
ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL

METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX

PROGRAMMING

YANGYANG XU∗

Abstract. Motivated by big data applications, first-order methods have been extremely popular

in recent years. However, naive gradient methods generally converge slowly. Hence, much efforts have

been made to accelerate various first-order methods. This paper proposes two accelerated methods

towards solving structured linearly constrained convex programming, for which we assume composite

convex objective that is the sum of a differentiable function and a possibly nondifferentiable one.

The first method is the accelerated linearized augmented Lagrangian method (LALM). At each

update to the primal variable, it allows linearization to the differentiable function and also the

augmented term, and thus it enables easy subproblems. Assuming merely convexity, we show that

LALM owns O(1/t) convergence if parameters are kept fixed during all the iterations and can be

accelerated to O(1/t2) if the parameters are adapted, where t is the number of total iterations.

The second method is the accelerated linearized alternating direction method of multipliers

(LADMM). In addition to the composite convexity, it further assumes two-block structure on the

objective. Different from classic ADMM, our method allows linearization to the objective and also

augmented term to make the update simple. Assuming strong convexity on one block variable, we

show that LADMM also enjoys O(1/t2) convergence with adaptive parameters. This result is a

significant improvement over that in [Goldstein et. al, SIIMS’14], which requires strong convexity

on both block variables and no linearization to the objective or augmented term.

Numerical experiments are performed on quadratic programming, image denoising, and support

vector machine. The proposed accelerated methods are compared to nonaccelerated ones and also

existing accelerated methods. The results demonstrate the validness of acceleration and superior

performance of the proposed methods over existing ones.

Keywords: acceleration, linearization, first-order method, augmented Lagrangian method (ALM),

alternating direction method of multipliers (ADMM)

Mathematics Subject Classification: 90C06, 90C25, 68W40, 49M27.

1. Introduction. In recent years, motivated by applications that involve ex-

tremely big data, first-order methods with or without splitting techniques have re-

ceived tremendous attention in a variety of areas such as statistics, machine learning,

data mining, and image processing. Compared to traditional methods like the New-

ton’s method, first-order methods only require gradient information instead of the

much more expensive Hessian. Splitting techniques can further decompose a single

difficult large-scale problem into smaller and easier ones. However, in both theory

and practice, first-order methods often converge slowly if no additional techniques are

applied. For this reason, lots of efforts have been made to accelerate various first-order

methods.

In this paper, we consider the linearly constrained problem

(1.1) min
x
F (x), s.t. Ax = b,

where F is a proper closed convex but possibly nondifferentiable function. We allow

F to be extended-valued, and thus in addition to the linear constraint, (1.1) can also

include the constraint x ∈ X if part of F is the indicator function of a convex set X .

∗yangyang.xu@ua.edu. Department of Mathematics, University of Alabama, Tuscaloosa, AL

1

yangyang.xu@ua.edu

The augmented Lagrangian method (ALM) [2] is one most popular approach to

solve constrained optimization problems like (1.1). Let

(1.2) Lβ(x, λ) = F (x)− 〈λ,Ax− b〉+
β

2
‖Ax− b‖2

be the augmented Lagrangian function. Then ALM for (1.1) iteratively performs the

updates

xk+1 ∈ arg min
x

Lβ(x, λk),(1.3a)

λk+1 = λk − β(Axk+1 − b).(1.3b)

In general, the subproblem (1.3a) may not have a solution or have more than one

solutions, and even if a unique solution exists, it could be difficult to find the solution.

We will assume certain structures of F and also modify the updates in (1.3) to have

well-defined and easier subproblems.

1.1. Linearized ALM for linearly constrained composite convex prob-

lems. We first assume the composite convexity structure, i.e., the objective in (1.1)

can be written as:

(1.4) F (x) = f(x) + g(x),

where f is a convex Lipschitz differentiable function, and g is a proper closed convex

but possibly nondifferentiable function. Hence, the problem (1.1) reduces to the

linearly constrained composite convex programming:

(1.5) min
x
f(x) + g(x), s.t. Ax = b.

Usually, g is simple such as the indicator function of the nonnegative orthant or

`1-norm, but the smooth term f could be complicated like the logistic loss function.

Our first modification to the update in (1.3a) is to approximate f by a simple

funtion. Typically, we replace f by a quadratic function that dominates f around xk,

resulting in the linearized ALM as follows:

xk+1 ∈ arg min
x
〈∇f(xk)−A>λk, x〉+ g(x) +

β

2
‖Ax− b‖2 +

1

2
‖x− xk‖2P ,(1.6a)

λk+1 = λk − β(Axk+1 − b),(1.6b)

where the weight matrix P is positive semidefinite (PSD) and can be set according to

the Lipschitz constant of ∇f . Choosing appropriate P like ηI − βA>A, we can also

linearize the augmented term and have a closed form solution if g is simple.

The linearization technique here is not new. It is commonly used in the proximal

gradient method, which can be regarded as a special case of (1.6) by removing the

linear constraint Ax = b. It has also been used in the linearized alternating direction

method of multipliers (ADMM) [33] and certain primal-dual methods (e.g., [6,11,12]).

Our second modification is to adaptively choose the parameters in the linearized

ALM and also linearize f at a point other than xk to accelerate the convergence of the

method. Algorithm 1 summarizes the proposed accelerated linearized ALM. The idea

of using three point sequences for acceleration is first adopted in [25], and recently it

is used in [33] to accelerate the linearized ADMM.

2

Algorithm 1: Accelerated linearized augmented Lagrangian method for (1.5)

1 Initialization: choose x̄1 = x1 and set λ1 = 0.

2 for k = 1, 2, . . . do

3 Choose parameters αk, βk, γk and P k and perform updates:

x̂k = (1− αk)x̄k + αkx
k,

(1.7)

xk+1 ∈ arg min
x
〈∇f(x̂k)−A>λk, x〉+ g(x) +

βk
2
‖Ax− b‖2 +

1

2
‖x− xk‖2Pk ,

(1.8)

x̄k+1 = (1− αk)x̄k + αkx
k+1,

(1.9)

λk+1 = λk − γk(Axk+1 − b).
(1.10)

4

if A stopping condition is satisfied then

5 Return (xk+1, x̄k+1, λk+1).

1.2. Linearized ADMM for two-block structured problems. In this sec-

tion, we explore more structures of F . In addition to the composite convexity struc-

ture, we assume that the variable x and accordingly the matrix A can be partitioned

into two blocks, i.e.,

(1.11) x = (y, z), A = (B,C),

and the objective can be written as

(1.12) F (x) = h(y) + f(z) + g(z),

where g and h are proper closed convex but possibly nondifferentiable functions, and

f is a convex Lipschitz differentiable function. Hence, the problem (1.1) reduces to

the linearly constrained two-block structured problem:

(1.13) min
y,z

h(y) + f(z) + g(z), s.t. By + Cz = b.

ADMM [10, 14] is a popular method that explores the two-block structure of

(1.13) by alternatingly updating y and z, followed by an update to the multiplier λ.

More precisely, it iteratively performs the updates:

yk+1 ∈ arg min
y

Lβ(y, zk, λk),(1.14a)

zk+1 ∈ arg min
z
Lβ(yk+1, z, λk),(1.14b)

λk+1 = λk − β(Byk+1 + Czk+1 − b),(1.14c)

3

where Lβ is given in (1.2) with the notation in (1.11) and (1.12). It can be regarded

as an inexact ALM, in the sense that it only finds an approximate solution to (1.3a).

If (1.14a) and (1.14b) are run repeatedly before updating λ, a solution to (1.3a) would

be found, and thus the above update scheme reduces to that in (1.3). However, one

single run of (1.14a) and (1.14b), followed by an update to λ, is sufficient to guarantee

the convergence. Thus ADMM is often perferable over ALM on solving the two-block

structured problem (1.13) since updating y and z separately could be much cheaper

than updating them jointly.

Usually g and h are simple, but the smooth term f in (1.13) could be complicated

and thus make the z-update in (1.14b) difficult. We apply the same linearization

technique as in (1.6a) to (1.14b) and in addition adaptively choose the parameters to

accelerate the method. Algorithm 2 summarizes the accelerated linearized ADMM.

If g and h are simple, we can have closed form solutions to (1.15a) and (1.15b) by

choosing appropriate P k and Qk to linearize the augmented terms.

Algorithm 2: Accelerated linearized alternating direction method of multipli-

ers for (1.13)

1 Initialization: choose (y1, z1) and set λ1 = 0.

2 for k = 0, 1, 2, . . . do

3 Choose parameters βk, γk, P
k and Qk and perform updates:

yk+1 ∈ arg min
y

h(y)− 〈λk, By〉+
βk
2
‖By + Czk − b‖2 +

1

2
‖y − yk‖2Pk ,

(1.15a)

zk+1 ∈ arg min
z
〈∇f(zk)− C>λk, z〉+ g(z) +

βk
2
‖Byk+1 + Cz − b‖2 +

1

2
‖z − zk‖2Qk ,

(1.15b)

λk+1 = λk − γk(Byk+1 + Czk+1 − b).
(1.15c)

4

if A stopping condition is satisfied then

5 Return (yk+1, zk+1, λk+1).

1.3. Related works. It appears that [27] is the first accelerated gradient method

for general smooth convex programming. However, according to the google citation,

the work does not really attract much attention until late 2010’s. One possible reason

could be that the problems people encountered before were not too large so second-

order methods can handle them very efficiently. Since 2009, accelerated gradient

methods have become extremely popular partly due to [1, 30] that generalize the ac-

celeration idea of [27] to composite convex optimization problems and also due to the

increasingly large scale problems arising in many areas. Both [1, 30] achieve optimal

rate for first-order methods, but their acceleration techniques look quite different.

The former is essentially based on an extrapolation technique while the latter relies

on a sequence of estimate functions with adaptive parameters. The work [36] treats

4

several accelerated methods in a unified way, and [35, 38] study accelerated methods

from a continuous-time perspective.

