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Abstract

Calculation of band structure of three dimensional photonic crystals amounts to
solving large-scale Maxwell eigenvalue problems, which are notoriously challeng-
ing due to high multiplicity of zero eigenvalue. In this paper, we try to address
this problem in such a broad context that band structure of three dimensional
isotropic photonic crystals with all 14 Bravais lattices can be efficiently com-
puted in a unified framework. We uncover the delicate machinery behind several
key results of our work and on the basis of this new understanding we drastically
simplify the derivations, proofs and arguments in our framework. In this work
particular effort is made on reformulating the Bloch boundary condition for all
14 Bravais lattices in the redefined orthogonal coordinate system, and establish-
ing eigen-decomposition of discrete partial derivative operators by systematic
use of commutativity among them, which has been overlooked previously, and
reducing eigen-decomposition of double-curl operator to the canonical form of
a 3 × 3 complex skew-symmetric matrix under unitary congruence. With the
validity of the novel nullspace free method in the broad context, we perform
some calculations on one benchmark system to demonstrate the accuracy and
efficiency of our algorithm.

Keywords: Maxwell’s equation, three-dimensional photonic crystals,
generalized eigenvalue problems, Bravais lattices, nullspace free method

1. Introduction

The photonic crystal (PhC) is an essential device when light is manipulated
in optoelectronics industry. A PhC is a in one-, two- and three-dimensional
(1D, 2D, 3D) periodic structure which is composed of different optical media
that can purposefully affect electromagnetic wave propagation. This term is
coined after Yablonovitch [39] and John [25]’s milestone work in 1987. In recent
years, the research about PhC is booming due to the emergence of the topolog-
ical PhCs (or photonic topological insulator) [33], especially the 3D topological
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PhCs. To determine whether a PhC is the topological PhC, band structure cal-
culation is indispensable [28]. To practically know the band structure of a 3D
isotropic/anisotropic PhC, we need to first recast the source-free Maxwell equa-
tions in frequency domain [37] as follows, with a specific media whose intrinsic
properties are described by a 3-by-3 permeability matrix µ and a permittivity
matrix ε, respectively,

∇×E = ıωµH, ∇ · (µH) = 0, (1a)

∇×H = −ıωεE, ∇ · (εE) = 0, (1b)

where ω is the frequency, and E and H are the electric and magnetic field,
respectively. The famous Bloch theorem [27] requires the solution E and H
satisfy the Bloch condition (BC)[34],

E(x + a`) = eı2πk·a`E(x), H(x + a`) = eı2πk·a`H(x), ` = 1, 2, 3, (2)

where a` is the lattice translation vectors and 2πk is the Bloch wave vector
within the first Brillouin zone [23]. For simplicity, µ is set to the vacuum
permeability µ0 while ε is assumed to be diagonal throughout this paper.

Given a specific 3D PhC, only certain nonzero ω can satisfy (1a) (1b) simul-
taneously. Our ultimate goal is to find a couple of smallest positive eigenvalues
of the following Maxwell Eigenvalue Problem (MEP)

[
ı∇×

−ı∇×

] [
E
H

]
= ω

[
ε

µ

] [
E
H

]
, (3a)

∇ · (εE) = 0, ∇ · (µH) = 0. (3b)

To discretize MEP (3), plane-wave expansion method [18, 24, 26, 35], multi-
ple scattering method [16, 36], finite-difference frequency-domain method (FDFD)
[9, 10, 15, 20, 21, 38, 40, 41, 42], finite element method [6, 7, 8, 17, 22, 29, 14,
30, 31, 32], to name a few, are available. In the case of diagonal ε matrix, the
Yee’s scheme finite-difference scheme [41], originally proposed for time-domain
simulation, is particularly attractive. In [20, 21], we have used Yee’s scheme
[41] for discretization, which results in a generalized eigenvalue problem (GEP).
For a 3D PhC, due to divergence-free condition (3b), dimension of the nullspace
of the GEP accounts for one third of the total dimension. The presence of the
huge nullspace will pose an extraordinary challenge to the desired solutions of
the GEP. In fact, no frequency-domain method is immune to this challenge.
Besides, even though only smallest few positive eigenvalues are desired, which
can be calculated by the Invert-Lanczos method, to solve the corresponding
linear system of huge size in each step of the Invert-Lanczos process is another
challenge. In [20, 21], we have shown how we resolve these challenges in the
case of face-centered cubic (FCC) lattice and simple cubic (SC) lattice.

In this paper, we will solve the MEP (3) for all 14 Bravais lattices along the
same lines as [20, 21]. Since the triclinic lattice is the most general one, which can
in fact become other 13 Bravais lattices with corresponding constraints imposed,
it suffices to consider triclinic lattice only. Several obstacles stand out. For
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example, since the unit cell of the triclinic lattice is a slanted parallelepiped, it
is unclear how to formulate in matrix language the discrete single-curl operator
which is compatible with the BC (2), and then it is uncertain whether the
advanced nullspace free method in [20] can be applicable in this case. Although
it is not uncommon to employ the oblique coordinate system in engineering and
physics community, we are not convinced that all our previous inventions can
still be applicable in the oblique coordinate system, so we decide to work with
the orthogonal coordinate system as before to overcome these obstacles.

This paper is outlined as follows.

• In Sec. 2 an orthogonal coordinate system with which we actually work
are built from the oblique coordinate system generated by a1,a2,a3.

• In Sec. 3 we reformulate the BC (2) within the cubic working cell.

• In Sec. 4 we discretize ∇× E and ∇×H into matrix-vector products,

CE =




0 −C3 C2

C3 0 −C1

−C2 C1 0





E1(:)
E2(:)
E3(:)


 , C∗H =




0 C∗3 −C∗2
−C∗3 0 C∗1
C∗2 −C∗1 0





H1(:)
H2(:)
H3(:)


 ,

respectively, where C2, C3 are quite complicated in most Bravais lattices
due to the reformulated BC. Moreover, we reduce the MEP (3) into a
GEP: AE = λBE, A = C∗C, λ = µ0ω

2.

• In Sec. 5 we prove that C1, C2, C3 commute with each othe, and ob-
tain eigen-decomposition of them analytically: C1T = TΛ1, C2T =
TΛ2, C3T = TΛ3, where Λ1,Λ2,Λ3 are diagonal matrices.

• In Sec. 6 we analytically identify the orthonormal basis of nullspace and
range space of C for any given Bravais lattice, and set up eigen-decomposition
of the discrete double-curl operator A i.e., A = QrΛrQ∗r , Q∗rQr = I2n, in
light of the canonical form of a 3×3 complex skew-symmetric matrix under

unitary congruence: L = Ṽ

[
0 −β
β 0

]
Ṽ ∗, L> = −L ∈ C3×3, Ṽ ∗Ṽ = I2.

• In Sec. 7 by eliminating the considerable nullspace of A, we transform
the GEP into a nullspace free standard eigenvalue problem (NFSEP):

ArẼ = λẼ, Ar = A∗r > 0. For the sake of self-containedness of this
article, fast eigensolver for NFSEP is reviewed.

• In Sec. 8, some numerical results are presented to demonstrate the accu-
racy and efficiency of our method.

• Finally, we conclude our present work in Sec. 9.

Here we briefly introduce some notations commonly used in this work. A∗, A>

denote conjugate transpose and transpose of matrix A, respectively, and ·̄ de-
notes complex conjugate. || · ||2 denotes the Euclidean norm. A 3D vector is

3



marked in bold and is equivalent to its Cartesian coordinate representation. ⊗
denotes the Kronecker product. A⊕B means the direct sum of matrices A,B.
δ`′,` is the Kronecker delta function, i.e., δ`′,` = 1 if `′ = ` and δ`′,` = 0 oth-
erwise. e` = [δ1,`, δ2,`, · · · δn,`]> is the standard unit vector in Rn. We define
ξ(θ) := exp (ı2πθ). �ABCD refers to rectangular ABCD. For convenience we
will employ Matlab[3] language with little explanation. For example, ‘floor’ de-
notes the function of rounding to the nearest integer towards −∞. Let vec(X)
denote the vectorization operation of a matrix X of any size, i.e., vec(X) = X(:).

2. Lattice translation vectors, physical cell and working cell

A crystal structure can be regarded as a lattice structure plus a basis. At
present, millions of crystals are known, and each crystal has a different nature.
Fortunately, there are only 7 lattice systems and 14 Bravais lattices in 3D Eu-
clidean space [1]. The so-called primitive cell is a fundamental domain under
the translational symmetry, and contains just one lattice point[4]. In fact a 3D
primitive cell is a slanted parallelepiped formed by lattice translation vectors
a1,a2 and a3, as illustrated in Figure 1(a). As mentioned above, in triclinic lat-
tice there is no restriction on the length of a1,a2,a3 nor on the angle between
any two of them, if we are able to solve the MEP (3) in triclinic lattice, we
can also cope with other lattices in almost the same manner. Therefore we will
focus on the triclinic lattice in the main body of this work. For convenience, we
dub the primitive cell of triclinic lattice as 3D physical cell. In that it is incon-
venient to discretize MEP (3) in the 3D physical cell using finite difference, we
need to redefine a cuboid primitive cell generated by new vectors a,b, c which
are orthogonal basis of a1,a2,a3. Specifically, we first sort a1,a2,a3 in terms of
length in descending order, resulting in ã1, ã2, ã3. Then we require

a = ã1, c//ã1 × ã2, b//c× a, (4)

b× a = ã2 × ã1, c · a× b = ã3 · ã1 × ã2. (5)

It is easy to see in Figure 1(a) that a,b, c defined in this way are unique. Let
a, b, c be the lengths of a,b, c, respectively. Identifying a/a,b/b, c/c as unit
vectors of the usual x-,y-,z-axis, vectors ã1, ã2, ã3 can be rewritten as

[
ã1, ã2, ã3

]
=



a1 a2 cosφ3 a3 cosφ2
0 a2 sinφ3 a3`2
0 0 a3`3


 , (6)

where aj is the length of ãj and φj is angle between ãi and ãk, i, j, k = 1, 2, 3, i 6=
j 6= k, and

`2 = (cosφ1 − cosφ3 cosφ2) / sinφ3, (7a)

`3 =

√
sin2 φ2 − `22, (7b)
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with a2 sinφ3 > |`2|. This result, which can also be found in [2], is illustrated
in Figure 1(b). In passing, we have

a = a1, b = a2 sinφ3, c = a3`3. (8)

We tabulate the coordinate representation (6) of ã1, ã2, ã3 of all 7 lattice
systems in Appendix A. We will solve MEP (3) mainly in this cuboid primitive
cell which is dubbed as 3D working cell. To convey the basic techniques and
methods in our framework of modeling of 3D PhCs, we just work on one specific
case where φ3 < π/2, φ2 < π/2, `2 > 0 in the main body of this article, and
defer the discussion of other possible combination of φ3, φ2, `2 to the Appendix.

