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Learning Low-Dimensional Latent Graph
Structures: A Density Estimation Approach

Li Wang and Ren-cang Li

Abstract— We aim to automatically learn a latent graph
structure in a low-dimensional space from high-dimensional,
unsupervised data based on a unified density estimation frame-
work for both feature extraction and feature selection, where
the latent structure is considered as a compact and informative
representation of the high-dimensional data. Based on this frame-
work, two novel methods are proposed with very different but
intuitive learning criteria from existing methods. The proposed
feature extraction method can learn a set of embedded points in a
low-dimensional space by naturally integrating the discriminative
information of the input data with structure learning so that
multiple disconnected embedding structures of data can be
uncovered. The proposed feature selection method preserves the
pairwise distances only on the optimal set of features and selects
these features simultaneously. It not only obtains the optimal set
of features but also learns both the structure and embeddings
for visualization. Extensive experiments demonstrate that our
proposed methods can achieve competitive quantitative (often
better) results in terms of discriminant evaluation performance
and are able to obtain the embeddings of smooth skeleton
structures and select optimal features to unveil the correct graph
structures of high-dimensional data sets.

Index Terms— Density estimation, feature selection, structure
learning, unsupervised dimensionality reduction.

I. INTRODUCTION

W ITH the advance of science and technology, data sets
collected for various real-world problems usually are

of high dimensionality, such as images in computer vision,
microarray data in bioinformatics, and text documents in text
mining. In general, high dimensionality poses great challenges,
including the curse of dimensionality, degraded performance
with noisy and irrelevant features, high computational costs,
and storage requirements. Dimensionality reduction is one
of the effective ways to alleviate these issues by reducing
the number of features. Depending on whether the original
features should be maintained, dimensionality reduction can
be categorized into two types: feature extraction and feature
selection. Feature extraction attempts to create a transforma-
tion of the input space into a low-dimensional space that can
preserve most of the relevant information [1], whereas feature
selection aims to select a subset of features from a large
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Fig. 1. Five-NN graph constructed from a synthetic two-moon data with
two true features and 1000 augmented features sampled from a uniform
distribution. (a) Five-NN graph on two true features. (b) Five-NN graph on all
features visualized in the space of the two true features. (c) Adjacency matrix
on the five-NN graph in (b), where nz stands for the number of nonzero
elements.

amount of original features for a compact and informative
representation [2]. The two types of approaches are not
unrelated since: 1) feature selection can be considered as a
discrete representation of feature extraction [3] and 2) feature
selection is generally used as a preprocessing step to remove
irrelevant or noisy features from the real-world data before
conducting feature extraction.

In this paper, we are particularly interested in learning low-
dimensional latent graph structures including feature extrac-
tion and feature selection for high-dimensional data under
the unsupervised dimensionality reduction setting, where the
label information is unavailable. Without the guidance of
class labels, unsupervised dimensionality reduction is gener-
ally more challenging than supervised dimensionality reduc-
tion [4], let alone simultaneously learn a latent graph structure
in a reduced space. It is worth noting that learning graph
structures from data are inherently different from manifold
(structure) learning, where the manifold is often approximated
by a fixed graph. Here, our goal is to learn the graph structures
by inferring them from data without any additional prior to the
unknown structure. Due to the demand of various real-world
applications, unsupervised dimensionality reduction has been
continuously attracting tremendous attention, even though a
large number of methods have been proposed (see [5]).

Without supervision, the manifold assumption has been
widely employed as an important learning criterion in existing
unsupervised dimensionality reduction methods [6], [7], but
the structure directly computed from high-dimensional data
such as k-nearest neighbor (NN) graph is not reliable. Given
input data, its manifold structure is generally unknown and
often approximations using precomputed neighborhood graphs
are used by, e.g., feature extraction methods [6] and feature
selection methods [7]. It is worth noting that these methods
heavily rely on the correctness of pairwise distance/similarity
matrices or graph structures precomputed from data with all
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given features. To intuitively illustrate this issue, we show one
synthetic example in Fig. 1 consisting of two true features
and 1000 random noise features. The method [7] fails to find
the two true features when the five-NN graph is constructed
from all features. From Fig. 1(b) and (c), we can see that
the five-NN graph built from all features is not informative
to describe the underlying two-moon shape structure, so it
is not reliable to approximate the true locality information
as shown in Fig. 1(a) using all features with noise. Hence,
it becomes important to trustfully reduce dimension (and hence
suppress noise) in order to automatically learn a proper graph
structure or similarity matrix from data.

In addition to modeling an appropriate structure, it is
also important to take into account the discriminative
information of data since feature extraction is performed
not only for qualitative analysis such as data visualization
but also for quantitative analysis such as classification and
clustering. Although unlabeled data does not provide explicit
discriminative information as a priori, t-distributed stochastic
neighbor embedding (t-SNE) [8] is widely recognized due to
its good discriminative performance and visualizing data with
certain clustering/classification structures. A complementary
approach called the maximum posterior manifold embedding
(MPME) [9], [10] was proposed for inferring smooth skeleton
structures from noisy data. It follows the similar criterion
as the maximum variance unfolding (MVU) [11], [12] by
preserving pairwise distance but formulates a probabilistic
framework in order to model the data noise. Examples of
real-world data sets illustrating the key difference of these
methods can be found in Fig. 5. Without the guidance of
discriminative information, MPME cannot achieve competitive
discriminative results as t-SNE.

On the other hand, it is important for some applica-
tions to select a subset of features from the input data
for either improving the learning performance by removing
noisy or irrelevant features, or for obtaining a better interpre-
tation of the given problem. Many studies [13], [14] for feature
selection problems focus on the performance of classification
and clustering. However, for some data sets, the underly-
ing structure can be much more interesting than classifica-
tion or clustering. As shown in Fig. 2, it is interesting to find
the structure of a 2-D spiral shape embedded in the 3-D space.
The special shape becomes more important than any clustering
since no clustering pattern exists and distances on 2-D spiral
shape make much more sense. More real-world examples will
be studied in Section V. As discussed earlier, the manifold
estimated from all features employed by above-mentioned
methods may lose the true structure as shown in Fig. 1.

In order to automatically uncover the graph structure from
data as a compact and informative representation of high-
dimensional data, we aim to propose a unified density estima-
tion approach for both feature extraction and feature selection
in the unsupervised learning setting. Our motivation is to
model the data generation process in that the “true” data are
treated as a random variable following an unknown distrib-
ution, from which each point is drawn and corresponds to
one observed data point. Based on this motivation, we model
feature extraction and feature selection in a unified density
estimation framework. Specifically, feature extraction mod-

els the embedded points randomly drawn from the “true”
distribution, while feature selection can be achieved by assum-
ing the “true” distribution depending only on the desirable set
of features. Meanwhile, structure learning is then naturally
encoded by constraints that preserve pairwise distances of
any two “true” data points and the pairwise distances of the
corresponding observed data points. Hence, our goal is to
estimate the unknown density function, learn a graph structure,
and obtain either embedded points for feature extraction or the
desirable set of features for feature selection, simultaneously,
in a unified framework. The main contributions of this paper
are as follows.

1) We present a unified density estimation framework
for feature extraction and feature selection. Our framework
not only estimates the optimal density function over low-
dimensional latent points but also automatically learns a
graph structure over the low-dimensional embedding random
variables for a compact and informative representation of high-
dimensional data.

