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Abstract The weighted essentially non-oscillatory (WENO) schemes are a popular class of
high order numerical methods for hyperbolic partial differential equations (PDEs). While
WENO schemes on structured meshes are quite mature, the development of finite volume
WENO schemes on unstructured meshes is more difficult. A major difficulty is how to de-
sign a robust WENO reconstruction procedure to deal with distorted local mesh geometries
or degenerate cases when the mesh quality varies for complex domain geometry. In this
paper, we combine two different WENO reconstruction approaches to achieve a robust un-
structured finite volume WENO reconstruction on complex mesh geometries. Numerical
examples including both scalar and system cases are given to demonstrate stability and ac-
curacy of the scheme.

Keywords Weighted essentially non-oscillatory (WENO) schemes · Finite volume
schemes · High-order accuracy · Unstructured meshes

1 Introduction

Weighted essentially non-oscillatory (WENO) schemes are a class of high order numer-
ical methods for solving partial differential equations (PDEs) whose solutions may con-
tain discontinuities, sharp gradient regions, and other complex solution structures. They are
designed based on the successful ENO schemes in [9, 19]. The first WENO scheme was
constructed in [13] for a third order finite volume version. In [12], third and fifth order
finite difference WENO schemes in multi-space dimensions were constructed, with a gen-
eral framework for the design of the smoothness indicators and non-linear weights. The
main idea of the WENO scheme is to form a weighted combination of several local recon-
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structions based on different stencils (usually referred to as small stencils) and use it as the
final WENO reconstruction. The combination coefficients (also called non-linear weights)
depend on the linear weights, often chosen to increase the order of accuracy over that on
each small stencil, and on the smoothness indicators which measure the smoothness of the
reconstructed function in the relevant small stencils. Hence an adaptive interpolation or re-
construction procedure is actually the essential part of the WENO schemes.

WENO schemes have the advantage of attaining uniform high order accuracy in smooth
regions of the solution while maintaining sharp and essentially monotone shock transitions.
While finite difference WENO schemes on structured meshes have been developed and
studied extensively [2, 6, 10, 12, 14, 17, 22], the development of WENO schemes on un-
structured meshes (e.g. triangular or tetrahedral meshes) for dealing with complex domain
geometries is less advanced. Since the finite difference approach [12] requires mesh smooth-
ness and cannot be used on unstructured meshes while maintaining local conservation, we
must use the more complicated and more costly finite volume approach [11, 13, 18].

There are two types of finite volume WENO schemes on unstructured meshes in the
literature. The first type (type I) consists of WENO schemes whose order of accuracy is
not higher than that of the reconstruction on each small stencil. This is similar as ENO
schemes. For this type of WENO schemes, the non-linear weights do not contribute to-
wards the increase of the order of accuracy, and they are designed purely for the purpose
of nonlinear stability, or to avoid spurious oscillations. Because type I WENO schemes just
need to choose the linear weights as arbitrary positive numbers for better linear stability
(e.g. the centered small stencil is assigned a larger linear weight than the others), they are
easier to construct than the type II WENO schemes discussed in the following paragraph.
Type I WENO schemes include the WENO schemes in [7, 20] for two dimensional (2D)
triangulations and in [3, 4] for three dimensional (3D) triangulations.

The second type (type II) consists of WENO schemes whose order of accuracy is higher
than that of the reconstruction on each small stencil. For example, the third order WENO
scheme on 2D triangular meshes in [11] is based on second order linear polynomial re-
constructions on small stencils, and the fourth order WENO scheme in [11] is based on
third order quadratic polynomial reconstructions on small stencils. See also [23] for similar
WENO schemes on 2D triangular meshes for solving Hamilton-Jacobi equations, which be-
long to type II as well. On 3D tetrahedral meshes, type II WENO schemes were constructed
in [24], and Hermite WENO schemes were developed in [27]. Type II WENO schemes are
more difficult to construct, however they have a more compact stencil than type I WENO
schemes of the same accuracy, which is an advantage in some applications, such as when
the WENO methodology is used as limiters for the discontinuous Galerkin methods [15, 16,
25, 26].

A crucial step in building a type II WENO scheme on unstructured meshes is to con-
struct lower order polynomials whose weighted average will give the same result as the high
order reconstruction at each Gaussian quadrature point for the flux integral on the element
boundary. This step is actually the most difficult step in designing a robust second type high
order WENO schemes on unstructured meshes, since we can not guarantee the quality of the
unstructured meshes when the domain geometry is very complicated. The local linear sys-
tem for finding linear weights could have very large condition number or is even singular at
the places where mesh quality is bad (e.g. there are very obtuse triangles). Directly solving
the ill-posed local linear system leads to very negative large linear weights and instability
can appear even if we use the procedure to deal with the negative linear weights as in [18].
Specifically, the problems needed to be solved are: how to find linear weights for distorted
local mesh geometries? how to deal with the degenerate cases which could happen when
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the mesh quality is not good? A robust strategy needs to be developed for finding the linear
weights with respect to various mesh geometries. This is even more important for higher
order schemes and three dimensional problems.

