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THE GEOMETRY ON SMOOTH TOROIDAL
COMPACTIFICATIONS OF SIEGEL VARIETIES

SHING-TUNG YAU AND YI ZHANG

ABSTRACT. We study smooth toroidal compactifications of Siegel varieties
thoroughly from the viewpoints of mixed Hodge theory and Kahler-Einstein
metric. We observe that any cusp of a Siegel space can be identified as a
set of certain weight one polarized mixed Hodge structures. We then study
the infinity boundary divisors of toroidal compactifications, and obtain a
global volume form formula of an arbitrary smooth Siegel variety Ag r(g >
1) with a smooth toroidal compactification ./Tlg,p such that Dy, := Zg,p \
Ay r is normal crossing. We use this volume form formula to show that
the unique group-invariant Kéahler-Einstein metric on A, r endows some
restraint combinatorial conditions for all smooth toroidal compactifications
of Ayr. Again using the volume form formula, we study the asymptotic
behaviour of logarithmical canonical line bundle on any smooth toroidal
compactification of Ay carefully and we obtain that the logarithmical
canonical bundle degenerate sharply even though it is big and numerically
effective.
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0. INTRODUCTION

Throughout this paper, the number ¢ is an integer more than two.

Siegel varieties are locally symmetric varieties. They are important and interesting
in algebraic geometry and number theory because they arise as moduli spaces for
Abelian varieties with a polarization and a level structure.

The purpose of this paper is to study smooth toroidal compactifications of Siegel
varieties and their applications, we also try to understand the Kéhler-Einstein met-
rics on Siegel varieties through the compactifications. We discuss the geometric
aspects of the theory after the works of Ash-Mumford-Rapoport-Tai and Faltings-
Chai. Later advances in algebraic geometry have given us many very effective tools
for studying these varieties and their toroidal compactifications.

There is a general theory of compactifications of all locally symmetric varieties
D/T(D a bounded symmetric domain, I' C Aut(D) an arithmetic subgroup). Every
variety D /T has its Stake-Baily-Borel compactification, which is a canonical minimal
compactification. But this compactification has rather bad singularities. In another
direction, Ash, Mumford, Rapoport and Tai, in their collaborated book [I], use the
theory of toroidal embedding to construct a whole class of compactifications with
mild singularities, including, when I is neat, smooth compactifications. Faltings and
Chai use purely algebraic method to construct arithmetic toroidal compactifications
of Siegel varieties.

A toroidal compactification Ay of a Siegel variety Ay := §,/I'(here $, is
the Siegel space of genus g and I' C Aut($),) is an arithmetic subgroup) is totally
determined by a combinatorial condition : an admissible family of polyhedral de-
compositions of certain positive cones. As well known, the natural Bergman metric
on £, is Kahler-Einstein. The first author believes that the intrinsic Kéhler-Einstein
metric on a quasi-projective manifold M should be helpful for finding a nice com-
pactification M of M, and he has thought this problem for a long time. In this
paper, we can assert that the Kéhler-Einstein metric on A4 endows some restraint
combinatorial conditions for all toroidal smooth compactifications of A, r(Theorem
[B.2] TheoremB.8in Section 3). Let us explain this result : Let opmax be an admissible
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top-dimensional polyhedral cone with N(= dimc Ay ) edges p1,--- pn. Each edge
p;i of omax corresponds to an irreducible components D; of the boundary divisor
Doy := Ay \ Ay p. Assume that Do, is normal crossing. For every i = 1,--- , N, let
s; be the global section of the line bundle [D;] defining D;. Then, the (s1,---,sn)
give us a global coordinate system on A, r and we can choose a suitable Hermitian

metric || - ||; on each [D;] such that the volume form on A, r is represented by
(g=1)
(0.0.1) S, = 2" volr (0 max)*dVy
e gl = N 1 ?
(T2 [18il7) Féfmac Qog [[s1 11 -+, log [[snv|ln)

where dV, is a continuous volume form on a partial compactification Uy, of Ay,
with Agr C Uy, C 71971“, F,__is a homogenous rational polynomial of degree
g and volp(opmax) is the lattice volume of op,ax, moreover the coefficients of F,
are totally determined by omax with marking order of edges and I'. An interesting
observation is that the unique Kéahler-Einstein metric on A,r guarantees a real

Monge-Ampére equation of elliptic type

max

2

H _

(0.0.2) de“%axj)i,j = 2" Vol (Tmax)? exp((g + 1) H)

for H := —log Fy, .. on the domain {(z1, -+ ,Z4u+1)) € RS | ; < —C < O0Vi}

(Theorem [B.2). This Monge-Ampére equation defines a system of rational
polynomials, and the system of all coefficients of F,, gives a nature solution to
that system of rational polynomials. Moreover, this system defines an affine variety
Q4 over Q, which is dependent only on $),. The important thing is that the set of
all admissible top-dimensional polyhedral cones has an injection into the set Q,(Z)
of all integral point of Q,(Theorem B.8). Furthermore, we give a remark in that
the real elliptic Monge-Ampére equation and Theorem B.§] are always true for
all smooth toroidal compactifications whether D, is normal crossing or not.

As an important application of the formula in Algebraic geometry, we study
the asymptotic behaviour of logarithmical canonical line bundles on smooth toroidal
compactifications of A, r(Theorem A7, Theorem A.I3] and Theorem in Section
4). We find all logarithmical cotangent bundles degenerate sharply even though
Kz .+ Dy.’s are big and numerically effective(cf.[25]). For convenience, we fix
a compactification 71971“ and write Doo = UDj, Dioo := U Dj N D; and D} :=

J J#i
D; \ D; oo. Mumford also shows that the form %85 log ®,r on Ay r is a current
on Ay representing Cl([K,Tlg,p + D)) in cohomology class. Using the formula
0.0, we get that the restriction of 9dlog @, to each D in sense of limit(denote
by Resp,(001log ®,r)) is a closed smooth form on D}. Moreover, the key point is
that the form Resp, (00 1og ®, 1) on D} has Poincaré growth on D; o, by Mumford’s
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goodness property. Therefore, we can regard %ReSDi(ag log ®,r) as a positive
closed current on D;. Let || - ||; be an arbitrary Hermitian metric on the line bundle
[D;] for each D;, we get

(K.Zg,l_‘ + Doo)dimc Agr—d. Dil o 'Did
V=1 . _ .
_ (_)duncAg,r—d/D ResDil((88 log (I)g’r)dlchg,r—d) A ( /\ Cl([Dij]a || . ||23))

2 .
g 1<5<d,j#l

for any d(1 < d < N — 1) irreducible components D;,,--- ,D;, of the boundary
divisor Do, and any integer [ € [1, d](Theorem [£13]). Furthermore, we observe that
irreducible components of D, are all from lower genus Siegel varieties and the type
of Resp, (00 1og ®, 1) is similar with the type of 00 log ®, r. Due to this structure of
self-similarity, we use the method of recursion to deduce an integral formula : For
any d(1 < d < N —1) different irreducible components Dy, - - , Dy of Dy, satisfying

d
that (| D; # 0, there is
=1

(g, . + Do) Aor=d. Dy Dy

=1 _ ,
- /d Res ;  (Resq: ~'(ReSDl((?ﬁalog¢g,p)dlchgyF—d)---)).

N Dx N D; N D;
1 i=1 i=1

A direct consequence is that if d > g — 1 then the intersection number
(Kzg,r + l)oo)dim(C Agr=d. Dy---Dg=0

for any d different irreducible components D1, --- , Dy of D,. Therefore, the divisor
Kz, .+ Do on Ay r is never ample(Theorem [LTH).

In general, the boundary divisors of smooth toroidal compactifications may have
self-intersections(cf.[I] and [14]). However, in most geometric applications, we would
like to have a nice toroidal compactification .,Ttgj of A4 such that the added infinity
boundary Dy, = .,Tlgj \ Ay is a normal crossing divisor, for example, in Mumford’s
work of Hirzebruch’s proportionality theorem in the non-compact case(cf.[25]). In
Section 2, we study the boundaries of smooth toroidal compactifications explicitly
and we actually obtain a sufficient and necessary combinatorial condition for toroidal
compactifications with normal crossing boundary divisor(Theorem and Theo-
rem in Section 2).

On the other hand, the degenerate limits of Abelian varieties have been studied
by Mumford,Oda-Seshadri,Nakamura and Namikawa. Deligne’s Theorem(cf.[10])
shows that the nth cohomology group of an arbitrary complex variety X carries a
canonical mixed Hodge structure, and that the structure is reduced to an ordinary
Hodge structure of pure weight n if X is a complete nonsingular variety. Thus,
toroidal compactifications of Siegel varieties can be related back to degenerations
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of Abelian varieties or to degenerations of weight one Hodge structures. Roughly,
there is a correspondence between the category of degenerations of Abelian varieties
and the category of limits of weight one Hodge structures. The Hodge-theoretic
interpretation of the boundary ./Tlg,r‘ \ Ag.r of toroidal compactification is given by
Carlson, Cattani and Kaplan in [4]. Thus, we believe that any rational boundary
component(cusp) of a Siegel variety must parameterize some class of mixed Hodge
structures. That is the motivation for our studying cusps of Siegel varieties. Re-
cently, Kato and Usui generalize the work of Carlson-Cattani-Kaplan, and use the
idea of logarithmic geometry to give toroidal compactifications of period domains
from view of mixed Hodge theory(cf.[22]). We explore this topic, and obtain that
the Hodge-theoretic interpretation of the boundary of Siegel varieties coincides with
the classic description given by Satake-Baily-Borel in [30] and [2]. Actually, any
cusp of Siegel space £, can be identified with a set of certain weight one polarized
mixed Hodge structures(Theorem [L.I7]in Section 1).

The results of this paper, the methods and the techniques in this paper, are es-
sential to all locally symmetric varieties. Thus, the results of this paper can be
generalized to general locally symmetric varieties by our methods and techniques in
this paper.
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for useful suggestions, and the second author particularly thanks Doctor Xuan-Ming
Ye. We are grateful to Taida Institute for Mathematical Sciences and Mathematics
Department National Taiwan University, the final version of the paper was finished
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The second author is supported partially by the NSFC Grant(#11271070) and
LNMS of Fudan University, he was also supported in part by the NSFC Grant(#10731030)
of Key Project(Algebraic Geometry) during the period 2008-2011.

Notation.

For any real Lie group P, P is the identity component of P for the real topology.
For any linear space Lj over a field k, a finite field extension k¥ C K allows we to
define a K-linear space Ly := L; ® K.

Throughout this paper, we fix a real vector space Vg of dimensional 2g and fix a
0 -1
I, 0
symmetric bilinear form v on Vg, it is known that there is an element 7" € GL(VR)

standard symplectic form ¢ = < > on Vg. For any non-degenerate skew-

such that !T JT = 1. We now fix a symplectic basis {e;}1<i<24 of the symplectic
space (Vir, 1) such that ¢(e;, eg44) = —1for 1 <1i < gand 9)(e;,e;) = 0 for [j—i| # g.
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e Denote by V7 := ®1<j<24Ze;, then Vg = Vz ®z R and V7 is a standard lattice in
Vk. In this paper, we fix the lattice V7 and fix the rational space Vg := V72 ®7 Q.

o Let V(ék) be the rational subspace of Vg spanned by Q-vectors {ejy1,--- ,eq4} for

0<k<g-—1,and V(ég) := {0}. Let V) = V((Dk) QR for 0 <k <g.

e Define Sp(g,R) := {h € GL(Vi») | ¥ (hu, hv) = ¥(u,v)Vu,v € Vig} where Vig :=
Vz ®z R for any Z-algebra R. Let I'y(n) := {y € Sp(g9,Z) | v = Iy mod n} for
any integer n > 2 and I'y = I'y(1) := Sp(g,Z). Thus each congruent group I'y(n)
is a normal subgroup of Sp(g,Z) with finite index.

For any free Z-module Wy, we use W to represent a linear space over Z( i.e,
W(R) := Wz ®z R for any Z-algebra R), and we define GL(WW) to be the algebraic
group over Q representing the functor (Q — algebras — Groups, R +— GL(Wy))
(cf.[23]). We always write GL(n) for GL(W) if rankWy = n. For the fixed free
Z-module V7, we also define Sp(V, ) to be the algebraic group over Q representing
the functor

Q-algebras — Groups, R +—— Sp(V,9)(R) := Sp(g, R).

We know that Sp(V, ) is an algebraic subgroup of GL(V').

e Two subgroups S; and S of Sp(g, Q) are commensurable if S1M.S5 has finite index
in both S and Sy. A subgroup I' C Sp(g, Q) is arithmetic if p(I") is commensu-
rable with p(Sp(g,Q)) N GL(n,Z) for some embedding p : Sp(V, 1)) —» GL(n).
By a result of Borel, a subgroup I' C Sp(g,Q) is arithmetic if and only if
that p'(I") is commensurable with p'(Sp(g,Q)) N GL(n',Z) for every embedding
p 1 Sp(V,¥) — GL(n')(cf.Chap. VI. [23]). Thus a subgroup I' C Sp(g,Z) is
arithmetic if and only if [Sp(g,Z) : I'] < cc.

e Let k' be a subfield of C and ‘714 a k'-vector space. Let GL(V) be an algebraic
group defined over k' as above. An automorphism « of a k'-vector space is defined
to be neat (or torsion free) if its eigenvalues in C generate a torsion free subgroup
of C. An element h € Sp(g, Q) is said to be neat(or torsion free) if p(h) is neat for
one faithful representation p : Sp(V, ) — GL(‘N/). A subgroup I' C Sp(g,R) is
said to be neat if all elements of I" are torsion free. We have that if h € Sp(g, Q)
is neat then p'(h) is neat for every representation p of Sp(V,) defined over
k'(cf.[23]). For example, the I'y(n) is a neat arithmetic subgroup of Sp(g, Q) if
n > 3.

e For any arithmetic subgroup I' C Sp(g, Q)(g > 2), we can find a neat subgroup
I C T of finite index. In fact, the neat subgroup I can be given by congruence
conditions(cf.[23]).

The Siegel space ), of degree g is a set of all symmetric matrices over C of degree
g whose imaginary parts are positive defined. The simple Lie group Sp(g,R) acts
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transitively on ), as ( é ZB; > o7 = éiig. Let o := /=11, be a fixed point on

g

e The stabilizer of o is isomorphic to the unitary group U(g). We identify o with
n(e) where 7 : Sp(g,R) — $), is the standard projection and e € Sp(g,R) is the

0 I

-1, 0
leaving o as the only isolated fixed point. Therefore the Siegel space £, is an
non-compact Hermitian symmetric space.

e From now on, let Gg = Sp(g,R) be the real Lie group with Lie algebra g =
gr := Lie(Gr), and regard Kr := U(g) as a real Lie group with Lie algebra
f = fr = Lie(KRr). With respect to the standard symplectic basis, we have :

identity. The element s, := in Sp(g, R) acts as an involution of £,

o = (& p)eMEaR) D=4 BB, 'C=C),

fR = {< _AB i)GM@g,R)]tA:—A, ‘B = B} = u(g)

A Siegel variety is defined to be Ay r := I'\)4, where I is an arithmetic subgroup
of Sp(g, Q). Any Siegel variety is a normal quasi-project variety.

e Any neat arithmetic subgroup I' of Sp(g, Q) acts freely on the Siegel Space £,
so that the induced Ay is a regular quasi-projective complex variety of dimen-
sion g(g + 1)/2. A Siegel variety of degree g with level n is defined to be
Agn i=T4(n)\9y. Thus, the Siegel varieties A, ,, n > 3 are quasi-projective com-
plex manifolds.

1. CuUsPS OF SIEGEL VARIETIES FROM THE VIEWPOINT OF MIXED HODGE
THEORY

1.1. Typical homogenous rational polarized VHS on Siegel space. Define
Ul:=U(1)={|z|=1|zeCL

Let 7 € )4 be an arbitrary point. Let T-($)4) be the real tangent space at 7 and J;
the complex structure on 77 ($)4) induced by the global complex structure J of $,.

The Siegel space $)4 has a natural Sp(g, R)-invariant Kéhler metric(Bergman met-
ric). Regard $), as a Riemannian symmetric space, we have a basic fact:

Lemma 1.1 (Cf.[I7]&[11]). For any z = a++/—1b € U, there is a unique isometric
automorphism ur(z) : 5 — $Hg such that

ur(z) maps T to T,
o dur(z): Tr($y) = T-(Hg) is given by v— z-v = av + bJ;(v).
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The uniqueness of u,(z) ensures that u,(1) = Id and
ur(z122) = ur(21) o ur(22) = ur(22) o ur(21), V21,29 € Ul
Therefore, we obtain a group homomorphism
(1.1.1) ur 2 U — Aut(9,) = Sp(g, R) /{1, }, 2 = ur(2).

Furthermore, we can lift u2 to be a group homomorphism h, : Ul — Sp(g,R).
Since Sp(g,R) is a simply-connected topological space. The uniqueness of u,(2)
guarantees that

(1.1.2) har(ry = Mhy M1 V1 € $4,YM € Sp(g,R).
The u2(y/—1) is the involution of ), fixing the point o = /=11, so ho(y/—1) is one of

{+ < _OI Ié’ >} Since that h, : Ut — Sp(g,R) is a group homomorphism and that
g
~I, 0
Let Gy, := GL(1) be an algebraic torus. A priori G,, = Gy, q is defined over Q,
and thus G, (k) = k* for any field k containing Q. Following 1.4.4 in [11]], we define
GSp(V, 1) to be the quotient Sp(V, 1) x G, by the central subgroup {e, (¢,—1)}, it
is an algebraic group over Q. Let ¢ be the composed homomorphism

L Sp(V,9) = Sp(V, ) X G — GSp(V, ),
and t : GSp(V, ) — G, the homomorphism given by
GSp(V, ) (R) = G (R), [(9,N)] = A%,

ho(U1) is a commutative group in U(g), we must have ho(v/—1) = < 0 I > .

We then have a split exact sequence
(1.1.3) 1 — Sp(V, ) — GSp(V,¢)) — G, — 1.

According to Deligne’s Hodge theory(cf.[10],[11],[12]), each h, actually corre-
sponds to a rational Hodge structure on Vg of pure weight one given by a Hodge
filtration

Fr=(F2CcF'cF)=(0CF'cV)
on Vg such that

T

F! = the subspace of V¢ spanned by the column vectors of < ;- ) .
g

Moreover, we observe that h. is polarized automatically by the standard symplectic
form 1, i.e., F? satisfies the following two Riemann-Hodge bilinear relations:

a) Y(FF F}) =0 forp+q> 1.

b) The Hermitian form Ve x Vo — C (z,y) — ¥(Cr(x),7y) is positive definite.
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Proposition 1.2 (Satake-Deligne [30]&[11]). Define
&g = &(Va, ) == {F" € Grass(g,Vc) [ Y(F', F') = 0, V=19 (F", FT) > 0}

The map h : $g =, Gy, 7+— Fl identifies the Siegel space g with the period
domain &,. Moreover, the map h is biholomorphic.

Let 7 : Sp(g,R) — $y = Sp(g,R)/U(g) be the standard projection mapping
the identity e to the point o = +/—11,. Then, we have the following commutative
diagrams of differentials

Adho(z)
4> g

(1.2.1) d’rl ldﬂ Vze UL

d(ho(2))lo
T,(5,) 22y 76,

In particular, we obtain that o := Ad(ho,(v/—1)) is an involution of the Lie al-
gebra g = Lie(Sp(g,R)), and there is a decomposition of g(orthogonal under the
no-degenerate Killing form) g = f @ p such that f = Lie(K) = Lie(U(g)) and
p = T,(8,). Since h,(U') is a commutative subgroup in Sp(g,R), both § and p
are Ad(h,(U))-invariant. Moreover, Ad(ho(exp(%gﬁ)))\p is compatible with the
complex structure .J, of the tangent space T5,($4). Thus, the collection {J;},cg, is
Sp(g, R)-invariant and is same as the original global complex structure J on $),.
Since J, gives a decomposition pc = pT @ p~ into ++/—1-eigenspaces, we have :

Corollary 1.3. For every z € U', the adjoint homomorphism Ad(ho(2)) : gc — gc
s given by

Ad(ho(2))|p+ 1 pT —pT v 2Py,

Ad(ho(2))|p- 0~ —p~ v 27 %0,

Ad(ho

I\

Nic = fc—fc v+—o.

Now, we have the following composite homomorphism
(1.3.1) U 2, Sp(g, R) 2% GL(g).

It determines a weight zero real Hodge structure on g(cf.[11],[I2]). Actually, this
real Hodge structure on g has type of {(—1,1),(0,0),(1,—1)} by the corollary [L3]:

1

= pTand gh t=p.

90’0 = f(C 3 g_
Denote by
Fi(g):=g""', F)(g) :=g"" @ g"" and F, ' (g) = gc.
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Lemma 1.4. For g = Lie(Sp(g,R)), we have that
Fy(g) ={X € gc| X(Fy) C F;™" Vs} p=—1,0,1,
where F3 is the Hodge filtration on Vg given by h,.
Proof. The composite homomorphism U* o, Sp(g,R) Ad, GL(End(Vg)) deter-
mines a weight zero real Hodge structure on End(Vg) = Lie(GL(VR)). Also, the

composite homomorphism U? o, Sp(g,R) Ad, g gives a weight zero real Hodge
structure on g. The inclusion g C End(Vg) is a morphism of Hodge structures by
the following commutative diagrams

g —= End(Vp)
(1.4.1) Ad(g)l lAd(g) Vg € Sp(g, R).
g —— End(Vg)
Write Hy'' ™% := F5/F5t! for s = 0,1. We obtain that
g = {X € gc| X(HS %) € HETW17570 s} for i = —1,0,1
as a subset of End(Vg)> . O

Remark. F(g) and F(g) are then Lie subalgebras of gc. In particular, both g=!!
and gl! are commutative complex Lie subalgebras of pc.

Corollary 1.5 (Deligne [12]). Gluing Hodge structures h, V1 € $)4 altogether, the
local system V := Vg x 4 underlies a homogenous rational variation of polarized
Hodge structure of weight one on $)4.

