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Some analytic aspects of automorphic forms
on GL.2/ of minimal type
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Abstract. Let � be a cuspidal automorphic representation of PGL2.AQ/ of arithmetic
conductor C and archimedean parameter T , and let � be an L2-normalized automorphic
form in the space of � . The sup-norm problem asks for bounds on k�k1 in terms of C and T .
The quantum unique ergodicity (QUE) problem concerns the limiting behavior of the L2-mass
j�j2.g/ dg of �. Previous work on these problems in the conductor-aspect has focused on the
case that � is a newform.

In this work, we study these problems for a class of automorphic forms that are not
newforms. Precisely, we assume that for each prime divisor p of C , the local component �p is
supercuspidal (and satisfies some additional technical hypotheses), and consider automorphic
forms � for which the local components �p 2 �p are “minimal” vectors. Such vectors may
be understood as non-archimedean analogues of lowest weight vectors in holomorphic discrete
series representations of PGL2.R/.

For automorphic forms as above, we prove a sup-norm bound that is sharper than what is
known in the newform case. In particular, if �1 is a holomorphic discrete series of lowest
weight k, we obtain the optimal bound C 1=8��k1=4�� �� j�j1 �� C 1=8C�k1=4C� . We
prove also that these forms give analytic test vectors for the QUE period, thereby demonstrating
the equivalence between the strong QUE and the subconvexity problems for this class of vectors.
This finding contrasts the known failure of this equivalence [31] for newforms of powerful level.
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1. Introduction

1.1. Overview. Let� be a cuspidal automorphic representation of GL2.AQ/. Many
problems in the analytic number theory of � depend upon the choice of a specific
L2-normalized automorphic form � in the space of � . For example, the sup norm,
Lp-norm and quantum unique ergodicity (QUE) problems have this feature, while
the subconvexity problem does not. In such problems, it is customary to work with
factorizable vectors � D ˝ �v for which

�1 D lowest nonnegative weight vector in �1; �p D newvector in �p: (1)

But other reasonable choices are often possible, useful, and more natural.
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A basic illustration of this principle is given by Lindenstrauss’s proof of the QUE
theorem. One formulation of that theorem is that as � traverses a sequence as above
for which �1 belongs to the principal series, the L2-masses of the vectors � given
by (1) equidistribute. A key step in the proof is to replace �1 by another vector ��1
(the microlocal lift) whose limit measures acquire additional invariance. Further
illustration of this principle is given by period-based approaches to the subconvexity
and shifted convolution problems (see e.g. [1, 2, 26]).

This work explores a particular choice for the local components �p which turn
out to have several remarkable properties. Briefly, assuming that �p is supercuspidal
and that its conductor is a fourth power, we consider �p which are analogues of the
lowest weight vectors in holomorphic discrete series representations of PGL2.R/;
see Section 1.4 for a more detailed description of these vectors from this point of view
and Definition 2.13 for the formal definition. We aim to demonstrate the strength of
our analogy from the analytic perspective by illustrating with two examples: the sup
norm problem and the QUE problem.

For lack of better terminology, we refer to these vectors as minimal vectors or
vectors of minimal type. (When �p belongs to the principal series, analogous vectors
were studied in [30].) Minimal vectors are implicit in the type theory approach to
the construction of supercuspidal representations, as in the works of Howe [14, 15],
Kutzko [24], Moy [27], Bushnell [6], and others. On the other hand, their analytic
properties, in the sense of the problems recalled above, do not appear to have been
explored. The purpose of the present work is to fill this gap.

Before describing in detail the vectors to be studied, we indicate some of the
intended applications.

1.2. The sup norm problem in the level aspect. Assume that � D˝�v , with �1 a
vector of lowest non-negative weight and �p spherical for all primes p − C . Then �
corresponds to either a Hecke–Maass cusp form f of weight k 2 f0; 1g and Laplace
eigenvalue � or to a holomorphic Hecke eigencuspform f of weight k 2 Z>0 (with
respect to some congruence subgroup). The GL.2/ sup-norm problem asks for
bounds on k�k1 D kyk=2f k1 in terms of C and k=� and has been much studied
recently. (A variant of this problem asks for bounds on kf j�k1, where � is a fixed
compact set. This formulation avoids the cusps and focusses on behavior at the bulk.
We do not discuss this variant in the present paper.)

In the case C D 1 and f a Hecke–Maass cusp form of weight 0 for SL2.Z/,
Iwaniec and Sarnak [18] proved the pioneering result

�1=12�� �� kf k1 �� �
5=24C�:

Their proof combined the Fourier expansion with a subtle amplification argument.
On the other hand, for f a holomorphic cuspidal eigenform of weight k for SL2.Z/,
the Fourier expansion alone turns out to be sufficient to get the optimal exponent in
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the weight aspect; this was worked out by Xia [45], who proved

k1=4�� �� ky
k=2f k1 �� k

1=4C�: (2)

For C > 1, one needs to make a choice for �p at each prime p dividing C .
The customary choice has been to take the newvector at each prime. The
corresponding forms f are (Hecke–Maass or holomorphic) newformswith respect to
the group �1.C /. For such newforms and for squarefree C there were several results
[5, 10, 11, 39, 41] culiminating in the bound k�k1 �k=�;� C

1=3C� due to Harcos
and Templier. (Here, for simplicity, we have quoted the bound only in the conductor-
aspect, noting that a hybrid result was proved by Templier in [41].) This bound was
generalized to the case of powerful (non-squarefree) C by the third author [35]. In
the special case of trivial central character, and again focussing only on the conductor
aspect, the results of [35] give

k�k1 �k=�;� C
1=6C�
0 C

1=3C�
1 ; (3)

where we write C D C0C1 with C0 the largest integer such that C 20 divides C1. Note
that C 1=60 C

1=3
1 always lies between C 1=4 and C 1=3.

The above bounds have been recently extended to the case of newforms over
number fields, initially covering only squarefree conductor [3, 4] and more recently,
for all conductors by Edgar Assing (to appear in his forthcoming Bristol thesis). As
for lower bounds, one only knows the trivial bound 1� k�k1 in general; however
in the case when the central character is highly ramified, there exist results giving
large lower bounds [34,40] due to the unusual behavior of local Whittaker newforms
(the corresponding best-known upper bounds are also worse in these cases).

Thus, the state-of-the-art for the GL.2/ sup-norm problem may seem quite
satisfying. Nonetheless there is a key deficiency in all the works so far — they
focus exclusively on newforms. The situation for Hecke eigenforms that correspond
at the ramified places to interesting local vectors that are not newvectors remains
completely unexplored. One aim of this paper is to explore the sup norm problem
when �p is a minimal vector at each prime p dividing C . As indicated above, these
local vectors may be viewed as p-adic analogues of holomorphic vectors at infinity.
The corresponding global automorphic forms � will be referred to as automorphic
forms of minimal type. For such forms, we prove a level aspect sup-norm bound that
is strongly analogous to the weight aspect bound (2).
Theorem1.1 (See Theorem 4.4 for amore general hybrid version). Let� ' ˝v�v be
an irreducible, unitary, cuspidal automorphic representation of GL2.A/ with trivial
central character and conductor C . Assume that C D N 4 is the fourth power of an
odd integer N and suppose, for each prime p dividing C , that �p is a supercuspidal
representation. Let � be an L2-normalized automorphic form in the space of � that
is of minimal type. Then

C
1
8�� �k=�;� k�k1 �k=�;� C

1
8Cmin. 132 ;

ı�
2 /C�:
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Above, ı� is any exponent towards the Ramanujan conjecture for �; in particular we
may take ı� D 0 if �1 is holomorphic and ı� D 7=64 otherwise.

The upper-bound in Theorem 1.1 is much stronger than what is known when �
is a newform (with the same assumptions on � as above). In the newform case,
the best known upper bound [35] is C 1=4C� , which is just the “local bound” in
the level aspect (both for newforms as well as for the minimal automorphic forms
considered here). The bound obtained in this paper gives the first instance of an
automorphic form of powerful level for which the local sup-norm bound in the level
aspect has been improved upon. Furthermore, our bound is optimal in the case
when � corresponds to a holomorphic cusp form, and the proof (as we will see) relies
only on the Whittaker/Fourier expansion. Thus, it is very close to Xia’s result [45] in
many respects.

1.3. Period integrals for QUE. Going back to the holomorphic newform case,
assume that the local components of � are given by (1), that � has trivial central
character, and that �1 is a holomorphic discrete series of lowest weight k. Then �
corresponds to a holomorphic newform f of weight k with respect to �0.C /. For
each Hecke–Maass cusp form g of weight 0 for SL2.Z/, define

Df .g/ D

R
�0.C/nH

ykjf j2.z/g.z/ dx dy
y2R

�0.C/nH
ykjf j2.z/dx dy

y2

:

The problem of proving Df .g/ ! 0 for fixed g as the parameters C and k
of f grow is a natural analogue of the Rudnick–Sarnak quantum unique ergodicity
(QUE) conjecture [33]. It was proved by Holowinsky and Soundararajan [13] that
Df .g/ ! 0 for fixed C (D 1) and varying k ! 1; we refer to their paper
and [37] for further historical background. The case of varying squarefree levels
was addressed in [29], where it was shown that Df .g/! 0 as Ck ! 1 provided
that C is squarefree. Finally, it was proved in [31] that Df .g/ ! 0 whenever
Ck ! 1 (without any restriction on C ). In fact, the main result of [31] gave an
unconditional power savings boundDf .g/�g C

�ı1
0 log.Ck/�ı2 for some positive

constants ı1; ı2, where as before, C0 denotes the largest integer such that C 20 jC .
Further extensions of this result to the case when g is not of full level were obtained
in [16].