2) A new unsupervised feature extraction model is instan-
tiated from the proposed framework with discriminant con-
straints. These constraints are derived from an approximate
solution of the objective of t-SNE. Inherited from the property
of the unified framework, our model also takes nonlinear
similarity of high-dimensional data, discriminative clustering
information, and less parameter tuning into account. These
new properties resolve the issues that MPME suffers. More-
over, a new encoding process from the estimated density func-
tion is proposed for the embeddings of multiple disconnected
components.

3) A novel unsupervised feature selection model is instanti-
ated from the proposed framework with the ability to auto-
matically weight the features of the input data in a high-
dimensional space. Our derived objective function is built on
three novel learning criteria. The resulting density is a function
of a weighted graph and the optimal set of features, so it is
independent of the high-dimensional data. Moreover, the low-
dimensional embedding on the selected features can be easily
obtained from the learned density function for the visualization
of the learned graph structure.

4) Extensive experiments are conducted for evaluating the
proposed unsupervised feature extraction method and unsuper-
vised feature selection method by comparing with the state-of-
the-art methods on a variety of data sets, including synthetic
data sets and real-world applications. Our methods not only
achieve discriminative embeddings and the optimal set of
features but also successfully recover the smooth skeleton
structures in a low-dimensional space.

II. RELATED WORK

A large number of feature extraction techniques have been
proposed during the last two decades [15], [16]. Most of
them aim to preserve certain information of data. Principal
component analysis (PCA) [17] minimizes the reconstruc-
tion error for learning a subspace linearly spanned by some
orthonormal basis [16]. To achieve nonlinear transformation,
kernel PCA (KPCA) [18] performs PCA in the reproducing
kernel Hilbert space. Laplacian eigenmap (LE) [6] finds a
mapping that minimizes the distances between a data point
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Fig. 2. Illustrated data with spiral structure over a subset of features. (a) Spiral data of features 1 and 2 with one random noisy feature 3. (b) Clearer structure
in 2-D space than (c) and (d). (a) Spiral data in 3-D. (b) 2-D with features 1 and 2. (c) 2-D with features 1 and 3. (d) 2-D with features 2 and 3.

and its neighbors. Locally linear embedding (LLE) [19] pre-
serves local geometry based on the assumption that local
patches over K -NN are nearly linear and overlap with one
another to form a manifold. Local tangent space analysis
(LTSA) [20] describes local properties of the high-dimensional
data using the local tangent space of each data point. t-SNE [8]
employs a heavy-tailed distribution in the low-dimensional
space to alleviate both the crowding problem and the dif-
ficulty of solving the optimization problem of SNE [21].
The performance of these methods critically depends on
either the choice of the kernel function or a neighborhood
graph.

Several works have been proposed for model selection of
kernel functions. The Gaussian process latent variable model
(GPLVM) [22] can achieve a nonlinear generalization of
probabilistic PCA (PPCA) [23] and learn a kernel function
defined on a set of variables in a low-dimensional latent
space, but the objective function of GPLVM is nonconvex
and the optimization problem is difficult to solve. MVU [11]
learns a nonparametric kernel matrix by retaining pairwise
distances encoded in a neighborhood graph constructed from
the input data, but it is impractical to scale up to moder-
ate size. Landmark MVU (�MVU) [12] alleviates the high
computational complexity of MVU by introducing landmarks
and a linear transformation for the kernel matrix factorization
based on various assumptions. Maximum entropy unfolding
(MEU) [24] directly models the density of observed data and
embedded points are obtained by maximizing the likelihood
of the learned density.

Structure learning has had a great success in automatically
constructing structures of data for learning proper embeddings.
A sparse manifold clustering and embedding (SMCE) [25]
is proposed to measure the linear representation of every
data point by using its neighborhood information. �1 graph is
learned for enhancing the robustness of the learned graph [26].
In addition to directed graphs, an integrated model for learning
an undirected graph is proposed [27]. These are deterministic
models, and they lack the ability to handle the noise of data.
To tackle noisy data and achieve smooth skeleton structures,
MPME [9], [10] was recently proposed based on the dis-
tance preservation, but it lacks the guidance of discriminative
information.

On the other hand, existing unsupervised feature selection
methods rely on various types of assumptions as of the learn-
ing criteria. The widely used criterion is to score each feature
according to certain manifold structures based on a graph

constructed from all features. Typical methods are Laplacian
score (LS) [7], spectral feature selection (SPEC) [28], and mul-
ticlass feature selection (MCFS) [29]. It is intuitive to jointly
formulate unsupervised feature selection based on assumptions
of both clustering and manifold so that both criteria can inter-
act with each other. The representative methods include: joint
embedding learning and spectral regression (JELSR) [13],
nonnegative discriminative feature selection (NDFS) [30],
robust unsupervised feature selection (RUFS) [31], robust
SPEC (RSFS) [32], and feature selection via clustering-
guided sparse structural learning (CGSSL) [14]. Among these
methods, the clustering assumption is formulated by either
regression problem or matrix factorization, and features are
selected by using the �2,1 regularizer over the coefficients of
a linear regression model.

Another criterion for unsupervised feature selection is to
preserve the pairwise similarity between two data points
in the original feature space. Similarity preserving feature
selection (SPFS) [33] proposes to select features based on the
assumption that the pairwise similarities with these features
can be maximally preserved, where a pairwise similarity
matrix is precomputed from the original data. Global and
local structure preservation for feature selection (GLSPFS)
[34] extends SPFS by incorporating the local manifold struc-
ture of data. Nonlinear joint unsupervised feature selection
(NJUFS) [35] maximizes the alignment between the pairwise
similarity matrix from all features and the similarity matrix
from a subset of features in terms of the Hilbert–Schmidt
independence criterion [36]. Stochastic neighbor-preserving
feature selection (SNFS) [37] selects the features that can best
preserve stochastic neighbors.

Structure learning has also been explored for unsupervised
feature selection. Local learning-based clustering feature selec-
tion (LLCFS) [38] models feature selection within the frame-
work of the local learning-based clustering method where the
induced graph Laplacian can be iteratively updated. Structured
optimal graph feature selection (SOGFS) [39] learns a simi-
larity matrix based on the assumption that closer samples are
likely to connect with a larger probability. Feature selection
with adaptive structure learning (FSASL) [5] preserves the
sparse reconstruction structure and local manifold structure.
Both methods [5], [39] employ an explicit discriminative
projection for given classes. This may weaken the power of
structure learning due to the strict clustering assumption that
data points from different clusters should be distant. Preserving
pairwise similarity [33] or stochastic neighbors [37] can be a

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 05,2020 at 17:58:48 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND LI: LEARNING LOW-DIMENSIONAL LATENT GRAPH STRUCTURES 1101

good complement for structure learning, but they did not aim
to learn latent graph structures.

III. UNSUPERVISED FEATURE EXTRACTION

VIA DENSITY ESTIMATION

We propose to estimate the density function of embedded
points by regulating the pairwise distance between any two
embedded points so that both clustering and manifold structure
of the original data can be properly captured. Once the density
function is obtained from data, the embedded points are then
uncovered well for both clusterings and learning manifold
structures.