Proof. The relation g='! = {X € g¢ | X(HS' %) € HS *7° Vs} in the lemma [[4]

shows that the holomorphic tangent bundle of £, is horizontal(cf [28]). O
Suppose that T" is a neat arithmetic subgroup of Sp(g, Q), we immediately have:

e Since §), is simply connected, the fundamental group of A, has w1 (Agr,0) =T

e Thereis a natural local system V, 1 := Vg xr$,4 on A, r given by the fundamental
representation p : 1 (Agr,0) — GSp(V,9)(Q).

Proposition 1.6. Let ' be a neat arithmetic subgroup of Sp(g, Q). We have :

1. The local system V1 underlies a rational variation of polarized Hodge structure
on Ar. Moreover, the associated period map

(1.6.1) hr: Agpr — T\ &,
is induced by the isomorphism h in the proposition [L.2.
2. Let Agr be an arbitrary smooth compactification of Agr with simple normal

crossing divisor Do, = .Zg,p \ Agr. Around the boundary divisor D, all local
monodromies of any rational PVHS H on Ay are unipotent.
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Proof. By the corollary [L5] the local system V = Vg X £, admits a homogenous
rational variation of polarized Hodge structure on §),. The arguments in Section 4
of [36] show that the VHS attached to V can induce a locally homogenous rational
variation of polarized Hodge structure on the local system Vp, and so the period
map hr is given by the Sp(g,RR)-equivariant isomorphism h : §), =, S, in the
proposition N

It is well-known that all local monodromies of the rational PVHS H around D,
are quasi-unipotent(i.e., all eigenvalues of monodromies are roots of the unit). Since
$g is simply-connected and I' is neat, all eigenvalues of monodromies must be the
unity, and so these monodromies are unipotent. O

1.2. Cusps on Siegel spaces. Let F2(G¢)(resp. F!(G¢)) be the subgroup of G¢
satisfying that Lie(F2(Gc)) = FO(g) (resp. Lie(F}(Gc)) = Fl(g)). The lemma
L4l shows immediately that F}(Gc) is the parabolic subgroup preserving the Hodge
filtration F*, and that F!(Gc) is the unipotent radical of FO(Gc).

Proposition 1.7 (Harish-Chandra Embedding Theorem cf.[11]). The set &, is
contained in the largest cell of &,. Precisely, the map

(:6, — Fl(g) h—ny

identifies &4 with a bounded open subset of F}(g), where the space Fl(g) is the

closure of F1(g) in g = Lie(Sp(g,R)) and the element nj, € F1(g) is determined by
h = exp(np)ho.

cl

This Harish-Chandra embedding allows us to define the closure &, := exp(((&,) )ho
and the boundary 08, := &, \ &,, where ((GQ)CZ is the closure of ((&,) in F}(g).

Corollary 1.8.
G, = {F'€Grass(g,Vc) | (F', F') = 0,V=1p(F', FT) > 0},
06, = {F'e &, |vV—1p(F', F1) > 0,4(-,7) is degenerate on F'}.
= {Fleg, |F! N F1 is a non trivial isotropic space }
A boundary component of the space &, = G(V, 1)) is a subset in 06, of type
FWr) :={F' €6, | FINF! = Wg®C where Wy is an isotropic real subspace of Vg }.

A k-th boundary component of &(Vg,) is a §(Wg) with dimg Wg = k. We
note §({0}) = &, and other boundary components are subsets of 9&,. The group
Sp(g,R) has a natural action on the set of all boundary components as M eF(Wg) :=
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F(M(Wg)) VM € Sp(g,R). The compact space &, is a disjoint union of all bound-
ary components, and
06, = U F(Wg).

nontrivial isotropic WgcVi

The normalizer of a boundary component § is the subgroup N (F) of Sp(g,R)

containing of those g such that g§ = §. A boundary component § is said to be

rational if its normalizer N (F) is defined over Q(i.e., there is an algebraic subgroup

N3 C Sp(V, %) defined over Q such that N(F)* = N¥(R)* cf.[23]). For convenience,

a(k-th) rational boundary component is called to be a(k-th) cusp(or a cusp of depth

k). We note that for any two isotropic rationally-defined subspaces Wy C Wy of Vi,

the set {F/Wy | F € (W)} is a cusp of &(Ws-/Wa,9). A k-th cusp of £, always

corresponds to a Siegel space of genus g — k, in particular S(V(k)) >~ 6.

Remark 1.9 (Cf.(4.15)-(4.16) §5 [26]). The following conditions are equivalent for

a k-th boundary component §(WW) :

i. F(W) is rational;

ii. W is an isotropic rationally-defined subspaces, i.e., W = Wgp ® R where Wy is
an isotropic subspace of Vgp(and so Wr = (Wr N Vg) ® R);

iii. 3M € Sp(g,Q) such that W = M(V*));

iv. M € Sp(g,Z) such that W = M (V#)),

Since the symplectic group Sp(V, ) is simple, we have :

Proposition 1.10 (Baily-Borel cf.[2],[11],[1]). The map § — N3 is a bijection
between the set of proper boundary components of &, to the set of maximal parabolic
algebraic subgroups of Sp(V, ). Moreover, the boundary component § is rational if
and only if NS is a mazimal rational parabolic algebraic subgroup of Sp(V, ).

For any proper boundary component § of &4, there is an isotropic subspace Vg
of (Vr, ) with §(Vz) = §, and so there will be an increasing filtration of Vg

(1.10.1) WIR)=(0cW§ cWfcWy) = (0cVzc (V)" C k).
This filtration [L.I0T] corresponds to a unique morphism w/3 : Gy, — GSp(V, )
defined over R. We also define the cocharacter wg := w%wg LG, — Sp(V, ) where

e ()1
wyl s G 7L SV, ) X Gy — GSD(V, ).

We note that wg is defined over R, and that wg is defined over Q if and only if the
boundary component § is rational. We have the following composed homomorphism

(1.10.2) Gm(R) =5 Sp(g,R) 2% GL(g) € GL(End(Vi)).
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Define End(Vg)" := {X € End(Vg) | Ad(wz(\))X = N X,VA € G,,(R)} and
(1.10.3) g :=End(Ve)' Ng={X € g | Ad(wz(\)X = \'X,V\ € R*}.
We then have that

g = g’ogegag og

C End(Vk) 2 @®End(Vg) ! @ End(Vg)? @ End(Ve)' @ End(Vi)? = End(Vk)

by [L.4Tland [[.LT0.21 Thus the weight morphism wg endows an increasing filtration on
Lie algebra g(respectively on End(Vg)) W(g) = (0 € WS,(g) € --- € Wi(g) = g)
with
(1.104)  W3(g) =g 2 Wi (g) =g ?@g ' and W§(g) =g @9 '@
Lemma 1.11. For g = Lie(Sp(g,R)),

WS(g)={X eg| X(WS) c W3,

Vi)

and
(W3(g), th(g)] - W§+t(9)-

Proof. Choose subspaces V7 of Vg such that we can write Wf = EB]'SZVJ , and define
VI = {0} if j ¢ [~2,2]. Similarly as in the proof of the lemma [[.4] we obtain
g ={X cg| X(VI) cVITVj} for any integer i € [-2,2].

by the commutative diagram [L41] and the definition of End(Vg)" show that
Therefore, the first statement is true and the second statement follows it. O

Corollary 1.12 (Cf.[I1],[1],[24]). Let § = F(W) be a boundary component of the
Siegel space $4. We have :

o WS(g), W3, (g) and g° are Lie subalgebras of g = Lie(Sp(g, R));

o W5,(g) and g* are commutative Lie subalgebras of g.

Let (W_1 Cc Wy CcWp C Wg) = (0 cwWcwtc VR) be the filtration corre-
sponding to §. For each integer i in [—2,0], we define Wf(Sp(V, 1)) to be the alge-
braic subgroup of Sp(V, 1) of elements acting as the identity map on @ Wp/W,_;. We

P

have :
o WS(Sp(V,4)) = N¥ is a parabolic subgroup of Sp(V,v) with Lie algebra W (g);
o WS .= W3 (Sp(V,4)) has Lie algebra W3 (g), and it is the unipotent radical of
NS,
o US := W5,(Sp(V,4)) is the center of WS, its Lie algebra WS,(g) = g2 is
commutative;
73 .= the centralizer of the morphism wgz in N3 | it has Lie algebra g°;
S .= WS /US is an Abelian group whose Lie algebra identifies with the space

g b
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All above algebraic subgroups will be defined over Q if § is rational. Similarly, we
can define Lie subgroups W3,(G), WS, (G), WS (G) of G = Sp(g,R).

1.3. Polarized Mixed Hodge structures attached to cusps. For an isotropic
real subspace Lg of (VRr,)(resp. rational subspace Lg of (Vg,v)), let

Lg = {v € Vi | $(v, Lr) = 0}(resp. L := {v € Vg | (v, Lg)} ),

let Ly be the dual space of Lg in Vg with respect to (Vi,v)(resp. Lé the dual space
of Lg in Vg with respect to (V,)). For any N € g, there is a symmetric bilinear
form ¥y : Vg X Vg — R given by

(1.12.1) YN (v, u) = P(v, N(u)).

Lemma 1.13. Let § = §(W) be a cusp of Hy and let N be an arbitrary nonzero
clement in W3,(g) = Lie(US(R)). Let W§(R) = (0 ¢ W, c W§, c Wg,) :=
(0 cCWcwtc VR) be the weight filtration associated to the cusp §.

1. The inclusions Im(N) C W and W+ C Ker(N) are held. The element N induces
a weight filtration We(N) = (0 € W_1(N) C Wo(N) C Wi(N)) by setting
Wl(N) = VR, W_l(N) = Im(N : VR — VR) and WO(N) = Ker(N : VR — VR).

2. For any two Ny, Ny € W5,(g), NyNy = Ny Ny = 0.

3. The vn can be regarded as a symmetric bilinear form on Ve /W, If ¢ is non-
degenerate on Vg /W then WS(R) = (W (N)[—1])s, where (W (N)[—1])s is the
weight filtration given by (W (N)[—1]); := W;_1(N) Vj.

Proof. 1. The lemma [LIT] shows that Im(N) C W as N € W5,(g). It is easy to
obtain that Im(N) C W <= W+ C Ker(N).
2. Tt is obvious by that Im(No) € W € W+ C Ker(Ny).
3. If there is a vector 0 # v € Wo(N) \ W+ then N(v) =0, and so ¥ (v, N(v)) = 0.
Thus, we must have W+ = Wy(N) = Ker(N : Vg — k).
Claim: Im(N) = W <= W+ = Ker(N).
Proof of the claim.
e 7"=7: SupposeIm(N) = W. Then, ¢¥(y, W) = ¢(y,Im(N)) = —p(N(y), &) =
0 for any y € Ker(N). Thus Ker(N) c W+,
e 7<" : Suppose W+ = Ker(N). Since N : % =, Im(V), we get
dimg Im(N) = dimg Vg — dimg Ker(N) = dimg Vg — dimg Wt = dimg W.
U

Given a rational boundary component §(W'), we have a convex cone in g which
does not contain any linear subspace :

(1.13.1) CEW)) = {N e WS (g) | ¥ >0 on %}
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where ¥y is a symmetric bilinear form on Vg defined in [LT2.T)(cf.[1],[4]), we always

call C(F(W)) positive cone in ngw)(g). With respect to the cusp § := F(VH)),
the positive cone is

O, O 0 0

0 04— O
CE={| o 0" o o |lwESmi®),

0 0 0 0,
where Sym;r_ 1 (R) is defined to be the set of positive-definite matrices in Sym,_(RR).

Corollary 1.14. Let § = §(W) be a cusp of $4 and N an arbitrary nonzero ele-
ments in C(F). We have N? =0 and

W(N)[~1]e = WIR) = (0 € W (= W) c WE (= W) € Wig(=1R)).

Proof. 1t is obvious by the lemma [[T3]
O

For any isotropic rationally-defined subspace W of Vi, the dual space WV of W
is also an isotropic rationally-defined subspace of Vi satisfying dimg WV = dimg W.
For any cusp § = §(W) of the Siegel space £,

(1.14.1) F=3WY)

is defined to be the dual cusp of §.
We observe that the space G, can be identified with a set of Hodge filtrations

{F*=(0cC F' c V)| F! € Grass(g, V), ¥(F', F') =0}
and any cusp § can also be identified with a set of certain Hodge filtrations.

Lemma 1.15. Let § = F(W) be a cusp of the Siegel space $, and W§ = (0 C
Wqo C Wd C Vi) the corresponding weight filtration on Vg where Wy is an isotropic
subspace of Vo given by W = Wy @ R. Let N € C(F) be an element in the positive
cone C(§) C W3,(g) and F* = (0 C F' C V¢) a filtration in §.

1. There are following direct sum decompositions
Wg = WofP(Wg)' nwy),
W)t = WgeP(wy)t nwy),
F' = We@wH)nwg nF.

FEach above decomposition is orthogonal under the form 1.
Define

FL=We W) nwg nFh.
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The dual filtration F* := (0 C F' C Vi) is in §, and there is a bijection
F—3F F*— F°.
2. That N(Vg) = N(Wy) = Wg, N(F') = Wc and N(F') = 0. Also, there is an

isomorphism N |y : Wg =5 Wh.
3. There holds exp(v/—1N)F! € &,,.

Proof. There exists a M € Sp(g, V) such that § := F(VHK)) = M(F) for some k,
we then have wg, = ngM_l and

W= MWIM™', Wit(g) = MW (g)M ™" and C(k) = MO(F)M .

In particular, we have (V(*¥)e)V = M(Wg) and ((V(ék))v)L = M((W)H).
Thus, it is sufficient to prove the statements in the case of §F = §%. Now, we obtain

k k
(V(é ))V = Span@{eg—i-k—i-l: e 7629}7 (V(é ))J_ = Spac@{el7 te 7697 eg—i—l: e 7eg+k}

and ((V(ék))\/)l N (V([ék))J_ = Spa‘n@{el7 T 5 CEyCgtly 7eg+k}’

1. Obviously, there is a direct sum decomposition
k k k k
Vgt =vg” @ (g nvg™h.

This decomposition is orthogonal with respect to the form . By duality, we

also get the second equality in the statement (1). Since (F!, F'') = 0, we have

F' c W(Cl. By the first equality, any f € F' can be written as f = v + vo where

v1 € We and vy € (W&/)lﬂWCL. Due to W¢ C F', we have vy = f —v; € F! and

so vg € (W)t NWg N FL. Thus, the third equality in the statement (1) is true.
2. Since

O, 0 0 0
[ o 0% 0 B
N=10 0 o o

0 0 0 Og—p
where B is a positive-definite matrix in Sym,,(R), We must have
N(Wy)=Wg and N(Wg) =0.

The other equalities in the statement (2) are obvious.
3. Let f be a an arbitrary nontrivial vector in F'. By the statement (1), we can
write

f = w1 + wy where wy; € W¢¥ and wy € (W&/)LﬂWéﬂFl.
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Then we have :

V=1 (exp(vV—1N)f,exp(v/—1N)f) =

7f) + 2¢(w1,Nw_1) + 2¢(ZU2,N’LU_1)

f
f
7
f5 )+ 2¢(w, Nw) + 2¢(wr, Nws)

We get /=11 (wq,W3z) > 0, and obtain that /=1t (we,w3) = 0 if and only if wy =
0. Also, we get ¢(wy, Bwy) > 0 by N € C(F), and obtain that ¢ (wy, Bwy) = 0 if
and only if wy = 0. Therefore v/—1¢(exp(v/—1N)f,exp(v/—1N)f)) > 0 and so
V—14(-,7) is Hermitian positive on exp(yv/—1N)F'. Now we can finish the proof
of the statement (3) by the fact that a point F € &, is in &, if and only if
vV—=149(-,7) is Hermitian positive on F.

O

Some calculations in the lemma [[T5] are taken from [4] and [I3] with minor mod-
ification. In [4], Carlson, Cattani and Kaplan originally use Hodge theory to con-
struct toroidal compactifications of Siegel varieties. In the following theorem [L.17]
we further observe that the Hodge-theoretic interpretation of boundary components
naturally coincides with the classic description given by Satake-Baily-Borel in [30]
and [2]: Any cusp of Siegel space ), can be identified as a set of certain weight one
polarized mixed Hodge structures.

A mixed Hodge structure(MHS) on Vp(resp.Vr) consists of two filtrations,
an increasing filtration on Vg(resp. Vg)-the weight filtration W,, and a decreasing
filtration F'® on Vp-the Hodge filtration, such that the filtration F'® induces a Hodge
structure on each GrY/ Vo := W, /W,y (resp. GrV'Vg := W, /W,_1) of pure weight
r, where FP(GrlVV¢) := % Vp(ct.[10],[28]).

Definition 1.16 (Cf.[5]&[0]). A polarized mixed Hodge structure(PMHS) of
weight [ on Vi consists of a MHS (W,, F'*) on Vi, a nilpotent element N € F~'gcNgr
and a non-degenerate bilinear form @ such that

N1 =0, and W, = (W(N)[~1])s where W (N)[—1]; := W;_y(N) Vy;
QF?, FI=P*1) = 0 Vp;
N(FP) C FP~1 vp;

the weight {4+ r Hodge structure induced by F* on P, := ker(N"*+! : Grﬁ'r —

Gr}/K'T,_2) is polarized by Q(-, N"(-)), i.e., that Q(-, N"(-)) is (—1)"*"-symmetric
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on Py, and

Q(PPLA, NT(PP)) = 0 unless py = gg and pa = g1
(V=1)P71Q(v,N"(v)) > 0 for any nonzero v € Pﬁ;‘iC.

Theorem 1.17. Let § be a rational component of Siegel space $H4 and

W3 = (0.c WS © WF © Wi(= Vo))

the corresponding weight filtration on the rational space Vg. Let 1) be the standard
symplectic form on Vg = Vo ®qg R. We have :

1.

For any Hodge filtration F* € §V and any element N € C(F), the quadruple
(FT',W,S,N,w) determines a polarized mized Hodge structure of weight one on
VR.

Any pair (F*,W3) with F* € S, is a mized Hodge structure of weight one on
Vo.

Moreover,

FV={F*c&, | (F*, W3 N,9) is a PMHS of weight one for all N € C(F)}.

Proof. Let G = Sp(g,R).

1.

2.

By the corollary [L.T4], we have that
(W(N)[~1])e = (WS @R)s := (0 C Wip C Wi C Wi(=Va)) VN € C(3).
Let F* = (0 C F' € FY = V¢) be a filtration §. By definition, we have :
FINFL=Im(N){ = (WS)Y @ C VYN € C(3).
Since (F', F') = 4 (F!, F1) = 0, we have that
F!' ¢ (Im(N){)* and FT ¢ (Im(N)¥)*.

Claim i. For any integer r in [0, 2],

FPCVVe) @ Fr—rtl (G V) —» GV Vi p.

The claim i is not difficult to check. Then, we obtain the decreasing filtration
F* (Gt} 3V<c) on Gr)V ’ Vo arises as a Hodge structure on Gr)" 3VQ of pure weight
r for r = 0,1,2(cf.[I6]&[2]]), i.e., the pair (F'*, W) is a mixed Hodge structure
on Vp. The polarization is automatically true by the definition of C(F)(cfLI3T]).
Let ['* = (0 € F' ¢ FO(= V¢)) be a fixed decreasing filtration in §". The lemma
shows that

Fy == exp(V—1IN)F' € &,.

Write Fif == (0 C F{} C F{(= V¢)). We begin to show that the pair (Fy, W) is

a mixed Hodge structure on Vg with same Hodge numbers as the MHS (F *W3).
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Since FY @ F7 ™7 = Vi Vp, we get Fg’ﬂFngk_p C FPNF;P = {0}VE >0 Vp
and so

(1.17.1) FEGr) Ve () FH PGl " Ve = {0} Va > 1 Vp.

Let M := exp(yv/—IN). Since M € W3,(G) is unipotent, M respects the
weight filtration (W3S © C), and acts as identity on Grgvg Vc for all a. Moreover,

M induces a complex linear isomorphisms M : F' pGrZVSV(c = F ;;D GrZVSVC Ya,p.
Since

chlGrgVSVc = FlGrgVSVC = {0} and F(?Grgvgvc = FOGrgVSVC = Grg”vc,
by the above [LT7.J] we have that
FfGl‘ZVSVC EBF;Jra_pGrZVSVC ~ GV Ve Va, p.

The following claim ii guarantees the statement 2 is true.
Claim ii. Let 7 be an arbitrary point in $,. If (F*,W$) is a mixed Hodge
structure on Vg then for any 7/ € §,, (F%, W) is again a MHS on Vg and there

is an isomorphism of MHSs (F*, W5) — (£, wW3).
Proof of the claim ii. 1t is known that G acts transitively on &4, and

Sy =G/K;, where K, ={M € G| MF} =F;}.

There always holds G = Wos(G)KT(cf. [28] (5.24),p. 242). Thus the group Wos(G)
acts transitively on &, and there is a M € Wos (G) such that

7 =M(r) and F% = MF?, F& = MF = MF.
Since M respects (W¥ @ C),, we have isomorphisms
M FrGrVVe = FLGrl Ve, Va
M FGr Ve = Fo Gl Ve va.
Thus, (F*, W) is a MHS on Vg and M induces an isomorphism of MHSs
M« (E7. W) — (F2, W),

3. Let F* = (0 C F' C F%(= V¢)) be a Hodge filtration in &, and N € C(5).

Claim iii. Suppose that (F*, W3, N,) is a PMHS, then F*® is in §V.

After the claim iii, the statement 3 will be true by using the corollary [[.T4] and
the statement 1 in this theorem : We have the fact that if (F*, W3, Ny,7) is a
PMHS for one certain Ny € C () then (F*, W3, N, ) is again a PMHS for any
N e C(3).

We now begin to prove the claim iii by the following steps (A) to (C).

(A):From the MHS (F*, W), we obtain the following facts :
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) (GrgVSV@, F’GrgVSVC) is a Hodge structure of pure weight zero, and so
F'NIm(N)c = FINnIm(N)c = {0}.

° (Gr?fg Vo, F'GrWSVC) is a Hodge structure of pure weight one. By defi-
nition,

F'Gr¥V° Ve = F! N Ker(N)c.