Although the methods in [1, 30] can conceptually handle constrained problems,

they require simple projection to the constraint set. Hence, they are not really good

choices if we consider the structured linearly constrained problem (1.5) or (1.13).

However, the acceleration idea can still be applied. The ALM method in (1.3) is

accelerated in [18] by using an extrapolation technique similar to that in [1] to the

multiplier λ. While [18] requires the objective to be smooth, [24] extends it to general

convex problems, and [23] further reduces the requirement of exactly solving sub-

problems by assuming strong convexity of the objective. All these accelerated ALM

methods do not consider any linearization to the objective or the augmented term.

One exception is [21] that linearizes the augmented term and requires strong convexity

of the primal problem in its analysis. Therefore, towards finding a solution to (1.5),

they may need to solve difficult subproblems if the smooth term f is complicated.

The extrapolation technique in [1] has also been applied to accelerate the ADMM

method in [16] for solving two-block structured problems like (1.13). It requires both

h and f + g to be strongly convex, and the extrapolation is performed to the mul-

tiplier and the secondly updated block variable. In addition, [16] does not consider

linearization to the smooth term f or the augmented term, and hence its applicabil-

ity is restricted. Although the acceleration is observed empirically in [16] for convex

problems, no convergence rate has been shown. A later work [22] accelerates the non-

linearized ADMM by renewing the second updated block variable again after extrap-

olating the multiplier. It still requires strong convexity on both h and f +g. Without

assuming any strong convexity to the objective function, [15] accelerates ADMM to

have O(1/t2) convergence rate for a special case of (1.13) with B = I, C = −I and

b = 0, and [33] achieves partial acceleration on linearized ADMM for solving problems

in the form of (1.13). It shows in [33] that the decaying rate related to the gradient

Lipschitz constant Lf can be O(1/t2) while the rate for other parts remains O(1/t),

where t is the number of iterations. Without the linear constraint, the result in [33]

matches the optimal rate of first-order methods.

Different from the extrapolation technique used in the above mentioned accel-

erated ALM and ADMM methods, [33] follows the work [25] and uses three point

sequences and adaptive parameters. Algorithm 1 employs the same idea, and our

result indicates that the acceleration to the linearized ALM method is not only ap-

plied to the gradient Lipschitz constant but also to other parts, i.e., full acceleration.

To gain full acceleration to Algorithm 2, we will require either h or f + g to be

strongly convex, which is strictly weaker than that assumed in [16]. This assumption

is also made in several accelerated primal-dual methods for solving bilinear saddle-

point problems, e.g., [3–5, 19, 28, 29]. The outstanding work [4] presents a framework

of primal-dual method for the problem:

(1.16) min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F (y),

where G and F are both proper closed convex functions, and K is a bounded linear

operator. It is shown in [4] that the method has O(1/t2) convergence if either F

or G is strongly convex. As shown in [11], the primal-dual method presented in [4]

5

is a special case of linearized ADMM applied to the dual problem of (1.16) about

y. Hence, it can fall into one case of Algorithm 2. However, [4] sets parameters in

a different way from what we use to accelerate the more general linearized ADMM

method; see the example in section 3.2. On solving (1.16), the Douglas-Rachford

splitting method has recently been applied and also accelerated in [3] by assuming

one of F and G to be strongly convex. In addition, [7] generalizes the work [4]

to multi-block structured problems, and the generalized method still enjoy O(1/t2)

convergence if strong convexity is assumed. Without assuming strong convexity, [5]

proposes a new primal-dual method for the saddle-point problem (1.16) and achieves

partial acceleration similar to what achieved in [33].

Acceleration techniques have also been applied to other types of methods to differ-

ent problems such as in coordinate descent methods (e.g., [9,26,40,41]) and stochastic

approximation methods (e.g., [13,25]). Extending our discussion to these methods will

be out of the scope of this paper. Interested readers are referred to those papers we

mention here and the references therein.

1.4. Contributions. We summarize our main contributions below.

• We propose an accelerated linearized ALM method for solving linearly con-

strained composite convex programming. By linearizing the possibly compli-

cated smooth term in the objective, the method enables easy subproblems.

Our acceleration strategy follows [33] that considers accelerated linearized

ADMM method. Different from partial acceleration achieved in [33], we ob-

tain full acceleration and achieve the optimal O(1/t2) convergence rate by

assuming merely convexity.

• We also propose an accelerated linearized ADMM method for solving two-

block structured linearly constrained convex programming, where in the ob-

jective, one block variable has composite convexity structure. While [16]

requires strong convexity on both block variables to achieve O(1/t2) con-

vergence for nonlinearized ADMM, we only need strong convexity on one of

them. Furthermore, linearization is allowed to the smooth term in the ob-

jective and also to the augmented Lagrangian term, and thus the method

enables much easier subproblems than those for nonlinearized ADMM.

• We test the proposed methods on quadratic programming, total variation

regularized image denoising problem, and the elastic net regularized support

vector machine. We compare them to nonaccelerated methods and also two

other accelerated first-order methods. The numerical results demonstrate

the validness of acceleration and also superiority of the proposed accelerated

methods over other accelerated ones.

1.5. Outline. The rest of the paper is organized as follows. In section 2, we

analyze Algorithm 1 and Algorithm 2 with both fixed and adaptive parameters. Nu-

merical experiments are performed in section 3, and finally section 4 concludes the

paper and presents some interesting open questions.

2. Convergence analysis. In this section, we analyze the convergence of Algo-

rithms 1 and 2. Assuming merely convexity, we show that Algorithm 1 with adaptive

parameters enjoys a fast convergence with rate O(1/t2), where t is the number of

6

total iterations. For Algorithm 2, we establish the same order of convergence rate by

assuming strong convexity on the z-part.

2.1. Notation and preliminary lemmas. Before proceeding with our analy-

sis, let us introduce some notation and preliminary lemmas.

We denote X ∗ as the solution set of (1.1). A point x∗ is a solution to (1.1) if

there exists λ∗ such that the KKT conditions hold:

0 ∈ ∂F (x∗)−A>λ∗,(2.1a)

Ax∗ − b = 0,(2.1b)

Together with the convexity of F , the conditions in (2.1) implies that

(2.2) F (x)− F (x∗)− 〈λ∗, Ax− b〉 ≥ 0, ∀x.

For any vector v and any symmetric positive semidefinite matrix W of appropriate

size, we define ‖v‖2W = v>Wv.

Lemma 2.1. For any two vectors u, v and a symmetric positive semidefinite

matrix W , we have

(2.3) 2u>Wv = ‖u‖2W + ‖v‖2W − ‖u− v‖2W .

Lemma 2.2. Given a function φ and a fixed point x̃, if for any λ, it holds that

(2.4) F (x̃)− F (x∗)− 〈λ,Ax̃− b〉 ≤ φ(λ),

then for any ρ > 0, we have

(2.5) F (x̃)− F (x∗) + ρ‖Ax̃− b‖ ≤ sup
‖λ‖≤ρ

φ(λ).

This lemma can be found in [11]. Here we provide a simple proof.

Proof. If Ax̃ = b, then it is trivial to have (2.5) from (2.4). Otherwise, let λ =

−ρ(Ax̃−b)‖Ax̃−b‖ in both sides of (2.4) and the result follows by noting

φ

(
−ρ(Ax̃− b)
‖Ax̃− b‖

)
≤ sup
‖λ‖≤ρ

φ(λ).

�

Lemma 2.3. For any ε ≥ 0, if

(2.6) F (x̃)− F (x∗) + ρ‖Ax̃− b‖ ≤ ε,

then we have

(2.7) ‖Ax̃− b‖ ≤ ε

ρ− ‖λ∗‖
and − ‖λ∗‖ε

ρ− ‖λ∗‖
≤ F (x̃)− F (x∗)≤ ε− ρ‖Ax̃− b‖ ≤ ε,

where (x∗, λ∗) satisfies the KKT conditions in (2.1), and we assume ‖λ∗‖ < ρ.

Proof. From (2.2), we have

F (x̃)− F (x∗) ≥ −‖λ∗‖ · ‖Ax̃− b‖,

which together with (2.6) implies the first inequality in (2.7). The other inequalities

follow immediately. �

7

2.2. Analysis of the accelerated linearized ALM. In this subsection, we

show the convergence of Algorithm 1 under the following assumptions.

Assumption 1. There exists a point (x∗, λ∗) satisfying the KKT conditions in

(2.1).

Assumption 2. The function f has Lipschitz continuous gradient with constant

Lf , i.e.,

(2.8) ‖∇f(x)−∇f(x̃)‖ ≤ Lf‖x− x̃‖, ∀x, x̃.

The inequality in (2.8) implies that

(2.9) f(x̃) ≤ f(x) + 〈∇f(x), x̃− x〉+
Lf
2
‖x̃− x‖2, ∀x, x̃.

We first establish a result of running one iteration of Algorithm 1. The proof

follows that in [33] and is given in Appendix A.1.

Lemma 2.4 (One-iteration result). Let {(xk, x̄k, λk)}k≥1 be the sequence gener-

ated from Algorithm 1 with 0 ≤ αk ≤ 1, ∀k. Then for any (x, λ) such that Ax = b,

we have[
F (x̄k+1)− F (x)− 〈λ,Ax̄k+1 − b〉

]
− (1− αk)

[
F (x̄k)− F (x)− 〈λ,Ax̄k − b〉

]
≤− αk

2

[
‖xk+1 − x‖2Pk − ‖xk − x‖2Pk + ‖xk+1 − xk‖2Pk

]
+
α2
kLf
2
‖xk+1 − xk‖2

+
αk
2γk

[
‖λk − λ‖2 − ‖λk+1 − λ‖2 + ‖λk+1 − λk‖2

]
− αkβk

γ2k
‖λk+1 − λk‖2,

(2.10)

where F is given in (1.4).

Below, we specify the values of the parameters αk, βk, γk and P k and establish

the convergence rate of Algorithm 1 through (2.10).

