
Invent math (2012) 188:197–252
DOI 10.1007/s00222-011-0348-1

On arithmetic fundamental lemmas

Wei Zhang

To my friend Lin Chen (1981–2009)

Received: 17 November 2010 / Accepted: 18 July 2011 / Published online: 25 August 2011
© Springer-Verlag 2011

Abstract We present a relative trace formula approach to the Gross–Zagier
formula and its generalization to higher-dimensional unitary Shimura vari-
eties. As a crucial ingredient, we formulate a conjectural arithmetic funda-
mental lemma for unitary Rapoport–Zink spaces. We prove the conjecture
when the Rapoport–Zink space is associated to a unitary group in two or
three variables.
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1 Introduction

In 1980s, Gross and Zagier [10] established a formula that relates the Neron–
Tate height of Heegner points on modular curves to the central derivative of
certain L-functions associated to modular forms. Ever since the publication of
[10], it has inspired a large amount of works in number theory (for example,
[18, 25, 26, 30, 31], etc.). A conjectural generalization of the Gross–Zagier
formula to higher-dimensional Shimura varieties has been proposed, for in-
stance, in recent preprints of Gan–Gross–Prasad [3] and Zhang [32]. In this
article, we present a relative trace formula approach to the arithmetic Gan–
Gross–Prasad conjecture for unitary groups (cf. Sect. 3.2). As a first step we
consider the places where the relevant Shimura variety has good reduction. In
particular, we formulate arithmetic fundamental lemmas for unitary groups
and verify the cases of unitary groups in two or three variables. Briefly, the
arithmetic fundamental lemma is an identity between the derivative of certain
orbital integrals and the arithmetic intersection numbers on unitary Rapoport–
Zink space. As shown in Theorem 3.11, the arithmetic fundamental lemmas
is a crucial ingredient to establish a Gross–Zagier type formula for high di-
mensional unitary Shimura varieties.

We explain some of the history. At almost the same time of the Gross–
Zagier paper [10], Waldspurger proved a parallel formula that relates certain
toric periods (instead of “heights”) to the central value (instead of “deriva-
tive”) of the same type of L-functions. In early 1990s, Gross–Prasad for-
mulated a conjectural generalization of Waldspurger’s formula to (special)
orthogonal groups [8, 9] which are usually called Gross–Prasad conjectures
(local and global) in the literature. Recently, Gan–Gross–Prasad [3] formu-
lated a similar conjecture for more classical groups including the unitary
groups. Besides recent work of Waldspurger on the local conjecture for or-
thogonal groups, a lot of work has been done on the global Gross–Prasad
conjecture for orthogonal and unitary groups. Among them we have a by-no-
means complete list: Waldspurger’s work on SO(2) × SO(3) [24], Ichino’s
work on SO(3) × SO(4) ([12] etc.), and Ginzburg–Jiang–Rallis’s work on
higher rank groups ([4, 5] etc.).
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Note that the global Gross–Prasad and Gan–Gross–Prasad conjecture [3]
asserts an identity relating certain period integrals for the groups U(n − 1) ×
U(n) (or the orthogonal counterparts) to the central values of some Rankin–
Selberg L-functions. Their arithmetic versions are identities relating heights
of certain algebraic cycles on Shimura varieties to the central derivative of
some Rankin–Selberg L-functions. Ever since Gross–Zagier’s paper [10],
a series of work of S. Zhang and recent joint work of Yuan–Zhang–Zhang
[25, 26] have mostly established the arithmetic version for SO(2) × SO(3)

and SO(3) × SO(4). However, the methods employed in these works do not
generalize to higher dimensional cases.

Recently Jacquet and Rallis initiated a relative trace formula (for short,
RTF) approach to the global Gross–Prasad conjecture for unitary groups
U(n−1)×U(n) [13]. This method is completely different from that of Wald-
spurger [24] or Ginzburg–Jiang–Rallis [4, 5]. Briefly speaking, the relative
trace formula approach of Jacquet–Rallis consists of a comparison of two rel-
ative trace formulas, one on the general linear groups and the other on the
unitary groups. The spectral side of the former deals with central values of
Rankin–Selberg L-functions via its integral representation, while the spec-
tral side of the latter deals with the period integral on unitary groups. Then
the global Gross–Prasad conjecture should follow from the comparison of
the geometric sides of the two relative trace formulas. This comparison leads
Jacquet and Rallis to their conjectural existence of smooth transfer and fun-
damental lemma (see Sect. 3.1 and Sect. 2.2 resp.). A proof of the existence
of smooth transfer for non-archimedean p-adic fields has been announced re-
cently [29]. But we will not use it here in an essential way. We note that the
fundamental lemma of Jacquet–Rallis takes the form

O(γ,1KS
, s)|s=0 = ±O(δ,1K ′) (1.1)

where the LHS is an orbital integral on some symmetric space S and the RHS
is an orbital integral on some unitary group. For more details see Conjec-
ture 2.4. In the case of positive characteristic, this has been proved recently
by Yun [27]. By Gordon [6], Yun’s result can be transferred to a p-adic field
when p is large enough.

Inspired by Jacquet–Rallis’s approach as well as the work [25, 26], we
will formulate a relative trace formula approach to the arithmetic Gan–Gross–
Prasad conjecture for unitary groups U(n− 1)×U(n). On one hand, we take
the first derivative of the relative trace formula (RTF, for short) on the gen-
eral linear groups. On the other hand we also formulate an “arithmetic rela-
tive trace formula” on unitary groups which deals with the Beilinson–Bloch
heights of certain algebraic cycles. The comparison of the two RTFs leads
to what we will call “arithmetic fundamental lemma”. Roughly speaking the
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arithmetic fundamental lemma is an identity (cf. (1.1))

d

ds
O(γ,1KS

, s)|s=0 = ±O ′(δ,1K ′) (1.2)

where the LHS is the derivative of Jacquet–Rallis orbital integral and the
RHS is an intersection number on unitary Rapoport–Zink space. More pre-
cisely, see Conjecture 2.9. We will prove the arithmetic fundamental lemma
for U(n − 1) × U(n) with n = 2,3 (see Theorems 2.10, 5.5).

This paper is organized as follows. We reverse the order of presentation to
separate the local conjecture from the global one. In Sect. 2 we formulate the
local conjecture of the arithmetic fundamental lemma for unitary Rapoport–
Zink spaces and as an example we verify the case n = 2. In Sect. 3 we recall
the global construction of relative trace formula and height pairing. We con-
sider the places where the Shimura variety has good reduction. The key results
are in Sect. 3.3. The rest of the paper is devoted to proving the arithmetic fun-
damental lemma for n = 3. In Sect. 4 we calculate the derivatives of orbital
integrals. In Sect. 5 we recall some results of Rapoport–Zink, Keating and
Kudla–Rapoport and then prove the arithmetic fundamental lemma for n = 3
(Theorem 5.5).

2 Local conjecture: arithmetic fundamental lemma

2.1 Transfer of orbits

Orbits In [13], Jacquet–Rallis defines the transfer of orbits for Lie algebras.
Here we need to work with the group version. Though the definition of the
transfer of orbits is the same as in the case of Lie algebras, the proof of the
existence does require some work.

For the moment we let F be a field and E be a separable quadratic exten-
sion. We fix an embedding of GLn−1(E) into GLn(E) by g �→ diag[g,1] and
we will freely consider an element of GLn−1(E) as an element of GLn(E).

We consider the action of GLn−1(E) on GLn(E) by conjugation. First in-
troduced by Rallis and Schiffmann [20, Sect. 6], we say that an element g =(

A u
v d

) ∈ GLn(E) is regular if the column vectors Aiu for i = 0,1, . . . , n − 2
are linearly independent and so are the row vectors vAi for i = 0,1, . . . , n−2.
Or equivalently egi and gi(t e) for i = 0,1, . . . , n−1 are linearly independent
respectively where we denote e = (0,0, . . . ,0,1).

Lemma 2.1 Let g be as above. Then the following are equivalent

(1) g is regular.
(2) D(A,u, v) =: det(aij ) �= 0 where aij = vAi+ju.
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(3) The stabilizer of g is trivial and the GLn−1(E)-orbit of g is a Zariski
closed subset in GLn(E) where E is an algebraic closure of E.

Proof (1) ⇔ (2) is trivial. For the third one, we refer to [20, Theorem 6.1]. �

Remark 1 By item (3) above, the notion of “regular” here corresponds to the
notion of “regular semi-simple” for the usual conjugacy class in a reductive
group.

For g ∈ GLn(E) of the form
(

A u
v d

)
, we call the 2n − 1 numbers its invari-

ants

(Ai)
n−1
i=1 , (Bj )

n−1
j=1, d, (2.1)

where

det(X − A) = Xn−1 − A1X
n−1 + · · · + (−1)n−1An−1, Bj = vAj−1u.

Then it is easy to see that in a GLn−1(E)-orbit (even GLn−1(E)-orbit) these
invariants take constant values. And it is easy to see that the converse is also
true:

Lemma 2.2 Two regular elements are GLn−1(E)-conjugate if and only if
they have the same invariants.

Proof See [20, Proposition 6.2]. �

Now we introduce some subsets of GLn(E) and restrict the GLn−1(E)

orbits to these subsets. First we let H ⊂ GLn(E) be the image of GLn−1(F )

via the fixed embedding GLn−1(E) ↪→ GLn(E). Let g �→ ḡ be the involution
on G given by the Galois conjugate in Gal(E/F) and consider the symmetric
space

Sn(F ) = {s ∈ GLn(E)|ss̄ = 1}.
Then we consider the H(F)-action on Sn(F ) by conjugation by

h ◦ s := hsh−1, h ∈ H(F).

Denote the space of orbits under the action of H(F) on Sn(F ) by

O(Sn) := H(F)\\Sn(F ),

where the double slash is to indicate the action by conjugation.
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Let Hern(E) denote the space of Hermitian matrices of size n × n. For a
non-degenerate J ∈ Hern(E) we will denote by U(J ) the unitary group

U(J ) := {g ∈ GLn(E)|gJg∗ = J }, g∗ =t ḡ.

For J ∈ Hern−1(E), naturally we will consider the U(J ) as a subgroup
U(J ⊕1) where J ⊕1 = diag[J,1] ∈ Hern(E). We denote the space of orbits
by

O(U(J ⊕ 1)) := U(J )(F )\\U(J ⊕ 1)(F ),

where the double slash is to indicate the action of U(J )(F ) by conju-
gation. For J1, J2 ∈ Hern−1(E), they are called equivalent if there is an
h ∈ GLn−1(E) such that J1 = hJ2h

∗. If J1, J2 ∈ Hern−1(E) are equiva-
lent, it is clear that there is a natural identification between the set of orbits
O(U(J1 ⊕ 1)) and O(U(J2 ⊕ 1)) given explicitly by g �→ hgh−1.

We consider both Sn and U(J ⊕ 1) as subsets of GLn(E) so that we may
speak of regularity for their elements. Since H and U(J ) are then subsets of
GLn−1(E), we may speak of regularity for H -orbits in Sn and U(J )-orbits
in U(J ⊕ 1). Also we define the invariants of the orbit as we did right before
Lemma 2.2.

For γ ∈ O(Sn) and δ ∈ O(U(J ⊕1)), we say they match each other and de-
note this relation by γ ↔ δ if δ = hγh−1 for some h ∈ GLn−1(E) (or equiva-
lently, they have the same invariants). Or we say γ and δ are transfers of each
other.

Lemma 2.3 The transfer of orbits defines a bijection between regular orbits
∐

J

O(U(J ⊕ 1))reg 
 O(Sn)reg,

where the sum over J runs over all equivalence classes of non-degenerate
J ∈ Hern−1(E).

Proof First we prove that the transfer of any regular s ∈ Sn(F ) exists. Note
that s and t s have the same invariants. By Lemma 2.2 we can find an element
g ∈ GLn−1(E) such that

gsg−1 = t s.

By ss̄ = 1 we have t s = t s̄−1 and hence

s∗gs = g.

And taking the conjugate of the original equation gives us

ḡs̄ḡ−1 = s∗ ⇔ ḡs−1ḡ−1 = s∗.
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Thus we have

s∗ḡs = ḡ.

Taking transpose of the original equation gives us

s∗(tg)s = t g.

By the regularity of s, its stabilizer is trivial and hence

g = ḡ = t g.

This proves that s ∈ U(g ⊕ 1).
Second we prove that the transfer of any δ ∈ U(J ⊕ 1) exists for any J .

Let δ ∈ U(β)reg for β = J ⊕1 ∈ Hern(E). For regular δ, by Lemma 2.2, there
exists g ∈ GLn−1(E) such that

gδg−1 = t δ.

By δ∗βδ = β we have

δ∗βg−1(tg)g = β ⇔ gβ−1δ∗βg−1(t δ) = 1.

Take conjugate to get

β̄ḡ−1δ∗ḡβ̄−1(t δ) = 1.

Comparing the last two equations, and since the stabilizer is trivial, we have

β̄ḡ−1 = gβ−1 ⇔ gβ−1gβ−1 = 1.

So we have gβ−1 ∈ Sn(F ) and by Hilbert Satz–90 there exists h ∈ GLn−1(E)

such that hh̄−1 = gβ−1. Substitute back

hh̄−1δ∗h̄h−1(t δ) = 1 ⇔ (h̄−1δ∗h̄)(h−1(t δ)h) = 1.

Setting s = thδ(th−1), then s ∈ Sn(F ) and it is GLn−1(E)-conjugate to δ.
Finally we need to show the uniqueness of transfer. This follows from

that fact that the intersection of each regular GLn−1(E)-orbit with Sn(F )

(U(J ⊕1)(F ), resp.)—if not empty —gives exactly one H -orbit (U(J )-orbit,
resp.). �

Remark 2 From the proof, we see that if F is a non-archimedean local field,
then γ ↔ δ ∈ O(U(J ⊕ 1))reg for the isometric class J uniquely determined
by

det((eγ i−j et )) ∈ det(J ) · NE×,

where (eγ i−j et ) is the n × n-matrix whose (i, j)-entry is eγ i−j et .
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Fundamental lemma of Jacquet–Rallis From now on we assume that F is
a local field. When F is non-archimedean, we let OF , OE be the ring of
integers and fix a uniformizer � of F and let q be the cardinality of the
residue field k of F .

For f ∈ C∞
c (Sn(F )) and a regular γ ∈ Sn(F ), we define the “orbital” inte-

gral

O(γ,f, s) :=
∫

H

f (hγ h−1)|det(h)|−sη(h) dh (2.2)

where η is the quadratic character associated to E/F by class field theory
and by abuse of notation η(h) := η(det(h)). The Haar measure on H is nor-
malized such that the volume of its standard maximal compact subgroup
GLn−1(OF ) is one when F is non-archimedean. By the regularity of γ , the
H -orbit of γ is a closed subset of Sn. Therefore the restriction of f to the
H -orbit of γ is smooth with compact support. It follows that when F is non-
archimedean, the orbital integral is actually a finite sum and hence gives a
polynomial of qs and q−s . And when F is archimedean, this is always abso-
lutely convergent.

