ON THE REVERSE DUAL LOOMIS-WHITNEY INEQUALITY
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ABSTRACT. The dual Loomis-Whitney inequality provides the sharp lower bound
for the volume of a convex body in terms of its (n — 1)-dimensional coordinate
sections. In this paper, some reverse forms of the dual Loomis-Whitney inequality
are obtained. In particular, we show that the best universal DLW-constant for

origin-symmetric planar convex bodies is 1.

1. INTRODUCTION

Throughout this paper, we shall use voly to denote k-dimensional volume (Lebesgue
measure on the corresponding subspace) in Euclidean n-space R", 1 < k < n. We
denote by conv A the convex hull of the set A and lin A the linear hull of the set A.
The Euclidean norm x € R" is denoted by ||z|| and the unit sphere of R™ is denoted
by S L.

The celebrated Loomis-Whitney inequality compares the volume of a Lebesgue
measurable set with the geometric mean of the volumes of its (n — 1)-dimensional
coordinate projections. To be specific, let A be a Lebesgue measurable set in R"
and let {eq,...,e,} be the standard orthogonal basis of R"”. Then

vol, (A)"~" < [ vola—1(Ale}), (1.1)

i=1

with equality if and only if A is a coordinate box (a rectangular parallelepiped
whose facets are parallel to the coordinate hyperplanes), where Ale; is the orthog-

onal projection of A onto the hyperplane e; perpendicular to e;. This inequality,
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established by Loomis and Whitney [20] in 1949, is one of the fundamental in-
equalities in convex geometric analysis and has been widely used in many math-
ematical areas (see e.g., [8,13-15,24]). In recent years, the study of various ex-
tensions of the Loomis-Whitney inequality has received considerable attention (see,
e.g., [1,2,4-6,9-11,16-19,21)).

However, a direct way to reverse the Loomis-Whitney inequality (1.1) is not true,
since we can take the volume of A arbitrarily small without changing its (n — 1)-
dimensional coordinate projections. A typical example can be found in the work of
Campi, Gritzmann, and Gronchi [10]. Therefore, they [10] considered rotations of
the standard orthogonal basis of R" and defined the following LW-constant A(K)

of a convex body K (i.e., a compact convex set in R” with nonempty interior) as

vol, (K)"!

AK) = 1.2
= BT vol, (KT (12)
where the frame F' = {uy,...,u,} is an orthogonal basis of R", and the set of all

frames is denoted by F™. Thus, to reverse the Loomis-Whitney inequality means to
find the greatest lower bound of the LW-constant. In [10], Campi, Gritzmann, and
Gronchi showed that if K is a planar convex body, then
A(K) > .
2
with equality if and only if K is a triangle. Some lower bounds of the LW-constant

(1.3)

for special convex bodies in R™ were also provided in [10].

On the other hand, a dual version of the Loomis-Whitney inequality, in which the
sharp lower bound of the volume of a convex body is given in terms of its (n — 1)-
dimensional coordinate sections, was obtained by Meyer [21]. He showed that, for a

convex body K in R",
n!
vol,, (K)"™ ! > o Hvoln_l(K Nei), (1.4)

with equality if and only if K is a generalized cross-polytope (i.e., K is the convex
hull of segments [—b;e;, a;e;] with a;,6; > 0 and a; +b; # 0, ¢ = 1,...,n). Here
K Nej is the intersection of K with the hyperplane e;-. Notice that there is duality
between the extremal bodies in the Loomis-Whitney inequality (1.1) and Meyer’s
inequality (1.4); i.e., the polar body of a coordinate box that contains the origin in
its interior is a generalized coordinate cross-polytope. More extensions of the dual

Loomis-Whitney inequality can be found in, e.g., [9,18,19].
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We say a set is unconditional if it is symmetric with respect to the coordinate
hyperplanes. Note that a reverse form of the dual Loomis-Whitney inequality (1.4)
for unconditional convex bodies can be obtained by the Loomis-Whitney inequality
(1.1) since Kle; = K Nej for any unconditional convex body K. In general, a
direct way to reverse the dual Loomis-Whitney inequality (1.4) is also not true,
since we can take the volume of K arbitrarily large without changing its (n — 1)-
dimensional coordinate sections. In fact, let a = (7,7,,...,7) € R" with 7 > %, and

2n71

let K = conv{=ey,...,+e,, +a}. Then we have vol, (K Ne;) = oD While the
volume of K could be arbitrarily large since we can take the value of 7 large enough.
So we may wonder whether Campi, Gritzmann, and Gronchi’s approach can be
applied to this problem. To establish this, unlike (n — 1)-dimensional coordinate
projections, we may choose a suitable point as the center of hyperplane sections. In
this paper, we let this point be the centroid of a convex body. In analogy to (1.2),

we define the DLW-constant of a convex body K in R™ by

= . vol, (K)"!
ANK) = 1.5
)= B T ol s (K — (B M) 49
where the centroid ¢(K) = m Il x Tdr. The compactness of S™~1 yields that the

minimum is indeed attained. The frame that attains the minimum will be called a
best frame for K.

