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a b s t r a c t

This paper focuses on studying the eigenstructure of generalized eigenvalue problems (GEPs) arising in
the three-dimensional source-free Maxwell equations for bi-anisotropic complex media with a 3-by-3
permittivity tensor ε > 0, a permeability tensor µ > 0, and scalar magnetoelectric coupling constants
ξ = ζ̄ = ıγ . The bi-Lebedev scheme is appealing because it preserves the symmetry inherent to the
Maxwell eigenvalue problem exactly and because full degrees of freedom of electromagnetic fields
at each grid point are taken into account in the discretization. The resulting GEP has eigenvalues
appearing in quadruples {±ω, ±ω̄}. We consider two main scenarios, where γ < γ∗ and γ > γ∗ with
γ∗ as a critical value. In the former case, all the eigenvalues are real. In the latter case, the GEP has
complex eigenvalues, and we particularly focus on the bifurcation of the eigenstructure of the GEPs.
Numerical results demonstrate that the newborn ground state has occurred after γ = γ̃ > γ∗, and the
associated eigenvector has an exotic phenomenon of localization. Moreover, the Poynting vectors of
the newborn eigenvector not only are concentrated in the material but also display exciting patterns.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Mathematically, the propagations of electromagnetic fields in
i-isotropic and bi-anisotropic media are modeled by the three-
imensional (3D) source-free Maxwell equations in the frequency
omain with the constitutive relations

∇ × E(r) = ıωB(r), (1a)

∇ × H(r) = −ıωD(r), (1b)

· B(r) = 0, ∇ · D(r) = 0, (1c)

here ω represents the frequency, ı =
√

−1, E and H ∈ C3 are
the electric and magnetic fields, respectively, and B and D ∈ C3

are the magnetic induction and dielectric displacement, respec-
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tively, at position r = (x, y, z) ∈ R3. For the linear nondispersive
media, B and D satisfy the following constitutive relations

B(r) = µ(r)H(r) + ζ (r)E(r), D(r) = ε(r)E(r) + ξ (r)H(r), (2)

here ε(r) and µ(r) are the permittivity and permeability, re-
pectively, and ξ (r), ζ (r) are the magnetoelectric coupling pa-
ameters. Here, ε(r), µ(r), ξ (r), and ζ (r) are constants in the
i-isotropic media. They are generalized as 3 × 3 tensors with
ermitian positive definite (HPD) matrices ε(r) and µ(r) for the
i-anisotropic media.
A null-space free method [1,2] is proposed to solve (1) with

eciprocal bi-isotropic chiral media, where ε(r) > 0, µ(r) = 1,
nd

(r) = ζ̄ (r) =

{
ıγ , γ ≥ 0, r /∈ air,
0, otherwise.

(3)

or γ > γ∗ (a critical value), a novel interesting physical phe-
omenon indicating that a new ground state is born and the
orresponding electromagnetic field is localized in the chiral
edium was first found in [2]. In this paper, the interest lies in
eveloping a numerical method to simulate such a new physical
henomenon for the reciprocal bi-anisotropic chiral media with

PD ε(r) and µ(r), and ξ (r), ζ (r) in (3).
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The combination of (1a), (2) and (1b) leads to the Maxwell
igenvalue problem (MEP)[
0 −∇×

∇× 0

][
E
H

]
= ıω

[
ε ξ

ζ µ

][
E
H

]
. (4)

loch’s theorem [3] requires that the eigenfields E and H of (4) in
D periodic media with lattice translation vectors {aℓ}

3
ℓ=1 satisfy

he quasiperiodic condition

(r+aℓ) = eı2πk·aℓE(r), H(r+aℓ) = eı2πk·aℓH(r), ℓ = 1, 2, 3, (5)

or a Bloch wave vector k.
In recent decades, several numerical methods, including plane-

ave expansion methods [4,5], finite element methods [6–9],
nd finite difference (FD) methods [10–14], have been developed
o solve the MEP (4); see the references therein for further
etails. The plane-wave method is widely used to find numerical
olutions of Maxwell’s equations with periodic or quasiperiodic
oundary conditions. The advantage is that the solution can be
asily expanded as the superposition of a sequence of plane
aves without any preprocessing. The finite element method is
popular choice for the simulation domain with an irregular

hape and/or a complicated interior interface. To the best of our
nowledge, in this case, the unstructured mesh is indispensable
or this method to attain a desired accuracy, and the solution of
n unstructured large sparse linear system is necessary and is
sually beyond the scope of applications of the commonly used
ast Fourier transform (FFT).