Similarly we define the orbital integral for f ∈ C∞
c (U(J ⊕1)) and a regular

δ ∈ U(J ⊕ 1)(F )

O(δ, f ) :=
∫

U(J )

f (h−1δh)dh. (2.3)

Now we assume further that F is non-archimedean with odd residue char-
acteristic p and E is an unramified quadratic extension of F .

The fundamental lemma of Jacquet–Rallis concerns the orbital integrals of
some special test functions. More precisely, let K = GLn(OE) be the stan-
dard maximal compact subgroup of GLn(E) and let KS = K ∩ Sn and 1KS

the characteristic function. Since F is non-archimedean, there are precisely
two isomorphism classes, denoted by J0 and J1, where the discriminant of J0
(J1, resp.) in F×/NE× is the identity (the other element, resp.). Since E/F is
unramified we may choose a self-dual lattice in the n-dimensional Hermitian
space defined by J0 ⊕ 1 in a way that its intersection with the subspace de-
fined by J0 is also self-dual. We denote its stabilizer by K ′ ⊆ U(J0 ⊕ 1)(F ).
Then the compact open K ′ and K ′ ∩ U(J0)(F ) are hyperspecial subgroups
of U(J0 ⊕1)(F ) and U(J0)(F ), respectively. We now normalize the measure
on U(J0)(F ) to give volume one to K ′ ∩ U(J0)(F ).

Conjecture 2.4 (Fundamental lemma of Jacquet–Rallis) For γ ∈ O(Sn)reg,
there is a sign ω(γ ) ∈ {±1} such that

O(γ,1KS
,0) =

{
ω(γ )O(δ,1K ′), if γ ↔ δ ∈ O(U(J0 ⊕ 1))reg,

0, if γ ↔ δ ∈ O(U(J1 ⊕ 1))reg.
(2.4)
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The sign ω(γ ) can be given explicitly. But we will not treat this issue in this
paper.

When F is of characteristic p > 0 and p > n, this is now a theorem proved
recently by Yun [27] using similar technique of Ngo’s proof of endoscopy
fundamental lemma. In the appendix to [27] by Gordan [6], it is proved that
Yun’s result implies the above conjecture when the residue characteristic of
F is large enough.

Remark 3 An earlier version of this paper also proved the fundamental lemma
for n = 3 by brutal computation.

The second half of the fundamental lemma turns out to be very easy.

Lemma 2.5 Suppose that f ∈ C∞
c (Sn(F )) satisfies f (g) = f (tg). Then for

a regular γ ∈ Sn(F ) whose transfer δ lies in U(J ⊕ 1)(F ), we have

O(γ,f,0) = η(det(J ))O(γ,f,0).

In particular, O(γ,1KS
,0) = 0 if γ ↔ δ ∈ O(U(J1 ⊕ 1))reg.

Proof By the symmetry of f we have

O(γ,f,0) =
∫

f ((tg−1)tγ tg)η(g) dg =
∫

f (gtγg−1)η(g) dg.

Note that for a regular γ there exists a unique J ∈ Symn−1(F ) such that
t γ = Jγ J−1 and this J is precisely the one such that γ matches an orbit in
U(J ⊕ 1) (see the proof of Lemma 2.3). Then we have

O(γ,f,0) =
∫

f (gJγ (gJ )−1)η(g) dg = η(det(J ))O(γ,f,0). �

Note that we have the following for any h ∈ H(F):

O(hγh−1,1KS
, s) = |det(h)|sη(h)O(γ,1KS

, s).

When O(γ,1KS
,0) = 0, taking the first derivative of the above equality

yields:

O ′(hγ h−1,1KS
,0) = η(h)O ′(γ,1KS

,0)

where we define

O ′(γ,1KS
,0) := d

ds
O(γ,1KS

, s)|s=0. (2.5)

Then the integral O ′(γ,1KS
,0) up to a sign depends only on the H -orbit of

γ if γ ↔ δ ∈ O(U(J1 ⊕ 1))reg.
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2.2 Arithmetic fundamental lemma

The arithmetic fundamental lemma alluded to the title is a geometric inter-
pretation of the derivative of the orbital integral O ′(γ,1KS

,0) defined above.
The counterpart of the orbital integral on the unitary group will be a certain
intersection number on a Rapoport–Zink spaces.

Unitary Rapoport–Zink space We recall some basic facts about Rapoport–
Zink spaces [21]. We will restrict ourselves to the situation when F is of
characteristic zero, namely F is a finite extension of Qp with odd p. Let �

be a uniformizer of F . Let F = k̄ be the algebraic closure of the residue field
k of F . Let W(F) (W(k), resp.) be the Witt ring of F (k, resp.). Let WF =
W(F) ⊗W(k) F be the maximal unramified extension of F and W its ring
of integers. We consider F as a subfield of WF . Let E/F be an unramified
quadratic extension.Then there are two embeddings of E into WF lying above
F ↪→ WF : φ0 and φ1 equal to φ0 composed with the Galois conjugate. By
a p-divisible OF -module over a OF -scheme S, we will mean a p-divisible
group X over S with an action ι : OF → EndS(X) such that we have an exact
sequence of finite flat group schemes for all i, j ∈ Z≥0:

0 X[�i] X[�i+j ] �i

X[�j ] 0

and the induced action of OF on the Lie algebra Lie(X) is given by the struc-
ture morphism OF → OS . Its dimension is the rank of Lie(X) and its height
is the unique integer h such that the rank of X[�n] is qnh.

Let NilpW be the category of W -schemes S on which p is locally nilpotent
and we will consider W -schemes as OF -schemes via the fixed embedding.
For a scheme S over W we denote by S̄ its special fiber S ×SpecW Spec F.
We will define a notion of unitary p-divisible OF -module of signature (r, s)

essentially following Vollaard and Wedhorn [23, Sect. 1.2].

Definition 2.6 A unitary p-divisible OF -module of signature (r, s) over S is
a triple (X, ιX,λX) where

• X is a p-divisible OF -module over S.
• ιX : OE → EndS(X) is an injective homomorphism extending the

OF -action. And the dual p-divisible OF -module X∨ is thus endowed
with an action of OE by ιX∨(a) = (ι(ā))∨.

• λX : X → X∨ is an OE-linear p-principal polarization.
• For a ∈ OE , the induced action on the Lie algebra of X has characteristic

polynomial given by

charpol(ιX(a)|Lie(X))(T ) = (T − φ0(a))r(T − φ1(a))s ∈ OS[T ].
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Remark 4 Note that our terminology is slightly different from that of [23,
Sect. 1.2]. When F = Qp , our unitary p-divisible OF -module of signature
(r, s) is the same as unitary p-divisible group of signature (r, s) in [23,
Sect. 1.2].

Let E be the unique (up to isogeny) formal p-divisible OF -module
of dimension one and height two over F. We may fix one isomorphism
End(E) 
 OD , where D is the unique division quaternion algebra over F

and OD its ring of integer. We can endow E with auxiliary structure to obtain
a unitary p-divisible OF -module of signature (0,1). To fulfill this, we may fix
one embedding OE ↪→ OD (composing with Galois conjugate if necessary)
and endow E with a p-principal polarization (see [16, Remark 2.5] when
F = Qp) compatible the OE-action. By abuse of notation we will denote by
E this unitary p-divisible OF -module. And we will denote by E the polarized
unitary OF -divisible module of signature (1,0) by switching the embedding
OE ↪→ OD to its conjugate.

From E and E we can construct a unitary p-divisible OF -module of signa-
ture (1, n−1) by setting Xn = E×E

n−1 together with the auxiliary structure.
Let Gn be the group of quasi-isogeny of Xn. Under the convention at hand
we may identify Gn as follows. Let EndOE

(Xn) be the set of OE-linear en-
domorphism of Xn. We can identify End0

OE
(Xn) = EndOE

(Xn) ⊗ Q with the

subalgebra Mn,E(D) consisting of x ∈ End0(X) = Mn(D) which commute
with every element of E, where the embedding of E is given by

E → Mn(D)

x �→
⎛

⎜
⎝

x̄
x

. . .
x

⎞

⎟
⎠ .

Under this identification we see that the group Gn of quasi-isogenies
of height zero is identified as the set of elements g ∈ Mn,E(D) such that
gg∗ = 1n where ∗ is the Rosati involution induced by the polarization. We
may assume that the polarization will make ∗ be given as

g∗ = t ḡ,

where the bar is induced by the involution (still denoted by bar) on the quater-
nion algebra D such that the reduced norm is given by xx̄.

Now we have an isomorphism between Gn and unitary group U(J1 ⊕ 1)

defined by the Hermitian matrix β = J1 ⊕ 1, J1 = diag[−�,1, . . . ,1]
U(J1 ⊕ 1) := {g ∈ GLn(E)|gβg∗ = β}.
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Indeed we may give the isomorphism explicitly. Note that we have a unique
decomposition

D = E + jE, j
2 = −� (2.6)

for a uniformizer j of D normalizing E. First it is easy to see that x =
(aij ) ∈ Mn(D) commutes with E if and only if a1j , ai1 ∈ jE for all i, j ∈
{2,3, . . . , n} and all the other aij ∈ E. Denoting J = diag[j,1 . . . ,1] ∈
GLn−1(D), then the isomorphism is explicitly given by

φ : U(J1 ⊕ 1) 
 Gn = {g ∈ Mn,E(D)|gg∗ = 1n}

h �→
(

J −1

1

)
h

(
J

1

)
.

From now on we will identify Gn with U(J1 ⊕ 1).
Now we denote by the Nn the unitary Rapoport–Zink space associated

to Xn. Namely, Nn represents the moduli functor that associates to a W -
scheme S the set of quadruples (X, ιX,λX,ρX), where (X, ιX,λX) is a uni-
tary p-divisible OF -module of signature (1, n − 1) over S and ρX is a quasi-
isogeny of height zero

ρX : X ×S S̄ → Xn ×F S̄

that respects the auxiliary structure, namely, ρX is OE-linear such that ρ∨
X ◦

λX ◦ ρX is locally an O×
F -multiple of λX ∈ HomOE

(X,X∨) ⊗ F . Two such
objects (X, ιX,λX,ρX) and (X′, ιX′, λX′, ρX′) are isomorphic if there exists
an OE-linear isomorphism α : X → X′ with (α ×W F) ◦ ρX = ρX′ and such
that α∨ ◦ λX′ ◦ α is locally an O×

F -multiple of λX .
By the results of Rapoport–Zink [21, Corollary 3.40] and Vollaard–

Wedhorn [23], Nn is a formally smooth formal scheme of relative dimension
n − 1 over Spf (W), separated and locally formally of finite type over W .

Arithmetic fundamental lemma Let E be the canonical lifting of E, namely
the universal object over N1. Then one has a natural embedding Nn−1 → Nn

given by associating to a unitary p-divisible OF -module of signature
(1, n − 2) with height 0 quasi-isogeny ρ0 over S its product with E ×Spf W S

(together with an appropriate choice of the auxiliary structure). Let N =
Nn−1 ×W Nn and let �Nn−1 be the diagonal embedding of Nn−1. Then
the group of quasi-isogenies Gn−1 × Gn acts on N as automorphisms. For
(g1, g2) ∈ Gn−1 ×Gn we will denote by (g1, g2)

∗�Nn−1 the translation of the
sub-formal-scheme �Nn−1 under (g1, g2).

Definition 2.7 For g = (g1, g2) ∈ Gn−1 ×Gn, we define an intersection num-
ber

O ′(g,1K ′) := (�Nn−1 · g∗�Nn−1)N logq (2.7)
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to be the Euler–Poincaré characteristic χ(O�Nn−1
⊗L Og∗�Nn−1

).

Here ⊗L is the derived tensor product of ON -modules and for a sheaf of
ON -module F , we define

χ(F ) =
∑

i

(−1)i lengthW(Riπ∗F )

where π : N → Spf W is the structure morphism. For a bounded complex of
sheaves F • of ON -modules, we define (cf. [16])

χ(F •) =
∑

i

(−1)iχ(F i ).

We consider Gn−1 
 U(J1) as a subgroup of Gn 
 U(J1 ⊕ 1) and then
diagonally embed it into Gn−1 × Gn. Then �Nn−1 is invariant under the ac-
tion of Gn−1. Therefore we see that the intersection number O ′(g,1K ′) de-
pends only on the Gn−1-double coset of g. In particular we may assume that
g = (1, δ) for δ ∈ Gn and we say g is regular if δ is regular. In this case we
will still denote the intersection number by O ′(δ,1K ′) by abuse of notation.

Lemma 2.8 Assume that F = Qp . If g is regular, then O ′(g,1K ′) is finite.

Proof Assume that g = (1, δ) for δ ∈ Gn. Let F • = O�Nn−1
⊗L O(1,δ)∗�Nn−1

.
We will use the special cycles of Kudla–Rapoport and for the notation we re-
fer to [16] and [17] (we will also recall some definitions below in Sect. 5.2).
We may identify Nn−1 with the special divisor Z(u) on Nn for a vector u

of norm one in HomOE
(E,Xn). Denote by Y the intersection of �Nn−1 and

(1, δ)∗�Nn−1 . By the projection from N to the factor Nn−1, we may consider
Y as a sub-formal-scheme of �Nn−1 . Then Y is contained in the intersec-
tion Z(u, δu, . . . , δn−1u) of the special divisors Z(δiu), i = 0,1, . . . , n − 1.
By the regularity of δ, the fundamental matrix T of the n-tuple x := (δiu) is
non-singular. Note that the special cycle Z(u, δu, . . . , δn−1u) on Nn depends
only on the OE-span of u, δu, . . . , δn−1u. In particular, it depends only on the
Jordan decomposition (cf. [16]) of the fudamental matrix T . Hence we may
choose special homomorphisms y1, y2, . . . , yn such that we have an identity
Z(y1, . . . , yn) = Z(u, δu, . . . , δn−1u) as special cycles on Nn and such that
all entries of the fundamental matrix T ′ of y1, . . . , yn are in Q (indeed T ′ can
be made to be a diagonal matrix). Then there exists a global special cycle
Z(T ′) in the sense of [17] and with Z(y1, y2, . . . , yn) ⊂ Z(T ′). The formal
scheme Z(T ′) is the completion along the supersingular locus of the intersec-
tion of some global divisors, on which p is nilpotent, and which is a closed
subset of the supersingular locus, cf. [17], Sect. 2. Hence Z(T ′) is a scheme,
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and hence so is its closed formal subscheme Z(y1, y2, . . . , yn). This implies
that Y is also a scheme on which p is nilpotent. �

We are ready to state the following:

Conjecture 2.9 (Arithmetic Fundamental Lemma) If γ ∈ Sn(F )reg matches
δ ∈ O(U(J1 ⊕1))reg, then O ′(g,1K ′) is finite and there is a sign ω′(γ ) ∈ {±1}
such that

O ′(γ,1KS
,0) = ω′(γ )O ′(δ,1K ′). (2.8)

As shown in next section, this intersection number serves as a part of the
local height pairing of some algebraic cycle on some unitary Shimura vari-
eties via the well-known p-adic uniformization by Rapoport–Zink spaces (cf.
Theorem 3.9).