(a) triclinic lattice

a1

a2

a3

a3 cos 2

a3 cos 1

33

2

(b) a⊥3 = a3 − c, c⊥a⊥3

Figure 1: triclinic lattice and its projective view

3. BC (2) within the working cell

Hereafter, for simplicity, we assume ã1, ã2, ã3 are just a1,a2,a3. Viewed in
the associated oblique coordinate system spanned by a1,a2,a3, BC (2) is very
clear, and is naturally compatible with periodicity of a PhC along a1,a2,a3.
However, in the working cell or the orthogonal coordinate system with x-,y-,z-
axis, formulation of BC needs some effort.

Given v ∈ R3, the translation operator Tv is defined as Tv(x) := x+v,∀x ∈
R3. Clearly, Tv1+v2

= Tv1
Tv2

= Tv2
Tv1

.
In fact, the 3D working cell is the set D = [0, a) × [0, b) × [0, c) ⊂ R3, i.e.,

a cuboid of lengths a, b, c. Since a1 = a, BC along x-axis is just the same.
Specifically, given x = (x, y, z) ∈ D,

E(x) = ξ(k · (x− T−a(x)))E(T−a(x)). (9)

However, the relation between E(x) and E(T−b(x)) or E(T−c(x)) can not re-
semble (9) naively. Fortunately, for derivations in Sec. 4, we only need to know
E(T−c((x, y, c))) with (x, y, c) ∈ D and E(T−b((x, b, z)))) with (x, b, z) ∈ D.

5



Figure 2: illustration of (x, y, 0) ∈ D,i.e., the bottom surface, and T−a3 ((x, y, c))

Given x = (x, y, 0) ∈ D, we just think of (x2, y2, 0) as image of x + c, i.e., a
point of the top surface of D, under T−a3

, then BC along z-direction could be

E(T−c((x, y, c))) = E(((x, y, 0)) = ξ (k · ((x, y, 0))− (x2, y2, 0))E((x2, y2, 0))

= ξ (k · ((x, y, 0))− T−a3
((x, y, c)))E(T−a3

((x, y, c))), (10)

with (x, y, 0)− T−a3((x, y, c)) being integer multiples of a1,a2.
In Figure 2, �OR1R2R3 is the bottom surface of D, while �R4R5R6R7 is

image of the top surface of D under T−a3
and overlaps with patch I of the

former. In short, there should be four patches within �OR1R2R3, namely,
I, II, III, IV, and each patch, equipped with different linear mapping, namely,
T0, T−a1 , T−a1−a2 , T−a2 , respectively, is mapped to four patches, namely, Ĩ, ĨI, ĨII, ĨV,
respectively, within �R4R5R6R7. Then we can establish the correct BC within
the bottom surface of D, which specifies x2, y2 in (10). Letting x = (x, y, 0) ∈ D,

E(x) =





E(x), if x ∈ I
ξ(k · a1)E(x− a1), if x ∈ II
ξ(k · (a1 + a2))E((x− a1 − a2)), if x ∈ III
ξ(k · a2)E(x− a2), if x ∈ IV.

(11)

In passing, considering that E(Ta3
(x)) = ξ(k · a3)E(x), we can of course add

a3 to the argument of E on the right hand side of (11) with updated prefactor.
We refer the reader to Appendix B to see how Figure 2 as well as the asso-

ciated mapping is obtained. Depending on different combination of φ3, φ2, `2,
BC (11) could be different. Results in other cases will be listed in Appendix.

As for E(T−b((x, b, z)))) with (x, b, z) ∈ D, since z-axis is independent of
x-,y-axis, we can just let z = 0 here for simplicity. Letting x = (x, b, 0) ∈ D, we
have BC along y-direction for different patches of R3R2 shown in Figure 2:

E(x) =

{
ξ(k · a2)E(T−a2

(x)), if x ∈ R8R2

ξ(k · (a2 − a1))E(Ta1−a2(x)), if x ∈ R3R8.
(12)
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4. Matrix Representation of the Discretized Single-Curl

As mentioned above, partial derivative of the trivariate function E(x),H(x)
in (1a) and (1b) which satisfies 3D BC (2) will be approximated by finite dif-
ference of this function.

First of all, finite difference approximation needs grid, usually the uniform
grid, in the simulation domain. Given n1, n2, n3 ∈ N, we can have a uniform
grid along x-,y-,z-axis of our 3D working cell D, defined in Sec. 3, respectively,
with constant grid spacing

δx = a/n1, δy = b/n2, δz = c/n3,

respectively. In general, each component of the vector-valued function E(x) =
[E1(x), E2(x), E3(x)]> could be sampled at different points. Hence we assume
that E`(x) is sampled at

x`(i, j, k) = x`(0, 0, 0) + (iδx, jδy, kδz), (13)

where x`(0, 0, 0) will be specified later in this section and ` = 1, 2, 3, i =
0, 1, . . . , n1 − 1, j = 0, 1, . . . , n2 − 1, k = 0, 1, . . . , n3 − 1. Unless otherwise
stated, in this section i, j, k always take on these values. In passing, this defini-
tion (13) of x`(i, j, k) holds even when i, j, k ∈ Z.

Given `, the three-way array E`(x`(:, :, :)) is arranged in column-major or-
der, i.e., the first index varies fastest while the last index varies slowest. For
convenience we store E`(x`(:, :, :)) in a column vector

E = [E1(:);E2(:);E3(:)].

Let’s deal with single-curl ∇× in (1a) first, without worrying about ∂xE1

etc. at the moment. Below we will refer to quantities in (6) and (8) frequently.
Part I. Discrete ∂xE`. Since BC (9) is very similar to 1D case, using

matrix language, we recast

E`(x`(i+ 1, j, k))− E`(x`(i, j, k))

δx
, ` = 2, 3, (14)

into C1E`(:), where

C1 = In3
⊗ In2

⊗ K1 − In1

δx
∈ Cn×n, (15)

K1 =

[
0 In1−1

ξ(k · a1) 0

]
∈ Cn1×n1 . (16)

Part II. Discrete ∂yE`. BC (12) holds for continuous x, however if we
want to recast

E`(x`(i, j + 1, k))− E`(x`(i, j, k))

δy
, ` = 1, 3, (17)
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into matrix-vector product, we need the discretized version of BC (12).
Although in Figure 3 we have in principle R8 ≡ O mod a2, it is very rare

that R8 coincides exactly with any of the grid point in a given uniform grid
in R3R2. As an expediency to resolve this mismatching, we stipulate that the
rightmost grid point within R3R8 is the substitute of R8. Putting it differently,
when φ3 < π/2, since the number of grid points in R3R8 is m1, where

m1 = floor ((a2 · a1/a1)/δx) = floor ((a2 cosφ3)/δx) , (18)

then
x`(m1, n2, k) ≡ x`(0, 0, k) mod a2,

holds at the discrete level by force.
E`(x`(:, n2, k)), a column vector of length n1, is partitioned into 2 blocks,

due to two cases in (12). Then the discretized BC (12) is

E`(x`(:, n2, k)) = ξ(k · a2)J2E`(x`(:, 0, k)), (19)

J2 =

[
0 ξ(−k · a1)Im1

In1−m1 0

]
. (20)

Finally, (17) is recast into C2E`(:), where

C2 = In3
⊗ K2 − In1n2

δy
∈ Cn×n, (21)

K2 =

[
0 In2−1 ⊗ In1

ξ(k · a2)J2 0

]
∈ C(n1n2)×(n1n2). (22)

In the case where φ3 > π/2, the expression for m1, J2 can be found in Appendix.
Part III. Discrete ∂zE`. If we want to recast

E`(x`(i, j, k + 1))− E`(x`(i, j, k))

δz
, ` = 1, 2, (23)

into a matrix-vector product, we need to know how E`(x`(:, :, n3)) is related to
E`(x`(:, :, 0)) from BC (11).

We have the following observations about Figure 3,

• length of R9R6 is a1−a3 cosφ2, while length of R9R̂5 is a3 cosφ2−a2 cosφ3.

• length of R3R9 is a3`2, while length of R9O is a2 sinφ3 − a3`2.

8



(a) grid along edges of �R4R5R6R7 (b) grid along edges of �OR1R2R3

Figure 3: illustration of uniform grid within top and bottom surface of D.

Again, it is very rare that vertices of any patch in Figure 3 coincide exactly with
any of the grid point for a given uniform mesh in �OR1R2R3. Define

m2 = floor((a3 · a1/a1)/δx) = floor((a3 cosφ2)/δx), (24)

m3 = floor((a3 · b/b)/δy) = floor(a3`2/δy), (25)

m4 = m2 −m1, (26)

then along x-direction, R9R6 contains n1−m2 grid points, R9R̂5 contains n1 +
m1−m2 grid points, while along y-direction, R3R9 contains m3 grid points, the
edge R9O contains n2 −m3 grid points.

