities. For three multiplets Oi, i = 1, 2, 3, the general form of

the three point function is given by,

〈OiaOjbOkc〉 = ABCijk (2.52)

where i, j and k label the multiplets, while a, b and c label the components within a

multiplet, and

A = exp(−ξ123
y12

x12
− ξ312

y31

x31
− ξ231

y23

x23
), (2.53)

B = |x12|−∆123 |x23|−∆231 |x31|−∆312 , (2.54)

Cijk;abc =
a−1∑
n1=0

b−1∑
n2=0

c−1∑
n3=0

c
(n1n2n3)
ijk

(pi)
n1(pj)

n2(pk)
n3

n1!n2!n3!
, (2.55)

2See appendix A for more details of radial quantization and the state-operator correspondence.
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with

pi = ∂ξi lnA. (2.56)

Note that the three point function (2.52) factorizes into a term A which depends on the

boost charges, a term B which depends on the conformal weights, and a structure con-

stant term Cijk;abc. Both A and B are determined by kinematics, while Cijk;abc encodes

interactions. Note that Oia, Ojb, Okc can belong to different multiplets of rank r1, r2, r3

respectively. The coefficient c
(n1n2n3)
ijk encodes the dynamical information of the theory.

When r1 = r2 = r3 = 1, the three-point function reduces to (2.30).

Multiplets with ξ = 0

The case with ξ = 0 turns out to be a bit subtle. On the one hand, the action of

M0 ∼ ∂y acts trivially on singlets with ξ = 0. As a result, correlation functions for singlets

with ξ = 0 do not depend on y and they reduce to correlators in chiral CFTs.

On the other hand, if multiplets exist, the action of M0 is still non-trivial because

of existence of off-diagonal elements, and we expect the correlators to have non-trivial

dependence on y. To calculate the correlation functions at ξ = 0, we should take the ξ → 0

limit of the correlation functions of the ξ 6= 0 case. If there are derivatives with respect to

ξ, such as in the three point function (2.52), one should take the derivatives first and then

take ξ → 0.

As an example, the two-point correlation functions for rank-2 multiplet with ξ = 0 can

be written as,

〈O1O1〉 = − 1

x2∆

2y

x

〈O0O1〉 =
1

x2∆

〈O0O0〉 = 0 (2.57)

In section 3, we will see that such a multiplet with ξ = 0 appears in our free scalar model.

3 BMS Free Scalar Model

In this section we study a free scalar model which has BMS invariance. In section 3.1

we introduce the classical theory and discuss the classical BMS invariance. In section 3.2

we perform canonical quantization and in section 3.3 we discuss primary operators and

correlation functions.

3.1 The classical theory

We start with the action on a cylinder parameterize by(σ, τ) with σ ∼ σ + 2π,

S =
1

4π

∫
dσdτ (∂τφ)2 . (3.1)
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The action also appears as part of the worldsheet action in a tensionless limit of string

theory [40, 52–54]. In this paper, however, we will study the model (3.1) as a quantum

field theory itself, without embedding it into a larger theory. The equation of motion reads

∂2
τφ = 0. (3.2)

The solutions to the equation of motion (3.2) satisfying the periodic boundary condition

on the cylinder can be written in terms of the mode expansion as

φ(σ, τ) =
∞∑

n=−∞
e−iσn(An + iτBn). (3.3)

The reality condition then implies the adjoint relation

A†n = A−n, B†n = −B−n. (3.4)

The conjugate momentum to the field φ is given by

Π =
δS

δ∂τφ
=

1

2π
∂τφ, (3.5)

and the Possion bracket is {
φ (σ, τ) ,Π

(
σ′, τ

)}
= δ(σ − σ′). (3.6)

It is not difficult to check that this action is invariant under the BMS transformations

(2.1). For infinitesimal transformations parametrized by ε̃(σ) and ε(σ),

σ → σ′ = σ + ε(σ), (3.7)

τ → τ ′ = τ + ε′(σ)τ + ε̃(σ), (3.8)

the field φ transforms as a scalar,

δε(σ)φ = −ε(σ)∂σφ− ε′(σ)τ∂τφ,

δε̃(σ)φ = −ε̃(σ)∂τφ. (3.9)

The corresponding Noether currents can be obtained from the standard Noether procedure,

2πjjjε(σ) = −
(
ε(σ)T + ε′(σ)τM

)
dσ − ε(σ)Mdτ, (3.10)

2πjjj ε̃(σ) = −
(
ε̃(σ)M

)
dσ, (3.11)

where the currents T and M are defined as

T = −∂σφ∂τφ, (3.12)

M = −1

2
∂τφ∂τφ. (3.13)
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The conservation laws are given by

djjjε(σ) = djjj ε̃(σ) = 0, (3.14)

which can also be expressed in terms of the currents as

∂τT = ∂σM, ∂τM = 0. (3.15)

The conservation laws allow us to define the conserved charges as

Qε(σ) =

∫
σ-cycle

jjjε(σ) = − 1

2π

∫ 2π

0
dσ
(
ε(σ)T + ε′(σ)τM

)
∼ − 1

2π

∫ 2π

0
dσ ε(σ)

(
T − τ∂σM

)
,

Qε̃(σ) =

∫
σ-cycle

jjj ε̃(σ) = − 1

2π

∫ 2π

0
dσ ε̃(σ)M. (3.16)

In additional to the BMS symmetries, we also note that there is an affine U(1) sym-

metry, realized by τ -independent shifts of the field φ parametrized by Λ(σ),

φ(σ, τ)→ φ̃(σ, τ) = φ(σ, τ) + Λ(σ). (3.17)

The associated Noether current and conserved charge are

2πjjjΛ(σ) = iΛ(σ)J(τ, σ)dσ, (3.18)

J(τ, σ) = J(σ) = i∂τφ, (3.19)

QΛ(σ) =

∫
σ-cycle

jjjΛ(σ) =
i

2π

∫ 2π

0
dσΛ(σ)J(σ). (3.20)

Interestingly, we note that the current J is proportional to the canonical momentum Π,

and that its Sugawara stress tensor is proportional to the current M ,

Π = − i

2π
J, M =

1

2
J2. (3.21)

As a consistency check, we find these charges indeed implement the transformation

(3.9) and (3.17) via the Possion bracket (3.6),

{Qε(σ), φ(τ, σ)} = −ε(σ)∂σφ− τε′(σ)∂τφ = δε(σ)φ(τ, σ), (3.22)

{Qε̃(σ), φ(τ, σ)} = −ε̃(σ)∂τφ = δε̃(σ)φ(τ, σ), (3.23)

{QΛ(σ), φ(τ, σ)} = Λ(σ). (3.24)

Furthermore, the currents transform as

δε, ε̃,ΛT (τ, σ) =− 2ε′T − εT ′ − ε′τ∂τT − 2ε′′τM − 2ε̃′M − ε̃M ′ + iΛJ ′, (3.25)

δε, ε̃,ΛM(τ, σ) =− 2ε′M − εM ′, (3.26)

δε, ε̃,ΛJ(τ, σ) =− ε′J − εJ ′. (3.27)
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To find the symmetry algebra, we need to first find the symmetry generators, which are

mode expansion of the conserved charges (3.16) and (3.20), and can be obtained by ex-

panding the symmetry parameters ε(σ), ε̃(σ) and Λ(σ) in terms of the Fourier modes,

εn = ε̃n = einσ, Λn = ieinσ. (3.28)

The resulting symmetry generators are

Ln := Qεn = − 1

2π

∫ 2π

0
dσεn

(
T − τ∂σM

)
,

Mn := Qε̃n = − 1

2π

∫ 2π

0
dσε̃nM, (3.29)

Jn := QΛn = − 1

2π

∫ 2π

0
dσΛn∂τφ.

These charges form an algebra under Possion bracket,

{Qεm(σ), Qεn(σ)} = −i (m− n)Qεm+n(σ) (3.30)

{Qεm(σ), Qε̃n(σ)} = −i (m− n)Qε̃m+n(σ)

{Qε̃m(σ), Qε̃n(σ)} = 0

{Qεm(σ), QΛn(σ)} = inQΛm+n(σ)

{Qε̃m(σ), QΛn(σ)} = 0, (3.31)

{QΛm(σ), QΛn(σ)} = 0

Under the canonical quantization replacement {· , ·} → −i[· , ·], we get the BMS algebra

without central terms at the classical level, namely

[Lm, Ln] = (m− n)Lm+n,

[Lm, Mn] = (m− n)Mm+n, (3.32)

[Mm, Mn] = 0.

Note that the affine U(1) symmetry and the Virasoro algebra generated by Ln’s together

form a Virasoro-Kac-Moody algebra,

[Lm, Jn] = −nJm+n,

[Mm, Jn] = 0, (3.33)

[Jm, Jn] = 0.

Mapping to the plane

Under the plane to cylinder map (2.9), the solution (3.3) to the equation of motion

rewritten on the plane is

φ(x, y) = A(x) + yB(x), (3.34)

where

A(x) =
∑
n

Anx
−n, B(x) =

∑
n

Bnx
−n−1. (3.35)
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The Noether currents T and M corresponding to translations along x and y are

T = −∂xφ∂yφ, (3.36)

M = −1

2
∂yφ∂yφ. (3.37)

The conserved charges on the plane are

Ln =
1

2πi

∮ (
(n+ 1)xnyM + xn+1T

)
dx,

Mn =
1

2πi

∮
dxxn+1M. (3.38)

The internal U(1) current is

J = ∂yφ. (3.39)

and the charges are given by

Jn =
1

2πi

∫
dxxn∂yφ. (3.40)

As a consistency check, theses charges on the plane (3.38) and (3.40) are consistent with

those on the cylinder (3.29) under the coordinate transformation (2.9).