Thus, to reverse the dual Loomis-Whitney inequality, we need to find the least
upper bound of the DLW-constant; i.e., the infimum of all v such that for each

convex body K in R", there exists an orthogonal basis {uy,...,u,} satisfying

vol, (K)" ™ <y [ [ volu—1 (K — e(K)) Nuh)).
i=1
Any inequality of this type will be called a reverse dual Loomis-Whitney inequality.
Notice that the proof of inequality (1.3) is equivalent to finding a minimal area
rectangle that contains the planar convex body K. Thus, in this paper, by searching
a maximal area rhombus inscribed in K, we obtain the least upper bound of the

DLW-constant for origin-symmetric planar convex bodies.
Theorem 1.1. If K is an origin-symmetric planar convex body, then
AME) <1, (1.6)

with equality if and only if K is a parallelogram with one of its diagonals perpendic-

ular to its edges.
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If we define the best universal DLW-constant Ke(n) for origin-symmetric convex
bodies in R™ by
Ke(n) = sup K(K),

KeKp
where K7 denotes the class of origin-symmetric convex bodies in R", then Theorem
1.1 immediately yields
A(2) = 1.
Furthermore, a weaker upper bound of the DLW-constant for origin-symmetric

convex bodies in R" is given below.

Theorem 1.2. If K is an origin-symmetric convex body in R™, then

A(K) < ((n—1))" (L.7)

Obviously, when n = 2, inequality (1.7) reduces to (1.6) but without the equality
conditions.

Finally, we consider some special convex bodies in R", for example, the unit cube

Qn = [—%, %]” in R™.

Theorem 1.3. If n is even, then

K(Qﬂ) =272,

|3

If n is odd, then
275 < A(Qn) <277,

The rest of this paper is organized as follows. In Section 2 we characterize all
maximal area rhombuses inscribed in origin-symmetric polygons. By this, the re-
verse dual Loomis-Whitney inequality for origin-symmetric planar convex bodies
is obtained. In Section 3 two types of upper bounds of the DLW-constant in R"
are given. Section 4 is devoted to estimating the DLW-constant for special convex

bodies (i.e., unit cubes and regular simplexes).

2. PROOF OF THEOREM 1.1

We list some basic notations about convex bodies. Good general references are
Gardner [13] and Schneider [25]. A polytope is the convex hull of finitely many
points. The 1-dimensional faces of a polytope are its edges, and the (n — 1)-
dimensional faces are its facets. A planar polytope is usually called a polygon.

A cross-polytope in R™ is the convex hull of segments [—a;u;, cyu;] with a; > 0, @ =
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1,...,n,and {us,...,u,} is a frame. A planar cross-polytope is also called a rhom-
bus. We say that a set A is origin-symmetric if z € A implies that —z € A. For a
set A C R", the relative interior of A is the interior relative to its affine hull.
Observe that the best frame for an origin-symmetric polygon is related to maximal
area rhombuses inscribed in it. So we first establish the following characteristic

theorem.

Theorem 2.1. Let P be an origin-symmetric polygon. Then every maximal area

rhombus inscribed in P has at least one pair of opposite vertices coinciding with that
of P.

In general, the rhombus of maximal area inscribed in a planar convex body may
be not unique. Trivially, among all thombuses inscribed in a disk every square
has maximal area. Note that a dual version of Theorem 2.1 which characterizes
all minimum area rectangles containing a polygon was proved by Fremann and
Shapira [12]. To prove Theorem 2.1, we shall make use of the following lemma.
However, it seems that Lemma 2.2 does not follow from Fremann and Shapira’s

result by polarity, so we give a direct and explicit construction.

Lemma 2.2. Let P be an origin-symmetric polygon. If a rhombus C' inscribed in
P has all its four vertices in the relative interiors of edges of P, then there exists
another rhombus C' inscribed in P such that the area of C' is larger than that of C.