Matrices E`(T−a3
(x`(:, :, n3))) and E`(x`(:, :, 0)) are partitioned into 4 blocks,

E`(x`(:, :, 0)) =

[
EI EIV
EII EIII

]
∈ Cn1×n2 , E`(T−a3(x`(:, :, n3))) =

[
E

ĨII
E

ĨI
E

ĨV
E

Ĩ

]
∈ Cn1×n2 ,

in accordance with Figure 3, size of each block of which becomes transparent in
(27),(28),(29) below. Then the discretized version of BC (11) is as follows:

[
E

ĨI
E

Ĩ

]
=

[
0 ξ(−k · a1)Im2

In1−m2
0

] [
EI
EII

]
In2−m3

, (27)

[
E

ĨII
E

ĨV

]
=

[
0 ξ(−k · a1)Im4

In1−m4
0

] [
EIV
EIII

]
ξ(−k · a2)Im3

, (28)

[
EIV EI
EIII EII

]
= In1

[
EI EIV
EII EIII

] [
0 In2−m3

Im3 0

]
. (29)

Actually vec(E`(x`(:, :, 0))) can be seen as vertical concatenation of vec
(
[EI;EII]

)

and vec
(
[EIV;EIII]

)
, while vec(E`(T−a3(x`(:, :, n3)))) can be viewed as vertical

concatenation of vec
(

[E
ĨII

;E
ĨV

]
)

and vec
(

[E
ĨI

;E
Ĩ
]
)

. It is easy to see that

(
Z> ⊗ Y

)
vec(X) = vec(Y XZ), (30)

9



where X,Y, Z are matrices with any compatible size.
Finally, with (27),(28),(29),(30), we can recast (23) into C3E`(:), where

C3 =
K3 − In
δz

, K3 =

[
0 In3−1 ⊗ In2

⊗ In1

ξ(k · a3)J3 0

]
∈ Cn×n, (31)

J3 =

([
0 In2−m3

Im3 0

]>
⊗ In1

)
×



In2−m3

⊗
[

0 ξ(−k · a1)Im2

In1−m2
0

]

ξ(−k · a2)Im3 ⊗
[

0 ξ(−k · a1)Im4

In1−m4 0

]




=




ξ(−k · a2)Im3
⊗
[

0 ξ(−k · a1)Im4

In1−m4
0

]

In2−m3
⊗
[

0 ξ(−k · a1)Im2

In1−m2
0

]


 .

(32)

Depending on different combination of φ3, φ2, `2, matrix J3 could be different.
We put the result for J3 in other cases in Appendix D.

Part IV. Discrete ∂xH`, ∂yH`, ∂zH`. In order to preserve the Hermiticity
of the operator on the left hand side of MEP (3) at the discrete level, single-curl
operator in (1b) should be discretized slightly differently. We will not detail the
derivations, but just present the results. Specifically, the discretized version of
BC (9),(12) and (11) can be immediately written down verbatim in terms of
H(x) in place of E(x), then we can recast

H`(x`(i, j, k))−H`(x`(i− 1, j, k))

δx
, ` = 2, 3, (33)

H`(x`(i, j, k))−H`(x`(i, j − 1, k))

δy
, ` = 1, 3, (34)

H`(x`(i, j, k))−H`(x`(i, j, k − 1))

δz
, ` = 1, 2, (35)

into −C∗1H`(:), −C∗2H`(:) and −C∗3H`(:), respectively.
Part V. Yee’s scheme. To return to the famous Yee’s scheme for E(x),

x`(0, 0, 0) in (13) is set to

x1(0, 0, 0) = (δx/2, 0, 0), x2(0, 0, 0) = (0, δy/2, 0), x3(0, 0, 0) = (0, 0, δz/2).

In addition, since ε(x) is assumed to be diagonal, then we can define the follow-
ing positive diagonal matrix B,

B = diag([vec(ε(x1(:, :, :))); vec(ε(x2(:, :, :))); vec(ε(x3(:, :, :)))]),

in which x`(i, j, k) coincide the grid points where E(x) is sampled.
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To return to the Yee’s scheme for H(x), x`(0, 0, 0) in (13) is set to

x`(0, 0, 0) = ((1− δ1,`)δx/2, (1− δ2,`)δy/2, (1− δ3,`)δz/2).

With Yee’s scheme x`(i, j, k) for E(x) and H(x) specified above, using
(14),(17),(23) and (33),(34),(35), it can be proved that the divergence free con-
dition (3b) is automatically satisfied. This is where the superiority of Yee’s
scheme lies.

Part VI. Discrete MEP (3). At last, the discretization of (3) is reduced
into the following GEP with size halved,

AE = λBE, λ = µ0ω
2, A = C∗C, (36)

C =




0 −C3 C2

C3 0 −C1

−C2 C1 0


 . (37)

5. Eigen-decomposition of partial derivative operators

It is known in Ref. [20, 21] for the FCC lattice without eigen-decomposition of
K1,K2,K3, it is unlikely to obtain eigen-decomposition of A in (36) analytically,
let alone the nullspace of A. This is also the case for the triclinic lattice and
other lattices. The derivation in Ref. [20, 21] could be applied to our present
problem with necessary modification, but it turns out the whole process is very
complicated and error-prone. In addition, the derivation there can not explain
why we have Kronecker product decomposition of K2’s and K3’s eigenvectors.

It is common sense that partial derivatives of a smooth field along any two of
x-,y- and z-axis can be exchanged. Then it is expected that the discrete partial
derivative operators C1, C2, C3 discussed in previous section should commute
with each other. This is indeed true in the case of FCC lattice[20]. However,
use of this fact was far from being enough in our opinion.

In this section, we will prove some key results which are equivalent to C`C`′ =
C`′C`, `, `

′ = 1, 2, 3, for the triclinic lattice. Particularly, this commutativity
and structure of eigenvectors of a (block) companion matrix will play a central
role in deriving important eigen-decompositions of C`. With these apparatuses,
the whole process of derivation turns out very elegant and reader-friendly.

Lemma 1. Let p(t) = c0 + c1t+ · · ·+ cn−1tn−1 + tn be an n-th degree complex
monic polynomial with its companion matrix

CF (p) =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
. . . 1

−c0 −c1 −c2 · · · −cn−1



, (38)

then p(λ) = det(λ−CF (p)), and especially the eigenvector of CF (p) correspond-
ing to eigenvalue λj is [1, λj , λ

2
j , · · · , λn−1j ]>, j = 1, 2, · · · , n.

11



Since lemma 1 can be directly verified, we skip its proof. Letting c1 = · · · =
cn−1 = 0 and c0 = −ξ(k · a1) in lemma 1, we have the following theorem.

Theorem 1 ([20]). The eigenpairs of K1 in (16) are (ξ(θa1)ξ(i/n1), Xi), where

Xi =

[
1, ξ(θa1

)ξ

(
i

n1

)
, · · · , ξ((n1 − 1)θa1

)ξ

(
(n1 − 1)i

n1

)]>
, (39)

and θa1 = k · a1/n1, for i = 1, . . . , n1.

Lemma 2 ([13]). Let M(λ) = M0 + M1λ + · · · + Mn−1λn−1 + λn with Mj ∈
Cn×n, j = 0, 1, · · · , n− 1, then detM(λ) = det(λ− CBF (M)) where

CBF (M) =




0 Im 0 · · · 0
0 0 Im · · · 0
...

...
...

. . .
...

0 0 0
. . . Im

−M0 −M1 −M2 · · · −Mn−1



. (40)

Particularly if v ∈ Cm and λ0 ∈ C satisfy M(λ0)v = 0, then the eigenvector of
CBF (M) corresponding to eigenvalue λ0 is [1, λ0, λ

2
0, · · · , λn−10 ]> ⊗ v.

Similarly, letting M1 = M2 = · · · = Mn−1 = 0 and M0 = −ξ(k · a2)J2 in
lemma 2, we see that eigenpairs of K2 in (22) are made from those of J2 in (20).
If λ0 is an eigenvalue of J2 then the n2-th root of ξ(k · a2)λ0 is that of K2.

Lemma 3. Given 0 6= θ ∈ R and n ∈ N, for any q ∈ Ind = {1, 2, · · · , n− 1},

Gn(θ, q) : =

[
0 In−q

ξ(θ)Iq 0

]

n×n
= Gn(θ, 1)q. (41)

Proof. When q = 1, (41) is obviously correct. Suppose (41) is correct when
1 ≤ q = r < n − 2, i.e., Gn(θ, r) = Gn(θ, 1)r, then by direct multiplication we
have

Gn(θ, r)Gn(θ, 1) =

[
0 In−r−1

ξ(θ)Ir+1 0

]
= Gn(θ, r + 1) = Gn(θ, 1)r+1. (42)

By induction, we know that (41) is correct for all q ∈ Ind.

Corollary 1. Given nonzero numbers θ ∈ R and n, q ∈ N, n > q, matrices

Gn(θ, 1) =

[
0 In−1
ξ(θ) 0

]
, M =

[
0 ξ(−θ)Iq

In−q 0

]

commute. Let γi = ξ(i/n)ξ (θ/n) , i = 1, 2, . . . , n, then eigenpairs of M are
(γ−qi , vi), where vi = [1, γi, γ

2
i , · · · , γn−1i ]>.

Proof. Note that M∗ = Gn(θ, q) and that eigenpairs of Gn(θ, 1) are (γi, vi).
Hence by lemma 3 eigenpairs of M∗ = Gn(θ, 1)q are (γqi , vi). Yet MM∗ = In,
therefore Mvi = viγ

−q
i . Then it is obvious that Gn(θ, 1)M = MGn(θ, 1).

12



Now let θ = k · a1, q = m1, n = n1 in corollary 1, then Gn(θ, 1) becomes
K1 in (16) and M becomes J2 in (20). By simple manipulation we have the
following result about K2, according to lemma 2 and corollary 1.