3.2 Canonical Quantization

In this subsection we perform canonical quantization to the scalar model (3.1). This

amounts to replacing the Possion bracket (3.6) with the canonical commutation relation

[φ(σ1, τ0), Π(σ2, τ0)] = iδ(σ1 − σ2) = i
∑
n

1

2π
e−in(σ1−σ2). (3.41)

which can be equivalently written in terms of the mode operators

[An, Bm] = δn+m,0, [An, Am] = [Bn, Bm] = 0. (3.42)

The commutation relations (3.42) are valid both on the cylinder and on the plane. Hence-

forth later discussions will be carried out on the plane, unless otherwise specified.

The quantum version of the classical Noether currents T (x, y),M(x) and J(x) that

generate translations along x and y and the internal U(1) symmetry now become operators,

T (x, y) = − : ∂xφ∂yφ :, M(x) = −1

2
: ∂yφ∂yφ :, J(x) = ∂yφ, (3.43)

where the definition of the normal order : · · · : depends on the choice of the vacuum, which

will be specified momentarily. Here we would like to keep the normal ordering implicit.

The currents can be expanded in Laurent series as

T =
∑
n

Lnx
−n−2 −

∑
n

(n+ 1)yMn−1x
−n−2, (3.44)

M =
∑
n

Mnx
−n−2, (3.45)

J =
∑
n

Jnx
−n−1. (3.46)
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which can be inverted to define infinitely many charges as

Ln =

∞∑
k=−∞

: kAkBn−k :, Mn = −1

2

∞∑
k=−∞

: BkBn−k :, Jn = Bn, (3.47)

with the Hermitian conjugates given by

L†n = L−n, M †n = M−n, J†n = −J−n. (3.48)

The charges are the quantum version of the classical charges (3.38) and (3.40) on the plane.

3.2.1 Vacuum in the highest weight representation and the Hilbert space

Note that so far we have not specified the vacuum for the model (3.1). We are interested

in the vacuum this is invariant under the global symmetries generated by L0,±1 and M0,±1.

That is, the vacuum has to satisfy

L±1, 0|0〉 = M±1, 0|0〉 = 0 (3.49)

To describe the vacuum in canonical quantization, we need to translate these conditions

in terms of An’s and Bm’s. As [An, B−n] = 1, An and B−n cannot annihilate the vacuum

simultaneously. If we let Bk0 |0〉 = 0 for a given positive integer k0, then A−k0 |0〉 6= 0. Note

that the expressions of L±1 (3.47) contain a term −k0A−k0Bk0±1. If we require L±1 to

annihilate the vacuum term by term, Bk0±1 has to annihilate the vacuum. We can keep

using this argument until we arrive at B0. Similar arguments also apply to other cases,

and we learn that

I. if Bk0 |0〉 = 0 for any k0 > 0, then Bk|0〉 = 0 for all k ≥ 0;

II. if B−k0 |0〉 = 0 for any k0 > 0, then B−k|0〉 = 0 for all k ≥ 0;

III. if Ak0 |0〉 = 0 for any k0 > 0, then Ak|0〉 = 0 for all k > 0;

IV. if A−k0 |0〉 = 0 for any k0 > 0, then A−k|0〉 = 0 for all k > 0.

Therefore there are altogether two physically different choices 3 for the vacuum that is

compatible with both the commutation relations and the symmetry condition (3.49). Let

us start with the choice I, namely

Bk|0〉 = 0, A−k|0〉 6= 0, ∀k ≥ 0. (3.50)

Then we have two feasible choices, case II or case III. Choosing I and II leads to the so-

called induced vacuum, which we will describe in detail in appendix B, while choosing I

and III leads to the highest weight vacuum, as discussed below.

Here in this section, we will focus on the choice with I and III, which combine as the

following conditions,

An|0〉 = 0, n > 0, (3.51)

Bn|0〉 = 0, n ≥ 0.

3The other two choices can be obtained from these two by switching the sign.
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It leads to the following normal ordering prescription via creation and annihilation opera-

tors,

: AnBm :=

{
AnBm, n ≤ 0

BmAn, n > 0.
(3.52)

From the vacuum condition (3.51), and the normal ordering (3.52), it is not difficult to

verify that on the plane

Mn|0〉 = 0, Ln|0〉 = 0, n ≥ −1. (3.53)

In other words, the vacuum (3.51) is i) a highest weight state (singlet) with zero confor-

mal weight and boost charge and ii) invariant under the global part of the BMS algebra.

Therefore the choice of the vacuum (3.51) is the proper vacuum in the highest weight

representation.

Note that Jn = Bn, then (3.51) and (3.53) imply that this vacuum is also the highest

weight vacuum of the Virasoro-Kac-Moody algebra (3.33). If the free scalar BMSFT is

part of the worldsheet theory of tensionless strings, the vacuum (3.51) is the vacuum of a

single string with zero momentum in the φ direction of the target space. The momentum

can be turned on by considering an eigenstate of B0 which satisfies

J0|α〉 = B0|α〉 = α|α〉, (3.54)

An|α〉 = 0, Bn|α〉 = 0, n > 0.

This can be viewed as a coherent state in the Fock space basis, and one can check that this

state is also a highest weight state with

∆ = 0, ξ = −α
2

2
. (3.55)

For α 6= 0, the momentum eigenstate are not annihilated by translational generators,

M−1|α〉 6= 0, L−1|α〉 6= 0. Other states in the theory can be obtained by acting creation

operators on zero mode states |α〉.
Putting everything together, we now describe the Hilbert space of the free BMS scalar

with the choice of the vacuum (3.51). Let~i ≡ (i1, i2 · · · ), ~i ≡ (j1, j2 · · · ), then the Hilbert

space is spanned by

|~i,~j;α〉 := Ai1−1A
i2
−2 · · ·B

j1
−1B

j2
−2 · · · |α〉. (3.56)

3.2.2 The quantum BMS algebra

Now we consider the action of other charges on the vacuum, and calculate the resulting

algebra. With some straightforward but tedious calculation, we find that the generators

(3.47) indeed form the BMS algebra (2.8) with central charges

cL = 2, cM = 0. (3.57)

Additionally, the U(1) charges Jn together with Ln form a U(1) Virasoro-Kac-Moody

algebra (3.33), with vanishing Kac-Moody level.
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Before moving on, we briefly comment on operators on the plane versus on the cylinder.

On the plane, the normal ordering (3.52) implies the vacuum expectation values of the stress

tensors on the plane vanishes

〈T (x, y)〉 = 〈M(x, y)〉 = 0 (3.58)

and hence all the vacuum expectation values of the BMS charges are zero. Using the

transformation law (2.18) under the plane-to-cylinder map (2.9), the zero-mode generator

of the Virasoro algebra on the cylinder has a shift,

Lcyl0 = Lpl0 −
1

12
. (3.59)

The above results can also be obtained by assuming symmetric ordering in Lcyl0 , then the

Casimir energy can then be obtained from ζ-function regularization.

3.3 Primary operators and Correlation functions

In this subsection we calculate the Green’s function, list the fundamental primary

operators, and calculate their correlation functions.

With the mode expansion (3.34) of the fundamental field φ and the choice of the

vacuum in the highest weight representation (3.51), we can define the Green’s function of

φ as,

〈φ(x1, y1)φ(x2, y2)〉 = 〈0|X(φ(x1, y1)φ(x2, y2))|0〉 − 〈0| : φ(x1, y1)φ(x2, y2) : |0〉 (3.60)

where X(· · · ) denotes radial order on the complexified x-plane, related to the time order

on the Lorentz cylinder, as explained in the appendix A. Additionally, : · · · : denotes the

normal order (3.52) which is compatible with the highest weight vacuum (3.51). From

the commutation relation of the modes An and Bn, we learn that only the cross terms

contribute, and that the Green’s function is given by

〈φ(x1, y1)φ(x2, y2)〉 = − y1 − y2

x1 − x2
. (3.61)

This provides the following OPE for the fundamental field

φ(x1, y1)φ(x2, y2) ∼ − y1 − y2

x1 − x2
(3.62)

The OPEs of other operators can then be obtained from (3.62) via Wick contractions. In

particular, we note that the OPEs among the stress tensors read,

T (x′, y′)T (x, y) ∼ 1

(x′ − x)4
+

2T (x, y)

(x′ − x)2
− 4(y′ − y)M(x, y)

(x′ − x)3
+
∂xT (x, y)

x′ − x
− (y′ − y)∂yT (x, y)

(x′ − x)2
,

T (x′, y′)M(x, y) ∼ 2M(x, y)

(x′ − x)2
+
∂xM(x, y)

x′ − x
,

M(x′, y′)M(x, y) ∼ 0. (3.63)

These OPEs are consistent with the BMS algebra (2.8), which has been calculated directly

in the previous subsection from the mode expansion of T and M in terms of Ln and Mn

and the commutation relation of An and Bn. In particular, the central charges cL = 2 and

cM = 0 can be read from the most singular terms.
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3.3.1 Primary operators

Now let us find the primary operators in the free BMS scalar field theory. According

to the general discussion in section 2, BMS Primary operators in a generic multiplet have

the defining property that the OPEs with the stress tensors T and M have to be of the

form (2.34). This can be used to find all the primary operators in the free BMS scalar field

theory. We first consider

O0(x, y) ≡ i∂yφ(x, y), O1(x, y) ≡ i∂xφ(x, y). (3.64)

where the pre-factor i makes the operators Hermitian. Their OPEs with the stress tensor

read

T (x′, y′)O0(x, y) =
O0

(x′ − x)2
+

∂xO0

x′ − x
, (3.65)

T (x′, y′)O1(x, y) =
O1

(x′ − x)2
+

∂xO1

x′ − x
+
−2(y′ − y)O0

(x′ − x)3
+
−(y′ − y)∂yO1

(x′ − x)2
,

M(x′, y′)O0(x, y) = 0,

M(x′, y′)O1(x, y) =
O0

(x′ − x)2
+

∂yO1

x′ − x
.

Comparing to (2.34), we learn that O = (O0, O1)T is a rank-2 multiplet with weight ∆ = 1

and vanishing boost charge ξ = 0.