Remark 5 It should also be pointed out that our arithmetic fundamental
lemma in its form resembles the local unramified (conjectural) theory of the
arithmetic Siegel–Weil formula that was first proposed by Kudla in [15] (cf.
[16, 17]).

Remark 6 One may also formulate a Lie algebra version of the arithmetic
fundamental lemma. We omit this in this paper since the Lie algebra version
does not seem simpler than the group version. The author has verified the Lie
algebra version for n ≤ 3 using the same technique as this paper.

Note that �Nn−1 and g∗�Nn−1 intersect properly (i.e., the scheme theo-
retical intersection is an artinian scheme) for all regular g only when n ≤ 3.
This is the reason that in this article we restrict ourselves to this case and we
will prove the arithmetic fundamental lemma when n ≤ 3 (cf. Theorem 2.10
and Theorem 5.5). The proof is by explicit computation of both sides of the
target identities. When n = 2, it is essentially reduced to Gross’s theory of
canonical lifting [7]. When n = 3, we use a result of Kudla–Rapoport [16] on
the structure of special cycles on Rapoport–Zink space for U(2), together the
work of Keating on endomorphisms of reductions of quasi-canonical lifting
(cf. Sect. 5).

2.3 Example: n = 2

As an example, we verify Conjecture 2.9 for n = 2. The non-archimedean
local height computation in the original Gross–Zagier formula [10] requires
essentially only this.
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We will denote by E1 the set of norm one elements in E. We first fix
representatives of regular orbits. For the symmetric space S2, we can choose

γ (a, d) :=
(

a

1

)(
d̄ ta

−(1 − dd̄)/ta d

)
,

a ∈ E1, ta ∈ O×
E, a = ta/t̄a, d ∈ E×. (2.9)

Such a γ (a, d) matches an element in the group G2 of quasi-isogenies of
X2 = E⊗E if and only if v(1−dd̄) is odd (in particular, d ∈ OE). A matching
representative in G2 can be chosen as

δ(a, d) =
(

a

1

)(
d̄ b

−b̄ d

)
∈ M2(D), (2.10)

where b is any element in jE such that

dd̄ + bb̄ = 1.

We define a sign ω′(γ ) ∈ {±1} for regular γ ∈ S2(F ) as follows: if
γ = h · γ (a, d) · h−1 (such h is unique by the regularity of γ ), then

ω′(γ ) := η(det(h)).

Theorem 2.10 The arithmetic fundamental lemma holds when n = 2:

O ′(γ,1KS
,0) = ω′(γ )O ′(δ,1K ′). (2.11)

Proof It is easy to see that the derivative of orbital integral is given by

O ′(γ (a, d),1KS
,0) = v(1 − dd̄) + 1

2
.

On the other hand, the intersection multiplicity is the maximal integer m

such that δ ∈ M2(OD) can be lifted to an endomorphism of the reduction of
E ⊕ E to W/�mW . Since d ∈ OE already extends to an endomorphism of
E on W , this is the same as to extend b ∈ jE ⊂ End(E) to a homomorphism
from E to E mod �m. By Gross’ theory of canonical lifting, we immediately
obtain

m = vD(b) + 1

2
,

where vD is the valuation in D. This is the same as v(bb̄)+1
2 = v(1−dd̄)+1

2 . �
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3 Global motivation

3.1 Relative trace formula and its derivative

A relative trace formula of Jacquet–Rallis Now let F be a number field and
let E be a quadratic extension. We consider the F -algebraic group

G′ = ResE/F (GLn−1 × GLn)

and two subgroups: H ′
1 is the diagonal embedding of ResE/F GLn−1 (where

GLn−1 is embedded into GLn in the same way as in Sect. 2.1) and
H ′

2 = GLn−1,F × GLn,F embedded into G′ in the obvious way. For an F -
algebraic group H , we will denote by ZH its maximal F -split torus in the
center of H . In particular we see that ZG′ = ZH ′

2
.

Here is the construction of our relative trace formula. For f ′ ∈ C∞
c (G′(A)),

fixing a Haar measure on ZG′(A) and the counting measure on ZG′(F ) we
define a kernel function

Kf ′(x, y) =
∫

ZG′ (F )\ZG′ (A)

∑

γ∈G′(F )

f ′(x−1zγy)dz,

or equivalently,

Kf ′(x, y) =
∑

ZG′ (F )\G′(F )

f̃ ′(x−1γy)

where

f̃ ′(h) :=
∫

ZG′ (A)

f ′(zh) dz.

It is easy to see that the kernel function is a continuous function on
G′(A) × G′(A).

Let η = ηE/F : F×\A
× → {±1} be the quadratic character associated to

E/F by class field theory. By abuse of notation we will also denote by η

the character of H ′
2(A) defined by η(h) := η(det(h1)) (η(det(h2)), resp.) if

h = (h1, h2) ∈ GLn−1(A) × GLn(A) and n odd (even, resp.).
Fix a Haar measure on H ′

i (A) (i = 1,2) and ZH ′
2
(A). We then consider a

distribution on G′(A) indexed by a complex s-variable:

I (f ′, s) =
∫

H1(F )\H ′
1(A)

∫

ZH ′
2
(A)H ′

2(F )\H ′
2(A)

Kf ′(h1, h2)η(h2)|h1|s dh1 dh2,

where we denote for simplicity |h1| = |det(h1)|. Without the s-variable, this
was proposed by Jacquet–Rallis in [13]. Note that in general this integral may
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diverge. But for our purpose, it suffices to consider test functions f ′ satisfying
a local condition as follows. Firstly we may identify H ′

1\G′ with ResE/F GLn.
Then we consider the morphism between F -varieties:

ν : ResE/F GLn → Sn

g �→ gḡ−1

where Sn is as in Sect. 2. By Hilbert Satz-90, this defines an isomorphism
of two affine varieties ResE/F GLn/GLn,F 
 Sn and at the level of F -points:
GLn(E)/GLn(F ) 
 Sn(F ). In this way we may naturally identify the double
cosets

O(G′(F )) := H ′
1(F )\G′(F )/H ′

2(F )

with the quotient O(Sn(F )) = GLn−1(F )\\Sn(F ) which was defined in
Sect. 2. In particular we will say that g ∈ G′(F ) is regular if its image in
Sn(F ) is so. The same holds if we replace F by Fv for a place v of F . The
set of regular elements is open and dense in G′(Fv). For f ′

v ∈ C∞
c (G′(Fv)),

we say that f ′
v is regularly supported if the support of f ′

v is contained in the
regular locus.

Moreover the map ν is compatible with the obvious integral structures on
the source and target in the following sense.

Lemma 3.1 Let v be a non-archimedean place of F that is unramified in the
quadratic extension E/F . Assume that the residue characteristic is odd. Then
the image of G′(OFv ) in Sn(Fv) is Sn(OFv ).

Proof It is trivial if v is split in E. Now we assume that v is non-split.
In the following we suppress v in the notation. It is clear that the image
of G′(OF ) in Sn(F ) is contained in Sn(OF ). We need to prove that any
s ∈ KS := Sn(OF ) there exists g ∈ K := GLn(OE) such that gḡ−1 = s. Take
a pre-image h ∈ GLn(E) of s. By the Iwasawa decomposition h = kan for
k ∈ GLn(OE), a ∈ A(E) and a unipotent

n = eX ∈ N(E), X =
⎛

⎜
⎝

0 bij

. . .

0

⎞

⎟
⎠ .

Since E/F is unramified we may write a = a0a1 where a0 ∈ K and
a1 ∈ A(F). Replace n by a1na−1

1 to obtain h = ka0na1. Since s ∈ KS , we
must have ν(n) = nn̄−1 ∈ KS . Note that

n = e(X−X̄)/2e(X+X̄)/2.
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Since ν(n) = eX−X̄ ∈ KS and 2 is a unit in OE , we conclude that
e(X−X̄)/2 ∈ K . Therefore

h = ka0e
(X−X̄)/2h0, h0 = e(X+X̄)/2a1 ∈ GLn(F ), ka0e

(X−X̄)/2 ∈ K.

This completes the proof. �

Lemma 3.2 Suppose that f ′ =⊗
v f ′

v is decomposable. Assume that at some
place v, f ′

v is regularly supported. Then as a function on H ′
1(A) × H ′

2(A),
Kf ′(h1, h2) is compactly supported modulo H ′

1(F ) × ZH ′
2
(A)H ′

2(F ). In par-
ticular, the integral I (f ′, s) converges absolutely.

Proof Note that ZG′ = ZH ′
2
. It is equivalent to show that the following kernel

function
∑

γ∈G′(F )

f ′(h−1
1 γ h2)

is compactly supported modulo H ′
1(F ) × H ′

2(F ). This new kernel function
can be written as

∑

γ∈H ′
1(F )\G′(F )/H ′

2(F )

∑

H ′
1(F )×H ′

2(F )

f ′(h−1
1 γ −1

1 γ γ2h2),

where the outer sum is over regular γ by the local condition at v. First we
claim that the outer sum is finite. Let � be the support of f ′. Note that the
invariants of G′(A) defines a continuous map from G′(A) to X(A) where
X is the categorical quotient of Sn by GLn−1,F . So the image of � will be
a compact set in X(A). On the other hand the image of h−1

1 γ −1
1 γ γ2h2 is

in the discrete set X(F). Moreover for a fixed x ∈ X(F) there is at most one
H ′

1(F )×H ′
2(F ) double coset with given invariants. This shows the outer sum

is finite.
It remains to show that for a fixed γ0 ∈ G′(F ), the function on H ′

1(A) ×
H ′

2(A) defined by (h1, h2) �→ f ′(h−1
1 γ0h2) has compact support. Consider

the continuous map H ′
1(A)×H ′

2(A) → G′(A) given by (h1, h2) �→ h−1
1 γ0h2.

When γ0 is regular, this defines an homeomorphism onto a closed subset of
G′(A). This implies the desired compactness. �

From now on we always assume that at some place v, f ′
v is regularly

supported. This is not only because we want to simplify the trace formula,
but also because otherwise in the height pairing below we would have self-
intersection.
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The last lemma allows us to decompose the distribution into a sum of or-
bital integrals

I (f ′, s) =
∑

γ∈O(G′(F ))reg

O(γ,f ′, s),

where for a regular γ we define

O(γ,f ′, s) :=
∫

H ′
1(A)

∫

H ′
2(A)

f ′(h−1
1 γ h2)|h1|sη(h2) dh1 dh2. (3.1)

The sum is finite for a fixed f ′. Fix a decomposition of the measure on H ′
i (A)

as a product of local Haar measures. We may define the corresponding local
orbital integral in an obvious way and we have an Euler product:

O(γ,f ′, s) =
∏

v

O(γ,f ′
v, s). (3.2)

To discuss the transfer of test functions, we need to introduce a “transfer
factor”: it is a compatible family of smooth map

�v : G′(Fv)reg −→ C
×

for all places v of F on the regular locus of G′(Fv) such that

• If g ∈ G′(F ) is regular, then �v(g) = 1 for almost all v and
∏

v �v(g) = 1.
• For any h1 ∈ H ′

1(Fv), h2 ∈ H ′
2(Fv) and s ∈ Sn(Fv), then �v(h

−1
1 gh2) =

η(h2)�v(g).

See [29] for an explicit construction of a transfer factor.

Derivative In the following, for some test functions f ′ we describe the van-
ishing order of O(γ,f ′, s) at s = 0 in terms of some local data associated to
a regular element γ .

Now we fix a one dimensional Hermitian space Eu with 〈u,u〉 = 1. Firstly
we consider a local quadratic extension E/F . Let W be a (non-degenerate)
Hermitian space of dimension n − 1 and let V = W ⊕ Eu be the orthogonal
direct sum of Hermitian spaces. We will be varying W in all isomorphism
classes of Hermitian spaces of dimension n − 1. We also allow E to be split
E = F ×F and in this case a Hermitian space over E is a free E-module with
a pairing with values in E which is E-linear (conjugate E-linear, resp.) for
the first (second, resp.) variable. Then there exists a unique isomorphism class
(under the obvious notion of isomorphism between two hermitian spaces).
The unitary group U(W) is naturally embedded into U(V ) as the stabilizer
of the vector u. Let

G = GW = U(W) × U(V )
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and let H = HW be the diagonal embedding of U(W). Then the double cosets
H(F)\G(F)/H(F) can be naturally identified with U(W)(F )\\U(V )(F )

where the action is by conjugation. Then we say that δ = (δ1, δ2) ∈
U(W)(F ) × U(V )(F ) is regular if δ−1

1 δ2 ∈ U(V )(F ) is regular in the sense
of regularity defined in Sect. 2. Then for regular γ = (γ1, γ2) ∈ G′(F ) and
δ = (δ1, δ2) ∈ G(F), we say that they are transfers of each other if the image
ν(γ −1

1 γ2) ∈ Sn(F ) and δ−1
1 δ2 ∈ U(V )(F ) are transfers of each other. And for

a regular δ ∈ G(F) and f ∈ C∞
c (G(F )), the orbital integral

O(δ,f ) =
∫

H(F)

∫

H(F)

f (h−1
1 δh2) dh1 dh2

converges absolutely for any fixed choice of measure on H(F).

Definition 3.3 Given f ′ ∈ C∞
c (G′(F )) and a tuple fW ∈ C∞

c (GW(F)) for
each W , we say that f ′ and the tuple (fW )W are (smooth) transfer of each
other if we have

O(δ,fW) = �(γ )O(γ,f ′,0)

whenever δ ∈ GW(F) is a transfer of a regular γ ∈ G′(F ).

The following conjecture is essentially due to Jacquet–Rallis in [13] where
they propose an infinitesimal version.

Conjecture 3.4 There is a transfer factor such that smooth transfers always
exist: for any f ′ ∈ C∞

c (G′(F )), there exists its transfer (fW )W ; and for any
tuple (fW )W , there exists its transfer f ′ ∈ C∞

c (G′(F )).