Theorem 2. The eigenpairs of K2 in (22) are (ξ(θâ2,i)ξ(j/n2), Yij⊗Xi), where
Xi is stated in (39) and

θâ2,i =
1

n2

(
k ·
(

a2 −
m1

n1
a1

)
− im1

n1

)
, (43a)

Yij =

[
1, ξ(θâ2,i)ξ

(
j

n2

)
, · · · , ξ((n2 − 1)θâ2,i)ξ

(
(n2 − 1)j

n2

)]>
. (43b)

for i = 1, · · · , n1, j = 1, · · · , n2.

In order to deal with K3 in (31) in the same way, we need to establish
commutativity between J3 in (32) and K2 in (22).

Lemma 4. Given nonzero numbers θ1 6= θ2 ∈ R and n1, n2, r, q1, q2 ∈ N, 1 ≤
r < n2, 1 ≤ q1 < q2 < n1,the following two matrices

W1 =

[
0 ξ(−θ2)Ir ⊗G�n1

(θ1, q1)
In2−r ⊗G�n1

(θ1, q2) 0

]
,

W2 =

[
0 In2−1 ⊗ In1

ξ(θ2)G�n1
(θ1, q2 − q1) 0

]

commute, where G� refers to G and G∗, respectively.

Proof. To avoid ambiguity, it is required that once G�n1
(θ1, q1) = Gn1

(θ1, q1),
then G� must stands for G in all three places in W1,W2. So does G∗. By
lemma 3, G�n1

(θ1, q2−q1)G�n1
(θ1, q1) = G�n1

(θ1, q2) = G�n1
(θ1, q1)G�n1

(θ1, q2−q1).
By direct block matrix multiplication, we can easily have

W1W2 =

[
0 ξ(−θ2)Ir−1 ⊗G�n1

(θ1, q1)
In2−r+1 ⊗G�n1

(θ1, q2) 0

]
= W2W1.

Theorem 3. The eigenpairs of K3 in (31) are (ξ(θâ3,ij)ξ(k/n3), Zijk⊗Yij⊗Xi),
with Xi and Yij stated in (39) and (43b), respectively, where

θâ3,ij =
1

n3

{
k · â3 −

m3

n2
j +

(
m1

n1

m3

n2
− m2

n1

)
i

}
, (44a)

Zijk =

[
1, ξ(θâ3,ij)ξ

(
k

n3

)
, · · · , ξ((n3 − 1)θâ3,ij)ξ

(
(n3 − 1)k

n3

)]>
, (44b)

â3 = a3 −
m3

n2
a2 +

(
m1

n1

m3

n2
− m2

n1

)
a1,

for i = 1, · · · , n1, j = 1, · · · , n2, k = 1, · · · , n3.
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Proof. In lemma 4 let θ1 = k · a1, θ2 = k · a2, r = m3, q1 = m2 −m1, q2 =
m2, G

� = G∗, then J3 commutes with K2. This implies that J3 also has
eigenvectors vij = Yij ⊗ Xi stated in theorem 2. If µij is the eigenvalue of
J3 corresponding to vij , then comparing (m3n1 + m2 + 1)-th entry of J3vij
and µijvij we have µijξ (m3θâ2,i) ξ(jm3/n2)ξ(m2θa1

)ξ(im2/n1) = 1. Therefore
corresponding to vij the eigenvalue of ξ(k · a3)J3 is

ξ(k · a3)ξ (−m3θâ2,i) ξ

(
−jm3

n2

)
ξ (−m2θa1) ξ

(
− im2

n1

)
= ξ(n3θâ3,ij).

Then, the n3-th root of ξ(n3θâ3,ij) is just ξ(θâ3,ij)ξ(k/n3), k = 1, · · · , n3.

As before, due to different combination of φ3, φ2, `2 different expressions of
θâ2,i, â3, θâ3,ij can be found in the Appendix.

Now we summarize the results obtained in this section.
We put all eigenvectors of Ki in a matrix T ,

T = [T1, T2, · · · , Tn1
]/
√
n ∈ Cn×n, (45a)

Ti = [Ti1, Ti2, · · · , Tin2
] ∈ Cn×(n2n3), (45b)

Tij = [Zij1 ⊗ Yij ⊗Xi, Zij2 ⊗ Yij ⊗Xi, · · · , Zijn3
⊗ Yij ⊗Xi], (45c)

for i = 1, · · · , n1, j = 1, · · · , n2. This eigenmatrix T is unitary since it is
straightforward to show that K1,K2,K3 are normal (in fact unitary) matri-
ces and each vector of T is normalized.

For the eigenvalues, we set

Λn1
= diag

(
ξ(θa1

)ξ([1 : n1]>/n1)− 1
)
/δx, Λ1 = Λn1

⊗ In2
⊗ In3

Λin2 = diag
(
ξ(θâ2,i)ξ([1 : n2]>/n2)− 1

)
/δy, Λ2 = ⊕n1

i=1(Λin2 ⊗ In3),

Λijn3 = diag
(
ξ(θâ3,ij)ξ([1 : n3]>/n3)− 1

)
/δz, Λ3 = ⊕n1

i=1 ⊕n2
j=1 Λijn3 .

Then, from Theorems 1, 2, and 3, it holds that

C1T = TΛ1, C2T = TΛ2, C3T = TΛ3. (46)

Recall that in [11, 20], we have derived the eigen-decompositions (46) only
for SC and FCC lattices. Now it is clear that the formalism is the same for all
Bravais lattices, though θa1 , θâ2,i and θâ3,ij depend on a1, a2, a3.

6. Eigen-decomposition of A

On basis of the results of previous section, we can proceed to derive eigen-
decomposition of A, especially to obtain the range-space of A explicitly. Rather
than find singular value decomposition (SVD) of C as is done in Ref. [20, 21],
we will preserve the complex skew-symmetry which is intrinsic to C.

14



From Eq. (46), we know that C in (37) is unitarily similar to a complex
skew-symmetric matrix Λ

Λ =




0 −Λ3 Λ2

Λ3 0 −Λ1

−Λ2 Λ1 0


 = (I3 ⊗ T )∗C(I3 ⊗ T ) (47)

Moreover, doing a perfect shuffle of this Λ, i.e., multiplying

P = [e1, en+1, e2n+1, e2, en+2, e2n+2, · · · , en, e2n, e3n] ∈ R3n×3n, (48)

from the right side and P> from the left side, we can transform Λ to a block
diagonal matrix

P>ΛP = L1 ⊕ L2 ⊕ · · · ⊕ Ln,
with L` ∈ C3×3, L>` = −L`, ` = 1, 2, · · · , n. That means we can just deal
with each block L` separately. SVD in this case does not reveal the underlying
structure, therefore is not preferred here. Yet it is well-known that [19] canon-
ical form of a complex skew-symmetric matrix under unitary congruence is a
real quasi-diagonal skew-symmetric matrix, which is certainly rank-revealing.
In particular, we find that for the 3 × 3 complex skew-symmetric matrix, the
canonical form can be done in almost one step, as shown below, which is simpler
than some well-established algorithm to achieve the same goal. Then we can
express analytically the range space of a L`, which is of rank 2.

The following lemma is a generalization of the scalar triple product in R3.

Lemma 5. Given a nonzero vector c = [c1, c2, c3]> ∈ C3, we define a corre-
sponding skew-symmetric matrix

L =




0 −c3 c2
c3 0 −c1
−c2 c1 0



3×3

, L> = −L.

Then Lc = [0, 0, 0]> and for any u = [u1, u2, u3]>, v = [v1, v2, v3]> ∈ C3,

v>Lu = det





v1 v2 v3
c1 c2 c3
u1 u2 u3




 = det ([v, c, u]) .

The next lemma follows from one basic algorithm in numerical linear algebra.

Lemma 6. Given a nonzero vector c = [c1, c2, c3]> ∈ C3, the following House-
holder matrix

H = I3 − τ [1, h2, h3]>
[
1, h2, h3

]

satisfies
H∗H = I3, H

∗c = [β, 0, 0]>,

where

β = −sign(<(c1))||c||2, τ =
β − c1
β

, h` =
c`

c1 − β
, ` = 2, 3. (49)

Furthermore, det(H) = (β − c1)/(c1 − β).
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Proof. Here we only prove the last equality, since the rest is just the basic
algorithm in LAPACK[12] to compute the complex Householder matrix. By
Sylvester’s determinant identity[5], we have

det(H) = 1− τ ||[1, h2, h3]||2 = 1− β − c1
β

− β − c1
β

|c2|2 + |c3|2
|c1 − β|2

=
c1
β

+
|c2|2 + |c3|2
β(c1 − β)

=
|c1|2 + |c2|2 + |c3|2 − βc1

β(c1 − β)
=
β − c1
c1 − β

.

Theorem 4. Given a nonzero vector c = [c1, c2, c3]> ∈ C3, L defined in
lemma 5 and H defined in lemma 6, let V = Hdiag(1, 1,det(H∗)), then

V >LV =




0 0 0
0 0 −β
0 β 0


 , V ∗V = V V ∗ = I3. (50)

That is to say,

L = βV (:, 3)V (:, 2)> − βV (:, 2)V (:, 3)>, (51a)

V (:, 2) = V (:, 2) =

[
c2(c1 − β)

β(c1 − β)
, 1 +

|c2|2
β(c1 − β)

,
c3c2

β(c1 − β)

]>
, (51b)

V (:, 3) = V (:, 3) =

[
−c3
β
,

c2c3
β(β − c1)

,
c1
β
− |c2|2
β(β − c1)

]>
. (51c)

Proof. Let us consider the skew-symmetric matrix H>LH first. Obviously di-
agonal entries of H>LH vanish. Since H∗c = βe1, then He1 = c/β, there-
fore LHe1 = [0, 0, 0]> and e>1 H

>L = [0, 0, 0]. That means e>3 (H>LH)e2 =
−e>2 (H>LH)e3 6= 0. In fact, we have

e>3 (H>LH)e2 = (He3)>L(He2)

= det ([He3, c,He2]) = det(H) det ([e3, H
∗c, e2])

= det(H) det ([e3, βe1, e2]) = β det(H).

