J Sci Comput (2016) 69:736-763 @ CrossMark
DOI 10.1007/510915-016-0216-7

Krylov Integration Factor Method on Sparse Grids for
High Spatial Dimension Convection-Diffusion Equations

Dong Lu' . Yong-Tao Zhang!

Received: 21 September 2015 / Revised: 29 March 2016 / Accepted: 28 April 2016 /
Published online: 19 May 2016
© Springer Science+Business Media New York 2016

Abstract Krylov implicit integration factor (IIF) methods were developed in Chen and
Zhang (J Comput Phys 230:4336—4352, 2011) for solving stiff reaction—diffusion equations
on high dimensional unstructured meshes. The methods were further extended to solve stiff
advection—diffusion—reaction equations in Jiang and Zhang (J Comput Phys 253:368-388,
2013). Recently we studied the computational power of Krylov subspace approximations
on dealing with high dimensional problems. It was shown that the Krylov integration factor
methods have linear computational complexity and are especially efficient for high dimen-
sional convection—diffusion problems with anisotropic diffusions. In this paper, we combine
the Krylov integration factor methods with sparse grid combination techniques and solve
high spatial dimension convection—diffusion equations such as Fokker—Planck equations on
sparse grids. Numerical examples are presented to show that significant computational times
are saved by applying the Krylov integration factor methods on sparse grids.

Keywords Implicit integration factor methods - Sparse grids - Krylov subspace
approximation - High spatial dimensions - Convection—diffusion equations

1 Introduction

Integration factor (IF) methods are a class of “exactly linear part” time discretization methods
for the solution of nonlinear partial differential equations (PDEs) with the linear highest
spatial derivatives. This class of methods performs the time evolution of the stiff linear
operator via evaluation of an exponential function of the corresponding matrix. Hence the
integration factor type time discretization can remove both the stability constrain and time
direction numerical errors from the high order derivatives [1,5,14-16,20]. In [22], a class of
efficient implicit integration factor (IIF) methods were developed for solving systems with

B<X Yong-Tao Zhang
yzhang10@nd.edu

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN 46556, USA

1

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-016-0216-7&domain=pdf

J Sci Comput (2016) 69:736-763 737

both stiff linear and nonlinear terms. A novel property of the methods is that the implicit
terms are free of the exponential operation of the linear terms. Hence the exact evaluation of
the linear part is decoupled from the implicit treatment of the nonlinear terms. As a result,
if the nonlinear terms do not involve spatial derivatives, the size of the nonlinear system
arising from the implicit treatment is independent of the number of spatial grid points; it
only depends on the number of the original PDEs. This distinguishes IIF methods [22] from
implicit exponential time differencing (ETD) methods in [1].

For problems with high spatial dimensions, the major computational challenge in applying
the IIF methods is how to deal with matrix exponentials for very large matrices. Currently
there are two approaches to deal with the large matrix exponential problem in IIF meth-
ods. One is the class of compact implicit integration factor (cIIF) methods in [23]. cIIF
methods reduce the cost prohibitive large matrix exponentials for linear diffusion oper-
ators with constant diffusion coefficients in high spatial dimensions to a series of much
smaller one dimensional computations. This approach is further extended in [28] as an
array-representation technique to deal with more complicated high dimensional reaction—
diffusion equations with cross-derivatives in diffusion operators. The method is termed as
array-representation compact implicit integration factor (AcIIF) method. Another approach
is to use Krylov subspace approximations to efficiently calculate large matrix exponentials.
In [4], Krylov subspace approximation is directly applied to the IIF methods for solving high
dimensional reaction—diffusion problems. The Krylov IIF methods were further extended
to solve high dimensional stiff convection—diffusion—reaction (CDR) equations in [12,13].
Recently in [19] we studied the computational power of Krylov subspace approximations
on dealing with high spatial dimension convection—diffusion problems. Systematical numer-
ical comparison and complexity analysis are carried out for the computational efficiency
of the two different approaches. It was shown that the Krylov integration factor methods
have linear computational complexity and are especially efficient for solving high dimen-
sional convection—diffusion problems with anisotropic diffusions, such as high dimensional
Fokker—Planck equations [6,24].

In this paper, we aim at achieving more efficient computations of Krylov IIF schemes than
the existing work in the literature by developing the Krylov IIF schemes on sparse grids for
high spatial dimension problems. In recent years, sparse-grid has become a major approxima-
tion tool for high-dimensional problems. It has been successfully used in many scientific and
engineering applications. Discretizations on sparse grids involve O (N - (log N)¢~!) degrees
of freedom only, where d denotes the underling problem’s dimensionality and N is the num-
ber of grid points in one coordinate direction. A detailed review on sparse-grid technique can
be found in [3]. Sparse-grid techniques were introduced by Zenger [29] in 1991 to reduce the
number of degrees of freedom in finite-element calculations. The sparse-grid combination
technique, which was introduced in 1992 by Griebel et al. [8], can be seen as a practical
implementation of the sparse-grid technique. In the sparse-grid combination technique, the
final solution is a linear combination of solutions on semi-coarsened grids, where the coef-
ficients of the combination are chosen such that there is a canceling in leading-order error
terms and the accuracy order can be kept to be the same as that on single full grids [8,17,18].
The rest of the paper is organized as following. In Sect. 2, we review the Krylov IIF schemes.
Krylov IIF methods on sparse grids are developed in Sect. 3. In Sect. 4, we perform exten-
sive numerical experiments to test the sparse-grid Krylov IIF methods and show significant
savings in computational costs by comparisons with single-grid computations. Conclusions
are given in Sect. 5.

@ Springer

738 J Sci Comput (2016) 69:736-763

2 Krylov IIF Methods for CDR Equations

In this section, we briefly review the Krylov IIF methods for high spatial dimen-
sion convection—diffusion-reaction equations which were developed in [12]. We consider
convection—diffusion-reaction equations

d
i+) fiw)y =V - (DVu) +rw), M

i=1

where u is the unknown, ﬁ i =1,...,d are flux functions in d spatial dimensions respec-
tively, D is the diffusion matrix and it could be non-constant and have variable entries, and
r is the reaction term. Often the CDR models in applications have nonlinear convection and
reaction terms, but a linear diffusion term V- (DVu), where D is independent of « but could be
functions of spatial variables. We use central differences schemes to discretize the diffusion
terms, and nonlinear stable weighted essentially non-oscillatory (WENO) [11] or upwind
schemes for convection terms. After spatial discretizations, a semi-discretized ODE system

-

AU = - - ..
T Fq(U) + F,(U) + R(U) ()

is obtained. Here U = (u)1<i<n. Fa(U) = (Fa;(U1zizn. Fa(U) = (Faij(U))1<i<n.
R = (r(u;))1<i<n. N is the total number of grid points, Fd(ﬁ) is the approximation for
the diffusion terms by the second or fourth order finite difference schemes, and its each
component Fy; is a linear or nonlinear function of numerical values on the approximation
stencil. If the diffusion term is linear, Fd (U)=0C U where C is the approximation matrix for
the linear diffusion operator by the central finite difference schemes. Fa (U) is the approx-
imation for the nonlinear advection terms by WENO scheme or upwind scheme, and its
each component F,; is a nonlinear function of several numerical values on the WENO or
upwind approximation stencil. E(ﬁ) is the nonlinear reaction term, and its each component
r(u;) is a nonlinear function which only depends on numerical value at one grid point. In
[12], we developed a method to deal with the nonlinear diffusion terms by factoring out the
linear part which mainly contributes to the stiffness of the nonlinear diffusion terms, then
applying the integration factor approach to remove this stiffness. In this paper, we focus on
the problems with linear diffusions of either constant or variable diffusion coefficients, i.e.,
Fd(U) = CU. IIF methods for (2) are constructed by exactly 1ntegrat1ng the linear part of
the system. Directly multiply (2) by the integration factor e ~¢* and integrate over one time
step from #,, to t,4+1 = t, + Aty to obtain

Aty o
Ultpr1) = 20U (1,) + €20 / e CTF,(Ut, + 1))dT
0

Aty ..
+ eCA’n/O e CTRWU (1 + 1))dr. 3)

Two of the nonlinear terms in (3) have different properties. The nonlinear reaction term
R(U) is usually stiff but local, while the nonlinear term F,(U) derived from approximations
to the convection term is nonstiff but couples numerical values at grid points of the stencil.
Hence we use different methods to treat them and avoid solving a large coupled nonlinear
system. For the stiff reaction term e~¢* R(U (1, + 1)), we approximate it implicitly by an
(r — 1)-th order Lagrange polynomial with interpolation points at t,41, t,, . . ., tn+2—r. The
nonlinear convection term e~ ¢? ﬁa ((7 (tn + 7)) is approximated explicitly by an (r — 1)-th

@ Springer

J Sci Comput (2016) 69:736-763 739

order Lagrange polynomial with interpolation points at #,, t,—1, . . ., t,+1—r. The r-th order
IIF scheme for CDR equations is obtained as
0
0n+l = eCAt” L_}n + Aty [an+lk(ﬁn+l) + Z an+ieC(Atn7Ti)ﬁ([_])n+i)
i=2—r
0
+ > ﬁn+,-eC<A’~ff>Fa(Un+,-)] : “
i=1l—r
where the coefficients |
1 In T -1
Opyi = / 11 Lde, i=1,0,-1,....,2—r; 5)
Aty Jo . T T
J=2-rj#i
1 Aty 0 T — 71
Buti = / [] —Zdr. i=0-1.-2....1-r (6)
Aty 0 . T T
J=l=r, j#i
T =Aty, 10=0,7, = — Zk_:l, Atyypfori =—1,-2,-3,...,1—r. f/n+[is the numerical

solution for U (tn+i)- Specifically, the second order scheme (IIF2) is of the following form