In addition, there exist “vertex operators” in this free BMS scalar model, which are

operators of the form

Vα(x, y) ≡: eαφ(x,y) : (3.66)

From their OPEs with the stress tensor,

T (x′, y′)Vα(x, y) =
∂yVα
x′ − x

− (y′ − y)∂yVα
(x′ − x)2

+
α2(y′ − y)Vα

(x′ − x)3
, (3.67)

M(x′, y′)Vα(x, y) =
∂yVα
x′ − x

+
−α2

2 Vα

(x′ − x)2
. (3.68)

we can read that the vertex operators are singlet primary operators with ∆ = 0 and

ξ = −α2/2. It is interesting to note that α can be either real or purely imaginary, since

there are no constraints on the boost charges other than reality. This is different from the

usual case of relativistic theory for free scalars which are 2d CFTs, where unitarity requires

positive conformal weights hence purely imaginary α’s.

To summarize, we find that (O0, O1) is a rank-2 primary multiplet with weight ∆ = 1

and boost charge ξ =

(
0 0

1 0

)
. Additionally, the vertex operator Vα with α ∈ R ∪ iR is a

singlet primary operator with ∆ = 0 and ξ = −α2/2.

3.3.2 Operator basis

Given the Hilbert space as described by (3.56), we can find the basis of local operators

via the state operator correspondence (2.49).
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Let us first look at the states that correspond to the Vertex operators Vα’s, which by

definition are highest weight states carrying exactly the same quantum numbers as the zero

mode state |α〉’s. Therefore we identify

|α〉 = lim
x→0,y→0

Vα(x, y)|0〉 (3.69)

Now let us consider the weight 1 primary operators O1 = i∂xφ, O0 = i∂yφ as defined

in (3.64). One finds

lim
x→0,y→0

O1|0〉 = iA−1|0〉, (3.70)

lim
x→0,y→0

O0|0〉 = iB−1|0〉. (3.71)

Their descendants are then

∂kO1|0〉 = i∂k+1
x φ(x, y)|0〉 = i(k + 1)!A−k−1|0〉, (3.72)

∂kO0|0〉 = i∂kx∂yφ(x, y)|0〉 = i(k + 1)!B−k−1|0〉. (3.73)

That is, the states with a single creation operator A−k correspond to the operator ∂kxφ(x, y),

and the states with single B−k correspond to the operator ∂k−1
x ∂yφ(x, y). This relation also

works for the composite states, namely

: ∂k1
x φ∂

k2
x φ · · · ∂l1−1

x ∂yφ∂
l2−1
x ∂yφ : ∼ A−k1 A−k2 · · · B−l1 B−l2 · · · (3.74)

Putting all the above together, we learn that the Hilbert space are generated by acting

operators of the form (3.74) on the zero mode states |α〉’s, the later of which correspond

to vertex operators. Therefore we conclude that in the BMS free scalar model, there exists

a complete basis of local operators,

{Vα, : ∂k1
x ∂

δ1
y φ · · · ∂knx ∂δny φ e

αφ : } (3.75)

n ∈ Z+, kn + δn ≥ 1, kn,∈ N, δn = 0, 1, α ∈ R ∪ iR.

which, when inserted at the origin, give all states in the Hilbert space spanned by (3.56).

As a special case, the identity operator corresponds to I = V0. The only fundamental

primary operators are {∂xφ, ∂yφ, Vα = eαφ, α ∈ R ∪ iR}.

3.3.3 Correlation functions

Correlation functions can be obtained from the OPEs. Let us first consider the rank−2

multiplet (3.64). The two-point functions are given by,

〈O0(x1, y1)O0(x2, y2)〉 = 0 (3.76)

〈O0(x1, y1)O1(x2, y2)〉 =
1

x2
12

(3.77)

〈O1(x1, y1)O1(x2, y2)〉 = −2y12

x3
12

(3.78)
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where x12 = x1 − x2, y12 = y1 − y2. The two-point functions above agree with the general

result for a ξ = 0 rank-2 multiplet (2.57). All three-point functions within the multiplet

vanish, namely,

〈Oa(x1, y1)Ob(x2, y2)Oc(x3, y3)〉 = 0 (3.79)

Next, the vertex operator Vα (3.66) satisfies the following OPE,

Vα(x′, y′)Vβ(x, y) ∼ e−αβ
y′−y
x′−x Vα+β, (3.80)

which implies the correlation functions,

〈Vα(x1, y1)Vβ(x2, y2)〉 =

e
α2 y1−y2

x1−x2 , α+ β = 0

0, α+ β 6= 0.
. (3.81)

Using the state operator correspondence, this implies that zero mode background satisfy

the following orthonormal condition

〈α′|α〉 = δα′,−α (3.82)

More generally, we have

〈
n∏
k=1

Vαk(xk, yk)〉 = exp{
n∑
i<j

(−αiαj)
yi − yj
xi − xj

}, (3.83)

which do not vanish only when the following condition is obeyed,∑
k

αk = 0 (3.84)

The above condition can also be understood from the charge conservation of the internal

U(1) symmetry (3.47) . The vacuum is charge neutral as J0|0〉 = B0|0〉 = 0, while the

vertex operator Vα carries global U(1) charge α,

[J0, Vα] = αVα . (3.85)

Therefore the condition (3.84) is just the condition for charge conservation. Note that the

multiplet (O0, O1)T is already charge neutral under the global U(1) symmetry, so there

are no additional constraints for correlations among these operators.

Finally, let us consider the OPEs between the (O0, O1)T multiplet and the vertex

operators,

O0(x′, y′)Vα(x, y) ∼ − iα

x′ − x
Vα(x, y), (3.86)

O1(x′, y′)Vα(x, y) ∼ iα(y′ − y)

(x′ − x)2
Vα(x, y), (3.87)

– 23 –



which means that the two-point functions between them always vanish. Using Wick’s

theorem, we find the non-vanishing three-point functions are

〈O0(x1)Vα(x2, y2)V−α(x3, y3) =
−iα
x12

e
α2 y23

x23 +
iα

x13
e
α2 y23

x23 , (3.88)

〈O1(x1, y1)Vα(x2, y2)V−α(x3, y3) =
iα y12

x2
12

e
α2 y23

x23 − iα y13

x2
13

e
α2 y23

x23 . (3.89)

We end this section with the following concluding remarks,

• The quantum theory of the free scalar BMSFT (3.1) depends on the choice of the

vacuum. We find a self-consistent highest weight vacuum, where the free BMS scalar

has the central charges cL = 2 and cM = 0.

• We calculate the correlators in the highest weight vacuum. The primary operators

consist of {I, O = (O0 = i∂yφ, O1 = i∂xφ), Vα =: eαφ : | α ∈ R ∪ iR}, where O is a

primary multiplet with ∆ = 1, ξ = 0 and Vα’s are vertex operators.

• In the context of tensionless string theory, different types of vacua have been dis-

cussed, including the so-called induced vacuum, flipped vacuum and oscillator vac-

uum. The induced vacuum is related to our discussion in section 3.2.1 with choice I

and II, a detailed discussion of which will be postponed to appendix B. The so-called

flipped vacuum in [55] is similar to our highest weight vacuum, (3.51) but without

requiring B0|0〉 = 0, and hence is not invariant under the action of L−1 and M−1.

The oscillator vacuum is not invariant under the global subgroup of the BMS group

either. Thus our highest weight vacuum provides a new starting point for the study

of the free scalar BMSFT (3.1) as a quantum theory.

4 The enlarged BMS module

In the last section we found a basis of the Hilbert space (3.56) in terms of annihilation

and creation operators An, Bn, and a basis of the local operators (3.75) in terms of the

composite operators constructed from O0, O1. In this section, we will see how to organize

the states and local operators in terms of BMS modules. Because this model has cM = 0,

novel features appear, and it turns out the states have to be organized into an enlarged BMS

module, which is similar to the so-called staggered module of logarithmic CFTs [43–48].

4.1 Truncation at cM = 0?

In this subsection we revisit the general analysis of BMSFTs with cM = 0 [21], which

states that the BMS module has a truncation as a Virasoro module. We will show that

this statement is true provided that there are no extra quasi-primary operators with ∆ = 2

other than T and M . In this case, the theory does not allow multiplets either.

From the OPE of the stress tensor in a generic BMS field theory (2.16), we learn that

the stress tensor T and M form a rank-2 multiplet O = {2M,T}T with conformal weight

∆ =

(
2

2

)
, and boost charge ξ =

(
0 0

1 0

)
. An interesting special case is when cM = 0,
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which actually occurs in the free BMS scalar. In this case, the state M−2|0〉 has vanishing

inner product with both itself and the state L−2|0〉. If we assume that there are no other

level 2 states in the vacuum module, M−2|0〉 will be a null state as it is orthogonal to all

states. By considering the inner products of the higher descendant states, one can similarly

arrive at the conclusion that M i
−n · · · |0〉, n > 0 are all null states. Then the vacuum is

invariant under the action of all the Mn’s for arbitrary integer n. This leads to further

constrains on the two point functions,

〈Mn|Oi(x1, y1)Oj(x2, y2)|0〉 = 〈0|MnOi(x1, y1)Oj(x2, y2)|0〉 = 0, ∀n ∈ Z, (4.1)

where we have used the fact that M is the top component of the rank two multiplet so that

the out state 〈Mn| is 〈0|Mn according to the definition (2.50). Using the Wald identity,

the above condition leads to the following differential equations,

〈0|M(x)Oi(x1, y1)Oj(x2, y2)|0〉

=
∑
k=1,2

(
∂yk

x− xk
+

ξk
(x− xk)2

)〈0|Oi(x1, y1)Oj(x2, y2)|0〉 = 0. (4.2)

Two point functions have to satisfy (4.2) in addition to the six conditions coming from

the global symmetries which leave the vacuum invariant. Plugging the solution (2.48) into

(4.2), one can check that the allowed solutions have to be y−independent and meanwhile

have ξ = 0. On the other hand, according to the discussion in section 2.3.2, a multiplet

with rank r > 1, there always exists 0 ≤ a, b < r satisfying q = a + b + 1 − r > 0, such

that 〈OaOb〉 has y−dependence even if ξ = 0 (2.48). Therefore the existence of multiplets

is not compatible with (4.2), and such a theory only admits singlets with ξ = 0.