2.2.1. Constant parameters. In this subsection, we fix the parameters αk, βk, γk
and P k during all the iterations and show O(1/t) convergence of Algorithm 1. The

result is summarized in the following theorem. Note that this result is not totally new.

Similar result is indicated by several previous works; see [11, 12] for example. How-

ever, this special case seems to be overlooked in the literature. In addition, we notice

that our result allows more flexible relation between β and γ. Previous works usually

assume β = γ because they consider problems with at least two block variables.

Theorem 2.5. Under Assumptions 1 and 2, let {(xk, x̄k, λk)}k≥1 be the sequence

generated from Algorithm 1 with parameters set to

(2.11) ∀k : αk = 1, βk = β > 0, γk = γ ∈ (0, 2β), P k = P � LfI.

Then x̄k = xk, ∀k, and {(xk, λk)}k≥1 is bounded and converges to a point (x∞, λ∞)

that satisfies the KKT conditions in (2.1). In addition,

|F (x̃t+1)− F (x∗)| ≤ 1

2t

(
‖x1 − x∗‖2P +

max{(1 + ‖λ∗‖)2, 4‖λ∗‖2}
γ

)
,(2.12a)

‖Ax̃t+1 − b‖ ≤ 1

2t

(
‖x1 − x∗‖2P +

max{(1 + ‖λ∗‖)2, 4‖λ∗‖2}
γ

)
,(2.12b)

8

where (x∗, λ∗) is any point satisfying the KKT conditions in (2.1), and

x̃t+1 =

∑t
k=1 x

k+1

t
.

Remark 2.1. The results in (2.12) imply that the worst error bound becomes

smaller as γ grows bigger. As γ → ∞, the bound reduces to
‖x1−x∗‖2P

2t . However,

numerically a large γ will push the residual ‖Ax̃t+1− b‖ to zero quickly and make the

objective converge to optimal value slowly. This can be explained from our analysis

below. As γ ≥ ρ3 → ∞, it is easy to see that ‖Ax̃t+1 − b‖ approaches to zero from

(2.19)and the lower bound of F (x̃t+1) − F (x∗) also goes to zero from (2.20) while

the upper bound of F (x̃t+1) − F (x∗) is almost
‖x1−x∗‖2P

2t . When γ is not too big,

‖Ax̃t+1 − b‖ is not too small for a medium t, and thus from (2.20) we see that the

upper bound of F (x̃t+1) − F (x∗) can be smaller than
‖x1−x∗‖2P

2t . The best value of γ

depends on (x∗, λ∗). Since the optimal solution is unknown, practically we need to

tune γ. This remark also applies to Theorem 2.6 below.

Proof. It is trivial to have x̄k = x̂k = xk from (1.7) and (1.9) as αk = 1, ∀k. With

the parameters given in (2.11) and x = x∗, the inequality in (2.10) reduces to

F (xk+1)− F (x∗)− 〈λ,Axk+1 − b〉

≤ − 1

2

[
‖xk+1 − x∗‖2P − ‖xk − x∗‖2P + ‖xk+1 − xk‖2P

]
+
Lf
2
‖xk+1 − xk‖2

+
1

2γ

[
‖λk − λ‖2 − ‖λk+1 − λ‖2 + ‖λk+1 − λk‖2

]
− β

γ2
‖λk+1 − λk‖2(2.13)

Let λ = λ∗ in the above inequality, and from (2.2), we have

‖xk+1 − x∗‖2P + ‖xk+1 − xk‖2P−Lf I
+

1

γ
‖λk+1 − λ∗‖2 +

1

γ

(
2β

γ
− 1

)
‖λk+1 − λk‖2

≤‖xk − x∗‖2P +
1

γ
‖λk − λ∗‖2.

(2.14)

Since P � LfI and γ < 2β, (2.14) implies the nonincreasing monotonicity of {‖xk −
x∗‖2P + 1

γ ‖λ
k−λ∗‖2}, and thus {(xk, λk)}k≥1 must be bounded. Summing (2.14) from

k = 1 to ∞ gives

∞∑
k=1

(
‖xk+1 − xk‖2P−Lf I

+
1

γ

(2β

γ
− 1
)
‖λk+1 − λk‖2

)
<∞,

and thus

(2.15) lim
k→∞

(xk+1, λk+1)− (xk, λk) = 0.

Let (x∞, λ∞) be a limit point of {(xk, λk)}k≥1 and assume the subsequence

{(xk, λk)}k∈K converges to it. From Axk+1 − b = 1
γ (λk − λk+1) → 0 as k → ∞,

we conclude that

(2.16) Ax∞ − b = 0.

9

In addition, letting K 3 k →∞ in (1.8) and using (2.15) gives

x∞ = arg min
x
〈∇f(x∞)−A>λ∞, x〉+ g(x) +

β

2
‖Ax− b‖2 +

1

2
‖x− x∞‖2P ,

and thus we have the optimality condition

0 ∈ ∇f(x∞) + ∂g(x∞)−A>λ∞ + βA>(Ax∞ − b).

Together with (2.16) implies

0 ∈ ∇f(x∞) + ∂g(x∞)−A>λ∞,

and thus (x∞, λ∞) satisfies the KKT conditions in (2.1). Hence, (2.14) still holds if

(x∗, λ∗) is replaced by (x∞, λ∞), and we have

‖xk+1 − x∞‖2P +
1

γ
‖λk+1 − λ∞‖2 ≤ ‖xk − x∞‖2P +

1

γ
‖λk − λ∞‖2.

Since (x∞, λ∞) is a limit point of {(xk, λk)}k≥1, the above inequality implies the

convergence of (xk, λk) to (x∞, λ∞).

To prove (2.12), we sum up (2.13) from k = 1 through t and note P � LfI and

γ < 2β to have

t∑
k=1

[
F (xk+1)− F (x∗)− 〈λ,Axk+1 − b〉

]
≤ 1

2
‖x1 − x∗‖2P +

1

2γ
‖λ1 − λ‖2,

which together with the convexity of F implies

F (x̃t+1)− F (x∗)− 〈λ,Ax̃t+1 − b〉 ≤ 1

2t
‖x1 − x∗‖2P +

1

2γt
‖λ1 − λ‖2.(2.17)

Since λ1 = 0, we therefore apply Lemmas 2.2 to have

F (x̃t+1)− F (x∗) + ρ‖Ax̃t+1 − b‖ ≤ 1

2t
‖x1 − x∗‖2P +

ρ2

2γt
,(2.18)

for any ρ > 0. Letting ρ > ‖λ∗‖ and applying Lemma 2.3, we have

‖Ax̃t+1 − b‖ ≤ 1

2t

‖x1 − x∗‖2P + ρ2/γ

ρ− ‖λ∗‖

(2.19)

− 1

2t

‖λ∗‖(‖x1 − x∗‖2P + ρ2/γ)

ρ− ‖λ∗‖
≤ F (x̃t+1)− F (x∗) ≤ 1

2t
‖x1 − x∗‖2P +

ρ2

2γt
− ρ‖Ax̃t+1 − b‖.

(2.20)

Now let ρ = max{1 + ‖λ∗‖, 2‖λ∗‖} to have (2.12) and thus complete the proof. �

10

2.2.2. Adaptive parameters. In this subsection, we let the parameters αk, βk, γk
and P k be adaptive to the iteration number k and improve the previously established

O(1/t) convergence rate to O(1/t2), which is optimal even without the linear con-

straint.

Theorem 2.6. Under Assumptions 1 and 2, let {(xk, x̄k, λk)}k≥1 be the sequence

generated from Algorithm 1 with parameters set to

(2.21) ∀k : αk =
2

k + 1
, γk = kγ, βk ≥

γk
2
, P k =

η

k
I,

where γ > 0 and η ≥ 2Lf . Then

|F (x̄t+1)− F (x∗)| ≤ 1

t(t+ 1)

(
η‖x1 − x∗‖2 +

max{(1 + ‖λ∗‖)2, 4‖λ∗‖2}
γ

)
,(2.22a)

‖Ax̄t+1 − b‖ ≤ 1

t(t+ 1)

(
η‖x1 − x∗‖2 +

max{(1 + ‖λ∗‖)2, 4‖λ∗‖2}
γ

)
,(2.22b)

where (x∗, λ∗) is any point satisfying the KKT conditions in (2.1).

Proof. With the parameters given in (2.21), we multiply k(k + 1) to both sides of

(2.10) to have

k(k + 1)
[
F (x̄k+1)− F (x)− 〈λ,Ax̄k+1 − b〉

]
− k(k − 1)

[
F (x̄k)− F (x)− 〈λ,Ax̄k − b〉

]
≤− η

[
‖xk+1 − x‖2 − ‖xk − x‖2 + ‖xk+1 − xk‖2

]
+

2kLf
k + 1

‖xk+1 − xk‖2

+
1

γ

[
‖λk − λ‖2 − ‖λk+1 − λ‖2 + ‖λk+1 − λk‖2

]
− 2kβk

γ2k
‖λk+1 − λk‖2

≤− η
[
‖xk+1 − x‖2 − ‖xk − x‖2

]
+

1

γ

[
‖λk − λ‖2 − ‖λk+1 − λ‖2

]
.

(2.23)

Summing (2.23) from k = 1 through t, we have

t(t+ 1)
[
F (x̄t+1)− F (x)− 〈λ,Ax̄t+1 − b〉

]
≤ η‖x1 − x‖2 +

1

γ
‖λ1 − λ‖2.(2.24)

Letting x = x∗ in the above inequality, noting λ1 = 0, and then applying Lemmas 2.2

and 2.3 with ρ = max{1 + ‖λ∗‖, 2‖λ∗‖}, we obtain the desired results by essentially

the same arguments as those at the end of the proof of Theorem 2.5. �

Remark 2.2. With a positive definite matrix P k, the subproblem (1.8) becomes

strongly convex and thus has a unique solution. One drawback of Theorem 2.6 is

that the setting in (2.21) does not allow linearization to the augmented term. The

coexistence of the possibly nonsmooth term g and the augmented term ‖Ax − b‖2
can still cause difficult subproblems. In that case, we can solve the subproblem inex-

actly. Theoretically we are unable to prove the O(1/t2) rate. However, empirically we

still observe fast convergence even subproblems are solved to a medium accuracy; see

the experimental results in section 3.1. To linearize the augmented term and retain

O(1/t2) convergence, we need assume strong convexity of the objective; see Theorem

2.9 below.