. (Grng Vo, F'Grgngc) has a rational Hodge structure of pure type (1, 1).
Thus

FlGrgVSVC = F1GrY Ve = GrEVSVc,

and so N(F') = N(F1) = Im(N)c, ker(N)c + F* = Ker(N) + F = V¢.
(B):We show that F' N F! =Tm(N)Y% = (W ® C)V.
e Im(N)L CF! NFT: Since (GrgngQ, F'Gr‘Z/VSV(C) is polarized ¥ (-, N(+)),
we have that Im(N)¥ = (N(F1))¥ ¢ F! and Im(N){ = (N(FY))V ¢ FL.
Then

Im(N)¢ € F'NFLand F! ¢ (Im(N)¥)*.

o FINFIC Im(N){ : Let v be an arbitrary vector in E := F! N FL By
the second equality in(1) of the lemma [[L.T5] v can be written uniquely
as

v = v + v2, where v; € Im(N)¢, vy € Ker(N)c.

AsIm(N)¢ C E, we have vy = v—v; € E and so vy € Ker(N)cNE. Since
the weight one Hodge structure (GY¥V3 Vo, F 'Gr?fg V) is polarized by the
form 1, we must have that /—T1(F!NKer(N)c, F1 N Ker(N)c) > 0. On
the other hand, the v/—1¢(v2, T3) is zero by that ¢¥(E, E) = ¢(E, E) = 0.
Thus v =0 and v € F' N F1.

(C):Due to the fact Im(N)¢ N Ker(N)c = {0}, we get that

Ve = Im(N)¢ & Ker(N)¢c and F' = Im(N)¢ @ F* 0 Ker(N)c.
Since that (F', F') = ¢ (F!, F1) = 0 and
V—1p(F' nKer(N)c, FL NKer(N)c) > 0,

we must have that /—1¢)(F!, F1) > 0, which is equivalent to that F* € S,.
O
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2. TOROIDAL COMPACTIFICATIONS AND THEIR INFINITY BOUNDARY DIVISORS

Let T’ C Sp(g, Z) be an arithmetic subgroup.Denote by §;, the cusp F(V*)), which
is a cusp of depth g — k isomorphic to Hy.

According to the corollary [LT2] we define w8 := Lie(US(R)) = W5,(g) and vS :=
Lie(VS(R)) = W3,(g) for any cusp §. We note that the Lie algebra v¥ is identified
with the space g=! and that dimg(C(F)) = k(k + 1)/2 if § is a k-th cusp.

2.1. Equivalent toroidal embedding. Let N be a lattice, i.e., a free Z-module
of finite rank and M = NV := Homg(N,Z) its dual. We fix isomorphisms M =
74, N =2 7% The lattice N can be regarded as the group of 1-parameter subgroups
of the algebraic torus Ty := SpecC[M]. Actually, any a = (aj,--- ,aq) € N = Z¢
corresponds to a unique one-parameter subgroup A, : G, — Tn given by A\, (t) =
(5, -+, t57) € Ty (C)Vt € G, (C). We also note that Ty = Homgz (M, G,,). On the
other hand, the dual lattice M can be regarded as X (7T )(the group of characters
of Tn). Any m = (my, - ,mq) € M corresponds to a unique x™ € X (Ty) given by

X"ty s ta) = ) € G (C) = C*VY(ty, -+ ,tq) € Ty (C) = (C*).
Obviously, the lattices M, N are related by a non-degenerated canonical pairing
M x N —7Z (m,a) —< m,a >,

where < m,a > is determined by x™ (A, (t)) = <™ t € C*.
A convex rational polyhedral cone in Ng is a subset ¢ C Ng such that

t
o= {ZAiyi\)\,- ERsg, i=1,---,t}

i=1
for a finite number of vectors y; € Ng,i =1,--- ,t; its dual of o is defined to be
o/ ={me Mg| <m,u>>0Vuc o},

which in fact is a convex rational polyhedral cone in Mp; dim o is defined to be the di-
mension of the smallest subspace of Ng containing o; a face of ¢ is a convex rational
polyhedral cone ¢’ in N such that o/ = oN{v € Ng|\(z) = 0} for some X € c¥NMy,
denoted by ¢’ < 0. A 1-dimensional convex rational polyhedral cone is called an
edge. Any convex rational polyhedral cone o endows an affine toric variety
Xy = SpecC[o¥ N M] where CloV N M] :={ > amxyt x|, €
m=(my,-,mq)€cYNM

C}. A face T of o induces an open immersion X, <— X, of affine varieties, so that
X, can be identified with an open subvariety of X,.

A convex rational polyhedral cone o of Ny is called strong if and only if cN(—0) =
{0}. A strong rational convex polyhedral cone o in N is said regular(with respect
to V) provided that o is generated by part of a Z-basis of N. A fan of N is defined
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to be a nonempty collection ¥ = {o,} of convex rational polyhedral cones in Ng
such that

e all cones in ¥ are strong;
e if ¢’ is a face of a cone o € X, then 0’ € X;
e for any two o, 7 € 3, the intersection ¢ N 7 is a face of both ¢ and 7.

The set of all edges in a fan ¥ is denoted by ¥(1). A fan ¥ is said regular(with
respect to N) if all 0 € ¥ are regular. A fan ¥ = {0,} of N determines a separate

scheme Xy, := |J X, by patching together the X, ’s along the Xoanog's-
oeY
Let ¥ be an arbitrary fan of V. In general, the associated scheme Xy is normal and

locally of finite type over C. The Xy, is smooth if and only if 3 is regular, moreover
Xy is of finite type over C if and only if ¥ is a finite collection of convex rational
polyhedral cones. Let o, be any cone in Y. Since ¢ spans Mg, there is an open
immersion of the algebraic torus T := SpecC[M] in X, = Speck[o,, N M](We call
Tn C X, a toric embedding). The action T X Ty — Tx given by the translation
in Ty can be extended to an action T x X,, — X,,. The open immersion X, —
Xy, induced by a face 7 < o, is certainly equivariant with respect to the actions
of Ty. Therefore, there is a natural open immersion Ty —» Xy, with the unique
action Ty on Xy extending Tn’s action on each Xoﬁ.

Proposition 2.1 (Cf.[1],[191&[15]). Let ¥ = {04} be a fan of a lattice N.

1. There is a bijection between the set of cones in X and the set of orbits in Xy,
and there holds dim o, + dimc O%* = dim¢ T. Moreover, o, C op if and only

if 098 C O”ad, where O denotes the closure in both the classical and Zariski
topologies of Xx. In particular, each edge p € 3 gives a codimension one closed
subscheme D, = o in X, which actually is a Tn-invariant prime divisor of
Xs.
2. The collection {O%>} is a stratification of Xy, in the classical analytic topology.
Furthermore, X, = [] O°, o = [1 ©° for any cone T € X.
6<T deX, 0T
Corollary 2.2. Let X be a fan of a lattice N and Xx. the associated scheme with
torus embedding T := SpecC[NV].

— . .
1. For any cone o € ¥, O7° is a closed subscheme of Xs, with only normal singu-

larities; moreover, 0 is smooth if 3 is a regular fan.

2. Assume that every low-dimensional cone T € X(dimT < rankN) is a face of
some top-dimensional cone omax € L(i.e., dimomax = rankN ). If ¥ is a reg-
ular fan then the infinity boundary Do = Xx \ Tn is simple normal crossing,
i.e., all irreducible components of Dy, are smooth and they intersect each other
transversely.

Proof. Tt is a direct consequence of the proposition 211 O
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2.2. Admissible families of polyhedral decompositions. In [I], Mumford and
his coworkers have constructed explicitly a class of toroidal compactifications of D /T’
for each bounded symmetric domain D with an arithmetic subgroup I' C Aut(D).
Actually, the compactification is determined by a certain combinatorial I'-admissible
rational polyhedral cone decompositions.

We define a partial order on the set of cusps of $), : For any two cusps §(WW;) and
§(Wa), we say §(W1) < F(Ws) if and only if Wy C Wi. According to this partial
order, §F({0}) = 9, is the unique maximal element, and a cusp of depth g is called a
minimal cusp(or minimal rational boundary component) of £,. We call §j
the standard minimal cusp of §),.

Definition 2.3 (Cf.[26]). Suppose that C' is an open cone in a real vector space Eg,
where Fr has an underlying integral structure Fy, i.e.,Er = Ez ®zR. A (rational)
boundary component of C' is a cone C' = (C N E')°(denote by C' < C) given
by a linear (rationally-defined) subspace E' of Eg with E' N C = 0, where C is the
closure of the cone C' in ER. The rational closure C'° of C is the union of all
rational boundary components of C.

We note that any proper rational boundary component of C'(§) is of form C (S/)
where § is a cusp with §o < § (cf.Theorem 3 in §4.4 of Chap.IIT [I]).

Lemma 2.4. Let §(W1) and F(W2) be two cusps of 4. The cusp F(W1 N W) has
following properties :

1. There is uSW1W2) « 8W1) A 8W2) - Moreover, if there is a maximal isotropic
subspace W of Vi containing Wi U Wa then uSW1nW2) — ¢8(W1) n ,8(W2)
2. If Wiy N Wy is a proper subspace of W1 then

wWSWIW2) A C(FWY)) = 0 and C(FW1 N W) N C(F (W) = 0.
3. The equalities
CFEFWLNWy)) =CFWy))N LSWVINW2) _ CEW)) N WSW1nW2)

are held. If there is a maximal isotropic subspace W of Vg containing W1 U Wy
then

CEW)) NCEW2)) = CEFWLNWa)).

Remark. The lemma implies that C(F(W1NW3)) is a rational boundary component
of both C(F(W1)) and C(F(W2)). The equalities in (3) are also true even if we replace

T~ — ~Ic

C (%) with C(3)

Proof of the lemma[2.7. Let U =W;NWa. Then UY C W)Y NWy and Wi+ Ws- C
U+. For any cusp §(W), we have

(2.4.1) SV =W —tHeg | HWY) C W and HW') = 0}.
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1. Since WY @ Wit = Wy @ Wit = UY @ U+ = Vg, the equality Z4.1] says there
holds
WSO = 8W1) o 8(W2)

Because there is a maximal isotropic subspace W of Vg containing both W; and
W, the space W + W is isotropic in W so that dim(Wy+Ws)+ = 2g—dim(W; +
Wy) and UL = Wit + W5t Let N € u5W1) 0 y8V2) Then we have

NUY)c NWY nWy) Cc NWY)NNWyY)C WynWy =U

and N(U+t) = N(Wit + Wih) = 0 Thus w31 N uSW2)  80U),

2. Recall C(F(W)) := {N € «W) | 4(-,N(-)) > 0 on %} Let N € «5(Y) be an
arbitrary element. Consider the filtration 0 C U € Wy € Wit € U+ € Vg, we
obtain that (-, N(-)) is semi-positive but not positive on Vg /Wi since N(U+) =
0. Thus, u3) N C(F(W)) = 0.

3. Tt is sufficient to prove that C(F(U)) = C(F(W1)) N udW) = C(F(W3)) NusW)
for any rational defined subspace U of W; with U C W1, U C Ws. Let U be an
arbitrary rational defined subspace U of Wj such that U C Wy, U C Wi, We
have that C(F(W)) = {N € «5W) | (-, N(-)) is semi-positive on m‘jﬂi }. Let N €

C(F(U)) be an arbitrary element. Using the above argument in (2), we get that

the bilinear form ¢ (-, N(+)) is semi-positive on VR/Wl and N € C(F(W7))nus¥),

On the other hand, C'(F(W1)) Nu¥Y) ¢ C(F(U)) is clear.

O

Let § be an arbitrary cusp of $),. Since the Lie group U 5(C) is connected and
N? =0 for any N € ug by the lemma [[LT3] the exponential map exp : ug =,
US(C) ¢ = Iy, + ¢ is an isomorphism. We can identify US(C) with its Lie algebra
ug by this isomorphism and regard US (C) as a complex space. Moreover, for any
ring M in {Z, Q, R, C}, US(N)(the set of all R-points of the algebraic group UT) can
be regarded as an Si-module by

(24.2) US(R) = Myt 2(R) Nud,

Therefore US(C) has a natural integer structure US(Z) and for any ring % in
{Z,Q,R,C}, there is an isomorphism US(Z) @z | = US(SR). The corollary
ensures that any element v € N¥(Z) defines an automorphism 7 : US(Z) —
US(Z), u+ yuy~t. Thus we obtain a group morphism jz : N¥ — Aut(U?%) such
that there is

jg : NS(R) = Aut(US(R)) v =7 = ((-) = ()7 )

for any Z-algebra R. We see that if v € US then 7 is the identity in Aut(UY).
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In general, there is the Levi-decomposition of N¥, i.e., a semi-product of rational
algebraic groups(cf.[TT]&[I]): NS = (Gg X G?) WS. Moreover, we have :
————
direct product
o Thepyz: NS — G% and p;z: NS — Gl3 are surjective and defined over Q,
e the G¥(R) - WS (R) acts trivially on § and the G¥ is semi-simple,
e the GE - WS centralizes US and the G? is reductive without compact factors.

Example 2.5 (Cf.[§] and [26]). Consider the cusp §x, we compute that

Aqy Org—k A1 *

* f * *

N (k) ={ At Opgr A *
Og—ke Og—g—t Og—pps —'f 71

< A An > € Sp(k,R),  fe€GL(g—k,R)}.

€ Sp(g,R) |

Ao Az
L, 00 0
. 0 f 0 0
Gt = (| o b L o | I7eqLy-kR), dets >0},
0 0 0 ff!
~ GL(g- kR)*
L A S I
G (R) = GSH(R)T = gk ( H 12>es k,R
h( ) h( ) { A21 Ok‘,g—k A22 0 | A21 A22 p( ) )}

Og—kk Og—kg—t Og—rir Ig—k
>~ Sp(k,R).

Thus, the action Glgk (R) x C(Fx) — C(Zr) (M, A) — MAM™" is equivalent to
the action GL(g — k,R) x Sym;r_k(R) — Sym;r_k(R) (fou) — f-utf

Lemma 2.6. Let § = §(Wr) be a cusp of $H; where Wr = Wz @ R is a rationally
define subspace of Vg. Let W represent a linear space over Z given by W(R) :=
Wz Q7 R for any Z-algebra SR. Both GlS and Gg are algebraic group defined over Q,
and there are two isomorphisms Gl3 >~ GL(W) and GE =~ Sp(W+/W, ).

Lemma 2.7. The homomorphism jz : NS(R) — Aut(US(R)) induces a homomor-
phism jogz) : N¥(R) — Aut(C(F)). Moreover, joz) factors through pz : NS(R) —
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Glg(R), i.e, there is a commutative diagram

G} (R)

/pl,s \jC(g)

NS(R) —29 5 Aut(C(3))
Proof. 1t is sufficient to prove the statements in case of § = Fj. Let Qg be a fixed
point in C(§). Since Gg - WS centralizes US, We obtain that

C(§) = the orbit of Q for the adjoint action of Gls(R) on US(R)
= the orbit of Qg for the adjoint action of N¥(R) on US(R) .

The first equality is given by the computation in the example Therefore, we get
the jogz) : NS(R) — Aut(C(F)) and jo(g) factors through the morphism py z. O

Define 'y := T NN(F), Ts := jog) (L) Since N(F) € NS(R) and N(F)" =
N3(R)T, the group I'y is a discrete subgroup of the real Lie group N (F)(cf. [23]),
and there is an inclusion I'y = Jo@ TN Glg( ) ESI Aut(US(Z)) N Aut(C(F)).

Definition 2.8 (Cf.[1]&[14]). Let § be a cusp of $, and G an arithmetic subgroup
of Sp(g, Q) with an action on C(§F). A G-admissible polyhedral decomposition
of C(F) is a collection of convex rational polyhedral cones Y5 = {03}, C C(3)
satisfying that Yz is a fan, C() ) Ua and G has an action on the set ¥z

with finitely many orbits. A G—adm1551ble polyhedral decompositions ¥z of C(§) is
regular with respect to an arithmetic subgroup I C Sp(g, Z) if ¥z is regular with
respect to the lattice T N US(Z).

Remark. Each convex rational polyhedral cone in C(F) is automatically strong
since C'(§F) is non-degenerate. Moreover, the construction in [I] implies that every
cone in a I'g-admissible polyhedral decomposition X5 = {o,} of C(F) is actual a
face of one top-dimensional cone in Yz(i.e., a cone o3, € Yz with dimo3,, =

dimg C(3)).

Definition 2.9 (Cf.[1]). Let I' C Sp(g,Z) be an arithmetic subgroup.

1. A I'-admissible family of polyhedral decompositions is a collection {¥3}5
of T'g-admissible polyhedral decompositions Y3 = {03} of C (), § running over
the cusps of £, such that
o if §2 = 1" for some v € I then Xz = v(Zs),

o if §' <F? then X = {63 NC(F?) | 03 € Tz}

2. A T-admissible family of polyhedral decompositions {33}z is called regular if
for any cusp § the I'z-admissible polyhedral decompositions Yz of C(%) is regular
with respect to I'.
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Lemma 2.10 (Cf.[7] and &[26]). Let I' C Sp(g,Z) be an arithmetic subgroup. Let
Y5, := {03} be a Tz, (or GL(g,Z))-admissible polyhedral decomposition of C(o),
where o is the standard minimal cusp of H4. The Xz, endows a I'-admissible family
of polyhedral decompositions {3z}z as follows :

Step 1: For any minimal cusp Fmin = M (Fo) with M € Sp(g,Z), we define
ESmin = M(ESO) = {MOEOM_:L | O‘EO G E3’0}
Step 2: For any cusp §, if Tmin 9 a minimal cusp with §min < § then we
define
55 = Xgnlogy = o4 NCOR) | odm € 5, }-
Moreover, we have :

1. The X, is reqular with respect to I' if 3z, is reqular with respect to Sp(g,Z).
2. If ¥z, is regular with respect to I' then the family {5}z is regular.

2.3. General toroidal compactifications of A,r. Let D(F) := |J a8, for
aeUS (C)
any cusp §. Actually, D(F) = U exp(v—1C)&, C &, since the group W3 (G)
Ceus

acts transitively on &,. Here is another version of the lemma [I.T5]

Proposition 2.11 (Cf.[30],[1],[21],[13]). Let § = F(W) be a cusp of &,4. We have
that D(F) = {F € &, | vV=1¢(v,5) > 0V0 £ v € FNW} and a diffeomorphism

Y ug X vﬂg X F — D(F) (a+ V=1b,c, F) — exp(a + v/ —1b) exp(c)(F)

such that ¢~ (S,) = (u¥ + V=1C(F)) x v3 x §, where F is defined in the lemma
[L13

Corollary 2.12. Let § = §(W) be a cusp of &, with dimg W = k. The space VS (R)
has a natural complex structure such that it is isomorphic to My_y, 1(C). Moreover,

there is an isomorphism ® : US(C) x My_;x(C) x § = D(3F).

We sketch the construction of a general toroidal compactification Z;?IE of Agr
by following [I] in the complex analytic topology. Let X = = {¥z}s be a general
I'-admissible family of polyhedral decompositions. Let § be an arbitrary cusp of §,.
Define Lz := I NUS(Q), Mz = L3 := Homgz(Lg,Z). We have Ly = T'N US(Z) as
I C Sp(g,Z). Using 242 Lz is a full lattice in the vector space US(C) = ug. The

us©c) _ dim u¥
rrosg — (E)T

Then, there is an analytic isomorphism #% =T X vﬂg X § by the embedding of

Siegel domain of third type D(F) = ug X vﬂ‘z X §, so that there is a principal T%-bundle

ml[’}g()@) — ng). We note that if §min is a minimal cusp of §), then D(S)/ug is a

algebraic torus T := SpecC[Mj] is isomorphic analytically to
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space of one single point. For any cone o € X5, we replace Ty with X, by the open

embedding T% =, Xy, and obtain a fiber bundle Ps, : X, X7 Fﬂ[[)](g()(@) — [;(g).
C
Define
N . . g : D(3)

(2.12.1) Az = the interior of the closure of Froe@ Xo X4 FAT3 (@)
Using the similar method that gluing X,’s to construct the scheme Xy, we glue all

. D(3) D(3)» ; . D(3) D(%)
Pz Xo X1y FROs (@) s s to obtain a fiber bundle Py : X5 X7y FROs (@) s

with fiber X5, and we also glue Az ,’s altogether to obtain an analytic space Z,S.

We call Z’S the partial compactification in the direction § of the Siegel variety
Agr. For any cusp § and any element v € I' there is an analytic isomorphism

HS V5 Z/S =, Z;S; and for any two cusps §1 < §2 there is an analytic étale

morphism Hl&gl : Z/32 — Z/31 (cf.Lemma 1 in §5 Chap.III [1]).

Example 2.13 (Cf.[8]). Let § = (W) be a cusp of dimg W =k > 0. Assume I is
neat. We can describe Z3 , in a local coordinate system : Let o be a regular cone in

C(§) of top-dimension k(k +1)/2. As in [1] and [25], we take a Z-basis {(a}lf(k+1)/2
of 'NUS(Q) such that R, ¢y, - - - s R4 Ci(r+1)/2 are all edges of 0. Any u € US(C) can
be written as u = ) uq(s. Then we get an open embedding

85 1 9y — US(C)x My_j 1 (C)xF(W) — CFEFD2 5 My 1 (C)xS(WE /W, by ),

80 that (ug, si,t;) € CFEFD/2 5% Moy 1 (C) x G(W/W, by ) endows a coordinate
system of $),. Thus, we have the following commutative diagram

§,  —=— CHED2 5 My, 1 (C) x S(WE/W, )

(2131) l l(zazzexp(%r\/—ilua),si,tj)
Fm(ﬁ]ﬁ;(@) C (C*)k(k+1)/2 X Mk,g—k((c) % 6(WJ‘/W, wW)

and there holds (J{(za, si, ;) € 8370 | zg =0} SN &S,U \ ﬁé’@)

Lemma 2.14. Let X = {Ez}z be a I'-admissible family of polyhedral decomposi-
tions.
1. Let § be a cusp of 9. The collection {S(§,0)}oes; 5 a stratification of Z/%‘ In

particular, S(S,J)Cl = Héezg,éta S(3,0) Vo € X5, where S(3, a)d is the closure

of §(F,0) in ZIS' Moreover, the open embedding Ug(:= ﬁé’@)) SIS Z,S s a
toroidal embedding without self-intersections, i.e., every irreducible component of
73\ Ug is normal.