-

Upy1 = eCAt,, fjn + Aty {an+l§(0n+l) + anQCAI'Iﬁ([}n)

B €CCITD B (T y) + e By (T ™
where
1 1 8 Aty 8 1 Aty 4 Ar
o,y = -, o = -,] = — , = —_— _ .
n) n+1) n—1 N n Aty) n—1

And the third order scheme (IIF3) is
ﬁnJrl = CAn [}n + Aty {an+11_é(0n+l) + aneCAt"ié(l}n) + OlnfleC(At’mLAt”fl)I_é([}nfl)

+ ﬁn—ZeC(At"-FAt"fl+Atn72)ﬁa (Un—2)+ﬂn—] eC(At’l+At"71)ﬁa (ﬁn—l)+Bn CAn ﬁa (l}n)} 5
3)

where

1 (At,, n Atn_])
o =—— ,
T A+ A \ 3 2

1 Aty Aty
oy = + s
Aty 6 2

At?
ap—1 = — s
" T T 6A L, 1 (At + Aly)
Br=1+ ! Aty Ahn 4 A
n = Aty (Aln—l n Atn—z) 3) n—1 n=2) |-
1 A2 Aty

= Aty_i + Aty_2) |,
lsn 1 Aln—lAtn—2|: 3 +) (n—1 + n 2)
By — 1 (At,f AtnAt,,_l)

" Aty (Aty—y + Aly—p) \ 3 2

@ Springer

740 J Sci Comput (2016) 69:736-763

The efficiency of IIF schemes for high dimensional problems largely depends on the
methods to evaluate the product of the matrix exponential and a vector, for example e“v.
For PDEs defined on high spatial dimensions (2D and above), a large and sparse matrix C is
generated in the schemes (4). But the exponential matrix ¢’ is dense. For high dimensional
problems, direct computation and storage of such exponential matrix are prohibitive in terms
of both CPU cost and computer memory. Here we review Krylov subspace approximation
method which was applied to IIF schemes in [4] and for solving CDR equations in [12]. The
computational power of Krylov subspace approximation method for IIF schemes on high
spatial dimension problems has been studied in [19] which shows its high efficiency. Notice
that we do not need the full exponential matrices such as ¢€*' itself, but only the products
of the exponential matrices and some vectors in the schemes (4). Follow the literature (e.g.
[7,21]), we describe the Krylov subspace methods to approximate ¢! v as following.

The large sparse matrix C is projected to the Krylov subspace

Ky = spanfv, Cv, sz,...,CM_lv}.)

The dimension M of the Krylov subspace is much smaller than the dimension N of the
large sparse matrix C. In all numerical computations of this paper, we take M = 25 for
different N, and accurate results are obtained in the numerical experiments. An orthonormal
basis Vs = [v1, v2, v3, ..., vy] of the Krylov subspace Ky is generated by the well-known
Arnoldi algorithm [27] as the following.

1. Compute the initial vector: vi = v/||v||2.
2. Perform iterations: Do j = 1,2, ..., M:
(1) Compute the vector w = Cv;.
2)Doi=1,2,...,j:
(a) Compute the inner product i; ; = (w, v;).
(b) Compute the vector w = w — h; jv;.
(3) Compute hjt1 j = wla.
@) Ifhjy,; =0, then
stop the iteration;
else
compute the next basis vector vj 11 = w/hji1, ;.

In the Arnoldi algorithm, if 441 ; = O for some j < M, it means that the convergence
has occurred and the Krylov subspace Kj; = span{vy, v2, ..., v;}, so the iteration can be
stopped at this step j, and we assign the value of this j to M. This algorithm will produce
an orthonormal basis V), of the Krylov subspace K ;. Denote the M x M upper Hessenberg
matrix consisting of the coefficients /; ; by Hy. Since the columns of V), are orthogonal,
we have

Hy =Vicvy. (10

This means that the very small Hessenberg matrix H), represents the projection of the large
sparse matrix C to the Krylov subspace K s, with respect to the basis Vj;. Also since Vy
is orthonormal, the vector Vs V{,ecmv is the orthogonal projection of €Ay on the Krylov
subspace Ky, namely, it is the closest approximation to ¢“4’v from K ;. Therefore

eCAy ~ VMVAT,eCA’v = ,BVMVATIeCAtvl = ﬁVMVAEeCA’VMel,

@ Springer

J Sci Comput (2016) 69:736-763 741

where 8 = ||v]|2, and e; denotes the first column of the M x M identity matrix /);. Use the
fact of (10), we have the approximation

eCA Y ~ BVyeMAle) . (11)

CAt Hy At

Thus the large e matrix exponential problem is replaced with a much smaller e
problem. The small matrix exponential e/ 2’ will be computed using a scaling and squaring
algorithm with a Padé approximation with only a small computational cost, see [7,10,21].
Then the Krylov approximations are directly applied in schemes (4), (7) or (8) to obtain
Krylov IIF schemes for CDR equations [12]. The r-th order Krylov IIF scheme for CDR
equations has the following form

. . oA
Unt1 = Aty 1 R(Upt1) + Y00 Vm,0ne M0 ey

+ Aty (,Bn+1—r Vi—rn VM, l—r,neHM’lfr'" (Ady _rl_r)el

1
+ >)’i,nVM,i,neHM'i'"(Afn_ri)el)a 12)

i=2—r

where yo, = Uy + Aty (2 R(Un) + BuFa(Un))ll2. Var.on and Hyp,, are orthonormal
basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the initial vector
Uy + Aln(anR(U) +ﬂnF (U)) Vi-rn = ”F (Un+l r)||Za VMl —r,n and HMl —r,n are
orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with
the initial vector Fa(Un+1 r)- Vi = llnti R(Un+l) + Bu+i Fa (Un+z)||2’ Vi and Hyy ;i
are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with
the initial vectors o, 4; R(Un+,) + Bu+i F (Un+,) fori =2—r,3—r, , —1. Notice that
Vmon Vui—rnand Vypipn, i =2 —r,3 —r,...,—1 are orthonormal bases of different
Krylov subspaces for the same matrix C, which are generated with different initial vectors
in the Arnoldi algorithm. Specifically, the second order Krylov IIF (KrylovIIF2) scheme has
the following form

= 1 S5 o
Uny1 = EAt"R(Un+]) + Yo.n VM,O,neHM’O'"AI"el

(Aty)?
2At,

(V—l,nVM,—I,neHM'7I'”(At'1+At”71)el) , (13)

where yp,, = H Un + Aty (%k(ﬁn) + A,}F] (Agtn + Atn—l)ﬁa(ﬁn)) Hz’ V.00 and Hpg 0,0
are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with
the initial vector U, + At (113(0)+ 5= (B + Aty 1) Fo(U,)) Vetn = 1 FaUn_Dl2.
Vm,—1,, and Hy —1 , are orthonormal bas1s and upper Hessenberg matrix generated by the

Arnoldi algorithm with the initial vector F (Un 1). And the third order Krylov IIF (Krylov
IIF3) scheme has the form

7 2At, +3At,- . . .
Upsl = — """ Aty R(Ups1) + Yon Vg o.ne ™00 80 ¢
= ean 1 Ay S RUneD) 700 Vit on |
2
+ A, 2(Aty)” + 3At, Aty Voo n Vi -2 neHM,fz,n(Atn+At,1_1+A[lz_2)el
6At, 2 (Aty—1 + Aty) ’ T
+v_1n VMq7l’neHM,—1,n(Afn+At,,,|)el) ’ (14

@ Springer

742 J Sci Comput (2016) 69:736-763

where yp, = ||U, + Atn(anﬁ(f/n) + B ﬁa(Un))||2, Vm.0.n and Hy o, are orthonormal
basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the initial
vector Uy + Aty (0 R(Up) + BnFa(Up)). v—2.n = | Fa(Un—2)ll2, Vir,—2.n and Hyp,—2.n
are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algorithm
with the initial vector F (Un 2). V—1.n = |lay— 1R(Un 1)+ Bi-1F, (U,, D2, Var,—1,, and
Hpy,—1,, are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi algo-
rithm with the initial vectors o,—1 R(Uy—1) + Bu—1F4(Uy—1). See the Eq. (8) for values of
Ay, Buy -1, Bn—1.

As that pointed out in [12], in the implementation of the Krylov approximation methods
we do not store matrices C, because only multiplications of matrices C with a vector are
needed in the methods, and they correspond to certain finite difference operations.

Remark Theoretical analysis including linear stability and error analysis of the IIF schemes
for convection—diffusion-reaction equations is given in [12]. As an example, we present the
linear stability analysis of the second order IIF scheme for convection—diffusion-reaction
equations in the Appendix section of this paper.

3 Krylov IIF Schemes on Sparse Grids

To achieve further efficiency in solving the CDR Eq. (1) on high spatial dimensions by Krylov
IIF schemes, we present the Krylov IIF schemes on sparse grids by sparse-grid combination
technique. The basic idea of sparse-grid combination technique is that by combining several
solutions on different semi-coarsened grids (sparse grids), a final solution on the most refined
mesh is obtained. The most refined mesh is corresponding to the usual single full grid. Since
the PDEs are solved on semi-coarsened grids which have much fewer grid points than the
single full grid, computation costs are saved a lot. The final solution obtained by sparse-grid
combination technique is required to have the similar accuracy as that by solving the PDEs
directly on a single full grid. For example see [8,17,18].

Here we use two dimensional (2D) case as the example to illustrate the idea. Higher
dimensional cases are similar. Consider a 2D domain [a, b]®. The construction of semi-
coarsened grids is as follows. We first partition the domain into the coarsest mesh, which is
called a root grid Q% with N, cells in each direction. The root grid mesh size is H = 2-¢
The multi-level refinement on the root grid is performed to obtain a family of semi- coarsened
grids {Q/1+22}. The semi-coarsened grid {112} has mesh sizes hy =27 ' H in the x direction
and h;, = 2~ H in the y direction, where [=0, 1,...,Nr,lb =0,1,..., Nr, see Fig. 1.
Superscripts [, [indicate the level of refinement relative to the root grid 2%, and Ny
indicates the finest level. Therefore, our finest grid is QNLNL with mesh size h = 2N H
for both x and y directions.