11

2.3. Analysis of the accelerated linearized ADMM. In this subsection, we

establish the convergence rate of Algorithm 2. In addition to Assumption 1, we make

the following assumptions to the objective function of (1.13).

Assumption 3. The function f has Lipschitz continuous gradient with constant

Lf , and f and g have strong convexity modulus µf and µg that satisfy µf + µg > 0

(one of them could be zero). Note that without strong convexity, O(1/t) convergence

rate can be shown; see [12,33] for example. Also note that the O(1/t2) rate has been

established in [16, 22] if both h and f + g are strongly convex and no linearization

is performed. In addition, linear convergence of ADMM can be shown if f + g is

strongly convex and also Lipschitz differentiable and certain full-rankness assumption

is made to B or C; see [8, 31]. Without strong convexity, [20] establishes the linear

convergence of ADMM by assuming certain local error bound and taking a sufficiently

small dual stepsize.

Similar to the analysis in the previous subsection, we first establish a result of

running one iteration of Algorithm 2, and its proof is provided in Appendix A.2.

Lemma 2.7 (One-iteration result). Let {(yk, zk, λk)}k≥1 be the sequence gener-

ated from Algorithm 2. Then for any (y, z, λ) such that By + Cz = b, it holds

F (yk+1, zk+1)− F (y, z)− 〈λ,Byk+1 + Czk+1 − b〉

≤ −
〈

1

γk
(λk − λk+1), λ− λk +

βk
γk

(λk − λk+1)

〉
+ βk

〈
1

γk
(λk − λk+1)− C(zk+1 − z), C(zk+1 − zk)

〉
+
Lf
2
‖zk+1 − zk‖2 − µf

2
‖zk − z‖2 − µg

2
‖zk+1 − z‖2

− 〈yk+1 − y, P k(yk+1 − yk)〉 − 〈zk+1 − z,Qk(zk+1 − zk)〉,(2.25)

where F is given in (1.12).

When constant parameters are used in Algorithm 2, one can sum up (2.25) from

k = 1 through t and use (2.3) to show an O(1/t) convergence result. This has already

been established in the literature; see [12] for example. Hence, we state the result

here without proof, and note that the result does not require any strong convexity of

the objective.

Theorem 2.8. Assume the existence of (x∗, λ∗) = (y∗, z∗, λ∗) satisfying (2.1) and

the gradient Lipschitz continuity of f . Let {(yk, zk, λk)}k≥1 be the sequence generated

from Algorithm 2 with parameters set to

(2.26) βk = γk = γ > 0, P k = P � 0, Qk = Q � LfI, ∀k.

Then∣∣F (ỹt+1, z̃t+1)− F (y∗, z∗)
∣∣ ≤ 1

2t

(
max{(1 + ‖λ∗‖)2, 4‖λ∗‖2}

γ
+ ‖y1 − y∗‖2P + ‖z1 − z∗‖2Q+γC>C

)
‖Bỹt+1 + Cz̃t+1 − b‖ ≤ 1

2t

(
max{(1 + ‖λ∗‖)2, 4‖λ∗‖2}

γ
+ ‖y1 − y∗‖2P + ‖z1 − z∗‖2Q+γC>C

)
,

where

ỹt+1 =

∑t
k=1 y

k+1

t
, z̃t+1 =

∑t
k=1 z

k+1

t
.

12

Adapting the parameters, we can accelerate the rate to O(1/t2) as shown below.

Theorem 2.9. Under Assumptions 1 and 3, let {(yk, zk, λk)}k≥1 be the sequence

generated from Algorithm 2 with parameters set to

βk = γk = (k + 1)γ, ∀k ≥ 1,(2.27a)

P k =
P

k + 1
, ∀k ≥ 1,(2.27b)

Qk = (k + 1)
(
Q− γC>C

)
+ LfI, ∀k ≥ 1,(2.27c)

where P � 0 and ηγC>C � Q � µf+µg

2 I with η ≥ 1. Let

(2.28) k0 =

⌈
1 +

2(Lf − µf)

µf + µg

⌉
.

Then we have

(2.29) ‖zk − z∗‖2Q ≤
2φ1(y∗, z∗, λ∗)

k(k + k0)
, ‖zk − z∗‖2 ≤ 2φ1(y∗, z∗, λ∗)

(k + k0)(Lf + µf + 2µg)
,

and

|F (ỹt+1, z̃t+1)− F (y∗, z∗)| ≤ 2

t(t+ 2k0 + 3)
max
‖λ‖≤ρ

φ1(y∗, z∗, λ)(2.30a)

‖Bỹt+1 + Cz̃t+1 − b‖ ≤ 2

t(t+ 2k0 + 3)
max
‖λ‖≤ρ

φ1(y∗, z∗, λ)(2.30b)

where ρ = max{1 + ‖λ∗‖, 2‖λ∗‖},

ỹt+1 =

∑t
k=1(k + k0 + 1)yk+1∑t
k=1(k + k0 + 1)

, z̃t+1 =

∑t
k=1(k + k0 + 1)zk+1∑t
k=1(k + k0 + 1)

,

and

φk(y, z, λ) =
k + k0

2k
‖yk − y‖2P +

k + k0
2

(
k‖zk − z‖2Q + (Lf + µg)‖zk − z‖2

)
+
k + k0

2γk
‖λ− λk‖2.

(2.31)

In addition, if P � 0 and η > 1, then {(yk, zk, λk)}k≥1 is bounded, and

‖Byk+1 + Czk+1 − b‖ ≤ o
(

1

k + 1

)
,(2.32a)

|F (yk+1, zk+1)− F (y∗, z∗)| ≤ O
(

1

k + 1

)
.(2.32b)

Remark 2.3. Note that if Q is a diagonal matrix in (2.27c), then the augmented

term in (1.15b) is also linearized. If h = 0 and B = 0, the problem (1.13) reduces

to (1.5). Therefore, Theorem 2.9 implies that we can further linearize the augmented

term in the subproblem of the linearized ALM and still obtain O(1/t2) convergence if

the objective is strongly convex.

13

Also note that taking P = 0 and Q = γC>C leads to ADMM with adaptive

parameters. Hence, we obtain the same order of convergence rate as that in [16] with

strictly weaker conditions.

To show this theorem, we first establish a few inequalities.

Proposition 2.10. Let k0 be defined in (2.28). Then for any k ≥ 1,

(k + k0)
(
kQ+ (Lf + µg)I

)
� (k + k0 + 1)

(
(k + 1)Q+ (Lf − µf)I

)
.(2.33)

Proof. Expanding the left hand side of the inequality and using Q � µf+µg

2 I and

(2.28) shows the result. �

Proposition 2.11. Under the assumptions of Theorem 2.9, we have

F (yk+1, zk+1)− F (y, z)− 〈λ,Byk+1 + Czk+1 − b〉

≤ − 1

2γ(k + 1)

[
‖λ− λk+1‖2 − ‖λ− λk‖2

]
− η − 1

2ηγ(k + 1)
‖λk − λk+1‖2

(2.34)

− 1

2(k + 1)

[
‖yk+1 − y‖2P − ‖yk − y‖2P + ‖yk+1 − yk‖2P

]
− 1

2

(
(k + 1)‖zk+1 − z‖2Q + (Lf + µg)‖zk+1 − z‖2

)
+

1

2

(
(k + 1)‖zk − z‖2Q + (Lf − µf)‖zk − z‖2

)
.

Proof. Since βk = γk, we use (2.3) and have from (2.25) that

F (yk+1, zk+1)− F (y, z)− 〈λ,Byk+1 + Czk+1 − b〉

≤ − 1

2γk

[
‖λk − λk+1‖2 + ‖λ− λk+1‖2 − ‖λ− λk‖2

]
+
〈
λk − λk+1, C(zk+1 − zk)

〉
− γk

2

[
‖C(zk+1 − z)‖2 − ‖C(zk − z)‖2 + ‖C(zk+1 − zk)‖2

]
+
Lf
2
‖zk+1 − zk‖2 − µf

2
‖zk − z‖2

− µg
2
‖zk+1 − z‖2 − 1

2

[
‖yk+1 − y‖2Pk − ‖yk − y‖2Pk + ‖yk+1 − yk‖2Pk

]

− 1

2

[
‖zk+1 − z‖2Qk − ‖zk − z‖2Qk + ‖zk+1 − zk‖2Qk

]
.

(2.35)

Note that from the parameter setting, we have〈
λk − λk+1, C(zk+1 − zk)

〉
− γk

2
‖C(zk+1 − zk)‖2 +

Lf
2
‖zk+1 − zk‖2 − 1

2
‖zk+1 − zk‖2Qk

=
〈
λk − λk+1, C(zk+1 − zk)

〉
− k + 1

2
‖zk+1 − zk‖2Q

≤
〈
λk − λk+1, C(zk+1 − zk)

〉
− ηγk

2
‖zk+1 − zk‖2C>C

≤ 1

2ηγk
‖λk − λk+1‖2.

(2.36)

Plugging (2.36) and also the parameters in (2.27) into (2.35) gives (2.34). �

14

Now we are ready to show Theorem 2.9.