2. For any two cusps F', & with F* < F2, H/SQW : (Z/gz,ng) — (Z/Sl,U31) s a
toroidal morphism.
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Proof. By carefully reading [I], one can get the proof easily. O

—_—— o ’
The disjoint union A, := | | Z; has a natural T-action. An equivalent relation

R is defined on j; : We say « ~f y for x € Zél,y € Z/32 if and only if there exists

a cusp §3, a point z € Z/33 and a v € I' such that §; < 33,782 = §3 and
(2.14.1)

(g, 5, * Z5, = Z5,) maps z to &, (Mg, o5, © Z5, = Z,5,) maps z to I, . (y).
Shown in §5 — §6 Chap. III. [I], the transitivity condition of the relation R holds

and the relation graph in A, r x Ay 1 is closed. We then obtain a compact Hausdorff

analytic variety 71;?; = 'ig,{, which is called a toroidal compactification of A, r.

The Z;?IE is an algebraic space, but not projective in general. However, a theorem of
Tai(cf.Chap.IV [I]) shows that if ${_, is projective(cf. Chap. IV. of [1]) then _,T(Z"’IE is a

tor

projective variety. The main theorem I in [I] shows that 71;?; is the unique Hausdorff

!

analytic variety containing A, as an open dense subset such that Z;?IE =U 7'(',5(23)
5

and for every cusp § of ), there is an open morphisms 71/3 making the following
diagram commutative

9g
rnus(Q)

(2.14.2) l J/WIS

—tor

s
./4971—‘ > Ag71" .

— Zlg

2.4. Infinity boundary divisors on toroidal compactifications. For a poly-
hedral decomposition Xz, := {030} of C(Fo), all edges in Uz, are taken into two
disjoint sets :

o Interior-edge={p € ¥3,(1) | Int(p) C C(Fo)},
e Boundary-edge={p € X3,(1) | Int(p) N C(Fo) = 0},

where Int(o) is defined to be the set of relative interior points of o € ¥z,. These two
sets are both 'z, (= I'NN(Fo))-invariant for any arithmetic subgroup I' of Sp(g, Z).

Lemma 2.15. Let I' be a neat arithmetic subgroup of Sp(g,Q) and Xz, = {03°},
a T'gz,-admissible polyhedral decomposition of C(F). Let p be an edge in the set
Boundary-edge.

Assume that Xz, is reqular with respect to I'. There is a unique rationally-defined
one dimensional isotropic subspace W, of V(= V) such that Tnt(p) = C(F(W,)).
Moreover, for any cone o € X5, there exists a unique cusp §, such that Fo =X Fs
and Int(o) C C(3s)-
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Proof. By Theorem 3 in §4.4 of Chap.III [I], any proper rational boundary compo-
nent of C(Fo)(cf.Definition 2.3)) is of form C(F1) by a cusp §1 with §p < F1. Thus,
there is a cusp SI different with §y such that §g < SI and p € C(F').

Suppose § = F(W') has dimg W' > 2. By the lemma 210, ¥3, endows a I'-
admissible family of polyhedral decompositions {¥z}z and the decomposition ES’ is

regular to with respect to I'. Since C' (So)rc = |J o0, there exists a top-dimensional

(e}
cone omax € 23, and a face 7 of oyax such that p is an edge of 7 and 7 € ng with

dim7 = dimC (S,) Since the cone o,y is regular, there is a face d of o satisfying
p € 6 and 6 ¢ Y. Thus, we have another cusp F = FW") that W" is not a

subspace of W’ and 6 € Y. Then, p € WSV’ by the lemma 2.4l and so Int(p)

is in a proper rational boundary component of C (sl)

By recursion, we obtain that Int(p) is a proper rational boundary component of
C(8o) and there is a rationally-defined one dimensional isotropic subspace W, of V'
such that Int(p) = C(F(W,)). The uniqueness is due to(3) of the lemma 2.4

The rest can be obtained by similar method. O

Definition 2.16. Let I' C Sp(g,Z) be an arithmetic subgroup and § a cusp of $,.
A Tz-admissible polyhedral decomposition Xz of C(J) is I'-separable if a v € T'z
satisfies v(0) No # {0} for a cone o € Yz then + acts as the identity on the cone o.

Remark. Note that any I'z-admissible polyhedral decomposition ¥z of C(§) can be
subdivided into another regular Tz-admissible polyhedral decomposition S (cf. [I],[14]),
and it is obvious that the regular refinement ig is also I'-separable provided that
Yz is I'-separable.

In fact, our definition of a I'g-admissible polyhedral decomposition with I-separability
is compatible with the condition (ii) in §2.4 Chap IV [14].The following is easy :

Lemma 2.17. Let T be an arithmetic subgroup of Sp(g, Q). Let Xz be a I'z-admissible
polyhedral decomposition of C(§), where § is a cusp of 9.

Assume that the decomposition Xz is reqular with respect to I'. The following two
conditions are equivalent : (i) Sz is ['-separable; (i) if an element v € Tz satisfies
v(o) Mo # {0} for a cone o € Xz then «y acts as the identity on C(F).

t
Proof. A regular top-dimensional cone 0%, = {3 \jyi|\; € R>g, i =1,--- ,t} has
i=1

{y1,--- ,yt} as a Z-basis of ' NU S(Z). Then that X3 is I'-separable if and only if

that any v € I's satisfying (o) No # {0} for some cone o € ¥z acts as the identity

on all cones in {7 € ¥z | 7Nv(c) Na # {0}}. So if v acts as the identity on o3,
then v must act as the identity on C(§).

(]
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Definition 2.18. Let I' C Sp(g,Z) be an arithmetic subgroup. A symmetric
I'-admissible family of polyhedral decompositions is the I['-admissible family
of polyhedral decompositions induced by a T'z,(or GL(g,Z))-admissible polyhedral
decomposition of C'(Fp) as in the lemma 2.J0l A symmetric toroidal compact-
ification of a Siegel variety A, r is a compactification constructed by a symmetric
admissible family of polyhedral decompositions.

When we say a toroidal compactification constructed by some admissible polyhe-
dral decomposition of C'(§p), we always mean a symmetric toroidal compactification.
Due to the lemma 210, we have :

Lemma 2.19. Let I' C Sp(g,Z) be an arithmetic subgroup. Let Xz, be a T, (or

GL(g,Z) )-admissible polyhedral decomposition of C(Fo). Let {Xz}z be the symmetric

I-admissible family of polyhedral decompositions induced by Xz, ( cf.Lemma[2.10).

1. For any cusp § of $g, the induced [z-admissible polyhedral decomposition X5 of
C(F) is I'-separable.

2. For any subgroup T' of T with finite indez, the decomposition Xz, 18 I -separable
as a F'go-admissible polyhedral decomposition.

In general, given a toroidal compactification D /T of a locally symmetric variety
D/T, the toroidal embedding D/T' € D/T is not without self-intersection, the main
theorems IT in [I] says that D/I' ¢ D/T is without monodromy in sense that for
each stratum O the branches of D/T \ D/T through O are not permuted by going
around loops in O. For more efficient applications of toroidal compactifications in
geometry, we continue to exploit the infinity boundary divisors explicitly.

Theorem 2.20. Let I' C Sp(g,Z) be an arithmetic subgroup and let Y3, := {03°}
be a Ty, (or GL(g,Z) )-admissible polyhedral decomposition of C(Fo) where Fo is the
standard minimal cusp of 4. Let Zg,p be the toroidal compactification of Ayr con-
structed by ¥z, and Do := Agr \ Agr the boundary divisor.

Assume that the decomposition Xz, is reqular with respect to I

1. The number of irreducible components of Dy is equal to
[Sp(g,Z) : Tl 4+ [Sp(g, Z) : I'] x #{L'z,-orbits in Interior-edge}.
2. The compactification ./Tth is a smooth compact analytic variety with simple nor-

mal crossing boundary divisor Do, if the group I' is neat and the decomposition
Yz, @s I'-separable.

Proof. We define an equivalent relation on the set of cusps : § ~' § if and only if
there exists an element v € I' such that § = 7§. The equivalent class is denoted by

[
Let {¥z}z be the symmetric I'-admissible family of polyhedral decompositions
induced by the given decomposition ¥z . For any cusp §, we also define an equivalent
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relation on Xz : of ~1s O'g if and only if there exists an element v € I'y such that
ag = y(03). Denoted this equivalent class by [

For each cusp §, a basic fact is that the group I'y/TNUS(R) acts properly discon-
tinuously on Z’S(cf.Proposition 1 in §6.3 Chap.III[I]), thus the morphism 71’5 factors
through a morphism 73 : Zg — 719; so that there is a commutative diagram :

Zy 2 Zg

(2.20.1) ??\« l”
Agr,

where Zz is the quotient of ZIS by I's/T' N US(Q) and prz is a quotient morphism.
Let §', 32 be two arbitrary cusps with §2 < §'. We actually have

T'z1 — orbit of agl in Y31 = (Tz2 — orbit of agl in ¥z2) m Y Vagl €Xpn

by the fact of ¥z1 = {05 € X352 | 05 C C(F!)}. Then, we get an induced morphism
g1 32 Zz1 — Zza. Moreover, Iz 52 is a local isomorphism satisfying the following
commutative diagram

!

’ Hsl,sz

prgl l J{pr'S:Z

g1 52
Zyn —— Zgo.

!

Recall the construction of a general toroidal compactification of $),/T", the con-
dition 2T4.T] of the relation R ensures that the following diagram is commutative :

HB’Q,CH

Z Zg,

2
(2.20.2) M J”m
Ay

for any two cusps §1, T2 with §1 < Fo.

Let §min be an arbitrary minimal cusp. Denote by U = Wﬁmin(z&nin)‘ It is
well-defined as F%(ZIS) = 2;3(2;3) for v € T', V§. Since w%min is an open morphism,
the set iz 1 is open in Ay r. There are useful properties F1-F4 :

F1: Let § be an arbitrary cusp and v an arbitrary element in I'. It is obvious
that there is an induced isomorphism Il3.z : Z3 — Z,3 such that the
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following diagram is commutative

7 Iz 15 7
3 5

Prsl lprw

II
Zy =% 7.

Thus, it is easy to get prz(S(F,03)) = prz(S(F, £(08))) Vol € X5, Vi € I'g,.
For any cone 0% € S5, we define Y(§, [0%]5) := pr(S(§,0%)). The collection
{V(3, [ag]g)}gge& is then a stratification of Zj.

F2: Let §', 32 be two arbitrary cusps with §? < §'. By the lemma 2.14], we
obtain that
. 2 .
(220.3) T (V2 [0 I2)) = { Y@@' [rlz)  if 37 € [0F |z with 7 € S

31,82 0 others

since ¥g1 = {og € 52 | 05 C C(F1)}.
F3: For any cusp §(W) and for any element v in ', §(WN~(WW)) is the unique
minimal one in the set of cusps {§ | F(W) < F, F(v(W)) < §}, and so we

can glue Zzy) and Zy(, gy along Zzy oy w)):
On the other hand, if we restrict the action of the relation R on Z’Smin

then this relation R is reduced to the action of the I'g . on Z/gmin. We indeed
obtain an analytic isomorphism

(2204) ﬂ-gmin : ngin i u[gmin}'

Therefore all 75 : Zz — A, V§ are local isomorphism by the diagram
2.20.2)
F4: Let § be an arbitrary cusp. We define

O(F,[0%5) == m5(V(5, [0%]5)) = m5(S(§, 0%)) ¥o¥ € 5.

Since 7z is a local isomorphism, {O(F, [03]3) is also a stratification

}UgEZg

of 73(Z3). In particular, {O(Fmin, o505, . ) is a stratification

}Ugmin Ezg

min

of Uz . . Furthermore, we have isomorphisms
(2205) 7T%min : y(%min, [Ogmin]%’min) ; O(gmirh [Ogmin]gmin) \v/o-gmin € E%’min'

For any two cusps §min and Slmm, we observe that iz ] # Ll[g/ ] if and only if

[Smin] # [§,5,)- Thus, the toroidal compactification Ay r is covered by [Sp(g,Z) : T
[Sp(9,Z):T"] ,

different open sets, i.e., Zg,p = U u[gi ] where §7 ;’s are minimal cusps such
7,:1 min
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that [§;,] # [§%,,] if i # j. Therefore, to study D on A, r, it is sufficient to study
all codimension-one strata on g, .

We always fixed &nm as the standard minimal cusp §o. Let p be an edge in Y5,
and O(So, [plz,) the associated stratum in Uz,

i. Claim 1. Suppose that [Fumin] 7 [So]. That O(Fo, [plzo) iz, 7 O if and only
if there is an element v € I' such that

C (C(F0) \ C(F0) [ (COFmin) \ C(1Fmin))-

Proof of Claim 1.The "if” part : By the lemma [215, there is a cusp §, of
depth one such that §o < §, and Int(p) = C(F,). Clearly, C(3,) is also a
rational boundary component of C(vFmin). Thus, Fo < §p and YFmin < Fp- The
gluing condition [2.17.1], together with[Z20.3 and[Z.20.3 shows that O(Fo, [plz,) N

u[gmin} 7é (Z)
The “only if” part : We have a z € O(Jo, [plg,) such that z € iz N Lz .
By the gluing condition there emzsts ary € T, a cusp § and a point in

mEZ, such that o < § ,YTmin < T andﬂ ()—z Thus the edge p is in

Yy by the lemma and so p € Xz, = 7(2 ). The cusp § can not
be o by the condition [§min] # [Fol. Since p € Ty C Xz, N g, we obtain

C (C(S0) \ C(F0)) N(C(VS8min) \ C(V8min)).
ii. We construct a global irreducible divisor D, in A, r by the edge p as follows :
e Suppose that p is in the set Interior-edge. The claim 1 shows that
o [Sp(g,Z):T]
0o, [olso) CAgr\ | Y -

Let D, be the closure of O(Fo, [plz,) in Agr. D, is a global divisor in A,

and
[Sp(g,Z):T]

Dy C Agr\ U U ) © Mg = Uigg)-
e Suppose that p is in the set boundary—edge. By the above case we also have
that D, C iz, if and only if p is in the set Interior-edge. Thus we can

rearrange the order of § . ’s and get an integer [ > 2 such that

min

O(Jo, [rlz0) Nlgi | # 0, fori=1,---1;
O(Fo, [rl30) ﬂilmmn} = (), for other .

Due to the claim 1, we let p C Y5 and p in C(%inm) \ C(§,;,) only for i =

min

,l. Then, there is a cusp §, of depth one such that p € 3z, and §.; <
Sp for all i = 1,---,1 by the lemma For each integer ¢ in [1,---,1],
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the equality says that O, := 73, (V(F), [plz,)) is in the stratum O; :=
OFhins ['O]Eﬁmn) of Uzi , and Oy is an open subset in each O; since each 7z,
is a local isomorphism. We glue all O, -+, O; together along O, to obtain
an analytic subspace S,. Therefore, the closure D, of S, is a global divisor in
Agr.

Now we begin to prove the statements (1) and(2) in the theorem.

. Define a set

All-boundary-edge := U U v(p).
peBoundary-edge v€Sp(9,Z)

From the construction of the divisor by an edge in ¥3,, we immediately obtain :

the number of irreducible components of D,
= #{I-orbits in All-boundary-edge} + [Sp(g,Z) : I'| x #{I'z,-orbits in Interior-edge}
[Sp(g,Z) : T+ [Sp(g,Z) : T'] x #{['z,-orbits in Interior-edge}.
The last equality is due to the lemma and the fact that every two cusps of
depth one are Sp(g, Z)-equivalent(cf.Remark(4.16) in §5 [260]).

. Suppose that the decomposition of ¥z, is I'-separable. Let § be an arbitrary
cusp. By the lemma 2.19 the induced F_g—admissible polyhedral decomposition
Y5 = {0%} of O(F) is '-separable.

Claim 2. For any v € I'y and nontrivial ol € Yz, the following are equivalent :
, cl cl
i S(F,0%) NSE,(0%) #0,
ii. 7y acts as the identity on any cone in the set {T € Xz | 7 = oS }.
cl cl
Proof of Claim 2. Suppose S(F,0%) N S(F,v(c%)) # 0. We have

5.0 = JI S0, and SG A" = [ 8G9

6623,6&0’3 6623,6&7(0"?)

by the lemma([2.14. Because the collection {S(§, 0)}oex; is a stratification of Z,37

we a cone § € Xz such that § = o and § = v(0%). Thus o C § Ny~ 1(4). Since

Y5 is I'-separable, v acts as the identity on any cone T € X5 containing od.
Using similar arguments in Claim 2, we also obtain :

Claim 3. Lety € Tz and let o5 # {0} be a cone in Xg. If S(F,0%)NS(F,v(0%)) #
0 then S(F,0%) = S(T,v(c%)) and the restriction I sls@es) @ S, o) —
S(F,v(c%)) is just the identification on S(F,0").
- & —————
By the claims 2 and 3, we have prg : S(§,0%5) — V(3,[0%]5) V{0} £ 0% €
— ==l
Y. Moreover, The statement(1) of the corollary 22l guarantees that Y(§, [05]z)
has only normal singularities for any nonzero cone o® € Yz. By the symmetry,

we only need to consider singularities in the open set Uz ;. Since 73, : Z5, —
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cd o~

Uz, is an isomorphism, there is an isomorphism 7y, : V(§o, [05]5,) —

cl — =l
O (o, [o3° ]So) for any cone ¢3° € Xz,, where O(Fo,[05°]5,) is the closure

of 0(307 [ ]3’0) in u[%o]
For each edge p in Xz, the global divisor D, has that

L/l

cl
D, Nz = OB, llge) = V(Bos [Plzo) -
Thus D, is a normal variety. In particular D, has non self-intersections.
Since Yz, is regular with respect to I, the statement (2) of the corollary 2.2
cl
guarantees that ZS0 = S5(%,{0}) {0}) is smooth and O(F, [08]3) (2 S(F,0%) )

also smooth for any 0% € Y3 with 0% # {0}. Again by the statement (2) of
the corollary 2.2 we obtain that the irreducible components of D, intersect
transversely.

Now we suppose that I' is neat. The fundamental group of A, r is then isomor-
phic to T, and so T'g/ USNT acts freely on Z/S for any cusp §, thus the morphism

F/S : ZIS — Ay r is étale. Therefore, iz is smooth since that Zl%o is smooth.
O

Remark. Assume the condition that I' is neat and the decomposition Xz, is I'-
separable. When an edge p € X3, is exactly in the set Boundary-edge, by using
the argument in Theorem 2.2 of [32] we can assert that the associated irreducible
boundary divisor D, C .Zg,r‘ \ Agr is actually a smooth toroidal compactification
X of some locally symmetric variety X. The variety X actually has a direct factor
like a Siegel variety A, _; v for some arithmetic subgroup I € Sp(g — 1,7Z) induced
by I'. The toroidal compactification X is then constructed by a I'-admissible family
which is induced by the decomposition ¥Xz,. Moreover, if two edges p2, p2 in Xz, are
both in the set Boundary-edge then D, = D,,.

Definition 2.21. Let I' C Sp(g,Z) be an arithmetic subgroup. Let Xz, := {03°}
be an 'z, (or GL(g,Z))-admissible polyhedral decomposition of C(Jo), and let Ay
be the symmetric toroidal compactification of A, constructed by Xz, .

With respect to the open morphism 77/30 : Z,So — .,Tlg,p, we define :

1. A top-dimensional cone opyax in 3z, is said to be I'-fine if the restriction 71/30| B,
is an isomorphism onto its image for every edge p of itself, where B, is the divisor
constructed by p on Z/SO

2. The constructed symmetric toroidal compactification A, r of Ay is called geo-
metrically I'-fine if the following condition is satisfied : The restriction 71,30| B,
is an isomorphism onto its image, where B, is the divisor on Z’30 constructed by
p, p running over the edges of Xg,.
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The proof of the theorem [2.20] tells us that a I'-separable decomposition Xz, will
induce a geometrically I'-fine symmetric toroidal compactification A, of Ay .

Theorem 2.22. Let I' C Sp(g,Z) be a neat arithmetic subgroup and let ¥z, be
a Tg, (or GL(g,Z))-admissible polyhedral decomposition of C(Fo). Let Ayr be the
toroidal compactification of Agr constructed by 3z, .

Assume that the decomposition X5, is reqular with respect to I'. The following four
conditions are equivalent :

1. Bvery irreducible component of Dy, = 719; \ Ag,r has non self-intersections;

ii. The compactification A, r is geometrically T-fine;

1. the decomposition Xz, ts I'-separable;

w. The infinity boundary divisor Dy, = .,Ttgj \ Agr is simple normal crossing.
Proof. By the corollary 2.2, that (i)<=-(iv) is obviously true. The proof of the
theorem actually shows that (i)<=-(ii) and (iii)==-(ii).

We now begin to show that (ii)=(iii).

Since §o is a minimal cusp of H, Z’SO is isomorphic to the toroidal variety X, .
Let o be an arbitrary cone in ¥3,. Suppose that v € I'z is an element such that
v(o) No #{0}.

We know that 7 := (o) N o is a face of 0. Let p be an arbitrary edge of 7.
Then, p; := 77 1(p) is also an edge of 0. Let B,(resp. B,,) be the divisor on Z/SO
corresponding to the edge p(resp. p1). We must have W’SO(BP) = W%O(Bpl).
Claim(*) v(p) = p: Otheruwise, there is a top-dimensional cone omax € L5, contain-
ing o and so B, intersects with B, transversely by the corollary[Z2 It contradicts
the condition that .,Tlg,p is geometrically I'-fine.

Since 7 is an automorphism of the lattice I' N US°(Z), « acts as the identity on
the edge p so that v acts as the identity on the cone 7.
Claim (**) 7 = o : Otherwise, v(o) and o are two different cone in Xz,. Let
O (resp. ©19)) be the orbit in Z,So corresponding to the cone o (resp. v(o)). Let &
be an edge of . Then O UO) c Bs, O NO?) = (. On the other hand, we also
have 71,50((9”) = 77/30((’)7(”)), so that the image WISO(B(;) must have self-intersections.
It is a contradiction.