To solve Eq. (1), we will use the second order Krylov IIF (Krylov IIF2) method (13)
or the third order Krylov IIF (Krylov IIF3) scheme (14) for time discretization. Spatial
discretizations are the classical second or fourth order central schemes for diffusion terms,
and the third order WENO scheme or the upwind scheme for convection terms. Following
the spare-grid combination techniques, rather than on a single full grid, the PDE (1) is solved
on the following (2N, + 1) sparse grids Q-2

{QO,NL QlNi—1 N1l QNL,O} and {QO,NL—I QN2 oNi-21 QNLfl,O}.

@ Springer

J Sci Comput (2016) 69:736-763 743

1, =0 _ L=1 - L=2 — h=3 55> direction
IL=0
Qo1 Qi Q2 Q31
L=1
02 Q2 022 Q32
=2
003 Q3 023 33
L,=3
ydirection

Fig. 1 Semi-coarsened sparse grids { Q/1:2} with the finest level N L =3

And I denotes the index set
I={Ui,)Ili+1L =Ny or li+1h =Ny —1}.

By carrying out time marching of the PDE using Krylov IIF schemes on these (2N + 1)
sparse grids, we obtain (2N, + 1) sets of numerical solutions {U I.l2}; (one set of numerical
solution is obtained on each sparse grid). The next step is to combine solutions on sparse
grids to obtain the final solution on the finest grid V.-V The key point here is that the PDE
is never solved directly on QV2-V in order to save computational costs. To extend numerical
solutions on sparse grids to that on the finest grid, we apply a prolongation operator PVz-Ni
(defined in the spare-grid combination techniques [8,17,18]) on each sparse grid solution
U2 10 obtain (2N, + 1) solutions on the finest grid QNL-NL - And finally, these solutions
are combined to form the final solution UN-NL on QNL-NL|

Next we provide details on the prolongation operator PV.-VL_ Prolongation operator
PNLNL maps numerical solutions {U1"2}; on sparse grids onto the finest grid 2V2-V.. And
a prolongation operator is basically an interpolation operator. For example, U"2 is numer-
ical solution on Q12 then PNL-NLy!.la gives numerical values on the most refined mesh
QNLNL_ For the 2D case, first in one direction(e.g. the x direction), we construct (N, 2h—1y
quadratic interpolation polynomials P[2 (x),i =1,..., N.21=1 by the third order Lagrange
interpolation. Each interpolation uses three adjacent grid points to construct a quadratic poly-
nomial. Note that a higher order interpolation is needed for comparable numerical accuracy
as that of the numerical schemes, if higher order accuracy numerical schemes are used to
solve PDEs on sparse grids (see [8,17,18]). Then we evaluate Pl.2 (x) on the grid points of
QNe-k | which is the most refined meshes in the x direction. Next, in the other direction
(e.g. the y direction), we construct (N, 2271y quadratic interpolation polynomials sz),

= 1,...,N,2271 and evaluate them on the grid points of QNL-NL - At last we get
PNLNLylh | defined on the finest grid V2N, We summarize the algorithm of Krylov
IIF scheme on sparse grids as following.

@ Springer

744 J Sci Comput (2016) 69:736-763

Algorithm: Krylov ITF Scheme with Sparse-Grid Combination Technique

e Step 1: Restrict the initial condition u(x, y, 0) to (2N, + 1) sparse grids {Ql 1l }1 defined
above;

e Step 2: On each sparse grid /-2, solve the Eq. (1) by Krylov IIF scheme to reach the
final time 7. Then we get (2N + 1) sets of solutions {Ull’[2}1;

e Step 3: At the final time 7',

— on each grid Q12 apply prolongation operator PN.-Nt on U2, Then we get
PNLNLyhil | defined on the most refined mesh QNVL-VL.
— do the combination to get the final solution

NN — Z pNLNLhuh Z pNLNLhul (15)
L1 +lh=N l1+l,=Np—1

For three dimensional (3D) or higher dimensional problems, the algorithm is similar
although prolongation operations are performed in additional spatial directions. The sparse-
grid combination formula for higher dimensional cases can be found in the literature, e.g. in
[8]. Specifically the 3D formula is

UNLNLNL Z pNLNLNLhubls o Z pNLNLNL 7l bl
L+h+I3=Ny, L+h+l3=Np—1

+ Z pNLNLNL bl
L1+ +Il3=Np -2

(16)

4 Numerical Experiments

In this section, we use various numerical examples to show the computational efficiency of
Krylov IIF schemes with sparse-grid combination technique on sparse grids, by comparing to
the same schemes on regular grids. Examples include reaction—diffusion equations without
convection, and convection—diffusion problems. Equations with different types of diffusions
are tested, namely, equations with constant diffusion coefficients, with variable diffusion
coefficients, and with/without cross derivatives. We test examples with an exact solution and
athree dimensional Fokker—Planck equation which has broad applications. For each example,
we compute numerical accuracy errors and convergence orders of the schemes, and record
CPU times. We also list the ratios of corresponding CPU times on an N, x Nj, mesh to that
ona % X % mesh, to study the computational complexity of the schemes on sparse grids
and on regular single grids. Here in the data Tables and texts of this section, N x Nj (or a
coarser one % X % in the text description) denotes the most refined mesh in sparse grids
or a regular mesh in single grid computations. Since Krylov IIF schemes remove time step
size constraint of stiff diffusion and reaction terms, the time step sizes can be taken as that
for a pure hyperbolic problem, i.e., proportional to the spatial grid sizes. For computations
on sparse grids, PDEs are evolved on different semi-coarsened sparse grids. How to choose
time step sizes for each individual time evolution is an interesting question. Via numerical
experiments, we found that for the Example 1, which is a relatively simple constant diffusion
problem without cross derivatives and convection terms, if the grids are uniform, the time step
sizes are taken to be proportional to the minimum spatial grid size of each spatial direction
on each individual semi-coarsened sparse grid Qrl e At = ¢ x min(hy,, hy,). cis a
constant. Hence time step sizes may take different values for solving the PDE on different
semi-coarsened sparse grid, although each individual time evolution reaches the same final

@ Springer

J Sci Comput (2016) 69:736-763 745

time. The resulting numerical accuracy orders keep the desired values. However for more
complicated problems such as Examples 2, 3, 4 and 5, time step sizes on all semi-coarsened
sparse grids need to take the same value. It is determined by the spatial grid size & of the most
refined grid QV2-Nt namely, it is proportional to i with At = ¢ x . Numerical experiments
show that the desired numerical accuracy orders are reached with time step sizes taken this
way. Hence for a general problem, the numerical experiments in this paper suggest that time
step sizes on all semi-coarsened sparse grids should be determined by the spatial grid size &
of the most refined grid QN2 Vz. | All of the numerical simulations in this paper are performed
on a 2.3 GHz, 16GB RAM Linux workstation.

Example 1 (Isotropic diffusion problems). We consider a reaction—diffusion problem with
isotropic diffusion

d

02V (Vu) +0.1u.

ot
First we test the two dimensional case defined on the domain @ = {0 < x < 27,0 <y <
2}, subject to periodic boundary conditions, i.e.,

u@,y,t) =um,y,t); u(x,0,t) =u(x,2m,t).

The initial condition is u(x, y, 0) = cos(x) + sin(y). The exact solution of the problem is
u(x,y, 1) = e " (cos(x) + sin(y)). We compute the problem till final time 7 = 1 by the
second order Krylov IIF scheme (Krylov IIF2) (13) on both single grids and sparse grids,
and compare their computational efficiency. We present the L errors, L2 errors, the cor-
responding numerical accuracy orders, and CPU times on successively refined meshes to
show the efficiency of computations on sparse grids. There are two different ways to refine
meshes for computations on sparse grids. One way is to refine the root grid Q%9 and keep the
number of semi-coarsened sparse-grid levels (total N7 + 1 levels) unchanged. For example,
sparse-grid with a 10 x 10 root grid and N; = 3 has the finest mesh 80 x 80. If the root
grid is refined once to be 20 x 20, with N; = 3 unchanged we can obtain the finest mesh
160 x 160. The other way is to increase the number of levels (refine level), and keep the
root grid %0 unchanged. For example, if we increase N; = 3 to N; = 4 witha 10 x 10
root grid, the finest mesh which is 80 x 80 for the Ny = 3 case is refined to be 160 x 160
for the N;, = 4 case. The numerical errors, accuracy orders, and CPU times are listed in
Table 1 for computations by the Krylov IIF2 scheme on single-grid and sparse-grid. The
computations on single-grid, and sparse grids with two different mesh refinement methods
achieve the similar numerical errors and the second order accuracy. However, computations
on sparse-grid are much more efficient than those on single-grid. Comparing the CPU times
in Table 1, we can see that for computations on sparse grids with the first mesh refinement
method (i.e., refine root grids), more than 50 % computation time can be saved, especially
on more refined meshes. Moreover, the CPU time savings are even more significant for com-
putations on sparse grids with the second mesh refinement method (i.e., refine level). As
that shown in Table 1, 92 % CPU time can be saved for the computation on a 640 x 640
mesh. We also list the ratios of corresponding CPU times on an N, x Nj, mesh to that on a
% X %, to study the computational complexity of the methods. For this two dimensional
time dependent parabolic problem, we achieve large time step size computation At = O (h)
by using the Krylov IIF method. A linear computational complexity method should have the
CPU time ratio be 8 for a complete time evolution. The CPU time ratios shown in Table 1 for
computations on single-grid verify its linear computational complexity. For computations on
sparse grids, the CPU time ratio is around 8 for the refining root grid case, and around 4 for