There is a marked difference above between the case when C is squarefree and
the case when C is powerful. For C squarefree, a generalization of Watson’s formula
(see [29] for a precise version) asserts that for each g as above, corresponding to an
automorphic representation �g , one hasˇ̌

Df .g/
ˇ̌2
D .Ck/�1Co.1/L.� � � � �g ; 1=2/: (4)

Here the convexity bound reads L.� � � � �g ; 1=2/ � .Ck/1Co.1/. Thus, for
squarefree levels, the subconvexity and QUE problems are essentially equivalent. A
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major point of [31] was that this equivalence is no longer true for powerful levels.
For example, in the case when C is a perfect square, the results of [31] imply
that

ˇ̌
Df .g/

ˇ̌2
�g;k C

��1L.� � � � �g ; 1=2/ where � D 7=64. The convexity
bound in this case gives L.� � � � �g ; 1=2/ �k C

1=2Co.1/. So in this case, the
convexity bound alone is enough to imply QUE with power savings in the level
aspect! More generally, as shown in [31], the QUE problem is significantly easier
than the subconvexity problem in the case of newforms of powerful level (in contrast
to the squarefree case, where these problems are essentially equivalent).

One may ask whether the equivalence between QUE and subconvexity might
be recovered for powerful levels by replacing the newform with a different choice
of vector. We show that this is indeed the case for automorphic forms having a
local component of minimal type in a supercuspidal representation of fourth power
conductor. For a related observation when the local component belongs to a principal
series representation, see [30, Rmk. 30].

Let� ,C D N 4 and � be as in Theorem 1.1. We assume that�1 is a holomorphic
discrete series of lowest weight k. We can associate to � a holomorphic modular
form f defined by f .z/ D j.g1; i/k�.g1/where g1 2 SL2.R/ is any matrix such
that g1i D z. We let � denote any congruence subgroup such that f jk
 D f for
all 
 2 � (we will see later that we may take � D �.N 2/). We prove the following
result.
Theorem 1.2. Let g be a Hecke–Maass cuspform for SL2.Z/, and let �g be the
automorphic representation generated by (the adelization of) g. Thenˇ̌ R

�nH g.z/jf j
2.z/yk dx dy

y2

ˇ̌2� R
SL2.Z/nH jgj

2.z/ dx dy
y2

�� R
�nH jf j

2.z/yk dx dy
y2

�2
D
1

8

ƒ.� � � � �g ; 1=2/

ƒ.ad �g ; 1/ƒ.ad�; 1/2
Y
pjC

Ip;

where each local factor Ip satisfies

Ip � Cond.�p � �p/
�1=2:

In the above case, the convexity bound reads

ƒ.� � � � �g ; 1=2/�g;k C
1=2Co.1/

D Cond.� � �/1=2Co.1/:

So Theorem 1.2 shows that for the family of cusp forms coming from minimal
vectors, the QUE and subconvexity problems are essentially equivalent. In fact, our
local results imply more general identities in which g is allowed to have some level.

It is very likely that, by combining Theorem 1.2 with the arguments of [31, Sec. 3],
one could establish the estimate Df .g/� log.Ck/�ı for small ı > 0 and fixed g,
but we do not pursue this here.



772 Y. Hu, P. D. Nelson and A. Saha CMH

1.4. Automorphic forms of minimal type. In the rest of this introduction, we
explain in detail the concept of an automorphic form of minimal type and touch upon
some of the key ideas that power our results.

Let � ' ˝v�v be an irreducible, unitary, cuspidal representation of GL2.AQ/

of conductor C . We assume henceforth for simplicity that the central character of �
is trivial. An automorphic form � D ˝v�v in the space of � can be constructed out
of any choice of local vectors �v 2 �v such that �p is spherical (GL2.Zp/-fixed) at
almost all primes p. It is very natural to choose �p to be the (unique up to multiples)
spherical vector at all primes not dividing the conductorC , and we will always do so.
At the archimedean place, we will choose �1 to be a vector of minimal non-negative
weight k, i.e. with the property

�1

�
cos.�/ sin.�/
� sin.�/ cos.�/

�
�1 D e

ik��1; (5)

where k is the smallest non-negative integer (which in our case must be an even
integer as the central character is trivial) for which the above equality holds for
some �1. Note that k D 0 if �1 is a principal series representation and k � 2 if �1
is a discrete series representation.

Now, consider the primes p dividing C . What should we take �p to be? One
standard possibility would be to take�p to be the newvector, i.e. fixed by a congruence
subgroup of the form

h
1CpcZp Zp
pcZp Z�p

i
, where c is taken as small as possible, whence

newform theory implies c D vp.C /.
The minimal vectors studied in this paper may be viewed as an alternative to

the newvector in many cases. As we now explain, they may be regarded as non-
archimedean analogues of the holomorphic (lowest weight) vector at infinity for
a discrete series. Let T1 WD R�SO.2/ be the standard maximal non-split torus
inside GL2.R/; we have the isomorphism T1 Š C� sending r

�
cos.t/ sin.t/
� sin.t/ cos.t/

�
to reit .

Let ��1 be the character on C� given by ��1 W reit 7! eikt which we may view as a
character on T1. Then the equality (5) may be restated as

�1.t1/�1 D ��1.t1/�1; t1 2 T1: (6)

The character ��1 depends only on k and is therefore an invariant attached to �1.
Let us further explicate the relation between �1 and ��1 when �1 is a discrete

series representation. Let ��1 be the character on C� given by reit 7! ei.k�1/t .
By a special case of the local Langlands correspondence — see [21, (3.4)] and
note that �1 ' Dk�1 in the notation of [21] — the L-parameter of �1 under the
local Langlands correspondence is the representation IndWR

WC
��1 of the real Weil

groupWR; equivalently, the representation �1 is obtained by automorphic induction
from the character ��1 of C�. Let �C be the character on C� given by reit 7! eit

which we may think of as the simplest extension of the sign character on R� to C�.
Then we have ��1 D �C��1 .
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Next, take p to be a prime dividing C . Then there is a unique unramified
quadratic field extension Ep of Qp which should replace C in our analogy. As in
the archimedean case, we can specify a maximal non-split torus Tp inside GL2.Zp/
such that Tp ' E�p ; without loss of generality we may assume that Tp is in canonical
form (see Definition 2.2). Now, suppose that �p is a supercuspidal representation of
even minimal (exponent of) conductor. Then, similarly to above, �p is obtained by
automorphic induction from some regular character ��p of E�p (see [42, Prop. 3.5]).
Let �Ep be the unique unramified extension to E�p of the quadratic character on Q�p
associated to the extension Ep=Qp by local class field theory. We view �Ep
as the non-archimedean analogue of the character �C defined earlier. Define the
character ��p on Tp ' E�p by ��p D �Ep��p , which is then the analogue of the
character ��1 on T1 ' C� defined above. Analogously to (6), we define a minimal
vector to be any non-zero element �p in the space of �p such that

�p.tp/�p D ��p .tp/�p; tp 2 Tp: (7)

The comparison of (6) and (7) shows that minimal vectors are the non-
archimedean analogues of the lowest weight (holomorphic) vectors in archimedean
discrete series representations. The minimal vectors also occur naturally from the
point of view of microlocal analysis, in that they are approximate eigenvectors under
the action by small elements of the group; they are in this sense analogous also to the
p-adic microlocal lifts considered in [30]. We remark here that given a character �p
of Tp ' E�p , a Tp-eigenvector with eigencharacter �p is a vector �p that satisfies
�p.tp/�p D �p.tp/�p for each tp 2 Tp . The choice �p D ��p corresponds to our
case, whereby the vector acquires some remarkable properties.

The Saito–Tunnell theorem [36, 43] implies that a minimal vector, if it exists, is
unique up to multiples (once the group Tp is fixed); moreover, a minimal vector
exists if and only if �.1=2; �p ˝ AI.��1�p // D 1 (where AI denotes automorphic
induction fromE�p ). We verify in Proposition 2.12 below that if p is odd, vp.C / is a
multiple of 4, and �p is supercuspidal, then a minimal vector (as we have defined it)
indeed exists. Precisely, given such a �p , the character ��p of Tp can be extended
to a character ��p of the compact-mod-centre group L WD Tp.1 C p

nM2.Zp//

(where n D vp.C/

4
) with the property that �p ' c-IndGL��p : The restriction of �p

to L contains ��p , which gives an immediate proof of existence. Incidentally, the
pair .L; ��p / is in some sense the smallest possible among all inducing pairs for �p
and constitutes a minimal K-type in the sense of Moy [27]. Therefore, a minimal
vector, in our setup, is precisely one that generates the (one-dimensional) minimal
K-type associated to �p . This is one of the reasons for our use of the term “minimal”
to describe these vectors.

Returning to the global setup, we suppose that C D N 4 is the fourth power
of an odd integer, and �p is supercuspidal at all primes dividing C . Then, by
choosing �p to be a minimal vector at each prime p dividing C , we can construct a
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global automorphic form � D ˝v �v in the space of � ; we call this an automorphic
form of minimal type. It is precisely for such forms � that our Theorem 1.1 applies.

We end this subsection with a brief discussion of what an automorphic form � of
minimal type looks like classically. We can associate to � a function f on H defined
by f .z/ D j.g1; i/k�.g1/ where g1 2 SL2.R/ is any matrix such that g1i D z.
Then there exists an integerD and a character �� on the “toric” congruence group

�T;D.N / WD

��
a b

c d

�
2 SL2.Z/ W a � d .modN/; c � �bD .modN/

�
such that

f jk
 D ��.
/f; 
 2 �T;D.N /:

The character �� turns out to be trivial on the principal congruence subgroup of
levelN 2which is contained in�T;D.N /; seeRemark 4.2 formore details. Thus, f is a
(very special) member of the space of (holomorphic orMaass) Hecke eigencuspforms
of weight k 2 2Z with respect to the principal congruence subgroup of level N 2.
Theorem 1.1 gives the optimal sup-norm bound in the conductor aspect (assuming
the Ramanujan conjecture) for such forms f , just as (2) gives the optimal sup-norm
bound in the weight aspect for holomorphic eigencuspforms. This fits nicely with
our analogy between holomorphic vectors at infinity and minimal vectors at a finite
prime.