In 1966, a special FD method called Yee’s scheme [14] was
eveloped that is attractive for simulating isotropic photonic
rystals (i.e., without magnetoelectric coupling), owing to its sim-
licity and preservation of physical properties by which (4) can be
onveniently discretized into a generalized eigenvalue problem
GEP). For 3D anisotropic photonic crystals, some researchers
ave proposed the Lebedev scheme [15–17] by which (1a) and
1b) are discretized on the Lebedev grid. A Lebedev grid can be
een as a superposition of the standard Yee grid and three shifted
ee grids, as illustrated in Fig. 1.
This paper introduces the bi-Lebedev scheme [18,19] to solve

he MEP (4) with 3D reciprocal bi-anisotropic complex media.
he so-called bi-Lebedev scheme artificially introduces another
opy of the Lebedev grid that coincides with the one shown
n Fig. 1(a) but with the color exchanged (red → blue, blue

red). Consequently, the same Lebedev scheme can be used
o discretize (1a) and (1b) separately on these two replicas of
he Lebedev grid with two different sets of variables, {E(red),
(blue), D(red), B(blue)} and {E(blue), H(red), D(blue), B(red)},
hich are coupled with each other only when the bi-anisotropic
onstitutive relations (2) are evaluated [18,19].
In this paper, we make the following contributions to solving

he MEP (4) with 3D bi-anisotropic complex media.

• Using the bi-Lebedev scheme, we provide a detailed FD
discretization of the MEP (4) together with the quasiperi-
odic condition (5) with 3D bi-anisotropic complex media to
produce a GEP. The matrices of the discrete permittivity ε

and permeability µ preserve the HPD property if ε and µ

are HPD. With ξ = ζ̄ ∈ C in (3), eigenvalues of the resulting
GEP appear as the pair {ω, −ω} if ω ∈ R ∪ ıR, and they
appear the quadruplet {ω, −ω, ω̄, −ω̄} if ω ∈ C\(R ∪ ıR).
Moreover, by applying singular value decomposition (SVD)
of the discrete single-curl operator, we develop a null-space
free method to solve the resulting GEP.

• We adopt a 3-by-3 permittivity HPD matrix ε and the per-
meability µ = I3 and take ξ = ζ̄ in (3) with γ >

γ∗ ≈ 1.204 to make the weight matrix
[

ε ξ
]

indefinite,

ζ µ

2

which results in extremely complicated eigenstructures of
the discrete MEP (4). Here, the weight matrix is HPD if
γ < γ∗ and singular if γ = γ∗ (a critical value). With a
similar derivation in Section 3 of [2], the discrete MEP (4)
has real eigenvalues ±ω for γ < γ∗ and abundant 2 × 2
Jordan blocks at ω = ∞ when γ = γ∗. For γ > γ∗, a mass
of eigenvalue tetrads (ω, −ω, ω̄, −ω̄) with |Re(ω)| ≈ 0 and
|Im(ω)| ≫ 0 are created, some of which collide rapidly near
the origin and then bifurcate into positive and negative real
eigenvalues, respectively. The newborn positive eigenvalue
pushes the original eigenvalues farther from zero, i.e., the
newborn eigenstate possesses less energy (frequency) than
that of the original ground state. Moreover, the associated
eigenfields are highly confined in the bi-anisotropic chiral
medium with negligible leakage to the outside.

• By virtue of the bi-Lebedev scheme, the eigenvectors of the
discrete MEP (4) provide complete components of both E(r)
and H(r) at each grid point; therefore, the Poynting vector
S =

1
2ℜ(E×H̄) is instantly accessible at any grid point with-

out any additional approximations once the eigenvector is
given. In this work, we demonstrate that the Poynting vector
associated with the newborn eigenvalue is also concentrated
in the reciprocal bi-anisotropic chiral medium. More inter-
estingly, the spatial distribution of Poynting vectors inside
the chiral medium displays some peculiar patterns.

This paper is outlined as follows. In Section 2, we define the
notations of the discrete E(r), H(r), ε(r), µ(r), ξ (r) and ζ (r)
n a Lebedev grid. In Section 3, we provide the detailed matrix
epresentation of bi-Lebedev scheme from which the MEP (4)
s discretized into a sparse GEP of enormous dimension. The
VD of the discrete single-curl operator in this scheme and a
ull-space free method for the GEP are derived in Section 4.
umerical results are provided in Section 5 to show the colliding
igenvalues and localization of eigenfields and Poynting vectors.
inally, concluding remarks are given in Section 6.
Notations. Bold letters denote vectors; In = [e1, e2, . . . , en] is

he identity matrix of size n. For matrices A and B, A⊤ and A∗ are
he transpose and conjugate transpose, respectively; A ⊗ B and
⊕ B = diag(A, B) are the Kronecker product and the direct sum
f A and B, respectively; vec(A) is the vectorization function of the
atrix A.