Therefore the « acts as the identity on the cone o. O

Example 2.23 (Central cone decomposition). In [I8] and [26], Igusa and Namikawa
introduce a projective GL(g, Z)-admissible rational polyhedral decomposition ¥¢ent (central
cone decomposition) of C(F() containing principal cone

g
o0 = {X = (w55) € Symy(R) | z;; < 0(i # j), inj > 0(V4)},
j=1

which is top-dimensional regular cone with respect to the lattice basis of U (Z). If
g < 3 then the following properties are satisfied:
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e That Yoy is regular with respect to Sp(g, Z), and all edges of top-dimensional
cones in the decomposition Y¢ep are on the boundary of C'(Fo);
e the principal cone oy is the unique maximal cone in Yo up to GL(g,Z).

Therefore, we obtain that if the genus g < 3 then the central cone decomposition Yeent
can not be Sp(g,Z)-separable so that the boundary divisor of the induced toroidal
compactification is not normal crossing.

Corollary 2.24. Let I" C Sp(g,Z) be a neat arithmetic subgroup and let .Zg,r‘ be
a geometrically T'-fine toroidal compactification of the Siegel variety Agr = $H4/T
constructed by a Ty, (or GL(g,Z) )-admissible polyhedral decomposition Xz, := {030}
of C(8o) regular with respect to I', where §o is the standard minimal cusp of 4.

Let Dq,--- , Dy be d different irreducible components of the simple normal crossing
boundary divisor Do = Ayr \ Agr. We have :

1. That Dy N --- N Dg # 0 if and only if that d < dimc Ayr and there exists
a minimal cusp Fmin of Hy and a top-dimensional cone omax in Mg . with d
differential edges p; i = 1,--- ,d such that D; = D, i = 1,--- ,d, where D, is
the divisor constructed by an edge p.

2. Assume that d = dimc Agr. There are only two cases:

e DiN---NDg=0 and so Dy -Dy---Dy = 0.
e DiN---NDy#0 and the intersection number Dy - Dy--- Dy = 1.

Proof. 1t is straightforward by the intersection theory on toric geometry(cf.[15]). O

3. VOLUME FORMS RELATED TO COMPACTIFICATIONS AND CONSTRAINED
CONDITIONS OF DECOMPOSITIONS OF CONES FROM THE VIEWPOINT OF
KAHLER-EINSTEIN METRIC

We still denote §j, the cusp S(V(g_k)) of $y for 1 < k < g. We take coordinate
system T = (7i;)1<i j<g € 94 Of the Siegel space $, = {7 € My(C) | 7 =" 7,Im(7) >
0}. The Bergman metric on ) is

ds? = > 9537 = Tr(drIm(7) " drTm(r) ")

1<i<j<g,1<k<I<g

and its Kahler form is wean = @ > 9; jﬁdnj A d7g;. Then the volume
1<i<j<g,1<k<I<g

form is

1 olgtl) V=1, 9+D

2 _ s _
Wu)can = (T) 2 det(gij7kl)d‘/;]

V=T sotn  dV, B
= (T) 2 W_'CPQ(T)a
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where
(=1
dVy(r) = 2" N\ dmyndr
1<i<j<g
(9=1)g(g+1)(g+2) g(g—1)
= (-1 5 27z (N dmpn( N\ dm)

1<i<j<g 1<i<j<g

(cf.[29]). The Bergman metric is Kéhler-Einstein, i.e.,
— — 1
(3.0.1) vV —100log det(g,; ;) = —v —100log(det Im(7))9"! = %wcan.

Let I' C Sp(g,Z) be a neat arithmetic subgroup. Since($),, ds?) is Sp(g,R)-
invariant, it induces a canonical metric on the smooth Siegel variety A,r = $4/T.
The canonical metric is a complete Kahler-Einstein metric with negative Ricci cur-
vature. The volume form ®, is also Sp(g, R)-invariant, and so we have an induced
volume form @, r on A, r. It is known that @, r is singular at the boundary divisor
Dy = .Zg,r‘ \ Ay r for any smooth toroidal compactification .,Ttgf.

3.1. Volume forms of the Siegel space §), associated to cusps. Associated to
a cusp §4—k, We can write the volume form ®, in the coordinate system explicitly.

Now we identify the Siegel Space £, with &, as in the proposition .2l According
to the embedding

P ug"*k xvgg’k XTg—k = D(Fg—t) (ur+v—Tug, v, F) — exp(us+v/'—1luz) exp(v)(F)

and the isomorphism ¢ : (uSs—+ + /=1C(Fy—k)) X vgg”“ X Sg—k =, Sy in the
proposition 2. TTlwe obtain that

Iy O 0 0 I, 0O 0 A
tAB—'BA
S - { 0 Iy, 0 Z ) —'B I, A % | F
g 0 0 I, O 0 0 I, B
0 0 0 Iy, 0 0 0 I

| Z = X +V-1Y € (Symy(R) + vV—1Sym} (R)), A+ vV—1B € My x(C),F' € §}

by the corollary 212, where Sym; (R) = {Y € Sym,(R) | Y > 0}. Suppose e
$g-k and Z = X + /—1Y € (Symy(R) + v—1Sym; (R))(=$) now. We note that
each F' € T\ can be written as :

T 0
(!)  F. = subspace of V¢ spanned by the column vectors of IO Ook for 7 € Ng—k-
g—k
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Thus, we get
Iy O 0 0 Iy O 0 A
_t t tAB-'BA
S, > o I 0 Z | B I, ‘A 5 F,
0 0 Ijx O 0 0 I,y B T
0 0 0 Iy, 0 0 0 I
7 A
t ! tAB-'BA
= subspace of V¢ spanned by the column vectors of (AI_ TB) Z+ B
g—k
0 I,
= subspace of V¢ spanned by the column vectors of
7 (A— T/B)
’ ’ (*AB+tBA)
YA—7B) Z+tBTB—f
I, i 0
0 Iy,
=: FT1
’ A-7'B
Thus this F! corresponds to a point 7 := ‘A jTIB) 7 4 B(TIB _T (tA)B;rtBA) >

in ), as we describe in the proposition We also have that

B Im(r) —Im(7)B
tm(r) = ( ~'Blm(r') Im(Z)+' Blm(r)B )

and detTm(7) = det Im(7') det Tm(Z). Write 7" = (t;5), A = (ai;), B = (bij), Z =

(Cij)a S = A+ \/—1B = (Sij)7 and U = A — T,B = (U’U) The ((Cij)7(3ij)7(ti,j)
becomes a coordinate system of ), associated to the cusp §4—j. Then,

duij = daij+d(>  tiabay)
= da;; + Zo;mdbaj + forms containing dt
du;; = dai; + imdbaj + forms containing df
duij A du; = —2\/—_13: Im(tio)dai; A dbaj + Y tiakipdba A dbg;

a’ﬁ
+ forms containing dt or dt.
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Thus, we obtain that

V=1 0
27]
= det Im(tij)(/\ da;;j A db;j) + forms containing dt or di
4,3
V-1

= 5 =R det Im(T,)(/\ ds;j A\ ds;;) + forms containing dt or dt .

4,3
Write R := Z +! BT B — w = (r;j), we calculate the volume form in coor-
dinate system (c;;, 55, ti;) of g4 :

dVy(r) = 2%t ( N dtig AdEg) A (Ndug Adag) A (N drig A dT)

1<i<j<g-k ] 1<i<j<k
— 2" detIm(r)( N\ dty Adip) A (Nds Adsg) A (N deig A dep).
1<i<j<g—k ij 1<i<j<k
Define
dVol(r') =25 N\ dty AdEy, dVol(2):=2"7 N\ dey A deg,
1<i<j<g-k 1<i<j<k
and dVol(S) := 2k(g—F) A dsij A ds7;. Since dVol(7') is just the standard

1<i<g—k,1<j<k
Euclidian volume form dVj_j on $,_j, we have that

v—1 g(g;rl) dVg(T)

Py(r) = ( 2 (det Im(7))9+1
/A1 g(gz_ﬂ)detlm(T/)dVg_k/\dVol(S)/\dVol(Z)
= 2 ) (det Tm(7") det Im(Z))9+1
B VT dVOL(S) V=T s dVol(Z)
= Poi(r) A )Y T M (det Tm(2))7+ 1"

Proposition 3.1. Let § = §(VY™) be a k-th cusp of $,.
1. The Siegel space can be written as

/

(A— TIB)

T
ﬁg = {T = ( t(A—T,B) Z—l—t BT/B— (tAB-gtBA) > S MQ(C)

| 7= (tij) € Dgty Z = (cij) € g, S=(s55) = A+V—1B € My 4 ,(C)},

and ((cij), (Sij), (tij)) becomes a coordinate system of £y associated to §.
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2. We have the following formula of volume form :

’ = _ () kel o
@g_k(T )/\(g)k(g k) (deti\nfll,r k—1 /\(ﬂ) 2 (detdl\r/ng(ZZ);ngh 1 < k< 9
1.9t gvol(Z
(Q) 2 —(detlm((Z)gg“’ k=g

Dy(r) =

3.2. Local volume forms of low-degree Siegel varieties. For any two integers
L, (awﬁ) = (Z,j),
0, others.

We compute volume forms of Siegel varieties Ay, of low genus g with respect
to certain special compactifications. Let ¢ = 2 or 3 in this subsection. Let Ycepnt
be the central cone decomposition of C(§p) and oy the principal cone in Yeep de-
fined in the example 22231 We can write down the cone oq clearly(cf.[18],[26]) :

oo=9{ > Ai;jG,; | Nij € Rso} such that every edge R>((; ; is in C(%O)rC\C(SO),

1<14,5<g,let E;j = (aqp) be a (g x g)-matrix of aqs = {

1<i<j<g
Ciz::E“, 1 <1< g; —cent .
where i Let .A be the projec-
{ Gji=—Eij—Eji+E;+E; 1<i<j<gy. pro)

tive smooth tor01dal compactification constructed by the central cone decomposition
Ycent of C(F0). The induced volume form @, := Vo) on Ay is singular at the
boundary divisor D p, 1= .,Tt;?;lt \ Ag.n-

We now calculate the volume form on Siegel space §), associated to the cusp §p.
Let

) i =nki, for 1 <i<g;
= n(—Ei; —Ej;+Ei;+E;;), forl<i<j<y.

The {(}'; }1<i<j<g is a basis of Sym (R), and it also can be regarded as a lattice basis
of T'(n) N U (Q). We note that R>o(" ;1 <i<j<gare all edges of the principal

cone og in Yeent. Since the Z = (ng)lgwgg in the proposition Bl can be written as
Z= > z;(y, we get that

1<i<j<g
g
Z = 3w+ Y zid
1<i<j<g =1
g Jj—1 g
= n( > #i(-Ej—Ei)+> (zi+ > a5+ > zi)Esy).
1<i<j<g j=1 =1 I=j+1
g
On the other hand, Z = >  «¢;;(Eij + Ej;) + Y cuFyy. Thus, we have that

1<i<j<g =1

Cij = Cj; = nzw, forl1 <i<j<ug;

-1

¢jj = n(zj; + Z 25 + Z zj1) = n(zj; +my), for1<j<g.
=1 l=j+1
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Let Z := Z/n. We calculate the volume form ®, in the coordinate system (z;;) :

Az = N\ dey =£n90t2 A dzy,

1<i<j<g 1<i<j<g
(g9=1)
29 E /\ dzij AN d@
V=1, g(g+D) 1<i<j<g
(3.1.1) CI)g(T) = ( ) 2 7 -
2 (det Im(Z))9+
where
Z11+m1 _zlj _Zlg
_zlg e _ng “ e zgg _|_ mg gxg
Recall the example 2.13] we have a commutative diagram
G — S US(C) = coletD/2
l lwij::exp(%r\/—ilzij)

§,/TNUS(Q) < (C*)9lg+1)/2
and the partial compactification

g+1

Agooo = {z = (wij)i<ic<j<qg € C99+D/2 | there exists a neighborhood

ootz o N
A, of x such that A, N (C*) - T(1) N US(Q) 2

Define ggo,ao = &30700 - U {(wij) € &30700 | Wij = 0}‘ The volume on ﬁ%mfm
1<i<j<g
becomes
g9(g—1)
272 /\ dwij A dwij
V=1, gte+1) 1<i<j<g
(3.1.2) Py (wij) = (——) 2 2 +1
( II  |wil*)(detlog [W])9

2
I<i<j<g
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where
log |lwii]|+q1 -+ —loglwy;| - —log |wig|
log [W| = —loglwy;| -+ loglwjj[+q; -+  —loglwjl :
“loglur,| o —logluggl - loglugl+a /.,
7j—1
q¢; = —2mIm(m;) Zlog|wl]|+ Z log |lwj| 1<j<g.
=1 I=j+1

For genus g = 2, Wang has already obtained the volume form of this type in [32].
However, we should be careful that if g < 3 then (w;;) can not be a local coordinate

system of Z;‘fﬁt with respect to the central cone decomposition Ycene of C(Fo) as we
point out in the example 2.23]

3.3. Global volume forms on Siegel varieties A;p. Let S5, := {03°} be a
Iz, (or GL(g,Z))-admissible polyhedral decomposition of C(Fo) regular with respect
to an arithmetic subgroup I' C Sp(g,Z). Let omax be a top-dimensional cone in ¥z, .

The cone omax is generated by a lattice basis of US N T, and then we can endows a
g(g+1)

g(g+1)
marking order on this lattice basis. We have op,,x = E R>ol‘_5 where {ﬁ e

. . . . 1
is the marking basis of US° NT'. We write l(u; = li,j5i,j forp=1,---, %,
l<i<j<
. 0;s = Fi g, 1<i<yg;
where {0; j},_, ., is a Z-basis of Sym(Z) given by{ 522 _ (é,z] 4B, l<i<j<g

g(g;'l) X g(g+1)) integral matrix

Then, we have a (

lil l%,2 T lg Lg l;g
(3.1.3) Lo(ome {IG0D = | 0 o L :
9(92+1) 9(92+1) g(g;rl) 9(92+1)
ll,l ll,2 e lg—l,g lgvg

We define lattice volume of the top-dimensional cone o to be

(314) VOlF(Umax) = ’ det(LF(UmaX)v {m})h

9(9+1)

which is a positive integer independent of the marking order of the basis {ﬁ $ue

Theorem 3.2. Let I' C Sp(g,Z) be a neat arithmetic subgroup and Xz, a Tz, (or
GL(g,Z))-admissible polyhedral decomposition of C(Fo) regular with respect to I'.
Let Ayr be the toroidal compactification of Ay := $4/T" constructed by Xg,.
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Assume that the boundary divisor Dy, := .,Ttgj \ Ag.r is simple normal crossing.
For each irreducible component D; of Do, =] D;, let s; be the global section of the
i

line bundle [D;] defining D;. Let omax be an arbitrary top-dimensional cone in 3z,
and renumber all components D;’s of Do, such that Dy, --- ,Dg(g+1) corresponds to
2

the edges of omax with marking order.

1. The volume ®4r on Agr can be represented by

g(g—1)
277 volp (0max)? dVy
g(g+1) )

1
T3 NsidP)FSa (og lsallr, -+ 1og [Is statn latarn )

(3.2.1) O, =

where dV, is a continuous volume form on a partial compactification Uy, C Ay
of Agr, each || - ||; is a suitable Hermitian metric of the line bundle [D;] on
Agr(1 < i < glg+1)/2) and Fy,,,, € Z[x1, - ,x4411)2] is a homogenous
polynomial of degree g. Moreover, the coefficients of F,;_ . only depend on both I’
and omax with marking order of edges.

max

2. Moreover, the polynomial F,_, (x1, - ,Tqu+1 ) Satisfies the following equation
2
aFO’max
82 o1
F . OF o max OF 5 hax
det (Fa'max(ﬂ)i,j _ : —890!11& , e, 8xg(;nf1) )
8:Eia$j OF 5pax I
0z g(g+1)

g(g+1) g(g—1)
2

2 Volp(gmax)2p(g+l)(g—l)'

Omax

~ (-1

Remark 3.3. Let H, . (T1, - ,Tg0+1)) = —logFy . (=21, -+, —Tg+1)). The
2 2

equation in the statement (3) becomes

(92HU g(g—1)

3.3.1 det(——=—"2);, =2 2z volp(o 2 ex 1)H, .

(331) (o) () 0((9 + 1) i)

By the formula [4.0.2] in the next section, it is a real Monge-Ampére of elliptic type
(g+1)

on the domain {(x1, -+ ,Zgu+n) € R™%2 | z; > CVi} for some positive number C.

2

Proof of the theorem [3.2. Let N = w. Let §min be an arbitrary minimal cusp
of g4, and let o be any top-dimensional cone in the decomposition ¥z . induced
by ¥z, (cf. Lemma 2I0). Recall the local chart (Ag. ., (w{,--- ,w%)) inZIZI and
2.13] we have

g c %
I'NU¥min (Q) Agminvg

/ ’
J{ 7lh’min l et a‘le

9,7 —<— A,r
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with a toroidal embedding #{i’m@) SN Agminﬁ(cf.Lemma [2.14). There are facts
. . / . g . "
i.  The morphism mg Fromn@) $g/T is surjective.

ii. Define Wg . » = W’Smin(ﬁgmimg). Since A, is geometrically fine, the restric-
tion map WISmiJ{wf:O} is an isomorphism onto its image for each w]. Thus,
(W00 (W], -+ ,w%;)) becomes a coordinate neighborhood of A, r.

N
iil. That Wg = Wg, .0\ Do =9/ where Wg = Wg . o\ 'Ul{w;-’ = 0}.
1=

iv. The compactification .,Ttgj is covered by finitely many open sets of the form
Ws s, where § is a minimal cusp of $, and 0 is a top-dimensional cone in the
decomposition Xz.

Now, we begin to prove the statements 1 — 3 :
Let omax be an arbitrary top-dimensional cone in the decomposition Yz,. We take
a coordinate chart (VVé‘O ma? (wi,- -+ ,wn)) on Ay constructed by omax as above

such that D; N W5, = {w; = 0} for any integer i € [1, —9(9;1)].

Omax

1. By Theorem 4.1 in [32] or by similar calculations as in 312l the volume form

®,r on the chart (Wg , (w1, -+, wy)) can be written as

(g=1)
(SN2 5 volp (omax)? A dw; A diT;
1<i<N

Omax ( H ‘wi‘2)(F0'max(]‘Og ’w1’7 710g‘wN’))g+l
1<i<N

(3.3.2) o

where F,_ . € Z[x1, -+ ,xn]is a homogenous polynomial of degree g. It is obvious
that the coefficients of Fy . only depend on I' and oax with marking order of
edges.

Let U

omax -= W30,0max — Uz;ﬁ] D;N D]_ The U,
of A, r satisfying that A, r C Uy, C Agr. We can choose a Hermitian metrics

|| - ||; of line bundle [D;] on Ay, by setting

is a partial compactification

max

\Isill? = pilw|* on U

Omax

) F, 1 ol . .. .
for 1 < ¢ < N such that u := o (108 lls1ll logllsnlln) g o positive function on
Fﬂrnax(log‘wllv"'vlogleIN)

Ag.n by the Lemma Again by the Lemma 5] we can choose the following
continuous volume form dV, on Uy, . given by

max

N
v—1
dv, = ( Wt [T e) N\ dwi A dwm;
=1

2 )
1<i<N
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which is smooth on A, ,. Then, we obtain that the form ®,r on Ay r can be
represented by

9(g—1)

2 Vol (0max )2 AV,

q)g,l“ =

~ .
1

(Hlez'H ) (0g [[s1]1, -, log [swv||v)

]:

2. With respect to the coordinate chart (Wgoﬁmax, (wi,--- ,wn)) on Ay 1, we define
G(wi, - ,wN) = Fg . (log|wi], - ,log|wy]|). By the Kéhler-Einstein metric,
we get that

—9—1 N
— )2
(=L

g(g—1)
2 VOIF(O'maX)2 /\ dw; N dw;
1<i<N

N
= G lwil?)(0910g GITHN
j=1

N
_ (g+1NG9+1H aaG _9GADG

G2)

N
= (9+1NG9+1Hw1\ Z g dwi A dwp) ™.

7.]

Let Fy = Lomacitntn) g Fy i Sl for all 1 < 0, 4 < N. On

the Slegel variety Agr, we have :

F;(log |wy], - - ,log |w
Gwi(wh...,wN) — 2( g| 1|2w2 g| N|)7
Fi(log |wy], - - ,log |w
GUT;(“’I,“',’LU]\/) _ z( g’ 1’2Wi g\ ND’
Guw (w1, - ,wy) = F;i(log Jwil,- -+ ,log|wn])
o ’ ’ 4’[0210_] )
(g=1)
(et (Fop iy = FiFy)i j—(~1) N2 volr (max) 2ESD6 ) (log fun |, -+, log [wyy]) =
We also have
8210gF Fl
(B = (B By = Fiy )i = Fr(Fidig—| ¢ | (B o By ).
0T
Fn

O

Example 3.4. Let I' = I'(n) for some fixed integer n > 3. We consider volume
forms on the genus two Siegel variety Ay, with same notations in the theorem
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3

—
Let omax = {>_ Aili |\ € R>g, @ = 1,---,3} be a top-dimensional cone in ¥z,
i=1
=5

- = =
where [y, lo, 3 satisfies that

_?_ ) 1 0 ) 01 ) 0 0 o ;1 QA2
° ll—n(aﬂ(O O>+alg<1 O>+a13<0 1>)—n<ai2 CLig)foreach

2'7
e all q;; are integers and D := {’/volp(crnm,m)2 = {’/(det(aij)gxg)2 > 0.

Each Z € §, = Sym(R) + v/—1Sym; (R) can be written as

3

J = Z Zil_z
i=1

zi1a11 + 22a21 + 23031 21a12 + 22022 + 23032
zZ1a12 + 22a22 + 23032  21a13 + 22023 + 23033

Then, the symplectic volume becomes
32D3dz A dze Adzs A dzT A dz A dz3

V=1 )
2 (det Im(Z))3

By = (

zi1a11 + 22a921 + z3a31 21012 + 22022 + 23032

17 1
where Z = 27 =
n 21a12 + 22a99 + z3a32  z1a13 + 22093 + 23033

> . For each inte-

— —
ger 7 in [1, 3], let D; be the smooth divisor on Ay, constructed by [; and let s; be
the global section of [D;] defining D;. Then, the symplectic volume form ®5; on Asg;
can be represented by

2volr (amax)2dVg

Py = .
(IIs1ll1l]s2ll2s3]|3)2F3 . (log||s1|]1,1log ||s2||2,log ||s3][3)

o o (2,9, 2) = Ax? + By? + C2%2 + Loy + Mxz + Nyz
2 2 2
where A = ai1a13 — afy, B = as1a23 — a3,,C = asiazz — a3y, and L = ajra3 +
as1a13 — 2a12a22, M = ayrass + a13a31 — 2a12a32, N = az1a33 + aszasz — 2a22a32.