Since det(H∗) det(H) = 1, we have e>3 (V >LV )e2 = β = −e>2 (V >LV )e3.
Here we calculate V (:, 3) explicitly, which is somewhat tedious.

V (1, 3) = − det(H)τh3 =
β − c1
c1 − β

c3(c1 − β)

β(c1 − β)
= −c3

β
,

V (2, 3) = − det(H)τh3h2 =
β − c1
c1 − β

c1 − β
β

c2c3
|c1 − β|2

=
c2c3

β(β − c1)
,

V (3, 3) = det(H)− det(H)τ |h3|2 =
β − c1
c1 − β

+
β − c1
c1 − β

c1 − β
β

|c3|2
|c1 − β|2

=
β(β − c1)− |c3|2

β(c1 − β)
=
|c1|2 + |c2|2 − βc1

β(c1 − β)
=
c1
β

+
|c2|2

β(c1 − β)
.

V (:, 2) can be similarly calculated and is skipped.
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In fact, letting Ṽ = V (:, [2, 3]) ∈ C3×2, the canonical form of L in theorem 4
can be reduced to the following, without keeping the nullspace

L = Ṽ

[
0 −β
β 0

]
Ṽ ∗, Ṽ ∗Ṽ = I2 = Ṽ >Ṽ ,

and similarly for each L`, ` = 1, 2, · · · , n, we have

L` = Ṽ `

[
0 −β`
β` 0

]
Ṽ ∗` , Ṽ ∗` Ṽ` = I2 = Ṽ >` Ṽ `.

Finally the eigenspace of A which is orthogonal to the nullspace of A can be
derived using key results in this and previous section[20, Theorem 3.7].

Theorem 5. Let A, T , P defined in (36),(45a),(48) respectively, and denote

Vr : = blkdiag
(
Ṽ1, Ṽ2, · · · , Ṽn

)
∈ C3n×2n,

Λr : = diag
(
β2
1 , β

2
1 , β

2
2 , β

2
2 , · · · , β2

n, β
2
n

)
∈ C2n×2n,

Qr : = (I3 ⊗ T )PVr ∈ C3n×2n,

then
A = QrΛrQ∗r , Q∗rQr = I2n. (52)

7. Iterative solver FAME for NFSEP (53)

Figure 4: Flow charts of FAME for NFSEP (53).
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Eventually, all previous derivations show that the nullspace free method
proposed in [20] still works for all Bravais lattice, which transforms the GEP
(36) into the following NFSEP:

ArẼ = λẼ, E = B−1QrΛ1/2
r Ẽ, Ar = Λ1/2

r Q∗rB−1QrΛ1/2
r = A∗r > 0. (53)

Since the nullspace of the GEP (36) has been completely deflated, the first
challenge mentioned in Sec. 1 is resolved.

To solve (53), a fast eigensolver called FAME was proposed in [20] originally
for SC and FCC lattices, and can also be similarly applied to all Bravais lattices.
The flowchart of our fast eigensolver FAME is shown in Figure 4. As shown
in this figure, conjugate gradient (CG) method without preconditioner to solve
the linear system is very efficient, because the condition number of Q∗rB−1Qr
in (53) is bounded by that of B−1. The second challenge mentioned in Sec. 1 is
resolved in the case of positive diagonal B.

In CG method, multiplying a column vector q̃ by Q∗rB−1Qr is essentially
reduced to Tq and T ∗p besides some diagonal scalings, where q,p are inter-
mediate variables. Fortunately, we discover that the most expensive operations
Tq and T ∗p can be efficiently computed via Algorithms 1 and 2, respectively,
which are described in Appendix E. In a nutshell, these two algorithms are just
wrappers for backward and forward FFT, respectively, harnessing (30).

8. Numerical Experiments

To demonstrate the accuracy and efficiency of our framework, we call func-
tions eigs, pcg, fft and ifft of Matlab[3] R2017b to implement key operations
in our fast eigensolver FAME and calculate band strucuture of one benchmark
system of the double gyroid PhC[28] in Body-Centered Cubic (BCC) lattice. In
our calculation, the convergence tolerance of eigs and pcg is set to 10−12 and
10−13, respectively. All computations are performed on an Intel (R) Xeon (R)
E5-2643 3.30GHz processor with 96 GB RAM in double precision arithmetic.

The lattice translation vectors a1,a2,a3 of the BCC lattice are

a1 =
a

2
[−1, 1, 1]

>
, a2 =

a

2
[1,−1, 1]

>
, a3 =

a

2
[1, 1,−1]

>
,

where a is the lattice constant. The reciprocal lattice vectors b1,b2,b3 satisfy
[b1 b2 b3] [a1 a2 a3]

>
= 2πI3. The vertexes of the Brillouin zone (see Fig-

ure 5(b)) of BCC lattice can be represented in the oblique coordinate system
spanned by b1, b2 and b3 as

Γ = [0, 0, 0]
>
, H =

[
1

2
,−1

2
,

1

2

]>
, P =

[
1

4
,

1

4
,

1

4

]>
, N =

[
0,

1

2
, 0

]>
, H ′ =

[
−1

2
,

1

2
,

1

2

]>
.

Let r = (x, y, z). The double gyroid region in Figure 5(a) can be de-
scribed by the set {r ∈ R3|g(r) > 1.1} ∪ {r ∈ R3|g(−r) > 1.1} where g(r) =
sin(2πx/a) cos(2πy/a) + sin(2πy/a) cos(2πz/a) + sin(2πz/a) cos(2πx/a). For
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(a) The physical cell of BC lattice and dou-
ble gyroid structure.

(b) Brillouin zone and its
vertex of BCC lattice.

Figure 5: Illustration of one PhC in BC lattice and its Brillouin zone

convenience we set a = 1. Suppose that the double gyroid region is filled
up material whose permittivity is uniformly ε = 16 and that the rest part is
just vacuum (ε = 1), then we compute ten smallest positive eigenvalues and
associated eigenvectors of the this system.

The band structure shown in Figure 6(a) does not show any discernible
discrepancy with the one in Ref. [28], which partially evidences the accuracy of
our method. Even the dimension of the NFSEP (53) is as large as 3, 456, 000,
it takes at most 7 × 103 seconds to calculate ten target eigenpairs at each k-
point as shown in Figure 6(b) (1), which is acceptable considering the serials
implementation. More detailedly, in Figure 6(b) (2) the number of iterations
in function eigs versus k is plotted, where we can see that the Invert-Lanczos
process converges in 60 to 170 steps for the ten target eigenpairs given k. In
Figure 6(b) (3), the number of iterations in function pcg without preconditioner
versus k is plotted, where we can see that on average we need 34 to 42 iterations
to solve the linear system in one step of Invert-Lanczos process. The overall
efficiency of our algorithm is impressive.

9. Conclusion

In a word, the major contribution we have made in the present work is the
establishment of a complete and unified framework to solve Maxwells Eigen-
value Problem for 3D isotropic photonic crystals in all 14 Bravais lattices. IT is
highlighted that our method is remarkably efficient. Compared with O(n2) of
other method, the overall computational complexity of our method is O(n log n),
thanks to the feasibility of FFT algorithm in our framework, which is actu-
ally rooted in the eigen-decomposition of discrete partial derivative operators
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Figure 6: (a) the band structure of double gyroid PhC; (b)(1) the average number of iterations
in pcg without preconditioner, (b)(2) the number of iterations in eigs, (b)(3) wall clock time
spent on ten target eigenvalues.

∂x, ∂y, ∂z with reformulated Bloch-boundary condition. The commutativity
among discrete partial derivative operators is one of the key machinery that
allows us to derive these eigen-decompositions in a light way. On the other
hand, the fast convergence of our eigensolver FAME is guaranteed by the novel
nullspace free method that thoroughly removes the considerable nullspace of the
discrete double-curl operator A.

Also, our unique way to compute the canonical form of a 3×3 complex skew-
symmetric matrix under unitary congruence may be of independent interest.
The significance of the 3D cubic working cell defined in Sec. 2 of this work will
be discussed exhaustively elsewhere. Extension of our present framework to 3D
anisotropic photonic crystals is under investigation and will be reported in near
future.
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Appendix A. Coordinates of lattice vectors of 7 lattice systems

In Table. A.1, we list the Cartesian coordinates of lattice vectors ã1, ã2, ã3

of all 7 lattice systems.
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Triclinic Monoclinic

Primitive
(Pr.)



a1 a2 cosφ3 a3 cosφ2
0 a2 sinφ3 a3`2
0 0 a3`3






a1 a2 cosφ3 0
0 a2 sinφ3 0
0 0 a3




A-Base-centered
(A-Ba.C.)

1
2




2a1 a2 cosφ3 a2 cosφ3
0 a2 sinφ3 a2 sinφ3
0 a3 −a3


, if a1 ≥

√
a22 + a23

2

1
2



a2 cosφ3 a2 cosφ3 2a1
a2 sinφ3 a2 sinφ3 0

a3 −a3 0


, otherwise

Rhombohedral Cubic

Primitive



a1 0 0
0 a1 0
0 0 a1




Body-centered
(B.C.)

a1
2



−1 1 1
1 −1 1
1 1 −1




Face-centered
(F.C.)

a1
2




1 0 1
1 1 0
0 1 1




Rhombohedrally-
centered (R.C.)




0 a1/2 −a1/2
−a1/

√
3
√

3a1/6
√

3a1/6
a3/3 a3/3 a3/3




Orthorhombic Tetragonal Hexagonal

Primitive



a1 0 0
0 a2 0
0 0 a3






a1 0 0
0 a1 0
0 0 a3






a1 −a1/2 0

0
√

3a1/2 0
0 0 a3




A-Base-centered 1
2




2a1 0 0
0 a2 a2
0 a3 −a3




C-Base-centered
(C-Ba.C.)