This is trivial if E = F × F . By Lemma 3.1, the fundamental lemma of
Jacquet–Rallis in Sect. 2 asserts that for a non-archimedean unramified ex-
tension E/F , 1G′(OF ) is the transfer of the pair fW1 = 1K,fW2 = 0 where W1
is the unique W with a self-dual lattice L and K the stabilizer of L, and W2
is the other isometric class of Hermitian space.

The conjecture is proved for non-archimedean F [29]. But in the following
we will not make use of this conjecture in an essential way.

Definition 3.5 Given f ′ ∈ C∞
c (G′(F )), we say that f ′ is pure of type W if

there is a transfer (fW ′)W ′ of f ′ such that f ′
W = 0 unless W ′ 
 W . In this

case, we also say that f ′ is pure of type W and a transfer of fW .

For instance, 1G′(OF ) is pure of type W1 as asserted by the fundamental
lemma of Jacquet–Rallis.

Now we return to the global setting. Let E/F be a quadratic extension
of number fields. We will again be varying the Hermitian space W over E



On arithmetic fundamental lemmas 217

and we similarly define groups GW , HW . We will also need the incoherent
Hermitian space in Kudla’s terminology [16]. In our setting this will be an
adelic Hermitian space W =∏

v Wv with determinant in F× which does not
come from the base change of any Hermitian space W defined over E. Then
V = W⊕AEu, being a sum of incoherent and coherent spaces, is incoherent,
too. We will denote by G = GW, H = HW the adelic groups.

Now fix an incoherent Hermitian space W. We say that f ′ = ⊗
v f ′

v ∈
C∞

c (G′(A)) is pure of type W if for all v, f ′
v is pure of type Wv . We denote

by C∞
c (G′(A))W the subspace generated by f ′ pure of type W.

Let W be a Hermitian space over E. We define a finite subset of non-split
places of F that in some sense measures the “distance” between W and W:

�(W,W) := {v : Wv � Wv}.
As W is incoherent, �(W,W) is non-empty.

For a fixed W and a non-archimedean non-split place v, we define a
nearby Hermitian space W(v) to be the unique isometric class of W such
that �(W,W) = {v}.

For a regular γ ∈ G′(F ), let δ ∈ GW(F) be a transfer of γ . Note that this
determines a Hermitian space W over E. We call the isometric class of W the
type of γ and we also denote it by W(γ ). Then we define

�(γ,W) = �(W(γ ),W).

This depends only on the double coset of γ .

Proposition 3.6 Let f ′ =⊗
v f ′

v ∈ C∞
c (G′(A))W be pure of type W.

(i) Let γ ∈ G′(F ) be a regular element. Then we have

ords=0O(γ,f ′, s) ≥ |�(γ,W)|.
(ii) Assume that for some place v0, f ′

v0
is regularly supported. Then we have

I (f ′,0) ≡ 0.

And we have a decomposition of its first derivative I ′(f,0) :=
d
ds

I (f, s)|s=0:

I ′(f ′,0) =
∑

v

I ′
v(f

′,0) (3.3)

where I ′
v(f

′,0) = 0 unless v is non-split in which case it is given by

I ′
v(f

′,0)

=
∑

W,�(W,W)={v}

∑

γ∈O(G′(F ))reg,W(γ )=W

O(γ,f
′v,0) · O ′(γ, f ′

v,0),

(3.4)
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O ′(γ, f ′
v,0) := d

ds
O(γ,f ′

v, s)|s=0.

(iii) If v is non-archimedean non-split, the outer sum in I ′
v(f

′,0) contains
only one term, namely, the nearby Hermitian space W(v).

Proof If v ∈ �(γ,W), since f ′
v is pure of type Wv , we have

O(γ,f ′
v,0) = 0.

Thus (i) follows from the fact that each local orbital integral O(γ,f ′
v, s) of

s is holomorphic at s = 0 and the product O(γ,f ′, s) = ∏
v O(γ,f ′

v, s) is
absolutely convergent.

In particular, O(γ,f ′,0) = 0 for all regular γ . Under the assumption
in (ii), we have I (f ′, s) = ∑

γ O(γ,f ′, s) for regular double cosets γ ∈
O(G′(F )) and the sum is finite by Lemma 3.2. Thus I (f ′,0) = 0. Moreover,
the first derivative vanishes d

ds
|s=0O(γ,f ′, s) = 0 unless the set �(γ,W)

contains a single element. We thus arrange the non-zero terms in I ′(f ′,0) ac-
cording to the single element in �(γ,W). The rest of the proposition follows
easily. �

Remark 7 Even if f ′ is not necessarily regularly supported, as long as f ′ is
of pure type of an incoherent W, the vanishing of I (f,0) should still hold.
But this will require a discussion of the orbital integrals of non regular or-
bits. The pattern of the decomposition of the first derivative resembles that of
the first derivative of the Siegel–Eisenstein series attached to an incoherent
quadratic or Hermitian space ([15] for a quadratic space, and [17, Sect. 9] for
a Hermitian space).

3.2 Arithmetic Gan–Gross–Prasad conjecture

In the following we recall the global motivation. We only recall a coarse form
of the arithmetic Gan–Gross–Prasad conjecture ([3, Sect. 27], [32], [28]).
However, to even state the conjecture we need to assume some sort of “stan-
dard conjectures” about height pairings.

Fix an incoherent Hermitian space W of dimension n− 1. Now we impose
the following hypothesis:

(i) F is totally real and E is a CM extension of F .
(ii) W is totally definite, namely the signature of the Hermitian space Wv is

(n − 1,0) for all v|∞.

Then as before we form another incoherent V = W ⊕ AEu with (u,u) = 1.
In particular, for all v|∞, Wv,Vv are positively definite and hence the group
G(Fv) is compact.
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Then we have a Shimura variety denoted by Sh(H) associated to W. It is a
projective system of varieties indexed by open subgroups K ⊂ H(A∞) (small
enough) defined over E of dimension n− 2. It is characterized by the follow-
ing property. For any fixed embedding v : E → C, we have a unique (coher-
ent) Hermitian space W(v) such that W(v)u 
 Wu for all u �= v and W(v)v
has signature (n − 2,1). We call W(v) the nearby Hermitian space at v. We
have a Shimura variety Sh(HW(v)) (for the Shimura datum, see [3, Sect. 27])
defined over the reflex field (or possibly its quadratic extension when n = 2)
v(E) via the embedding v : E → C. Then the property characterizing Sh(H)

is that for all v : E → C:

Sh(H) ×E v(E) 
 Sh(HW(v)).

Similarly, we have a Shimura variety Sh(G) of dimension (n − 2) +
(n − 1) = 2n − 3 defined over E. The group G(A∞) acts on Sh(G) by Hecke
correspondences. We extend this action to G(A) by demanding that G(A∞)

acts trivially. Let R denote this action.
If F �= Q, both Sh(H) and Sh(G) are projective. If F = Q by abuse of

notation we will still denote by Sh(H) the toroidal compactification if Sh(H)

is not projective. In our case the toroidal compactification is unique. Then we
have a closed immersion of projective system of varieties:

Sh(H) ↪→ Sh(G).

It is H(A)-equivariant. Let Ch∗(Sh(G)K) be the Chow groups with com-
plex coefficients for K ⊂ G(A∞). Let Ch∗(Sh(G)) = lim−→

K
Ch∗(Sh(G)K)

(Ch∗(Sh(G)), resp.) be the inductive (projective, resp.) limit with respect
to natural pull-back (push-forward, resp.) maps. Then Sh(H) defines an el-
ement denoted by [Sh(H)] in Chn−2(Sh(G)). Then we have a cycle class map
cl : Ch∗(Sh(G)) → H 2∗(Sh(G)) = lim−→

K
H 2∗(Sh(G)K) where the cohomol-

ogy is any fixed Weil cohomology with complex coefficients. Moreover, for
f ∈ C∞

c (G), we denote by R(f ) the Hecke correspondence. Though not nec-
essary, for the sake of simplicity we will assume that:

f∞ = 1G(A∞) (3.5)

and for each v|∞ we fix a measure on G(Fv) such that the volume of
G(Fv) is one (note that G(Fv) = U(Wv) × U(Vv) is compact by (i)). Un-
der this simplification, R(f ) is simply the Hecke operator associated to
f ∞ ∈ C∞

c (G(A∞)).
Let A(G) be the set of irreducible admissible representations π of G that

occur in the middle dimensional cohomology H 2n−3(Sh(G)). Note that by
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definition, G(A∞) (a compact group) acts trivially. Consider the natural sur-
jective map

C∞
c (G) →

⊕

π∈A(G)

End(π) 

⊕

π∈A(G)

π ⊗ π̃ .

It is bi-G(A) equivariant where G(A) × G(A) acts on LHS by left and right
translation. For φ ⊗ φ̃ ∈ π ⊗ π̃ considered as an element of

⊕
π∈A(G) π ⊗ π̃ ,

we choose any lifting fφ⊗φ̃ ∈ C∞
c (G). Then it is essentially conjectured in the

work of Beilinson and Bloch [1, 2] specialized to our situation:

Conjecture 3.7

(A) The cycle class map cl : Chn−1(Sh(G)) → H 2n−2(Sh(G)) splits G-
equivariantly. We thus have a G-equivariant projection Chn−1(Sh(G)) →
Chn−1(G)0 = Ker(cl). We denote by [Sh(H)]0 the projection of [Sh(H)]
and we call it a cohomological trivialization of the cycle [Sh(H)].

(B) Let π ∈ A(G). Then R(fφ⊗φ̃)[Sh(H)]0 is independent of the choice of
the lifting fφ⊗φ̃ .

Assuming this conjecture above and assuming that the height pairing 〈·, ·〉B of
Beilinson–Bloch [1, 2] is well-defined, we may define a linear form on π ⊗ π̃

as follows:

�H(φ ⊗ φ̃) := 〈R(fφ⊗φ̃)[Sh(H)]0, [Sh(H)]0〉BB.

Note that this is understood as follows. Fix a Haar measure on H(A) given
by a product of measures on H(Fv) for all v. Choose a compact open K ′ ⊂
G(A∞) and let K = K ′ ∩ H(A∞). Then we define

〈R(f )[Sh(H)]0, [Sh(H)]0〉BB

:= vol(K)2〈R(fφ⊗φ̃)[Sh(H)K ]0, [Sh(H)K ]0〉BB,

where the intersection takes place on Sh(G)K ′ . Then this definition depends
only on f but not on the choice of compact open K ′ (also cf. [15]).

Note that Sh(H) is invariant under H(A). Then the functorial property of
height pairing shows that

�H ∈ HomH×H(π ⊗ π̃ ,C).

Remark 8 When n = 2, Sh(G) is a Shimura curve. Sh(H) is a sum of CM
points. When the curve needs a compactification, the cohomological trivial-
ization Sh(H)0 can be achieved by subtracting a suitable linear combination
of the boundary components. In general we need to use the method of triv-
ializing cohomology in [25]. Then the conjecture above holds by [25] and
the Beilinson–Bloch height pairing is the same as Neron–Tate pairing. So all
assumptions hold unconditionally.
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We are now ready to state the arithmetic Gan–Gross–Prasad conjecture:

Conjecture 3.8 Assume the hypothesis (i), (ii) and Conjecture 3.7 above. Let
π ∈ A(G). Then the following are equivalent:

(a) L′(π,R,1/2) �= 0 where L(π,R, s) denotes the Rankin–Selberg L-func-
tion of the base change of π to G′(A) (cf. [3, Sect. 27]).

(b) There exists a W satisfying (ii) such that the linear form �H �= 0.

Here we define the base change of π to be an automorphic representation of
G′(A) which is locally a base change of πv for almost all places v. The base
change is expected to exist by a special case of the Langlands functoriality
conjecture and is proved under some conditions (for example, [11]).

Remark 9 When n = 2, Sh(G) is a Shimura curve and this conjecture can be
essentially deduced from the work of Gross–Zagier [10] and Yuan–Zhang–
Zhang [25].

3.3 Main global result

Now we assume that F = Q and E = Q[√−d] an imaginary quadratic field
of discriminant −d . Let W be a definite incoherent Hermitian space with
Hermitian form 〈·, ·〉. When necessary we will convert it into a symplectic
form by (x, y) = tr(〈x, y〉/√−d).

We assume part (A) of Conjecture 3.7. We assume also that the Beilinson–
Bloch height is well-defined. Then we may form a distribution on G:

J (f ) = 〈R(f )[Sh(H)]0, [Sh(H)]0〉BB. (3.6)

When R(f )[Sh(H)]0 and [Sh(H)]0 as algebraic cycles are disjoint, the
height pairing is a sum of local heights:

J (f ) =
∑

v

Jv(f ) (3.7)

where the Jv(f ) is the sum of local heights at all places w of E lying above
the place v of F .

In this article, we restrict ourselves to the case of good reduction namely,
those non-archimedean places p such that

• p is unramified inert or split in E,
• Wp has a self-dual lattice and fp = 1Kp .

Note that to the local height Jp(f ), there are contributions from various
sources: (1) the cycle [Sh(H)] on the non-compactified Shimura variety;
(2) the compactification; (3) the difference between the cycle [Sh(H)] and
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its cohomological trivialization [Sh(H)]0. Among them, (1) is the main con-
tribution and will be denoted by Jm

p (“m” means “main”) and the rest will be
denoted by J b

p (“b” means “boundary”). Then we decompose the local height

Jp(f ) = Jm
p (f ) + J b

p(f ). (3.8)

In the following, we will give a sufficient condition for f such that
R(f )Sh(H) and Sh(H) is disjoint in the non-compactified Shimura variety.
We then construct smooth integral models of Sh(H) and Sh(G) over the com-
pletion of the maximal unramified extension of OE,w to calculate Jm

p (f ). So
in the end, even though the height pairing is conditionally defined, the term
Jm

v (f ) can be defined and calculated unconditionally. Finally we compare
Jm

p (f ) with the term I ′
p(f ′,0) if f ′ =⊗

f ′
p and f ′

p is a transfer of the tuple
given by fWp = fp when Wp = Wp and zero otherwise.