From the above argument, one may draw the conclusion that the highest weight rep-

resentation of the BMS algebra has a truncation to the one of the Virasoro algebra [21],

with no appearance of multiplets. In the free scalar model, however, we have explicitly

constructed a multiplet with ξ = 0. To understand the apparent discrepancy, let us recall

that in the general analysis above, we have assumed that there are no other states in the

vacuum module at level two other than L−2|0〉 and M−2|0〉. On the other hand, in the

free scalar model, there exists a new quasi-primary which is not orthogonal to M−2|0〉, and

hence the aforementioned truncation does not happen. We will illustrate this point in more

detail in the following subsection.

4.2 Enlarged BMS module in the free scalar model

In the general analysis above, we have assumed that the only weight 2 quasi-primary

operators in the vacuum module are the stress tensor T and M . However, in the free BMS

scalar model, we find that there is another weight 2 state −A−1A−1|0〉, which corresponds

to the operator

K ≡ −1

2
: ∂xφ∂xφ : (4.3)

The existence of (4.3) violates the assumption in the subsection above, so that the ob-

struction (4.2) of having highest weight multiplets disappears, and the truncation to the
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Virasoro module will not happen. In fact, the new operator (4.3) will enlarge the highest

weight module in our free scalar model. To see this explicitly, we first calculate the OPEs

using the φφ OPE (3.62), and the results are as follows,

M(x′, y′)K(x, y) ∼ 1

2 (x′ − x)4 +
T

(x′ − x)2 +
∂yK

(x′ − x)
, (4.4)

T (x′, y′)K(x, y) ∼ −2 (y′ − y)

(x′ − x)5 −
2 (y′ − y)T

(x′ − x)3 +
2K

(x′ − x)2 +
∂xK

(x′ − x)
− (y′ − y) ∂yK

(x′ − x)2 .

Comparing (3.63) and (4.4) with the defining properties of quasi-primary multiplets (2.38),

we find that the operators T = {2M,T,K} actually form a rank-3 quasi-primary multiplet

with weight and charge,

∆ =

2

2

2

 , ξ =

0 0 0

1 0 0

0 1 0

 . (4.5)

One can also explicitly calculate the inner products between states which correspond to

different components of T , and verify that they indeed satisfy (2.51), namely

〈T |T 〉ab = δa+b,2, (4.6)

which clearly shows that M−2|0〉 is not a null state. The vacuum is still invariant under the

global part of the BMS group generated by {L0,±1,M0,±1}, but the action of other Mn’s

provides no further constraints on the correlation functions. In this case, the representation

of the BMS algebra does not truncate to that of a Virasoro algebra as was argued in [21].

Instead, the representation of the BMS algebra is enlarged to the so-called staggered module

which we will describe below.

For completeness, we also provide the OPE between K and other primary operators

here,

K(x′, y′)O0(x, y) ∼ O1

(x′ − x)2 +
∂xO1

(x′ − x)
+

(y′ − y) ∂xO0

(x′ − x)2 , (4.7)

K(x′, y′)O1(x, y) ∼ −2 (y′ − y)O1

(x′ − x)3 − 2 (y′ − y) ∂xO1

(x′ − x)2 − 2 (y′ − y)2 ∂xO0

(x′ − x)3 , (4.8)

K(x′, y′)Vα(x, y) ∼ −α
2 (y′ − y)2 Vα

2 (x′ − x)4 − (y′ − y) ∂xVα

(x′ − x)2 . (4.9)

The representation

In section 3 we discussed the operator basis where the primary operators were found to

be I, O and Vα’s, and other operators should be organized into one of the three families. We

have just learnt that (2M, T, K) form a quasi-primary triplet, which means that K should

belong to the vacuum module 4. However, in the usual BMS highest weight representation,

the vacuum module only contains the composite operators of T and M . To accommodate

4We will not distinguish the notion of states and operators, and hence of BMS modules and operator

families in this section.
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the new operator K, the ordinary highest weight module should be enlarged to the so-called

staggered BMS module, which is an indecomposable representation of the BMS algebra,

defined as the semi-direct product of two ordinary highest weight representations. While

it is interesting to analyze this enlarged module at cM = 0 from a more general point of

view, in this paper we restrict our discussion to the free scalar model, and illustrate how

states are organized into the new module below.

The staggered BMS module can be constructed as follows, starting from a primary

state O, or more generally a primary multiplet O, we can first construct the ordinary BMS

module by applying L−n, M−n with n > 0 successively. To enlarge the module, we add one

more state which corresponds to the composite operator : KO :, and construct its BMS

descendants by acting with L−n, M−n successively. We will refer to states descended from

O (including O itself) as the main branch, and states from : KO : as the first side branch.

Similarly, the composite operators : KKO :, : KKKO :, etc, and their BMS descendants

form the second side branch, the third side branch, etc. As a result, the primary operators

O and the composite operators : KnO : are all seeds of the enlarged module, from which

we can build infinite many branches of states by acting with the raising operators of the

BMS algebra. In order to form a single BMS module instead of separate modules, the

branches must be bonded together. As we will see explicitly momentarily, it is M0 that

sews the states in different branches together. Consequently, states at each level will be

grouped into several multiplets, and states within each multiplet are related by the action

of M0. Interestingly, if we apply the lowering operators Ln, Mn, n ≥ 1 to states in the side

branches, we may obtain states in the main branch, whereas states in the main branch will

only flow within the main branch. Key features of the staggered module include:

• Removing the side branches, we are left with the main branch, which is the usual

highest weight module.

• The first side branch can be viewed as a highest weight module if we mod out the

main branch; the second side branch can be viewed as a highest weight module if we

mod out both the main branch and first side branch; similarly, the (n + 1)-th side

branch can be viewed as a highest weight module if we mod out the first to the n-th

side branches as well as the main branch.

• The seed of a side branch can be mapped to the seed of the main branch by lowering

operators, whereas there are no raising operators to map the seed of the main branch

to seeds of the side branches.

The full structure of the staggered module is schematically depicted in Fig. 1, where the

black dot represents the primary O, red dot represents the new seeds : KO :, : KKO :, . . . ,

each vertical squiggly arrow represents a branch descended from a seed operator, and the

blue arrows represents the action of M2 which maps the seeds from different branches. This

structure is very similar to logarithmic CFTs with c = 0 [43–48], where the Virasoro stress

tensor is accompanied by a logarithmic partner and the Virasoro module is also enlarged

to a staggered module.
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•

•

•

· · · · · · · · · · · ·

Figure 1: Staggered module

In the following, we use diagrams to illustrate different modules in the free scalar

model, where we use solid dots for states, downward arrows for raising operators L−n,M−n
with n > 0, horizontal arrows for M0, and upward arrows for lowering operators Ln,Mn

with n > 0. We also use different colors to distinguish different generators. The Virasoro

generators are in black and the supertraslations generators Mn are all in blue. States that

can be viewed as a Virasoro descendant of the primary are colored in black, states that are

BMS descendants but not Virasoro descendants are colored in blue, and new states related

to the operator K are all in red. At each level, we always put the states with more B−n’s

to left. As the action of Mn decreases the number of A−n’s and increases the number of

B−n’s, all the blue arrows representing Mn should always point left. In our convention,

states that are linked by horizontal blue lines are within a multiplet.

The vacuum module

Let us first consider the vacuum module up to states with ∆ = 3, as depicted in

Fig. 2. Up to this level, the vacuum module only contains two seeds, the vacuum at level

zero and the quasi-primary state |K〉 at level two. Other states in the module can be

generated from the seeds by the raising operators L−n and M−n with n > 0 represented

by downward arrows. Now let us comment on the states at each level. There is a unique

state at level zero, the vacuum state, which is represented by the black dot in the middle

of the first line. There are no states at level one, as both L−1 and M−1 annihilate the

vacuum. The three states at level 2 form a rank 3 quasi-primary multiplet, of which two

states B2
−1|0〉 ∼ |M〉 and A−1B−1|0〉 ∼ |L〉 are in the main branch, and the new state

A2
−1|0〉 ∼ |K〉, represented by the red dot on the right end, seeds the first side branch. The

four states at level 3 split into two multiplets: a singlet L−1|T 〉 − 3M−1|K〉, and a triplet

consisting of L−1|M〉, L−1|T 〉+M−1|K〉 and L−1|K〉. Note that we have omitted the links

representing the direct action of L−3, M−3 in the figure, since they can respectively be

expressed in terms of L−1L−2 and L−1M−2.

Finally, applying lowering operators, which run upwards, will add further links between

states. For example, there is a blue arrow pointing to northwest on the lower left part of

Fig. 2, illustrating the relation M1(L−1|T 〉) ∼ |M〉. An interesting feature is that usually
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arrows for Ln’s run double directions, while those for Mn’s do not. For example, acting M2

on the new seed |K〉 will get the vacuum, but there is no raising operator that maps the

vacuum to the K state. In addition, the K state is annihilated by the Virasoro lowering

modes Ln, n > 1, represented by dashed lines. For simplicity, we have omitted all null

states except for those at level zero which are represented by the symbol ×. From Figure

2, it is clear that the vacuum module does not only contain the Virasoro descendants which

are represented by black dots, but also contain the M -descendants colored in blue, and the

novel K-states colored in red. Thus, instead of a truncation, we have an enlargement of

the BMS highest weight representation.