Proof. Since the vertices of C' are all in the relative interiors of edges of P, we let
a and [ be two angles between the diagonals of C' and the edges of P, respectively
(illustrated in Figure 1 and 2).

The desired rhombus C’ can be constructed by rotating C' with an angle 6 in the
following two cases.

The first case is 0 < a4+ ( < w. We will show that there exists a counterclockwise
rotation # such that voly(C) — vola(C”) is negative (see Figure 1). In fact, denote
the half length of the diagonals of C' and C’ by a, b and o', ¥/, respectively. Then,

voly(C) — voly(C') = 2ab — 24'V'.

By the sine rule, we have

= _osino ,  bsinp

~ sin(a —6)’ ~ sin(B —6)’
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Figure 1: Formation of rhombus C’ by a counterclockwise rotation.

which gives

Vol (C) — volo(C') = 2ab(1 — — (asi“ 80)‘ i (ﬁﬁ _ 9))' 2.1)
Let
f(6) = sinasin f — sin(a — 6) sin(5 — 6).
Clearly,
f(0) =0,
and

1'(0) = cos(ar — 0) sin( — ) + sin(a — ) cos(8 — 0) = sin(« + 3 — 26).

Since 0 < a + [ < 7, then there exists a sufficient small € > 0 such that sin(« +
B —2¢) > 0, which implies that f(#) is a strictly increasing function on [0, £]. Thus,
there exists 6 € (0,¢) such that

f(0) > (0) =0,
which yields voly(C') — voly(C”) < 0.

The second case is 7 < a+ 3 < 2m. We will show that there exists a clockwise

rotation 6 such that voly(C) — voly(C’) is negative (see Figure 2). By a similar
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Figure 2: Formation of rhombus C’ by a clockwise rotation.

computation of (2.1), we have

voly(C') — volo(C") = 2ab — 24’ = 2ab(1 - — min 90)‘ 22 (% . 0)>.
Let
g(0) = sinasin 8 — sin(a + 0) sin(5 + 6).
Clearly
9(0) =0,
and

g'(0) = —sin(a + 5+ 26).

Since T < a + (§ < 27, then there exists a sufficient small € > 0 such that sin(« +
B+ 2¢) < 0, which implies that g(f) is a strictly increasing function on [0,¢]. Thus,
there exists 6 € (0,¢) such that

9(0) > g(0) =0,

which gives voly(C') — vola(C”) < 0.
Therefore, we can construct another rhombus C” inscribed in P by rotating C
such that the area of C” is larger than that of C. OJ
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Proof of Theorem 2.1. Suppose the theorem is false; i.e., there is a maximal area
rhombus inscribed in P has all its four vertices in the relative interiors of edges of
P. But, it follows from Lemma 2.2 that there exists another rhombus inscribed in

P with a larger area. That is a contradiction. ([l
We are now in a position to prove Theorem 1.1 by using Theorem 2.1.

Proof of Theorem 1.1. Since K is origin-symmetric, there exist two points Ay, As €
K such that ||A; — Ag|| is the diameter of K and the the origin O is the midpoint of
the segment A;As. Let vy = (A; — Ay)/||A1 — Azl and let v, € ST be perpendicular
to v;. Draw a line along v, intersecting K at points By, By. Note that the lines A; +
lin{vy} and As + lin{ve} support K. Through By, By there are also two parallel
supporting lines to K. Thus, we can construct a parallelogram ) with vertices
E., Fy, E5, F5 such that K C (), as illustrated in Figure 3.

Figure 3:

Denote the length of OA; and OB; by a, b, respectively. Then we have
vol; (K Nvi)voly (K Ny ) = voly(Q) = 4ab.

Thus, it follows from (1.5) that
K(K < VOLIQ(K) < voly(Q))
vol; (K Novi-)voly (K Nwvy) 4ab
Equality of the second inequality yields that K = @). Let C' be the rhombus with

vertices Aj, B, Ag, Bo. Then, equality of the first inequality yields that C' is a

=1

maximal area rhombus inscribed in K. By Theorem 2.1, there is at least one pair



ON THE REVERSE DUAL LOOMIS-WHITNEY INEQUALITY 9

F E

ArE, A=E, Ar=Fy A=F;

F; E,

Figure 4: The equality case 1. Figure 5: The equality case 2.

of opposite vertices of C' coinciding with that of ). Thus, one diagonal of C' is
perpendicular to a pair of opposite edges of (), as illustrated in Figures 4 and 5.
O

As a byproduct of Theorem 2.1, we are able to characterize all maximal volume

cross-polytopes inscribed in an origin-symmetric polytope in R™.