Integral models Now assume that p is inert or split and Wp has a self-dual
lattice L. Let Kp,0 be the stabilizer of L. It is a hyperspecial subgroup of
H(Qp). Similarly we have a hyperspecial subgroup K ′

p,0 of G(Qp).
Let F be a fixed algebraic closure of the finite field Fp of order p. Let

OE,(p) be the localization of OE at p. Let W = W(F) be the Witt ring of F.
We fix an embedding OE,(p) ↪→ W . We construct a smooth integral model of
Sh(H)KpK

p
0

over W . The observation is that W contains all prime-to-p roots

of unity Ẑ
p(1) so we may fix a trivialization:

Ẑ
p(1) 
 Ẑ

p. (3.9)

We will fix such an isomorphism. Essentially following Kottwitz [14] we con-
sider a moduli functor AH

Kp for a compact open subgroup Kp ⊆ H(A∞,p).
The functor AH

Kp on the category SW of W -schemes sends each S ∈ SW to
the set of isomorphism classes of quadruples (A, ιA, λ̄A, η̄A) where

• A is an abelian scheme over S of relative dimension equal to n − 1.
• ιA : OE,(p) → End(A) ⊗ Z(p) is an injective homomorphism of Z(p)-

algebras. We also make the following convention: if A∨ is the dual
abelian scheme of A, we define an action of OE,(p) by ιA∨ : OE,(p) →
End(A∨) ⊗ O(p),

ιA∨(e) = ιA(ē)∨.

• λ̄A ⊂ Hom(A,A∨) ⊗ Q is a one dimensional Q-subspace which contains
a p-principal OE,(p)-linear polarization.

• η̄A is a Kp-class of isomorphisms of symplectic forms: H1(A,A
∞,p) 


W
∞,p (more than isomorphism up to similitudes). Here the Weil pairing

on H1(A,A
∞,v) takes values in A

∞,v(1) 
 A
∞,v by the trivialization.
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More precisely, for a connected scheme S over W , choosing a geomet-
ric point s of S, we may think of the rational Tate module of A as the
Tate module H1(As,A

∞,p) of As with a structure of π1(S, s)-module.
Then a Kp-level structure is a Kp-orbit of OE,(p)-linear isomorphisms
of symplectic forms: H1(As,A

∞,p) 
 W
∞,p fixed by π1(S, s). As S

is a scheme over W , the group π1(S, s) preserves the symplectic form
on H1(As,A

∞,p) valued in A
∞,p (not just “up to similitudes”, cf. [14,

p. 390])

such that (A, ιA) satisfies Kottwitz’s determinant condition of signature
(r, s) = (n − 2,1) for all e ∈ OE,(p):

charpol(e,Lie(A))(T ) = (T − e)r(T − ē)s ∈ OS[T ]
where e is considered as a section of OS via the structure morphism
S → Spec(W).

Two quadruples (A, ιA, λ̄A, η̄A) and (A′, ιA′, λ̄A′, η̄A′) are called isomor-
phic if there exists an OE,(v)-linear isogeny of prime-to-p degree: α : A → A′
such that α∗(λ̄A′) = λ̄A and ηA′ ◦ H1(α,A

∞,p) = ηA.
The functor AKp is represented by a smooth quasi-projective scheme over

W when Kp is small enough, which we always assume from now on. This
gives a smooth integral model of Sh(H)KpKp,0 ×E WQ.

Similarly we have a smooth integral model AG

K
′p of Sh(G)

K
′pK ′

p,0
over

W classifying a pair (A,B) with obvious additional structures. This gives
a smooth integral model of Sh(G

K
′pK ′

p,0
) ×E WQ. The action of the Hecke

algebra H(G(A∞,p//Kp)) extend to étale correspondences on A
K

′p . Again
we extend the action trivially to the archimedean component G(A∞). For f =
f pfp ∈ H(G(A)//K) with fp = 1K ′

p,0
, we still denote by R(f ) the Hecke

correspondence on A
K

′p .
We now define a morphism:

i : AH

Kp ↪→ AG

K
′p

when Kp = K
′p ∩ H(A∞,p). To do so, we fix an elliptic curve E over

W with CM by OE . It is unique up to prime-to-p isogenies. We denote
ι0 : OE ↪→ End(E ) such that the action on Lie algebra is the fixed embedding
of OE into W (i.e., signature (1,0)). The canonical polarization is a principle
polarization denoted by λ0. We fix any OE,(p)-linear isomorphism of sym-
plectic forms H1(E ,A

∞,p) 
 Eu ⊗ A
∞,p where Eu denotes the symplectic

space form the trivial hermitian space of dimension one.
We define i by sending (A, ιA, λ̄A, η̄A) to (A,A× E ) where A× E has the

additional structure (ιA × ι0, λ̄A × λ0, ηA × η0).
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Now we fix a Haar measure on H(Fv) for non-archimedean v such that the
volume of Kv,0 is one for almost all places v including v = p. And we take
the product measure on H(A∞). When p is inert, we define the main term of
the local height at p as

Jm
p (f ) = vol(K)2(R(f )AH

Kp · AH

Kp)AG

K
′p

· logp2 (3.10)

where the intersection number on AG

K
′p is defined in a similar way as in

Sect. 2.2 (cf. [17, Sect. 11]):

(R(f )AH

Kp · AH

Kp)AG

K
′p

:= χ(OR(f )AH

Kp
⊗L OAH

Kp
).

When p is split, there are two places v1, v2 of E lying above p where each
place corresponds to an embedding of OE into the Witt ring W . For each
of them we give one integral model described above. By definition Jm

p (f )

is a sum of two terms with each given by the intersection number as above
replacing p2 by p.

p: inert Recall that for p non-split, there is a unique nearby Hermitian
space W with �(W,W) = {p}. We then have an algebraic group GW(p) over
Q which contains the unitary group HW(p) 
 U(W(p)) as a subgroup (cf.
Sect. 3.1). We will consider the orbital integral O(δ,f p). We now take the
measure on H(A) as the product of the measure on H(A∞) and H(A∞):
on H(A∞) we take the measure which was normalized in the definition of
Jm

p (f ), and we normalize the measure on H(A∞) such that vol(H(F∞)) = 1.

Theorem 3.9 Suppose that p is inert. Suppose that f =⊗
v fv satisfies

(1) fp = 1K ′
p,0

is the characteristic function of the hyperspecial subgroup

K ′
p,0.

(2) For at least one place v �= p, the test function fv is supported in regular
orbits.

(3) f∞ is as in (3.5).

Then we have a decomposition of Jm
p (f ) into a sum of rational regular orbits

associated to the nearby unitary groups GW(p):

Jm
p (f ) = 2

∑

δ∈O(GW(p)(Q))reg

O(δ,f p) · O ′(δ, fp)

where O ′(δ, fp) is the intersection number on unitary Rapoport–Zink space
defined in Sect. 2, (2.7).
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Remark 10 The expression is very similar to the counting points formula on
Shimura varieties mod p (for instance, cf. [14, p.376]).

Proof Fix K
′p such that f p is bi-K

′p-invariant. We first claim that the set
theoretical intersection R(f )AH

Kp ∩ AH

Kp only happens in the supersingular
locus. It is easy to see that the intersection on generic fiber is empty (this
can also be seen from the argument below). To simplify the notation, we will
shorten AH

Kp etc. to AH etc. We also shorten the quadruple (A, ιA, λ̄A, η̄A) to
A though we always keep the rest in mind. By the moduli interpretation, if
(A,B) ∈ AG(F) lies in the intersection, we have (with additional structure)
for some (g1, g2) ∈ G(A∞,p) regular at the place v �= p

B = A × E, g1B = (g2A) × E

where E is the reduction of E . We thus may assume that g2 = 1 by replacing
g1 by g−1

2 g1. And we have

g1(A × E) = A × E = B. (3.11)

Note that this means there is a prime-to-p isogeny β1 : B → B that sends
the level structure η̄B to g1 ◦ η̄B . Let α1 : E → B be the composition of the
embedding of E to B and β1. In general, for i = 1,2, . . . , n, replacing g1 by
gi

1 in (3.11), we obtain a prime-to-p isogeny βi and then αi . Now we define
a homomorphism

α := (α1, . . . , αn) : E
n → B.

Consider the level structure at v where fv is regularly supported, namely
the isomorphism

ηB,v : H1(B,Qv) 
 Vv.

Note that αi induces an embedding of a one-dimensional Ev-space

αi∗ : H1(E,Qv) → Vv.

Let the image of α1∗ be Evu. Then it is easy to see that αi has image
Evg

i
1u. Note that the condition that g1 is regular implies that the vectors gi

1u,
i = 1,2, . . . , n are linearly independent. Therefore, the homomorphism α in-
duces an isomorphism

H1(E
n,Qv) 
 H1(B,Qv).

This implies that α is an isogeny. We have thus proved that if g1 is regular,
then we have an isogeny E

n ∼ B . Note that E is supersingular by our choice.
This proves the claim.
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Now we let AH,ss be the supersingular locus, which forms only a single
isogeny class [23]. And let AH,/ss be the formal completion of AH along
AH,ss . By the work of Rapoport–Zink [21, Theorem 6.30] on the uniformiza-
tion of the supersingular isogeny class, we have an isomorphism of formal
schemes over the Witt ring W

HW(p)(Q)\Nn−1 × H(A∞,p)/Kp 
 AH,/ss .

Here the isomorphism is with respect to a fixed supersingular point and the
Q-group HW(p) is the group of quasi-isogenies of this fixed supersingular
abelian variety (with additional structure). It can be identified with the uni-
tary group GW(p) associated to the nearby Hermitian space W(p). Similar
uniformization holds for AG:

GW(p)(Q)\N × G(A∞,p)/K
′p 
 AG,/ss

where N = Nn−1 ×W Nn is the product of unitary Rapoport–Zink spaces as
in Sect. 2.2. And as before we will denote by �Nn−1 the diagonal embedding
of Nn−1.

We denote by [�Nn−1, h] a GW(p)(Q)×K
′p-coset for h ∈ H(A∞,p). Thus

we may break χ(OR(f )AH

Kp
⊗L OAH

Kp
) into a sum

χ(OR(f )AH

Kp
⊗L OAH

Kp
)

=
∑

g,h1,h2

f ∞,p(g) · χ(O[�Nn−1
,h1g] ⊗L O[�Nn−1

,h2]), (3.12)

where g ∈ G(A∞)/K ′ and h1, h2 ∈ HW(p)(Q)\H(A∞,p)/K . The term for
g,h1, h2 is zero unless there exist δ ∈ GW(p)(Q) such that

h1g = δh2 (mod K
′p)

in which case the term is equal to (noting that g = h−1
2 δh1 (mod K

′p))

f ∞,p(h−1
2 δh1) · χ(O�Nn−1

⊗L Oδ∗�Nn−1
).

Note that δ is only well-defined in an HW(p)(Q)-double coset. We may
rewrite the sum (3.12) as

∑

δ∈HW(p)(Q)\GW(p)(Q)/HW(p)(Q)

( ∑

hi∈H(A∞,p)/Kp

f ∞,p(h−1
1 δh2)

)

· χ(O�Nn−1
⊗L Oδ∗�Nn−1

), (3.13)
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where the sum is actually taken over regular δ by the regularity of the support.
Note that in our formulation of the arithmetic fundamental lemma, we have
set

O ′(δ, fp) = χ(O�Nn−1
⊗L Oδ∗�Nn−1

) logp.

Therefore returning to the main term (3.10), we obtain

Jm
p (f ) = 2 · vol(K)2

·
∑

δ∈HW(p)(Q)\GW(p)(Q)/HW(p)(Q)

( ∑

hi∈H(A∞,p)/Kp

f ∞,p(h−1
1 δh2)

)

· O ′(δ, fp).

This is equal to

Jm
p (f ) = 2

∑

δ∈O(GW(p)(Q))reg

O(δ,f ∞,p)O ′(δ, fp).

Under our choice of f∞ and the measure on H(F∞), we have

O(δ,f∞) = 1

for any δ ∈ G(A∞). Hence we have

Jm
p (f ) = 2

∑

δ∈O(GW(p)(Q))reg

O(δ,f p)O ′(δ, fp).

�

p: split

Theorem 3.10 Suppose that p is split. Suppose that f = ⊗
v fv satisfies

(1), (2), (3) as in Theorem 3.9. Then we have

Jm
p (f ) = 0.

Proof Now let v1, v2 be the two places of E lying above p. We will prove that
the local height at v1 is zero and the argument is the same for v2. Let E be the
reduction to F of E . As p is split, E is an elliptic curve with ordinary reduction
and End0(E) 
 E. Let Xn = E×E

n−1 (together with the additional structure)
similar to the supersingular case as in Sect. 2. By the same argument as in the
proof of the previous theorem, we see that the intersection is supported in
the ordinary locus, more precisely in the isogeny class of Xn. We denote this
isogeny class by ξ . Then we have a parametrization of geometric points:

I (Q)\M(F) × G(A∞,p)/K
′p 
 ξ
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for some Rapoport–Zink space M. Here I (Q) is the group of quasi-isogenies
of Xn preserving the additional structure. It consists of the Q-points of some
reductive group I . We will show that I (Q) is “small” in some sense.

Suppose that fv is regularly supported. We consider the embedding of
I (Q) ⊂ G(Fv). It is enough to show that as a subset of G(Fv), any element δ

of I (Q) is not regular. Note that we may describe the group I (Q) as follows.
We write I = In−1 × In and it is enough to consider δ = (1, g) for g ∈ In(Q).
Since End0(E) 
 E, we may identify End0(Xn) = Mn(E) (endomorphisms
that do not necessarily preserve the additional structure). Then, without loss
of generality, we may suppose that the embedding ι : E → End0(Xn) is
given by x → diag[x̄, x, x, . . . , x] ∈ Mn(E). Since any element in I (Q) com-
mutes with ι, an easy calculation shows that In(Q) is a subgroup of the
Levi subgroup of GLn(E) consisting elements of the form diag[a,D] where
a ∈ GL1(E),D ∈ GLn−1(E). Now consider the induced action of g = (a,D)

on H1(Xn,Qv) for the place v. We identify H1(Xn,Qv) with Wv ⊕ Evu

and consider u as a generator of H1(E,Qv) as an E ⊗ Qv-module. Then for
g = (a,D), giu will lie in the subspace H1(E

n−1,Qv) of H1(Xn,Qv). In par-
ticular u,gu, . . . , gn−1u cannot span H1(Xn,Qv). Hence g = (a,D) cannot
be regular and we complete the proof. �

Comparison Finally we can compare the local height Jm
p (f ) at a good place

with the first derivative of the Jacquet–Rallis relative trace formula. Recall
that for f ′ ∈ C∞

c (G′(A)) with regular supported f ′
v for some place v, we

have a decomposition (Proposition 3.6):

I ′(f ′,0) =
∑

p

I ′
p(f ′,0).

Theorem 3.11 Let E be an imaginary quadratic field and let W be an definite
incoherent Hermitian space. Let f =⊗

fv ∈ C∞
c (G) and let f ′ =⊗

f ′
v be

pure of type W and a transfer of f . For a fixed prime p, suppose that f ′ is
regularly supported at some place different from p and f =⊗

v fv satisfies
(1), (2), (3) in Theorem 3.9. Then when p is split, we have

I ′
p(f ′,0) = J ′

p(f ).