1.5. TheWhittaker expansion. The strong bound inTheorem1.1 is obtained purely
from the Whittaker (Fourier) expansion, and depends on an important property of
minimal vectors. We now explain this.

As before, let � ' ˝v�v be an irreducible, unitary, cuspidal representation
of GL2.AQ/ of conductor C D N 4 D

Q
p p

4np and of trivial central character. We
begin with some general discussion, which applies to any automorphic form � in the
space of� . TheWhittaker expansion for �, which wewant to exploit to bound j�.g/j,
looks as follows,

�.g/ D
X

q2Q¤0

W�

��
q

1

�
g

�
;

where W� is the global Whittaker function attached to �. Let g D gfg1 2 G.A/;
where gf denotes the finite part of g and g1 denotes the infinite component. There
is an integer Q.gf/, depending on gf , such that the Whittaker expansion above is
supported only on those q whose denominator divides Q.gf/. Moreover, the sum
decays very quickly after a certain point jqj > T.g1/ due to the exponential decay
of the Bessel function. The upshot is that

�.g/ D
X

m2Z¤0

W�

��
m=Q.gf/

1

�
g

�
(8)

with only the terms jmj < Q.gf/T .g1/ contributing essentially.
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Now, suppose that � is an automorphic form of minimal type. We let gf vary over
the set

Q
pjC GL2.Zp/ and g1 vary over the set

�
y x
1

�
with y �

p
3=2. This gives a

generating domain, similar to the one used in [35], and leads toQ.gf/ D N 2. Using
this alone, a standard argument (see the discussion in Section 1.4 of [35]) gives the
bound j�.g/j �k=�;� C

1=4C� , which is as good as the best known bound in the case
of newforms. Incidentally, it turns out that C 1=4C� is the “local bound” in our case
just as it is in the case of newforms of conductor C . This follows from Corollary 3.4.
Here, we use the term “local bound” in the sense of [25].

Theorem 1.1 of course, goes beyond the local bound, and indeed gives the optimal
bound under Ramanujan. What allows us to do this is the following key property of
the local Whittaker function W�p associated to a minimal vector, namely, for each
k 2 GL2.Zp/ there exists some ak 2 Z�p such that W�p

��
q
1

�
k
�
¤ 0 for q 2 Q�p

if and only if p2npq belongs to Z�p and satisfies p2npq � ak .mod pnp /. In sharp
contrast, the formula for the Whittaker function of a newvector involves a sum of
twisted GL2-epsilon factors [34, Section 2.7], with a likely cancellation that seems
difficult to prove.

Using the factorization of global Whittaker functions, it follows that (8) takes the
form

�.g/ D
X

m�A mod N

W�

��
m=N 2

1

�
g

�
(9)

for some integer A. In other words, the Whittaker function of an automorphic form
of minimal type is supported on an arithmetic progression.

This last point can also be explained classically. Suppose that�1 is a holomorphic
discrete series of lowest weight k, in which case � corresponds to a holomorphic
modular form f with respect to the group �T;D.N /. Then the above discussion
implies that the Fourier expansion of f at any cusp ˛ D �.1/ takes the form

.f jk�/.z/ D
X
n>0

n�b mod N

af .nI˛/e
2�inz=N2 : (10)

It is precisely the fact that the Fourier coefficients above are supported on an
arithmetic progression that allows us to get the additional savings beyond the local
bound.

1.6. Further remarks. The minimal vectors have many other important properties
that we have not discussed above. Perhaps their most striking feature is that the
matrix coefficient associated to an L2-normalized minimal vector is a character of
the supporting subgroup (see Proposition 3.2). This matrix coefficient formula can
be easily used to calculate the local integrals of Gan–Gross–Prasad type involving a
minimal vector (as in the proof of Theorem 1.2). More generally, one might hope
to use such vectors in classical period formulas (e.g. in Waldspurger’s formula or
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the triple product formula) with a view towards applications to subconvexity, mass
equidistribution, Lp-norms, arithmetic of special L-values, and so on; Theorem 1.2
may be understood as a first step in that direction.

The fact that the matrix coefficient of a minimal vector turns out to be a character
also has another very interesting interpretation, which further justifies our use of
the word “minimal.” By formal degree considerations, the integral of the square of
the matrix coefficient associated to an L2-normalized vector in a square-integrable
local representation �p of conductor pcp is independent of the choice of vector, and
equals roughly p�cp=2. The matrix coefficient of an L2-normalized minimal vector
is a character and so has maximum possible absolute value on the support (since the
absolute value of a matrix coefficient of anL2-normalized vector can never exceed 1,
by the triangle inequality). Therefore the minimal vectors have the property that their
matrix coefficients have as small support as possible!

Incidentally, this last fact makes such a matrix coefficient a great choice as a
test function in the pre-trace formula for amplification purposes, since small support
translates to more congruences for counting purposes. Indeed, while Theorem 1.1
does not rely on any sort of amplification, one could consider the analogous sup-norm
problem for automorphic forms of minimal type on a compact quotient of the upper
half-plane. In this case, while there is no Whittaker expansion, an amplification
argument should allow one to achieve an upper bound for the sup-norm in the
conductor aspect that improves upon the local bound. One could also consider
analogous problems for quaternion algebras ramified at infinity, where similarly
strong bounds may be expected from amplification. We suppress further discussion
of this topic in the interest of brevity.

Next, we say a few words about the restriction to C being a fourth power of an
odd integer, and �p being supercuspidal at all primes dividing p. These conditions
can in fact be removed when p is not equal to 2, provided one is happy to slightly
relax the definition of minimal vector. To give an example, consider the case of an
odd prime p such that �p is supercuspidal of even minimal (exponent of) conductor
but vp.C / � 2 .mod 4/. In this case, no vector satisfying (7) exists (the Saito–
Tunnell criterion is not satisfied). However, if one were to slightly perturb (7) by
multiplying ��p by any character of conductor p, then vectors satisfying the resulting
equality indeed exist. Similar discussion (roughly in the spirit of [30]) applies to
principal series representations (one needs to take Ep D Qp �Qp in this case) as
well as dihedral supercuspidals with odd minimal (exponent of) conductor, for which
we should take Ep to be a ramified quadratic extension of Qp . Indeed, if p ¤ 2,
every case can be covered, leading to a comprehensive theory of such “almost-
minimal” vectors that takes care of every type of representation. The sup-norms of
the resulting automorphic forms of almost-minimal type can be studied similarly,
though the bounds will be sometimes slightly worse than what we get.

The case of p D 2 is much more subtle due to the presence of non-dihedral
supercuspidals, and currently it is not clear to us how to define minimal vectors in
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that case. One general possibility in every case might be to consider a vector inside
a minimal K-type. The details of this theory over GL.2/ can be found in [24]. Such
a definition should in fact work not just for GL.2/ but for all reductive groups, using
a well known theorem of Moy–Prasad [28] on the existence of unrefined minimal
K-types for irreducible, admissible representations of p-adic reductive groups. It
would be very interesting to see if these ideas can be used to study the sup-norm
problem in the level aspect for higher rank groups.
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Notations. We collect here some general notations that will be used throughout this
paper. Additional notations will be defined where they first appear in the paper.

Let H denote the upper half plane and GL2.R/C the group of real two-by-
two matrices with positive determinant. For z 2 H,

�
a b
c d

�
2 GL2.R/C, we let�

a b
c d

�
z D azCb

czCd
2 H be the point obtained by Möbius transformation. Given a

function f on H, an integer k, and some 
 D
�
a b
c d

�
2 GL2.R/C, we define a

function f jk
 on H via .f jk
/.z/ D det.
/k=2.cz C d/�kf .
z/.
For any two complex numbers ˛; z, we let K˛.z/ denote the modified Bessel

function of the second kind. The symbol ' denotes the Euler totient function.
For elements x, y, t in some ringR, we define the following two-by-two matrices

over R:

a.y/ D

�
y

1

�
; n.x/ D

�
1 x

1

�
; z.t/ D

�
t

t

�
:

We use the notationA�x;y;::: B to signify that there exists a positive constantC ,
depending at most upon x; y; : : : so that jAj � C jBj. The absence of the subscripts
x; y; : : : will mean that the constant C is universal. We will use A � B to mean that
B � A � B . The symbol � will denote a small positive quantity. The values of �
and that of the constant implicit in�� may change from line to line.

We shall always assume every character is continuous (but not necessarily
unitary). The convention used for our Hermitian inner products is that they are
linear in the first variable.
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2. Minimal vectors and their Whittaker functions

This section will be purely local.

2.1. Preliminaries on fields, characters and representations. Let F denote a
non-archimedean local field of characteristic zero. We assume throughout that F has
odd residue cardinality q. Let o be its ring of integers, and p its maximal ideal. Fix
a uniformizer$ of o (a choice of generator of p) . Let j � j denote the absolute value
on F normalized so that j$ j D q�1. For each x 2 F �, let v.x/ denote the integer
such that jxj D q�v.x/. For a non-negative integer m, we define the subgroup Um
of o� to be the set of elements x 2 o� such that v.x � 1/ � m.

We denote the unique unramified quadratic field extension of F by E. Since q is
odd, we note that E D F.

p
ı/ for any element ı 2 o� n .o�/2:We denote the ring

of integers of E by oE . The valuation v and the absolute value j j naturally extend
to the field E. Note that$ is a uniformizer of oE . We let x 7! xx denote the unique
non-trivial automorphism of E=F .