Theorem 2.3. Let P be an origin-symmetric polytope in R™. If C' is a mazimal
volume cross-polytope inscribed in P, then C has at least n — 1 diagonals passing
through the edges (possible the vertices) of P.

Proof. Let C be a cross-polytope of maximal volume inscribed in P, and let vy, ..., *v,
be the diagonal unit vectors of C. Arguing by contradiction, we assume that
there are two diagonals of C' which do not pass through the edges of P; i.e.,
they pass through the relative interiors of two pairs of opposite k-dimensional faces
(2 <k <n-—1)of P. Without loss of generality, let +v;, +vs be these diagonal
vectors and let £ = lin{vy, v3}. By Theorem 2.1, we see that C'N ¢ is not a maximal
area rhombus inscribed in the polygon PN¢&. Thus, there exists another rhombus C”
inscribed in PN¢ such that voly(C”) > voly(CNE). Note that C = conv{C’, CNEL} is

still a cross-polytope in R™ and vol,(C) > vol,(C'), which leads a contradiction to
the assumption of C. U

The dual version of Theorem 2.3 which characterizes all minimum volume rect-
angular boxes containing a polytope was proved by Fremann and Shapira [12] for
n = 2, by O’Rourke [22] for n = 3, and by Campi, Gritzmann, and Gronchi [10] for

arbitrary dimensions.



10 Y.-R. FENG, Q. HUANG, AND A .-J. LI
3. PROOF OF THEOREM 1.2

The following lemma is due to Campi, Gritzmann, and Gronchi [10, Lemma 5.5].

Lemma 3.1. If K is an origin-symmetric convex body in R", then there exists a

cross-polytope C' contained in K with
vol, (K) < nlvol,(C).

By Busemann’s theorem (see, e.g., [13, Theorem 8.1.10]), the intersection body
IK of an origin-symmetric convex body K is the origin symmetric convex body

whose radial function at u € S™! is given by
prx(u) = max{\: \u € IK} = vol,_ (K Nu™b).

Suppose K is an origin-symmetric convex body in R™ and C' is the maximal volume

cross-polytope inscribed in I K whose diagonal unit vectors are +uq, ..., +u,. Then

on 1
vol,(C) = meH{(uz =
Ti=1

Thus, it follows from (1.5) that

- A VOln(K)n_l
AE) ==
() = 21 B o CaR 7))’

where C(IK; F) is the maximal volume cross-polytope inscribed in IK with the

TL
n!

f[ anﬂU)
[

(3.1)

diagonal unit vectors in F'. Using this relation, we can give upper bounds of K(K )

for an origin-symmetric convex body K in R™ in terms of its intersection body I K.

Theorem 3.2. If K is an origin-symmetric convex body in R™, then
~ 2"vol,, (K)"!
ANK) < —2—~2
(K) < vol, (IK)
Proof. Using Lemma 3.1, we have
vol, (1K) < nlvol,(C(IK; F)),
and thus,
vol, (K)"! <n!voln(K)”_1
vol,(C(IK; F)) — wvol,(IK) =
Hence, by (3.1), we have
~ 2" vol,(K)" ! 2"vol,, (K)"1
ANK) =— < :
() = L i S CUR F) = ol (IK)
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Here the quantity
~ _ vol,(K)" !

O(K) = vol,, (1K)
is an important functional in convex geometric analysis, which is dual to the Petty
functional [23]. The sharp upper bound of O is still unknown, but a sharp lower
bound comes from the classical Busemann intersection inequality [25, p. 581], which

states that for a convex body K in R",
. wn—l
O(K) > ——,

n
wn—l

with equality for n = 2 if and only if K is origin-symmetric, and for n > 3 if and
only if K is an origin-symmetric ellipsoid. Here w, is the volume of the Fuclidean
unit ball in R"™.

In [10], Campi, Gritzmann, and Gronchi defined the functional ®(K) of a convex

body K as
vol, (K)

Fern vol, (B(K; F))’
where B(K; F') is the minimal volume rectangular box containing K with edges
parallel to the vectors in F. They [10, Lemma 7.2] showed that

O(K) > i (3.2)

n!’