∆ = 0 × • ×

∆ = 2 • • •

∆ = 3 • • • •

Figure 2: The vacuum module: the vacuum state with ∆ = 0;

states with ∆ = 2 form a quasi-primary multiplet, from left to right: |M〉, |T 〉, |K〉;
states with ∆ = 3 from left to right: L−1|M〉, L−1|T 〉, M−1|K〉, L−1|K〉.
The four states at level 3 split into two multiplets: a singlet L−1|T 〉 − 3M−1|K〉, and a

triplet consisting of L−1|M〉, L−1|T 〉+M−1|K〉 and L−1|K〉.

The O module

Now let us consider the module seeded by the primary multiplet O = (O0, O1)T , which

has conformal weight ∆ = 1. The O module also shares the key features of a staggered

module, although it is more complicated than the vacuum module. To make the picture

clear, we split the O module into two figures. Figure 3 contains the primary multiplet

O and their SL(2, R)-descendants, L−1O with ∆ = 2 and L2
−1O with ∆ = 3. States at

each level form a multiplet as indicated by the horizontal blue lines. Note that Figure 3

does not contain new states corresponding to the presence of the operator K. In Figure

4, the two states with ∆ = 1 are also the primary multiplet O, and the four states with

∆ = 3, which from left to right are M−2|O0〉, L−2|O0〉, L−2|O1〉 and |KO1〉, form a rank 4

multiplet. Again, the new state |KO1〉 colored in red provides a seed for the enlargement

of the representation.

Putting the vacuum module and the O module together, we summarize, up to ∆ = 3,

the number of states, quasi-primary states, primary states and also the organization of the

multiplets in the table below. In the last line, we use numbers in bold font to indicate the
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• • ∆ = 1

• • ∆ = 2

• • ∆ = 3

Figure 3: O module, part I:

states with ∆ = 1: |O0〉, |O1〉;
states with ∆ = 2: L−1|O0〉, L−1|O1〉;
states with ∆ = 3: L2

−1|O0〉, L2
−1|O1〉.

× • • ×

• • • •

Figure 4: O module, part II :

states with ∆ = 1: |O0〉, |O1〉;
states with ∆ = 3:

M−2|O0〉, L−2|O0〉, L−2|O1〉, |KO1〉.

rank of the multiplets. For example, 3+ 2 means that the 5 states with ∆ = 2 split into a

multiplet of rank 3 and a multiplet of rank 2.

conformal weight ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3

# of states 1 2 5 10

# of quasi-primaries 1 2 3 4

# of primaries 1 2 0 0

multiplets 1 2 3+2 3+1+4+2

Figure 5: States up to ∆ = 3

To recapitulate, we have learnt that BMS field theories with cM = 0 are special and

subtle. In a general BMS field theory, the stress tensors T, M are in a multiplet. Depending

on the details of the theories, there are two possibilities for the representation theories as

following.

• If T, M are the only quasi-primary operators with ∆ = 2, then the highest weight

representation of the BMS algebra reduces to that of the Virasoro algebra. In partic-

ular, BMS multiplets should not appear, and all states should have vanishing boost

charge ξ = 0.

• If there are other quasi-primary fields with ∆ = 2, so that the multiplet containing

T, M is enlarged, then the highest weight representation of the BMS algebra is also

enlarged. BMS primary multiplets can appear, and the truncation does not happen.

For the BMS free scalar model with cM = 0, we indeed find an extra quasi-primary operator

K, which provides a seed to enlarge the ordinary highest weight module. We have also

explicitly found a rank-2 primary multiplet O. It would be interesting to study general

BMS field theories with cM = 0. In particular, the associativity of the operator algebra
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can be used to constrain the stress tensor multiplet, which can help us to systematically

classify this class of theories. We leave this to further work.

5 Ultra-relativistic limit from CFT2

So far we have been discussing the free scalar model as an intrinsic BMSFT. Alterna-

tively, it is also useful to view the theory as the ultra-relativistic (UR) limit of a CFT2.

In this section, we will first revisit the UR limit of the CFT2 on the cylinder discussed in

[21, 26, 33, 42], and point out a subtlety in the limit on the plane. Then we will discuss

the free BMS scalar model as a UR limit of a free scalar CFT. We only discuss the UR

limit in this section, and postpone the discussion on the non-relativistic (NR) limit to the

appendix C.

5.1 General discussion on the UR limit

5.1.1 UR limit on the cylinder

Consider a CFT2 on the cylinder parameterized by σ, t with the periodicity condition

σ ∼ σ + 2π. (5.1)

The infinitesimal conformal transformations are generated by

l+n =
i

2
ei(σ+t)n(∂σ + ∂t), l−n = − i

2
e−i(σ−t)n(∂σ − ∂t). (5.2)

Conformal transformations are implemented in CFT2 by the Virasoro generators L+
n , L

−
n

which form two copies of the Virasoro algebra[
L+
n , L

+
m

]
= (n−m)L+

m+n +
c

12
n(n2 − 1)δm+n,0[

L−n , L
−
m

]
= (n−m)L−m+n +

c̄

12
n(n2 − 1)δm+n,0, (5.3)[

L+
n , L

−
m

]
= 0

The UR limit on the cylinder is defined as

t = ετ, ε→ 0 (5.4)

so that the speed of light goes to zero, which is the reason why this limit is called the

ultra-relativistic limit. Under this limit the conformal transformations become BMS trans-

formations generated by

ln = l+n − l−−n = ieinσ(∂σ + inτ∂τ ), mn = ε(l+n + l−−n) = ieinσ∂τ (5.5)

Correspondingly, the Virasoro algebra (5.3) becomes the BMS algebra (2.8) via a Wigner-

Inönü contraction [56],

Ln = L+
n − L−−n, Mn = ε(L+

n + L−−n). (5.6)

with the central charges related by,

cL = c− c̄, cM = ε(c+ c̄). (5.7)
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5.1.2 UR limit on the plane

It is also useful to spell out the UR limit on the plane, which we use extensively in

the free scalar model. This limit turns out to be more subtle, and our discussion below is

different from previous discussions in the literature [20, 21, 25]. Before the limit, the map

from cylinder parameterized by (σ, t) to plane parameterized by (z, z̄) is given by,

z = ei(σ+t), z̄ = e−i(σ−t). (5.8)

and the CFT2 generators become,

l+n = −zn+1∂z, l−n = −z̄n+1∂z̄. (5.9)

Our goal is to find a limit of the coordinates which will give well-defined BMS generators

and thus a BMS algebra under the contraction (5.6). One naive guess is to take a limit

similar to the one on the cylinder (5.2)

z = εy + x, z̄ = −εy + x, ε→ 0 (5.10)

As discussed in [21], an analogy of (5.10) does work in the non-relativistic case and it leads

to a well-defined GCA, which we review in the appendix C. However, under the naive limit

(5.10), the generators become

ln = −x
1−n + x1+n

2ε
∂y, mn =

x1−n − x1+n

2
∂y (5.11)

and hence do not have a well defined UR limit. To get finite generators, we find that the

proper UR limit on the plane should be chosen as

z = εy + x, z̄−1 ≡ z̃ = −εy + x, ε→ 0 (5.12)

Note that in terms of the (z, z̃) coordinates, the CFT2 generators on the plane can be

rewritten as

− l−−n ≡ l̃−n = z̄−n+1∂z̄ = −z̃n+1∂z̃. (5.13)

This allows us to define BMS generators similar to (5.5)

ln = l+n + l̃−n = −xn+1∂x − (n+ 1)xny∂y, mn = ε(l+n − l̃−n ) = −xn+1∂y (5.14)

As a consistency check, one can easily verify that the UR limit on the plane (5.12) can also

be obtained from the UR limit on the cylinder (5.4) via the BMS plane-to-cylinder map

(2.9).

5.1.3 Representations

In [26, 42], two types of vacua before the UR limit have been discussed, the highest

weight vacuum and the so-called flipped vacuum, which respectively become the induced

vacuum and the highest weight vacuum under the UR limit. We will consider the “flipped

vacuum → highest weight vacuum” here, and postpone the discussion on the “highest
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weight vacuum → induced vacuum” to appendix B. The flipped representation in CFT2

can be understood as the highest weight representation in the flipped coordinates (5.12)

before the UR limit, or equivalently, as an automorphism of the right-moving Virasoro

algebra,

L−n → L̃n = −L−−n, c̄→ −c̄, (5.15)

as suggested by (5.13). The resulting flipped representation satisfies

L+
0 O = hO, L−0 O = −h̄O (5.16)

L+
nO = L−−nO = 0, n > 0 (5.17)

Under the UR limit (5.6), the flipped representation becomes the highest weight represen-

tation of the BMS algebra,

L0O = ∆O, M0O = ξO (5.18)

LnO = MnO = 0, n > 0 (5.19)

where

∆ = h+ h̄, ξ = ε(h− h̄) (5.20)

5.2 UR Limit of the relativistic free scalar model

In this subsection we show that our free scalar BMSFT (3.1) can be obtained from the

UR limit of a free scalar CFT2. Consider the free scalar model on the cylinder,

S =
1

4π

∫
dσdt

(
(∂tΦ)2 − (∂σΦ)2

)
, (σ, t) ∼ (σ + 2π, t) (5.21)

Under the UR limit (5.4) together with the corresponding rescaling of the field,

t = ετ, Φ =
√
εφ, ε→ 0, (5.22)

the action (5.21) becomes the BMS scalar action (3.1) on the cylinder (σ, τ) ∼ (σ+ 2π, τ),

which we reproduce here,

S =
1

4π

∫
dσdτ(∂τφ)2 . (5.23)

The equation of motion of the relativistic scalar (5.21) can be solved in terms of the mode

expansion

Φ = φ0 + π0t+
i√
2

∑
n6=0

1

n
(ane

−in(σ+t) − ā−ne−in(σ−t)). (5.24)

with the canonical commutation relations

[an, am] = [ān, ām] = nδn+m,0, [an, ām] = 0, [φ0, π0] = i (5.25)

Comparing with the mode expansion of the BMS free scalar on the cylinder (3.3) we obtain

the relation between modes before and after the UR limit

An = lim
ε→0

i√
2n
√
ε
(an − ā−n), Bn = lim

ε→0

−i
√
ε√

2
(an + ā−n), n 6= 0, (5.26)

A0 =
φ0√
ε
, B0 = −i

√
επ0. (5.27)
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As a consistency check, one can verify that under such relation the commutation relations

before the UR limit (5.25) indeed become (3.42) after the limit (5.22).