We let � denote the unique unramified quadratic character of F �; equivalently,
� is the character associated to the extension E=F via local class field theory. For
each character � of F �, we let a.�/ denote the smallest integer such that � is trivial
on the subgroup Ua.�/. Similarly, for a character � of E�, we let a.�/ denote the
smallest integer such that � is trivial on the subgroup fx 2 o�E W v.x � 1/ � a.�/g.

We fix once and for all an additive character  of F such that  is trivial on o
but not on$�1o. We let  E WD  ı trE=F be the corresponding additive character
on E.

Throughout this section, we denote G D GL2.F / and K D GL2.o/. Define
subgroups N D fn.x/ W x 2 F g, A D fa.y/ W y 2 F �g, Z D fz.t/ W t 2 F �g,
B1 D NA, and B D ZNA D G \ Œ � �� � of G. For each integer r , denote

K1.r/ D K \

�
1C pr o
pr o

�
; K.r/ D K \

�
1C pr pr

pr 1C pr

�
;

B1.r/ D K \

�
1C pr pr

0 1

�
:

We note our normalization of Haar measures. The measure dx on the additive
group F assigns volume 1 to o, and transports to a measure onN . The measure d�y
on the multiplicative group F � assigns volume 1 to o�, and transports to measures
on A and Z. We obtain a left Haar measure dLb on B via dL.z.u/n.x/a.y// D
jyj�1 d�udx d�y: Let dk be the probability Haar measure on K. The Iwasawa
decomposition G D BK gives a left Haar measure dg D dLb dk on G.

For � an irreducible admissible generic representation of G, we let !� denote
the central character of � . We define a.�/ to be the smallest non-negative integer
such that � has a K1.pa.�//-fixed vector. It is known that � can be realized as a
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unique subrepresentation of the space of functions W on G satisfying W.n.x/g/ D
 .x/W.g/. This is the Whittaker model of � and will be denoted W.�;  /.

If � is unitary, there is a unique (up to multiples) G-invariant inner product h ; i
on it. In this case, for a vector v0 2 � , we define the matrix coefficient ˆv0 on G as
follows:

ˆv0.g/ D
h�.g/v0; v0i

hv0; v0i
;

which is clearly unchanged if v0 is multiplied by a constant and is also independent
of the normalization of inner product. We will normalize the inner product in the
model W.�;  / as follows:

hW1; W2i D

Z
F �

W1.a.t//W2.a.t//d
�t: (11)

The following lemma will be useful for us.
Lemma 2.1. Let � be an irreducible admissible supercuspidal representation of G
such that a.!�/ < a.�/=2. Then � is twist-minimal, i.e. a.� ˝ �/ � a.�/ for each
character � of F �.

Proof. Suppose, on the contrary, that �'�˝��1 with � minimal, and a.�/<a.�/.
As � and � are supercuspidal, we have 2 � a.�/ < a.�/. By a result of Tunnell [42,
Prop. 3.4], we have a.�/ D a.� ˝ ��1/ D 2a.�/; so a.�/ > 1. Since q is odd, we
have that a.�2/ D a.�/ D a.�/=2. As a.!�/ < a.�/=2, it follows that a.!��2/ D
a.�2/. On the other hand, we have !� D !��

�2, i.e. !� D !��
2. Therefore,

a.!� / D a.�2/ D a.�/ D a.�/=2 > a.�/=2, which contradicts Proposition 3.4
of [42].

2.2. Inert tori and their eigenvectors. For ˛, ˇ, 
 elements of F , denote

S D S˛;ˇ;
 D

�
˛ ˇ=2

ˇ=2 


�
and define

T˛;ˇ;
 WD fg 2 GL2.F / W tgSg D det.g/Sg:

Definition 2.2. A subgroup T of G is called an inert torus if T D T˛;ˇ;
 such that
ı WD ˇ2 � 4˛
 satisfies1 E D F.

p
ı/. An inert torus T is said to be in canonical

form if T D T˛;0;1 for some ˛ 2 o�, �˛ … .o�/2.
If T D T˛;ˇ;
 is an inert torus, then the map

x C y
p
ı=2 7!

��
x C yˇ=2 y


�y˛ x � yˇ=2

��
(12)

1Equivalently, ı is not a square in F and v.ı/ is even.
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gives an explicit isomorphism fromE� to T . If T is an inert torus in canonical form,
that ı D �4˛ and (12) takes o�E isomorphically onto T .o/ D T \ K. It follows
immediately that for an inert torus T in canonical form we have

T D ZT.o/ D
G
n2Z

$nT .o/:

We note down several additional useful properties about inert tori.
Proposition 2.3. (1) All inert tori in G are conjugate.

(2) Let T be an inert torus. Then there exists g 2 G such that gTg�1 is in canonical
form.

(3) If T1, T2 are two inert tori in canonical form, then there exists y 2 o� such that
T1 D a.y/T2a.y/

�1.

(4) Let T be an inert torus in canonical form. Then G D B1T D TB1 and
K D B1.o/T .o/ D T .o/B1.o/.

Proof. All the parts of the above Proposition follow from elementary computations
involving 2 by 2matrices. Let us start with part (3). If T1 D T˛1;0;1 and T2 D T˛2;0;1,
then there exist m 2 o� such that ˛2 D m˛21 . So S˛2;0;1 D a.m/S˛1;0;1a.m/ and
therefore T2 D a.m�1/T1a.m/.

Next we prove part (2). Suppose that T is associated to a matrix S . There exists
h 2 GL2.F / such that thSh D

�
�1 0
0 �2

�
for some �i 2 F �. Write �1=�2 D mn2

with m 2 o�. Then

��12

�
n�1

1

�
thSh

�
n�1

1

�
D

�
m 0

0 1

�
:

Consequently, we have .h.a.n�1//�1T .h.a.n�1// D Tm;0;1. Part (1) follows from
Parts (2) and (3).

Finally, let us prove part (4). For g D
�
a b
c d

�
, put

u1 D
˛.ad � bc/

˛a2 C c2
; m1 D �

ab˛ C cd

˛a2 C c2
;

u2 D
c2 C d2˛

˛.ad � bc/
; m2 D �

ac C ˛bd

˛.ad � bc/
:

Then an easy calculation shows that g
�
u1 m1

1

�
2 T and

�
u2 m2

1

�
g 2 T . Furthermore,

if g 2 K then it is immediate that u1; u2 2 o�, m1; m2 2 o.

Now let T � G be an inert torus and let � WE� ! C� be a character such that
� jF � D 1. Using the isomorphism (12), we view � as a character of T (note that
this entails fixing a choice of square root

p
ı in E� which we henceforth do without
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comment). Let� be an irreducible admissible generic representation ofG with trivial
central character. A non-zero vector v 2 � is said to be a .T; �/-eigenvector if

�.t/v D �.t/v; for all t 2 T :

It is known that the space of .T; �/-eigenvectors in � has dimension less than or
equal to 1, and it has dimension 1 if and only if the epsilon factor �.1=2; �˝AI.��1//
(which is equal to ˙1) equals 1, where AI.��1/ is the representation of G obtained
from ��1 by automorphic induction; see [19, 36, 38].

The precise choice of T is unimportant, because any two inert tori are conjugate
in G. If T1, T2 are two inert tori with T2 D gT1g�1, and v1 is a .T1; �/-eigenvector,
then �.g/v1 is a .T2; �/-eigenvector. In particular, we may assume, by taking a
suitable conjugate of T , that our inert torus T is in canonical form T D T˛;0;1 (see
part (2) of Proposition 2.3). In this case, we have

p
ı D 2

p
�˛. We define the

shorthand notation
w˛ WD

�
0 1

�˛ 0

�
:

The isomorphism (12) now reads

x C y
p
�˛ 7! x C yw˛ D

�
x y

�˛y x

�
: (13)

The goal of the rest of Section 2 is to delve into a particularly important case
in which .T; �/-eigenvectors exist and explicate some remarkable properties in that
case.

2.3. Compact induction and minimal vectors.
Definition 2.4. Given an inert torus T D T˛;0;1 in canonical form, we define for
each non-negative integer r , the congruence subgroup KT .r/ of K as follows:

KT .r/ D

�
g D

�
a b

c d

�
2 K W a � d 2 pr ; c C b˛ 2 pr

�
D T .o/K.r/:

Using the calculations in the proof of Proposition 2.3, part (4) it can be seen that

KT .r/ D T .o/B1.r/ D B1.r/T .o/: (14)

Since B1.r/ intersects T trivially, it follows that the index of KT .r/ in K is� q2r .
Lemma 2.5. Let T D T˛;0;1 be an inert torus in canonical form. Let � be a character
of E� such that a.�/ D 2n and � jF � D 1. Then there exists a�;T 2 o� such that
 E .$

�na�;T
p
�˛u/ D �.1C$nu/ for all u 2 oE .

Proof. Note that  0.x/ WD �.1C$n
p
�˛x/ is an additive character on o. So, there

must exist y 2 F such that  0.x/ D  .xy/ for all x 2 o. Comparing conductors,
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we see that v.y/ D �n. So we may put y D �2a�;T ˛$�n for some a�;T 2 o�.
We claim that this a�;T works. Indeed, let u D a C b

p
�˛ 2 oE , with a; b 2 o.

Then E .$�na�;T
p
�˛u/ D  .�2$�na�;T ˛b/ D  

0.b/ D �.1C$n
p
�˛b/ D

�.1C$nu/ where in the last step we have used that � jF � D 1 and a.�/ D 2n.