1
2



a1 −a1 0
a2 a2 0
0 0 2a3




Body-centered 1
2



−a1 a1 a1
a2 −a2 a2
a3 a3 −a3


 1

2



a1 −a1 a1
a1 a1 −a1
−a3 a3 a3




Face-centered 1
2



a1 a1 0
a2 0 a2
0 a3 a3




Table A.1: Lattice vectors [ã1, ã2, ã3] for 7 lattice systems, with notations specified in Sec. 2.

21



Appendix B. derivation Figure 2 and BC (11)

It is best to visualize the investigation starting from Figure 7(a), where
we have φ3 < π/2, φ2 < π/2, `2 > 0. Results of other possibilities such as
φ3 < π/2, φ2 > π/2, `2 > 0 will be discussed later.

In Figure 7(a), suppose �OR1R2R3 is the bottom surface of D, while �R4R5R6R7

is image of the top surface of D under T−a3 , which contains the origin in this
case. Also, naturally we have the 2D oblique coordinate system with a1-,a2-axis.
With slight abuse of notation, I,II,III,IV denote four patches of the �R4R5R6R7,
located in the first, second, third, fourth quadrant, respectively, of this oblique
coordinate system. Our goal is to map �R4R5R6R7 to �OR1R2R3, respecting
the periodicity along a1,a2. Here we have the 2D physical cell generated by a1

and a2, i.e., the set {αa1 + βa2 : α, β ∈ [0, 1)}, and its periodic images under
Ta1

, Ta2
which fill up the whole plane, i.e., the set {αa1 + βa2 : α, β ∈ R}. Due

to the periodicity, it is best to reduce all objects on the plane to their counter-
parts within the 2D physical cell. The rule is that whenever a point is outside
the 2D physical cell, i.e., α, β /∈ [0, 1), we evaluate its image within the 2D
physical cell under modulo operation. For example, for points in patch III we
have α, β ∈ [−1, 0), then due to

αa1 + βa2 ≡ (1 + α)a1 + (1 + β)a2 = Ta1
Ta2

(αa1 + βa2) mod a1,a2,

patch III is mapped to its counterpart in the 2D physical cell shown in Fig-
ure 7(b). Other patches are similarly relocated.

As shown in Figure 7(c), it is easy to map the 2D physical cell to �OR1R2R3,
which is realized if triangle Ω2 in the 2D physical cell is mapped to its counter-
part in the second quadrant.

Finally in Figure 7(d), by composition of operations in Figure 7(b) and
Figure 7(c), �R4R5R6R7 is mapped to �OR1R2R3.

In summary, there should be four patches within �OR1R2R3, namely, (II ∩
Ω2)∪ I, II∩Ω1, III∩Ω1, (III∩Ω2)∪IV. Comparing Figure 7(a) with Figure 7(d),
the linear mapping of each patch to �R4R5R6R7 is T0, T−a1 , T−a1−a2 , T−a2 ,
respectively.

Furthermore, comparing Figure 7(d), and Figure 2 we identify four patches
Figure 7(d) with four patches within �OR1R2R3 in Figure 2, namely

• (II ∩ Ω2) ∪ I 7→ I, II ∩ Ω1 7→ II,

• III ∩ Ω1 7→ III, (III ∩ Ω2) ∪ IV 7→ IV.

Appendix C. matrix J2 and J3 in triclinic lattice

Appendix C.1. Two cases of J2
As mentioned in (12), the BC (12) can be classified by the angle φ3 as
Define

m1 =

{
floor(a2 cosφ3

δx
), if 0 < φ3 ≤ π

2 ,

floor(a1+a2 cosφ3

δx
), if π

2 < φ3 < π.
(C.1)
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(a) �R4R5R6R7 is partitioned into 4 patches by a1-,a2-axis.

(b) All 4 patches are relocated to the first quadrant.

(c) the 2D physical cell is mapped to �OR1R2R3 if triangle Ω2 is relocated to
triangle OR8R3.

(d) �R4R5R6R7 is finally mapped to �OR1R2R3 if II ∩ Ω2 and III ∩ Ω2 are
relocated to the second quadrant.

Figure B.7: BC along z-direction.
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Then J2 in a triclinic system can be write as following cases

J2 =

{
ξ(−k · a1)Gn1

(k · a1, n1 −m1), if 0 < φ3 ≤ π
2 ,

Gn1
(k · a1, n1 −m1), if π

2 < φ3 < π.
(C.2)

Appendix C.2. Sixteen BCs in various lattice structure

Recall that a⊥3 is the projection of a3 onto x-y plane. We classify the triclinic
lattice into four categories according to the quadrant in which a⊥3 is located,
as shown in Figure C.8(1), C.9(2), C.10(3) and C.12(4). And according to the
quadrant in which a2 is located and the first coordinate of a1, a2 a3, each
category is further divided into four subcategories, as shown in Figure C.8(1-i),
(1-ii), (1-iii), (1-iv), C.9(2-i), (2-ii), (2-iii), (2-iv), Figure C.10(3-i), (3-ii), (3-iii),
(3-iv), Figure C.12(4-i), (4-ii), (4-iii) and (4-iv). Notice that the blue and green
dotted vectors in these subfigures are equal to the translation vectors a3 and
a2, respectively.

We first divide the top surface of D into red, green, and blue areas based on
the categories described in Figure C.8(1), C.9(2), C.10(3) and C.12(4) It can
be seen that the blue area has already fallen on the bottom of the working cell
under T−a3

, while the red and green areas want action of Ta1
and/or Ta2

in order
to fall on the bottom surface of D. The image of the top surface of D under T−a3

is partitioned into Ĩ, ĨI, ĨII, ĨV, while the bottom surface of D is partitioned
into I, II, III, IV. We will discuss each subcategory, and reformulate the BC
accordingly.

Let x = (x, y, 0) ∈ D be the point in the bottom surface of D.

(1) 𝐚𝐚𝟑𝟑⊥ ∈ ℝ+ × ℝ+ × {0}

(1-iv)𝐚𝐚𝟐𝟐 ∈ ℝ− × ℝ+ × 0 , −𝐚𝐚𝟐𝟐 1 > 𝐚𝐚1 1 − 𝐚𝐚𝟑𝟑 1

(1-ii)𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ+ × 0 , 𝐚𝐚𝟐𝟐 1 > 𝐚𝐚𝟑𝟑 1

(1-iii)𝐚𝐚𝟐𝟐 ∈ ℝ− × ℝ+ × 0 , −𝐚𝐚𝟐𝟐 1 ≤ 𝐚𝐚1 1 − 𝐚𝐚𝟑𝟑 1

(1-i)𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ+ × 0 , 𝐚𝐚𝟐𝟐 1 ≤ 𝐚𝐚𝟑𝟑 1

Figure C.8: Illustion of the first category in which a⊥3 is located in the first quadrant.
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• Case (1-i): a⊥3 ∈ R+ × R+ × {0}, a2 ∈ R+ × R+ × {0}, a2(1) ≤ a3(1).

E(x) =





E(x), if x ∈ I

ξ(k · a1)E(x− a1), if x ∈ II

ξ(k · (a1 + a2))E(x− a1 − a2), if x ∈ III

ξ(k · a2)E(x− a2), if x ∈ IV

(C.3)

• Case (1-ii): a⊥3 ∈ R+ × R+ × {0}, a2 ∈ R+ × R+ × {0}, a2(1) > a3(1)

E(x) =





E(x), if x ∈ I

ξ(k · a1)E(x− a1), if x ∈ II

ξ(k · a2)E(x− a2), if x ∈ III

ξ(k · (−a1 + a2))E(x + a1 − a2), if x ∈ IV

(C.4)

• Case (1-iii): a⊥3 ∈ R+ × R+ × {0}, a2 ∈ R− × R+ × {0}, −a2(1) ≤
a1(1)− a3(1).

E(x) =





E(x), if x ∈ I

ξ(k · a1)E(x− a1), if x ∈ II

ξ(k · (a1 + a2))E(x− a1 − a2), if x ∈ III

ξ(k · a2)E(x− a2), if x ∈ IV

(C.5)

• Case (1-iv): a⊥3 ∈ R+ × R+ × {0}, a2 ∈ R− × R+ × {0}, −a2(1) >
a1(1)− a3(1)

E(x) =





E(x), if x ∈ I

ξ(k · a1)E(x− a1), if x ∈ II

ξ(k · (2a1 + a2))E(x− 2a1 − a2), if x ∈ III

ξ(k · (a1 + a2))E(x− a1 − a2), if x ∈ IV

(C.6)

• Case (2-i): a⊥3 ∈ R−×R+×{0}, a2 ∈ R+×R+×{0}, a2(1) ≤ a1(1)+a3(1).

E(x) =





ξ(−k · a1)E(x + a1), if x ∈ I

E(x), if x ∈ II

ξ(k · a2)E(x− a2), if x ∈ III

ξ(k · (−a1 + a2))E(x + a1 − a2), if x ∈ IV

(C.7)

• Case (2-ii): a⊥3 ∈ R−×R+×{0}, a2 ∈ R+×R+×{0}, a2(1) > a1(1)+a3(1)

E(x) =





ξ(−k · a1)E(x + a1), if x ∈ I

E(x), if x ∈ II

ξ(k · (−a1 + a2))E(x + a1 − a2), if x ∈ III

ξ(k · (−2a1 + a2))E(x + 2a1 − a2), if x ∈ IV

(C.8)
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(2) 𝐚𝐚𝟑𝟑⊥ ∈ ℝ− × ℝ+ × {0}

(2-iv)𝐚𝐚𝟐𝟐 ∈ ℝ− × ℝ+ × 0 , −𝐚𝐚𝟐𝟐 1 > −𝐚𝐚𝟑𝟑 1

(2-ii)𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ+ × 0 , 𝐚𝐚𝟐𝟐 1 > 𝐚𝐚𝟏𝟏 1 + 𝐚𝐚𝟑𝟑 1(2-i)𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ+ × 0 , 𝐚𝐚𝟐𝟐 1 ≤ 𝐚𝐚𝟏𝟏 1 + 𝐚𝐚𝟑𝟑 1

(2-iii)𝐚𝐚𝟐𝟐 ∈ ℝ− × ℝ+ × 0 , −𝐚𝐚𝟐𝟐 1 ≤ −𝐚𝐚𝟑𝟑 1

Figure C.9: Illustion of the second category in which a⊥3 is located in the second quadrant.