When p is inert, assuming the arithmetic fundamental lemma (Conjec-
ture 2.9) we have

Jm
p (f ) = I ′

p(f ′,0).

Proof When p is split, I ′
p(f ′,0) = J ′

p(f ) = 0 by Proposition 3.6, Theo-
rem 3.10. When p is inert, this is evident by the definition of transfer, Propo-
sition 3.6 and Theorem 3.9 and the arithmetic fundamental lemma. �
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4 Derivative of orbital integrals: n = 3

In this section we calculate the derivative of orbital integrals when n = 3. The
computation is similar to that of Jacquet–Rallis in [13] for Lie algebras. But
in several places our situation is more difficult and requires some work (e.g.,
Lemma 4.7).

4.1 Orbits of S3(F )

Let F be a finite extension of Qp with odd p. Instead of considering the
orbital integral

O(γ, s) :=
∫

H

1KS
(hγ h−1)|det(h)|−sη(h) dh (4.1)

for H = GL2(F ), we will perform a substitution to obtain a simpler orbital
integral.

Consider the following model of M2(F ) (by endowing it with a “complex”
structure)

D =
{(

t1 t2
t̄2 t1

) ∣∣∣ t1, t2 ∈ E, t1 t̄1 − t2 t̄2 �= 0

}

 M2(F ).

And

H ′ =: D× 
 GL2(F )

where the isomorphism is given explicitly as follows. Let

w =
(−√

ε

1

)(
1 1

−1 1

)
∈ GL2(OE)

where we fix once for all ε ∈ O×
F such that E = F [√ε]. Then g ∈ GL2(F ) �→

w−1gw ∈ H ′ defines an isomorphism. Indeed, we have

w−1
(

a b

c d

)
w =

(
u v̄

v ū

)
,

u = a + d + (b + cε)/
√

ε

2
, v = a − d + (b − cε)/

√
ε

2
∈ E.

Since E/F is unramified with odd residue characteristic, we obviously
have

O(γ, s) :=
∫

H ′
1KS

(h′γ ′h̄′−1)|det(h′)|−sη(h′) dh′. (4.2)
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Here γ ′ = w−1γ w̄ is the corresponding H ′-orbit of S3(F ) where h ∈ H ′ acts
on S3(F ) by

h ◦ γ = hγ h̄−1.

We thus can speak of matching an orbit γ ′ of S3(F ) with an orbit δ of some
unitary group.

We now give an explicit representative for each regular H ′-orbit of S3(F ).
To compare with orbits of unitary group we will also calculate their invariants
defined in Sect. 2.1. Then a regular γ ∈ Sn(F ) matches a regular δ ∈ U(J ⊕1)

if and only if their invariants are the same.

Proposition 4.1 A complete set of representatives of regular H ′-orbits
O(S3(F ))reg is given by

γ (a, b, d) :=
⎛

⎝
a 0 0
b −d̄ 1
c 1 − dd̄ d

⎞

⎠ , c = −ab̄ + bd

such that

a ∈ E1, b, d ∈ E, (1 − dd̄)2 − cc̄ �= 0.

The invariants of γ (a, b, d) are (cf. (2.1)):

(−b, ad̄), (−c, bc + a(1 − dd̄)), d.

Moreover, γ (a, b, d) matches an (unique) orbit of O(U(J0 ⊕ 1))reg
(O(U ′(J1 ⊕ 1))reg resp.) if and only if the valuation

v((1 − dd̄)2 − cc̄)

is even (odd, resp.). Here J0, J1 are as in the statement of the fundamental
lemma (cf. (2.4)).

Proof For s = (
A b
c d

) ∈ S3(F )reg and b = t (b1, b2), then we must have b1b̄1 −
b2b̄2 �= 0. Indeed, it is clear that (b1, b2) cannot be the zero vector. Suppose
that b1b̄1 − b2b̄2 = 0. Then up to an element in D×, we may assume that
(b1, b2) = (1,1). Then s′ = wsw̄−1 ∈ S3(F ) is regular of the same form with
b = t (−√

ε,0). In particular b̄ = −b. Since we have Ab̄ + d̄b = 0, the vector
b and Ab = −Ab̄ = d̄b are indeed linearly dependent. Contradiction!

Therefore by the action of elements of D× we may assume that b = t (0,1):

s =
(

A e2
c d

)
, e2 =

(
0
1

)
.
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Since ss̄ = 13, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aē2 + e2d̄ = 0 ⇒ A =
(

a 0
b −d̄

)

cē2 + dd̄ = 1 ⇒ c = (c,1 − dd̄)

AĀ + e2 c = 12 ⇒ aā = 1, c = −ab̄ + bd.

To match with the orbits of the unitary group, we need to calculate the
invariants of wγ (a, b, d)w̄−1. It is straightforward to show that its invariants
are given by

(−b, ad̄), (−c, bc + a(1 − dd̄)), d.

Note that

c = −ab̄ + bd.

It is regular if and only if the determinant � of the following is non-zero

( −c bc + a(1 − dd̄)

bc + a(1 − dd̄) −b(bc + a(1 − dd̄)) + acd̄

)

,

namely −a2((1 − dd̄)2 − cc̄) is non-zero. Since E/F is unramified, a regular
γ matches an (unique) orbit of U(J0 ⊕ 1) (U(J1 ⊕ 1), resp.) if and only if
v((1 − dd̄)2 − cc̄) is even (odd, resp.). �

We will only be concerned with the case where v((1 − dd̄)2 − cc̄) is odd
and from now on we assume so. In particular, (1 − dd̄) and c are nonzero
with the same valuation. We will denote

u = c̄

1 − dd̄
∈ O×

E. (4.3)

Then we have

b = −au − d̄ū. (4.4)

4.2 Orbital integral

For γ = γ (a, b, d) ∈ O(S3)reg, we go back to the orbital integral

O(γ, s) =
∫

1KS
(ḡ−1γg)η(g)|det(g)|s dg



232 W. Zhang

where the integral is taken over

g ∈ H ′ =
{(

t1 t2

t̄2 t̄1

) ∣∣∣ t1, t2 ∈ E, t1 t̄1 − t2 t̄2 �= 0

}

and the measure is dg = κ
dt1 dt2

|t1 t̄1−t2 t̄2|2F
where dt1, dt2 are the Haar measure on

E such that the volume of OE is one, and the constant

κ = 1

(1 − q−1)(1 − q−2)
.

The constant κ makes sure that the volume of the maximal compact subgroup
of H ′ is one under our choice of measures.

It is clear that one necessary condition for the orbital integral to be non-
zero is that both b, d are integral, which we assume from now on.

Let t = t1
t2

. The orbital integral can be split into two parts

O(γ, s) = O0(γ, s) + O1(γ, s) (4.5)

where O0 is the contribution of g with v(1 − t t̄ ) > 0 and O1 is that of the
rest.

Lemma 4.2 We have

O1(γ, s) =
v(1−dd̄)∑

j=0

q2js . (4.6)

Proof It is easy to see

O1(γ, s) = κ

∫
|t1|sE

d×t1 dt

|1 − t t̄ |2 + κ

∫
|t1|sE

d×t1 dt

|1 − t t̄ |2
where the first term corresponds to the set of

g =
(

t1
t̄1

)(
1 t

t̄ 1

)

such that v(t) ≥ 0, v(1 − t t̄ ) = 0 and the second term

g =
(

t1
t̄1

)(
t 1
1 t̄

)

such that v(t) > 0. We can thus forget about the quantity in the denominators.
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Note that the volume of t ∈ E with v(1− t t̄ ) = 0 is 1− q+1
q2 and the volume

of � OE is q−2. Then we have

O1(γ, s) =
(

1 − q + 1

q2

)
κ

∫
|t1|sE d×t1 + q−2κ

∫
|t1|sE dt×1

where both integrals are over all t1 ∈ E× such that

t−1
1 , ct1, (1 − dd̄)t1 ∈ OE.

Note that v(c) = v(1 − dd̄). We obtain that

O1(γ, s) = (1 − q−1)(1 − q−2)κ

v(1−dd̄)∑

j=0

q2js .
�

We need to calculate O0. Therefore we now assume that v(1 − t t̄ ) > 0
(hence t is a unit).

Lemma 4.3 We have

O0(γ, s) = (1 − q−2)κq2v(1−dd̄)s
∑

j,n

(−1)nq(n−2j)sq2nα(j, n;γ ), (4.7)

where α(j,n;γ ) is the volume of t subject to the conditions

v(1 − t t̄ ) = n, v((2at − b)2 − (b2 − 4ad̄)) ≥ n, v(t + u) ≥ n − j,

(4.8)

and the sum is taken over

0 ≤ j ≤ v(1 − dd̄), 1 ≤ n. (4.9)

Proof Since the integral over t1 is invariant under O×
E , we may make the

integral over t1 into a discrete sum over m = −v(t1). Now we refresh our
notation to be

g = �−m

(
1 t

t̄ 1

)
, v(1 − t t̄ ) ≥ 1.

The integrality conditions imposed by ḡ−1γg ∈ GL3(OE) are listed below.
Firstly, we have

ḡ−1γg = 1

1 − t t̄

(
1 −t̄

−t 1

)(
a 0
b −d̄

)(
1 t

t̄ 1

)
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= 1

1 − t t̄

(
d̄ t̄2 − bt̄ + a −bt t̄ + at + d̄ t̄

b − at − d̄ t̄ −at2 + bt − d̄

)
.

Since all a, b, d are integers, it is not hard to see that the four equations are
all equivalent. Hence we only need to require any one of the four, say

−at2 + bt − d̄

1 − t t̄
∈ O.

And the integrality for the other entries yields

v(1 − t t̄ ) ≤ m, v((1 − dd̄)t + c̄) ≥ m, v(ct + 1 − dd̄) ≥ m.

Since v(t) = 0 we may replace the last one by

v(1 − t t̄ ) + v(1 − dd̄) ≥ m.

Now we may write the orbital integral

O0(γ, s) = (1 − q−2)κ
∑

m,n

(−1)nq(−n+2m)sq2nα(m,n;γ ), (4.10)

where α(m,n;γ ) is the volume of the set of t satisfying the following condi-
tions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v(1 − t t̄ ) = n, v((2at − b)2 − (b2 − 4ad̄)) ≥ n,

v

(
t + c̄

1 − dd̄

)
≥ m − v(1 − dd̄),

n + v(1 − dd̄) ≥ m,1 ≤ n.

(4.11)

Let j = v(1 − dd̄)+n−m ∈ Z≥0. Then we have m = v(1 − dd̄)+n− j and
the proof is complete. �

Before we proceed, we first establish a useful lemma. For ζ ∈ 1 + � OF ,
we will denote by

√
ζ its unique square root lying in 1 +� OF , namely (note

that we assume that the residue characteristic p > 2):

√
ζ =

∞∑

i=0

(
1/2
i

)
(ζ − 1)i .

Lemma 4.4 For ξ ∈ O×
E , we denote by β(n, i; ξ) the volume of the domain

D(n, i; ξ) where D(n, i; ξ) is the set of x ∈ E satisfying

v(1 − xx̄) = n, v(x − ξ) ≥ i.
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If 1 ≤ i ≤ n, we have

β(n, i; ξ) =
{

0, if v(1 − ξ ξ̄ ) < i

q−(n+i)(1 − q−1), if v(1 − ξ ξ̄ ) ≥ i.

Proof It is easy to see one necessary condition for the domain to be non-
empty is v(1 − ξ ξ̄ ) ≥ i. We thus assume so. And since the volume depends
only on ξ ξ̄ we may change ξ to λ =

√
ξ ξ̄ . Then apply the following integral

formula to the characteristic function of D(n, i, λ): for unramified E/F and
a function f ∈ S(E),

∫

E

f (x) dx = (1 − q−1)−1
∫

F

∫

O×
E

f

(
xt

y

ȳ

)
dy dt

where xt is any element in E with norm t ∈ F . �

4.3 The case v(b2 − 4ad̄) is odd

Then the condition v((2at − b)2 − (b2 − 4ad̄)) ≥ n is equivalent with
v((2at − b)2) ≥ n and n ≤ v(b2 − 4ad̄).

By Lemma 4.3, we rewrite

O0(γ, s) = (1 − q−2)q2v(1−dd̄)sκ
∑

j,n

(−1)nq(n−2j)sq2nα(j, n) (4.12)

where α(j,n) is the volume of the domain
⎧
⎨

⎩
v(1 − t t̄ ) = n, v

(
t − b

2a

)
≥
[
n + 1

2

]
, v(t + u) ≥ n − j,

1 ≤ n ≤ v(b2 − 4ad̄), 0 ≤ j ≤ v(1 − dd̄).

It is easy to see that

α(j,n) =
{

β(n, [n+1
2 ]; b

2a
) if j ≥ [n

2 ] and v(au − d̄ū) ≥ n − j,

β(n,n − j ;u) if j ≤ [n
2 ] and v(au − d̄ū) ≥ [n+1

2 ].

(Note that b
2a

+ u = (au − d̄ū)/2.)
Now we are ready to prove

Proposition 4.5 Assume that v(b2 − 4ad̄) is odd. Then we have

O ′(γ,0) =
v(1−dd̄)∑

j=0,j≡v(1−dd̄)(mod 2)

σ ′(γ, j) log q,
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where

σ ′(γ, j) =

⎧
⎪⎨

⎪⎩

2
∑[ v(b2−4ad̄)

2 ]
i=0 qi, if 2j > v(b2 − 4ad̄),

2
∑j

i=0 qi + 1
2(v(b2 − 4ad̄) + 1 − j)ej , if 2j < v(b2 − 4ad̄).

Here we define

e0 = 1, ej = qj (1 + q−1), j ≥ 1.

Proof For a fixed j , by Lemma 4.4 the contribution to the sum in O0(γ, s)

∑

1≤n<2j

(−1)nq(n−2j)sq2n(1 − q−1)q−(n+[ n+1
2 ])

+
∑

n≥2j

(−1)nq(n−2j)sq2n(1 − q−1)q−(2n−j)

=
∑

1≤n<2j

(−1)nq(n−2j)s(1 − q−1)q[ n
2 ] +

∑

n≥2j

(−1)nq(n−2j)s(1 − q−1)qj .