Proof. [Proof of Theorem 2.9]

Letting (y, z) = (y∗, z∗) in (2.34) and rearranging terms gives[
F (yk+1, zk+1)− F (y∗, z∗)− 〈λ,Byk+1 + Czk+1 − b〉

]
+

1

2(k + 1)
‖y∗ − yk+1‖2P

+
1

2

(
(k + 1)‖zk+1 − z∗‖2Q + (Lf + µg)‖zk+1 − z∗‖2

)
+

1

2γ(k + 1)
‖λ− λk+1‖2

≤ 1

2(k + 1)
‖yk − y∗‖2P +

1

2

(
(k + 1)‖zk − z∗‖2Q + (Lf − µf)‖zk − z∗‖2

)

+
1

2γ(k + 1)
‖λ− λk‖2 − η − 1

2ηγ(k + 1)
‖λk − λk+1‖2.

(2.37)

Multiplying k + k0 + 1 to both sides of the above inequality and using notation φk
defined in (2.31), we have

(k + k0 + 1)
[
F (yk+1, zk+1)− F (y∗, z∗)− 〈λ,Byk+1 + Czk+1 − b〉

]
+ φk+1(y∗, z∗, λ)

≤k + k0 + 1

2(k + 1)
‖yk − y∗‖2P +

k + k0 + 1

2

(
(k + 1)‖zk − z∗‖2Q + (Lf − µf)‖zk − z∗‖2

)
+
k + k0 + 1

2γ(k + 1)

(
‖λ− λk‖2 − η − 1

η
‖λk − λk+1‖2

)
≤k + k0

2k
‖yk − y∗‖2P +

k + k0
2

(
k‖zk − z∗‖2Q + (Lf + µg)‖zk − z∗‖2

)
+
k + k0

2γk
‖λ− λk‖2

− k + k0 + 1

2γ(k + 1)

η − 1

η
‖λk − λk+1‖2,

=φk(y∗, z∗, λ)− k + k0 + 1

2γ(k + 1)

η − 1

η
‖λk − λk+1‖2,

(2.38)

where in the second inequality, we have used (2.33) and the decreasing monotonicity

of k+k0+1
k+1 with respect to k.

Letting λ = λ∗ in (2.38) and using (2.2), we have

(2.39) φk+1(y∗, z∗, λ∗) ≤ φk(y∗, z∗, λ∗).

In addition, note that

F (yk+1, zk+1)− F (y∗, z∗)− 〈λ∗, Byk+1 + Czk+1 − b〉
=F (yk+1, zk+1)− F (y∗, z∗)− 〈λ∗, B(yk+1 − y∗) + C(zk+1 − z∗)〉
=h(yk+1)− h(y∗)− 〈B>λ∗, yk+1 − y∗〉+ (f + g)(zk+1)− (f + g)(z∗)− 〈C>λ∗, zk+1 − z∗〉

≥µf + µg
2

‖zk+1 − z∗‖2,

where the inequality is from the convexity of h and f+g and also the KKT conditions

in (2.1). Hence, from (2.38) and (2.39), it follows that

(µf + µg)(k + k0 + 1)

2
‖zk+1 − z∗‖2 + φk+1(y∗, z∗, λ∗) ≤ φ1(y∗, z∗, λ∗),

15

and thus we obtain the results in (2.29). If P � 0, the above inequality indicates the

boundedness of {(xk, yk, λk)}
Again, letting λ = λ∗ in (2.38) and summing it from k = 1 through t, we conclude

from (2.2) and (2.39) that

t∑
k=1

k + k0 + 1

2γ(k + 1)

η − 1

η
‖λk − λk+1‖2 ≤ φ1(y∗, z∗, λ∗),

and thus letting t→∞, we have λk−λk+1 → 0 from the above inequality as η > 1, and

thus (2.32a) follows from the update rule (1.15c). Furthermore, from the boundedness

of {(yk, zk, λk)}, we let λ = 0 in (2.37) to have F (yk+1, zk+1)−F (y∗, z∗) ≤ O
(

1
k+1

)
.

Using (2.2) and (2.32a), we have F (yk+1, zk+1) − F (y∗, z∗) ≥ −O
(

1
k+1

)
, and thus

(2.32b) follows.

Finally, summing (2.38) from k = 1 through t and noting φk ≥ 0,∀k, we have

t∑
k=1

(k + k0 + 1)
[
F (yk+1, zk+1)− F (y∗, z∗)− 〈λ,Byk+1 + Czk+1 − b〉

]
≤ φ1(y∗, z∗, λ).

Then by the convexity of F , we have from the above inequality that for any λ,

F (ỹt+1, z̃t+1)− F (y∗, z∗)− 〈λ,Bỹt+1 + Cz̃t+1 − b〉 ≤ φ1(y∗, z∗, λ)∑t
k=1(k + k0 + 1)

By Lemmas 2.2 and 2.3 with ρ = max{1 + ‖λ∗‖, 2‖λ∗‖} and the initialization λ1 = 0,

the above result implies the desired results in (2.30). This completes the proof. �

3. Numerical results. In this section, we test the proposed accelerated meth-

ods on solving three problems: quadratic programming, total variation regularized

image denoising, and elastic net regularized support vector machine. We compare

them to nonaccelerated methods and also existing accelerated methods to demon-

strate their efficiency.

3.1. Quadratic programming. In this subsection, we test Algorithm 1 on

quadratic programming. First, we compare the algorithm with fixed and adaptive

parameters, i.e., nonaccelerated ALM and accelerated ALM, on equality constrained

quadratic programming (ECQP):

(3.1) min
x

F (x) =
1

2
x>Qx+ c>x, s.t. Ax = b.

Note that ECQP can be solved in a direct way by solving a linear equation (c.f., [32,

Section 16.1]), so ALM may not be the best choice for (3.1). Our purpose of using

this simple example is to validate acceleration.

We set the problem size to m = 20, n = 500 and generate A ∈ Rm×n, b, c and

Q ∈ Rn×n according to standard Gaussian distribution, where Q is made to be a

positive definite matrix. We set the parameters of Algorithm 1 to αk = 1, βk = γk = m

and P k = ‖Q‖2I, ∀k for the nonaccelerated ALM, and αk = 2
k+1 , βk = γk = mk and

P k = 2‖Q‖2
k I, ∀k for the accelerated ALM. Figure 1 plots the objective distance to

16

0 200 400 600 800 1000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration numbers

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

Nonaccelerated ALM
Accelerated ALM

0 200 400 600 800 1000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration numbers

vi
ol

at
io

n
of

 fe
as

ib
ili

ty

Nonaccelerated ALM
Accelerated ALM

Fig. 1. Results by the nonaccelerated ALM (Algorithm 1 with fixed parameters) and the ac-

celerated ALM (Algorithm 1 with adaptive parameters) on solving (3.1). Left: the distance of the

objective value to the optimal value |F (x)− F (x∗)|; Right: the violation of feasibility ‖Ax− b‖.

the optimal value |F (x) − F (x∗)| and the violation of feasibility ‖Ax − b‖ given by

the two methods. We can see that Algorithm 1 with adaptive parameters performs

significantly better than it with fixed parameters, in both objective and feasibility

measures.

Secondly, we test the accelerated ALM on the nonnegative linearly constrained

quadratic programming, which is formulated as follows:

(3.2) min
x

F (x) =
1

2
x>Qx+ c>x, s.t. Ax = b, x ≥ 0.

In the test, we set the problem size to m = 50 and n = 1000. We let Q = HH>,

where H ∈ Rn×(n−100) and is generated according to standard Gaussian distribution.

Hence, the objective is not strongly convex. The elements of b and c follow identically

independent uniform distribution and standard Gaussian distribution, respectively.

Thus, b ≥ 0. The matrix A ∈ Rm×n has the form of [B, I] to make sure feasibility of

the problem. We generate B according to both Gaussian and uniform distribution.

Note that the uniformly distributed B leads to more difficult problem.

We set the parameters of Algorithm 1 according to (2.21) with γ = m, η = 2‖Q‖2,

and βk = γk, ∀k. The most difficult step in Algorithm 1 is (1.8), which does not

have a closed form solution with the above setting. We solve the subproblem by

the interior-point method to a tolerance subtol. Since A only has 50 rows, each

step of the interior-point method only needs to solve a 50 × 50 equation and do

some componentwise multiplication. We notice that ALALM converges fast in the

beginning but slows down as it approaches the solution. Hence, we also test to restart

it after a fixed number of iterations, and in this test, we simply restart it every 50

iterations.

We compare ALALM to FISTA [1], which also has O(1/t2) convergence rate.

At each iteration, FISTA requires a projection to the constraint set of (3.2), and

we solve it also by the interior-point method to the tolerance subtol. Again, each

step of the interior-point method only needs to solve a 50 × 50 equation and do

some componentwise multiplication. We also test restarted FISTA by restarting it

every 50 iterations. Note that a restarted FISTA is proposed in [34] by checking the

monotonicity of the objective value or gradient norm. However, since subproblems

are solved inaccurately, the restart scheme in [34] does not work here.