In this paper, we hybrid the approaches of type II and type I WENO schemes, and avoid
the appearance of very negative large linear weights no matter the quality of the unstructured
meshes. The idea is to switch to the approach of assigning linear weights of type I WENO
schemes at the places where the linear weight system of type II WENO scheme is ill-posed
or singular, i.e., the linear weights do not exist or are very negative large, i.e., larger than a
preset threshold value. The tradeoff is that the compactness of the type II WENO scheme
will be lost at these places. But we will obtain a robust reconstruction with respect to the
quality of unstructured meshes and the complexity of the domain. Furthermore, the over-
all percentage of the places where the type I WENO approach is applied is quite small,
according to our numerical experiments in this paper.

The organization of this paper is as follows. The algorithm is developed in Sect. 2. Sec-
tion 3 contains extensive numerical examples verifying stability, convergence and accuracy
of the algorithm, on unstructured meshes including meshes with distorted local mesh ge-
ometries. Concluding remarks are given in Sect. 4.

2 A Robust Unstructured WENO Reconstruction

In this paper we use two-dimensional problems to test the proposed hybrid method. But this
method can also be applied to higher dimensional problems straightforwardly.

2.1 The Finite Volume Formulation on 2D Triangular Meshes

We solve the two-dimensional conservation law

∂u

∂t
+ ∂f (u)

∂x
+ ∂g(u)

∂y
= 0 (2.1)

using the finite volume formulation as in [11]. Computational control volumes are triangles.
Taking the triangle �i as our control volume, we formulate the semi-discrete finite vol-

ume scheme of (2.1) as

dūi(t)

dt
+ 1

|�i |
∫

∂�i

F · ndS = 0 (2.2)

where the cell average ūi (t) = 1
|�i |

∫
�i

udxdy, F = (f, g)T , and n is the outward unit normal
of the triangle boundary ∂�i .

In (2.2), the line integral is discretized by a q-point Gaussian quadrature formula,

∫
∂�i

F · nds ≈
3∑

k=1

Sk

q∑
j=1

wjF
(
u
(
G

(k)
j , t

)) · nk (2.3)

where Sk is the length of the k-th side of ∂�i , G
(k)
j and wj are the Gaussian quadrature

points and weights respectively, and F(u(G
(k)
j , t)) · nk is approximated by a numerical flux.

We use the Lax-Friedrichs flux in this paper, which is given by

F
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u
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))]
, (2.4)
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where α is taken as an upper bound for the magnitude of the eigenvalues of the Jacobian
in the nk direction, and u− and u+ are the values of u inside the triangle and outside the
triangle (inside the neighboring triangle) at the Gaussian point.

In this paper we use a third order finite volume scheme to test our hybrid WENO re-
construction procedure, so the two-point Gaussian quadrature q = 2 is used. For the line
with endpoints P1 and P2, the Gaussian quadrature points are G1 = cP1 + (1 − c)P2,
G2 = cP2 + (1 − c)P1, where c = 1

2 +
√

3
6 ; and the Gaussian quadrature weights are

w1 = w2 = 1
2 .

2.2 WENO Reconstruction

The key step in finite volume WENO schemes is to build a high order WENO reconstruc-
tion for the point values at the Gaussian quadrature points. The big stencil S in a WENO
reconstruction is a union of small stencils {Sm : m = 1,2, . . . ,N}. Cell average values of u

in S are used to construct a polynomial p(x, y), which will have the same cell average as u

on the target cell �0 (i.e., the control volume cell). Both type I and type II WENO schemes
need to obtain a linear combination of reconstructions on small stencils. The reconstruction
values at the Gaussian points should satisfy

p
(
xG,yG

) =
N∑

m=1

γmpm

(
xG,yG

)
, (2.5)

where (xG, yG) is a Gaussian point, pm is a reconstruction polynomial on a small stencil Sm,
and γm is called a linear weight. The major difference between type I and type II WENO
reconstructions is the different method to construct small stencils and find linear weights.
We will discuss the details in the following sub-sections. Based on (2.5), nonlinear WENO
reconstruction values at the Gaussian points are

pweno

(
xG,yG

) =
N∑

m=1

ωmpm

(
xG,yG

)
, (2.6)

where ωm is a nonlinear WENO weight defined as

ωm = ω̃m∑N

m=1 ω̃m

, ω̃m = γm

(ε + ISm)2.
(2.7)

ISm is the smoothness indicator for the m-th reconstruction polynomial pm(x, y) associated
with the m-th small stencil Sm, and ε is a small positive number to avoid the denominator to
become 0. We take ε = 10−3 for all the computations in this paper. Usually larger ε is more
friendly for smooth solutions but may generate small oscillations for shock waves, while
smaller ε is more friendly to shocks. In a range of ε from 10−2 to 10−6, the numerical results
are not very sensitive to ε. The smoothness indicator measures how smooth the function pm

is on the target cell �0: the smaller the smoothness indicator, the smoother the function pm

is on �0. We follow [11, 12] and define it as

ISm =
∑

1≤|α|≤k

∫
�0

|�0||α|−1
(
Dαpm(x, y)