This model also enables us to show explicitly why the UR limit on the plane should be

(5.12) instead of the naive limit (5.10). If the latter is taken, the plane mode expansion will

contain a zero mode part −i log(x)π0, which does not exist in the BMS mode expansion

(3.34). This issue, on the other hand, does not appear if we take the proper UR limit

(5.12), where the zero mode term in question now becomes −i yxπ0 which further becomes

the y
xB0 term in the BMS mode expansion under (5.26). Therefore, the UR limit (5.12) is

compatible not only with the plane to cylinder map (2.9), but also with the UR limit of

the mode expansion.

Flipped → highest weight representation

As we discussed in general in subsection 5.1.3, if we take the UR limit of a CFT from

the flipped representation, we will obtain a highest weight representation in the BMSFT.

Now we want to apply this to our relativistic free scalar model. We will provide evidence

that this resulting representation of the BMS free scalar theory is just the representation

that we discussed in section 3, by showing that the vacuum obtained from this limit agrees

with the one (3.62) obtained from intrinsic BMSFT quantization method.

As mentioned earlier, the flipped representation is derived from the usual highest

weight representation by the automorphism (5.15) of the right-moving Virasoro. In the free

scalar model, this automorphism can be realized at the level of creation and annihilation

operators,

ān → ā−n, (5.28)

Under this automorphism, the “ground” state |0〉 in the flipped representation is specified

by

an|0〉 = ā−n|0〉 = 0, n ≥ 0. (5.29)

Using the relation (5.26) of the modes under the UR limiting procedure, we obtain that

the resulting vacuum in the BMS theory satisfies

An|0〉 = 0, n > 0, (5.30)

Bn|0〉 = 0, n ≥ 0. (5.31)

We recognize this as the BMS highest weight vacuum defined in (3.51). Since we have the

same vacuum, all the calculations based on the vacuum should be the same.

In particular, the Green’s function on the plane in the flipped representation reduces

to that of BMSFT (3.61). To do so, we first compute the Green’s function in CFT2 by

summing over all the modes (5.24) on the flipped vacuum (5.29). Using the commutation

relations (5.25), this amounts to summing over the 〈0F |ana−n|0F 〉 and 〈0F |ā−nān|0F 〉
terms with n > 0, together with a zero-mode term. Further using the map from cylinder

to plane (5.8), the Green’s function on the flipped vacuum can be written as

〈Φ(z1, z̄1)Φ(z2, z̄2)〉F = −1

2

(
log(1− z2

z1
)− log(1− z̄1

z̄2
) + log(z1z̄1)

)
, (5.32)
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or more conveniently, in the z̃ = z̄−1 coordinate, as

〈Φ(z1, z̃1)Φ(z2, z̃2)〉F = −1

2
(log(z1 − z2)− log(z̃1 − z̃2)), (5.33)

Under the plane UR limit (5.12), the above Green’s function indeed becomes that of the

BMSFT in the highest weight vacuum (3.61).

We have just shown that the highest weight representation of our free BMS scalar

model comes from the UR limit of the flipped representation in the 2d free relativistic

massless scalar model. In the literature, it has also been argued that the UR limit of the

highest weight representation in CFT2 leads to the induced representation in BMSFTs.

We will discuss this other limit in appendix B.

6 Torus partition function

In this section we explicitly calculate the torus partition function for the free scalar

BMSFT, and show that it is modular invariant as expected from the general analysis of

[31, 32, 35, 42].

6.1 Modular invariance of BMSFT

In this subsection we review the derivation of modular invariance for BMSFTs, which

helps us to set up the conventions. Those who are already familiar with this story can skip

this subsection. The torus partition function for BMSFTs has been shown to be modular

invariant, by taking a limit of CFT2 in [32, 42], or intrinsically as in [31, 35]. We review

the argument of modular invariance for BMSFT, following the intrinsic argument as in

Appendix A in [35]. We consider a torus which is determined by two identifications on a

two dimensional plane 5,

(canonical) spatial circle : (τ, σ) ∼ (τ, σ + 2π) (6.1)

thermal circle : (τ, σ) ∼ (τ − 2πib, σ − 2πia) (6.2)

with a ∈ R, b ∈ R. Since the change of orientation of the complexifed σ can be realized by

the symmetry (a, b)→ (−a,−b), we will only consider a > 0 without loss of generality. The

partition function on the above torus is formally a path integral over all fields satisfying

boundary conditions specified by the two identifications. Alternatively, the torus partition

function can be written as a trace over the Hilbert space which is determined by the spatial

circle, weighted by the evolution along the thermal circle,

Z(a, b) = Tr e−2πa(L0−
cL
24

)−2πb(M0−
cM
24

) (6.3)

where the translational generators are defined on the cylinder with the spatial circle (6.1),

which we refer to as the canonical circle. We have also taken the Casimir effect (3.59) into

account.

5It is useful to embed R2 into C2 in the subsequent discussions.
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More generally, a torus can be described by the fundamental region on the plane

(τ, σ) ∼ (τ, σ) +m ~βS + n ~βT (6.4)

where m and n are integers, so that the torus is completely determined by a pair of vectors
~βS , ~βT on the plane. For instance, the torus (6.1) has a canonical spatial circle ~βS = (0, 2π),

and a thermal circle ~βT = (−2πib, −2πia). The transformations acting on the plane that

leave the torus invariant form the modular group, SL(2, Z)/Z2. The action of SL(2, Z) is

given by (
a b

c d

)(
~βS

~βT

)
=

(
~β′S
~β′T

)
(6.5)

with

ad− bc = 1, a, b, c, d ∈ Z. (6.6)

The reason to mod Z2 is because the simultaneous inversion of all the matrix elements does

not change the torus. The modular group is generated by the T and S transformations,

with

T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
. (6.7)

In particular, the modular S transformation swaps the spatial and thermal circles. From

the path integral point of view, the torus partition function only depends on the torus and

hence should be invariant under the action of the modular group, namely

Z~βS (~βT ) ≡ Tr~βS e
−i(M

~βS
0 , L

~βS
0 )·~βT = Z~β′S

(~β′T ) = Z−~βT (~βS) (6.8)

where the trace is taken over the Hilbert space, and the translational operators M
~βS
0 , L

~βS
0

are both defined on the spatial circle specified by ~βS , as the subscript and superscript

suggest. Note that the modular group is the isometry group acting on the modular param-

eters, and hence is independent of the theory. In general, the relation (6.8) is a relation

between theories with Hilbert spaces defined on different spatial circles. For two dimen-

sional quantum field theories with enough symmetries, such as such as CFT2, BMSFT ,

and WCFT , a symmetry transformation can be found to transform the torus such that

the spatial circle is transformed back to the original one specified by ~βS again. For BMSFT

on the canonical spatial circle (6.1), such a transformation is a BMS symmetry of the form

(2.1), given by,

f(σ) = − i
a
σ, g(σ) = − ib

a2
σ (6.9)

under which the identifications ~β′S = (−2πib′,−2πia′), ~β′T = (0, 2π) after the swapping of

the cycles becomes,

(τ, σ) ∼ (τ, σ − 2π) ∼ (τ +
2πib

a2
, σ − 2πi

a
) (6.10)
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Finally, using the transformation rules (2.18) for the finite BMS transformation (6.9), one

can relate the partition functions before and after the S transformation, and find that it is

modular invariant

Z(a, b) = Z(
1

a
,− b

a2
). (6.11)

Note that the modular group will keep a > 0.

6.2 Torus partition function for the free scalar model

In this subsection we explicitly calculate the torus partition function for the free scalar

model. The result depends on the choice of the vacuum. We will perform the calculation

in the highest weight vacuum and postpone that of the induced vacuum to appendix B.

Intrinsic calculation in the highest weight vacuum

To calculate the torus partition function (6.3), we need to specify both the Hilbert

space and the explicit definition of the trace. For the highest weight vacuum, the Hilbert

space is spanned by (3.56)

|~i,~j;α〉 = Ai1−1A
i2
−2 · · ·B

j1
−1B

j2
−2 · · · |α〉. (6.12)

Using the conjugation relations (3.4), the basis for the out states can be written as

〈~i,~j| = (−1)j〈α| · · ·Bj2
2 B

j1
1 · · ·A

i2
2 A

i1
1 (6.13)

where the overall sign (−1)j is determined by

j ≡
∑
k

jk . (6.14)

It is not difficult to verify that inner products between states with different zero mode

charges are orthogonal with each other, while the inner products between different states

with the same zero mode charge form a non-diagonal matrix Nα, namely

〈~i′, ~j′;α′|~i,~j;α〉 = δα,α′Nα;~i~j,~i′~j′
, N

α;~i~j,~i′~j′
= δ~i′,~jδ~j′,~i (6.15)

The fact that the inner product matrix between the out-states (6.13) and the in-states

(6.12) is not diagonal requires a more careful definition of the trace. In order to do so, it

is useful to introduce a dual basis as

∨〈~i,~j;α| ≡ (N−1
α )~i~j,~i′~j′

∑
{~i′,~j′}

〈~i′, ~j′;α| (6.16)

where N−1
α denotes the the matrix inverse of Nα whose matrix elements are defined in

(6.15). One can easily verify that the dual basis is indeed orthonormal to the basis (6.12),

such that

∨〈~i,~j;α|~i′~j′;α〉 = δ~i,~j;~i′,~j′δα,α′ . (6.17)
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Then the trace in the partition function (6.3) can be defined by

Z(a, b) = Tr(e−2πa(L0−
cL
24

)−2πb(M0−
cM
24

)) =
∑
~i,~j;α

∨〈~i,~j;α|e−2πa(L0−
cL
24

)−2πb(M0−
cM
24

)|~i,~j;α〉.