@ Springer

746 J Sci Comput (2016) 69:736-763

Table 1 Example 1, 2D case, Krylov IIF2 scheme, comparison of numerical errors and CPU times for
computations on single-grid and sparse-grid

Nj x Np, L° error Order L2 error Order CPU(s) Ratio
Single-grid

80 x 80 1.86 x 1074 8.74 x 1073 3.56

160 x 160 4.66 x 1073 2.00 2.25 x 1072 1.96 27.34 7.68

320 x 320 1.16 x 1072 2.00 5.71 x 107° 1.98 219.15 8.02

640 x 640 2.91 x 1070 2.00 1.44 x 1076 1.99 1828.21 8.34
Ny Np, Nj x Njp, L error Order L2 error Order CPU(s) Ratio

Sparse-grid, refine root grids

10 3 80 x 80 1.83 x 1074 9.15 x 1073 2.50

20 3 160 x 160 457 x 107> 2.00 229%x 1075 2.00 1474 5091

40 3 320x320 114 x 1077 2.00 571x 107 2.00 104.47 7.09

80 3 640 x 640 286 x 107 2.00 143 %107 2.00 817.09 7.82

Sparse-grid, refine level

10 3 80 x 80 1.83 x 1074 9.15 x 1072 2.50

10 4 160 x 160 4.57x 107 2.00 229 x 1075 2.00 933 374

10 5 320x 320 1.08x 1075 2.09 538x 107 2.09 36.03 3.86

10 6 640 x 640 2.68 x 107 2.00 134 %107 2.00 14253 3.96

Final time 7 = 1.0. For single-grid computations, At = 0.5h. For sparse-grid computations, At =

0.5min(hy, , hy,) on each semi-coarsened sparse grid Q-2 N,: number of cells in each spatial direction
of a root grid. Ny : the finest level in a sparse-grid computation. CPU: CPU time for a complete simulation.

“Ratio” is the ratio of corresponding CPU times on an N x Nj, mesh to that on a % X % mesh. CPU time
unit: seconds

the refining level case. Hence the computational complexity on sparse-grid is also linear for
the first mesh refinement method, and much better than linear for the second mesh refinement
method.

We perform the same test for the third order scheme. The third order Krylov IIF scheme
(Krylov IIF3) (14) on single-grid and the same scheme with sparse-grid combination tech-
nique are used to compute this two-dimensional problem till final time 7 = 1. Again we use
two different ways to refine meshes on sparse grids. The numerical results are reported in
Table 2. Comparable numerical errors and fourth order accuracy order are obtained for all
three different approaches. The fourth order accuracy order here is due to the fourth order cen-
tral difference scheme to discretize the diffusion terms. It is obvious here that the spatial errors
dominate and are larger than the temporal errors. Again, computations on sparse-grid are more
efficient than those on single-grid as that shown in Table 2. Especially for the the second
mesh refinement method (i.e., refine level), 82 % CPU time can be saved for the computation
on a 640 x 640 mesh. In terms of computational complexity, the Krylov IIF3 scheme shows
a linear computational complexity on single-grid as that for the second order scheme. The
computational complexity of the Krylov IIF3 scheme on sparse-grid is also linear for the first
mesh refinement method, and much better than linear for the second mesh refinement method.

Then we test the three dimensional case defined on the domain Q2 = {0 <x < 7,0 <y <
7,0 < z < m}, subject to no-flux boundary conditions. The initial conditionis u(x, y, z, 0) =

@ Springer

J Sci Comput (2016) 69:736-763 747

Table 2 Example 1, 2D case, Krylov 1IF3 scheme, comparison of numerical errors and CPU times for
computations on single-grid and sparse-grid

Nj x Np, L° error Order L2 error Order CPU(s) Ratio
Single-grid

80 x 80 8.82 x 1077 441 x 1077 7.45

160 x 160 5.63 x 1078 4.00 2.82 x 1078 3.97 62.08 8.33

320 x 320 3.56 x 1077 4.00 1.78 x 1079 3.98 504.81 8.13

640 x 640 233 x 10710 3.94 1.17 x 10710 3.93 3743.59 7.42
Ny Np, Nj x Np, L error Order L2 error Order CPU(s) Ratio

Sparse-grid, refine root grids

10 3 80 x 80 8.82 x 1077 441 x 1077 7.85

20 3 160 x 160 5.63 x 1078 3.97 282 x 1078 3.97 48.09 6.13

40 3 320 x 320 3.56 x 1077 3.98 1.78 x 1079 3.98 356.76 742

80 3 640 x 640 226 x 10710 398 1.13x 10710 3098 2850.46 7.99

Sparse-grid, refine level

10 3 80 x 80 8.82 x 1077 441 x 1077 7.85

10 4 160 x 160 5.63 x 1078 3.97 282 x 1078 3.97 3426 436

0 5 320 x 320 3.56 x 1079 3.98 1.78 x 1079 3.98 152.83 4.46

10 6 640 x 640 226 x 10710 3.98 1.13x 10710 308 688.69 4.51

Final time 7 = 1.0. For single-grid computations, At = 0.5 h. For sparse-grid computations, At =

0.5min(hy, , hy,) on each semi-coarsened sparse grid Q12 N,.: number of cells in each spatial direction
of a root grid. Ny : the finest level in a sparse-grid computation. CPU: CPU time for a complete simulation.

“Ratio” is the ratio of corresponding CPU times on an N}, x Nj, mesh to that on a % X % mesh. CPU time
unit: seconds

cos(x) + cos(y) + cos(z). The exact solution is u(x, y, z,t) = e 01 (cos(x) + cos(y) +
cos(z)). We compute the problem till final time 7 = 1. The numerical errors, accuracy orders,
CPU times for acomplete simulation and the ratios of CPU times on an N, x Nj, mesh to that on
a % X % mesh are listed in Table 3 for the Krylov IIF2 scheme on single-grid and on sparse-
grid with two different mesh refinement approaches. The computation on the 640 x 640 x 640
single-grid can not be performed due to the computer memory restriction. Computer memory
is saved significantly by using sparse-grid and computations can be successfully done for the
640 x 640 x 640 mesh case. We observe that all computations give comparable numerical
errors and the second order accuracy. For a three dimensional time dependent problem with
At = h/3, alinear computational complexity method should have the CPU time ratio be 16.
For single-grid computation, the Krylov IIF2 scheme’s CPU time ratios shown in Table 3
verify its linear computational complexity. We also observe that the Krylov IIF2 scheme on
sparse-grid with the first mesh refinement method (refining root grid) has CPU time ratio be
around 16, so it also has linear computational complexity. And computations on sparse-grid
with the second mesh refinement method (i.e., refining level) has CPU time ratio be around 5 as
that shown in Table 3, hence its computational complexity is much better than linear. In terms
of computational efficiency, the savings of CPU times and improvement of the efficiency for
solving this three dimensional problem on sparse-grid are more significant than that for two
dimensional problems, as that shown in Table 3. For example, we compare the CPU times for

@ Springer

748 J Sci Comput (2016) 69:736-763

Table 3 Example 1, 3D case, Krylov IIF2 scheme, comparison of numerical errors and CPU times for
computations on single-grid and sparse-grid

Np x N x Nj, L°° error Order LZ error Order CPU(s) Ratio
Single-grid

80 x 80 x 80 5.50 x 1072 2.43 x 1073 850.24

160 x 160 x 160 1.53 x 1072 1.85 6.58 x 1070 1.88 13,637.13 16.04

320 x 320 x 320 4.06 x 1070 1.91 171 x 107 194 22554328 16.54
Ny Np, Nj x N x N, L®° error Order L2 error Order CPU(s) Ratio

Sparse-grid, refine root grids

10 3 80 x 80 x 80 5.40 x 107 239 x 107 89.35

20 3 160 x 160 x 160 1.50 x 1075 1.85 6.49 x 107 1.88 1494.67 16.73
40 3 320320 320 3.99 x 1070 1.91 1.69 x 107 1.94 2524430 16.89
80 3 640 x 640 x 640 1.03x 107 1.95 430 x 1077 197 422,502.00 16.74
Sparse-grid, refine level

10 3 80 x 80 x 80 5.40 x 1079 239 x 107 89.35

10 4 160 x 160 x 160 1.54 x 1075 1.81 6.68 x 1070 1.84 453.00 5.07
10 5 320320 x 320 421 x107° 1.87 178 x 107 1.91 232195 5.13
100 6 640 x 640 x 640 1.09 x 107 1.95 453x 1077 197 12,730.90 548

Final time T = 1.0. For single-grid computations, At = h/3. For sparse-grid computations, At =
1/3min(hy, , hy,, hyy) on each semi-coarsened sparse grid Q/1:2.3_N,.: number of cells in each spatial direc-

tion of aroot grid. Ny : the finest level in a sparse-grid computation. CPU: CPU time for a complete simulation.

“Ratio” is the ratio of corresponding CPU times on an Nj, x Ny x Nj mesh to that on a % X % X %

mesh. CPU time unit: seconds

computations on a 320 x 320 x 320 mesh. With the number of cells in each spatial direction of
aroot grid N, = 40 and the finest level N, = 3, the CPU time for the computation on sparse-
grid (25,244.30 s) is about 1/10 of that on a single-grid (225,543.28 s). And with a coarser
root grid N, = 10 and the finest level Ny, = 5, the CPU time for the computation on sparse-
grid (2321.95 s) is about 1/100 of that on a single-grid (225,543.28 s), so 99 % CPU time
is saved. Since higher dimensional problems generally demand much more computational
time than low dimensional ones, the efficiency achieved here verifies advantages of Krylov
IIF schemes designed on sparse-grid for solving higher dimensional problems.