)2
dxdy, (2.8)

where k is the degree of polynomial pm, α is a multi-index and D is the derivative operator.
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Fig. 1 A big stencil S for a third
order type I WENO
reconstruction. Four small
stencils consists of one central
stencil S0 and three sectorial
stencils Si , Sj , Sk . All small
stencils include the target cell �0
(i.e., the cell “0”).
S0 = {�0,�i1 ,�j1 ,�k1 ,�i2 ,�i3 ,

�j2 ,�j3 ,�k2 ,�k3 }; Si includes
the cell �0 and the cells in black
color, i.e.
Si = {�0,�i1 ,�i2 ,�i3 , . . . ,�i7 };
Sj includes the cell �0 and the
cells in green color, i.e.
Sj = {�0,�j1 ,�j2 ,�j3 , . . . ,�j7 };
Sk includes the cell �0 and the
cells in blue color, i.e.
Sk = {�0,�k1 ,�k2 ,�k3 , . . . ,�k7 }
(Color figure online)

2.2.1 Type I Linear Reconstruction

Type I reconstructions for WENO schemes on unstructured meshes were developed in [3,
4, 7, 20]. For example, we can use the big stencil S shown in Fig. 1 for a third order
type I WENO reconstruction. Four small stencils consists of one central stencil S0 and
three sectorial stencils Si, Sj , Sk . All small stencils include the target cell �0 (the cell
“0” as shown in Fig. 1) which should be at the central position of the big stencil S. The
central stencil S0 includes the target cell �0 and its two layers of neighbors. In Fig. 1,
S0 = {�0,�i1 ,�j1 ,�k1 ,�i2 ,�i3 ,�j2 ,�j3 ,�k2 ,�k3}. By connecting the barycenter of �0

with its three vertices, we obtain three lines Li , Lj and Lk . These three lines partition the do-
main into three sectors. Every sectorial stencil consists of a few layers of neighboring cells of
�0, and the barycenters of these cells fall inside the sector. For a third order reconstruction,
we need to reconstruct a quadratic polynomial on each sectorial stencil. As shown in Fig. 1,
the sectorial stencils Si = {�0,�i1 ,�i2 ,�i3 , . . . ,�i7}, Sj = {�0,�j1 ,�j2 ,�j3 , . . . ,�j7},
Sk = {�0,�k1 ,�k2 ,�k3 , . . . ,�k7}. On each sectorial stencil, we determine a quadratic poly-
nomial by requiring that it has the same cell average as u on �0, and also it matches the cell
averages of u on the triangles of the sectorial stencil except �0 in a least-square sense [1].
Notice that we use more than 6 triangles for each sectorial stencil to obtain a quadratic poly-
nomial. The strategy (i.e., to use more elements in the stencil than the minimal required
elements) is recommended in the literature (e.g. [3, 4, 7, 20]) for better stability on general
meshes. We obtain four quadratic polynomials p0(x, y),pi(x, y),pj (x, y),pk(x, y) on S0,
Si , Sj and Sk respectively. A linear reconstruction at the Gaussian points is formed as

p
(
xG,yG

) = γ0p0
(
xG,yG

) + γipi

(
xG,yG

) + γjpj

(
xG,yG

) + γkpk

(
xG,yG

)
(2.9)
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Fig. 2 A big stencil S for a third
order type II WENO
reconstruction

where γ0, γi, γj , γk are the linear weights. As in type I WENO reconstructions, we assign
the central stencil a large linear weight γ0 = 103. Smaller linear weights γi = γj = γk = 1
are assigned to the sectorial stencils. Note that the sum of linear weights is not 1 at this
time. This problem is automatically solved when the nonlinear WENO weights (2.7) are
calculated.

2.2.2 Type II Linear Reconstruction

Type II reconstructions (e.g. [11, 24, 27]) for WENO schemes use a much more compact big
stencil. A third order type II WENO scheme on 2D triangular meshes [11] uses a big stencil
S as shown in Fig. 2. It includes the target cell �0 and its two layers of neighbors: S =
{�0,�i ,�j ,�k,�ia,�ib,�ja,�jb,�ka,�kb}. Notice that here S is the same as the central
small stencil S0 in the type I reconstruction. Then we determine a quadratic polynomial
p(x, y) by requiring that it has the same cell average as u on �0, and also it matches the
cell averages of u on the triangles of the big stencil S except �0 in a least-square sense [1].
Notice that some of the second layer neighbors may coincide, but this does not affect the
least-square procedure to determine p(x, y). Let m denote the total number of cells in the big
stencil S. If m < 6, there is no enough information for constructing a quadratic polynomial.
Then we must go to the next neighboring layer and include more cells into the big stencil S.
For every quadrature point (xG, yG), we compute a series of constants {cl}m

l=1 which depend
on the local geometry only, such that

p
(
xG,yG

) =
m∑

l=1

clūl (2.10)

where every constant cl corresponds to one cell in the big stencil S, and ūl is the cell average
of u on that cell.
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The key step in building a high order type II WENO scheme is to construct lower order
polynomials whose weighted average will give the same result as the high order reconstruc-
tion at each quadrature point. This is the most difficult step for type II WENO schemes on
unstructured meshes. The benefit by doing this is that type II WENO schemes have much
more compact stencils than type I WENO schemes. We use several linear polynomials to
give the lower order reconstructions in the third order WENO reconstruction.