. Discretization of E,H, ε,µ, ξ, ζ on the Lebedev grid

First, it is worth noting that in this and the next two sections,
(r) and ζ (r)∗ can be any 3-by-3 complex matrices.
Crystal structures can be classified as 14 Bravais lattices in

D Euclidean space [20]. In fact, a primitive cell of a Bravais
attice, which is a parallelepiped formed by the lattice translation
ectors {aℓ}

3
ℓ=1, can be embedded into a minimally contained

ectangular cuboid called the working cell Ωc . Let the working
ell be partitioned evenly by n1, n2 and n3 grid points in the
-, y-, and z-direction, respectively, and δx, δy and δz be the
orresponding mesh lengths. For simplicity, we introduce the
horthand notations (r, s, t) ≡ (rδx, sδy, tδz), where r, s, t ∈ R,
nd î ≡ i + 1

2 , ĵ ≡ j + 1
2 , k̂ ≡ k +

1
2 for i = 0, 1, . . . , n1 − 1, j =

0, 1, . . . , n2 − 1, and k = 0, 1, . . . , n3 − 1.
As mentioned in Section 1, the components of E(r) and H(r)

ttached to the Lebedev grid naturally form four groups shown in
ig. 1. Specifically, as shown in Fig. 1(b), the components of E(r)
nd H(r) on the standard Yee grid can be represented by

1(î, j, k), E2(i, ĵ, k), E3(i, j, k̂), (6a)

1(i, ĵ, k̂), H2(î, j, k̂), H3(î, ĵ, k), (6b)
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Fig. 1. (a) Illustration of the Lebedev grid and the collocated E and H components. (b) Standard Yee grid. (c) Yee grid shifted by (± δx
2 , ±

δy
2 , 0). (d) Yee grid shifted

y (± δx
2 , 0, ± δz

2 ). (e) Yee grid shifted by (0, ± δy
2 , ± δz

2 ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
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espectively. Next, as shown in Fig. 1(c), we shift the components
f E(r) and H(r) in (6) by (± δx

2 , ±
δy
2 , 0), yielding

1(i, ĵ, k), E2(î, j, k), E3(î, ĵ, k̂),

H1(î, j, k̂), H2(i, ĵ, k̂), H3(i, j, k).

hen, as shown in Fig. 1(d), we shift the components of E(r) and
(r) in (6) by (± δx

2 , 0, ± δz
2 ), yielding

E1(i, j, k̂), E2(î, ĵ, k̂), E3(î, j, k),

H1(î, ĵ, k), H2(i, j, k), H3(i, ĵ, k̂).

ast, as shown in Fig. 1(e), we shift the components of E(r) and
(r) in (6) by (0, ± δy

2 , ± δz
2 ), yielding

1(î, ĵ, k̂), E2(i, j, k̂), E3(i, ĵ, k),

H1(i, j, k), H2(î, ĵ, k), H3(î, j, k̂).

Furthermore, we collect these four groups of the components
f E(r) into four column vectors ee1, ee2, ee3 and ee4, and the
our groups of components of H(r) into four column vectors
f 1,hf 2,hf 3 and hf 4. By defining F̌ (:, :, :) ≡ vec(F (:, :, :)), where
(:, :, :) is a three-way array, these vectors can be defined as
ollows:

e1 =

⎡⎣Ě1(0̂ : n̂1 − 1, 0 : n2 − 1, 0 : n3 − 1)
Ě2(0 : n1 − 1, 0̂ : n̂2 − 1, 0 : n3 − 1)
Ě3(0 : n1 − 1, 0 : n2 − 1, 0̂ : n̂3 − 1)

⎤⎦ ,

f 1 =

⎡⎣Ȟ1(0 : n1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1)
Ȟ2(0̂ : n̂1 − 1, 0 : n2 − 1, 0̂ : n̂3 − 1)
Ȟ3(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, 0 : n3 − 1)

⎤⎦ , (7a)

ee2 =

⎡⎣Ě1(0 : n1 − 1, 0̂ : n̂2 − 1, 0 : n3 − 1)
Ě2(0̂ : n̂1 − 1, 0 : n2 − 1, 0 : n3 − 1)
Ě3(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1)

⎤⎦ ,
f

3

hf 2 =

⎡⎣Ȟ1(0̂ : n̂1 − 1, 0 : n2 − 1, 0̂ : n̂3 − 1)
Ȟ2(0 : n1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1)
Ȟ3(0 : n1 − 1, 0 : n2 − 1, 0 : n3 − 1)

⎤⎦ , (7b)

e3 =

⎡⎣Ě1(0 : n1 − 1, 0 : n2 − 1, 0̂ : n̂3 − 1)
Ě2(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1)
Ě3(0̂ : n̂1 − 1, 0 : n2 − 1, 0 : n3 − 1)