This enables the following definition.
Definition 2.6. Given an inert torus T D T˛;0;1 in canonical form and a character �
on E� (which we view as a character of T ) with a.�/ D 2n and � jF � D 1, we
extend the character � to a function ��;T on the groupZKT .n/ D TK.n/ as follows:

��;T .t.1C$
ng// D �.t/ .$�na�;TTr.w˛g//;

or equivalently

��;T

�
t

�
1C$ny1 $nx1
$nx2 1C$ny2

��
D �.t/ .$�na�;T .x2 � ˛x1//:

To see that the above formulae arewell-defined, we note thatT \K.n/D1C$noE
under the identification given by (13).
Lemma 2.7. The function ��;T is a multiplicative character of ZKT .n/.

Proof. First, we claim that for all k 2 K.n/, t 2 T ,

��;T .kt/ D ��;T .t/��;T .k/ D ��;T .tk/: (15)

To prove (15), write k D 1C$ng and let g0 D t�1gt so that kt D t .1C$ng0/.
Then

��;T .kt/ D ��;T .t/��;T .1C$
ng0/

D ��;T .t/ .$
�na�;TTr.w˛t�1gt//

D ��;T .t/ .$
�na�;TTr.t�1w˛gt//

D ��;T .t/ .$
�na�;TTr.w˛g//

D ��;T .t/��;T .k/:

Next note that ��;T is multiplicative on the groupK.n/ by using that a.�/ D 2n. The
multiplicativity of ��;T follows immediately by combining this fact with (15).

Remark 2.8. Using ZKT .n/ D TB1.n/, we can also write ��;T as

��;T

�
t

�
y $nx

0 1

��
D �

�
t
�
1C
p
�˛$nx=2

��
; x 2 o; y 2 Un: (16)

Further one can define the character ��;T on ZKT .n/ directly in terms of the entries
of the matrix as follows:

��;T

��
a b

c d

��
D �

�
.a
p
�˛ C c/.ab˛ C cd � 2

p
�˛.ad � bc//

�
:
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By [23] (see [7] for a recent treatment), the supercuspidal representations of G
are obtained by compact induction from subgroups that are compact modulo Z.
Precisely, let � be an irreducible supercuspidal representation ofG. Then there exists
a maximal compact-mod-center subgroup ZK of G, and an irreducible complex
representation � of ZK, such that � ' c-IndGZK� where c-Ind denotes compact
induction [7, 15.5, 15.8]. As shown in [24], the representation � is itself induced
from a smaller representation which is often one-dimensional. In the special case we
are interested in, one can make all this very simple and explicit.
Proposition 2.9. Let � be a supercuspidal representation of G with trivial central
character satisfying a.�/ D 4n for some positive integer n. There exists a
character �� of E� with a.��/ D 2n and �� jF � D 1 such that for any inert
torus T in canonical form, we have

� ' c-IndGZKT .n/��� ;T :

Proof. This follows from the results of Kutzko [23,24] but for our purposes it is more
convenient to appeal to the treatment in [7, Chapter 5]. As q is odd, � is associated
to a pair .E=F; �/ as in [7, 20.2] and the assumption a.�/ D 4n means that the
quadratic extension E=F is unramified (and hence coincides with our setup) and
furthermore that the integer l.�/ (in the terminology of [7]) equals 2n � 1. Hence,
defining �� D �, the result follows from [7, 19.3] (note that our character ��� ;T is
denoted ƒ there).

Definition 2.10. Given a supercuspidal representation � of G with trivial central
character satisfying a.�/ D 4n for some positive integer n, and an inert torus T in
canonical form, we let �� denote the character ��� ;T of ZKT .n/. Thus,

� ' c-IndGZKT .n/�� :

Remark 2.11. As q is odd, and a.�/ is even, the representation � is a dihedral
supercuspidal representation associated to a character �� of E� (see, e.g. [38,
Sec. 1.2]). Therefore, it is natural to ask for the relation between the characters ��
and �� . This is given by �� D ���E where �E is the unique unramified quadratic
character on E�; see [7, 34.4].
Proposition 2.12. Let � , �� be as in Proposition 2.9 and let T , �� be as in
Definition 2.10. Then there exists a unique up to multiples element v 2 � such
that

�.k/v D ��.k/v; for k 2 ZKT .n/: (17)

In particular v is a .T; ��/-eigenvector.

Proof. Recall that any element in � D c-IndGZKT .n/�� is a function � onG such that
�.kg/ D ��.k/�.g/ for k 2 ZKT .n/, with the group G acting by right translation.
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In particular we can take � to be the function

�.g/ D

(
��.g/; if g 2 ZKT .n/I
0; otherwise:

(18)

Then it’s clear that

�.k/� D ��.k/�; for k 2 ZKT .n/: (19)

The uniqueness assertion follows from the general fact that the space of .T; �/-eigen-
vectors has dimension at most 1.

The above proposition allows us to make the following definition.

Definition 2.13. Let � be a supercuspidal representation of trivial central character
satisfying a.�/ D 4n for some positive integer n. By a minimal vector in � , we will
mean a nonzero vector satisfying (17) for some inert torus T in canonical form.

As we have seen, minimal vectors exist. In fact, whenever we fix an inert torus T
in canonical form, there is a unique up to multiples .T; ��/-eigenvector; we will call
such a vector a minimal vector for T . By part (2) of Proposition 2.3, it follows that
the set of all minimal vectors (without fixing T ) lie in a single A.o�/-orbit.

As it turns out, minimal vectors have remarkable properties which make them
extremely special. Indeed (as pointed out in the introduction) a minimal vector may
be viewed as the true non-archimedean analogue of the lowest weight vectors in
(archimedean) holomorphic discrete series representations. As shown in Section
3.2, the matrix coefficient associated to such a vector has the amazing property of
being a character on the support. This implies that the minimal vectors are those
for which the associated matrix coefficient function has smallest possible support.
Another important reason for singling out the .T; �/-eigenvectors associated to the
character � D �� is that the conductor of the degree 4L-functionL.s; �˝AI.��1//
is smallest when � D �� .

2.4. Main results. For the rest of Section 2, we let � be a supercuspidal represent-
ation of trivial central character satisfying a.�/ D 4n for some positive integer n.
Note that such a representation is automatically unitary. Our first result shows that
minimal vectors have a remarkably simple description in the Whittaker model.

Proposition 2.14. LetW0 2 W.�;  /be a minimal vector (with respect to some inert
torus T in canonical form) in the Whittaker model of � . Then the restriction of W0
to A is, for a D �a�;T ˛ and some normalizing constant c 2 C, given by

W0.a.y// D

(
c; if y 2 $�2naUnI
0; otherwise:
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Proof. We define an intertwining operator from c-IndGZKT .n/�� to W.�;  / via

� 7! W�.g/ D

Z
F

�

  
�
$2n

a�;T ˛
0

0 1

!�
1 x

0 1

�
g

!
 .�x/dx: (20)

To see that the operator above is non-trivial, we compute directly the special values
of the Whittaker function for the minimal vector, as defined in (18). In particular

W0.a.y// D

Z
F

�

  
�
$2n

a�;T ˛
0

0 1

!�
1 x

0 1

��
y 0

0 1

�!
 .�x/dx: (21)

Recall that �.g/ D 0 unless g 2 ZKT .n/. So to ensure that 
�
$2n

a�;T ˛
0

0 1

!�
1 x

0 1

��
y 0

0 1

�
D

 
�y $2n

a�;T ˛
�x $2n

a�;T ˛

0 1

!
2 ZKT .n/;

we need v.y/ D �2n, �y $2n

a�;T ˛
� 1 2 pn and �x $2n

a�;T ˛
2 pn. The conditions on y

give y 2 �$�2na�;T ˛Un. Thus W0.a.y// D 0 if y … �$�2na�;T ˛Un. On the
other hand if y 2 �$�2na�;T ˛Un, 

�y $2n

a�;T ˛
�x $2n

a�;T ˛

0 1

!
D I2 �$

n

 
$�n C y $n

a�;T ˛
x $n

a�;T ˛

0 0

!
:

By definition of � in (18) and Definition 2.6,

W0.a.y// (22)

D

Z
v.x/��n

 ı tr

 
�$�n

�
0 a�;T

�a�;T ˛ 0

� 
y $n

a�;T ˛
C$�n x $n

a�;T ˛

0 0

!!
 .�x/ dx

D

Z
v.x/��n

 

 
tr
�

0 0

y C$�2na�;T ˛ x

�!
 .�x/ dx

D

Z
v.x/��n

 .x/ .�x/ dx (23)

is a non-zero constant independent of y in the support.

Remark 2.15. Recall that different inert tori in canonical form are A.o�/ conjugate.
Moreover, it is well known that a vector in W.�;  / is uniquely specified by its
restriction to A (the so-called Kirillov model). Therefore, Proposition 2.14 gives us
an alternative way to characterize minimal vectors: these are precisely those vectors
which in the Kirillov model are equal to the characteristic function of$�2naUn for
some a 2 o�.
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Remark 2.16. Using (11), it is clear that one can pick c D .jo�=Unj/
1=2 in

Proposition 2.14 for W0 to be L2�normalized.
Proposition 2.14 has some key consequences which will be crucial for our global

results.
Corollary 2.17. Let T be an inert torus in canonical form and letW0 2 W.�;  / be
a minimal vector for T in the Whittaker model. Let a 2 o� be as in Proposition 2.14.
Let g 2 G and (using Proposition 2.3) write g D

�
y m
1

�
t for t 2 T , y 2 F �,m 2 F .

Then we have

W0.g/

hW0; W0i1=2
D jo�=Unj

1=2
�

(
��.t/ .m/; if y 2 $�2naUn;
0; otherwise:

(24)

Proof. This is immediate as W0 is a .T; ��/-eigenvector.

Corollary 2.18. LetW0 2 W.�;  / be a minimal vector in the Whittaker model of � .
Then

supg2G jW0.g/j
hW0; W0i1=2

� qn=2:

Proof. This is immediate from the previous corollary.