• Case (2-iii): a⊥3 ∈ R−×R+×{0}, a2 ∈ R−×R+×{0}, −a2(1) ≤ −a3(1).

E(x) =





ξ(−k · a1)E(x + a1), if x ∈ I

E(x), if x ∈ II

ξ(k · a2)E(x− a2), if x ∈ III

ξ(k · (−a1 + a2))E(x + a1 − a2), if x ∈ IV

(C.9)

• Case (2-iv): a⊥3 ∈ R−×R+×{0}, a2 ∈ R−×R+×{0}, −a2(1) > −a3(1)

E(x) =





ξ(−k · a1)E(x + a1), if x ∈ I

E(x), if x ∈ II

ξ(k · (a1 + a2))E(x− a1 − a2), if x ∈ III

ξ(k · a2)E(x− a2), if x ∈ IV

(C.10)

• Case (3-i): a⊥3 ∈ R− × R− × {0}, a2 ∈ R+ × R+ × {0}, a2(1) ≤ −a3(1).

E(x) =





ξ(−k · (a1 + a2))E(x + a1 + a2), if x ∈ I

ξ(−k · a2)E(x + a2), if x ∈ II

E(x), if x ∈ III

ξ(−k · a1)E(x + a1), if x ∈ IV

(C.11)
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(3) 𝐚𝐚𝟑𝟑⊥ ∈ ℝ− × ℝ− × {0}

(3-ii) 𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ+ × 0 , 𝐚𝐚2 1 > −𝐚𝐚𝟑𝟑(1)

(3-iii) 𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ− × 0 , −𝐚𝐚2 1 ≤ 𝐚𝐚𝟏𝟏 1 + 𝐚𝐚𝟑𝟑(1) (3-iv) 𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ− × 0 , −𝐚𝐚2 1 > 𝐚𝐚𝟏𝟏 1 + 𝐚𝐚𝟑𝟑(1)

(3-i) 𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ+ × 0 , 𝐚𝐚2 1 ≤ −𝐚𝐚𝟑𝟑(1)

Figure C.10: Illustration of the third category in which a⊥3 is located on the third quadrant.

• Case (3-ii): a⊥3 ∈ R− × R− × {0}, a2 ∈ R+ × R+ × {0}, a2(1) > −a3(1)

E(x) =





ξ(−k · a2)E(x + a2), if x ∈ I

ξ(k · (a1 − a2))E(x− a1 + a2), if x ∈ II

E(x), if x ∈ III

ξ(−k · a1)E(x + a1), if x ∈ IV

(C.12)

• Case (3-iii): a⊥3 ∈ R− × R− × {0}, a2 ∈ R− × R+ × {0}, −a2(1) ≤
a1(1) + a3(1).

E(x) =





ξ(−k · (a1 + a2))E(x + a1 + a2), if x ∈ I

ξ(−k · a2)E(x + a2), if x ∈ II

E(x), if x ∈ III

ξ(−k · a1)E(x + a1), if x ∈ IV

(C.13)

• Case (3-iv): a⊥3 ∈ R− × R− × {0}, a2 ∈ R− × R+ × {0}, −a2(1) >
a1(1) + a3(1)

E(x) =





ξ(−k · (2a1 + a2))E(x + 2a1 + a2), if x ∈ I

ξ(−k · (a1 + a2))E(x + a1 + a2), if x ∈ II

E(x), if x ∈ III

ξ(−k · a1)E(x + a1), if x ∈ IV

(C.14)
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(4) 𝐚𝐚𝟑𝟑⊥ ∈ ℝ+ × ℝ− × {0}

(4-ii) 𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ+ × 0 , 𝐚𝐚𝟐𝟐 1 > 𝐚𝐚𝟏𝟏 1 − 𝐚𝐚𝟑𝟑(1)

(4-iii) 𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ− × 0 , −𝐚𝐚𝟐𝟐 1 ≤ 𝐚𝐚𝟑𝟑(1) (4-iv) 𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ− × 0 , −𝐚𝐚𝟐𝟐 1 > 𝐚𝐚𝟑𝟑(1)

(4-i) 𝐚𝐚𝟐𝟐 ∈ ℝ+ × ℝ+ × 0 , 𝐚𝐚𝟐𝟐 1 ≤ 𝐚𝐚𝟏𝟏 1 − 𝐚𝐚𝟑𝟑(1)

Figure C.11: Illustration of the fourth category in which a⊥3 is located in the fourth quadrant.

• Case (4-i): a⊥3 ∈ R+×R−×{0}, a2 ∈ R+×R+×{0}, a2(1) ≤ a1(1)−a3(1).

E(x) =





ξ(−k · a2)E(x + a2), if x ∈ I

ξ(k · (a1 − a2))E(x− a1 + a2), if x ∈ II

ξ(k · a1)E(x− a1), if x ∈ III

E(x), if x ∈ IV

(C.15)

• Case (4-ii): a⊥3 ∈ R+×R−×{0}, a2 ∈ R+×R+×{0}, a2(1) > a1(1)−a3(1)

E(x) =





ξ(k · (a1 − a2))E(x− a1 + a2), if x ∈ I

ξ(k · (2a1 − a2))E(x− 2a1 + a2), if x ∈ II

ξ(k · a1)E(x− a1), if x ∈ III

E(x), if x ∈ IV

(C.16)

• Case (4-iii): a⊥3 ∈ R+ ×R− ×{0}, a2 ∈ R− ×R+ ×{0}, −a2(1) ≤ a3(1).

E(x) =





ξ(−k · a2)E(x + a2), if x ∈ I

ξ(k · (a1 − a2))E(x− a1 + a2), if x ∈ II

ξ(k · a1)E(x− a1), if x ∈ III

E(x), if x ∈ IV

(C.17)
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• Case (4-iv): a⊥3 ∈ R+ × R− × {0}, a2 ∈ R− × R+ × {0}, −a2(1) > a3(1)

E(x) =





ξ(−k · (a1 + a2))E(x + a1 + a2), if x ∈ I

ξ(−k · a2)E(x + a2), if x ∈ II

ξ(k · a1)E(x− a1), if x ∈ III

E(x), if x ∈ IV

(C.18)

In summary, the sixteen BCs (C.3-C.18) can be summarized into the following
equation:

E(x) =





ξ(−k · t1)E(x + t1), if x ∈ I

ξ(−k · t2)E(x + t2), if x ∈ II

ξ(−k · t3)E(x + t3), if x ∈ III

ξ(−k · t4)E(x + t4), if x ∈ IV

(C.19)

where {ti}4i=1 can be substituted by the translation vectors in (C.3-C.18).

Appendix C.3. General formula of J3

Define

m2 = floor(
R5R1

δx
), m3 = floor(

R4R3

δy
), m4 = floor(

R6R2

δx
), (C.20)

then the matrix J3 corresponding to BCs (C.3-C.18) can be expressed by the
following formulation

J3 =




0 Im3 ⊗
[

0 ξ(k · t3)Im4

ξ(k · t4)In1−m4 0

]

In2−m3
⊗
[

0 ξ(k · t2)Im2

ξ(k · t1)In1−m2
0

]
0




(C.21)

Appendix D. matrix J3 for all Bravais lattices except triclinic lattice

Matrix J3 can be represented as the general form

J3 =




0 η1Im3 ⊗
[

0 η2Ik1
η3In1−k1 0

]

η4In2−m3
⊗
[

0 η5Ik2
η6In1−k2 0

]
0


 (D.1)

with unimodular ηi for i = 1, . . . , 6 and k1, k2 ∈ N. We provide specific expres-
sions of ηi, i = 1, . . . , 6 and k1, k2 for all Bravais lattices except triclinic lattice
below. Denote ζ1 = exp(−ı2πk · a1), ζ2 = exp(−ı2πk · a2), ζ3 = exp(ı2πk · a3).
Note that any ηi that is not specified below is just 1.
• Cubic system
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Figure C.12: The bottom surface of working cell in subcategory (1-i).

(1) Primitive: J3 = In1n2
.

(2) F.C. (Here φ3 < π/2, φ2 < π/2, `2 > 0, m1 = m2 = n1/2, m3 = n2/3):

η1 = ζ2, η5 = ζ1, k1 = 0, k2 = m2.

(3) B.C. (Here φ3 > π/2, φ2 > π/2, `2 < 0, m1 = m2 = 2n1/3, m3 = n2/2):

η3 = η6 = ζ−11 , η4 = ζ−12 , k1 = m2, k2 = n1 −m2.

• Hexagonal system

(a) Assuming a1 ≥ a3 (Here φ3 > π/2, φ2 = π/2, φ1 = π/2, m1 = n1/2,
m2 = m3 = 0): J3 = In1n2

.
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(b) Assuming a1 < a3 (Here φ3 = π/2, φ2 = π/2, φ1 > π/2, m1 = m2 = 0,
m3 = n2/2):

η4 = ζ−12 , k1 = k2 = 0.

• Rhombohedral system

(a) Assuming
√

2a3 <
√

3a1 (Here φ3 < π/2, φ2 < π/2, `2 > 0, m1 = m2 ≥
n1/2):

η1 = ζ2, η5 = ζ1, k1 = 0, k2 = m2.