(6.18)

Note that the action of M0 on |~i,~j, α〉 is to take the eigenvalue of the boost charge, combined

with changing one of the A−k to B−k, so that

M0|~i,~j;α〉 = −α
2

2
|~i,~j;α〉+

∑
{ik≥1}

ik|i1, · · · , ik − 1, · · · , j1, · · · , jk + 1, · · · ;α〉. (6.19)

From the definition of the dual basis, all terms except the first one have vanishing inner

products with the dual state ∨〈~i,~j;α|, and then the expectation value of M0 on this state

is just the boost charge of the zero mode

∨〈~i,~j;α|M0|~i,~j;α〉 = −α
2

2
. (6.20)

The action of Mn
0 can be analyzed in a similar way and we learn that the only non-trivial

contribution to the expectation value of e−2πa(L0−
cM
24

) comes from the zero mode part. As

the zero mode backgrounds |α〉 all have vanishing conformal weights, the only non-trivial

contribution to the operator e−2πa(L0−
cM
24

) comes from the non-zero mode part. Then the

torus partition function factorizes into a product of the zero mode part Z0(b) and the

oscillator part Z̃(a),

Z(a, b) = Z0(b)Z̃(a), (6.21)

Z0(b) ≡
∫
dα〈α|e−2πb(M0−

cM
24

)|α〉 =

∫ ∞
−∞

dαe
2πbα2

2 +

∫ i∞

−i∞
dαe

2πbα2

2 ,

Z̃(a) =
∑
~i,~j

∨〈~i,~j|e−2πa(L0−
cL
24

)|~i,~j〉.

In the expression of the zero mode part, we have used the fact that |α〉 has zero conformal

weight and boost charge ξ = −α2

2 . Note that the boost charge can be any real numbers, so

that we have to integrate along both the real axis and the imaginary axis. The integral can

be calculated by analytic continuation from Re(b) = 0. We get the zero mode contribution,

Z0(b) =

∫ ∞
−∞

dα
(
eπbα

2
+ e−πbα

2
)

=

√
2

|b|
. (6.22)

Next, we calculate the contribution from the non-zero modes. Note that either the A−k or

the B−k operator raises the weight of L0 by k, which enables us to split the total eigenvalue

into a sum of contributions from the A and B modes separately, so that we have

Z̃(a) ≡ q−
1
12

∞∏
k=1

( ∞∑
ik=0

qk ik
)( ∞∑

jk=0

qk jk
)

= q−
1
12

∞∏
k=1

1

(1− qk)2
=

1

η2(ia)
(6.23)
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where η(ia) is the Dedekind-η function,

η(ia) = q
1
24

∞∏
k=1

(1− qk), q = e−2πa (6.24)

Finally, combing the zero mode part (6.22) and the oscillator part (6.23) we obtain the

tours partition function in the highest weight vacuum,

Z(a, b) =

√
2

|b|
1

η2(ia)
(6.25)

As a consistency check, let us now compute how the torus partition function transforms

under the modular S transformation,

a→ 1

a
, b→ − b

a2
, (6.26)

Using the transformation property of the eta function

η(i
1

a
) =
√
aη(ia) (6.27)

we indeed obtain the relation (6.11), and hence confirm with the general argument [31, 32,

35, 42] that the BMSFT torus partition function is modular invariant.

From the UR limit

In this subsection, we calculate the torus partition function from the UR limit of a

free scalar CFT2. To do so, we first need to work out the CFT2 partition function in the

flipped vacuum. Recall that the torus partition function in the highest weight vacuum of

the free scalar CFT2 reads,

ZCFTH =
q−

c
24 q̄−

c̄
24

√
Imτ

∞∏
k=1

∞∑
nk=0

qknk q̄knk =
1√
Imτ

1

η(τ)η̄(τ̄)
(6.28)

where

c = c̄ = 1, q = e2πiτ , q̄ = e2πiτ̄ (6.29)

One can use (5.28) to map the highest weight vacuum to the flipped vacuum, or equivalently

τ̄ → −τ̄ . (6.30)

Using the above map, we obtain the torus partition function in the flipped vacuum 6,

ZCFTF =
q−

c
24 q̄−

c̄
24

√
Imτ

∞∏
k=1

∞∑
nk=0

qknk q̄−knk =
1√
Imτ

1

η(τ)η(τ̄).
(6.31)

6In the discussion below, we only consider the case where Imτ > 0 for simplicity. After taking the UR

limit, it turns to the case a > 0. To get the other case a < 0, one should start with Imτ < 0, by a similar

consideration. Note that the absolute value of b also follows from this reasoning.
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Under the ultra-relativistic limit (5.4), the modular parameters become

τ = ã+ ibε, (6.32)

To get the result in the Lorentzian theory, we should further take the analytic continuation

ã→ ia. Taking the limit ε→ 0 with this taken into account, we find that the CFT2 torus

partition function (6.31) indeed becomes that of the free scalar BMSFT in the highest

weight vacuum (6.25), namely

ZCFTF → 1√
ε
ZBMS
H . (6.33)

where the overall factor comes from the rescaling of the field (5.22).
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A Radial quantization in BMSFT

In this appendix we provide a prescription of radial quantization in BMSFTs. We

first review the procedure in relativistic quantum field theory as reviewed in [57], and then

extend it to BMSFTs.

A.1 Analytic continuation from Euclidean theory to Lorentzian theory

Let us start with the Euclidean correlation function of a relativistic quantum field

theory.

〈O1(tE1 )O2(tE2 )〉 = 〈0|O1(0)e−H(tE1 −tE2 )O2(0)|0〉θ(tE1 −tE2 )+〈0|O1(0)e−H(tE2 −tE1 )O2(0)|0〉θ(tE2 −tE1 )

(A.1)

which is automatically time ordered as e−Hδt
E

is unbounded for δtE < 0. To get correlation

functions in the Lorentzian theory, one needs to first analytically continue the time direction

to the complex plane, with the Euclidean time as the imaginary part,

t′ = −itE + t, (A.2)
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so that the Lorentzian theory corresponds to the real-time theory with tE = 0, and the

Euclidean theory corresponds to the imaginary-time theory with t = 0. In the correlators

(A.1), one can turn on a real part t with the imaginary part tE fixed, so that the ordering

is still controlled by tE . As a final step, we need to take the limit tE = 0 along a chosen

trajectory

tE = λF(t), λ→ 0 (A.3)

where F(t) is some function of t. Then the ordering in tE is transferred to t. For example,

to get the usual time-ordered correlators in Lorentzian QFT, we can choose

tEi = λti, with λ→ 0. (A.4)

so that the ordering in the imaginary time tE is the same as that of the real time.

A.2 Radial quantization in CFT2

Now let us consider a CFT2 on the Euclidean cylinder (σ, tE), with the identification

(σ, tE) ∼ (σ + 2π, tE). (A.5)

After the analytic continuation tE → tE + it, the complex coordinates become

w = σ − itE → σ + t− itE , (A.6)

w̄ = σ + itE → σ − t+ itE . (A.7)

and the cylinder to plane map becomes

z = eiw = ei(σ+t)etE , z̄ = e−iw̄ = e−i(σ−t)etE . (A.8)

After the analytical continuation, z and z̄ are no longer complex conjugate to each

other, and effectively we have extended the theory from C to C2. The Euclidean theory

can be obtained by imposing z∗ = z̄, while the Lorentz theory corresponding to taking

|z| = |z̄| = 1. In the Euclidean theories with t = 0, the infinitely past tE → −∞ on the

cylinder becomes the origin on the plane. Therefore radial quantization at fixed radius on

the Euclidean plane corresponds to canonical quantization at fixed time tE on the cylinder,

As a result, radial ordering on the Euclidean plane corresponds to Euclidean time ordering

on the cylinder, which after a prescription in the form of (A.3) provides an ordering in the

real time t.

A.3 Radial quantization in BMSFT

Now we provide a prescription of radial quantization and time ordering in BMSFT.

From a CFT2 on the cylinder with complexified time, we take the UR limit t → ετ , with

tE hold fixed, so that

w = σ + ετ − itE , (A.9)

w̄ = σ − ετ + itE . (A.10)
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Under the UR limit ε→ 0, the cylinder to plane map can be defined as

x ≡ lim
ε→0

z = eiσ+tE , y = lim
ε→0

z − z̄∗

2ε
≡ lim

ε→0

eiw − eiw̄∗

2ε
= ixτ (A.11)

This is equivalent to the cylinder to plane map (5.12) on the unit circle where the later is

defined.

This way we extend the BMSFT to a theory defined on C×R where y
x ∈ iR and x takes

arbitrary value on the complex plane C, with etE as the radius. The pure Euclidean theory

corresponds to taking τ = 0 on the complexified cylinder (A.9) and (A.10), or equivalently

y = 0 on the complex plane (A.11). The Lorentzian theory corresponds to taking tE = 0

in (A.9) and (A.10), or equivalently on the |x| = 1 circle.

In the Euclidean theory, we can perform radial quantization, which again is equivalent

to canonical quantization on the cylinder. Correlation functions are radial ordered. Starting

from the Euclidean theory on the plane parameterized by x, we can obtain the Lorentzian

theory by the following steps. First, we fix tE , and turn on y by using the translational

generator M−1 as in (2.25), so that the operators and correlators will all depend on the

holomorphic coordinate x, as well as another complex coordinate y. In most part of this

paper, we consider the BMSFT on the manifold parameterized by complex coordinates

x and y. Next, we impose the relation tE = λτ , so that the origin on the Euclidean

plane is mapped to past infinity on the Lorentzian cylinder τ = −∞. This enables us to

establish the operator-state correspondence as in (2.49). Furthermore, the radial ordering

X(O · · ·O) on the Euclidean plane also corresponds to time ordering of the Lorentzian

theory. The final step to get the Lorentzian theory is to take the limit λ→ 0, so that the

theory is restricted on the unit circle. In many discussions, we will not take this final step

explicitly.