A. Motivation

Let D = {x1, . . . , xN } be an M-dimensional input data
set with xi ∈ R

M ,∀i , and d(xi , x j ) be a distance function
between two points xi and x j , e.g., the Euclidean distance
d(xi , x j ) = ||xi −x j ||2. Our goal is to learn an m-dimensional
embedding Dm = {y1, . . . , yN } so that xi ∈ R

M is represented
by a point yi ∈ R

m with m ≤ M .
We seek dimensionality reduction methods that can seam-

lessly integrate two properties, i.e., discriminative information
and manifold structure, encoded in the high-dimensional input
data. The distance function is one of the important statistics to
measure the two properties, but most dimensionality reduction
methods only focus on one of the two factors. Next, we show
that SNE and t-SNE concentrate on the clustering preservation
of the embedded points.

We revisit SNE [21] and t-SNE [8] to give an explanation
on their good clustering performance. SNE defines conditional
probabilities p j |i to measure the pairwise similarity between
xi and x j given by

p j |i = exp
(−d(xi , x j )/2σ 2

i

)∑
k �=i exp

(−d(xi , xk)/2σ 2
i

) ∀ j �= i, pi|i = 0

(1)

where σi is the bandwidth of the Gaussian kernels and it
is set in such a way that the perplexity of the conditional
distribution equals to a predefined perplexity u. t-SNE defines
a joint probabilities pi, j by symmetrizing two conditional
probabilities given by

pi, j = p j |i + pi| j

2N
∀i �= j. (2)

In the m-dimensional embedding Dm , the similarity between
two points yi and y j are defined similarly. SNE takes the
same functions as the conditional probabilities (1) by fixing
the bandwidth 2σ 2

i = 1,∀i , as

q j |i = exp(−d(yi , y j ))∑
k �=i exp(−d(yi , yk))

∀ j �= i, qi|i = 0 (3)

while t-SNE chooses a normalized Student-t kernel function
with a single degree of freedom as

qi, j = (1 + d(yi , y j ))
−1∑

k �=l(1 + d(yk, yl))−1 ∀ j �= i, qi,i = 0 (4)

which is able to accurately model small pairwise distances in
the low-dimensional space.

Finally, the embedding Dm is obtained by minimizing
the Kullback–Leibler (KL) divergence between two condi-
tional or joint probabilities for SNE or t-SNE, respectively,
e.g., SNE solves the following optimization problem:

Dm = arg min KL(P||Q) =
∑
i �= j

p j |i log
p j |i
q j |i

. (5)

Problem (5) is then solved by the gradient descent method
with the Euclidean distance function.

The clustering interpretation is motivated from the special
structure of the conditional probabilities in (1). We first
construct an optimization problem with its optimal solution
equivalent to (1) and then infer the clustering property by
analyzing the constructed objective function.

Proposition 1 gives a desired constructed function. Next,
we will illustrate the fact that (6) helps SNE and t-SNE to
achieve better clustering performance on the embeddings.

Proposition 1: Problems

min
{p j |i }∈Pi

∑
j �=i

p j |i(d(xi , x j )+ 2σ 2 log p j |i) ∀i (6)

have the optimal solution given by (1), where

Pi =
⎧⎨⎩p j |i

∣∣∣ ∑
j �=i

p j |i = 1, p j |i ≥ 0,∀ j �= i

⎫⎬⎭ ∀i.

Proof: This can be proved by applying the Lagrangian
duality theorem [40] to (6) with constraints, and the primal
variable has the analytic solution (1). �

Problem (6) is the same as the membership assignment of
the possibilistic c-means (PCM) [41] if p j |i is interpreted
as the probability of assigning x j to membership xi . The
differences are that: 1) the number of centroids equals N and
2) the cluster centroids are fixed. Specifically, the PCM solves
the following joint optimization problem:

min{ci }
min

{p j |i }∈Pi

∑
j �=i

p j |i(d(ci , x j )+ 2σ 2 log p j |i) ∀i (7)

where {ci }N
i=1 is a set of centroids to optimize. Accordingly,

p j |i is a pairwise similarity that encodes the cluster assignment
between a data point and its cluster centroid in the input space.

SNE applies the same similarity function over Dm with
2σ 2

i = 1,∀i, by solving, ∀i

min
{q j |i }∈Qi

∑
j �=i

q j |i(d(yi , y j )+ log q j |i) (8)

s.t.Qi =
⎧⎨⎩q j |i

∣∣∣ ∑
j �=i

q j |i = 1, q j |i ≥ 0,∀ j �= i

⎫⎬⎭
which has the optimal solution that equals the conditional
probability of the embeddings in (3).

The learning criterion to obtain the optimal embedding
by SNE is to maximally maintain the clustering assignment
matrix (i.e., the pairwise similarities) from p j |i to q j |i as much
as possible. This can be achieved by updating embedded points
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to minimize the difference between two distributions in (5).
As a result, the clustering structures are preserved from the
original data to embedded points.

For t-SNE, we have the similarly constructed optimization
problem as shown in Proposition 2 for the conditional proba-
bilities of the embedded points. This corresponds to a variant
of PCM [42], so that the above interpretation as clustering
assignment to SNE can also be applied to t-SNE.

Proposition 2: Problem

min
{qi, j }∈Q

∑
j �=i

(
q2

i, j d(yi , y j )+ (1 − qi, j )
2), (9)

has the optimal solution given by (4), where

Q =
⎧⎨⎩qi, j

∣∣∣ ∑
j �=i

qi, j = 1, qi, j ≥ 0,∀i �= j

⎫⎬⎭ . (10)

Therefore, both SNE and t-SNE treat cluster assignment
probabilities as the most important information to preserve
for learning the low-dimensional embedded points. The con-
structed optimization problems (6), (8), and (9) inspires the
proposed method here to capture the discriminative informa-
tion of the input data using the pairwise distance constraints,
which is discussed in Section III-B as the key component of
the proposed feature extraction method.

B. Proposed Unsupervised Feature Extraction Method

We propose to formulate the dimensionality reduction prob-
lem as a unified model in order to naturally integrate both
clustering and manifold structure learning. To achieve this
goal, our intuition is to transform the constructed optimization
problems of (t-)SNE to a set of pairwise distance constraints
for graph structure learning.

Let Y = [y1, . . . , yN ] ∈ R
m×N be a set of embedded points

with yi ∈ R
m . Assume that the unknown density function is

p(Y), where the density functions p(yr ) with respect to rows
yr ,∀r , are independent

p(Y) =
m∏

r=1

p(yr ), π(Y) =
m∏

r=1

π(yr ) (11)

and the prior distribution π over Y has the same assumption.
Since Y is a matrix of random variables, the pairwise Euclid-
ean distance between yi and y j is defined as the expectation
over p(Y) given by

Ep(Y)[||yi − y j ||2] =
m∑

r=1

∫
yr
(yr,i − yr, j )

2 p(yr )dyr (12)

where the equality holds due to (11).
According to the discussion in Section III-A, the cluster-

ing information of embedded points are encoded within the
constructed problem

min
{qi, j }∈Q

∑
j �=i

(qi, j (d(yi , y j )+ λ log qi, j )) (13)

where λ is a regularization parameter and its optimal qi, j is
given by the following equalities:

qi, j = exp(−d(yi , y j )/λ)∑
k �=l exp(−d(yl, yk)/λ)

∀ j �= i. (14)

If we preserve the cluster assignment matrix computed from
the input data, i.e., qi, j = (p j |i + pi| j )/(2N),∀i, j , we have

p j |i + pi| j

2N
= 1

z
exp(−d(yi , y j )/λ) ∀i, j (15)

where z = ∑
k �=l exp(−d(yl, yk)/λ) is the normalization term

and p j |i is computed using (1). To prevent the pairwise
distances from arbitrary scaling, we impose z = N as a
normalization term. The Taylor expansion on the right-hand
side of (15) can be used to obtain the following equality for
each pairwise distance

p j |i + pi| j

2
= exp(−d(yi , y j )/λ)

=
∞∑

n=0

(−d(yi , y j )/λ)
n

n! ,∀i, j.