Here the first sum runs over n such that

1 ≤ n ≤ min{j + v(au − d̄ū),2v(4 − bb̄),2j − 1, v(b2 − ad̄)},
and the second term runs over n such that

2j ≤ n ≤ min{2v(au − d̄ū), j + v(1 − uū), v(b2 − ad̄)}.
Combining O1(γ, s) (4.2) with O0(γ, s) (4.12) we have

O(γ, s) = q2v(1−dd̄)s

v(1−dd̄)∑

j=0

( ∑

0≤n<2j

(−1)nq(n−2j)sq[ n
2 ]

+
∑

n≥2j

(−1)nq(n−2j)sqj

)
, (4.13)

where in the inner sum the first term runs over

n ≤ min{j + v(au − d̄ū),2j − 1,2v(4 − bb̄), v(b2 − 4ad̄)}
and the second runs over

2j ≤ n ≤ min{2v(au − d̄ū), j + v(1 − uū), v(b2 − 4ad̄)}.
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Note that we must have v(d) = 0 (otherwise, b = −au− d̄ū must be a unit
and so is b2 − 4ad̄). This also implies that v(b) = 0. Since v(1 − uū) is odd,
by b2 − 4ad̄ = (au − d̄ū)2 − 4ad̄(1 − uū) we have

v(b2 − 4ad̄) = v(1 − uū) < 2v(au − d̄ū).

By b(4 − bb̄) = −4au(1 − dd̄) − b̄(b2 − 4ad̄), we have v(4 − bb̄) ≥
min{v(1 − dd̄), v(b2 − ad̄)}. Then the sum over j runs from 0 to v(1 − dd̄);

and for each j ≤ v(b2−ad̄)
2 the sum over n runs from 0 to an odd number

2j − 1 and for each j ≤ v(b2−ad̄)
2 the sum over n runs from 0 to an odd num-

ber v(b2 − ad̄). Therefore for each j the contribution to the orbital integral
is already zero. Hence O(γ,0) = 0 and the derivative of (4.13) can be taken
term-wise for each j . Now this gives us

O ′(γ,0) =
v(1−dd̄)∑

j=0

σ(γ, j) log q,

where

σ(γ, j) =

⎧
⎪⎨

⎪⎩

∑[ v(b2−4ad̄)
2 ]

i=0 qi, if 2j > v(b2 − 4ad̄),

∑j

i=0 qi + ([v(b2−4ad̄)
2 ] − j)qj , if 2j < v(b2 − 4ad̄).

Then it is easy to check that this can be rewritten as the sum in the statement
of the proposition. �

4.4 The case v(b2 − 4ad̄) is even

If v(b2 − 4ad̄) is even, then by b2 − 4ad̄ = (au − d̄ū)2 − 4ad̄(1 − uū),
b2 − 4ad̄ must be a square which will be denoted by τ 2. Then the condi-
tion v((av − b)2 − (b2 − 4ad̄)) ≥ n in O0(γ, s) is satisfied if and only if one
of the following three is satisfied

⎧
⎪⎨

⎪⎩

(I ) v((av − b)2) ≥ n, v(τ 2) ≥ n,

(II) v(τ 2) < n, v(av − b − τ) ≥ n − v(τ),

(III) v(τ 2) < n, v(av − b + τ) ≥ n − v(τ).

Accordingly we will denote the integral as a sum of three terms OI , OII

and OIII . For OI , we have the same expression as in the previous case. And
OIII can be obtained from OII by exchanging τ to −τ . So we only need to
calculate OII .



238 W. Zhang

We have

OII
0 (γ, s) = q2v(a−dd̄)s

∑

j

q−2js
∑

n

qnsq2nα(j, n;γ ) (4.14)

where the sum runs over

2v(τ) < n, 0 ≤ j ≤ v(1 − dd̄),

and α(j,n;γ ) is the volume of the domain of t such that

v(1 − t t̄ ) = n, v(2at − b − τ) ≥ n − v(τ), v(t + u) ≥ n − j.

Similarly for OIII . Thus we need to determine the valuation of 4 − N(b ± τ).

Lemma 4.6 Let

α = 4 − N(b + τ), β = 4 − N(b − τ)

and

θ = 16 + 16dd̄ − 8bb̄ + 8τ τ̄ .

Then we have

αβθ = 162(1 − dd̄)2(1 − uū).

Proof We have

αβ = 16 − 8bb̄ − 8τ τ̄ + N(b2 − τ 2) = 16 + 16dd̄ − 8bb̄ − 8τ τ̄ .

Denote ζ = 4ad̄/b2. Then we have

16(1 − dd̄) = 16 − (bb̄)2ζ ζ̄ , 16cc̄ = bb̄(4 − bb̄ζ )(4 − bb̄ζ̄ )

and

αβθ = (16 − 8bb̄ + (bb)̄
2
ζ ζ̄ )2 − 64(bb̄)2(1 − ξ)(1 − ξ̄ )

= (162 − 32(bb̄)2ζ ζ̄ + (bb̄)4(ζ ζ̄ )2)

− 16bb̄(16 − 4bb̄(ζ + ζ̄ ) + (bb̄)2ζ ζ̄ )

= 162((1 − dd̄)2 − cc̄) = 162(1 − dd̄)2(1 − uū). �

Lemma 4.7 Assume that v(1 − dd̄) > v(au− d̄ū) = v(τ) and v(b) = 0. And
let τ be a square root of b2 − 4ad̄ such that v(au − d̄ū + τ) = v(1 − uū) −
v(τ). Then we have
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v(4 − N(b + τ)) = v(1 − uū) + v(1 − dd̄) − 2v(τ),

v(4 − N(b − τ)) = v(1 − dd̄).

Proof For x ∈ E we denote by Rex (Imx, resp.) the real part (x + x̄)/2 (the
imaginary part (x − x̄)/2, resp.). Note that b2 − (au − d̄ū)2 = 4ad̄uū. We
obtain

uū Im
(τ

b

)2 = Im

(−4ad̄uū

b2

)
= Im

(
au − d̄ū

b

)2

.

Note that

au − d̄ū

b
+ āū − du

b̄
= −2uū(1 − dd̄)

bb̄
.

Since v(1 − dd̄) > v(au − d̄ū), we obtain v(Imau−d̄ū
b

) = v(au − d̄ū). To-
gether we have

Im

(
τ

b

)2

= v(1 − dd̄) + v(τ).

Now it is easy to estimate that (see also below (4.15)) v(τ
b

+ τ̄

b̄
) > v(τ).

We must have

v

(
τ

b
+ τ̄

b̄

)
= v(1 − dd̄), v

(
τ

b
− τ̄

b̄

)
= v(τ).

Since b + τ = −2au + (au − d̄ū + τ), we know that v(4 − N(b + τ)) ≥
min{4 − 4uū, v(au − d̄ū + τ)} = v(1 − uū) − v(τ) > v(τ) (note that v(1 −
uū) > 2v(τ)). Similarly v(β) ≥ v(τ). We thus have v(αβ) > 2v(τ). Since
v(αβ − γ ) = 2v(τ), we must have v(γ ) = 2v(τ). This in turn gives us that

v(αβ) = v(1 − uū) + 2v(1 − dd̄) − 2v(τ).

Now we claim that v(4 − N(b + τ)) > v(1 − dd̄). And the lemma follows
from this claim easily. In fact, since v(α − β) = v(b̄τ + bτ̄ ) = v(1 − dd̄),
then the claim implies that v(β) = v(1 − dd̄) and the valuation of α follows.

We now prove the claim. It suffices to prove

(4 − N(b + τ))(4 + N(b − τ)) = 16(1 − dd̄)

(
1 − bτ̄ + b̄τ

2(1 − dd̄)

)

has valuation strictly large than v(1 − dd̄) (note that the other factor of LHS
is a unit).
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Note that our choice of τ implies that

τ = −(au − d̄ū)t, t =
√

1 + 4ad̄(uū − 1)

(au − d̄ū)2
. (4.15)

Thus we have

1 − bτ̄ + b̄τ

2(1 − dd̄)
= 1 + b̄(au − d̄ū)t + b(āū − du)t

2(1 − dd̄)
− b(āū − du)(t − t̄ )

2(1 − dd̄)

= 1 − uūt − b(āū − du)(t − t̄ )

2(1 − dd̄)

= (1 − uū) + uū(1 − t) − b(āū − du)(t − t̄ )

2(1 − dd̄)
.

Since v(t − 1) = v(1 − uū) − 2v(τ), it suffices to estimate v(t − t̄ ).

t − t̄ =
2Im(1 + 4ad̄(uū−1)

(au−d̄ū)2 )

t + t̄

= (1 − uū)(1 − dd̄)(adu2 − ād̄ū2)

(t + t̄ )N(au − d̄ū)2
.

Note that 2(adu2 − ād̄ū2) = b(āū − du) − b̄(au − d̄ū) has valuation at least
v(τ) (indeed precisely v(τ)!). This implies that

v(t − t̄ ) ≥ v(1 − uū) + v(1 − dd̄) − 3v(τ).

And in summary we have proved that

v(4 − N(b + τ)) = v((4 − N(b + τ))(4 + N(b − τ))

≥ v(1 − uū) + v(1 − dd̄) − 2v(τ).

This completes the proof. �

Now we are ready to prove

Proposition 4.8 If b2 − 4ad̄ = τ 2 is a square, then we have

O ′(γ,0) =
v(1−dd̄)∑

j=0

σ(γ, j) log q,
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where

σ(γ, j) =

⎧
⎪⎪⎨

⎪⎪⎩

∑j

i=0 qi + (
v(1−uū)−1

2 − j)qj , j ≤ v(τ),

∑v(τ)−1
i=0 qi + 1

2qv(τ) + (−1)j+v(τ)+1(
v(1−uū)

2 − v(τ))qv(τ)

j > v(τ).

Or equivalently

O ′(γ,0) =
v(1−dd̄)∑

j=0,j≡v(1−dd̄) (mod 2)

σ ′(γ, j),

where for j

σ ′(γ, j) =
⎧
⎨

⎩

2
∑j−1

i=0 qi + 1
2(v(1 − uū) + 1 − 2j)ej , j ≤ v(τ),

2
∑v(τ)

i=0 qv(τ) − qv(τ), j > v(τ).

(Recall e0 = 1, ej = qj (1 + q−1), j ≥ 1.)

Proof We first assume that v(b) = v(d) = 0. Then we have

v(b2 − 4ad̄) = 2v(au − d̄ū) < v(1 − uū).

Since v(au − d̄ū) ≤ v(1 − dd̄), by cb̄ = −a(b̄2 − 4ad̄) + (bb̄ − 4)d we see
that

v(4 − bb̄) ≥ min{v(c),2v(τ)} ≥ v(τ).

We still choose τ such that v(au − d̄ū − τ) = v(τ) and v(au − d̄ū + τ) =
v(1 − uū) − v(τ).

We will incorporate O1 into the first part, namely OI(γ, s) = OI
0 (γ, s) +

O1(γ, s). Then we have

OI(γ ) = q−2v(1−dd̄)s

v(1−dd̄)∑

j=0

q2js

(∑

n

(−1)nq−ns+[ n
2 ] +

∑

n′
(−1)n

′
qn′s+j

)
,

where the two inner sums run over, respectively:

0 ≤ n ≤ min{j + v(τ),2j − 1,2v(τ)}, 2j ≤ n′ ≤ 2v(τ).

And we have

OII(γ, s) = q−2v(c)s

v(1−dd̄)∑

j=0

q2js
∑

n

(−1)nq−ns+v(τ),
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where the inner sum runs over:

2v(τ) < n ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{j + v(1 − uū), v(τ ) + v(au − d̄ū + τ)},
if j ≤ v(τ)

min{j + v(au − d̄ū + τ), v(τ ) + v(4 − N(b + τ))},
if j > v(τ).

And one can switch τ to −τ to obtain OIII .
For a fixed j we will collect contributions from three sums and we write

O(γ, j, s). We will prove that in fact for each j the term O(γ, j,0) = 0 so
that we can take its derivative. We distinguish two cases:

(1) The case j ≤ v(τ): Then the inner sums in I are taken over 0 ≤ n ≤
2j − 1,2j ≤ n′ ≤ 2v(τ), the sum in II is taken over 2v(τ) < n ≤ v(1 −
uū) and the sum in III is void.

(2) The case v(τ) < j ≤ v(1 − dd̄): This happens only if we have v(1 −
dd̄) > v(τ). Then only the first one of the two inner sums in I is nonzero
and it is taken over 0 ≤ n ≤ 2v(τ). By Lemma 4.7 the sum in II is taken
over 2v(τ) + 1 ≤ n ≤ j + v(τ) and the sum in III is taken over 2v(τ) +
1 ≤ n ≤ j + v(1 − uū) − v(τ).

In either case it is easy to see O(γ, j,0) = 0 and straightforward computation
yields the expression of σ(γ, j) log q := d

ds
O(γ, j, s)|s=0.

We now consider the case v(b) > 0. By b = −au − d̄ū, d must be a unit
and so is b2 − 4ad̄ = τ 2. Then I contributes zero to O0 and OII will be a sum
of volume of

{
v(1 − t t̄ ) = n, v(2at − b − τ) ≥ n, v(t + u) ≥ n − j.

0 < n, 0 ≤ j ≤ v(1 − dd̄).

And OIII is obtained by changing τ to −τ . Since (au − d̄ū)2 − τ 2 =
4ad̄(1 − uū), we may assume that v(au − d̄ū + τ) = v(1 − uū) − v(τ) =
v(1−uū). Note that the conclusion of Lemma 4.7 still holds. Hence the same
formula as above case still holds with v(τ) = 0.

We are left with the case v(d) > 0. Then v(b) = 0, and v(τ) = 0,
v(1 − bb̄) > 0. Choose τ such that v(b + τ) = 0 and v(b − τ) = v(d).
Using Lemma 4.6, we can show that v(4 − N(b + τ)) = v(1 − uū) and
v(4 − N(b − τ)) = 0. Moreover, v(au − d̄ū − τ) = 0 and v(au − d̄ū + τ) =
v(d) + v(1 − uū). These data suffice to yield the desired result. �

5 Intersection numbers: n = 3

In this section we calculate the intersection numbers and combining results in
previous section we prove the arithmetic fundamental lemma when n = 3.
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5.1 Orbits of U(J1 ⊕ 1)

We will take J1 = diag[−�,1]. Then we have

SU(J1) =
{(

x �y

ȳ x̄

) ∣∣
∣ xx̄ − �yȳ = 1

}
.

Any element in U ′(3) := U(J1 ⊕ 1) matching γ (a, b, d) must have the
form

δ =
(

A b
c d

)
∈ U(J1 ⊕ 1) = U ′(3).

Recall that 1 − uū is odd, we may fix any choice of v such that

uū − �vv̄ = 1. (5.1)

Lemma 5.1 (1) If v(1−dd̄) is even, one δ ∈ U ′(3) that matches γ (a, b, d) ∈
O(S3)reg can be given by δ of the above form with

A =
(

au a�v

d̄v̄ d̄ū

)
, b = t (0, ξ), c = −ξ̄ (v̄, ū)

for any choice ξ and v such that ξ ξ̄ = 1 − dd̄.