Here,the polynomial F,,___ is F;

. 8Fomax — 82F‘Umax P
Define variables y; := z,y2 := y,y3 := 2. and let F; = . ,Fip = D59y Vi, j.
Let
G := det(Foy Fyj — FiFy)i<ij<s — (-1)°2(DFg,,.)°

The coefficient of the term ¢ in G is A3P(a;;), where P € Q[(zj)3x3) is a homoge-
nous polynomial such that P(a;j) = 2BM?+2CL*+2AN? —8ABC —2LM N +2D3.
In the polynomial P, the coefficient of the term 23,23,2%; is —2. Thus P is a nonzero
homogenous polynomial of degree 6.
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3.4. Constrained combinational conditions of decompositions of cones. Let
N =g(g +1)/2, and let Sy be the group of permutations of the set {1,---, N}.
yu(i) - yig(i)
For any integer i € [1, N], let Y (i) be a gx g symmetric matrix : . :
ylg(i) T ygg(i)
with N-variables. Each Y (i) can be identified with a 1 x N matrix as

V(@) = (g1 (), y1g(8)s y22(8)s -+ 529 (8), -, 955 (0)s -+ 5 g (), -+, Ygg(4))-

Y(1)
Define Y := }N/(z) . We know that Y is a N x N matrix with N2-variables.
Y(N)
Define D(Y) := det(Y), it is a homogenous polynomial of degree N in Z[Y] :=
Y (s(1))
Z(yri(i))1<k<i<g,1<i<n]. For any ¢ € Sy, we define ¢(Y') := ?(g(z))
Y(s(N))

We begin to show that there is a characteristic variety Q4 by the unique group-
invariant Kahler-Einstein metric on . Define F = det(3Y | ;Y (i)). We have

_ § i iN
F = til...iN(Y)wll Ty
i1+-+iN=9,ix >0

and each ¢;,..;,(Y) € Z[Y] is a homogenous polynomial of degree g. Let

g_F
OF o oF oF
C = det(F(m)i,j— (8717 ER m)),
oF
oxr N

g(g+1) g(g—1)
2

Co = (-1 277 Fltl—1) p(y)2,

We then write Cq := C; — Cs as

(3'4'1) C= Z le"'jN (Y)"E{l e :Eg\J/V
it +in=g(g2—1),jx>0

such that each Cj,..;x (Y) € Q[Y] is a homogenous polynomial of degree g*(g + 1).
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N
Lemma 3.5. For any tuple (j1,---,jn) of non-negative integers with »_ jo =
a=1

g(g* — 1), let Cjy..j5 (Y) € Q[Y] be homogenous polynomials defined in[3.7.1. We
have

C]l]N (§(Y)) = ngfl(l)"'jgfl(]\;) (Y) V§ S SN

Proof. Let ¢ be an arbitrary element in the group Sy. We get

N
det(Dz ¥V (s(D) = Y (st ---aly.
i=1

i1+ +iN=g,i>0
On the other hand,

N N
det(Y_zY(<(0) = det(Y_zo1iyY (D))
i=1 =1

— L i1 L IN
= E tll...ZN(Y):Eg,l(l) LJRBYN
i1+ +in=g,ix>0

i1 io(N)
= DS ey (Ve
to(1)+Fie(N) =9, >0

- Z tjc’l(l)“'j<*1(1\’) (Y)xil o x%\r
N+ +in=9.Jx>0
Therefore, we obtain t;,..;, (s(Y)) = ti 1y i—1 ) (Y) Vip + -+ iy = g with
ir > 0. Since D(5(Y))? = D(Y)?, we prove the statement as well.
(]
The group Sy has a natural action on the set of (N x N)-matrices My n(C) as

B(s(1))
«B) = | Bty | forse sy, B= (B, B, BOV)T) € Myxn(C).

B(s(v))

Since the Sy acts freely on GL(g,C) = {A € Myxn(C) | det A # 0}, the quotient
By := GL(g,C)/Sy is a smooth affine variety.

Lemma 3.6. Let X3, := {03°} be a Tz, (or GL(g,Z))-admissible polyhedral decom-
position of C(§o) reqular with respect to an arithmetic subgroup T' C Sp(g,Z). There

is an injective map of sets vp : {top-dimensional cones in Xz, } = By(Z), where
By(Z) is the set of all integral points of the variety PB,.
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Proof. Let opmax be an arbitrary top-dimensional cone in ¥5,. Let {m }L\f:l be any

N
marking basis of US9(Z) N T such that opax = 5. Rzom. The Lr(0max, {m})
pn=1

in B3 is an element in GL(g,Z), and its projective image [Lr(omax, {m})] in

GL(g,Z)/Sn is independent of the marking order of the basis {{(u }ﬁf:l. Therefore
we can define an injective map

vr : {top-dimensional cones in Xz, } — By(Z)
by sending omax to the equivalent class of Lr(opmax, {m }) in Py(Z). O
Lemma 3.7. Define
Ay ={Z € GL(9,C) | Cjr.jn(Z2) =0 Vi1 + -+ jn = g(g° — 1) with ji, > 0},

where Cj,...jy s are polynomials defined in[3.7.1. The permutation group Sy acts
freely on the affine variety 2.

Proof. By the lemma 35 we obtain that if Z € 2, then ¢(Z) € 2, for all ¢ € Sy.

Thus the group Sy has a free action on . O
Define
(3.7.1) Qg :=Ay/SN.

It is obvious that 9, is an affine variety defined over Q dependent only on $,. We
call Q, the g-KE-characteristic variety.

Theorem 3.8. Let ' C Sp(g,Z) be a neat arithmetic subgroup. Let Xz, := {o3°} be
a Ty, (or GL(g,Z) )-admissible polyhedral decomposition of C(To) regular with respect
to I', where §o is the standard minimal cusp of the Siegel space 4. Let .,Tlgvr be the
toroidal compactification of Agr = 94/ constructed by Xz, .

Assume that the boundary divisor Dy, := .,Ttgj \ Ag.r is simple normal crossing.
There is an injective map of sets

v : {top-dimensional cones in Sz,} —= Q,(7Z),
where Qg(7Z) is the set of all integral points of the g-KE-characteristic variety Q.
Proof. It is straightforward by the theorem and the lemma O

Remark 3.9. Actually, the assumption of normal crossing D, := ./Ttg,r‘ \ Agr in
the theorem [B.8] is not necessary. The theorem [B.8] is true for all smooth toroidal
compactifications. Consider the partial compactification given by the diagram

f)g C USO((C) ~ (Cg(g;l)
l lwizzcxp(%r\/—ilzi)
/T NUS(@Q) ——  (Cr)oltDi2
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with respect to an arbitrary regular top-dimensional cone o € Xz, the (w1, -+, Wgt1) )
2
is always a local coordinate system of the partial compactification even though it
can not be a local coordinate system of A, r, the quotient manifold $,/I' N US(Q)
also has an induced Ké&hler-Einstein metric with volume form [3.3.2l Therefore, the
function Hy (21, ,Zg41)) = —log Fy(—x1, -+, —X gg+1 ) must satisfy the elliptic
2

2
real Monge-Ampére equation B.3.11
4. ASYMPTOTIC BEHAVIOURS OF LOGARITHMICAL CANONICAL LINE BUNDLES

Let N = g(g+1)/2. For any positive integer n, we define a constant C,, = (g)"

In this section, we fix a neat subgroup I' C Sp(g,Z) and a I'z,(or GL(g,Z))-
admissible polyhedral decomposition ¥z, := {030} of C(Fo) regular with respect to T
such that the constructed symmetric toroidal compactification .,Tlg,p of Agr := 9,/T
is geometrically I'-fine, i.e., Dy := Zgy \ Ay is a simple normal crossing divisor.
Let K Agr be the canonical divisor on A, r and hp the metric on the canonical line
bundle O 4, (K4, ) induced by the Bergman metric wean of Ag .

We define D (€) to be tube neighborhood of Do, with radius € for suitable real
number € > 0. For every irreducible component Y of D, we define

Yeor= |J (D;NY) and Y*:=V\ Y.
D;#Y
Then Y, is a simple normal crossing divisor of Y. In the theorem B.2] we show that

there is a system {(Ua, (wf, -+ ,wf))}a of finitely many coordinate charts of the
compactification A, r such that

N
(4.0.1) U :=Ua \ Doo = Agr and Ua N Dy = | J{w;i = 0}.
i=1
On any such coordinate chart (U}, (w,--- ,w%)), the volume form ®,r becomes

(5N volp(oma)? A dwt A duf

o — 1<i<N
“ 7 (icien g P)(Fo(og [wi], - -, log [wy[)9+?
where F* € R[z1,- - ,zy] is a homogenous polynomial in of degree g. We call this

F* the local volume function with respect to the local chart Uj. Write

po .o OFM@n o an) o OOy, aw)
v 8:17@ T 8:17@8217)

1<i,j<N.

Define
Tf‘] = FO‘F{} — EQFJ‘-” 1<i4,57<N.
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We have a N x N matrix T¢ := (Tf]) such that each T7?; is a homogenous polynomial
of degree 2g — 2 in Rz, ,2n].
Now we begin to compute 99 log ¢, as a distribution form on U, :

00 log @,
= —0dlog [] |’ —(g+1)90log F*(log wf|,--- ,log [wfy|)
1<i<N
= —00log H lw|?
1<i<N
Fo(log [wf], -, log [w§|) Fo(log wf], -+, log Jwfy|)?
N Fo _
= =Y 2+(g+ 1) Zrq (log [wfl, -, log [w}y )89 log |wi'|
i=1
T’gj @ « @ =Y fe]
—(g+1) Z W(log [, -+, log lwy|)0log |wi'| A Olog |wf|.
1<i,7<N
Particularly,
(4.0.2) 90 log ®,, = Z Kij(wf, - wi)dwi A dw§ on Uj.
1<ij<N

is a smooth form on U}, where K = (K ;) is a new N x N matrix given by

_ 1 T (log |lw§],--- ,log |w$
KiJ(w(lx?”' 7w?<7) = (g+ ) a_oj’](ag2‘ 1‘ a g’ ND a VZ"]
4 wiw§ (F)2(log |wg|, - -- 710?;‘70]\/‘)

In general, with respect to an arbitrary smooth toroidal compactification D—/F of
any locally symmetric manifold D/T" with normal crossing boundary divisor, Mum-
ford has shown that any group-invariant Hermitian metric on the homogeneous holo-
morphic cotangent bundle Q}j /T is good on D/T" such that the good extension of

Qh Jr to D /T is just the logarithmical cotangent bundle on D/T" (cf. Main Theorem

3.1 and Proposition 3.4 in Section 1 of [25]).

Lemma 4.1. For any positive integer p, the smooth (p,p)-form (99 log ®,r)P on U}
has Poincaré growth on Deo N Uy (cf.[25] for the definition), and (/=190 log @, )P
18 a positive current on Zg,p.

Proof. The Main Theorem 3.1 and Proposition 3.4 in [25] guarantee that [Kjg -t

D] is the unique extension of O Ag,p(K Ag,r) to 719; such that hp is singular met-
ric good on Agr. Thus ¢1(O4, (K4, ), hp) has Poincaré growth on Du. By the
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Kahler-Einstein equality B.0.1] we get that

+1 -
(Fg—wean)” = (V=100 1log ®,0)" = (21O, (K, ), b))

O

We can make an improvement on the above lemma : By the generalized Schwarz
lemmal(ctf.[34],[9] and [27]), the lemma is true for not only smooth toroidal com-
pactifications but also a general compactification with normal crossings boundary
divisor.

Proposition 4.2. LetT' C Sp(g,Z) be a neat arithmetic subgroup and Xz, a F—go(or

GL(g,Z) )-admissible polyhedral decomposition of C(Fo) regular with respect to T'.

Let Ay 1 be a toroidal compactification of Agr = $4/T constructed by Lz, .
Assume that the boundary divisor Dy, := .,Ttgj \ Ag.r is simple normal crossing.

Let @41 be the standard volume form on Agr. Let p be a positive integer in [1, g(g—;l)]

_ l
and let U := (001og @, r)P. Write Do = |J D;, we have :
j=1

1. Regard ¥ as a singular form U on the compactification Ilgm, we define the re-
striction of ¥ to D; as follows in sense of limit :

(4.2.1) Resp, (99 log ®,r)?) := V|

for each irreducible component D; of Ds. For each D;, the form Resp,((90log Q,1)P)
becomes a smooth form on each D;.

2. For each irreducible component D; of Do, the form Resp,((00log ®,r)P) has
Poincaré growth on the simple normal crossing divisor D; o, of D;. That Resp, ((901og Q,1)P)
becomes a current on D; in sense that the following integral

(4.2.2) / Resp, ((00log @, 1r)P) A o := lim Resp, ((001og @, 1)) A
Di =0 Dz\Tz (E)

is finite for each smooth (g(g+ 1) — 2p — 2)-form « on D;, where T;(€) is a tube
neighborhood of D; . with radius €.

3. For each irreducible component D; of Do, the form Resp,((00log ®41)P) is
closed on D} and (%)pResDi((ﬁglog ®,1)P) is a positive closed current on
D;.

Proof. 1. The statement (1) is a consequence of (4) of the lemma [£5 and the lemma
in the next subsection.

2. By symmetry, we prove the statement (2) for case D; only. It is a local problem
and it is sufficient to prove this statement for p = 1.
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Taking a local chart (Uy, (w§,ws, -+ ,w%)) of Ayr as in L0l we have the
smooth form

_ Tf‘] N N dwst A dw? .
d0log o = —(g+1) Z W(loglwll,--- ,log |wN|)M7—a on U
1<i,j<N w; Wi

Thus, on D} N Uy, the Resp, (001og @, 1) can be written as

= Tf‘] o o dwg A dw}”
Resp, (00log @gr) = —(g+1) Y. (F,;)g (log [wfl, -+, log [wi )| prav, T
2<4,j<N Wi W;

=: E a;,jdwi A dws.
2<4,j<N

Let Vi C D; be a small neighborhood in containing the origin point and U
a small neighborhood in U, such Ehat Uy N Dy = Vy. Let 4,5 be two arbitrary
integers with 2 <4, < N. Since 001log ®,1 has Pincaré growth on U, N Dy, we
have

’ og |lwy |, - ,log|w — on U U
’(PO‘)Q( g wf] el N’)4wf‘w?" |wf‘w?‘||log |wf‘|log|w§‘|| ! @

for a suitable constant. Let w{ — 0, we get

C

|aij| <
7T Jwgws || log [wi | log [wg ]

on ViNDINU;.

Therefore, Resp, (00 log ®, 1) has Poincaré growth on D; oo NU,, and the integral
is finite.

3. It is sufficient to prove the statement(3) in case of D; for p = 1. It is also a
local problem. Take a local chart U, of .,Tlgp. Let V be an open neighborhood in
D} NU,. For a sufficiently small ¢, we define a sub-complex manifold in D*

Vo= {(e,wg, -, wi) | (0,w, - ,wl) €V}

On V,, we have

d(ilh/s)(g’wg"" 7w?<7)
- d(\IJ‘Vg)(E7wg7'” 7w?\lf)
wedw?® + wddw®) A dw® A dws
=Y Quasoglel loglug], - log ugy ) oL BV P dui A duj
2<k,i,j <N i Pt

where Qi j(z1,22, -+ ,xN)’s are rational functions.
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On V, we also have

dResp, (091og @, 1)(wg, -+ ,wh)
(widwy + widwi) A dwf A\ dw§

= Z Py ij(log |w3|, - - -, log [wi])
2<k,i,j<N

g Pugws |

where Py ; j(x2, - ,xn)’s are rational functions.
Let (k,4,j) be an arbitrary triple with 2 < k,4,j < N. Let (29,---,2%) be an
arbitrary point on V. By directly calculating, we get

Piij(log |25, log|=§[) = lim @4 (ogel, log |51, - log |25}
On the other hand,
d(¥[y,) = (d¥)|v. = 0lv. = 0.

Thus Q. ;(log |e],log [25], -+ ,1og|z%|) = 0 for any sufficiently small . There-
fore,
Py i(log |wg|, - loglwy|) =0 onV
and so dResp, (09log ®, 1) = 0.
(]

4.1. Some lemmas on local volume functions. For any polynomial 7"in R[zq,--- , zn],
let deg, T’ be the degree of T with respect to xz;. For example, we write T =
ala:ll+al_1a:ll_1+- -~+ag with a; # 0 where each a; is a polynomial in R[zg, -+ , xn],

then deg,(T) = L.

Lemma 4.3. Let F' be an arbitrary local volume function. We have :
1. That

=2deg, F“ -2, i=j=k
deg), T7; ¢ <2deg, F*—1, i=k, j#koritk j=k
§2deng°‘, Z#k7]7ék

and
degy, det(T7)1<ij<n < 2N degy, F'* — 2.
2. That deg; F* > 1 for alli=1,--- N.
Proof. The (1) and (2) are obvious. We just prove the (3). Otherwise, deg;, F'* =0

for some k. Then T} f and 17 are zero polynomials for all integers j € [1, N], so
that det(7};)1<i,j<n is a zero polynomials. But on Uy,

g(g+1)
2

det(775)(log [wf], -+ ,log [wi]) = (=1) (F)+DE Y (log |wf], - - ,log [wi]) # 0
by the theorem It is a contradiction. O
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For convenience, we now allow any function to take oo value. Let

1
_ o L
vg = —log0" : rl—1>%1+ log -

We have the following reasonable definitions and rules :
0 x vy :=0, ()’ =1,

arvy = lim log(l)o‘ (a € R), avy + Py == (a+ By (a, B € R),

r—0+ r
«a . 1 a —a 1
(1) == T1_1>161+(10g ;) (a € Rsp), (vg)~ % = o (a € Rsp),

Ve x v = 1/8‘+5 (a, B € R).

In this paper, the addition of a/§ and 51/8 is formally written as avf+ 51/8 for any two

nonzero different real numbers a, b(we particularly prohibit to use the rule that c/§+
n m ]

By = avg if a > b); we set the rule of multiplication by (> a;v§")(> ﬁjyg”) =
i=1 j=1

> azﬂngierj . We also allow that any coefficient of a matrix take 4oo

1<i<n,1<j<m

value. A n X n real matrix M is said to be a co-positive if M can be written as

M = Mj + (vg — ¢) My for some positive n x n matrix Mj, some semi-positive n X n

matrix Ms and some non-negative real number c. Certainly, M7, Ms and ¢ are not

unique for any oo-positive matrix M.

Lemma 4.4. The determine of a n x n co-positive matrizc M = My + (vy — ¢) My is
rank(Maz) )
never zero. Moreover, det(M) = Y. ¢} with some finite number Crank(M3) > 0-
i=0

Lemma 4.5. Let n,g be positive integers such that n > g(g + 1)/2. Let B be an
n
open set in (C™, (21, ,2n)) containing (0,---,0) and let B* := B\ |J B; where

=1
Bi = {Zi == 0}
Let M(x1,--- ,xy) be a g X g logarithmical positive matrix function on B*
n
with n real variables x1,--- , &y, t.e., M(z1,--- ,xn) = Y x;E; for n nonzero semi-
i=1
positive symmetric real g X g matrices Ey,--- , E, and M(—log |w1]|,--- ,— log |wy,]|)
is a positive matrix at every point (wq,- -+ ,wy,) in B*.
Let S(x1,- -+ ,xp) :=det(M(x1,- - ,x,)). For any integer i € [1,n], we have :
1. M(—log |wi], -+ ,—log|wy|) is a co-positive matriz at any point (wy, -+ ,wy,) €
B

2. deg; S =rankF;, and

~

S(x1,- yxn) = Si(x1, - Tp -+ ,xn)x?egis + terms with lower degree of x;
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where Si(x1, -+ ZTi -+ ,xy) 18 a homogenous polynomial of degree (g—deg; S) with
n — 1 variables x1,- -+ ,X;—1,Tix1,"** , Tn-

3. There exists a positive number a and a (g —rankFE;) x (g — rankFE;) logarithmical
positive matriz function M;(xy, - Z; -+ ,x,) on Bf == B; \ U (B; N Byy,) such

that

Si(x, - Ty ) = adet(M(i)(m’...@... L Ty)).
Moreover, M@ (—1log |w1], - - _@i‘ <+, —log |wy]) is a co-positive matriz at
any point (wy, - -+ ,wy) € B. In particular, S;(—log |w1|,- -+ —log |w;| - -+, —log |wy])
is mever zero at any point (wq,--+ ,wy,) € B.

4. Leti € [1,n] be an integer and let B} := B; \ U, Bj. Let Q € Rlzy, -+, xy] be
a homogenous polynomial with deg, Q@ < deg; S such that

Q=Qi(xy, Ty - ,xn)x?egiQ + terms with lower degree of x; .
where Q;(x1,---Tj- -+ ,xy) 18 a homogenous polynomial with n—1 variables x1,- -+ ,x;—1,
Tit1,- - ,Zn. Define a function A(zy,--- ,zn) = (Q/S)(—log |z1],--- ,—log |zn])

on B*.

a) That J(wn,---, O e, W) ::tlii%(Q/S)(_IOg lwil,- -, —log|t;],- -+, —log |wy|)

1
exists as a finite real number for any point (wy,---, 0 .- - wy,) € B};

i

b) the function A can be extended to a continuous function A on B*UB?

¥, where

;{(wlu"' 7wn)
— A(w17"' 7wn) (wlu"' 7wn) S B*7
' J(wla"' 7wi—1707wi+17"' 7wn) (wlu"' 7wi—1707wi+17"' 7wn) S B:a

c) Res;j(A):=A

Br s a smooth function on B} .
7

Proof. 1. Tt is sufficient to show that M (—log|wi],--- ,—log|w,|) is a co-positive
n
matrix at any point (wy,--- ,w,) € |J{w; = 0}.
i=1
Let A be a subset of {1,--- ,n}.