By imposing d(yi , y j )/λ ∈ [0, 1], we have (p j |i + pi| j )/2 ≤
1 − d(yi , y j )/λ, so the following inequality always holds:

d(yi , y j ) ≤ λ

(
1 − p j |i + pi| j

2

)
∀i, j. (16)

As p j |i encodes the clustering assignment information of
the input data, it is conceived that the constraints (16) take
clustering information into account. This leads to the key
difference from the distance preservation methods such as
MVU and MPME, where the Euclidean distance is modeled
either directly or indirectly via a kernel function such that

||φ(xi )− φ(x j )||2 = κ(xi , xi )+ κ(x j , x j )− 2κ(xi , x j )

(17)

where κ is a kernel function, e.g., the Gaussian kernel with
bandwidth σ , given by

κ(xi , x j ) = exp(−||xi − x j ||2/2σ 2). (18)

We have ||φ(xi ) − φ(x j )||2 = 2(1 − κ(xi , x j )), where the
relations among input points can only capture the relationship
between xi and x j , so there is no clustering information
encoded. Moreover, the bandwidth is dynamically varied for
each input data according to the density of the data in (16),
while distance preservation methods (e.g., MPME) employ a
single fixed σ as a tuning parameter and MVU relies on a
neighborhood graph with fixed neighbor size. By comparisons,
the above analyses imply that (16) not only can capture
the clustering information of the input data but also can
automatically adjust the parameter of each point according to
the density of the input data.

Moreover, the prior distribution of the proposed method is
set as a multivariate normal distribution with mean zero and
covariance as the identity matrix, i.e., π(yr ) ∼ N (0, I). This
strategy is similar to (t-)SNE where a fixed variance is used for
q j |i or qi, j ,∀i, j . Since p(Y) is a density function to optimize,
this prior can also constrain the density in a proper embedding
space without tuning.

Based on the above definitions, we propose a new for-
mulation for estimating the density of embedded points via
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regularized Bayesian inference given by

min
p(Y),{ξi, j }

∫
p(Y) log

p(Y)
π(Y)

dY + C
∑
i, j

ξi, j (19)

s.t. Ep(Y)[||yi − yj ||2] ≤ λ

(
1 − p j |i + pi| j

2

)
+ ξi, j , ξi, j ≥ 0 ∀i, j∫

p(yr)dyr = 1 ∀r

where λ is a parameter for controlling the clustering informa-
tion.

Both problem (19) and MPME estimate the density of
embedded points via regularized Bayesian inference to incor-
porate pairwise distance constraints, but there are three key
differences as follows.

1) Nonlinear similarities are used in (19), i.e., problem (19)
can be treated as a nonlinear extension of MPME.

2) The clustering information is encoded in the constraints.
3) The prior distribution is a multivariate normal distribu-

tion with no tuning parameter for the variance.

Both problem (19) and t-SNE take the conditional proba-
bilities as the input for learning embedded points, but they
are very different approaches. First, problem (19) estimates
a continuous density function of the embedded points, while
t-SNE models the discrete embedded points. Hence, the
KL-divergence criteria are applied in a different way. Second,
problem (19) not only takes conditional probabilities into
account but also preserves the pairwise distances. Third, prob-
lem (19) automatically learns a smooth skeleton structure from
data and also is convex so its global solution can be achieved,
while t-SNE does not share these desirable properties.

C. Optimization Algorithm

Problem (19) is jointly convex with respect to p(Y) and
{ξi, j }. We obtain its dual problem by the Lagrangian duality
[40], which is summarized in Proposition 3.

Proposition 3: Given π(yr ) ∼ N (0, I),∀r and (11),
the dual problem of (19) is the following optimization problem

min
W

− m

2
log det(I + 4L)+ λ

∑
i, j

wi, j

(
1 − p j |i + pi| j

2

)
s.t. 0 ≤ wi, j ≤ C ∀i, j (20)

where the (i, j)th entry wi, j of multiplier matrix W ∈ R
N×N+

is introduced for the (i, j)th constraint, L = diag(W1) − W
with 1 being the column vector of all ones. The estimated
density function is

p(yr) ∝ π(yr ) exp

⎛⎝−
∑
i, j

wi, j (yr,i − yr, j )
2

⎞⎠ ∀r. (21)

The problem (20) is convex, so any general nonlinear
optimization method can achieve its global solution. Even for
a large number of variables, problem (20) can be efficiently
solved by the L-BFGS-B algorithm [43].

Let Q = I + 4L and the objective function of (20) be

f (W) = −m

2
log det(Q)+ λ

∑
i, j

wi, j

(
1 − p j |i + pi| j

2

)
.

(22)

The gradient of f (W) with respect to wi, j is

∂wi, j f (W) = λ

(
1 − p j |i + pi| j

2

)
− 2 mTr(Q−T Ai, j )

(23)

Ai, j (s, t) =

⎧⎪⎨⎪⎩
−1, s �= t ∧ s = i ∧ t = j

1, s = t = i �= j

0, otherwise.

(24)

Since Ai, j has only two nonzero entries, the gradient can be
easily computed as, ∀i, j

∂wi, j f (W)

= λ

(
1 − p j |i + pi| j

2

)
− 2m(Q−1(i, i)− Q−1(i, j)).

The gradient values satisfy the symmetric property,
i.e., ∂wi, j f (W) = ∂w j,i f (W) since both Q−1 and
(1 − (p j |i + pi| j )/2) are symmetric. wi,i = 0,∀i for
constraints that are always true since the distance between a
point and itself is zero.

Problem (20) has a trivial solution, i.e., W = 0 if λ is set
improperly. It is clear that f (0) = 0. To prevent the trivial
solution, we require a λ such that

f (W) < 0. (25)

However, it is hard to directly estimate from the above-
mentioned inequality when the optimal solution is unknown.
We can roughly estimate λ in the first iteration of the
L-BFGS-B by imposing

∃(i, j), ∂wi, j f (W) < 0 ⇒ λ < λu = min
i, j

2m

1 − p j |i +pi| j
2

(26)

which guarantees that the first iteration starting from initial
W = 0 will decrease to a nontrivial solution in the gradient
descent direction. For the ease of tuning parameter λ, we set
λ = λvλu with λv varying in (0, 1).

D. Embeddings of Multiple Disconnected Components

The embedding Y is then decoded from the learned W.
According to (21), we have the estimated density, ∀r

p(yr ) = π(yr ) exp(− ∑
i, j wi, j (yr,i − yr, j )

2)∫
π(yr ) exp(− ∑

i, j wi, j (yr,i − yr, j )2)dyr

∼ N (yr |0,Q−1) (27)

where Q = I + 4L. As a result, we have the expectation of
the pairwise distance between latent variables yi and y j as

Ep(Y)[||yi − y j ||2]
= m[Q−1(i, i)+ Q−1( j, j)− 2Q−1(i, j)] ∀i, j.
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To explicitly represent yi , we take the point estimate as ŷi ,
such that

||̂yi − ŷ j ||2 = m[Q−1(i, i)+ Q−1( j, j)− 2Q−1(i, j)] ∀i, j

which are equivalent to the following equalities:

ŷT
i ŷ j = mQ−1(i, j) ∀i, j. (28)

As a result, Q−1 is a valid kernel for the latent variables Y
since Laplacian matrix L is semidefinite and Q is positive
definite. Similar to KPCA, kernel centralization is required by
setting K̂ = (I − (1/N)11T )Q−1(I − (1/N)11T ), which is to
make yi centered in the feature space. Hence, we can obtain
Y by performing eigendecomposition on K̂ as K̂ = UVUT

and Y = UV1/2 by keeping the top m bases with the largest
eigenvalues.