B Comments on the induced representation

In this section we make some comments on the induced representation.

Since the BMS algebra is the semi-direct sum of the Virasoro algebra and an Abelian

ideal generated by Mn’s, one can consider a representation induced from that of the ideal.

In particular, we are interested in the special case when the operators in an indecomposable

representation satisfy the following conditions

[L0, O] = ∆O, [M0, O] = ξO,

[Mn, O] = 0, ∀n 6= 0, n ∈ Z. (B.1)

Especially, the induced vacuum denoted as |0I〉 should satisfy

L0|0I〉 = Mn|0I〉 = 0, ∀n ∈ Z. (B.2)

As was discussed in [58–60], the induced representation is unitary. It is also possible to

discuss multiplets in the induced representation, where either L0 or M0 is assumed to be

non-diagonalizable, featuring Jordan blocks. We leave this interesting generalization to
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future study. In this section, we comment on the induced vacuum for the free BMS scalar

model. We find an intrinsically defined vacuum that behaves as a direct product state,

whereas another induced vacuum from the UR limit of a relativistic scalar is singular.

B.1 Induced vacuum from intrinsic discussion

In section 3.2.1, we discussed how to find a vacuum that is annihilated by L0,±1, M0,±1,

and meanwhile can be described intrinsically by the An, Bn modes. We note that there

are two different choices, one of which is the highest weight vacuum. Now we turn to the

other choice. Choosing the condition I and II, we get another vacuum satisfying

Bn|0I〉 = 0, ∀n ∈ Z. (B.3)

This means that all the Ans are creation operators, and all the Bns are annihilation oper-

ators. Using these conditions, we learn that the action of Ln,Mn on this vacuum is given

by,

Ln|0I〉 = 0, Mn|0I〉 = 0, ∀n ∈ Z. (B.4)

This vacuum satisfies (B.2), hence is an induced vacuum. To study the property of this

vacuum, we calculate the Green’s function with respect to x-ordering on this vacuum as

〈φ(x1, y1)φ(x2, y2)〉 = −2πi

(
y1θ(x1 − x2) + y2θ(x2 − x1)

)
δ(x2 − x1). (B.5)

The correlator above tells us that there is no correlation between two points with different

spatial coordinates x on the plane, or σ on the cylinder. In other words, this vacuum

behaves as a direct product of states living at each point of the spatial slice.

B.2 Induced vacuum from the UR limit

Note that the condition (B.3) is equivalent to

: BnBm : |0I〉 = 0, ∀n,m ∈ Z, (B.6)

which means that every term in Mn annihilates the vacuum. There may exist different

vacua satisfying (B.2), but not the condition above. The induced vacuum from the UR

limit [26] provides an example of this type. More explicitly, taking the UR limit (5.4) and

(5.6) of the usual highest weight representation in CFT2,

L+
0 O = hO, L−0 O = h̄O, (B.7)

L+
nO = L−nO = 0, n > 0, (B.8)

we can get the induced representation of BMS algebra (B.1) with

∆ = h− h̄, ξ = ε(h+ h̄), (B.9)
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In the free scalar model

Now we apply this process to the free scalar. The highest weight vacuum before the

UR limit is specified by

an|0H〉CFT = 0, ān|0H〉CFT = 0, n > 0 (B.10)

From the relation between modes (5.26), one might conclude that under the UR limit

ε → 0, the BMS induced vacuum becomes the vacuum specified by (B.3). However, the

UR limit has to be taken more carefully. The reason is as follows. Consider a basis

constructed by applying Ans and Bns successively on the UR limit of the highest weight

vacuum. By calculating the Gram matrix, we find that none of the basis states become

null, and furthermore we cannot find any simple linear combinations of such basis that

become null. For example, 〈0H |A−nBn|0H〉CFT = 1
2 , ∀n 6= 0, so that (B.3) is not satisfied,

and therefore the UR limit of the highest weight vacuum is different from the induced

vacuum from intrinsic discussion. In fact, it is unclear if it is possible to express the UR

limit of the highest weight vacuum intrinsically in terms of modes Ans and Bns.

Nevertheless, let us try to study some properties of the induced vacuum from its

parent CFT2 theory and the limiting procedure. To calculate the Green’s function of φ, we

exploit the relation (5.26) and perform the calculation in terms of the modes an, ān. This

is equivalent to taking the UR limit directly from the Green’s function in the relativistic

free scalar. As a result, we get the Green’s function for the BMS scalar φ on the cylinder

〈φ(σ1, τ1)φ(σ2, τ2)〉 = − 1

2ε
log(2− 2 cosσ12) (B.11)

where the divergence comes from the rescaling of the field in the limit (5.22). Similarly,

the UR limit of Green’s function on the plane

〈φ(x1, y1)φ(x2, y2)〉 =
1

ε
〈ΦΦ〉 = − 1

2ε
(log(x1 − x2) + log(

1

x1
− 1

x2
)). (B.12)

Putting the issue of divergence aside, the Green’s function on the plane has the property

that it depends on both complex coordinates x1 and x2, instead of the difference x1 − x2.

This is because the induced vacuum (B.1) is not necessarily translationally invariant on

the x plane. The divergence of the Green’s function on both the cylinder and the plane

is another indication that there is no intrinsic way to find this induced vacuum in the

BMSFT. It also suggests that the this vacuum is not well-defined.

Torus partition function

We will consider the torus partition function (6.3) of BMS free scalar in the induced

vacuum from the UR limit. Since we cannot deal with it intrinsically using the An, Bn
modes, it is convenient to express the Hilbert space in an orthonormal basis of the CFT2,

|~i,~j;α〉CFT = ai1−1 · · · ā
j1
−1 · · · |α〉CFT (B.13)

where |α〉CFT is the zero mode contribution in the CFT2 highest weight vacuum. The

behaviour under L0,M0 can be calculated from (5.6),

L0|α〉CFT = 0, M0|α〉CFT = −α
2

2
(B.14)
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Moreover from (5.6), the action of the BMS generators L0,M0 on these states are

[L0, am] = −mam, [L0, ām] = −mām (B.15)

[M0, am] = [M0, ām] = 0 (B.16)

Then a similar calculation as in section 6 leads to the torus partition function on the

induced vacuum,

Z =

√
2

|b|

∞∏
k=1

( ∞∑
ik=0

qk ik
)( ∞∑

jk=0

q−k jk
)

(B.17)

The summation in either the first or the second parenthesis becomes divergent as long as

a is real. This divergence again indicates that this vacuum is not well-defined.

We end this section by the following comments,

• The BMS algebra is the semi-direct sum of the Virasoro algebra and an Abelian ideal

generated by the Mns, so one can consider a representation induced from that of the

ideal. We are interested in a special kind of induced representation defined by (B.1),

with the vacuum specified by the condition (B.2). Note that there may be more than

one vacua satisfying this condition (B.2).

• From the mode expansion of our free BMS scalar model (3.34), one can define an

induced vacuum intrinsically (B.3) obeying (B.2), which behaves as a direct product

state.

• Another vacuum satisfying (B.2) comes from the UR limit of free scalar model, as the

original general discussion. This vacuum cannot be expressed intrinsically in terms

of the modes An, Bn. It leads to a different theory whose Green’s function and torus

partition function are both divergent as ε → 0, which indicates that this vacuum

from the direct UR limit is not well-defined.

C NR limit from CFT2

Here we review the non-relativistic (NR) limit of CFT2 for completeness. We will see

that the NR limit on the plane is quite different from the UR limit on the plane.

NR limit on the cylinder

Starting with the same setup as in the section 5.1.1, the NR limit is

σ = εs, ε→ 0 (C.1)

so that the speed of light goes to infinity, which is the reason why this limit is called the

non-relativistic limit. The theory is defined on (s, t) after the NR limit. Compared with

the UR limit on the cylinder (5.4), the NR limit rescales the σ direction instead of the t

direction. Under this limit the conformal transformations become the GCA transformations

generated by

ln = tn + t̄n = ieinτ (∂τ + inσ∂σ), mn = ε(tn − t̄n) = ieinτ∂σ (C.2)
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The Virasoro algebra (5.3) becomes the GCA algebra, which is isomorphic to (2.8) via

another Wigner-Inönü contraction [56],

Ln = Tn + T̄n, Mn = ε(Tn − T̄n) (C.3)

with the central charges related by,

cL = c+ c̄, cM = ε(c− c̄). (C.4)

NR limit on the plane

We use the map (5.8) to go to the plane (z, z̄) before the NR limit, with the CFT2

generators given by (5.9). Now we can take the plane NR limit (5.10) safely to get the

GCA generators,

ln = tn + t̄n = −xn+1∂x − (n+ 1)xny∂y, mn = ε(tn − t̄n) = −xn+1∂y, (C.5)

which is consistent with the GCA cylinder-to-plane map

x = eiτ , y = ieiτσ. (C.6)

Representation

We can consider the usual highest weight representation in CFT2,

L+
0 O = hO, L−0 O = h̄O, (C.7)

L+
nO = L−nO = 0, n > 0. (C.8)

Under the NR limit (C.3), the highest weight representation becomes the highest weight

representation of the GCA algebra,

L0O = ∆O, M0O = ξO, (C.9)

LnO = MnO = 0, n > 0, (C.10)

where

∆ = h+ h̄, ξ = ε(h− h̄). (C.11)

The flipped representation in CFT2 satisfies

L+
0 O = hO, L−0 O = −h̄O, (C.12)

L+
nO = L−−nO = 0, n > 0. (C.13)

Under the NR limit (C.3), one gets the induced representation of the GCA algebra.

L0O = ∆O, M0O = ξO, (C.14)

MnO = 0, n 6= 0, (C.15)

where

∆ = h− h̄, ξ = ε(h+ h̄). (C.16)
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