Corollary 2.19. LetW0 2 W.�;  / be a minimal vector in the Whittaker model of �
and let k 2 K. Then there exists some b 2 o�=Un such that

jW0.a.y/k/j
2

jo�=Unj
D

(
hW0; W0i; if y 2 $�2n.b C pn/;

0; otherwise:

Proof. By assumption,W0 is a .T; ��/-eigenvector for some inert torusT in canonical
form. Using the last part of Proposition 2.3, we can write k D . z m1 /t for t 2 T ,
z 2 o�, m 2 o. So using Corollary 2.17 we see that jW0.a.y/k/j

2

jo�=Unj
equals hW0; W0i

if y 2 $�2nz�1aUn and equals 0 otherwise.

3. The QUE test vector property

Here we revisit the discussion of Section 1.3 in a local context, and establish the local
results underlying the proof of Theorem 1.2.

3.1. Generalities. We continue to use the notations of the previous section. In par-
ticular, the base field F has odd residue characteristic (indeed, some of the results we
will state below fail in the stated forms for even residual characteristic). Let�1; �2; �3
be generic irreducible unitary representations of G with

Q3
iD1 !�i D 1. We assume

that they arise as local components of cuspidal automorphic representations; this
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implies sufficient bounds towards temperedness to give the absolute convergence of
the matrix coefficient integrals

H W�1 ˝ �2 ˝ �3 ! C

H .v1; v2; v3/ WD

Z
g2ZnG

hgv1; v1ihgv2; v2ihgv3; v3i

for smooth vectors vi 2 �i . One calls �1 ˝ �2 ˝ �3 distinguished if H is not
identically zero. By a result of Prasad [32],

�1 ˝ �2 ˝ �3 is distinguished ” �.�1 ˝ �2 ˝ �3; 1=2/ D 1: (25)

We focus here on the case in which

�1 D �2 DW � (26)

and in which the conductor of � is large compared to that of �3. This case is the
relevant one when considering the quantum unique ergodicity (QUE) problem for
global automorphic forms having v 2 � as a local component. One then encounters,
after an application of Ichino’s formula, the local integrals

H .v; xv; u/; (27)

where u is an “essentially fixed” unit vector, while either the conductor of � or the
residue field cardinality of F tends off to1. As explained at length in [31], the size
of

C.� ˝ x�/1=2H .v; xv; u/ (28)

quantifies the relative difficulty of the QUE and subconvexity problems.
When a.�/ D 1 and a.�3/ D 0 and v is a newvector, it was shown in [29]

that the quantity (28) has size � 1. This corresponds globally to the QUE
and subconvexity problems for a sequence of squarefree level newforms having
approximately equivalent difficulty.

Itwas observed in [31] that ifa.�/ � 2, a.�3/ D 0 andv 2 � is anL2-normalized
newvector, then (28) is rather small; globally, this says that the QUE problem
for newforms of powerful level is substantially easier than the corresponding
subconvexity problem. Related results were obtained in [16] when a.�3/ > 0.

It is natural to ask whether the equivalence of difficulty in the squarefree level
case may be restored in the case of powerful levels by choosing the test vector more
carefully. This was shown in [30, Rmk. 30, Rmk. 50] when � belongs to the principal
series by taking for v a “p-adicmicrolocal lift.” Belowwe address the case inwhich�
is supercuspidal, assuming that its conductor satisfies the congruence condition from
Section 2. It turns out that a minimal vector works for this case.
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3.2. Matrix coefficients of minimal vectors. In this subsection, we assume that �
is a supercuspidal representation of G with trivial central character and conductor of
the form a.�/ D 4n for some positive integer n. We look at the matrix coefficient
associated to a minimal vector for � .

The matrix coefficients for representations before and after compact induction
can be directly related; see, for example, [22]. We briefly recall this relation. Let
H � G be an open and closed subgroup containing Z with H=Z compact. Let �
be an irreducible smooth representation of H with unitary central character and
� D c-IndGH .�/. By the assumption on H=Z, � is automatically unitarizable, and
we shall denote the unitary pairing on � by h� ; �i�. Then one can define the unitary
pairing on � by

h�; i D
X

x2HnG

h�.x/;  .x/i�: (29)

If we let y 2 HnG and fvig be a basis for �, the elements

fy;vi .g/ D

(
�.h/vi ; if g D hy 2 HyI
0; otherwise;

form a basis for � .
Lemma 3.1. For y; z 2 HnG,

h�.g/fy;vi ; fz;vj i D

(
h�.h/vi ; vj i�; if g D z�1hy 2 z�1HyI
0; otherwise:

(30)

Proof. This is a direct consequence of (29) and the definition of our basis elements.

Proposition 3.2. Let v0 be a minimal vector in � and letˆ0.g/ D h�.g/v0;v0ihv0;v0i
. Then,

ˆ0.g/ D

(
��.g/; if g 2 ZKT .n/;
0; otherwise:

(31)

Proof. This follows from putting H D ZKT .n/, � D �� , and y D z D 1 in
Lemma 3.1 and using (18).

Remark 3.3. Thus, we see that the matrix coefficient of a minimal vector has the
remarkable property that it is a character of its supporting group.
Corollary 3.4. Let v0 be aminimal vector and letˆ0.g/ D h�.g/v0;v0ihv0;v0i

. Let ı � q�2n

be the volume of KT .n/. Then
R
ZnG
jˆ0.g/j

2 dg D ı. Moreover, R.ˆ0/v0 D ıv0
and ˆ0 �ˆ0 D ıˆ0 where we denote as usual

R.ˆ0/v WD

Z
ZnG

ˆ0.g/.�.g/v/ dg; .ˆ0�ˆ0/.h/ WD

Z
ZnG

ˆ0.g
�1/ˆ0.gh/ dg:

Proof. This follows immediately from Proposition 2.12 and Proposition 3.2.
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3.3. The main result.
Theorem 3.5. Assume that � is an irreducible, admissible supercuspidal represen-
tation of G with trivial central character and with conductor of the form a.�/ D 4n
for some positive integer n. Let v 2 � be an L2-normalized minimal vector. Let �3
be an irreducible, admissible, unitary representation of GL2.F / with trivial central
character.
(1) We have C.� ˝ x�/ D q4n.
(2) Suppose that u 2 �3 is K.n/-fixed. Then

H .v; xv; u/ D vol.KT .n//
Z
h2T=Z

hhu; ui D vol.KT .n//
Z
h2T.o/

hhu; ui

where the h-integral is taken with respect to the probability Haar measure. In
particular, if u is also T .o/-fixed, then

C.� ˝ x�/1=2H .v; xv; u/ � 1;

with absolute implied constants.
(3) Assume that

a.�/ � 2a.�3/: (32)

Then � ˝ x� ˝ �3 is distinguished if and only if a.�3/ is even. Furthermore,
whenever a.�3/ is even, there exists a unit vector u 2 �3 which is fixed by
KT .n/ D T .o/K.n/, and hence (by the previous part) we have

C.� ˝ x�/1=2H .v; xv; u/ � 1:

Proof. In our case, as � has trivial central character, we have x� ' � . Therefore in
the proof, we will replace x� by � whenever appropriate.

First of all, � is twist-minimal by Lemma 2.1. The computations in [31, Sec. 2.6]
now imply that C.� ˝ x�/ D q4n. This proves part (1). Next, using Proposition 3.2,
we see that

H .v; xv; u/ D

Z
KT .n/

hhu; ui dh:

Note thatKT .n/ D T .o/K.n/ and by our normalization T .o/ has volume 1. So, if u
is K.n/-fixed, we obtain

H .v; xv; u/ D vol.KT .n//
Z
h2T.o/

hhu; ui

as required. This proves part (2) of the theorem.
We now prove part (3). First of all, we verify that

� ˝ � ˝ �3 is distinguished ” a.�3/ is even. (33)
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For this, we recall the three possibilities for �3.
(i) �3 is a principal series representation with trivial central character, hence

induced by a pair f�; ��1g of characters of F �.
(ii) �3 is a twist of the Steinberg representation by a character � of F � satisfying

�2 D 1.
(iii) �3 is supercuspidal.

In case (i), the conductor exponent a.�3/ D a.�/ C a.��1/ D 2a.�/ is even.
On the other hand, the self-duality of � implies that

�.� ˝ � ˝ �3; 1=2/ D �.� ˝ � ˝ �; 1=2/�.� ˝ � ˝ �
�1; 1=2/ D 1;

and therefore, using the criterion (25), we see that � ˝ � ˝ �3 is distinguished.
It remains to consider cases (ii) and (iii). We treat both cases simultaneously.

Recall that the local Langlands correspondence associates to � a Weil–Deligne
representation of the form �� WD IndFE .�/ for the unramified quadratic extensionE=F
and character � of E� (cf. Remark 2.11). The fact that � has trivial central character
implies that the restriction of � toF � equals the unramified quadratic character onF �
(see, e.g., page 7 of [38]) and therefore

�2.y/ D �.xxx/ D 1; (34)

for all x 2 E�, y 2 F �. Furthermore, a.�/ D 2a.�/which leads to a.�/ D 2n. We
denote also by �3 the Weil–Deligne representation associated to �3. By rewriting
Prasad’s criterion (25) in terms of Weil–Deligne representations, our task reduces to
showing that

�.IndFE .�/˝ IndFE .�/˝ �3; 1=2/ D 1 ” a.�3/ is even. (35)

To compute these �-factors, we recall (see [32, 8.1.4]) that for any even dimensional
Weil–Deligne representation � , one has

�.IndFE .�/˝ �; 1=2/ D �.� jE ˝ �; 1=2/ � !
.dim�/=2
E=F

.�1/: (36)

Moreover, denoting by �� the composition of � with the nontrivial automorphism
x 7! xx of E=F , we have

IndFE .�/jE D � ˚ �
�: (37)

On the other hand, (34) implies that �� D ��1 D � . Thus

�.IndFE .�/˝ IndFE .�/˝ �3; 1=2/ D �.� ˝ .Ind
F
E .�/˝ �3/jE ; 1=2/ (38)

D �.� ˝ .� ˚ �/˝ �3jE ; 1=2/

D �.�2 ˝ �3jE ; 1=2/�.�3jE ; 1=2/: (39)
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(The first equality follows from (36) applied to the four-dimensional Weil–Deligne
representation IndFE .�/˝ �3, the second from (37).)