It is well-known that the Laplacian matrix has zero as eigen-
values, the number of which corresponds to the number of
disconnected graph components represented by the adjacency
matrix W. The eigenspace associated with eigenvalue zero is
spanned by the indicator vectors of those components [44].
Hence, we can break down the similarity matrix W into
submatrices, each of which corresponds to one connected
component. For each component, we can separately apply the
above decoding process for the embedded points, which only
corresponds to this component. As a result, we can obtain
multiple sets of embedded points corresponding to multiple
disconnected components of the learned graph structure. How-
ever, t-SNE does not have this property.

E. Discussion

The proposed model (20) has several interesting properties.
The objective function contains log-determinant of I + 4L,
which can be equivalently formulated as log det(I + 4L) =
N log 4 + ∑N

i=1 log(γi + 1/4), where γi denotes the i th
largest eigenvalue of the symmetric matrix L. Thus, the log-
determinant can be related to the negative log-likelihood of
a power law distribution of γi as p(γi ) ∝ γ−θ

i where θ is
called the power law exponent. The power law distribution
imposes large values on a small set of eigenvalues, while small
values on the rest of eigenvalues. Hence, θ = (m/2) is used
in the proposed model. This is critically different from the
dual MVU problem where the second smallest eigenvalue is
maximized [45]. Since the power law distribution prefers a
small number of large eigenvalues and a large number of small
eigenvalues, the learned similarity matrix leads to a smooth
skeletonlike structure as discussed in [9] and [10].

The proposed model (19) takes the discriminative informa-
tion similar to (t-)SNE into account, but a crucially different
optimization criterion is employed. (t-)SNE directly preserves
the clustering assignment matrix as shown in (5), while our
model learns the underlying manifold structure by incorpo-
rating the clustering assignment matrix into pairwise distance
constraints. This is the key to generate very different embedded
points from (t-)SNE, although the same joint probabilities are
used as the input.

The pseudocode of our proposed embedding via structure
learning (ESL) is given in Algorithm 1. Solving problem

Algorithm 1 Embedding via Structure Learning
1: Input: data X, perplexity u, parameters λv ∈ (0, 1) and C
2: compute pairwise affinities p j |i with perplexity u
3: set λ = λvλu using (26)
4: obtain W by solving convex problem (20) using L-BFGS-B
5: detect the disconnected components of W
6: perform embedding on each component
7: Output: a list of sets of embedded points

(20) takes approximately O(N2.37) for computing logdet and
inverting Q at each iteration of L-BFGS-B solver. Performing
embedding via KPCA takes O(N3). Thus, the time complexity
of Algorithm 1 takes the order of O(N3), which is the
same as most spectral-based methods but is much faster than
semidefinite programming used in MVU. The computational
complexity is the same as MPME with an additional cost for
computing the joint probabilities as in t-SNE. For simplicity,
λv is renamed as λ in the experiments.

IV. UNSUPERVISED FEATURE SELECTION

VIA DENSITY ESTIMATION

We propose to estimate the density function of data points
with respect to the set of selected features by preserving the
pairwise distances only on the optimal set of features and
learning the structure of data, simultaneously.

A. Motivation

Given the observed data X in an M-dimensional space,
we aim to select a subset of features so that the pairwise
distances are preserved only in terms of the selected features,
and meanwhile, the distribution of the data with the selected
features should differ from a distribution for which feature
weights are equally important.

To preserve the pairwise distances, we first define the
following parameterized pairwise distance function, for unsu-
pervised feature selection, given by:

ψ(xi , x j ; θ) =
M∑

r=1

θr (xr,i − xr, j )
2 (29)

where θ = [θ1, . . . , θM ]T ∈ R
M+ is a column vector for the

importance of features. For distance-based methods, it is clear
that if θr > 0, the r th feature is selected, and θr = 0 stands
for an unimportant feature. Moreover, the larger the value of
θr is, the more important the r th feature will be. We define
the feasible set of θ as

 =
{

θ

∣∣∣∣∣
M∑

r=1

θr = b, 0 ≤ θr ≤ 1,∀r

}
(30)

where b is a parameter that controls the number of selected
features. This constraint has been used in supervised feature
selection methods (see [46]).

Furthermore, a matrix Y ∈ R
M×N of latent random vari-

ables is introduced to generate the true data from an unknown
true density function. The modeling of true distribution here
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is different from feature extraction in Section III, where the
true distribution is defined over the embedded points in an
m-dimensional space. Denote the r th row of Y as yr ∈ R

N and
the i th column of Y as yi ∈ R

M . Suppose that Y follows some
unknown distribution p(Y) with the independent assumption
on the rows of Y, i.e., p(Y) = ∏M

r=1 p(yr ). We further
assume that p(Y) is the true distribution that generates X
with two types of noise: the noise contaminated the important
features and the noise of newly added noisy features. Similarly,
the pairwise distance between two true random variables yi

and y j can be represented as the expected pairwise distance
over the true distribution as

E[ψ(yi , y j ; θ)] =
M∑

r=1

θr

∫
yr
(yr,i − yr, j )

2 p(yr)dyr (31)

where the equality holds due to the independent assumption
of the rows of Y and the distance definition (29).

Let π0(yr ) ∼ N (0, γ−1I),∀i and π0(Y) = ∏M
r=1 π0(yr ) so

that prior features are equally important, e.g., diag(θ) = γ I
as the precision matrix of prior distribution, where γ > 0 is
interpreted as the parameter for noise. Three important criteria
are summarized as follows.

Criterion 1 (Distance Preservation): The expected pairwise
distance over the true distribution is maintained according to
certain neighborhood structure and the proper θ , that is,

E[ψ(yi , y j ; θ)] = ψ(xi , x j ; θ) ∀i, j. (32)

The relationship between structure learning and noisy distance
preservation will be clear in Section IV-B. If θ is a vector of
ones, the constraints are the same as these in MPME.

Criterion 2 (Maximum Deviation Criterion for θ ): This
criterion can be formulated as an optimization problem by
maximizing the discrepancy between true distribution p(Y; θ)
and the prior π0(Y) with respect to θ ∈ , so that p(Y; θ)
is distant from random noisy prior π0(Y) and the informative
structure of data is captured. Note that p(Y; θ) is dependent
on θ when distance preservation is used.

Criterion 3 (Maximum Entropy Criterion for p(Y)): Without
any prior information, the best criterion is the maximum
entropy principle [47]. On the other hand, given a prior dis-
tribution π0(Y), it is better to minimize the distance between
distributions p(Y) and π0(Y) with respect to p(Y) so that the
true data are close to the prior without additional knowledge
provided. This was used in the regularized Bayesian infer-
ence [48].

The above-mentioned three learning criteria are very differ-
ent from the criteria used in the existing unsupervised feature
selection methods [5], [7]. Next, with these criteria in mind,
we formulate a novel unsupervised feature selection method.