Let (wy,- - ,wy,) be a point in | {w; = 0} such that {
=1

1=

w; =0, i €A
(0 75 0, 1 ¢ A
wi(e) =€, P€A
wi(€e) == w;, i ¢ A
It is easy to check that there is a positive ¢y < 1 such that (w(€), - ,wp(€)) € B*
for Ve € (0, eo].

. We

define a system of points {(wy(€),- - ,wy(€)) }eer, given by {
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We always have

M(=log |wi(r)], -, —log|wn(r)]) = M(=log|wi(eo)l,--- ,—log|wn(eo)])

+(—logr +logeg) (Y | E;)

1EA
for any sufficient small real positive number r. Since M (— log w1 (€o)|, - - - , — log |wy, (€p)])
is a positive matrix as (wy(ep),--- ,wn(€0)) € B* and ) ;. E; is a semi-positive
matrix, we obtain M (— log |w|,--- ,—log |wy,]|) is a co-positive matrix and
M (=log |wy],- -+, —log |wa)
= M(—log|wi(eo)l, -, —log|wn(eo)]) + (o —10g ZE
LIS

2. We prove the second and the third statements in this lemma together. By the
symmetry, it is sufficient to prove all statements in case of ¢ = 1.
Since FE7 is semi-positive symmetric and nonzero, Ej is diagonalized by an
orthogonal matrix O such that

M 0 - 0
o’po~|
: o . 0

with
AMZ>Ae 2 2 Ay > 0= X1 = A2 =

where k1 = rank ;.
Then, we have OT MO = zdiag[A1, -+ , A, 0, , 0] + >0, ;0T E;0 and

S = det (zidiag[Ar, -, Ak, 0, 0]+ > 2,07 E;0)
=2

= Pk1($27"' 7mn)(H)‘Z)$If1+ZPk1—z(x27 7$n)ak1—i()‘17 : )‘k1) b= Za

where each Pj(xg,--- ,x,) is a homogenous polynomial of degree g — i and each
a;(y1, -+ ,Yk,) € Rly1, -+ ,yk,] is a homogenous polynomial of degree 1.

For any 2 < j < n, we define EJ(.l) to be the (g — k1,9 — k1) matrix by

deleting rows 1,--- , k1 and columns 1,--- , ky of the matrix OTEjO. So all EZ-(l)
n

are semi-positive. Let MM (zg,--- ,z,) :== 3 ij](-l). Then, MW (zy,--- , x,) is
j=2

the (g9 — k1,9 — k1) matrix by deleting rows_l, -++ ,k1 and columns 1,--- ,k; of
the matrix OT M (zy,- -+ ,2,)0, and Py, (xo,--- ,2,) = det(MD (z9, -, ,,)).
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At any point (w1, - ,wy) € B, MW (=log |ws|,--- , —log |wy]) is a co-positive
(9 — k1,9 — k1) matrix since O M (—log |wy], -, —log |w,|)O is a oo-positive
(g, g) matrix by (1) of this lemma. Let (0, w/2, e ,w;) € Bj be an arbitrary point.
The matrix OT M (- log |e|, — log |w}| - - - , — log |w,,|)O is positive as (¢, wa, - - - ,wy,) €
B* for any nonzero sufficiently small real number ¢, and so M (= log |wy), - - - , — log |w,,|)
is a positive (g — rankF;) x (g — rankF;) matrix. Thus MM (z9,--- ,z,) is a
(9 —rankFE;) x (g —rankFE};) logarithmical positive matrix function on Bj. There-
fore, Py, (—log |wal,- -+, —log|wy]|) is non zero at any point (wy,--- ,w,) € B by
the statement (1) of this lemma. In particular, we have that Py, (z2,--- ,2,) is a
nonzero polynomial and deg; S = rankF).

3. See the proof of the statement(2).
4. Let (wy,---,_0 ,--- ,wy,) € Bf be an arbitrary point. Then (w1, --- ,t;, -+ ,wy)

i
is in B* for any t; € C* with sufficiently small |¢;|. We have that
(— log [t;])95: ¥
S(=loglwy|,---,—log ti| -+, —log [wn])

Q(—log |wi|,--- ,—logt;] - - - , —log |wp])
X
(—log |t;|)desi $

A(w17”’7ti"'7wn) =

for any ¢; € C* near zero point. Since both

(~ gt

lim < 00
t;i—0 S(—log |w], -+, —log|t;| - - , — log |wy])
and
i @ loglwil, -, —loglti -, —logfwal) _
t;—0 (— log |t;])des:i S
exist, J(z1,---,_ 0 ,---,2,) is well-defined on B}. It is easy to check that for
—~—

i
any p € By, there is a neighborhood V,, of p in B* U B/ such that A(z1, -, 2,)
is continues on V. Moreover, we have

Resi(A)(w17"' ’\ 0 p000 7wn)
0, deg; Q < deg; S;
T (—loglw], - —Tlogluwy| -, —log [wy), deg; Q = deg; S.

Thus, Res;(A) is a smooth function on B}.
U

4.2. Behaviors of logarithmical canonical line bundles. Let ?; j = (—1)""7 det(ﬁ-,j)
be the (i, j)-th cofactor of (T}7;) where T ; is a (N — 1) x (N — 1) the matrix that
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from deleting row i and column j of the N x N matrix (7}).

Let INQJ be the (N —1) x (N — 1) the matrix that from deleting row ¢ and column
j of the N x N matrix (K; ;). Let k; ; = (—1)""7 det(K; ;) be the (i,j)-th cofactor
of the matrix (K ;).

For all pair (i,7) with 1 <4,j < N, we define (N — 1, N — 1) simple forms

_ 1<k<N o
dwi® A dw$ AN dwi Adwg, i # g
L ki, k#j
Viji =\ 1<k<n o
A dwy Adwg, 1=7.
ki

By EL0.2, we obtain (9891og @)1 = (N — DN, kiavii — ZE;)SN k;ivig)-

Lemma 4.6. Let h be an arbitrary smooth Hermitian metric on the logarithmical
cotangent bundle [K;lg . 1t Dos]. Then, there holds that

/_ Cl([KZQF +Doo],ﬁ)N—k/\n:/ cl(O-Ag,F(K.Ag’F)7hB)N_k/\T,
Ag,l“ ' Ag,l"

for any d-closed smooth 2k-form(1 <k < N)n on Agr.

Proof. According to the lemma [l the statement can be obtained directly by Mum-
ford’s argument in Theorem 1.4 of [25] and Kolldr argument of 5.18 in [20]. O

Theorem 4.7. Let I' C Sp(g,Z) be a neat arithmetic subgroup and Xz, a Tz, (or
GL(g,2) )-admissible polyhedral decomposition of C(Fo) reqular with respect to T.
Let ngp be the toroidal compactification of Agr = 94/I' constructed by 3z, .

Assume that the boundary divisor Do, 1= .,Tlgvr \ Ag.r is simple normal crossing.
Let D; be an arbitrary irreducible component of Do,. The intersection number

D; - (I, + Do) meAor=t = g

if one of the following conditions is satisfied : (i) g =2, (ii) D; is constructed from
an edge p; in Xz, . for some minimal cusp Fmin such that Int(p;) C C(Fmin)-

Proof. Let || -||; be an arbitrary Hermitian metric on the line bundle [D;] and s; the
global section of [D;] defining D;. By the lemma [£.6] we have :
(4.7.1)

; _ . V-1 _
K4  +Dy)dimeAsr=1. p. — lim ~_901log @, )N A ([Di], 1] - |
(Kz, . ) lim zg,F\Dw<e>( - gT) ([Da], ] 1]4)
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where D (€) is a tube of radius € around Ds,. Thus

1 _ —

_ %_(?)N/A . ()(8alog¢g,p)N_1A8810g||8i||i

g,0 \ oo €
1 —1 — _ =

= lf%)i(?)]v/z (ot P 108 Do) A (O~ D) log] sl

g, oo (€
A _ _ -
- _ll—%?CN_l/aD ()(%log@gr)N LA (0 —9)log || i -

Let (Uq, (wf,--- ,w$)) be alocal chart as in A.0.lsuch that D;NU, = {w{* = 0}.
We write ||s;]]; = ha(w)|w$|? on U,. Then,

/ Cn—1(9010g Bo) V" A (9 — ) log(ha (w)]uwf'?)

ODoo(6)NUq

_ / 1 (89 10g @)V A {2/ TIm(dlog [w]) + (2 — ) log ha(w)}
ODoo(6)NUq

— 2\/—_Hm(C'N—1/ dlog |wi'| A (80 1og (I)a)N_l)
ODoo(6)NUq

+On / (08108 BN~ A (9 — D) log ha ().
ODoo (€)NUq
Using similar calculation as Proposition 1.2 in [25], we get

(4.7.2) lim (90 1og @)V L A (8 — 0) log ho(w) = 0.
€20 /Do (€)NU4

On U} =U, \ Do, we have

1 — _

~ dw? -
= ki, woi /\ dwy, N dw,
@ 1<m< N, m#i

~ du® _
+ E ki m w‘;‘n A /\ dwi* A dwf*
1<m<N,m#i 4 1<I<N,l#m
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Let T}j(e) be the tube neighborhood of {w; = 0} in U, for j = 1,--- ,N. Due to
dw@ Ndw® =0 on ITy(e) := {|wf| = €}, we get

/ dlog |w| A (9D log ®,)N 1
ODoo(6)NUq

= Z/ dlog [wi| A (0D log By )N 1
0T} (€)NOD oo (€)

ki _
- (v- 1)!/ Migwe n N dug Adug
OT;()NODoo (€) Wi 1<m<N,m#i
k; _
+(N —1)! / ’]d 3 A /\ dwi* A dwf.
1< N i Y OTHNIDo () W 1IN ]

Since v/—100log ®,, has Poincaré growth on boundary, the above integral is bounded
uniformly on e.
For any integer j € [1, N| with j # i, we have

g+1

i _ (LNl N-1
we (G 1 )
tij(log [wg],- - -, log [wR|)
X : on 9Tj(e) N 0D (€)
WS (TTy<1on g [0 2) (F) 2N =D (log [wf], - - -, log [w]) ’

where ¢; ; = (—1)"7 det( Zj) is the (i, 7)-th cofactor of the matrix (77 ,,)1<i,m<n-
The lemma [4.3] says

deg;ti; < 2(N —1)deg; F —1Vj #1,

we then get

k; _
(4.7.3) lim gdw AN dwf Aduf =0 YA
€=0Jo1;(€)ndDoo (¢) W 1<ISN 1]

by using the generalized Cauchy integral formula and the Poincaré growth of (90 log ®,)¥ !
Also, we have

k g+1
e — -1 N-1 N-1
= OV
tii(log [wfl, - -+, log [wg)
X — — p — on J9Ti(e) N IDw(€)
wy (H1<l<Nl7$i‘wl 2)(F)2N =D (log [ws|, - - - , log [wf])

where 7; = det( i.i) is the (¢,7)-th cofactor of the matrix (77 ,,,)1<im<n-
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Let d; = deg; F*[x1,- - ,zn]|. We can write
Fa:P(fL'l,“‘ 7@7“' ’xN):L';:ll_‘_ ,
where P is a homogenous polynomial in R[zq,---,&;, -+ ,2n] of degree g — d;. For

any integers [,m in [1,N] \ {i}, we define A;,, := PP, — PPy, where P, =

2 .
E)xalT}:Zm’ P = g—z. We get a (N — 1) x (N — 1) matrix (Az,)ime[1,n)\{i}- Then, the
coefficient of the term x?(N_l)di in ¢;; is just det(A;,,). Again using the generalized

Cauchy integral formula and the Poincaré growth of (091og ®,)V !, we have
i Fid g0 A dwg A
=021/ =1 Jor,(e)noDa () W5 " "

1<m<N,m#i
+1
— (_1)N-1 g N-1
(VRS
det(Aypm)(og [, - log ¥, Joglwgl) A dws A dug,
% 1<m<N,m#i
{we=0t  ([Ty<yenyp [wi ) PP (log [wf], - -, log [w], -, log [w§])

Therefore, we obtain

. 1 \/—1 N o) N-1 )
lim = (Y= log @ —0)1 illi
61—H>(1)2( 2T ) /8Doo(e)mUa(86 o8 g’r) A0 = O)log 4]

_ Vel (Y= 98108 B)N 1 A (9 — B) log (ha(w)|w®2)
47 e—0 D oo (€)NUa 2

—1 . V-l = N-1
= —Im(1 1 XA (—=—00log &,
2 m( EI—>I% 6Doo(6)ﬁUa a 08 ’wz ’ ( 2 aa 8 ) )

= — im(lim(%— / —dwi' A dwiy, A dwp,
A (5—>0( 27 ) 0D oo (€)NT;(€) w;,l 1Sm§/]\v,m7$i )

= (DY - N

4
1<m<N
A (gdug, A dw)
X / det(PPéZLV_lfDle) (log [wS, -+ 5, ,log |w]) m7i =13
{wg=0} P [Ti<icn iz w07

In all conditions(i),(ii), the polynomial P never takes zero value and det(PF),, —
P,P,,) is always zero by the lemma O

4.3. Intersection theory for infinity divisor boundaries and non ampleness
of logarithmical canonical bundles. Let d be an integer with 1 < d < N — 1.
Let Dq,---,Dg be d irreducible components of the boundary divisor D,. For each
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integer ¢ € [1,d], let || - ||; be an arbitrary Hermitian metric on the line bundle [D;]
and let s; be a global section of [D;] defining D;.
Now we study the intersection number (Kﬁg . +Doo)N=%.D; - -- Dy. By the lemma

4.6 we have :
(Kg, .+ D )N=4. Dy Dy

. Ve e )
= 11_1)% D ()(?aé)log@g,p)N d/\/\cl([Dz‘]aH
g, —Hool€ i
d
— lim-Cy_ d+1/ (03108 B, 1)V A (N e 1)) A 98 1og |[51] 1
e—0 Agr—Doo(€) . zz/\2
d
_ limCN_d+l/ (08 10g Do)V~ A (A ex((Di, || - 1) A d(@ — ) log ||sulls
e—0 2 Ay r—Doole) =9
d
v—1
= —ll_%?C'N d/f)D ()(8810g<1>gpN 4 ( /\ 1)) A (0 — 0)log ||s1]|1.

Let (Ug, (0§, -+ ,wS)) be a local coordinate chart as in L01] such that Dy N U, =
{w¢ =0} and U} = U, \ Doo. We write |[s1]|1 = ha(w)|w|? on U,. Since wean has
Poincaré growth on D, we get

d

V-1 5 N—d 3
lim ——C d/ 00log @41 A ci([DL |- ||1i) A (0 — 0) log |]s1]|1.
lim ——Cy— aDm()mUa( g) (i:/\2 1([Dil, [+ 16)) A ( ) log [[s1]]1
d
-1 _

= —Im(Cyn_gqlim dlog |w| A (89 1og )V~ A c1([D] - 11)).

5 ( il A [wi'| A ( ) (i:/\2 1([Dals 1+ 112)))
We now use [i1, -+ ,%] to mean a l-tuple (i1,---,4;) with 1 < i3 < iy < -+ <

iy < N, and we say [i1, - 4] = [j1, - , 7] if and only if iy, = jx Yk =1,--- ,l. For
any [i1,42, -+ ,14], let j1,--- ,jn—; be integers in {1,--- | N} \ {i1,--- ,4;} satisfying
1 é]l <j2 < e <jN—l < N7 define [ila"' 7Z'l]o = [j17"' 7jN—l]' So [ilv"' 7il]o =
[jlv"' 7jl]o if and Only if [ila"' 7Z'l] = [j17"' 7jl]' For any l'tuple [Zla 7il]7 we
define a simple (I, [)-form on U,

v = (A A dw) \ (0T A A de?).

[ iy 7.]l}
For a N x N matrix A = (A;;), we use AF“' i }] to mean a (N —d, N — d) matrix
by deleting rows i1, -- ,iq and column ji,--- ,jq of the matrix A = (4;;), and we
define

i, i d i i 7,17 )
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Consider the N x N matrix K = (K ;) related to the equality E.0.2] we have

1 — _
m(aalOg q>a)N d
~[ ) ][jlv"'7]’N*d}:[i17"'7id]o [ilv"'vid}#[jlv"'vjd} ~[ . ] [ . }o
o 01,00, o — 11,00, B1,000 0
= > Ky A (dwj, A dwf) + > K Vgl
[i1, id] 1<ISN-d (i1, sial,[31,++ »dal

and we get the following equality on 0D (€) N Uy :

— _ 7 [Liiz, id] (71, dN—al=[1,i2,+ 3q]°
dlog |w§| A (00 log By )N 4 Ky _
o8 |w1|(N<_ o Doy Sl g A (dus A du?)
: [1,i2, i) 1 1<I<KN—d
I
(L2, ial#[1,52, ,3d] [N([[ll’h"”’id% : |
2J2,5Jd a Lyig, - ,iq]°
T e
[L,i2, - ,iq)s (1,52, ,3dl
II
1#£1l ~[[1,i27"',l]'d]
J1,5dd a (1,32, ,iq]°
T > + 2w AWl AV e
(1,32, ,iq],[j1, »dd]
II7

Here I, IT and I1I are smooth forms on 0Dy (€) N U,. There is

N
0Doo(€) N Ua = |_J 0Doo(€) N 0Ty (e),
j=1

where each Tj(e) is the tube neighborhood of {w; = 0} in U,, with radius e. Certainly,
it is not necessary that D; N U, = {wy, = 0} for some k if j > 2.

Lemma 4.8. Let n be an arbitrary smooth (d — 1,d — 1)-form on .,Ttg,p. We have

lim Inn=0
€20 J9Doo (€)NOTy, (€)

for any integer k € [2, N].

Proof. Since dw{ A dw® =0 on 9Ty (€)(= {|w}| = €}), we get

I= > 0([1, i, --iq)) on dTk(e),

[L,i2, - iq),k€{iz, iq}
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where
, , (L, i) AWT
O([1,in, i) = Kfy 20 2w1 /\ (dw A dwT) on OTj(e)
with [j1, -+ ,jn—d] = [1,--- ,4]°. On the coordinate chart (U,, (w,--- ,wQ)), we

write n =) 5 ¢pnp where each cg is a smooth function on U, and each 73 is a simple
(d—1,d—1) form given by the wedge product of some dw{*’s and some dwg,’s with
coefficient 1. It is sufficient to prove the equality

lim O([1,42,---iq)) Ncgng =0

€20 JOD oo (€)NOTy ()
for any d-tuple [1, 19, - - - i4] satisfying k € {ia,- -+ ,iq}, any simple (d—1,d — 1) form
ng with coefficient 1 and any smooth function cg on U,,.

Let ng be an arbitrary simple (d — 1,d — 1) form with coefficient 1 and ¢z an
arbitrary smooth function on U,. We may require that 73 does not contain the
factor dw{ and contains neither a factor like dwj, nor a factor like dw$ (or else
0([1, z'g, -+iq]) Amg = 0). Since 0 A ng is a simple (N, N — 1)-form with coefficient

7llsig, o ig]

K
I ézw sl ng must contain dwj'. We also require that 7z does not contain the factor

dw_g(or else ng = 0 on dT}(€)). Then, 1z contains the factor dw$ and

0([17i27 e Zd]) A Np
dw§ A dws*

k—1 N
20t A /\(dw;‘ A dw$) A /\ (dw§ A dws) on 9Tj(e).

j=2 j=k—+1

= LR gye

(1,32, siq]

Since (001log ®,)N~%is a (N —d, N — d) form of Poincaré growth, there is a small
neighborhood Vjy of the origin point 0 € U, such that
K Rl Zd]‘ c
1,ig,- - N—d
e W T s, P og g, )2

on VoNU;

where C is a constant depending on Vj. It is well-known that there is
A
d
lim &( / 7742)" =0
e—ot J. r(logr)
for any real numbers A,n > 0. Therefore, we have

lim O([1,dg, - - -i4]) A cgng = 0.
€20 J9Doo (€)NOTy, (€)
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Lemma 4.9. Let n be an arbitrary smooth (d — 1,d — 1)-form on .,Ttg,p. We have
lim IITAn=0
€20 J9D oo (€)NOT (€)

for any integer k € [2, N].

(L2, il #[1,52, " ,jd] iz ]
Proof. We can write IT = > j:H[l’jz’m’jd], where
(1,2, ial, (1,52, ,jd] bl

o o o o
[z, ia] . 7=lLizsia) QW [1ia,o g
(L2, 23] (L2, »dd] 2w (L2, ,da)°

Since dwf A dw® =0 on 9T(e), it is sufficient to show

lim

Lz, ia] A cang =0
€20 JaD oo (€)NOT}, (€)

[17j27"' 7jd}

for any simple (d — 1,d — 1) form ng with coefficient 1, any smooth function cg on
U, and any two d-tuples [1,i9,- -+ ,i4],[1,72, -, ja| satisfying

() [Lig,--+ ig) # (Lo, o jal and k€ {ig, -+ yig} | J{da, - 1 da}-
Let ng be an arbitrary simple (d — 1,d — 1) form with coefficient 1 and ¢z an

arbitrary smooth function on U,. Let [1,d9, - ,i4],[1,72, -+ ,ja] be two arbitrary
d-tuples satisfying the condition (!), and let [igy1,---,in] = [1,d2, -+ ,i4)° and
. . . . . . 1,30, i ~ 1,9, i) dws
[jd-l—l’ T 7]N] = [17]27 T 7]d]o' So ld+1 2 2,Jd+1 = 2 and 9%17;;73211 = [[17;;723%21%—%/\
[id41,5iN]
Uat1 0N
We can require that the simple form 7g contains no factor in the set
{dw{} U {dwf;ﬂ, N ,dwf‘N} U {dw_‘f‘, dw?‘dm, e ,dw?‘N
(or else 9[[]1112];}‘1} Ang =0). There are three cases :
o Lk S {i27' o 7Zd} 0{327 o 7jd} : Then k ¢ {id+17 o 7ZN} U {jd-l—la T 7]N} Sup_
pose that 08122];]‘1] A ng is a nonzero (N, N — 1) simple form. Then 7g contains

the factor dwf by that & ¢ {ig41,--- ,in}. We may require that 73 does not
contain the factor dw(otherwise n = 0 on 97Ty(¢)), and then 7g contains the
factor dw§. We have that

— k—1 N
9[1,7;27"' ,’id] A _ ik[17i27m 7id]dwa A M A ( /\ dwa /\dm) A ( /\ dwa /\dm)
(1,52, ,74] g = (L2, dal "k 2w(ll 1=2 : : k+1 : -

by that k ¢ {jd+17 e 7]N} Since that k ¢ {id+17 te 7ZN} U {jd+17 e 7jN}7 we
obtain

- L i
(71, 53dl

Ncgng =0
€20 J9Doo (€)NIT (€)
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by the Poincaré growth of the form (99 log ®,) .
o ke {Z'27"' 7id} but k& ¢ {j27"' 7jd} : Then7 ke {jd+17"' 7jN}7 and so

0[1,i2,~v7id] Ang =0 on O0Ty(e).