(2) If v(1 − dd̄) is odd, such a δ can be chosen as

A =
(

d̄ū ad̄�v

v̄ au

)
, b = t (ξ,0), c = aξ̄

�
(u,�v)

where ξ ξ̄ = −�(1 − dd̄).

Proof The condition δ ∈ U ′(3) is equivalent with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AJA∗ + bb∗ = J,

cJA∗ + db∗ = 0 ⇔ c∗ = − 1

d
A∗J−1b,

cJ c∗ + dd̄ = 1 = b∗J−1b + dd̄.

If v(1−dd̄) is even, up to action of SU(J ) we may assume that b = t (0, ξ).
Then we have diag[1, d̄]−1A ∈ U(J ). So we may further assume that

A =
(

1
d̄

)(
a′u′ a′�v

v̄ ū′
)

, a′ ∈ E1, u′ū′ − �vv̄ = 1.
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If δ matches γ (a, b, d), by comparing their invariants we have

a′u′ + d̄ū′ = −b, a′d̄ = ad,

from which we solve for a′, u′

a′ = a, u′ = u = c̄

1 − dd̄
.

Then we further get

c = −ξ̄ (v̄, ū).

Similarly for the case v(1 − dd̄) odd. �

5.2 Some preliminary results

We now recall some results of Gross, Keating and Kudla–Rapoport (cf. [16]).
For an integer j ≥ 0 let us consider the order of conductor j

Oj = OF + �j OE. (5.2)

Let Ej be a quasi-canonical lift of level j of E which is defined over the
totally ramified extension Wj of W of degree ej = qj (1 + q−1) if j ≥ 1
and e0 = 1. Then for our fixed choice of a uniformizer j of D (cf. (2.6)),
there exists a unique Oj -linear isogeny αj : E = E0 → Ej which induces the
endomorphism jj on the special fiber E. Moreover the set H0,j ⊂ OD of
homomorphisms from E0 ⊗ F = E to Ej ⊗ F = E that lift to homomorphisms
from E0 to Ej is exactly jj OE (cf. [16, Lemma 6.4]).

For each j , a quasi-canonical lifting Ej defines a divisor on N2 in the
following manner. For Ej we take the exterior tensor product E ⊗ OE so
that it admits an obvious OE-action [16, Sect. 6]. And one can endow it
with a p-principal polarization so that it defines a deformation of the uni-
tary divisible module E. Note that the N2 is indeed the universal deformation
space of the unitary p-divisible OF -module X2. We thus have a morphism
Spf Wj → N2 which turns out to be a closed immersion [16, Lemma 6.5].
We denote its image by Zj .

For y ∈ HomOE
(E,X2), let Z(y) be the special divisor as defined in

[16, Sect. 3] (note that our E is their Y). If we write y = (y1, y2) where
y1 ∈ jE,y2 ∈ E, then we define vD(y) = min{vD(y1), vD(y2)}. Then one of
our key ingredients is the following result:
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Proposition 5.2 ([16], Proposition 8.1) Assume that one of yi is zero and let
m = vD(y). As a divisor on N2 we have

Z(y) =
m∑

j=0,j≡m (mod 2)

Zj .

Remark 11 Strictly speaking, the paper [16] only deals with the case F = Qp .
Their proof relies on an argument of Zink [16, Proposition 8.2]. It is not
surprising that this can be generalized to an arbitrary finite extension F of
Qp as shown by Liu [19, Proposition 6.14].

Finally we also need to recall a result essentially due to Keating on the
endomorphism ring of the reduction of a quasi-canonical lifting. For a quasi-
canonical lifting Ej of level j defined over the ring Wj with a uniformizer t ,
let ψ ∈ OD = End(Ej ⊗F) be a homomorphism of its special fiber. Let nj (ψ)

be the maximal integer n such that ψ lifts to an endomorphism of Ej modulo
tn. We let �j (ψ) be the “distance” of ψ to Oj , namely

�j (ψ) := max{vD(x + ψ)|x ∈ Oj }.
Equivalently �j (ψ) is the positive integer � such that

ψ ∈ (Oj + j
�OD) \ (Oj + j

1+�OD).

Note that if vD(ψ) > 2j , then �j (ψ) ≥ 2j must be odd.

Proposition 5.3 Keating For j ≥ 0, let � = �j (ψ) be defined as above. Then
we have

nj (ψ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
∑�/2

i=0 qi − q�/2, if � ≤ 2j is even,

2
∑(�−1)/2

i=0 qi, if � ≤ 2j is odd,

2
∑j−1

i=0 qi + 1
2(� + 1 − 2j)ej , if � ≥ 2j + 1.

Recall that ej = qj (1 + q−1) when j ≥ 1 and e0 = 1.

For a proof, one may see [22]. For j = 0 this was calculated by Gross [7] and
used to compute local height of Heegner points in the proof of the original
Gross–Zagier formula [10].

5.3 Intersection numbers

For simplicity we will denote X = N2 and Y = N3 with the diagonal em-
bedding X → X × Y . Assume that δ = δ(a, b, d) ∈ U ′(3) is of the form
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in Lemma 5.1 and let φ(δ) ∈ Gn be the element under the isomorphism in
Sect. 2.2. We now calculate the intersection number X · φ(δ)∗X on X × Y .

Let Zφ(δ) be the sub-formal-scheme of Y × Y which represents the pairs
(A,A′) of unitary p-divisible OF -modules over a base S ∈ NilpW together
with a homomorphism α : A → A′ such that α ×S S̄ = φ(δ) ×F S̄. By the
rigidity of quasi-isogenies, the two projections from Y × Y to Y induce iso-
morphisms between Zφ(δ) and Y . It is then tautological that the intersec-
tion number X · φ(δ)∗X on X × Y is the same as the intersection number
(Zφ(δ)|X×X) · �(X) on X × X where Zφ(δ)|X×X is the restriction of Zφ(δ) to
X × X. Note that the underlying reduced scheme Xred of X is a single point
and X is the universal deformation space of X2. We will see that the inter-
section is proper so that the intersection number is the length of the (artinian)
subscheme representing unitary p-divisible OF -module V of signature (1,1)

such that in the following diagram δ deforms to a homomorphism “?” (com-
patible with the auxiliary structure)

V × E
?

V × E

(V × E ) ⊗ F

φ(δ)

(V × E ) ⊗ F

The idea is to determine this length in two steps. Recall that δ = (
A b
c d

)
as

in Lemma 5.1. Hence,

φ(δ) =
(

J −1AJ J −1b
cJ d

)
.

Note that d ∈ OE deforms. We only need to deform cJ , J −1b and J −1AJ .
In the first step we will find the locus on X such that the vector J −1b de-
forms. This will use the decomposition of the special divisor recalled in the
previous subsection. Roughly speaking, the locus where J −1b deforms is a
union of quasi-canonical liftings of level up to v(1 − dd̄). In the second step
we determine the locus such that J −1AJ deforms. This will use the result
of Keating as recalled above. When d is a unit, the vector cJ automatically
deforms if both J −1b and J −1AJ deform. If v(d) > 0, then v(1 − dd̄) = 0.
Then the first step is very simple and the theory of canonical liftings will
suffice.

Obviously the restriction Zφ(δ)|X×X is exactly the sub-functor representing
a pair (V ,V ′) of unitary p-divisible OF -modules such that in the following
diagram δ deforms to a homomorphism “?” (compatible with the auxiliary
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structure)

V × E
?

V ′ × E

(V × E ) ⊗ F

φ(δ)

(V ′ × E ) ⊗ F

We now let p1,p2 be the two projections of X × X to X. Then the im-
age p2∗(Zφ(δ)|X×X) of Zφ(δ)|X×X under the projection p2 is indeed the sub-
formal-scheme of X that represents V such that J −1b : E ⊗ F → V ⊗ F lifts
(compatible with the auxiliary structure). Note that this is exactly the special
divisor associated to y = J −1b.

It is easy to see vD(y) = v(1−dd̄). By Proposition 5.2 we have an equality
as divisors on X

p2∗(Zφ(δ)|X×X) =
v(1−dd̄)∑

j=0,j≡v(1−dd̄)

Zj .

Note that this also proves that the intersection is proper as long as we see
that for all such Zj , the locus where δ lifts is an artinian scheme. But this is
obvious now since Zj is of dimension one and δ does not lift to the whole Zj .

Now we may decompose Zφ(δ)|X×X as a sum
∑

j Z̃j where Z̃j denotes
the preimage under p2 of Zj in X × X. And hence we have

O ′(δ,1K ′) =
v(1−dd̄)∑

j=0,j≡v(1−dd̄)

σ ′(δ, j) logq (5.3)

where

σ ′(δ, j) = Z̃j · �(X).

Proposition 5.4 Suppose δ ↔ γ . Then we have for each 0 ≤ j ≤ v(1 − dd̄)

with the same parity as v(1 − dd̄):

σ ′(δ, j) = σ ′(γ, j).

Proof We first consider the case v(d) = 0. Then cJ automatically deforms
if both J −1b and J −1AJ deform. Since Zj 
 Spf Wj , the number σ ′(δ, j)

is the maximal integer n such that the endomorphism J −1AJ lifts to the
reduction of universal p-divisible OF -module over Zj modulo tn.
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By the construction of the divisor Zj , the universal divisible module over
Zj is in fact the exterior tensor product Ej ⊗ OE . We thus have an isomor-
phism

Ej ⊗ OE 
 Ēj × Ej . (5.4)

By taking an OF -basis {1,
√

ε} of OE , we may identify Ej ⊗ OE with Ej × Ej .
Then the above isomorphism gives an isomorphism Ēj × Ej 
 Ej × Ej with
matrix

w =
(√

ε −√
ε

1 1

)
.

Then the matrix J −1AJ transfers to wJ −1AJ w−1 ∈ End(E 2
j ⊗ F). Then

the number σ(δ, j) is the maximal integer n such that all entries of
wJ −1AJ w−1 lift to endomorphism of the reduction of Ej modulo tn. By
Proposition 5.3 we only need to determine the minimum (denoted by �j (δ))
among the invariants �j (ψ) for all entries of wJ −1AJ w−1.

We first consider the case v(1 − dd̄) is even. Then we have

A =
(

au a�v

d̄v̄ d̄ū

)
, J −1AJ =

(
āū −āv̄j

d̄ v̄j d̄ū

)

and

wJ −1AJ w−1

= 1

2

(
āū + d̄ū − (−āv̄ + d̄ v̄)j (āū − d̄ū)

√
ε + (āv̄ + d̄ v̄)j

√
ε

(āū − d̄ū)/
√

ε − (āv̄ + d̄ v̄)j/
√

ε āū + d̄ū + (−āv̄ + d̄ v̄)j

)
.

Then we want to determine the minimum of the invariants �j of all four
entries. It is easy to see this minimum is the same as the minimum of the
invariants of the following four entries

āū + d̄ū, (−āv̄ + d̄ v̄)j, (āū − d̄ū)
√

ε, (āv̄ + d̄ v̄)j
√

ε.

For ψ ∈ Ej, we clearly have �j (ψ) = vD(ψ). And we also have

min{vD((−āv̄ + d̄ v̄)j), vD((āv̄ + d̄ v̄)j
√

ε)} = vD(v̄) + 1 = v(1 − uū).

So we obtain

min{�j ((−āv̄ + d̄ v̄)j), �j ((āv̄ + d̄ v̄)j
√

ε)} = v(1 − uū).

For ψ ∈ E, we have

�j (ψ) = �j (ψ − ψ̄) =
{

2v(ψ − ψ̄) if v(ψ − ψ̄) < j

∞ if v(ψ − ψ̄) ≥ j.
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Then we see that

min{�j (āū + d̄ū), �j ((āū − d̄ū)
√

ε)} =
{

2v(au − d̄ū) if v(au − d̄ū) < j

∞ if v(au − d̄ū) ≥ j.

In the case v(1 − dd̄) is odd, this also holds and we omit the computation.
In summary we have proved that the minimal �j -invariants of the four entries
is given by

�j (δ) =
{

v(1 − uū) if v(au − d̄ū) ≥ j ;
min{v(1 − uū),2v(au − d̄ū)} if v(au − d̄ū) < j.

Note that v(1 − uū) is odd. Then we have two cases:

(1) v(1 − uū) < 2v(au − d̄ū). This is equivalent to the assumption that
v(b2 − 4ad̄) is odd. Then we always have

�j (δ) = v(1 − uū) = v(b2 − 4ad̄).

By Proposition 5.3 we have

σ ′(δ, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
∑[ v(b2−ad̄)

2 ]
i=0 qi, if 2j > v(b2 − ad̄),

2
∑j

i=0 qi + 1
2(v(b2 − 4ad̄) + 1 − j)ej ,

if 2j < v(b2 − ad̄).

(2) v(1 − uū) > 2v(au − d̄ū). This is equivalent to the assumption that
b2 − 4ad̄ = τ 2 is a square. And we have v(τ) = v(au − d̄ū). Now we
have

�j (δ) =
{

v(1 − uū) if v(au − d̄ū) ≥ j ;
2v(au − d̄ū) if v(au − d̄ū) < j.

By Proposition 5.3 we obtain

σ ′(δ, j) =
⎧
⎨

⎩

2
∑j−1

i=0 qi + 1
2(v(1 − uū) + 1 − 2j)ej , j ≤ v(au − d̄ū);

2
∑v(τ)

i=0 qv(au−d̄ū) − qv(au−d̄ū), j > v(au − d̄ū).

Now compare the results with σ ′(γ, j) as in Propositions 4.5 and 4.8. This
completes the proof when v(d) = 0.
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When v(d) > 0, we only have j = 0 and �0(δ) = v(1 − uū). We need to
deform cJ = −ξ̄ (v̄, ū)J (Lemma 5.1) where ξ ∈ O×

E is an automorphism.
Under the isomorphism matrix w (5.4), we can use the theory of canoni-
cal lifting similar to the process above. It is easy to see that in this case we
have

σ ′(δ,0) = v(1 − uū) + 1

2
. �

Finally we define a sign ω′(γ ) ∈ {±1} for regular γ ∈ S3(F ) as follows: if
γ = h · γ (a, b, d) · h−1 (such h is unique by the regularity of γ ), then

ω′(γ ) := η(det(h)). (5.5)

Theorem 5.5 The arithmetic fundamental lemma for n = 3 holds. Namely,
for δ ↔ γ we have

ω′(γ )O ′(γ,1KS
,0) = O ′(δ,1K ′).

Proof This follows immediately from (5.3), Proposition 5.4 and the expres-
sion from Propositions 4.5 and 4.8:

O ′(γ,1KS
,0) =

v(1−dd̄)∑

j=0,j≡v(1−dd̄)

σ ′(γ, j) log q.

�
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