We use the Krylov IIF2 scheme here as an example to further analyze the computational
complexity on singe-grid and sparse-grid. We estimate the number of multiplication and divi-
sion operations in one time step for computations on single-grid and sparse-grid for the 2D
case. The number of operations is (M%24+14M +9)[(1 + 1.5N)2Ne N,2 +(6- 2Nt —4)N, +
2N + 1] for the computation on sparse-grid with an N, x N, root grid and N, fine levels. For
the computation on an Ny, x Ny, single-grid, the number of operations is (M>+14M +9) N}%. M
is the dimension of Krylov subspace, and M = 25 here. In Table 4, we list the number of opera-
tions for these grids used in this example. It shows that computations on sparse-grid need fewer
operations than that on single-grid, especially the savings of operations are very significant
for computations on sparse-grid with the second mesh refinement method (i.e., refining level).

Itisinteresting to compare the computational efficiency of Krylov IIF method on singe-grid
and sparse-grid studied in this paper with a fully implicit scheme with an advanced linear sys-

@ Springer

J Sci Comput (2016) 69:736-763 749

Table 4 Example I, 2D case, Krylov IIF2 scheme, comparison of the number of multiplication and division
operations in one time step for computations on single-grid and sparse-grid

Nj x Njp, Single-grid Sparse-grid (refine root grid) Sparse-grid (refine level)
80 x 80 6,297,600 4,769,448 4,769,448

160 x 160 25,190,400 18,191,208 11,934,936

320 x 320 100,761,600 71,012,328 28,625,544

640 x 640 403,046,400 280,564,968 66,727,992

tem solver such as a multigrid method. As an example, we apply the Crank-Nicolson scheme
[9] in discretizing the 2D case here. A multigrid solver (the Two-Grid correction scheme) [2]
is implemented to solve the linear system at every time step. We take the number of relax-
ation times to be 3 in the Two-Grid correction scheme [2]. The results including numerical
errors, accuracy orders and CPU times are reported in Table 5. The Crank—Nicolson scheme
with the Two-Grid correction multigrid solver for solving this problem has similar numerical
errors and the second order accuracy order as the Krylov IIF2 scheme on singe-grid and
sparse-grid (Table 1). In terms of computational efficiency, the Crank—Nicolson scheme with
the Two-Grid correction multigrid solver is more efficient on relatively coarse mesh (e.g. the
80 x 80 mesh) than the Krylov IIF2 scheme. However, on more refined meshes the Krylov
IIF2 scheme is more efficient. Especially, the improvement of efficiency is very obvious for
computations on sparse-grid. More systematic comparisons of Krylov IIF schemes and fully
implicit schemes with efficient multigrid solvers will be carried out in our future research.

Remark The numerical methods with sparse grid combination technique are presented using
uniform rectangular meshes in this paper. The approach can be straightforwardly imple-
mented on non-uniform rectangular meshes. Here we test the Krylov IIF2 scheme with sparse
grid combination technique on non-uniform rectangular meshes by applying it in solving the
2D case of this example. The non-uniform meshes are obtained by randomly perturbing x-
coordinates and y-coordinates of a uniform mesh in the range of (—0.3%, 0.3h). We use five
points in one spatial direction to approximate the diffusion terms on non-uniform meshes.
Hence the approximations to the diffusion terms are on a centered stencil and the accuracy
order for the diffusion terms is 3. The numerical errors, accuracy orders, and CPU times are
listed in Table 6 for computations by the Krylov IIF2 scheme on single-grid and sparse-grid.
We draw consistent conclusion with computations on uniform meshes. Namely, the compu-
tations on single-grid, and sparse grids with two different mesh refinement methods achieve
the similar numerical errors, while computations on sparse-grid are much more efficient than
those on single-grid.

Example 2 (A 3D problem with anisotropic diffusion and constant diffusion coeffi-
cients). We consider a three-dimensional reaction—diffusion problem with cross-derivative
diffusion terms and constant diffusion coefficients

up = (0.1uyxy — 0.15uyy 4 0.1uyy) + (0.1uyy 4+ 0.2uy; + 0.2u,;) + (0.2uy,
+0.15uy; + 0.1u;;) + 0.8u,

@ Springer

750 J Sci Comput (2016) 69:736-763

Table 5 Example 1, 2D case, Crank—Nicolson scheme with a multigrid solver (the Two-Grid correction
scheme) for the linear systems

Np X Np, L°° Error Order L? error Order CPU(s)
80 x 80 1.86 x 1074 9.29 x 1073 1.81
160 x 160 4.65 x 1073 2.00 232 x107° 2.00 24.76
320 x 320 1.16 x 1073 2.00 5.81 x 107° 2.00 352.57
640 x 640 2.90 x 107 2.00 1.45 x 107 2.00 5125.76

Numerical errors, accuracy orders and CPU times are presented. Final time 7 = 1.0. At = 0.5 h. CPU: CPU
time for a complete simulation. CPU time unit: seconds

Table 6 Example 1, 2D case, Krylov IIF2 scheme, Non-uniform grids

Nj x Njp, L°° error Order L2 error Order CPU(s) Ratio
Single-grid

80 x 80 1.17 x 1076 3.44 x 1077 16.86

160 x 160 8.21 x 1078 3.83 2.58 x 1078 3.73 190.58 11.30

320x 320 6.75x 1077 3.60 2.96 x 10~ 3.12 1045.65 5.49
640 x 640 1.10 x 1070 2.61 5.66 x 10710 239 849537 8.12

Ny Ny, Nj x Np, L™ error Order L2 error Order CPU(s) Ratio

Sparse-grid, refine root grids

10 3 80 x 80 1.17 x 1070 3.44 x 1077 9.72

20 3 160 x 160 821 x 1078 3.83 2.58 x 1078 3.73 6578 677
40 3 320x320 675x 1077 3.60 2.96 x 1072 3.12 49127 747
80 3 640 x 640 1.12x 1077 2.60 572x 10710 237 385275 7.84
Sparse-grid, refine level

0 3 80 x 80 1.17 x 1076 3.44 x 1077 9.72

10 4 160 x 160 821 x 1078 3.83 258 x 1078 3.73 4506 4.64
10 5 320320 6.75x 1077 3.60 2.96 x 1077 3.12 206.02 4.57
10 6 640 x 640 1.10x 1079 2,61 5.66 x 10710 239 936.73 4.55

Comparison of numerical errors and CPU times for computations on single-grid and sparse-grid. Final time
T = 1.0. At = 0.5 h. For single-grid computations, & is the smallest grid size in all spatial directions. For
sparse-grid computations, / is the smallest grid size of the most refined grid QNL-NL N, number of cells
in each spatial direction of a root grid. Ny : the finest level in a sparse-grid computation. CPU: CPU time for

a complete simulation. “Ratio” is the ratio of corresponding CPU times on an N x Nj, mesh to that on a

% X % mesh. CPU time unit: seconds

where (x,y,2) € ={0 < x < 27,0 <y < 27,0 < z < 27} with periodic boundary
conditions. The initial condition is u(x, y, z, 0) = sin(x 4+ y + z). The exact solution of the
problem is

u(x,y, z,t) = e 02 sin(x + y + z2).
In [19], we show that for high dimensional problems with anisotropic diffusion terms, Krylov

IIF schemes are more efficient than compact IIF methods [23]. It is interesting to test Krylov

@ Springer

J Sci Comput (2016) 69:736-763 751

Table 7 Example 2, Krylov IIF2 scheme, comparison of numerical errors and CPU times for computations
on single-grid and sparse-grid

Np x Nj x N, L error Order L2 error Order CPU(s) Ratio
Single-grid

80 x 80 x 80 6.97 x 1074 4.93 x 1074 538.81

160 x 160 x 160 1.74 x 10~* 2.00 123 x 1074 2.00 8413.74 15.62

320 x 320 x 320 4.36 x 107> 2.00 3.08 x 107> 2.00 132,359.95 1573
Ny N NpxNpxNp L error Order L? error Order CPU(s) Ratio

Sparse-grid, refine root grids

10 3 80 x 80 x 80 7.49 x 1074 513 x 1074 118.58

20 3 160 x 160 x 160 1.76 x 10~4 2.09 124 x107% 2.05 1817.95 15.33
40 3 320 x 320 x 320 436 x 107 2.10 3.09 x 107> 2.01 29,573.60 16.27
80 3 640 x 640 x 640 1.09 x 107> 2.00 771x107% 200 465,538.00 15.74
Sparse-grid, refine level

10 3 80 x 80 x 80 7.49 x 1074 5.13 x 1074 118.58

10 4 160 x 160 x 160 1.87 x 1074 2.00 130 x 10~% 1.98 72821 6.14
10 5 320x320x 320 473x 1075 198 328x 1075 1.98 4371.18 6.00
10 6 640 x 640 x 640 1.20 x 107> 198 830x107® 198 2573620 5.89

Final time 7 = 1.0. At = h/3. N,: number of cells in each spatial direction of a root grid. Ny : the finest level

in a sparse-grid computation. CPU: CPU time for a complete simulation. “Ratio” is the ratio of corresponding

CPU times on an N, x N x Nj mesh to that on a % X % X % mesh. CPU time unit: seconds

IIF scheme on sparse-grid for such problems with anisotropic diffusion terms. We compute
the problem till final time 7 = 1 by the Krylov IIF2 scheme (13) on both single-grid and
sparse-grid. The L errors, L? errors, the corresponding numerical accuracy orders, and
CPU times on successively refined meshes are reported in Table 7.