Figure 2 plots the results corresponding to Gaussian randomly generated ma-

trix B and Figure 3 corresponding to uniformly random B, where the optimal value

17

subtol = 10−6 subtol = 10−8 subtol = 10−10

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

10
5

Iteration numbers

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

10
5

Iteration numbers

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

10
5

Iteration numbers

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−20

10
−15

10
−10

10
−5

10
0

Iteration numbers

vi
ol

at
io

n
of

 fe
as

ib
ili

ty

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−20

10
−15

10
−10

10
−5

10
0

Iteration numbers

vi
ol

at
io

n
of

 fe
as

ib
ili

ty

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−20

10
−15

10
−10

10
−5

10
0

Iteration numbers

vi
ol

at
io

n
of

 fe
as

ib
ili

ty

ALALM
Restarted ALALM
FISTA
Restarted FISTA

Fig. 2. Results by FISTA [1] and ALALM (Algorithm 1 with adaptive parameters) on solving

(3.2) where A = [B, I] and B is generated according to standard Gaussian distribution. Subproblems

for both methods are solved to a tolerance specified by subtol. First row: the absolute value of

objective value minus the optimal value |F (x) − F (x∗)|; second row: the violation of feasibility

‖Ax− b‖.

subtol = 10−6 subtol = 10−8 subtol = 10−10

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

10
5

Iteration numbers

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

10
5

Iteration numbers

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

10
5

Iteration numbers

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−20

10
−15

10
−10

10
−5

10
0

Iteration numbers

vi
ol

at
io

n
of

 fe
as

ib
ili

ty

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−20

10
−15

10
−10

10
−5

10
0

Iteration numbers

vi
ol

at
io

n
of

 fe
as

ib
ili

ty

ALALM
Restarted ALALM
FISTA
Restarted FISTA

0 200 400 600 800 1000
10

−20

10
−15

10
−10

10
−5

10
0

Iteration numbers

vi
ol

at
io

n
of

 fe
as

ib
ili

ty

ALALM
Restarted ALALM
FISTA
Restarted FISTA

Fig. 3. Results by FISTA [1] and ALALM (Algorithm 1 with adaptive parameters) on solving

(3.2) where A = [B, I] and B is generated according to uniform distribution. Subproblems for both

methods are solved to a tolerance specified by subtol. First row: the absolute value of objective value

minus the optimal value |F (x)− F (x∗)|; second row: the violation of feasibility ‖Ax− b‖.

F (x∗) is obtained by Matlab function quadprog with tolerance 10−16. In both figures,

subtol varies among {10−6, 10−8, 10−10}. From the figures, we see that both FISTA

and ALALM perform better when restarted periodically, and ALALM performs more

stably than FISTA to different subtol. Even if the subproblems are solved inaccu-

rately only to the tolerance 10−6, the restarted ALALM can still reach almost machine

accuracy. However, FISTA can reach an accurate solution only if the subproblems

are solved to a high accuracy such as subtol = 10−10 and B is Gaussian randomly

generated.

18

3.2. Image denoising. In this subsection, we test the accelerated ADMM, i.e.,

Algorithm 2, on the total variation regularized image denoising problem:

(3.3) min
X

F (X) =
1

2
‖X −M‖2F + µ‖DX‖1,

where M is a noisy two-dimensional image, D is a finite difference operator, and

‖Y ‖1 =
∑
i,j |Yij |. Replacing DX by Y , we can write (3.3) equivalently to

(3.4) min
X,Y

G(X,Y) =
1

2
‖X −M‖2F + µ‖Y ‖1, s.t. DX = Y.

Applying Algorithm 2 to (3.4) gives the updates:

Y k+1 = arg min
Y

µ‖Y ‖1 + 〈Λk, Y 〉+
βk
2
‖Y −DX‖2F +

1

2
‖Y − Y k‖2Pk ,

(3.5a)

Xk+1 = arg min
X

1

2
‖X −M‖2F − 〈Λk,DX〉+

βk
2
‖Y −DX‖2F +

1

2
‖X −Xk‖2Qk ,

(3.5b)

Λk+1 = Λk − γk(DXk+1 − Y k+1).

(3.5c)

We test the algorithm with four sets of parameters, leading to four different methods

listed below:

• Nonaccelerated ADMM: βk = γk = 10, P k = 0, Qk = 0, ∀k;

• Accelerated ADMM: βk = γk = k+1
2‖D‖22

, P k = 0, Qk = 0, ∀k;

• Nonacclerated Linearized ADMM: βk = γk = 1
2‖D‖22

, P k = 0, Qk = I
2 −

D>D
2‖D‖22

, ∀k;

• Accelerated Linearized ADMM: βk = γk = k+1
20‖D‖22

, P k = 0, Qk = (k+1)I
20 −

(k+1)D>D
20‖D‖22

, ∀k.

With P k = 0, the solution of (3.5a) can be written analyticly by using the soft

thresholding or shrinkage. We assume periodic boundary condition, and thus with

Qk = 0, the solution of (3.5b) can be easily obtained by solving a linear system that

involves one two-dimensional fast Fourier transform (FFT2) and one inverse FFT2

and some componentwise division [37]. For the linearized ADMM, it is easy to write

closed form solutions for both X and Y subproblems. We compare Algorithm 2

with the above four settings to the accelerated primal-dual method in [4], which we

call Chambolle-Pock method by authors’ name. As shown in [11], Chambolle-Pock

method is equivalent to linearized ADMM applied to the dual reformulation of (3.3).

It iteratively performs the updates:

Zk+1 = arg min
|Zij |≤1,∀i,j

‖Z − Zk − σkDX̄k‖2F ,(3.6a)

Xk+1 = arg min
X

τk
2µ
‖X −Xk‖2F +

1

2
‖X −Xk + τkD∗Zk+1‖2F ,(3.6b)

X̄k+1 = Xk+1 + θk(Xk+1 −Xk)(3.6c)

19

original image noisy image denoised image

Fig. 4. The Cameraman images. Left: original one; Middle: noisy image with 10% Gaussian

noise, PSNR = 25.62; Right: denoised image by the accelerated ADMM running to 200 iterations,

PSNR = 33.29.

with X̄1 = X1, τ1σ1‖D‖22 ≤ 1, and the parameters set to

θk =
1√

1 + 2γτk
, τk+1 = θkτk, σk+1 =

σk
θk
∀k.

We set τ1 = σ1 = 1/‖D‖2 and γ = 0.35/µ as suggested in [4].

In this test, we use the Cameraman image shown in Figure 4, and we add 10%

Gaussian noise. The regularization parameter is set to µ = 0.04. For Algorithm 2, we

report the objective value of (3.4) and the violation of feasibility and also the objective

value of (3.3), and for Chambolle-Pock method we only report the objective value of

(3.3) since it solves the dual problem and does not guarantee the feasibility of (3.4).

Figure 5 plots the results in terms of iteration numbers, where the optimal objective

value is obtained by running ADMM to 50,000 iterations. Since the linearized ADMM

and Chambolle-Pock methods has lower iteration complexity than the nonlinearized

ADMM, we also plot the results in terms of running time. From the figure, we see

that Algorithm 2 with adaptive parameters performs significantly better than that

with fixed parameters. The Chambolle-Pock method decreases the objective fastest

in the beginning, and later the accelerated ADMM with or without linearization catch

up and surpass it.

3.3. Elastic net regularized support vector machine. We test Algorithm

2 on the elastic net regularized support vector machine problem

(3.7) min
x
F (x) =

1

m

m∑
i=1

[1− bia>i x]+ + µ1‖x‖1 +
µ2

2
‖x‖2,

where [c]+ = max(0, c), {(ai, bi)}mi=1 are the samples in p-dimensional space, and

bi ∈ {+1,−1} is the label of the ith sample. Let A = [a1, . . . , am] ∈ Rp×m and

replace 1− bia>i x by yi for all i. We obtain the equivalent formulation:

(3.8) min
x
G(x, y) =

1

m
e>[y]+ + µ1‖x‖1 +

µ2

2
‖x‖2, s.t. Bx+ y = e,

where e is the vector with all ones, and B = Diag(b)A.

The data is generated in the same way as that in [39]. One half of the samples

belong to “+1” class and the other to “-1” class. Each sample in “+1” class is

20

objective measure of (3.4) feasibility measure of (3.4)

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

10
5

Iteration numbers

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

Accelerated ADMM
Accelerated Linearized ADMM
Nonaccelerated ADMM
Nonaccelerated Linearized ADMM

0 100 200 300 400 500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration numbers

V
io

la
tio

n
of

 fe
as

ib
ili

ty

Accelerated ADMM
Accelerated Linearized ADMM
Nonaccelerated ADMM
Nonaccelerated Linearized ADMM

objective measure of (3.3) objective measure of (3.3)

0 100 200 300 400 500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iteration numbers

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

Accelerated ADMM
Accelerated Linearized ADMM
Nonaccelerated ADMM
Nonaccelerated Linearized ADMM
Chambolle−Pock

0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

10
5

Running time (sec.)
|o

bj
ec

tiv
e

m
in

us
 o

pt
im

al
 v

al
ue

|

Accelerated ADMM
Accelerated Linearized ADMM
Nonaccelerated ADMM
Nonaccelerated Linearized ADMM
Chambolle−Pock

Fig. 5. Results by Algorithm 2 with adaptive parameters (accelerated ADMM) and constant

parameters (nonaccelerated ADMM) and also the Chambolle-Pock method on solving (3.3). Top

left: the absolute value of objective of (3.4) minus optimal value |G(X,Y)−G(X∗, Y ∗)|; Top right:

the violation of feasibility of (3.4) ‖DX −Y ‖F ; Bottom left: the absolute value of objective of (3.3)

minus optimal value |F (X) − F (X∗)| in terms of iteration; Bottom right: the absolute value of

objective of (3.3) minus optimal value |F (X)− F (X∗)| in terms of running time.

generated according to Gaussian distribution N (u,Σ), and each sample in “-1” class

follows N (−u,Σ). The mean vector and variance matrix are set to

u =

[
Es×1
0(p−s)×1

]
, Σ =

[
ρEs×s + ρIs×s 0s×(p−s)

0(p−s)×s I(p−s)×(p−s)

]
,

where Es×s is an s×s matrix with all ones, s is the number of features that are related

to classification, and ρ ∈ [0, 1] measures the correlation of the features (the larger it

is, the harder the problem is). In the test, we set m = 100, p = 500, s = 50, ρ = 0.5

and µ1 = µ2 = 0.01.