Using the big stencil S in Fig. 2, we have 9 small stencil candidates and the corresponding
9 linear polynomials by agreeing with the cell averages of u on these small stencils. They
are listed as following.

p1
1(x, y) : S1 = {�0,�j ,�k}, p1

2(x, y) : S2 = {�0,�k,�i},
p1

3(x, y) : S3 = {�0,�i ,�j }, p1
4(x, y) : S4 = {�0,�i ,�ia},

p1
5(x, y) : S5 = {�0,�i ,�ib}, p1

6(x, y) : S6 = {�0,�j ,�ja},
p1

7(x, y) : S7 = {�0,�j ,�jb}, p1
8(x, y) : S8 = {�0,�k,�ka},

p1
9(x, y) : S9 = {�0,�k,�kb}.

Notice that we use 9 small stencils instead of grouping them as in [11]. Our purpose by doing
this is to test a general procedure for dealing with very general including highly distorted
unstructured meshes. And this procedure proposed in this paper could be straightforwardly
extended to higher order WENO schemes and 3D tetrahedral meshes.

For every quadrature point (xG, yG), on every small stencil Si we compute three con-
stants {c(i)

l }3
l=1 which depend on the local geometry only, such that

p1
i

(
xG,yG

) =
3∑

l=1

c
(i)
l ū

(i)
l (2.11)

where every constant c
(i)
l corresponds to one cell in the small stencil Si , and ū

(i)
l is the cell

average of u on that cell.
Since a quadratic polynomial p(x, y) has three more degrees of freedom than each linear

polynomial p1
i (x, y), namely ξ 2, η2, ξη, where ξ = (x − x0)/h and η = (y − y0)/h are the

scaled local basis functions on the target cell �0 with the barycenter (x0, y0) and h = √|�0|.
For the degrees of freedom 1, ξ, η, both the quadratic polynomial reconstruction and linear
polynomial reconstruction can reproduce them exactly. To obtain the linear weights {γi}9

i=1,
we form the linear system at every Gaussian quadrature point (xG, yG): take u = ξ 2, η2, ξη

respectively, the equalities are:

9∑
i=1

γip
1
i

(
xG,yG

) = u
(
xG,yG

)
(2.12)

where p1
i is the linear reconstruction polynomial for u, using the small stencil Si . Together

with the requirement

9∑
i=1

γi = 1, (2.13)

we obtain a 4 × 9 linear system

Aγ = b, (2.14)
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where A ∈ R4×9, and b ∈ R4. This is an under-determined system and there are infinitely
many solutions. We define the optimal linear weights {γi}9

i=1 as following. The third order
reconstruction by the linear combination of the second order reconstructions using the opti-
mal linear weights {γi}9

i=1 is the “closest” one from the third order reconstruction by the big
stencil S, in the least square sense. We form the linear system

Mγ
l= c, (2.15)

where
l= means that the equality holds in the least square sense, and M ∈ Rm×9, c ∈ Rm.

The vector c = (c1, c2, . . . , cm)T , and {cl}m
l=1 are the approximation constants in (2.10) for

the big stencil. Each column of the matrix M corresponds to the approximation constants
in (2.11) for one of the small stencils. The systems (2.14) and (2.15) are solved together to
give the optimal linear weights {γi}9

i=1. Then we have obtained a type II third order linear
reconstruction

p
(
xG,yG

) l=
9∑

i=1

γip
1
i

(
xG,yG

)
. (2.16)

Note that the equation (2.16) holds in the least square sense.

2.2.3 Hybrid WENO Reconstruction

It is obvious that the big stencil of a type II WENO scheme (Fig. 2) is much more compact
than that of a same order type I WENO scheme (Fig. 1). Here the first one is just the central
small stencil of the second one. However, when the spatial domain has high dimension and
complex geometry, the quality of the unstructured meshes is hard to control. Distorted local
mesh geometries are generated. This leads to very negative linear weights in type II WENO
schemes, or even the linear weights do not exist. For mild negative linear weights, the split-
ting technique developed in [18] can be applied effectively. For the case that linear weights
are very negative large or do not exist, we propose a more robust approach in this section.
Here we hybrid the approaches of type II and type I WENO schemes, and avoid the appear-
ance of very negative large linear weights. Since for a general triangulation, distorted mesh
geometries only occur in small parts of the whole domain. Hence type II WENO schemes
can be applied for the major parts of the domain. At the places where the linear weights of
the type II WENO reconstructions do not exist or are larger than a preset threshold value, the
type I WENO reconstructions are applied. We summarize the hybrid WENO reconstruction
algorithm at a Gaussian point in the following.