As that in the last example, the computation on the 640 x 640 x 640 single-grid can not be
performed due to the computer memory restriction. Computer memory is saved significantly
by using sparse-grid and computations can be successfully done for the 640 x 640 x 640 mesh
case. We observe that computations on both single-grid and sparse-grid give similar numerical
errors and the second order accuracy. Again, it is shown in Table 7 that by preforming
computations on sparse grids, a significant amount of CPU time can be saved, especially
if we use a relatively large finest level Ny, and a small number of cells N, in each spatial
direction of the root grid. For example, we compare the CPU times for computations on a
320 x 320 x 320 mesh. With the number of cells in each spatial direction of a root grid
N, = 40 and the finest level N = 3, the CPU time for the computation on sparse-grid
(29,573.60 s) is about 22 % of that on a single-grid (132,359.95 s), and 78 % CPU time
is saved. Furthermore, with a coarser root grid N, = 10 and the finest level N; = 5, the
CPU time for the computation on sparse-grid (4371.18 s) is only 3.3 % of that on a single-
grid (132,359.95 s), and 96.7 % CPU time is saved. We can also observe that if the mesh
refinement is done by refining root grids, the Krylov IIF2 scheme on sparse grids has the
linear computational complexity as that for the Krylov IIF2 scheme on single-grid, with CPU
time ratios around 16. If the mesh refinement is done by refining level, the CPU time ratios are

@ Springer

752 J Sci Comput (2016) 69:736-763

around 6, and the computations on sparse grids have much better than linear computational
complexity.

Example 3 (A 3D problem with anisotropic diffusion and variable diffusion coefficients).
In this example, we consider a three-dimensional reaction—diffusion problem with cross-
derivative diffusion terms and variable diffusion coefficients

u; = 0.5uy; —0.5sin(x + y)uxy + 0.5uy,

1 1
+0.5uy, — 3 €08 Yikaz + Uz)

1
+0.5(1 +cosx)uyy — 0.5(1 + cos x)uy, + 5(1 +cosxX)uz, + f(x,y,z,u),

where (x,y,z) € 2 ={0 < x < 27,0 < y < 27,0 < z < 27} with periodic bound-
ary conditions. The initial condition is u(x, y, z,0) = sin(x + y + z). The source term
f oy, zou)=(13+ % —0.5sin(x + y) + %(cosx — cos y))u. The exact solution of this
problem is

ulx,y,z,t) = e 02 sin(x +y + 2).

As the last example, in [19] we show that for this problem with anisotropic diffusion terms,
Krylov IIF schemes are more efficient than compact IIF methods [23]. Here we use this
example to show the significant improvement of computational efficiency of Krylov IIF
scheme on sparse grids. We compute the problem till final time 7 = 1 by the Krylov IIF2
scheme (13) on both single-grid and sparse-grid. Again we use two different ways to refine
meshes for computations on sparse grids. The numerical results are reported in Table 8. We
obtain the similar observations and draw the same conclusion as the last example which has
constant diffusion coefficients. Computer memory is saved significantly by using sparse-grid
and computations can be successfully done for the 640 x 640 x 640 mesh case, for which
the computation on single-grid can not be performed due to computer memory restriction.
Again, applying sparse-grid combination technique in the Krylov IIF scheme brings in a huge
benefit in terms of CPU time savings while the similar numerical errors and accuracy orders
are kept as that for the single-grid computations. For example, we compare the CPU times for
computations on a 320 x 320 x 320 mesh. With the number of cells in each spatial direction
of a root grid N, = 40 and the finest level N;, = 3, the CPU time for the computation on
sparse-grid (55,060.30 s) is about 36 % of that on a single-grid (153, 195.14 s), and 64 %
CPU time is saved. Furthermore, with a coarser root grid N, = 10 and the finest level
Np =5, the CPU time for the computation on sparse-grid (8139.66 s) is only 5.3 % of that
on a single-grid (153, 195.14 s), and 94.7 % CPU time is saved. We can also observe that if
the mesh refinement is done by refining root grids, the Krylov IIF2 scheme on sparse grids
has the linear computational complexity as that for the Krylov IIF2 scheme on single-grid,
with CPU time ratios around 16. If the mesh refinement is done by refining level, the CPU
time ratios are around 6, and the computations on sparse grids have much better than linear
computational complexity.

Example 4 (A convection—diffusion problem). In this example, we test the method for
solving problems with convection terms. Consider a two-dimensional convection-diffusion

problem
du 1, 1, u 9%u
E—i_ E1,4 + Eu =0.2 ﬁjLaiyZ + fx,y, 1),
X y

@ Springer

J Sci Comput (2016) 69:736-763 753

Table 8 Example 3, Krylov IIF2 scheme, comparison of numerical errors and CPU times for computations
on single-grid and sparse-grid

Njp x N x Nj, L error Order L2 error Order CPU(s) Ratio
Single-grid

80 x 80 x 80 3.34 x 1073 1.09 x 1073 551.57

160 x 160 x 160 8.34 x 10~% 2.00 271x 1074 201 8992.13 16.30

320320320 2.09x 1074 2.00 679 x 1075 200 153,195.14 17.04
Ny Np, Np x Nj x N, L° error Order L2 error Order CPU(s) Ratio

Sparse-grid, refine root grids

10 3 80 x 80 x 80 3.19 x 1073 1.10 x 1073 229.37

20 3 160 x 160 x 160 8.13x 10~% 1.97 270 x 1074 2.03 3618.00 15.77
40 3 320320320 2.07 x 1074 1.97 6.77x 107> 199 55,060.30 1522
80 3 640 x 640 x 640 521 x 1075 1.99 170 x 1073 2,00 865,203.00 15.71
Sparse-grid, refine level

0 3 80 x 80 x 80 3.19 x 1073 1.10 x 1073 229.37

10 4 160 x 160 x 160 7.85x 1074 2,02 2.82x 1074 197 1414.63 6.17
10 5 320x320x 320 1.94x 1074 202 730x 1075 1.95 8139.66 5.75
10 6 640 x 640 x 640 4.83 x 1075 2.01 190 x 1075 194 46,392.90 5.70

Final time 7 = 1.0. At = h/3. N,: number of cells in each spatial direction of a root grid. Ny : the finest level

in a sparse-grid computation. CPU: CPU time for a complete simulation. “Ratio” is the ratio of corresponding

CPU times on an N, x N x Nj mesh to that on a % X % X % mesh. CPU time unit: seconds

where (x,y) € @ = {0 < x < 27,0 < y < 2x} with periodic boundary conditions. The
initial condition is u(x, y, 0) = cos(x) + sin(y). The exact solution is

u(x, y, 1) = e % (cos(x) + sin(y)).

The source term f(x, y,) is
fx,y, 1) = (0.1 + e_o'lt(— sin(x) + cos(y)))e_o'“(cos(x) + sin(y)).

The Krylov ITIF2 scheme (13) with the third order WENO approximation for the convection
terms is used here. We compute the problem till final time 7 = 1 on both single-grid and
sparse-grid. Here the time step sizes are determined only by the convection (hyperbolic) part
of the equation since the IIF schemes remove stability constraint of diffusion and reaction
terms [12]. The CFL number for the convection terms is taken to be 0.5 in the computations.
Numerical errors, numerical accuracy orders, CPU times for a complete simulation, and the
ratios of CPU times on an N x Nj mesh to that on a % X % mesh are reported. Again, two
approaches to perform mesh refinement in sparse-grid computations are used, i.e., the refining
root grid approach and the refining level approach. In this example, for mesh refinement in
sparse-grid computations by the refining root grid approach, we test performance of the
method with two different finest levels Ny = 3 and Ny, = 4. Numerical results are reported
in Table 9. We observe that the desired second order accuracy due to the second order Krylov
IIF scheme is achieved for all methods. About computational efficiency, we observe that in
general a big amount of CPU time is saved if computations are performed on sparse grids.

@ Springer

754 J Sci Comput (2016) 69:736-763

Table 9 Example 4, Krylov IIF2 scheme, comparison of numerical errors and CPU times for computations
on single-grid and sparse-grid

Ny, x Njp L®° error Order L2 error Order CPU(s) Ratio
Single-grid

80 x 80 1.67 x 1074 6.91 x 1073 13.77

160 x 160 223 x 1077 291 1.27 x 1073 2.44 104.16 7.56

320 x 320 9.54 x 1076 1.22 461 x 1076 1.47 851.93 8.18

640 x 640 2.80x 1076 1.77 130x 1076 1.82 6958.20 8.17
Ny Np, Nj x Njp L®° error Order L2 error Order CPU(s) Ratio

Sparse-grid, refine root grids, N;, = 3

10 3 80 x 80 3.52x 1073 8.24 x 1074 13.24

20 3 160 x 160 332x 1075 6.72 136 x 1075 5.92 81.58 6.16
40 3 320 x 320 9.44x 107 1.82 4.60x 107 1.56 601.76 7.38
80 3 640 x 640 280 x 107 1.76 130x 1076 1.82 471298 7.83
Sparse-grid, refine root grids, Ny = 4

10 4 160 x 160 497 x 1074 1.07 x 1074 58.22

20 4 320 x 320 870 x 107® 584 448 x 1070 458 39554 6.79
40 4 640 x 640 278 x107¢ 1.65 130x 107 1.78 3001.72 7.59
80 4 1280 x 1280 7.46 x 10=7 1.90 343 x 1077 193 24,183.80 8.06
Sparse-grid, refine level

10 3 80 x 80 3.52 x 1073 8.24 x 1074 13.24

10 4 160 x 160 497 x 1074 282 1.07x 1074 2.94 58.22 4.40
0 5 320 x 320 3.88x 1075 3.68 8.63x 1070 3.63 26020 447
10 6 640 x 640 569 x 1076 277 159 x 1076 2.44 117034 4.50

CFL number for the hyperbolic terms is 0.5. Final time 7 = 1.0. N,-: number of cells in each spatial direction
of a root grid. Ny : the finest level in a sparse-grid computation. CPU: CPU time for a complete simulation.