B. Proposed Unsupervised Feature Selection Method

In this section, we propose a novel method for unsupervised
feature selection and structure learning. Based on the above-
mentioned three criteria, the joint framework for unsupervised
feature selection and structure learning is formulated as the

following maximin optimization problem

max
θ∈

min
p(Y)∈P,{ρi }N

i=1

KL(p(Y)||π0(Y))+ λ

N∑
i=1

ρi

s.t. E[ψ(yi , y j ; θ)] ≤ ψ(xi , x j ; θ)+ ρi ∀i, j (33)

where P = {p(yr)| ∫ p(yr)dyr = 1, p(yr ) > 0,∀r}, λ is
a tradeoff parameter, and the inequality constraints used for
nonnegative weighted graph learning. The KL-divergence and
distance constraints in (33) directly follow Criteria 3 and 1,
respectively. The slack variable ρi is maximized over θ for
feature selection because of the unreliable pairwise distance,
so Criterion 2 is applied, and it is minimized for density
function in order to maintain the distance given the true set
of features, so Criterion 1 is applied. Hence, problem (33)
is formulated to satisfy above-mentioned three criteria by
optimizing the importance of features θ and density p(Y)
simultaneously.

Comparing with problem (19), there are four key differences
as follows.

1) The learning tasks are different. This work aims to select
a subset of features from the original features, while
MPME aims for feature extraction.

2) The definitions of pairwise distances are different.
MPME computes distances using all features, while
this work computes distances only using the selected
features. This can effectively overcome the issue that
distance tends to concentrate on high-dimensional data,
but MPME cannot. Moreover, the tolerance of distance
violation is different so that a directed graph is optimized
in this work.

3) Problem (33) is more versatile than MPME. MPME
is a special case of this work if θ consists of all
ones, which means all features are equally important.
However, this work can learn the importance of features.
This is due to the proposed maximum deviation criterion
in Section II-A.

4) The optimization algorithms are different. In this paper,
we propose a new projection algorithm, which achieves
the optimal solution by the bisection search. This will
be discussed in Section IV-C.

C. Optimization Algorithm

To solve problem (33), we first reformulate it by the
following proposition.

Proposition 4: The partial dual problem of (33) is equiva-
lent to the following optimization problem:

min
W∈W

min
θ∈�

g(W, θ) (34)

where the objective function is given by

g(W, θ) = −1

2

M∑
r=1

log det(γ I + 4θr LW)

+
∑
i, j

wi, jψ(xi , x j ; θ)

with W = {W
∣∣∣∑N

j=1wi, j = λ,wi, j ≥ 0,∀i, j}, the its

(i, j)th entry of matrix W is wi, j , LW = D − (W + WT /2),
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diagonal matrix D with (i, i)th entry
∑

j (wi, j +w j,i )/2. The
optimal solution of the true density is obtained as p(Y) =∏M

r=1 p(yr ), with the optimal solution p(yr ),∀r

p(yr) ∝ π0(yr ) exp

⎛⎝−θr

∑
i, j

wi, j (yr,i −yr, j )
2

⎞⎠ .

Since problems (33) and (19) fall into the same density esti-
mation framework, the properties discussed in Section III-E
and the learned structure for the visualization of embeddings
in a low-dimensional space hold true for the proposed unsu-
pervised feature selection method.

Projected gradient descent algorithm [49] can be used to
solve problem (34). Specifically, problem (34) with respect
to W is equivalent to N Euclidean projection onto simplex
problems with respect to each row of W. The work [50] can be
applied to solve the projection onto simplex. We then propose
a new simple algorithm to find the projection onto  in the
Section IV-C2.

1) Derivation of Gradients: Let Qr = γ I + 4θr LW,
so Q−1

r = U(γ I + 4θr V)−1UT , where we use the eigende-
composition of LW, i.e., LW = UVUT . The partial gradient
of log det(Qr ) with respect to wi, j is derived as

∂wi, j log det(Qr ) = 2θr Tr
[
Q−T

r Ai, j
]

where matrix Ai, j with the (s, t)th entry defined as

Ai, j (s, t) =

⎧⎪⎨⎪⎩
−1, i �= j ∧ (s = i ∧ j = t or s = j ∧ i = t)

1, s = i = j or t = i = j

0, otherwise.

As a result, the gradient ∂wi, j g(W, θ) can be written as

−
M∑

r=1

θr Tr[U(γ I + 4θr V)−1UT Ai, j ] + ψ(xi , x j ; θ) ∀i, j.

The partial gradient with respect to θ is, ∀r

∂θr g(W, θ)=−2Tr[U(γ I+4θrV)−1UT LW]+2(yr)T LWyr .

2) Projection Onto : The projection problem with respect
to θ is formulated as

min
θ

1

2
||θ − u||2 : s.t. 1T θ = b, 0 ≤ θr ≤ 1, ∀r (35)

where u is the intermediate solution of the gradient descent
step with respect to θ .

Proposition 5: Problem (35) has a solution

θr (τ ) =

⎧⎪⎨⎪⎩
1, τ < ur − 1

ur − τ, ur − 1 ≤ τ ≤ ur

0, ur < τ

(36)

where τ satisfies
∑M

r=1 θr (τ ) = b and can be obtained by the
bisection method.

The pseudocode of the proposed unsupervised feature selec-
tion via structure learning (FSL) algorithm is given in Algo-
rithm 2, where the variables θ and W are initialized so that no
prior information is imposed over the importance of features
and the weighted graph.

Algorithm 2 Feature Selection via Structure Learning
1: Input: data X, parameters b, λ, γ , and C
2: initialize θ = b1/M and W = 11T /N
3: obtain θ ,W by solving (34) using the projected gradient

descent algorithm with the proposed projection algorithm
4: Output: θ and W

Fig. 3. YB data and its embedded results in 3-D obtained by ESL
(Algorithm 1) with perplexity u = 50, λ = 0.7. (a) YB data. (b) u = 50,
λ = 0.7 in 3-D.

V. EXPERIMENTS

Two sets of experiments are conducted to evaluate Algo-
rithms 1 and 2 for ESL and unsupervised feature selection on
various synthetic and real-world data sets, respectively.

A. Unsupervised Feature Extraction

1) Parameter Sensitivity Analysis: We investigate the para-
meter sensitivity of ESL by varying the perplexity u and
parameter λ on YB data, a synthetic data of 1000 points in
a 2-D space, where the data consist of characters Y and b
as shown in Fig. 3(a). For simplicity, we study the influence
of both the parameters of ESL with respect to the embedded
points and the learned graph structure by varying one and
fixing the other. The reduced dimensionality is set to be two.
We vary λ ∈ {0.6, 0.7, 0.8} and u ∈ {30, 40, 50} and C = 1
as the default value due to its least influence on the learned
structure and embedded points than the other two parameters.

The visualization results of both embedded points and graph
structure learned by ESL are reported in Fig. 4 for varying λ
and u. The graph structure visualized by the MATLAB graph
toolbox is only used for the illustration of the sparsity of
matrix W and the disconnected components since vertices of
the graph are not associated with embedded points. We have
the following observations from Fig. 4.

1) The bigger u is, the less sparse the graph matrix W is.
This is consistent with the meaning of u discussed in [8].

2) As λ becomes larger, the sparsity of matrix W increases,
and the learned structure becomes smoother with embed-
ded points of less noise.