To form WENO reconstructions of the numerical values at a quadrature point (xG, yG)

in the Lax-Friedrichs flux (2.4):

1. Calculate linear weights {γi}9
i=1 in type II linear reconstruction (2.16), using the method

described in Sect. 2.2.2. If such linear weights do not exist, then go to step 3.
2. For a preset threshold value ζ , if max{|γi |, i = 1,2, . . . ,9} ≤ ζ , then we form a WENO

reconstruction (2.6) using the type II linear reconstruction (2.16). And the splitting tech-
nique in [18] is applied if min(γ1, . . . , γ9) < 0.

3. If max{|γi |, i = 1,2, . . . ,9} > ζ or type II linear weights do not exist, then we form
a WENO reconstruction (2.6) using the type I linear reconstruction (2.9) described in
Sect. 2.2.1.

Remark Via numerical experiments in the next section, we find that the numerical results
are not sensitive with respect to the choice of the threshold value ζ when ζ is in the range



J Sci Comput (2013) 54:603–621 611

from 1 to 10. Hence a value of ζ between 1 to 10 is recommended for all numerical examples
in this paper. If ζ is chosen to be bigger than 10, we observe an increase in accuracy errors
and loss of numerical accuracy order in the numerical experiments with distorted meshes.

3 Numerical Examples

In this section, we apply the hybrid WENO reconstructions developed in the Sect. 2 to
both linear and non-linear scalar and system problems. We use triangular meshes with large
obtuse angle mesh structures in the accuracy test problems. This kind of meshes gives very
large negative linear weights in type II WENO reconstructions. They are used to show the
robustness of the hybrid WENO reconstructions. The CFL number is taken as 0.3 in all the
cases. For the temporal discretization, we use the third-order TVD Runge-Kutta scheme of
Shu and Osher in [19]. To improve the accuracy of the WENO scheme, we adopt a mapped
weights technique introduced in [10]. In the numerical convergence studies, we measure the
discrete L1 and L∞ errors and convergence orders. The discrete L1 and L∞ errors at a final
time T are calculated from the point errors at the Gaussian quadrature points in the finite
volume scheme. Namely, we use the point errors at these Gaussian quadrature points G

(k)
j in

(2.3) to approximate the integral in the L1 error and to find the maximum value in the L∞
error.

Example 1 Linear equation:

{
ut + ux + uy = 0, −2 ≤ x ≤ 2, −2 ≤ y ≤ 2;
u(x, y,0) = sin( π

2 (x + y)),
(3.1)

with periodic boundary condition. We use random perturbations of uniform meshes to gen-
erate meshes with large obtuse angles and test our hybrid WENO reconstructions. This kind
of meshes generate large negative linear weights in the type II WENO reconstructions. See
Fig. 3 for two of such meshes. In the convergence study, the refinement of meshes is done
by cutting each triangle into four smaller similar ones. We use the hybrid WENO schemes
to solve the PDE (3.1) to T = 2. First we use successively refined meshes of the left mesh in
Fig. 3 to test the accuracy and numerical convergence orders. The results are reported in Ta-
ble 1 and Table 2, for different preset threshold value ζ = 1 and ζ = 10 respectively. We also
report the most negative linear weight in type II WENO reconstructions on every mesh, and
the percentage of using type I WENO reconstructions on Gaussian points. We would like to
point out that the most negative linear weight is determined by the meshes only, hence the
same mesh generates the same most negative linear weight, as shown in tables of this exam-
ple and the next example. From Table 1 and Table 2, we can observe third order accuracy in
L1 and L∞ errors, although the most negative linear weight is around −200. Furthermore,
the percentage of using type I WENO reconstructions is very small, and it is decreasing
when the mesh is refined. This is because the percentage of “bad” quality triangles is still
small. Hence at most of places, we are still using compact type II WENO reconstructions.
Notice that, L∞ errors are slightly larger than L1 errors, and L∞ convergence orders are not
as uniform as L1 convergence orders. This is due to the highly non-uniform of the meshes.
Comparing Table 1 and Table 2, we can see that the accuracy and convergence orders are
comparable. With the tests of other ζ values (not shown here), we found that the accuracy
and orders are not sensitive with respect to the preset threshold value ζ when its value is less
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Fig. 3 Coarsest meshes in the convergence study. Left: the mesh is obtained by randomly perturbing a 10×10
uniform mesh within ±30 % for every interior node; Right: the mesh is obtained by randomly perturbing a
20 × 20 uniform mesh within ±35 % for every interior node

Table 1 Accuracy for 2D Linear Equation. Computational meshes are refined meshes of the left mesh in
Fig. 3. ζ = 1.0

# of cells L1 error Order L∞ error Order Most negative weight Percentage

10368 0.107E-02 – 0.747E-02 – −199.72 1.19 %

41472 0.109E-03 3.30 0.307E-03 4.60 −199.88 0.59 %

165888 0.137E-04 2.99 0.470E-04 2.71 −200.53 0.29 %

663552 0.172E-05 2.99 0.775E-05 2.60 −201.20 0.15 %

Table 2 Accuracy for 2D Linear Equation. Computational meshes are refined meshes of the left mesh in
Fig. 3. ζ = 10.0