By (32), a.�/ D 2n � a.�3/. On the other hand, as n � 1 and the residue
characteristic of F is odd, we have that a.�/ D a.�2/. So

a.�2/ � a.�3/ > a.�3/=2C 1

and hence by [43, Prop. 1.7 and Lemma 3.1], the character �2 appears in �3jE�
(where we think of E� as a subgroup of G). So, by the main theorem of [43], we
have �.�2 ˝ �3jE ; 1=2/ D 1. (Observe here that �3jE corresponds, under local
Langlands, to the base change of �3 to GL2.E/). So, to finish the proof of (33),
we need to show that the quantity �.�3jE ; 1=2/ equals 1 if and only if a.�3/ is
even. For this, first observe that �.�3jE ; 1=2/ D �.�3; 1=2/�.�3 ˝ �; 1=2/, where �
is the unique non-trivial unramified quadratic character. Now, by [38, (11)], we
have �.�3 ˝ �; 1=2/ D .�1/a.�3/�.�3; 1=2/ and hence �.�3jE ; 1=2/ D .�1/a.�3/,
as desired.

Finally, let a.�3/ D 2m for some nonnegative integer m � n. We now take
for u the Gross–Prasad test vector in [9, Prop 2.6] defined relative to the torus T .
Among other properties, this vector u is invariant by ZKT .m/, hence in particular
by ZKT .n/, as required.

4. Global cusp forms of minimal type

From now on, we move to a global setup. Throughout this section, the letter G
will stand for the algebraic group GL2. We will usually denote a non-archimedean
place v by p where p is a rational prime. The set of all non-archimedean places
(primes) will be denoted by f. The archimedean place will be denoted by v D 1.
LetK1 D SO2.R/ be the standard maximal connected compact subgroup of G.R/.
We let  denote the unique non-trivial additive character on A that is unramified
at all finite places and equals e2�ix at R. We normalize the Haar measure on R to
be the Lebesgue measure. We fix measures on all our adelic groups by taking the
product of the local measures. We give all discrete groups the counting measure and
thus obtain a measure on the appropriate quotient groups.

4.1. Setup and statement of sup-norm result. Let � D ˝v �v be an irreducible,
unitary, cuspidal automorphic representation of G.A/ with trivial central character
and the following additional property:
� If �p is ramified then p is odd and �p is a supercuspidal representation satisfying
a.�p/ D 4np for some positive integer np .
We let c � f denote the set of primes where �p is ramified. Let N D

Q
p2c p

np

and C D N 4 D
Q
p2c p

4np . Thus C is the conductor of the representation � .
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Since � has trivial central character, there are two possibilities for �1.
Case 1. Principal series representations. In this case, �1 ' �1 � �2; where
�1.y/ D jyj

it sgn.y/m, �2.y/ D jyj�it sgn.y/m, with m 2 f0; 1g, t 2 R [ .� i
2
; i
2
/.

In this case, put
k D 0; T D 1C jt j:

Case 2. Holomorphic discrete series representations. In this case�1 is the unique irr-
educible subrepresentation of�1��2, where�1.y/Djyj.k�1/=2,�2.y/Djyj�.k�1/=2
for some positive even integer k. In this case we put

T D k:

In either case, we will call k the lowest weight. Note that k D 0 in Case 1. We
say that a vector �1 in �1 is a lowest weight vector if

�1

�
cos.�/ sin.�/
� sin.�/ cos.�/

�
�1 D e

ik��1: (40)

Definition 4.1. We say in what follows that a non-zero automorphic form � 2 V�
is of “minimal type” if � is a factorizable vector � D ˝v �v with �v 2 V�v that is
lowest weight at the archimedean place and minimal at the finite places. Precisely:
(1) For all p 2 c, �p is a minimal vector in the sense of Definition 2.13.
(2) For all p 2 f, p … c, �p is G.Zp/-invariant.
(3) �1 is a lowest weight vector.

We define k�k2 D
R
Z.A/G.F /nG.A/ j�.g/j

2 dg.
Remark 4.2. It is interesting to translate things to a classical setup. Suppose that �
is an automorphic form of minimal type. By definition, for each p 2 c, �p is an
minimal vector with respect to some inert torus in canonical form Tp D T˛p ;0;1 (as in
Definition 2.2) where ˛p 2 Z�p; let ��p be the character on ZpKTp .np/ as defined
in Definition 2.6. Let D be an integer such that D � ˛p .mod pnp / for all p 2 c
and define the congruence subgroup �T;D.N / of SL2.Z/ as follows:

�T;D.N / D

��
a b

c d

�
2 SL2.Z/ W a � d .mod N/; c � �bD .mod N/

�
:

Clearly, the group �T;D.N / contains the principal congruence subgroup �.N/.
Define a character � on �T;D.N / by �.
/ D

Q
pjN �

�1
�p
.
/. Note that � is trivial

on the principal congruence subgroup �.N 2/ but non-trivial on �.Nm/ for any
1 � m < N , mjN .

Then, the function f on H defined by

f .x C iy/ D y�k=2�

��
y1=2 xy�1=2

y�1=2

��
has the following properties:
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� If we are in Case 1, then f is a real analytic function satisfying �f D ��f and
if we are in Case 2 then f is a holomorphic function.

� For all 
 2 �T;D.N /, z 2 H,

f jk
 D �.
/f: (41)

� f decays rapidly at the cusps.
� f is an eigenfunction of all the Hecke operators Tn for .n;N / D 1.

It is also clear that supg2G.A/ j�.g/j D supz2H jy
k=2f .z/j.

Let the real numbers ��.n/ be the coefficients of the (finite part of the)L-function
attached to � , i.e.

Lf.s; �/ D

1X
nD1

��.n/

ns
: (42)

Note that all our L-functions are normalized so that the functional equation takes
s ! 1 � s.
Definition 4.3. We fix ı� to be any real number such that ��.n/ � d.n/nı� for
all positive integers n where d.n/ is the divisor function. In particular, we may
uniformly take ı� D 7

64
in Case 1, and ı� D 0 in Case 2.

Our main result is as follows.
Theorem 4.4. Let � 2 V� be of minimal type and satisfy k�k2 D 1.
(1) If we are in Case 1 then

C
1
8��T

1
6�� �� sup

g2G.A/
j�.g/j �� C

1
8C�T

1
2C� min

�
C
ı�
2 T ı� ; C

1
32

�
: (43)

(2) If we are in Case 2, then

C
1
8��k

1
4�� �� sup

g2G.A/
j�.g/j �� C

1
8C�k

1
4C�: (44)

We will prove this theorem by carefully looking at the Whittaker expansion.
Before getting into the details of the proof, let us make a simple but key reduction.
Let F be the subset of B1.R/C defined by F WD fn.x/a.y/ W x 2 R; y �

p
3=2g.

Let
JN D

Y
pjN

G.Zp/:

Then, using strong approximation, it follows that for any g 2 G.A/, the double coset
G.Q/g

Q
p−N G.Zp/ has a representative in JN �F . Since � is leftG.Q/-invariant

and right
Q
p−N G.Zp/-invariant, it suffices in Theorem 4.4 to only consider the

supremum for g lying inJN �F , i.e. g D gfn.x/a.y/with gf 2 JN , n.x/a.y/ 2 F .
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4.2. Generalities on the Whittaker expansion and proof of the lower bounds.
Let � , � be as in the statement of Theorem 4.4. Let gf D

Q
v2f gv 2 G.Af/, x 2 R,

y 2 RC. Then the Whittaker expansion for � says that

�.gfn.x/a.y// D
X

q2Q¤0

W�.a.q/gfn.x/a.y//; (45)

where W� is the global Whittaker newform corresponding to � given explicitly by

W�.g/ D

Z
x2A=Q

�.n.x/g/ .�x/ dx: (46)

For each unramified prime p, i.e. for p 2 f � c, let the function Wp.g/ on G.Qp/

be equal to the unique right G.Zp/-invariant function in the Whittaker model of �p
normalized so that W�p .1/ D 1: It is well known that for .m;N / D 1 we have

m1=2
Y
p2f�c

Wp.a.m// D ��.m/;

where ��.m/ is defined by (42). For each ramified prime p, i.e. for p 2 c, let
the function Wp.g/ on G.Qp/ be equal to

W0;p.g/

hW0;p ;W0;pi1=2
where W0;p is an element

corresponding to �p in the Whittaker model for �p . The functionWp.g/ in this case
is given explicitly by the right hand side of (24). Finally for v D1, let the function
W1.g/ onG.R/ be the element of the Whittaker model of �1 corresponding to �1,
normalized so that W1.a.y// D �.y/ for all y 2 R where

�.y/ WD

(
jyj1=2Kit .2�jyj/sgn.y/m in Case 1;
yk=2e�2�y..1C sgn.y//=2/ in Case 2:

(47)

Put

c1 D hW1; W1i
1=2
D

�Z
R�
j�.y/j2

dy

jyj

�1=2
:

It is a well known fact (see, e.g. [40, Lemma 5.3] or [34, (27)]) that

supg2G.R/ jW1.g/j
c1

D
supy>0 �.y/

c1
�

(
T 1=6 in Case 1;
k1=4 in Case 2:

(48)

ByLemma2.2.3 of [26], the functionW� factors as follows. ForgfD
Q
v2f gv2G.Af/,

x 2 R, y 2 RC, we have

W�.gfn.x/a.y// D

s
2�.2/

Lf.1; �;Ad/
�
e2�ix�.y/

c1
�

Y
p2f

Wp.gp/; (49)

where Lf.1; �;Ad/ D
Q
p<1L.1; �p;Ad/ denotes the finite part of the global

adjoint L-function for � . By a result of Hoffstein–Lockhart [12], we have

.CT /�� �� Lf.1; �;Ad/�� .CT /
�: (50)
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Remark 4.5. To deduce (49) from Lemma 2.2.3 of [26], note from Table 1 of [31]
that L.1;�p ;Ad/�p.1/

�p.2/
D 1 for all p 2 c.