Applying Algorithm 2 to (3.8), we iteratively perform the updates:

yk+1 = arg min
y

1

m
e>[y]+ − 〈λk, y〉+

βk
2
‖Bxk + y − e‖2 +

1

2
‖y − yk‖2Pk ,

(3.9a)

xk+1 = arg min
x

µ1‖x‖1 +
µ2

2
‖x‖2 − 〈λk, Bx〉+

βk
2
‖Bx+ yk+1 − e‖2 +

1

2
‖x− xk‖2Qk ,

(3.9b)

λk+1 = λk − γk(Bxk+1 + yk+1 − e).
(3.9c)

Again, we test two sets of parameters. The first one fixes the parameters during

all iterations, and the second one adapts the parameters. Since the coexistence of

`1-norm and the least squares term makes (3.9b) difficult to solve, we choose Qk to

cancel the term x>B>Bx, i.e., we linearize the augmented term. Specifically, we set

the parameters in the same way as the previous test:

21

objective measure of (3.8) feasibility measure of (3.8) objective measure of (3.7)

0 100 200 300 400 500

Iteration numbers

10 -15

10 -10

10 -5

10 0

10 5

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

Accelerated Linearized ADMM
Nonaccelerated Linearized ADMM

0 100 200 300 400 500

Iteration numbers

10 -10

10 -5

10 0

V
io

la
tio

n
of

 fe
as

ib
ili

ty

Accelerated Linearized ADMM
Nonaccelerated Linearized ADMM

0 100 200 300 400 500

Iteration numbers

10 -10

10 -5

10 0

|o
bj

ec
tiv

e
m

in
us

 o
pt

im
al

 v
al

ue
|

Accelerated Linearized ADMM
Nonaccelerated Linearized ADMM
Classic ADMM

Fig. 6. Results by Algorithm 2 with adaptive parameters (accelerated linearized ADMM) and

constant parameters (nonaccelerated linearized ADMM) and also the classic nonlinearized ADMM

on solving (3.7). Left: the absolute value of objective of (3.8) minus optimal value |G(x, y) −
G(x∗, y∗)|; Middle: the violation of feasibility of (3.8) ‖Bx + y − e‖; Right: the absolute value of

objective of (3.7) minus optimal value |F (x)− F (x∗)|.

• Nonaccelerated Linearized ADMM: βk = γk = 1
2‖B‖22

, P k = 0, Qk = I
2 −

B>B
2‖B‖22

, ∀k;

• Accelerated Linearized ADMM: βk = γk = µ2(k+1)
20‖B‖22

, P k = 0, Qk = µ2(k+1)I
20 −

µ2(k+1)B>B
20‖B‖22

, ∀k.

We also compare the linearized ADMM to the classic ADMM without linearization,

which introduces another variable z to split x from the `1-norm and solves the problem

(3.10) min
x

1

m
e>[y]+ + µ1‖z‖1 +

µ2

2
‖x‖2, s.t. Bx+ y = e, x = z.

We use the code from [42] to solve (3.10) and tune its parameters as best as we can.

Similar to the previous test, we measure the objective value and feasibility of (3.8)

given by the linearized ADMM and the objective value of (3.7) for all three methods.

Figure 6 plots the results, where the optimal objective value is obtained by CVX [17]

with high precision. From the figure, we see that the accelerated linearized ADMM

performs significantly better than the nonaccelerated counterpart, and the latter is

comparable to the classic nonlinearized ADMM.

4. Conclusions. We have proposed an accelerated linearized augmented La-

grangian method (ALALM) and also an accelerated alternating direction method of

multipliers (ALADMM) for solving structured linearly constrained convex program-

ming. We have established O(1/t2) convergence rate for ALALM by assuming merely

convexity and for ALADMM by assuming strong convexity to one block variable. Nu-

merical experiments have been performed to demonstrate the validness of acceleration

and higher efficiency over existing accelerated methods.

To have the O(1/t2) convergence rate for the ALALM, our current analysis does

not allow linearization to the augmented term, and that may cause great difficulty

on solving subproblems if meanwhile we have a complicated nonsmooth term. It is

interesting to know whether we can linearize the augmented term and still obtain

O(1/t2) convergence under the same assumptions. We are unable to show this under

the setting of Algorithm 1, so it may have to turn to other acceleration technique.

We leave this open question to interested readers.

Appendix A. Technical details of two key lemmas. In this section, we

22

provide detailed proofs of two key lemmas.

A.1. Proof of Lemma 2.4. From (2.9), it follows that

f(x̄k+1) ≤ f(x̂k) + 〈∇f(x̂k), x̄k+1 − x̂k〉+
Lf
2
‖x̄k+1 − x̂k‖2.

Substituting x̄k+1 = (1−αk)x̄k +αkx
k+1 and also noting x̄k+1− x̂k = αk(xk+1−xk),

we have from the above inequality that

f(x̄k+1) ≤f(x̂k) + (1− αk)〈∇f(x̂k), x̄k − x̂k〉+ αk〈∇f(x̂k), xk+1 − x̂k〉+
α2
kLf
2
‖xk+1 − xk‖2

=(1− αk)
[
f(x̂k) + 〈∇f(x̂k), x̄k − x̂k〉

]
+ αk

[
f(x̂k) + 〈∇f(x̂k), x− x̂k〉

]
+ αk〈∇f(x̂k), xk+1 − x〉+

α2
kLf
2
‖xk+1 − xk‖2

≤(1− αk)f(x̄k) + αkf(x) + αk〈∇f(x̂k), xk+1 − x〉+
α2
kLf
2
‖xk+1 − xk‖2,

(A.1)

where the second inequality follows from the convexity of f . Hence,[
F (x̄k+1)− F (x)− 〈λ,Ax̄k+1 − b〉

]
− (1− αk)

[
F (x̄k)− F (x)− 〈λ,Ax̄k − b〉

]
=
[
f(x̄k+1)− (1− αk)f(x̄k)− αkf(x)

]
+
[
g(x̄k+1)− (1− αk)g(x̄k)− αkg(x)

]
− αk〈λ,Axk+1 − b〉

≤αk〈∇f(x̂k), xk+1 − x〉+
α2
kLf
2
‖xk+1 − xk‖2 + αk[g(xk+1)− g(x)]− αk〈λ,Axk+1 − b〉,

(A.2)

where the equality follows from the fact x̄k+1 = (1 − αk)x̄k + αkx
k+1, and in the

inequality, we have used (A.1) and the convexity of g.

On the other hand, from the update rule of xk+1, we have the optimality condition:

0 = ∇f(x̂k) + ∇̃g(xk+1)−A>λk + βkA
>(Axk+1 − b) + P k(xk+1 − xk),

where ∇̃g(xk+1) is a subgradient of g at xk+1. Hence, for any x such that Ax = b, it

holds

0 =
〈
xk+1 − x,∇f(x̂k) + ∇̃g(xk+1)−A>λk + βkA

>(Axk+1 − b) + P k(xk+1 − xk)
〉

≥
〈
xk+1 − x,∇f(x̂k)−A>λk + βkA

>(Axk+1 − b) + P k(xk+1 − xk)
〉

+ g(xk+1)− g(x)

=

〈
xk+1 − x,∇f(x̂k)−A>λk +

βk
γk
A>(λk − λk+1) + P k(xk+1 − xk)

〉
+ g(xk+1)− g(x)

=
〈
xk+1 − x,∇f(x̂k)

〉
+ g(xk+1)− g(x) +

〈
xk+1 − x, P k(xk+1 − xk)

〉
+

〈
A(xk+1 − x),−λk +

βk
γk

(λk − λk+1)

〉
=
〈
xk+1 − x,∇f(x̂k)

〉
+ g(xk+1)− g(x) +

〈
xk+1 − x, P k(xk+1 − xk)

〉
+

〈
Axk+1 − b, λ− λk +

βk
γk

(λk − λk+1)

〉
− 〈λ,Axk+1 − b〉

=
〈
xk+1 − x,∇f(x̂k)

〉
+ g(xk+1)− g(x)− 〈λ,Axk+1 − b〉+

〈
xk+1 − x, P k(xk+1 − xk)

〉
+

〈
1

γk
(λk − λk+1), λ− λk +

βk
γk

(λk − λk+1)

〉(A.3)

23

where the inequality follows from the convexity of g.

Combining (A.2) and (A.3) together gives[
F (x̄k+1)− F (x)− 〈λ,Ax̄k+1 − b〉

]
− (1− αk)

[
F (x̄k)− F (x)− 〈λ,Ax̄k − b〉

]
≤α

2
kLf
2
‖xk+1 − xk‖2 − αk

〈
xk+1 − x, P k(xk+1 − xk)

〉
− αk

〈
1

γk
(λk − λk+1), λ− λk +

βk
γk

(λk − λk+1)

〉
.

Now apply (2.3) to complete the proof.

A.2. Proof of Lemma 2.7. From the update (1.15a), we have the optimality

condition

0 = ∇̃h(yk+1)−B>λk + βkB
>(Byk+1 + Czk − b) + P k(yk+1 − yk),

where ∇̃h(yk+1) is a subgradient of h at yk+1. Thus for any y,

0 =
〈
yk+1 − y, ∇̃h(yk+1)−B>λk + βkB

>(Byk+1 + Czk − b) + P k(yk+1 − yk)
〉

≥h(yk+1)− h(y) +
〈
yk+1 − y,−B>λk + βkB

>(Byk+1 + Czk − b) + P k(yk+1 − yk)
〉

=h(yk+1)− h(y) +
〈
yk+1 − y,−B>λk + βkB

>(Byk+1 + Czk+1 − b)− βkB>C(zk+1 − zk)
〉

+
〈
yk+1 − y, P k(yk+1 − yk)

〉
=h(yk+1)− h(y) +

〈
B(yk+1 − y),−λk +

βk
γk

(λk − λk+1)

〉
− βk

〈
B(yk+1 − y), C(zk+1 − zk)

〉

+
〈
yk+1 − y, P k(yk+1 − yk)

〉
,

(A.4)

where in the last equality, we have used the update rule (1.15c). Similar to (A.1), we

have

(A.5) f(zk+1) ≤ f(z) + 〈∇f(zk), zk+1 − z〉+
Lf
2
‖zk+1 − zk‖2 − µf

2
‖zk − z‖2.

From the update rule of zk+1, we have the optimality condition:

0 = ∇̃g(zk+1) +∇f(zk)− C>λk + βkC
>(Bxk+1 + Czk+1 − b) +Qk(zk+1 − zk).