1,5l
e ke {j27"' 7jd}\{i27"' 7id} : Then k € {Z'd-i-lv"' 7ZN} but k ¢ {jd+l7"' 7]N}
We require that ng does not have the factor dw (or else 6[[;122“?] Ang =0 on

OTy(e) by k € {igy1, - ,in}), and so 1z has the factor dw$ as jgi1 > 2. Thus,
we get

plliz i

[17j27"'7jd] /\77/6
—d [1,i2, - ,iq]
- 4+ (_g - 1)N det(T[Lj;...JZ])
o i#k N
aN=d( T wg)( ] wy)(Fe)2N =) (log wg], -, log [w)

1
d+1<ISN 1 1=d+1

dwy  dwf A dws A

k-1 N
(/\ dwi'd AN w) A ( /\ dwi A dwf) on OTy(e).

Wi 2wy i=2 i=k+1
Since k € {jg+1, -+ ,jin} but k & {igi1, -+ ,in}, we have
17‘ PR 7‘
deg;, det(T[[L;;__ ,;ﬁ) < (N — d) degy, F* — 1.
by the lemma [£3l Therefore, we obtain
lim pllizial 4 n :/ 0=0.
0 Jop(rom,(o 1Al T Jua )

by using the generalized Cauchy integral formula and using the Poincaré growth
of (00 1log @)V 1.
O

Lemma 4.10. Let n be an arbitrary smooth (d — 1,d — 1)-form on .,Tlg,p. We have
that
lim IITAn=0
€20 JaD oo (€)NOT}, (€)
for any integer k € [1, N].
_ k€{17l277ld}u{]17 7jd}
Proof. Since dwif A\dw( =0 on 0Ty (), I1I =
(L2, siaq)s[g1, 1 da)s 171

05,5 on 0T

where N
[17i27"' 77;11} O ~[17i27"'7id] dwl /\ V[l’ 77;11}0
endal = Rlinedal gepe N Vit g
As j1 # 1, we must have [j1, -+ ,j4)° =[1, -] and so

IIT =0 on 9T (e).
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Now we suppose that k > 1. It is sufficient to show

[17227 “Hld }

lim [j17 7.]d}

ANecgng =0
€20 J9D oo (€)NOT (€) e

for any simple (d — 1,d — 1) form ng with coefficient 1, any smooth function cg on
U, and any two d-tuples [1,ia,- -+ ,i4], [j1," " ,ja] satisfying

() j1#1 and ke {1y, ,igt U{j, - ,Jja}-

Let ng be an arbitrary simple (d — 1,d — 1) form with coefficient 1 and c¢g an
arbitrary smooth function on U,. Let [1,ia, - ,i4],[j1, - ,ja] be two arbitrary
d-tuples satisfying the condition (), and let [igi1,--- ,in] = [1,d2, -+ ,i4]° and
(1, a2, »Jn] = [J1,- -+, ja)°- Then, we get

[z, sia] _ 7o[Liz,e i) AWT /\dwl
9[]‘1, *Jdl K[Jl, *Jdl 2w A /\ duwi; A /\ dw]l.
1 I=d+1 I=d+2

We can require that the simple form 7g contains no factor in the set

{dw{'} U {dw} ,dw }U{dwf, dw? - s dws

Zd+1’ : ]d+27

(1,32, iq]

(or else H[jl g N = 0). There are three cases :

hd ]{76{1 i27 o id}ﬂ{jl, 7jd} : SOk¢{id+17 : iN}U{lvjd+27"' 7]N}

Suppose that 0%1 2 'J ] }/\775 is a nonzero (N, N —1) simple form with coefficient
~[1,ig,- zd]
[“T?“] Then 7ng contains the factor dwf by k& ¢ {igy1,--- ,in}. We may

require 7g does not contain the factor dw(otherwise, n = 0 on 9T(€)). We have

— k—1 N
Lig, i 2 [1yig, i o dwf A dw§ Jp— R
%ﬁnﬁAW:iKham%mﬂ“Jﬁ§J”4AdwAWWWWAdWAW%)
= k+1

by that & ¢ {17jd+27 e 7]N} Thenv

lim Lz, id
[j17 7.]d}

Negng =0
€20 J9Doo (€)NIT (€)

by that k & {ia1, - ,in} U{1,jd+2, - ,jin} and the Poincaré growth of the
form (90 log @)V ¢

o ke {17i27"' 7Z'd} bur & ¢ {jlv"' 7jd} : Sok € {17jd+27"' 7jN}7 and Z'd-i-l > 1.
Then,

HBJQsz]d] Ang =0 on O0T(e).
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o ke {j17"' 7jd}bUtk ¢ {17i27"' 7Z'd}: Sok € {id+17"' 7ZN}butk¢ {17jd+27"' 7]N}

) . —a : (1,2, sid] —
and 7441 > 1. We require that 7 has no factor dwf (otherwise, H[jlfn ,jd}d Ang =0

on 0Ty (€)). Then, we have
(1,32, id]
9[j17"'7jd} /\ /’76
N—d (1,32, id]
_ . (g = V)77 det(Ty;, i)
o i#k N
AN=d( T wd) (T @) (Fe)* N =D (log [w], -+, log [wfy)
d+1<I<N I=d+1
— k-1 N
dw dw§ A dw§ _ _
G p LT A (N dug AdwF)A( N\ du A duf) on OTi(e).
Wk 2wy i=2 i=k+1

The lemma [.3] says that

deg,. det(T[[jllvff;;'Jz;}id}) < 2(N — d)deg), F* — 1.

Therefore, we obtain

fimy Lz sial \ oo = 0.
=0 0D oo (€)NOTy (€) (1,0 ] BB

by the generalized Cauchy integral formula and the Poincaré growth of (99 log ®,)N .

U
By the lemma 4.5 we can write
Fxy,--- ,zn) = S (29, - - - ,a:N)x(liegl % 4 terms of lower degree of z1 ,
where S; is a homogenous polynomial in R[zq,--- , Z;, - -+, xy] of degree (g—deg; F*).

For any integers I,m in [1, N], we define a N x N matrix A%(1) := (A%(1);n) by
setting
1 825a,1 B asa,l 850{,1

0x,0%, 0x; Oxpy

Here is a direct consequence of the lemma .3}

(4.10.1) A (1) = S

2(N—d) deg, F°

Lemma 4.11. The coefficient of term x in det(T“’i”" ’id]) is det(P[l’i”” ’id})

[17i27"'7id] [17i27"'7id]
where P := A%(1).
We write the real (N —d, N — d)-form
(4.11.1) Cn_a(@log @) N1 = (N —a)l Y~ i

[ilf" 7id]7[j17"' 7jd}
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with g[[;.i’ ' ]d% = g[[fll ) fdd}] Each term in Cy_q(901og ®,)V~? can be written
i1, id] [i ] i1, id] A
i1, 58] 41,000 i1, ,iqg @ —
(4.11.2) v ga] = g QSEGTED N (dwfy A dug),
I=d+1
such that cElllj‘i]} is the sign + depending on ([i1,- - , 4], [j1," " ,ja]), and
[ilv"'vid] _ [jl?“'yjd} [ilv"'vid] _ 1
[1,-wdal = Tlasesdal? o i i T

Lemma 4.12. Let P := A%(1) be a N x N matriz of polynomials given in [{.10-1].
Given a d-tuple [aq, -+ ,aq] where 1 < aq, -+ ,aq < N, we always use N — d tuple
[agi1, - ,an]| to represent [aq,- - ,aq|°, where {agi1, - ,an} = {1,--+ ,N} \
{041, s ,ad}.

For any two d-tuples [1,ia,- - ,iq],[1,J2, -+, ja], we define a rational function

det(Pl iy (g )

Lz, B Lo, i)
(4.12.1) Sl Jd]( 3 ON) = (So1)2N=d) (g9, ,an)

and we define a real (N —d, N — d) form

N N N

[Li2, id] ._CNd JR— a—z —
5[1,jz,~~7jili] - H w” Jl /\ (dwil/\dwjz)+( H wjzwiz) /\ (dwjz/\dwiz))'

l=d+1 l=d+1 l=d+1 l=d+1

Let n be an arbitrary real smooth (d —1,d — 1) form on .,Ttg,p. We have :

lim YLy d/ (98 10g Dyr)V "4 A A (0 B) log || 1.
=0 4m 9Doo ()Ua
|
— (_1)N—d+1(g?: )N_d(N—d)!
[1,i2,-,iq]
: . AN
12 P4 [e% o 172 Y
1D / e g g oglug )=
Lz i) Y 1= T g
—d+
b i . tiid
1,0 ,2 12, )J25777 5]
+ > v gl { 5[1]§7~~7ad1(1°g|w2| s log Jufy ) —5=——1}
[z, i g ] wi= T fwows

l=d+1

where each CBIIZ}] is a sign defined in[/.11.147.11.2
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Proof. For any two d-tuples [1,i9,- -+ ,14],[1, 72, - , ja], we have

s s = Cnea det(K[l,i;,,ﬂ.j])m A /\ (dwf A dw)

1 L j=dt+1
dwl AS (142, 3q] C[l’i% . Zd] C det(K[l )82, Zd] dwl A /\ dwa A dw_a)
2w Sgarojal gz jal “N—d (Lj2, Jd] 2w i i

l=d+1

Since Cy_q(001og ®,)NV~? has Poincaré growth on D, we get
C

| det (K12 aly o n Vo N U,
el T g (g og [ ) (s log [ )
where V} is a sufficient small neighborhood of the origin point (0,--- ,0) in U, and

C is a constant depending on V. Thus the |21_1>r% faDoo(e)mUa O([1,4q,- - ,iq)) Anl is

finite. Moreover, we get that

[1 i, ,id] o (e}
1,49, 3 (—g — 1)N_d det( 1 i )(log ’wl ’7 T 710g ‘wN‘)
det(K[[l,jzw" ,jﬁ) - AN—d ~ [_] g on 07T (e)
( II wiws)(Fe)*N=9(log [wf], - ,log [w])

l=d+1

Using the generalized Cauchy integral formula, we obtain that

[0 .
hm dwl [;7?27' } A n
0 Jop..(enomi(e) 2w iz idl
N
(6% (6%
(—g — 1)N—d iz, yig] O dz:{i\ﬂ(dw” A i) A
= oy 1D /{ | i olug], - tog ust) L
e [T gl
I=it1
(1,32, ,id]
_1Nd n
= 2mV/- % /{ }4;;;;;,..;;;}aog|w§|,--- log w§y]) -2t
w1=0
' [T |wgl*
Zd+1
and that if [1,49, -+ ,i4] # [1,72, - ,Jq] then
1., dwf (1,32, ,iq] (1,52, ddl
2% Do ()NOT1 (€) 2WT NS o gal iz ia) ) N
[1,i2, - ,iq]
Lig, =, (= 9 1)Nd Lis, L A
= =1 ooy S g (o S log ufy—get—

[T fwfus”

l=d+1
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We then have that

CN—d . — N—d
lim dlog |w| A (00 log @, AN
(n —d)! e=0 D oo (€)NUa i A )

= Cpy_glim IAn+ Cn_glim IIAn
€20 J9Doo (€)NIT () €20 J9Doo (€)NIT ()

= Z lim duy /\g[“2"" A

=0 2w [L,d2, ,id]
[z via] ODoo(€)N9Ti () “71

(1,02, ,iq]# (1,52, dal 1

* 5 im o NS ey ) Ay,
[1iz, %; i 270 onc(nom o 2w b dal

Finally, we obtain that

i VLo [ @Blog @)Y A A (0 F)log sl
ODoo (€)NUq

e—0 T
= Z_Im(CN d hm dlog |ws| A (901og @)V "4 A ).
ODoo(6)NUq
1
_ (_1)N—d+1(91' )N_d(N—d)!
(1,32, id]
. ; AN
1 PR 17 PR
> / glbin il (1og fug - log [uy|) btz =
[Liz,ia) ” 01 =0) I [wgl*
l=d+1
(L2, ial#[L,52, . jd] : | : Hvi%"’id}} AT
i1, 0 1,i9,-- J250 50,
f S T [t e ugl g e
[177:27"'7id}7[17j27”'7jd} wi= H |wz ] |2
I=d+1
O

We have the following generalization of the theorem 4.7

Theorem 4.13. Let I' C Sp(g,Z) be a neat arithmetic subgroup and Xz, a L', (or
GL(g,2) )-admissible polyhedral decomposition of C(Fo) reqular with respect to T'.
Let Ay 1 be the toroidal compactification of Ayr := $4/T constructed by Xg,.

Assume that the boundary divisor Do, = .,Tlgvr \ Ag.r is simple normal crossing.
Let d be an integer with 1 < d < dimc Agr — 1. Let Dy,---,Dq be d irreducible
components of the boundary divisor D,. For each D, let || - ||; be an arbitrary
Hermitian metric on the line bundle [D;].
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There is
(K4, + Dog)Mear=. Dy .. Dy
-1 dimg Ay p—d
= [ Resn (o a0108 2,0 " AC N @Dl 1)
D 1<j<d,j#i
for any integer i € [1,dimc Agr], where the operator Resp, is defined in [{.2.]]
Moreover, the intersection number
(KZg r + Doo)dim(C Agr=d. Dy---Dg=0

if one of the following conditions is satisfied : (i) g = 2; (ii) there is a D; €
{D1, -+ ,Dq} constructed from an edge p; in Xz . for some minimal cusp Fmin
such that Int(p) C C(Fmin)-

Remark. Let p = R>oE be an edge in X5, where F is a semi-positive g x g matrix
with rational coefficients. By the lemma 2.10] if rank(E) # g(i.e, Int(p) C C(Fo))
then rank(E) = 1.

Proof. Using the proposition .2, we can get the integral formula for ¢ = 1 immedi-

d
ately by putting n := A ci1([D;], || - ||;) into the lemmas [A.8] [4.9] [L.10, A.12 O
j=2
The theorem [2.20] and the corollary [2.24] obviously imply the following fact.
Claim * :Let Dy, --- , Dq be d(< dimc Ay 1) different irreducible components of Do.
d
We have that the set © := (| D; is not empty if and only if there exists a minimal
i=1
cusp Smin and a top-dimensional cone omax in the polyhedral decomposition g .
of the convex cone C(Fmin) such that each D; corresponds one-one to an edge of
Omax- Moreover, if © # () then every local chart U, in[f.01] satisfying Uy, N D # 0
is constructed by a top-dimensional cone omax n Xz, . for some minimal cusp Fmin-

For any two different irreducible components Dy, Dg of Dy, = |J D;, we define
i

(Do N Dg)oe = | J DaNDgND; and (Do N Dg)* := (Do N Dg)\ (Do N Dg)oo-
i#a,f

Let p be an arbitrary positive integer. By the lemma [£35] we can define a form

Resp,np, (Resp, ((001og @4r)P)) on (D; N D;)* for any two different irreducible com-

ponents D;, D; of Do, with D; N D; # (). Using similar arguments in the proposi-

tion B2, we get that Resp,np,(Resp,((00log @4 r)P)) is a closed smooth form on

(D; N D;)* having Poincaré growth on (D; N D;)ec.

Lemma 4.14. Let p be a positive integer. Let D;, D; be two different irreducible
components of Do such that D;ND; # (. Both ResDinDj(ReSDi((§85 log ®,r)?))
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and Resp,np; (Resp, ((%85 log @, 1)?)) are positive closed currents on D;ND; such
that

V=1 _ V=1 _
Resp,np, (ReSDi((788 log ®,r)")) = ResDiij(ReSDj((Wﬁa log @, r)?)).

Proof. Let i = 1,5 = 2 for convenience. There exists a minimal cusp §min and
a top-dimensional cone opax in the polyhedral decomposition Yz . = {o4}q of
the convex cone C(§Fmin) such that Dy, Dy correspond to two different edges p; :=
R>0E1, p2 := R>0E2 of omax. Let (Uq, (W, -+ ,wS)) be a local chart as 0.1l such
that {wy = 0} = U, N D; for i = 1,2. In this chat,we write the form ®,r on
Ul :=Uy \ Deo as

LDV A dw A du?
1<i<N
(Ili<icn [ ?)(F(log [wi], - -+, log [wq]))9+t

For convenience, let §min be the standard minimal cusp §g. Then, E; and F5 are
semi-positive g X g symmetric real matrices. By the lemma 2.5l we have

®, =

rank(E;) =1or g fori=1,2.
Then, we need to check the following three cases.
e rankF; = g or rankFEy = g : Let rankF; = ¢g. Then we have
Resp, ((091og @, r)?) =0 and Resp,np,(Resp,((89log®,r)?)) =0 on U

since F*(x1,xg, - ,zy) = Constant - x*‘l] + terms of lower dgeree of x7.
e rankF; =rankFs = 1 and there is an orthogonal g x ¢ matrix O such that

OTElO = diag[)\l,l,O, v ,0]()\171 > O) and OTEQO = diag[)\ll, 0, v ,0]()\271 > O) :
Then, the homogenous polynomial F'* has the form
F*(zy,22, -+ ,on) = S(z3, -+ ,zn) - (Ar,121 + Ag122) + terms without 21 and z»,

and so Resp,np,(Resp, ((001log ®,r1)?)) = Resp,np,(Resp,((0dlog®,r)P)) =
0 on U;.
e Otherwise, the homogenous polynomial F'“ has the form

FY(xy,29, -+ ,xn) = S(x3, -+ ,xN) - z122 + terms without 1 and x4,
and so Resp,np, (Resp, ((00log @, 1r)P)) = Resp,np, (Resp, ((001log 4 r)P)) on U
U

We observe that these Resp,np, (Resp, (001og @, r))’s(i # j) and Resp, (00 log ®4r)’s
all have similar type as that of 99 log @, r.
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Theorem 4.15. Let I' C Sp(g,Z) be a neat arithmetic subgroup and Xz, a L'z, (or

GL(g,2) )-admissible polyhedral decomposition of C(Fo) reqular with respect to T'.

Let ngp be the toroidal compactification of Agr = 94/I' constructed by 3z, .
Assume that the boundary divisor Do, 1= .,Tlgvr \ Ag.r is simple normal crossing.

Let d be an integer with 1 < d < dimc Agr—1 and let Dy,--- , D be any d different
d
irreducible components of the boundary divisor Dy such that (| Dy # 0. We have :
k=1

d
1. Let iy,--- ,iq be d positive integers. If d > g — 1 and dimc Agr — > ix > 2(or

k=1

d
if d > g and dimc Agr — ) i, = 1) then the intersection number
k=1

Dif D (g, + Doy Aar S .

2. The divisor Kﬁg,r + Doy is not ample on Ay .

3. Define DY := D1, D@ .= DO N Dy, ... DD .= DAV D, Ifd< g—1 then
there is

(K4, + Dog)MeAar=d. Dy .. Dy

v_1 _ , B
= /d Respa) (Respa-1) --'(ReSD(l)((Waalog @Q,p)dlm‘cAng d)) o)

N Dk
k=1
where the Respuw)(---) k = 1,--- ,d are current on D) defined recursively by
the lemma[{.5
Proof. The statement (2) is a direct consequence of the statement (1). For each i,
let || - ||; be an arbitrary Hermitian metric on the line bundle [D;]. We have that
— dimg A, p—d dime Ay v
| Resp,(@@1og @, YN C A DL )
D 1=2
_ dimg A, p—d dime Ag.r
= / Resp,np, (Resp, (00log ®yr) " NA( N (DI - [1)
D1NDo =3

by the estimates in the lemmas [4.8{4.12] Therefore, we can finish proving the state-
ments (1) and (3) by recursion since all local volume functions have only degree
g. O

Example 4.16. Suppose that d different irreducible components Dy,--- .Dy of
o d
Dy = Aygr \ Agr has lﬂl Dy # 0. Let (Ug, (wf,--- ,w¥))(N = %) be a local
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chart as[L.0J]such that {w$ = 0} = U, ND; for alli=1,--- ,d. The following is an
algorithm processor to produce X, := Resp) (- - (Respa) (00 log @, r)N=H))| 4

00: Begin
10: In put the local volume form on U} := U, \ Do :

(SN2 5 ol (0man)? A dw? A du

o 1<i<N
“ (H1gi§N [w2)(F(log |wf], - - -, log lwi )9+t
where F* € R[xy,--- ,zn] of degree g is the local volume function.

20: Let £ =0 and let So(z1, -+ ,zN) = F¥x1, -+ ,xN).
30: Let f(x1, -+ ,zN) := Sk(zks1, - ,zn) and ¢ =k + 1.
40: Let k = ¢ and let n := degy, f(x1, -+ ,xn). Write

f=8Sk(zks1,- - ,xN)x) + terms of lower degree of zy.
50: Let P = (Py,)i<im<n be a N x N matrix given by P, = Skafif;qu —
08y 95,
ox; Oxm *

60: Let gi(xps1, - zN) = det(P[[lljfvl"’;?) (Thus, deg Sk, < g — k and deg gi <

2(N —d)(deg S, — 1) < 2(N —d)(g — k — 1); if deg Sy = 0 then g = 0; if
deg Sy =1 and N —d > 2 then g, = 0).
70: If k < d then goto 30.

80: Output
4.9+ 1 N
o = (“DNUES)N N - )
}V\ _
dw® A dw®
gd(log|w§‘+1|,--- ,log |wRy]) i—de1 !
Sq(log|wg, -+ ,log |w[)2N=d) = N
i N ( II |wg))?
i=d+1
90: End.
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