3) If u is small and λ approaches to one, the learned graph
becomes smoother, where certain detailed structures are
lost in 2-D space. However, the correct structure is still
maintained in 3-D space as shown in Fig. 3(b).

4) In all combinations of parameters, the embedded points
form a nice smooth manifold structure.
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Fig. 4. Parameter sensitivity analysis of ESL on YB data. The graph structure and embedded points obtained by ESL are for λ ∈ {0.6, 0.7, 0.8} and perplexity
u ∈ {30, 40, 50}.

Fig. 5. Embeddings learned by three methods: t-SNE, MPME, and ESL on four real-world data sets.

2) Data Sets With a Single Connected Structure: Four
real-world data sets with a single connected structure are
evaluated for ESL by comparing with two closely related
methods t-SNE [8] and MPME [9]. The Lung data [51]
consist of 199 samples with 39 016 genes in total for the lung
epithelial cell data analysis. All cells annotated as ciliated
cells, Clara cells, or bulk sample from Supplementary Data
5 in [51] are excluded, yielding 183 cells for embedding
analysis. The data are processed as described in [52]. The
USPS data1 contain handwritten digits from 0 to 9 with
different written styles. Each one is a gray image of size
16 × 16. USPS-1 is a subset of USPS with only digit 1 and

1http://www.cs.nyu.edu/∼roweis/data/usps_all.mat

consists of 1100 images. The Paul data are from the Paul
experiment [53] and consist of 2730 cells with 3418 genes.
The data are processed according to the work [52]. A large-
scale, publicly available breast cancer data set [54] contains
the expression levels of over 25 000 gene transcripts from 144
normal breast tissue samples and 1989 tumor tissue samples.
The data are processed by the same procedure as [9] so that
359 genes are identified for the cancer progression modeling.

Fig. 5 shows the embedded points obtained by the above-
mentioned three methods on the four real-world data sets.
We tune the perplexity u for both t-SNE and ESL. Except
u = 5 on Lung data, we find t-SNE on other three data
can achieve reasonable results with u = 30. We also tune
parameter λ in both MPME and ESL. We find that MPME
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Fig. 6. Embeddings obtained by ESL on data sets, which are generated by varying the locations of points sampled from both a line segment and a circle in
the 2-D space. Original 2-D synthetic data (top). Embedded points obtained by ESL (bottom).

prefers a small value such as 10−3 and ESL needs a value close
to 1. From Fig. 5, we have the following observations. First,
t-SNE prefers embeddings of clusterings, while MPME and
ESL tend to achieve smooth connected manifold structures.
This confirms the motivation of the proposed method in
Section III. Second, ESL can achieve much smoother structure
of embedded points than MPME and can also recover more
detailed structure such as the three branches on Lung data
and Paul data. This is consistent with the findings in [52].
Moreover, ESL obtains the cancer progression path that is
consistent with the embeddings obtained by MPME but with
less noise.

3) Data Sets With Multiple Disconnected Structures: We
now exploit the capability of ESL for uncovering multiple
disconnected structures from both synthetic and real-world
data sets.

To explore the capability of ESL for recognizing multicom-
ponents of the underlying data, we synthesize another data
X = [x, y] ∈ R

200×2, namely, Line, by randomly sample
points from function y = (x −0.5)×3.0, where x is randomly
drawn from [0, 1]. By simply adding offset values to either
x and y, we can obtain new data sets by combining both
Line and Circle [55], which consist of various structures as
shown in Fig. 6. We run ESL on all five different data sets
with u = 30 and λ = 0.7. The embedded points in Fig. 6
successfully capture all the changes of various structures.

We apply ESL to COIL20 data [56]. It contains 20 objects.
The images of each object were taken 5◦ apart as the object
is rotated on a turntable and each object has 72 images. The
size of each image is 32 × 32 pixels, with 256 gray levels per
pixel. Thus, each image is represented by a 1024-dimensional
vector. We run ESL with u = 10 and λ = 0.83. Fig. 7 shows
the embedded points with 22 disconnected components, where
20 smooth structures exactly match the 20 objects and the
two figures in the third row and second and third columns
correspond to images with large noise deviating from its main
structure. These results on both synthetic data sets and real-
world data imply that ESL can correctly learn embedded points
of multiple disconnected structures from noisy data.

Fig. 7. 22 disconnected structures and embeddings obtained by ESL on
COIL20 data with perplexity u = 10 and λ = 0.83.

4) Classification Performance of Embeddings: As shown
in Table I, ten data sets taken from the UC Irvine Machine
Learning Repository and Statlib repositories are used to evalu-
ate the classification performance of embedded points learned
by baseline methods same as those used in the experiments on
synthetic data. The reduced dimensionality of data is shown
in Table I by preserving 95% of energy of data. Following
[11], we use the leave-one-out cross-validation accuracy as the
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TABLE I

LEAVE-ONE-OUT CROSS VALIDATION ACCURACY OF ONE-NN CLASSIFIER OVER TEN DATA SETS. N IS THE NUMBER OF DATA POINTS. c IS THE TRUE
NUMBER OF CLUSTERS. D IS THE ORIGINAL DIMENSIONALITY, AND d IS THE REDUCED DIMENSIONALITY. THE BEST RESULTS ARE IN BOLD

criterion for evaluating one-NN classifier on the embeddings
learned by these baseline methods. For methods that require
K -NN graph as input, we tune K ∈ {5, 10, 15, 20, 30, 50}.
We tune the parameter λ ∈ {0.01, 0.1, 1, 10} for SMCE.
Other parameters are set as the default values in the drtool-
box2. In addition, we tune λ ∈ [0.1, 10] for MPME, u ∈
{20, 30, 40, 50} and λ ∈ [0.1, 0.9] for ESL. The best results
are reported for every baseline method by tuning their own
parameters.

Table I shows the leave-one-out cross-validation accuracy of
one-NN classifier over the embeddings learned by ten methods
on ten benchmark data sets. It is clear to see that ESL is
competitive to t-SNE in terms of classification accuracy and
produces much better results than the others including MPME.
As shown in [8], t-SNE helps to achieve good classification
performance by learning a new embedding of original data.
The learning criterion of t-SNE is more suitable for clus-
tering/classification, but less appropriate for learning skeleton
structures in a latent space as observed in Fig. 5. These results
imply that ESL is not only better than MPME for learning
skeleton structures in latent spaces from high-dimensional data
but also can achieve competitive classification performance on
the learned embedded points when compared with t-SNE.

B. Unsupervised Feature Selection

We conduct various experiments, including parameter sen-
sitivity analysis of FSL, quantitative evaluation in terms of
clustering performance compared with baselines, and structure
learned by FSL.

1) Experiment Setting: To evaluate our FSL method,
we compare it with nine state-of-the-art unsupervised feature
selection methods on various types of high-dimensional data
sets. Table II shows the statistics of the data sets used in the
experiments. Following the widely used setting [5], the number
of features is selected and the performance is then evaluated
for each compared method over a grid of fixed numbers of
features. The number of features is searched over the grid
b ∈ {20, 40, . . . , 300}.

We partition various existing unsupervised feature selec-
tion methods into groups based on their required assump-
tions and compare the representatives from each group.