Hence, for any z, it holds

0 =
〈
zk+1 − z, ∇̃g(zk+1) +∇f(zk)− C>λk + βkC

>(Byk+1 + Czk+1 − b) +Qk(zk+1 − zk)
〉

≥g(zk+1)− g(z) +
µg
2
‖zk+1 − z‖2 + 〈zk+1 − z,∇f(zk)〉

+
〈
zk+1 − z,−C>λk + βkC

>(Byk+1 + Czk+1 − b) +Qk(zk+1 − zk)
〉

=g(zk+1)− g(z) +
µg
2
‖zk+1 − z‖2 +

〈
zk+1 − z,∇f(zk)

〉
+
〈
zk+1 − z,Qk(zk+1 − zk)

〉

+

〈
C(zk+1 − z),−λk +

βk
γk

(λk − λk+1)

〉
,

(A.6)

24

where the inequality follows from the convexity of g.

Since (y, z) is feasible, summing (A.4), (A.5) and (A.6) gives

F (yk+1, zk+1)− F (y, z)− 〈λ,Byk+1 + Czk+1 − b〉

≤ −
〈
B(yk+1 − y),−λk +

βk
γk

(λk − λk+1)

〉
−
〈
C(zk+1 − z),−λk +

βk
γk

(λk − λk+1)

〉
− 〈λ,Byk+1 + Czk+1 − b〉+ βk〈B(yk+1 − y), C(zk+1 − zk)〉

+
Lf
2
‖zk+1 − zk‖2 − µf

2
‖zk − z‖2 − µg

2
‖zk+1 − z‖2

− 〈yk+1 − y, P k(yk+1 − yk)〉 − 〈zk+1 − z,Qk(zk+1 − zk)〉

which implies (2.25) by noting the update rule (1.15c).

REFERENCES

[1] Amir Beck and Marc Teboulle, A fast iterative shrinkage-thresholding algorithm for linear

inverse problems, SIAM journal on imaging sciences, 2 (2009), pp. 183–202. 4, 5, 17, 18

[2] Dimitri P Bertsekas, Constrained optimization and Lagrange multiplier methods, Academic

press, 2014. 2

[3] Kristian Bredies and Hongpeng Sun, Accelerated douglas-rachford methods for the solution

of convex-concave saddle-point problems, arXiv preprint arXiv:1604.06282, (2016). 5, 6

[4] Antonin Chambolle and Thomas Pock, A first-order primal-dual algorithm for convex prob-

lems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011),

pp. 120–145. 5, 6, 19, 20

[5] Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang, Optimal primal-dual methods for a

class of saddle point problems, SIAM Journal on Optimization, 24 (2014), pp. 1779–1814.

5, 6

[6] Laurent Condat, A primal–dual splitting method for convex optimization involving lips-

chitzian, proximable and linear composite terms, Journal of Optimization Theory and

Applications, 158 (2013), pp. 460–479. 2

[7] Cong Dang and Guanghui Lan, Randomized methods for saddle point computation, arXiv

preprint arXiv:1409.8625, (2014). 6

[8] Wei Deng and Wotao Yin, On the global and linear convergence of the generalized alternating

direction method of multipliers, Journal of Scientific Computing, 66 (2016), pp. 889–916.

12

[9] Olivier Fercoq and Peter Richtárik, Accelerated, parallel, and proximal coordinate de-

scent, SIAM Journal on Optimization, 25 (2015), pp. 1997–2023. 6

[10] Daniel Gabay and Bertrand Mercier, A dual algorithm for the solution of nonlinear vari-

ational problems via finite element approximation, Computers & Mathematics with Appli-

cations, 2 (1976), pp. 17–40. 3

[11] Xiang Gao, Yangyang Xu, and Shuzhong Zhang, Randomized primal-dual proximal block

coordinate updates, arXiv preprint arXiv:1605.05969, (2016). 2, 5, 7, 8, 19

[12] Xiang Gao and Shu-Zhong Zhang, First-order algorithms for convex optimization with non-

separable objective and coupled constraints, Journal of the Operations Research Society of

China, (2015), pp. 1–29. 2, 8, 12

[13] Saeed Ghadimi and Guanghui Lan, Accelerated gradient methods for nonconvex nonlinear

and stochastic programming, Mathematical Programming, 156 (2016), pp. 59–99. 6

[14] R. Glowinski and A. Marrocco, Sur l’approximation, par eléments finis d’ordre un, et la

résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires,

ESAIM: Mathematical Modelling and Numerical Analysis, 9 (1975), pp. 41–76. 3

[15] Donald Goldfarb, Shiqian Ma, and Katya Scheinberg, Fast alternating linearization

methods for minimizing the sum of two convex functions, Mathematical Programming,

141 (2013), pp. 349–382. 5

25

[16] Tom Goldstein, Brendan O’Donoghue, Simon Setzer, and Richard Baraniuk, Fast al-

ternating direction optimization methods, SIAM Journal on Imaging Sciences, 7 (2014),

pp. 1588–1623. 5, 6, 12, 14

[17] Michael Grant, Stephen Boyd, and Yinyu Ye, CVX: Matlab software for disciplined convex

programming, 2008. 22

[18] Bingsheng He and Xiaoming Yuan, On the acceleration of augmented lagrangian method for

linearly constrained optimization, Optimization online, (2010). 5

[19] Yunlong He and Renato DC Monteiro, An accelerated hpe-type algorithm for a class

of composite convex-concave saddle-point problems, SIAM Journal on Optimization, 26

(2016), pp. 29–56. 5

[20] Mingyi Hong and Zhi-Quan Luo, On the linear convergence of the alternating direction

method of multipliers, Mathematical Programming, Series A, (2016), pp. 1–35. 12

[21] Bo Huang, Shiqian Ma, and Donald Goldfarb, Accelerated linearized bregman method,

Journal of Scientific Computing, 54 (2013), pp. 428–453. 5

[22] Mojtaba Kadkhodaie, Konstantina Christakopoulou, Maziar Sanjabi, and Arindam

Banerjee, Accelerated alternating direction method of multipliers, in Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

ACM, 2015, pp. 497–506. 5, 12

[23] Myeongmin Kang, Myungjoo Kang, and Miyoun Jung, Inexact accelerated augmented la-

grangian methods, Computational Optimization and Applications, 62 (2015), pp. 373–404.

5

[24] Myeongmin Kang, Sangwoon Yun, Hyenkyun Woo, and Myungjoo Kang, Accelerated

bregman method for linearly constrained `1–`2 minimization, Journal of Scientific Com-

puting, 56 (2013), pp. 515–534. 5

[25] Guanghui Lan, An optimal method for stochastic composite optimization, Mathematical Pro-

gramming, 133 (2012), pp. 365–397. 2, 5, 6

[26] Qihang Lin, Zhaosong Lu, and Lin Xiao, An accelerated proximal coordinate gradient

method, in Advances in Neural Information Processing Systems, 2014, pp. 3059–3067. 6

[27] Yurii Nesterov, A method of solving a convex programming problem with convergence rate

O(1/k2), Soviet Mathematics Doklady, 27 (1983), pp. 372–376. 4

[28] Yu Nesterov, Excessive gap technique in nonsmooth convex minimization, SIAM Journal on

Optimization, 16 (2005), pp. 235–249. 5

[29] , Smooth minimization of non-smooth functions, Mathematical programming, 103 (2005),

pp. 127–152. 5

[30] , Gradient methods for minimizing composite functions, Mathematical Programming,

140 (2013), pp. 125–161. 4, 5

[31] Robert Nishihara, Laurent Lessard, Ben Recht, Andrew Packard, and Michael Jor-

dan, A general analysis of the convergence of admm, in Proceedings of The 32nd Interna-

tional Conference on Machine Learning, 2015, pp. 343–352. 12

[32] Jorge Nocedal and Stephen Wright, Numerical optimization, Springer Science & Business

Media, 2006. 16

[33] Yuyuan Ouyang, Yunmei Chen, Guanghui Lan, and Eduardo Pasiliao Jr, An accelerated

linearized alternating direction method of multipliers, SIAM Journal on Imaging Sciences,

8 (2015), pp. 644–681. 2, 5, 6, 8, 12

[34] Brendan ODonoghue and Emmanuel Candes, Adaptive restart for accelerated gradient

schemes, Foundations of computational mathematics, 15 (2015), pp. 715–732. 17

[35] Weijie Su, Stephen Boyd, and Emmanuel Candes, A differential equation for modeling nes-

terov’s accelerated gradient method: theory and insights, in Advances in Neural Information

Processing Systems, 2014, pp. 2510–2518. 5

[36] Paul Tseng, On accelerated proximal gradient methods for convex-concave optimization,

preprint, (2008). 4

[37] Yilun Wang, Junfeng Yang, Wotao Yin, and Yin Zhang, A new alternating minimization

algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1

(2008), pp. 248–272. 19

[38] Andre Wibisono, Ashia C Wilson, and Michael I Jordan, A variational perspective on

accelerated methods in optimization, Proceedings of the National Academy of Sciences,

(2016), pp. E7351–E7358. 5

26

[39] Yangyang Xu, Ioannis Akrotirianakis, and Amit Chakraborty, Proximal gradient method

for huberized support vector machine, Pattern Analysis and Applications, 19 (2016),

pp. 989–1005. 20

[40] Yangyang Xu and Wotao Yin, A block coordinate descent method for regularized multiconvex

optimization with applications to nonnegative tensor factorization and completion, SIAM

Journal on imaging sciences, 6 (2013), pp. 1758–1789. 6

[41] Yangyang Xu and Shuzhong Zhang, Accelerated primal-dual proximal block coordinate updat-

ing methods for constrained convex optimization, arXiv preprint arXiv:1702.05423, (2017).

6

[42] Gui-Bo Ye, Yifei Chen, and Xiaohui Xie, Efficient variable selection in support vector

machines via the alternating direction method of multipliers., in AISTATS, 2011, pp. 832–

840. 22

27