# of cells L1 error Order L∞ error Order Most negative weight Percentage

10368 0.107E-02 – 0.754E-02 – −199.72 0.13 %

41472 0.109E-03 3.30 0.299E-03 4.66 −199.88 0.06 %

165888 0.137E-04 2.99 0.458E-04 2.71 −200.53 0.03 %

663552 0.172E-05 2.99 0.778E-05 2.56 −201.20 0.02 %

than 10. With bigger ζ values, we use even less type I WENO reconstructions. Then we per-
form the convergence studies using even worse quality meshes which are refined meshes of
the right mesh in Fig. 3. The results are reported in Table 3 and Table 4. For these meshes,
the most negative linear weight can reach −8000. From the results, we can see that our
hybrid approach still performs very well and similar conclusion can be obtained.

Example 2 Nonlinear Burgers’ equation:

ut +
(

u2

2

)
x

+
(

u2

2

)
y

= 0 (3.2)
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Table 3 Accuracy for 2D Linear Equation. Computational meshes are refined meshes of the right mesh in
Fig. 3. ζ = 1.0

# of cells L1 error Order L∞ error Order Most negative weight Percentage

11552 0.945E-03 – 0.633E-02 – −5426.19 3.44 %

46208 0.104E-03 3.18 0.357E-03 4.15 −5574.93 1.72 %

184832 0.130E-04 3.00 0.478E-04 2.90 −6457.42 0.86 %

739328 0.164E-05 2.99 0.672E-05 2.83 −8006.47 0.43 %

Table 4 Accuracy for 2D Linear Equation. Computational meshes are refined meshes of the right mesh in
Fig. 3. ζ = 10.0

# of cells L1 error Order L∞ error Order Most negative weight Percentage

11552 0.951E-03 – 0.652E-02 – −5426.19 0.35 %

46208 0.103E-03 3.21 0.358E-03 4.18 −5574.93 0.18 %

184832 0.130E-04 2.99 0.478E-04 2.90 −6457.42 0.09 %

739328 0.164E-05 2.99 0.671E-05 2.83 −8006.47 0.04 %

Table 5 Accuracy for 2D Burgers Equation. Computational meshes are refined meshes of the left mesh in
Fig. 3. ζ = 1.0

# of cells L1 error Order L∞ error Order Most negative weight Percentage

10368 0.106E-03 – 0.116E-02 – −199.72 1.19 %

41472 0.125E-04 3.08 0.164E-03 2.82 −199.88 0.59 %

165888 0.159E-05 2.97 0.236E-04 2.80 −200.53 0.29 %

663552 0.201E-06 2.98 0.378E-05 2.64 −201.20 0.15 %

with the initial condition

u0(x, y) = 0.3 + 0.7 sin

(
π

2
(x + y)

)
(3.3)

(x, y) ∈ [−2,2] × [−2,2], with periodic boundary condition. We apply the hybrid WENO
schemes to solve the PDE (3.2) to T = 0.5/π2, when the solution is still smooth. Again we
used the same meshes with large obtuse angles as those in Example 1. Numerical results
are reported in Tables 5, 6, 7 and 8. We observe good third order accuracy and the same
conclusion can be obtained as that in Example 1.

Example 3 (2D vortex evolution problem [11]) We solve the compressible Euler equations
of gas dynamics:

ξt + f (ξ)x + g(ξ)y = 0, (3.4)

where

ξ = (ρ,ρu,ρv,E),

f (ξ) = (
ρu,ρu2 + p,ρuv,u(E + p)

)
,
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Table 6 Accuracy for 2D Burgers Equation. Computational meshes are refined meshes of the left mesh in
Fig. 3. ζ = 10.0

# of cells L1 error Order L∞ error Order Most negative weight Percentage

10368 0.107E-03 – 0.112E-02 – −199.72 0.13 %

41472 0.125E-04 3.10 0.157E-03 2.83 −199.88 0.06 %

165888 0.159E-05 2.97 0.233E-04 2.75 −200.53 0.03 %

663552 0.201E-06 2.98 0.374E-05 2.64 −201.20 0.02 %

Table 7 Accuracy for 2D Burgers Equation. Computational meshes are refined meshes of the right mesh in
Fig. 3. ζ = 1.0

# of cells L1 error Order L∞ error Order Most negative weight Percentage

11552 0.101E-03 – 0.193E-02 – −5426.19 3.44 %

46208 0.120E-04 3.07 0.195E-03 3.30 −5574.93 1.72 %

184832 0.157E-05 2.93 0.301E-04 2.70 −6457.42 0.86 %

739328 0.203E-06 2.95 0.490E-05 2.62 −8006.47 0.43 %

Table 8 Accuracy for 2D Burgers Equation. Computational meshes are refined meshes of the right mesh in
Fig. 3. ζ = 10.0

# of cells L1 error Order L∞ error Order Most negative weight Percentage

11552 0.103E-03 – 0.576E-02 – −5426.19 0.35 %

46208 0.120E-04 3.10 0.178E-03 5.02 −5574.93 0.18 %

184832 0.157E-05 2.93 0.270E-04 2.72 −6457.42 0.09 %

739328 0.203E-06 2.95 0.438E-05 2.62 −8006.47 0.04 %

g(ξ) = (
ρv,ρuv,ρv2 + p,v(E + p)

)
.