2https://lvdmaaten.github.io/drtoolbox/

TABLE II

STATISTICS OF THE DATA SETS USED FOR

UNSUPERVISED FEATURE SELECTION

These representatives include: 1) manifold assumption: LS
[7] and SPEC [28]; 2) manifold + clustering: MCFS [29],
NDFS [30], and RUFS [31]; 3) similarity preservation:
SPFS [33]; and 4) structure learning, LLCFS [38], FSASL [5],
and SOGFS [39]. For fair comparisons, we fix the size of
neighborhoods as 5 by following [5], [29]. For methods based
on Gaussian kernels, we search the kernel width in the grid
{2−3, 2−2, . . . , 23}δ0, where δ0 is the mean distance between
any two data points. The hyperparameters are tuned in the grid
{10−3, 10−2, . . . , 103}. For hyperparameters of some methods
that do not fall into this grid, we adopt the default searching
grid reported in their studies. According to these grids, we tune
these parameters for all methods by using the grid search
strategy [31]. For methods that do not directly select the given
number of features, their parameters are tuned so that the
number of selected features falls into the same grid.

2) Parameter Sensitivity Analysis: According to
Section IV-B, the proposed formulation (34) has three
parameters b, λ, and γ . As discussed before, large value
γ promotes the sparsity of θ . In the experiments, we set
γ = 102, and study two parameters λ and b by fixing
one and varying the other. We investigate the changes by
varying each parameter according to three criteria: clustering
performance including accuracy and normalized mutual
information (NMI) [29], the number of nonzero entries of θ

for the selected features, and the proportion of zero entries in
W for measuring the sparsity of the learned graph.

Fig. 8 shows the results for the parameter sensitivity analysis
of the proposed FSL method on Yale by fixing one parameter
and varying the other. We have the following observations.
According to Fig. 8(a)–(c), the increase of b leads to the
increase of the selected features and an ascending trend of
the sparsity of the learned graph. In contrast, the increase of λ
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Fig. 8. Parameter sensitivity analysis of FSL on Yale. Subplots for fixing
λ = 10 and varying b are (a) clustering performance in terms of accuracy
and NMI with error bars, (b) number of selected features, and (c) sparsity of
W. (d)–(f) corresponding results by fixing b = 10 and varying λ.

Fig. 9. Graph structure and embeddings obtained by FSL on the syn-
thetic two-moon data for unsupervised feature selection with parameters
γ = 100, λ = 10, and b = 1. (a) Original data. (b) Embeddings. (c) Adjacency
matrix.

leads to the increase of the selected features but a descending
trend of the sparsity of the graph as shown in Fig. 8(d)–(f).
This difference is useful since the number of features and
the sparsity of the graph are not necessarily correlated (i.e.,
data dependent), but they affect each other. In other words,
we can tune λ and b properly to get the desired number of
features and sparsities of the learned graph. On the other hand,
we find that a good W is able to contribute positively to the
clustering performance for a wide range of selected features
as shown in Fig. 8(d). These observations are consistent with
the motivations of the proposed method for simultaneously
selecting features and learning graph structures from data.

3) Structures Learned by FSL: We investigate the structures
learned by FSL over the embedded points and the set of
selected features in detail by performing experiments on two
data sets with known structures. The two-moon data is a 2-D
data for smooth structure learning [9]. We synthesize an aug-
mented data from the original two-moon data by adding noisy
data with 1000 dimensions sampled independent identically
distributed (i.i.d.), from a uniform distribution in [0, 1]. The
goal is to find the two separate curves by selecting the top
two features. The teapot image data consists of 400 RGB
images [57]. These images were taken successively as a teapot
was rotated 360◦. Each image consists of 76 × 101 pixels and
is represented as a vector. The ideal graph structure is a circle
on which all images are well organized.

Experimental results on two data sets, two-moon and teapot,
are shown in Figs. 9 and 10, respectively. The graph structures
learned by the proposed method can be shown in two different

Fig. 10. Graph structure and embeddings obtained by FSL on the teapot
data for unsupervised feature selection with parameters γ = 100, λ = 0.1,
and b = 0.7. Best visualized in color. (a) Embeddings. (b) Adjacency matrix.
(c) Images and their masked counterparts.

perspectives: the embedded points in the 2-D space and the
adjacency matrix. For the two-moon data, our method can
successfully find the top two features with θ1 = 0.5758 and
θ2 = 0.4242, and other entries of θ are 0s. From Fig. 9,
we can see that the embedded points [Fig. 9(b)] form exactly
two separate curves for the moon shapes and the adjacency
matrix [Fig. 9(c)] shows more connections within each moon
than between two moons. On the teapot data, 1074 features
are selected from 43 028 features. Fig. 10(a) shows the circular
structure formed by the embedded points in 2-D space. The
adjacency matrix in Fig. 10(b) demonstrates a thin diagonal
structure, which means that the connectivities are only pre-
sented when two images are close enough on the circular
structure. Moreover, the mask formed by the selected features
is applied to each image so as to investigate the importance of
these features. By carefully looking at these masked images,
we can find that the pixels selected vary smoothly according to
the circular structure of the data. These observations imply that
our FSL method not only is able to select a set of features to
represent the underlying structure of the data but also provides
a natural embedding solution.

4) Clustering With Selected Features: We evaluate the
performance of compared methods in terms of the k-means
clustering by two widely used metrics: accuracy and NMI.
The number of clusters of the k-means clustering method
is set to be the number of true clusters. For our method,
we tune b ∈ [0.1, 40] and λ ∈ [0.1, 10]. Since the results of
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TABLE III

CLUSTERING RESULTS MEASURED BY ACCURACY AND NMI (MEAN ± STD IN PERCENT) REPORTED FOR
TEN METHODS ON FOUR DATA SETS. THE BEST RESULTS ARE IN BOLD

the k-means clustering method depend on the initialization,
we perform clustering with 20 random initializations and
report the mean and standard deviation.

The clustering results in terms of accuracy and NMI are
shown in Table III by comparing ten methods on four data
sets through fine-tuning parameters of each method using the
greedy search strategy. For each compared method, we also
report the mean and its standard deviation for performance
evaluation. From Table III, we have the following observa-
tions. Our FSL method does not depend on either the prefixed
manifold or the clustering assumption, and its performance is
competitive to or better than the existing unsupervised feature
selection methods. SPFS with similarity preserving is worse
than our method with distance preservation on the four data
sets. Our method performs competitively to methods such as
NDFS, RUFS, and FSASL in terms of both accuracy and
NMI. These observations demonstrate that our FSL method
is effective for unsupervised feature selection.

VI. CONCLUSION

In this paper, we proposed a density estimation approach
to tackle unsupervised dimensionality reduction problem with
a unified framework for both feature extraction and fea-
ture selection. Our approach not only obtains the proper
embeddings in a low-dimensional space for feature extraction
and selects a proper set of features from original high-
dimensional data for feature selection but also learns a simi-
larity matrix or graph structure of the true data drawn from the
learned density function. Distinguishing from various existing
methods, our learning criteria are very different due to the
unique assumption on distance preservation and structure
learning. Two novel methods were proposed based on the
framework. Extensive experiments demonstrate that our pro-
posed methods can achieve competitive quantitative results in
terms of discriminant evaluation performance and are able to
obtain the embeddings of smooth skeleton structures and select
optimal features to unveil the correct graph structures of high-
dimensional data sets. The models of this work do not explore
the property of matrices for computational consideration and
the multimodality data [58], [59]. In the future work, we will
leverage some advanced matrix analysis algorithms [60], [61]
to reduce the computational complexity for large-scale data
and extend our models for multimodality problem.
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