“Ratio” is the ratio of corresponding CPU times on an N, x Nj, mesh to that on a % X % mesh. CPU time
unit: seconds

Specifically, for example for the 640 x 640 mesh case, computations on sparse grids can
save 57 % CPU time (the N, = 40, N;, = 4 case), and even 83 % CPU time (the N, = 10,
Ny, = 6 case) comparing with the single-grid computation, and keep comparable numerical
errors. See Table 9.

Again we can also observe that if the mesh refinement is done by refining root grids,
Krylov ITIF2 scheme on sparse grids has the linear computation complexity as that for the
Krylov IIF2 scheme on single-grid, with CPU time ratios around 8. If the mesh refinement
is done by refining level, the CPU time ratios are around 5, and the computations on sparse
grids have better than linear computational complexity.

Example 5 (Three dimensional Fokker-Planck equations). The Fokker—Planck equation
(FPE) [6,24] describes in a statistical sense how a collection of initial data evolves in time,
e.g., in describing Brownian motion. It is a N-dimensional convection—diffusion equation
and has been applied in computing statistical properties in many systems. In [28], Array-
representation integration factor scheme was applied in solving FPEs which describe the time

@ Springer

J Sci Comput (2016) 69:736-763 755

evolution of the probability density function of stochastic systems [25]. The general form of
FPEs is

R [N N
ap(x,t) 0 1 dgr(x,1)
DI DI (B ED W R | I
r=1 | i=1 ! j=1 J
where p(x,t) is the probability density of the system at the state x = (x1,x2,...,XN)

and time ¢. In the context of bio-chemical reactions, R denotes the total number of chemical
reactions in the system, N the total number of species involving in the reaction, and x; denotes
the copy number of i-th reactant. n,; is the change of x; when the r-th reaction occurs once.
qr(x,t) is defined by ¢,(x,1) = w,(x)p(x, 1), where w,(x, t) is the reaction propensity
function for r-th reaction at state x and time ¢. Here we apply the second order Krylov IIF
scheme Krylov IIF2 (13) on both single-grid and sparse-grid in solving a three dimensional
Fokker—Planck equation [26] which involves two metabolites A and B and one enzyme E 4
and show computational efficiency of the scheme on sparse-grid. Since Krylov IIF2 scheme
for solving convection—diffusion equations is a multistep method, numerical values at the
first time step are needed to start the computation. We use a third order Runge-Kutta scheme
for the first step time evolution. Then the Krylov IIF2 scheme is used to continue the time
evolution. The reactions are described as following (here ¥ means that there is no reactant or

product in the reaction):

kglEZ] .
I+[Al/K
g —"A, 92 B,

k[A]LB]

A+B — 0,
19)
A B
Aty gty
kEA
AL)

In this system, the total number of reactions R is 7, and the total number of chemical species
N is3.Thevectorsn, = (n,1, nyp,n3)areny = (1,0,0),n2 = (0, 1,0),n3 = (—1, —1, 0),
ng = (—1,0,0), n5 = (0, —1,0), ng = (0,0, 1), n7 = (0,0, —1). We denote the system
state x by x = (x1, x2, x3) which is ([A], [B],[E4]) in this case. Then the propensity
functions w, (x) are

kaxs k k
w = ———"—, wy=kp, w3=kxixy,
1+X1/K] 2 B 3 1X2
) 0)
Ea
W4 = UX1, W5 = UxX2, We=_—"; -, W7 =UX3,
K " 1+x1/Kg H

where k4 = 03571, kg = 257, K; = 30, k = 0.001s~!, i = 0.004s~!, Kz = 30 and
kg, = 1s~! [26]. Then the FPE can be written as

ap(x, 1)
T=—(L1+L2+L3+L4+L5+L6+L7), 2D

@ Springer

756 J Sci Comput (2016) 69:736-763

where L, represents the operator for the r-th reaction. Specifically,

dqi(x, 1) 13%qi(x, 1)
L= -3 ,

x| 2 8x12
L= Igp(x, 1) 19%qa(x, 1)
0x2 2 BX%
Ly— QD dae) 1(82qs<x,r) N 9%q3(x, 1) +282q3(x,r))
ax1 x> 2 Bxlz 0x72 9x10x2
Ly = _2aaCe D) 18%14(:;, n @
dax1 2 ax
Lo = _dasten) 10%s(x.0)
0x7 2 8x22
L= dasxn) 1 9qo(x, 1)
0x3 2 8x% ’
L= oD 19%q7(x,1).
0x3 2 8x32

The computational domain is & = [0, 100] x [0, 100] x [0, 45], which covers nearly all the
possible states of the chemical reactions, since the probability of [A] > 100, [B] > 100, and
[E4] > 45 is sufficiently small. The initial condition in our simulation is a Gaussian distri-
bution centered at point (30, 40, 20) with standard deviation +/30. Zero Dirichlet boundary
conditions are used. For spatial discretizations, we use the upwind scheme for the convection
terms and the second order central difference scheme for the diffusion terms. For simulations
here, the time step size At is 0.015 (corresponding to the CFL number 0.4 for the convection
part) and the numbers of cells in spatial directions are Ny = 128, Np = 128, Ng, = 64. For
the sparse-grid computations, the root grid is 16 x 16 x 8, and the finest level is N, = 3. In
Table 10, we list the errors and accuracy orders for both single-grid and sparse-grid compu-
tations, and the similar numerical errors and second order accuracy are obtained. Since there
is no explicit form for the exact solution in this example, we focus on testing the schemes’
temporal accuracy. So the spatial resolution is fixed to be 128 x 128 x 64, and numerical
errors for a time step size At are obtained by calculating the difference of numerical values
for At and Ar/2. We compare the computational efficiency of the scheme on single and
sparse grids and list CPU times of using them to solve the problem till the final time 7 = 10

Table 10 Numerical errors and
accuracy orders for the Krylov
IIF2 scheme to solve the 3D
Fokker—Planck equation on

Time step L®° error Accuracy

On single-grid

single and sparse grids At 1.20 x 107!
At)2 3.04 x 10712 1.99
At /4 7.61 x 10713 2.00
On sparse-grid
At 132 x 1071
At)2 3.40 x 10712 1.96
At /4 8.41 x 10713 2.01

Final time T = 5. At = 0.015

@ Springer

J Sci Comput (2016) 69:736-763 757

Table 11 CPU time for the Krylov IIF2 scheme to solve the 3D Fokker—Planck equation on single and sparse
grids

CPU
On single-grid 78,745
On sparse-grid 14,218

Final time 7 = 10. At = 0.015. CPU: CPU time for a complete simulation. CPU time unit: seconds
T=10, 2=12.66 « 107 T=10, 2=21.09 <107
100 3
80
60
40
20

0
20 40 60 80 100 20 40 60 80 100
X X

T=10, 2=29.53 x107° T=10, 2=37.97 7
100

80
60
40
20

0
20 40 60 80 100 20 40 60 80 100
X X

Fig. 2 Numerical solutions of the 3D Fokker—Planck equation using the Krylov IIF2 scheme on single-
grid. Final time 7 = 10. Ar = 0.015. Distribution of molecular species A and B with E4 =
12.66,21.09, 29.53, 37.97

with At = 0.015, in Table 11. The CPU times in Table 11 show that a significant amount of
CPU time (82 % CPU time) is saved by using the sparse-grid combination technique. In Figs.
3,5, and 7, we show contour plots of the numerical solutions by the Krylov IIF2 scheme
with sparse-grid combination technique on two dimensional domain of molecular species
A and B, with different values of the third dimension E 4. Contour plots of the numerical
solutions by the same scheme on single-grid are presented in Figs. 2, 4, and 6. We see that
both approaches generate similar numerical solutions.

5 Conclusions

In this paper, we design the Krylov IIF scheme on sparse grids for solving high spatial dimen-
sion problems. Our early work shows that the Krylov IIF scheme has linear computational
complexity and is especially efficient for solving high dimensional convection—diffusion
problems with anisotropic diffusions, for example high dimensional Fokker—Planck equa-
tions. With the Krylov IIF scheme on sparse-grid, more efficient algorithm than our previous
work is achieved. Numerical experiments are performed for the sparse-grid Krylov IIF method

@ Springer

758 J Sci Comput (2016) 69:736-763

T=10, z=12.66 107 T=10, z=21.09 X107

25

2

15
]
0.5
20 40 60 80 100 20 40 60 80 100
X X
T=10, 2=29.53 <107 T=10, z=37.97 x107
100
80
10
60
>
40 5
20
0
20 40 60 80 100 20 40 60 80 100
X X

Fig. 3 Numerical solutions of the 3D Fokker—Planck equation using the Krylov IIF2 scheme on sparse-
grid. Final time 77 = 10. Ar = 0.015. Distribution of molecular species A and B with E4 =
12.66, 21.09, 29.53, 37.97

T=50, z=12.66 T=50, z=21.09

20 40 60 80 100
X

20 40 60 80 100
X

T=50, z=29.53 T=50, z=37.97
100
80
60
>
40
20
0
20 40 60 80 100 20 40 60 80 100
X X

Fig. 4 Numerical solutions of the 3D Fokker—Planck equation using the Krylov IIF2 scheme on single-
grid. Final time 77 = 50. Ar = 0.015. Distribution of molecular species A and B with E4 =
12.66,21.09, 29.53, 37.97

@ Springer

J Sci Comput (2016) 69:736-763 759

T=50, z=12.66 T=50, z=21.09

20 40 60 80 100 20 40 60 80 100
X X

T=50, z=29.53 T=50, z=37.97

0
20 40 60 80 100 20 40 60 80 100
X X

Fig. 5 Numerical solutions of the 3D Fokker—Planck equation using the Krylov IIF2 scheme on sparse-
grid. Final time 77 = 50. Ar = 0.015. Distribution of molecular species A and B with E4 =
12.66, 21.09, 29.53, 37.97

(a) =0, z=20.39 x10™ (b) T=20, z=18.28

20 40 60 80 100
X

20 40 60 80 100
X

(c) 1=35, z=17.58 (d) T=50, z=17.58

0
20 40 60 80 100 20 40 60 80 100
X X

Fig. 6 Numerical solutions of the 3D Fokker—Planck equation using the Krylov IIF2 scheme on single-grid.
Distribution of molecular species A and B with different E 4 values, at time 7' = 0, 20, 35, 50. At = 0.015

@ Springer

760 J Sci Comput (2016) 69:736-763

a) T=0, z=20.39 -4 b) 1=20, z=18.28
x 10 100

80
60
40
20

20 40 60 80 100
X

20 40 60 80 100
X

(c) 7=35, z=17.58 (d) T=50, z=17.58 x10™*

100
80
60
40
20

0
20 40 60 80 100 20 40 60 80 100
X X

Fig. 7 Numerical solutions of the 3D Fokker—Planck equation using the Krylov IIF2 scheme on sparse-grid.
Distribution of molecular species A and B with different E 4 values, at time 7" = 0, 20, 35, 50. At = 0.015

to show significant savings in computational costs by comparisons with single-grid compu-
tations. It will be interesting to theoretically analyze the errors for the sparse-grid Krylov IIF
method in solving both linear and nonlinear problems, and design the sparse-grid combination
technique on unstructured triangular meshes. These will be our future work.