Here ρ is the density, (u, v) is the velocity, E is the total Energy, p is the pressure, and

E = p

γ − 1
+ 1

2
ρ
(
u2 + v2

)
,

with γ = 1.4. The mean flow is ρ = 1,p = 1, and (u, v) = (1,1). An isentropic vortex is
added to the mean flow, i.e., perturbations in (u, v) and the temperature T = p

ρ
, no pertur-

bation in the entropy S = p

ργ :

(δu, δv) = ε

2π
e0.5(1−r2)(−ȳ, x̄)

δT = − (γ − 1)ε2

8γπ2
e1−r2

, δS = 0,

where (x̄, ȳ) = (x − 5, y − 5), r2 = x̄2 + ȳ2, and the vortex strength ε = 5. The compu-
tational domain is taken as [0,10] × [0,10], and periodic boundary conditions are used.
Solution of the system is smooth, hence it is often used as a benchmark problem for test-
ing accuracy of numerical schemes for solving Euler systems. We use the mesh shown in
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Fig. 4 The coarsest mesh in the
convergence study for the vortex
evolution problem

Table 9 Accuracy for 2D Vortex Evolution Problem, ζ = 1.0.

# of cells L1 error Order L∞ error Order Most negative weight Percentage

928 0.808E-02 – 0.171E+00 – −380.02 7.94%

3712 0.213E-02 1.92 0.610E-01 1.49 −487.20 5.35 %

14848 0.391E-03 2.45 0.215E-01 1.50 −486.50 2.74 %

59392 0.319E-04 3.62 0.630E-03 5.09 −486.35 1.39 %

237568 0.405E-05 2.98 0.807E-04 2.96 −485.37 0.70 %

950272 0.541E-06 2.90 0.120E-04 2.75 −495.94 0.35%

Table 10 Accuracy for 2D Vortex Evolution Problem. ζ = 10.0

# of cells L1 error Order L∞ error Order Most negative weight Percentage

928 0.958E-02 – 0.172E+00 – −380.02 0.83%

3712 0.252E-02 1.93 0.681E-01 1.34 −487.20 0.61 %

14848 0.403E-03 2.64 0.237E-01 1.52 −486.50 0.29 %

59392 0.318E-04 3.66 0.632E-03 5.23 −486.35 0.14 %

237568 0.405E-05 2.97 0.806E-04 2.97 −485.37 0.07 %

950272 0.541E-06 2.90 0.119E-04 2.76 −495.94 0.04 %

Fig. 4 and its refined ones to test the accuracy of our hybrid WENO scheme. The final time
T = 2.0. Numerical results are reported in Table 9 and Table 10. Again, we observe good
third order accuracy and the same conclusion is obtained as that in the previous examples.

Example 4 (Double mach reflection problem [21]) We solve the Euler equations (3.4) in a
computational domain [0,3.2] × [0,1]. A reflecting wall lies at the bottom of the domain
starting from x = 1

6 . Initially a right moving Mach 10 shock is located at x = 1
6 , y = 0,

making a 60◦ angle with the x axis. The reflective boundary condition is used at the wall.
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Fig. 5 Double mach reflection. Density contours with 30 equally spaced contour lines from 1.5 to 21.5. Top:
ζ = 1; bottom: ζ = 10

The exact postshock condition is imposed for the rest of the bottom boundary (i.e., the part
from x = 0 to x = 1

6 ). At the top boundary, the flow values are set to describe the exact
motion of the Mach 10 shock. The final time is T = 0.2.

We randomly perturb the uniform computational meshes with equilateral triangles in
[11] within ±10 % for every interior node, and use the hybrid WENO reconstructions to
perform simulations on successively refined meshes. The most negative weights in type II
WENO reconstructions for these meshes are about −100. We observed the convergence of
the numerical solution. Here we present the numerical solution in Fig. 5 for the most refined
mesh (side length of each triangle in the mesh is roughly equal to rectangular element case
of x = y = 1

400 ). We compare the results by using different threshold values ζ = 1 and
ζ = 10. For ζ = 1, the percentage of using type I WENO reconstructions is 0.10 %, while
it is 0.02 % for ζ = 10.0. The results are similar for different threshold values, and they are
comparable with the results in [11] by using the uniform computational meshes.