(b) Assuming
√

2a3 >
√

3a1 (Here φ3 > π/2, φ2 > π/2, `2 < 0, m1 = m2 ≥
n1/2):

η3 = η6 = ζ−11 , η4 = ζ−12 , k1 = m2, k2 = m1 +m2 − n1.

• Tetragonal system

(1) Primitive: J3 = In1n2 .

(2) Body-Centered:

(a) Assuming a3 ≤
√

2a1 (Here φ3 > π/2, φ2 > π/2, `2 ≤ 0, m1 = m2):

η3 = η6 = ζ−11 , η4 = ζ−12 , k1 = m2, k2 = m1 +m2 − n1.

(b) Assuming a3 >
√

2a1 (Here φ3 > π/2, φ2 > π/2, `2 > 0, m1 = m2):

η3 = η6 = ζ−11 , η4 = ζ−11 ζ−12 , k1 = m2, k2 = m1 +m2.

• Orthorhombic system

(1) Primitive: J3 = In1n2
.

(2) A-Base-centered (Here φ3 = π/2, φ2 = π/2, φ1 < π/2, m1 = m2 = 0):

η1 = ζ2, k1 = k2 = 0.

(3) C-Base-centered (Here φ3 > π/2, φ2 = π/2, φ1 = π/2, m1 = m2 = 0):

J3 = In1n2
.

(4) Face-Centered (Here φ3 < π/2, φ2 < π/2, `2 > 0, m1 > m2):

η1 = ζ2, η3 = ζ−11 , η5 = ζ1, k1 = n1 −m1 +m2, k2 = m2.

(5) Body-Centered

(a) Assuming a1 ≥
√
a22 + a23 (Here φ3 > π/2, φ2 > π/2, `2 ≥ 0, m1 <

m2):

η1 = ζ2, η2 = ζ1, η6 = ζ−11 , k1 = m2 −m1, k2 = m2.
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(b) Assuming a1 <
√
a22 + a23 (Here φ3 > π/2, φ2 > π/2, `2 < 0, m1 +

m2 > n1):

η3 = η6 = ζ−11 , η4 = ζ−12 , k1 = m2, k2 = m1 +m2 − n1.

• Monoclinic system

(1) Primitive

(a) Assuming a1 ≥ a3 (Here φ2 = φ1 = π/2, m2 = m3 = 0): J3 = In1n2
.

(b) Assuming a1 < a3 and φ3 < π/2 (Here φ3 = φ2 = π/2, φ1 < π/2,
m2 = m3 = 0):

η1 = ζ2, k1 = k2 = 0.

(c) Assuming a1 < a3 and φ3 > π/2 (Here φ3 = π/2, φ2 = π/2, φ1 > π/2,
m1 = m2 = 0):

η4 = ζ−12 , k1 = k2 = 0.

(2) Base-Centered

(a) Assuming a1 ≥
√
a22 + a23/2, φ3 > π/2, a2 sinφ3 ≥ a3 (Here φ3 < π/2,

φ2 < π/2, `2 ≥ 0, m1 = m2):

η1 = ζ2, η5 = ζ1, k1 = 0, k2 = m2.

(b) Assuming a1 ≥
√
a22 + a23/2, φ3 > π/2, a2 sinφ3 < a3 (Here φ3 <

π/2, φ2 < π/2, `2 < 0, m1 +m2 < n1):

η2 = η5 = ζ1, η4 = ζ−12 , k1 = m2, k2 = m1 +m2.

(c) Assuming a1 ≥
√
a22 + a23/2, φ3 < π/2, a2 sinφ3 ≥ a3 (Here φ3 > π/2,

φ2 > π/2, cosφ1 ≥ cosφ3 cosφ2, m1 = m2):

η1 = ζ2, η6 = ζ−11 , k1 = 0, k2 = m2.

(d) Assuming a1 ≥
√
a22 + a23/2, φ3 < π/2, a2 sinφ3 < a3 (Here φ3 >

π/2, φ2 > π/2, `2 < 0, m1 +m2 > n1):

η3 = η6 = ζ−11 , η4 = ζ−12 , k1 = m2, k2 = m1 +m2 − n1.

(e) Assuming a1 ≥
√
a22 + a23/2, φ3 > π/2, a2 ≥ a3 (Here φ3 ≤ π/2,

φ2 < π/2, `2 > 0):
If m1 ≤ m2, then

η1 = ζ2, η2 = η5 = ζ1, k1 = m2 −m1, k2 = m2;

otherwise,

η1 = ζ2, η3 = ζ−11 , η5 = ζ1, k1 = n1 −m1 +m2, k2 = m2.
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(f) Assuming a1 <
√
a22 + a23/2, φ3 > π/2, a2 < a3 (Here φ3 > π/2,

φ2 < π/2, `2 > 0):
If m1 ≤ m2, then

η1 = ζ1ζ2, η2 = η5 = ζ1, k1 = m2 −m1, k2 = m2;

otherwise,

η1 = ζ2, η2 = η5 = ζ1, k1 = n1 −m1 +m2, k2 = m2.

(g) Assuming a1 <
√
a22 + a23/2, φ3 < π/2, a2 ≥ a3 (Here φ3 ≤ π/2,

φ2 > π/2, `2 < 0):
If m1 +m2 ≤ n1, then

η3 = η6 = ζ−11 , η4 = ζ−12 , k1 = m2, k2 = m1 +m2;

otherwise,

η3 = ζ−11 , η4 = ζ−12 , η5 = ζ1, k1 = m2, k2 = m1 +m2 − n1.

(h) Assuming a1 ≥
√
a22 + a23/2, φ3 < π/2, a2 < a3 (Here φ3 > π/2,

φ2 > π/2, `2 < 0):
If m1 +m2 ≤ n1, then

η3 = η6 = ζ−11 , η4 = ζ−11 ζ−12 , k1 = m2, k2 = m1 +m2;

otherwise,

η3 = η6 = ζ−11 , η4 = ζ−12 , k1 = m2, k2 = m1 +m2 − n1.

Appendix E. Fast algorithms for Tq and T ∗p

Tq and T ∗p are cornerstone of our fast eigensolver in Figure 4, which can
be computed in O(n log n) flops using Algorithms 1 and 2.

Here are the definitions of some matrices in Algorithms 1 and 2

[Um]ij = ξ((i− 1)j/m), i, j = 1, 2, · · · ,m,
[Da1

]ij = ξ((i− 1)θa1
)δij , i, j = 1, 2, · · · , n1,

[Dâ2
]ji = ξ((j − 1)θâ2,i), i = 1, 2, · · · , n1, j = 1, 2, · · · , n2,

[Dâ3,i]kj = ξ((k − 1)θâ3,ij), i = 1, 2, · · · , n1, j = 1, 2, · · · , n2, k = 1, 2, · · · , n3,

and ◦ refers to the Hadamard product, i.e., pointwise product.

[1] Bravais lattice. https://en.wikipedia.org/wiki/Bravais_lattice.

[2] Fractional coordinates. https://en.wikipedia.org/wiki/Fractional_

coordinates.
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Algorithm 1 FFT-based matrix-vector multiplication for Tq

Input: Any vector q =
[
q>1 · · · q>n1

]> ∈ Cn with qi =
[
q>i,1 · · · q>i,n2

]>
and qij ∈ Cn3 for i = 1, . . . , n1, j = 1, . . . , n2.

Output: The vector g ≡ Tq.

1: Set Q̃z,i =
[
qi,1 · · · qi,n2

]
and Q̃z =

[
Q̃z,1 · · · Q̃z,n1

]
;

2: Compute Q̃uz = Un3Q̃z by backward FFT;

3: Compute Q̃z,i = Dâ3,i ◦ Q̃uz(:, (i− 1)n2 + 1 : in2) for i = 1, . . . , n1;

4: Set Q̃y =
[
Q̃>z,1 · · · Q̃>z,n1

]
∈ Cn2×n1n3 ;

5: Compute Q̃uy ≡
[
Q̃

(1)
uy · · · Q̃

(n1)
uy

]
= Un2Q̃y by backward FFT;

6: Compute Q̃y,k = Dâ2
◦
[
Q̃

(1)
uy (:, k) · · · Q̃

(n1)
uy (:, k)

]
for k = 1, . . . , n3;

7: Set Q̃x =
[
Q̃>y,1 · · · Q̃>y,n3

]
;

8: Compute Q̃ux = Un1
Q̃x by backward FFT;

9: Compute g = Da1
Q̃ux/

√
n1n2n3; g = g(:).

Algorithm 2 FFT-based matrix-vector multiplication for T ∗p

Input: Any vector p =
[
p>1 · · · p>n3

]> ∈ Cn with pk =
[
p>1,k · · · p>n2,k

]>
and pj,k ∈ Cn1 for j = 1, . . . , n2, k = 1, . . . , n3.

Output: The vector f ≡ T ∗p.

1: Set P̃x,k =
[
p1,k · · · pn2,k

]
and P̃x =

[
P̃x,1 · · · P̃x,n3

]
;

2: Compute P̃ex = D∗a1
P̃x;

3: Compute P̃ux = U∗n1
P̃ex ∈ Cn1×n2n3 by forward FFT;

4: Set P̃
(i)
ux =

[
P̃ux(i, 1 : n2)> · · · P̃ux(i, (n3 − 1)n2 + 1 : n3n2)>

]
;

5: Compute P̃ey =
[
D∗â2,1

P̃
(1)
ux · · · D∗â2,n1

P̃
(n1)
ux

]
;

6: Compute P̃uy ≡
[
P̃

(1)
uy · · · P̃

(n1)
uy

]
= U∗n2

P̃ey ∈ Cn2×n1n3 by forward

FFT;

7: Compute P̃ez =
[
D̄â3,1 ◦ (P̃

(1)
uy )> · · · D̄â3,n1

◦ (P̃
(n1)
uy )>

]
;

8: Compute f = U∗n3
P̃ez/
√
n1n2n3 by forward FFT; f = f(:).
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