Using (46), (48), (49), and (50), we conclude that

sup
g2G.A/

j�.g/j � sup
g2G.A/

jW�.g/j

�� .CT /
��h.�1/

Y
p2c

sup
g2G.Qp/

jWp.g/j;

where h.�1/ D T 1=6 in Case 1 and h.�1/ D k1=4 in Case 2. By Corollary 2.17,
we have Y

p2c
sup

g2G.Qp/
jWp.g/j �� C

1=8��:

This completes the proof of the lower bounds in Theorem 4.4!
Next, recall that for .m;N / D 1, we have ��.m/ D m1=2

Q
p2f�cWp.a.m//:

From Definition 4.3, we have

��.m/�� m
ı�C�: (51)

We will need the following property of the coefficients ��.n/ to get an improved
bound in Case 1.

Proposition 4.6. Let 1 � r � 4 be an integer. ThenX
1�jnj�X

j��.n/j
2r
�� X.NTX/

�:

Proof. This follows by first taking the symr -lift of � to GLrC1 which is known to
exist [8, 20] and then using the analytic properties of L.s; symr� ˝ symr x�/. For a
detailed proof in the case r D 2, we refer the reader to [12, Lemma 2.1]. The proofs
in the other cases are essentially identical.

Let gf 2 JN . For each m 2 Z, we define

�0.mIgf/ D
Y
p2c

Wp
�
a.m=N 2/gp

�
:

By Corollary 2.19, there exists some integer b D b.gf/ coprime to N , such that

j�0.mIgf/j D

(p
'.N /; if m � b .mod N/I

0; otherwise:
(52)
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Therefore, for any gf 2 JN and x 2 R, y 2 RC, the expansion (45) together
with the above discussion gives us:

�.gfn.x/a.y// D

s
2�.2/

Lf.1; �;Ad/

�
1

c1

X
m2Z

m�b mod N

m�1=2e2�imx=N
2

�.my=N 2/��.m/�
0.mIgf/: (53)

In particular, the Whittaker expansion of � is supported on an arithmetic
progression! It is this remarkable feature that will allow us to prove a strong upper
bound. As a key first step, using (50) and the triangle inequality, we note the bound

j�.gfn.x/a.y//j �� .CT /
�N

1=2

c1

X
m2Z

m�b mod N

m�1=2j�.my=N 2/jj��.m/j: (54)

4.3. Proof of the upper bounds. Wecan nowprove the upper bounds inTheorem4.4.
Throughout this subsection, let gf 2 JN and x 2 R, y 2 RC, with y �

p
3
2
. As

noted at the end of Section 4.1, it is sufficient to restrict to g D gfn.x/a.y/ with gf ,
x; y as above.

Case 1. In this case we have

j�.my=N 2/j D N�1.my/1=2jKit .2�jmyj=N
2/j:

By [40, Lemma 5.3], c1 � e��t=2. So (54) gives

j�.gfn.x/a.y//j �� .CT /
�e�t=2

� y
N

�1=2 X
m2Z

m�b mod N

j��.m/jjKit .2�jmyj=N
2/j:

(55)
We need to prove the following two bounds:

j�.gfn.x/a.y//j �� C
1
8C

ı�
2 C�T

1
2Cı�C�; (56)

j�.gfn.x/a.y//j �� C
1
8C

1
32C�T

1
2C�: (57)

Let f .y/ D min.T 1=6;
ˇ̌
y
T
� 1

ˇ̌�1=4
/: Then it is known that

e�t=2jKit .y/j � T �1=2f .y/I

see, e.g. [41, (3.1)]. Furthermore, the quantity ��.m/jKit .2�jmyj=N 2/j decays
exponentially form�R where RDN 2C�.T C T 1=3C�/=2�y. Therefore, if R�1,
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the right side of (55) is negligible. So we henceforth assume that R � 1, i.e. y �
N 2C�T 1C� . Furthermore, for the same reason, we can restrict the sum in (55)
to jmj < R.

Let us now prove (56). We obtain from (51) and (55)

j�.gfn.x/a.y//j

�� .CT /
�T �1=2

� y
N

�1=2 X
1�jmj�R
m�b mod N

mı�C�f .2�jmyj=N 2/

�� .CT /
�T �1=2

� y
N

�1=2
N ı�

X
0<jmj�R=N

m2 bN CZ

mı�C�f .2�jmyj=N/

�� .CT /
�T �

1
2y

1
2N ı��

1
2 max

�
1; .R=N/ı�

��
T
1
6 C

Z R
N

0

ˇ̌̌2�xy
NT

� 1
ˇ̌̌� 14

dx

�
�� .CT /

�T �
1
2y

1
2N ı��

1
2 max

�
1; .R=N/ı�

��
T
1
6 C

NT

y

�
�� .CT /

�N
1
2C2ı�T

1
2Cı� ;

where in the last step we have used 1 � y � N 2T 1C� . This completes the proof
of (56) since N 1

2C2ı� D C
1
8C

ı�
2 :

Let us now prove (57). We obtain from Proposition 4.6 and (55), together with
Holder’s inequality:

j�.gfn.x/a.y//j �� .CT /
�T �1=2

� y
N

�1=2
�

� X
1�jmj�R

j��.m/j
8

�1=8
�

� X
0<jmj�R
m�b mod N

f .2�jmyj=N 2/8=7
�7=8

�� .CT /
�T �1=2

� y
N

�1=2
R1=8

� X
1�jmj�R=N

m2 bN CZ

f .2�jmyj=N/8=7
�7=8

�� .CT /
�T �

1
2y

1
2N�

1
2R1=8

�
T

4
21 C

Z R
N

0

ˇ̌̌2�xy
NT

� 1
ˇ̌̌� 27

dx

�7=8
�� .CT /

�T �
3
8y

3
8N�

1
4

�
T
1
6 C

�NT
y

�7=8�
�� .CT /

�N
5
8T

1
2 ;

which is equivalent to (57).
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Case 2. In this case, we have ı� D 0 and

j�.my=N 2/j D N�k.my/k=2e�2�my=N
2

:

By [40, Lemma 5.3], c1 equals .4�/�k=2�.k/1=2. So (54) gives

j�.gfn.x/a.y//j

�� .CT /
� .4�y/

k=2N�kC1=2

�.k/1=2

X
m2Z

m�b mod N

e�2�my=N
2

m.k�1/=2C�

�� .CT /
�
� y
N

�1=2 2k=2

�.k/1=2

X
n2 bN CN

e�2�ny=N .2�ny=N/.k�1/=2C�:

To estimate the above sum we proceed similarly to [45]. Indeed, if we take the
relevant series in [45] and replace y 7! y=N , k 7! k=2, and take the summation
over b=N C Z�0 instead of Z>0, we get our series above. Observe also that the
function � 7! e�2��y=N .2��y=N/.k�1/=2C� obtains its maximum at

� D
k=2 � 1=2C �

2�.y=N/
:

So the general term in the series above is decreasing if � < b=N , i.e. if y
N
�

Nk
b
.

Now the argument of [45], mutatis mutandis, leads to

j�.gfn.x/a.y//j ��

˚
.CT /�

�
k1=4C�

.y=N/1=2
C

k�.y=N/1=2

k1=4

�
if y
N
�

Nk
b
;

.CT /�
�
k1=4C�

.y=N/1=2
C

k1=4C�N1=2

b1=2

�
if y
N
�

Nk
b
:

(58)

As y � 1, in either case we have

j�.gfn.x/a.y//j �� C
1=8C�k1=4C�;

completing the proof in Case 2.

4.4. The proof of Theorem 1.2. We explain in this final subsection the proof of
Theorem 1.2. Let the notations be as in the statement of Theorem 1.2 and let
�g D ˝p �p . Ichino’s generalization of Watson’s formula [17] readsˇ̌ R

�nH g.z/jf j
2.z/yk dx dy

y2

ˇ̌2� R
SL2.Z/nH jgj

2.z/ dx dy
y2

�� R
�nH jf j

2.z/yk dx dy
y2

�2
D
1

8

ƒ.� � � � �g ; 1=2/

ƒ.ad �g ; 1/ƒ.ad�; 1/2
I1

Y
pjC

Ip:
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By an explicit calculation, the archimedean quantity I1 is equal to 1 in our case;
see [44]. The local quantities Ip are defined for each prime pjC as follows:

Ip D

�
L.�p � �p � �p; 1=2/�p.2/

2

L.ad �p; 1/L.ad�p; 1/2

��1
Hp.vp; xvp; up/;

where we are using the notation of Section 3, and vp denotes the minimal vector
in �p , and up denotes the unramified vector in �p . In particular, up satisfies the
condition in part (2) of Theorem 3.5 and therefore we have

Hp.vp; xvp; up/ Cond.�p � �p/
1=2
� 1:

On the other hand, it follows from well-known bounds on the Satake parameters that

L.�p � �p � �p; 1=2/�p.2/
2

L.ad �p; 1/L.ad�p; 1/2
� 1:

Therefore IpCond.�p � �p/
1=2 � 1 as required.
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