B(K) =

Similarly, we define the functional ®(K) of a convex body K as
~ , vol, (K)
O(K)= 3.3
() = min SR F) (3:3)

where C'(K; F') is the maximal volume cross-polytope inscribed in K with the diag-

onal unit vectors in F'. Thus, by Lemma 3.1, we have the following dual inequality

of (3.2): for an origin-symmetric convex body in R",

O(K) <nl (3.4)
It was also proved in [10, Lemma 7.1] that for a convex body K in R",
AK) > ®(K)" .
Similarly, we obtain the following dual inequality. Obviously, by (1.5) and (3.3),

A(K) = ®(K)/2 holds for the origin-symmetric planar convex body K.

Theorem 3.3. If K is an origin-symmetric convex body in R™, then

AK) < E&S(K)”—l.

=
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Proof. Let F = {uy, ..., u,} be a frame such that ®(K) = vol,(K)/vol,(C(K; F)).
Then it follows from (1.5) and the equality conditions of Meyer’s inequality (1.4)
that

~ vol,, (K)"* vol,, (K)"*
AK) < <
(K) = [T, vol,—1 (K Nnwg) = T, vol,—1 (C(K; F) Nui)
n!vol, (K)" ! n! ~ .
nvol, (C(K; F))»' — nn (K)"™,
which yields the desired inequality. 0

Now, Theorem 1.2 immediately follows from Theorem 3.3 and inequality (3.4).

4. UPPER BOUNDS OF A(K) FOR SPECIAL CONVEX BODIES

Obviously, it follows from Meyer’s inequality (1.4) that the DLW-constant of a
cross-polytope is n!/n™. Now let us estimate the bounds of A(Q,) for the unit cube
Qn = [-2%, %" in R™.

272

Theorem 4.1. If n is even, then

AQn) =275
If n is odd, then
27% < A(Qu) <2

Proof. In [3], Ball proved that for every u € S"!,

vol,_1(Qn Nut) < V2, (4.1)
with equality if and only if the hyperplane u! contains an (n — 2)-dimensional face
of Q.

If n is even, then, for i € {1,...,n/2}, the vectors
L (0,...,0,1,1,0,...,0)", wy = i(o,...,o,1,—1,o,...,o)T

V2i—1 = E
form a frame F', where the first nonzero entry is in the (2 — 1)th position. Then by
(4.1), we have

Voly_1(Qn Nvi_,) = vol,_1(Qn NvL) = V2.
and Q, Nvy; 4, Q, Nvy; are the largest (n — 1)-dimensional sections of @,,. Thus, it
follows from (1.5) that

B VOln(QTL)n_l
(Qn) - }Ieufn [T voln—1(Qn Nuyb)
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vol, (Q,)" !

= — 9275
[T223 Vol 1(Qn Nvgi_y)voly 1 (Qn M)
If n is odd, then, for i € {1,...,(n —1)/2}, the vectors
1 1
Vo1 = —=(0,...,0,1,1,0,...,0)7, vy = —(0,...,0,1,—1,0,...,0)T
2i—1 \/5( ) 2 \/5( )
and the vector v, = e, = (0,...,0,1)T form a frame F. Thus, it follows from (1.5)

and (4.1) that
~ , vol, (Q,)" 1
<A n) = n
(Q ) FH€1}7‘Q‘ Hi:l VOln—l(Qn N uzJ_)
vol, (Q,)"? _ o5
VOlnfl(Qn N U,J{) HEZIW VOlnfl(Qn N Ué_ifl)vohlfl(@" N vé_’) |

|3

o9-

IA

0

Searching the best frame for general convex bodies is a difficult problem even in

the planar case. The following rough bounds for regular simplexes are given below.

Theorem 4.2. Let T, be a reqular simplex in R™ with edges of length /2 whose

centroid is at origin. Then
2)"n! ~ 2v/3)"n!
V2l Ry @Vl
n"vn+1 n"vn +1
Proof. In [26], Webb established the following inequality
Vi 1
vol,_1(T,, N uL) < n—+7
V2(n —1)!
with equality if and only if the section contains n — 1 vertices of T},. On the other
hand, Brzezinski [7] showed that, for v € S"1,

Vatl 1
(n—1)12y3

ue S (4.2)

vol,_1(T,, Nu*) >

Observe that
vn+1

vol,(T,,) = '
n!

Thus, it follows from (1.5) that

(v2)"n! 3K , vol, (T,,)" 1 _ (2v/3)"n!
i/t 1 rerr [T, voly—1 (T, Nud)  nny/n+ 1
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