Example 5 (A hyperbolic model for chemosensitive movement [5]) We apply the third or-
der hybrid WENO method to solve a hyperbolic model for cell chemosensitive movement.
The model was developed in [8]. In [5], a high order finite difference WENO scheme was
constructed to simulate it. The model equations are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂n

∂t
+ ∇ · (n
v) = 0;

∂ 
v
∂t

+ 
v · ∇
v = β∇c;
∂c

∂t
= D�c + αn − c

τ
,

(3.5)
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Fig. 6 Initial cell density n. Left: the square domain; right: the circular domain

where n denote the cell density, 
v is the velocity of cell movements. c is the concentration
of chemicals secreted by the cells. β represents the strength of chemotactic interactions. The
cell density n and velocity 
v satisfy hyperbolic conservation laws. Chemical concentration
c satisfies a reaction-diffusion equation. D is the diffusion rate, α is the production rate, and
1/τ is the degradation rate. We consider the 2D case 
v = (v1, v2)

T , and write the system
(3.5) in a conservative form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂n

∂t
+ ∂(nv1)

∂x
+ ∂(nv2)

∂y
= 0;

∂(nv1)

∂t
+ ∂(nv2

1)

∂x
+ ∂(nv1v2)

∂y
= nβ

∂c

∂x
;

∂(nv2)

∂t
+ ∂(nv1v2)

∂x
+ ∂(nv2

2)

∂y
= nβ

∂c

∂y
;

∂c

∂t
= D

(
∂2c

∂x2
+ ∂2c

∂y2

)
+ αn − c

τ
.

(3.6)

The first three equations in (3.6) is the hyperbolic part of the system, and we use the third
order finite volume hybrid WENO method to solve them. The fourth equation is a parabolic
equation, and we do not need to use WENO reconstruction. We use finite volume formu-
lation in Sect. 2.1 with the flux F = −D∇c. Different from the numerical flux (2.4) for
hyperbolic PDEs, we use the average numerical flux

F
(∇c

(
G

(k)
j , t

)) · nk ≈ 1

2

(
F

(∇c−(
G

(k)
j , t

)) + F
(∇c+(

G
(k)
j , t

))) · nk. (3.7)

The gradient ∇p of reconstructed quadratic polynomial p(x, y) for c on the big stencil
(Fig. 2) is directly used to approximate ∇c. We use the following parameters [8]:

β = 1.0, D = 2.0, α = 1.0, τ = 1.0. (3.8)

We perform numerical simulations on both a square domain [0,20] × [0,20] and a circular
domain with the center (10,10) and radius 10. Periodic boundary condition and non-flux
boundary condition are used for the square domain and the circular domain respectively.
Initially certain number of cells are randomly distributed in the domain. We assume that
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Fig. 7 Numerical simulations of the cell density evolution. (a), (b): t = 0.76; (c), (d): t = 1.16; (e), (f):
t = 1.56. (a), (c), (e): ζ = 1; (b), (d), (f): ζ = 10

cells have shape of Gaussian bumps. So the initial cell density n is taken as a normalized
superposition of randomly distributed Gaussian bumps with width σ = 0.175

n(x, y) = 1

(2πσ)2

N∑
i=1

exp

(
− (x − xi)

2 + (y − yi)
2

2σ 2

)
, (3.9)
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Fig. 8 Numerical simulations of the cell density evolution. (a), (b) t = 0.76; (c), (d) t = 1.16; (e), (f)
t = 1.56. (a), (c), (e): ζ = 1; (b), (d), (f): ζ = 10



620 J Sci Comput (2013) 54:603–621

where (xi, yi)1≤i≤N are uniformly distributed random points in the domain. N here repre-
sents the total number of cells, and N = 10000 is used in our simulation. The initial cell
velocity and chemical concentration are taken as 0. See Fig. 6 for the initial cell density
on two different domains. The domains are partitioned by triangular meshes with 144646
elements for the square domain, and 121592 elements for the circular domain. We use the
third order hybrid WENO method to perform the simulations till t = 1.56, and again com-
pare the results for ζ = 1 and ζ = 10. The triangular mesh for the square domain generates
the most negative weight −1284 in the type II WENO reconstructions. In our simulations,
only 0.15 % of all elements (if ζ = 1) and 0.01 % of all elements (if ζ = 10) use the type
I WENO reconstructions. For the circular domain, the triangular mesh we use generates
the most negative weight −333 in the type II WENO reconstructions, and 0.16 % of all
elements (if ζ = 1) and 0.01 % of all elements (if ζ = 10) use the type I WENO reconstruc-
tions. See Fig. 7 and Fig. 8 for the simulation results on different domains. We can observe
that network patterns similar to early blood vessel structures are generated. Again, different
threshold values ζ = 1 and ζ = 10 generate similar numerical results.

4 Concluding Remarks

A difficult step in designing robust high order type II WENO schemes on unstructured
meshes is how to deal with ill-posed or singular systems for finding linear weights when
the mesh quality is not good. This problem is even more important in developing type II
WENO schemes on higher dimensional unstructured meshes. In this paper, we solve this
problem by hybriding the approaches of the type II and the type I WENO reconstructions.
The resulting hybrid finite volume WENO reconstructions are robust in dealing with bad
quality meshes. Although the compactness of the type II WENO reconstructions is lost at
the places where mesh quality is bad, the overall percentage of the places where the type
I WENO reconstructions are applied is quite small. Numerical experiments including both
scalar and hyperbolic system cases show the robustness of our approach.
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