6 Appendix: Linear Stability Analysis of the IIF2 Scheme (7) for CDR
Equations

To analyze the linear stability of IIF schemes, we use the following scalar linear test equation
u; =au —du +ru, withr € C,anda,d € R,d > 0. (23)

In the context of solving CDR equations, a and d actually represent spatial discretizations
for the convection term and the diffusion term respectively. Following the stability analysis
approach in [22], we show boundaries of the stability regions in the complex plane for r At, a
family of curves for different values of d At and a At, and indicate the corresponding stability
regions. Here we present the analysis of the IIF2 scheme (7) as an example. More details and
analysis results can be found in [12].

Applying the IIF2 scheme (7) to the Eq. (23) with a uniform time step size At, then

substituting u,, = ¢/"? into the resulting equation, we obtain
A ; A3 . a
1 == 2i6 — —dAt 1 - Zait i0 — Z At 72dAt’ 24
(2) e e + 5 + 2(1 e 5 e 24)

@ Springer

J Sci Comput (2016) 69:736-763 761

where A = r At has a real part A, and imaginary part A;. Solve the Eq. (24) for 1, and A;
to have

_ BiCo— ByCy
r — 7’
A1By — Ax By
_AIC = ACy (25)
"7 AB; — A1By’

where 1 1
A| = e 95~ cos O + — cos 26,
21 2

1
B = —e*dmi sin@ — 3 sin 20,

3
Ci= —%Ate’mm 40t (l + EaAt) cosf — cos 20,
anel 1 20
Ay =e” ’5 sin @ + 5 sin 20,

1 1
By = ¢ A~ cos6 + = cos 26,

3
Cy = e~ 941 (1 + EaAt) sin@ — sin 26.

Stability regions in the complex plane of r At for different values of d At under a fixed value
of aAt are presented in Fig. 8. As examples we choose four different a At values: aAt = 1.0,
aAt =10.0,aAt = —1.0 and aAr = —10.0. The points on boundaries of stability regions
are obtained by varying 0 from O to 27 in (25) and (26). A stability boundary curve divides
the whole complex plane into the stable region and the unstable region for a pair of fixed
values of dAt and aAt. Based on analyzing the growth factor of the scheme (7) for some
special values of d At, aAt and A, we find that the stable regions always include the point
A = (=20, 0) for any values of d At and a At used in Fig. 8. Then stable and unstable regions
are determined and shown in Fig. 8. From Fig. 8, we can see that the whole regions outside

4 20
2l 10
dAt=3.0
or dAt=2.0 0
a2t unstable dat=1.0 -10
-4 -20
0 2 4 6 8 -10 0 10 20 30
(a) (b)
0.4 g 20
stable dAt=5.0 stable
0.21 dAt=3.0 10
unstable
or dAt=2.0 0
02 dAt=1.0 -10
-0.4 ‘ : ‘ ‘ -20 ‘ ‘ ‘ ‘ ‘
1.6 1.8 2 2.2 2.4 2.6 -20 -15 -10 -5 0 5 10
(c) (d)

Fig. 8 Linear stability regions of the IIF2 scheme (7) for different values of d Af under a fixed value of a At.
aaAt =1.0;baAt =10.0;caAt = —1.0;d aAt = —10.0

@ Springer

762 J Sci Comput (2016) 69:736-763

unstable

A\-5.0

aAt=-7.0
aAt=5.0

1) - a‘Al=5.0
1.999 1.9995 2 2.0005 2.001

(c) (d)

Fig. 9 Linear stability regions of the ITF2 scheme (7) for different values of a At under a fixed value of d At.
adAt =1.0;bdAt =2.0;cdAt =10.0;d dAt =20.0

of the stability boundary curves are stable regions, which shows that the IIF2 scheme (7) has
large stability regions. For a fixed a At, the stable region becomes larger with the increase of
the value of d At. Next we show stability regions for different values of aAr under a fixed
value of dAt in Fig. 9. dAt = 1.0,dAt =2.0,dAt = 10.0 and d Ar = 20.0 are chosen as
examples. Again, analysis of the growth factor of the scheme (7) for some special values of
dAt, aAt and A, we find that the stable regions always include the point . = (—10, 0) for
any values of a At and d At used in Fig. 9. Stable regions for the cases shown in Fig. 9 are
the whole regions outside of the stability boundary curves. For a fixed d At, the stable region
becomes smaller with the increase of the value of |a| At which corresponds to the convection
terms. Based on the linear stability analysis, we conclude that the diffusion term tends to
stabilize the scheme, while the convection term gives constraints on time step sizes. Due to
the implicit property of the scheme, the stability regions are quite large and often include the
whole left complex plane, with a relatively large size diffusion parameter d and a mild size
convection parameter a.

References

1. Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of
nonlinear PDEs. J. Comput. Phys. 147, 362-387 (1998)

2. Briggs, W.L., Henson, V.E., and McCormick, S.F.: A multigrid tutorial. SIAM, (2000)

3. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147-269 (2004)

4. Chen, S., Zhang, Y.-T.: Krylov implicit integration factor methods for spatial discretization on high
dimensional unstructured meshes: application to discontinuous Galerkin methods. J. Comput. Phys. 230,
4336-4352 (2011)

5. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430455
(2002)

6. Fokker, A.D.: Die mittlere energie rotierender elektrischer dipole im strahlungsfeld. Ann. Phys. 348,
810-820 (1914)

@ Springer

J Sci Comput (2016) 69:736-763 763

20.
21.
22.
23.
24.
25.
26.

27.
28.

29.

Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods.
SIAM J. Sci. Stat. Comput. 13(5), 1236-1264 (1992)

Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems.
In: Beauwens, R., de Groen, P. (eds.) Iterative Methods in Linear Algebra, pp. 263-281. North-Holland,
Amsterdam (1992)

Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New
York (1995)

Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM Rev. 51(4),
747-764 (2009)

. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126,

202-228 (1996)

Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully non-
linear advection—diffusion-reaction equations. J. Comput. Phys. 253, 368-388 (2013)

Jiang, T., Zhang, Y.-T.: Krylov single-step implicit integration factor WENO methods for advection—
diffusion-reaction equations. J. Comput. Phys. 311, 22-44 (2016)

Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semilinear fourth-
order parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 19, 1667-1687 (2014)

. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equa-

tions. J. Sci. Comput. 62, 431-455 (2015)

Kleefeld, B., Khalig, A.Q.M., Wade, B.A.: An ETD Crank-Nicolson method for reaction-diffusion sys-
tems. Numer. Methods Partial Differ. Equ. 28, 1309-1335 (2012)

Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-dependent
advection problems. Appl. Numer. Math. 38, 377-401 (2001)

Lastdrager, B., Koren, B., Verwer, J.: Solution of time-dependent advection-diffusion problems with the
sparse-grid combination technique and a rosenbrock solver. Comput. Methods Appl. Math. 1, 86-99
(2001)

Lu, D., Zhang, Y.-T.: Computational complexity study on Krylov integration factor WENO method for
high spatial dimension convection—diffusion problems. J. Comput. Appl. Math. submitted, (2015)
Maday, Y., Patera, A.T., Ronquist, E.M.: An operator-integration-factor splitting method for time-
dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263-292 (1990)
Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five
years later. SIAM Rev. 45, 3-49 (2003)

Nie, Q., Zhang, Y.-T., Zhao, R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214,
521-537 (2006)

Nie, Q., Wan, F., Zhang, Y.-T., Liu, X.-F.: Compact integration factor methods in high spatial dimensions.
J. Comput. Phys. 227, 5238-5255 (2008)

Planck, M.: Sitzber. Preuss. Akad. Wiss. (1917) p. 324

Risken, H.: The Fokker—Planck Equation: Methods of Solution and Applications. Springer, Berlin (1996)
Sjoberg, P., Lotstedt, P., Elf, J.: Fokker-planck approximation of the master equation in molecular biology.
Comput. Visual Sci. 12, 37-50 (2009)

Trefethen, L.N., Bau, D.: Numerical Linear Algebra, SIAM, (1997)

Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional sys-
tems. J. Comput. Phys. v258, 585-600 (2014)

Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Notes on Numerical Fluid Mechanics, vol. 31, pp.
241-251. Vieweg, Braunschweig (1991)

@ Springer

	Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection--Diffusion Equations
	Abstract
	1 Introduction
	2 Krylov IIF Methods for CDR Equations
	3 Krylov IIF Schemes on Sparse Grids
	4 Numerical Experiments
	5 Conclusions
	6 Appendix: Linear Stability Analysis of the IIF2 Scheme (7) for CDR Equations
	References