⎤⎦ ,

f 3 =

⎡⎣Ȟ1(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, 0 : n3 − 1)
Ȟ2(0 : n1 − 1, 0 : n2 − 1, 0 : n3 − 1)
Ȟ3(0 : n1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1)

⎤⎦ , (7c)

e4 =

⎡⎣Ě1(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1)
Ě2(0 : n1 − 1, 0 : n2 − 1, 0̂ : n̂3 − 1)
Ě3(0 : n1 − 1, 0̂ : n̂2 − 1, 0 : n3 − 1)

⎤⎦ ,

f 4 =

⎡⎣Ȟ1(0 : n1 − 1, 0 : n2 − 1, 0 : n3 − 1)
Ȟ2(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, 0 : n3 − 1)
Ȟ3(0̂ : n̂1 − 1, 0 : n2 − 1, 0̂ : n̂3 − 1)

⎤⎦ . (7d)

For convenience, we define

e = [e⊤

e1, e
⊤

e2, e
⊤

e3, e
⊤

e4]
⊤

or E(r) sampled at midpoints of edges and centroids, and

f = [h⊤

f 1,h
⊤

f 2,h
⊤

f 3,h
⊤

f 4]
⊤

or H(r) sampled at face centers and vertices.
In the bi-Lebedev scheme, by just interchanging the symbols

and h in (7), we can define

f = [e⊤

f 1, e
⊤

f 2, e
⊤

f 3, e
⊤

f 4]
⊤

or E(r) sampled at face centers and vertices, and

e = [h⊤

e1,h
⊤

e2,h
⊤

e3,h
⊤

e4]
⊤

or H(r) sampled at midpoints of edges and centroids.
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Next, we consider the anisotropic permittivity ε(r), permeabil-
ty µ(r) and magnetoelectric coupling tensors ξ (r) and ζ (r)∗. For
onvenience, we let s = ε, µ, ξ, ζ and write s(r) = [spq(r)]3p,q=1.
n addition, we define S(c)(s) for c = e or f as the corresponding
ssembled weight matrix. The detailed definition can be found in
ppendix A.

heorem 1. If s = [spq(r)] ∈ C3×3 is HPD, for s = ε or µ, then
(c)(s) for c = e or f is also HPD.

roof. See Appendix C.1. □

. Discretization of MEP with 3D Bi-anisotropic complex me-
ia

In this section, we present the detailed discretization of the
EP (4) using the bi-Lebedev scheme. To simplify the nota-

ion of the discrete single-curl operator, we define a function
(X1, X2, X3) as

(X1, X2, X3) =

[ 0 −X3 X2
X3 0 −X1

−X2 X1 0

]
,

where X1, X2 and X3 are three square matrices of the same size.
Without loss of generality, hereafter, we take the face-centered
cubic (FCC) lattice as an example. The discrete single-curl opera-
tor with the quasiperiodic condition (5) using Yee’s scheme can
be represented by the matrix C(C1, C2, C3) [1,12], where

1 =
1
δx

In2n3 ⊗ K1,n1 (e
ık̂·a1 ), Km1,m2 (X) =

[
0 Im1(m2−1)
X 0

]
− Im1m2 ,

(8a)

C2 =
1
δy

In3 ⊗ Kn1,n2 (e
ık̂·a2 J1), J1 =

[
0 e−ık̂·a1 In1/2

In1/2 0

]
, (8b)

C3 =
1
δz

Kn1n2,n3 (e
ık̂·a3 J2), J2 =

[
0 e−ık̂·a2 In2/3 ⊗ In1

I2n2/3 ⊗ J1 0

]
,

(8c)

with k̂ = 2πk. In passing, the most general expressions of C1, C2
and C3 for any Bravais lattice corresponding to (8) can be found
in [21].

3.1. Matrix representation of ∇ × E = ıωB at face centers

In this subsection, we derive the matrix representations of the
FD discretization of (1a) on subgrids 1, 2, 3 and 4 illustrated in
Figs. 1(b), 1(c), 1(d), and 1(e), respectively. Specifically, we first
write down the central FD approximation of (1a) in the compo-
nentwise form at each grid point and then recast all formulas for
each subgrid into matrix–vector form. The detailed explanation
can be found in Appendix B. Moreover, the details of how to
incorporate the quasiperiodic condition (5) into the FD formula,
which have been thoroughly discussed in [21] for the Yee grid
(i.e., subgrid 1), hold for subgrids 2,3 and 4.

Denote Z(f)
pq (·) = S(f)

pq (·, ζ ) and M(f)
pq (·) = S(f)

pq (·, µ), which are
defined in (A.1) in Appendix A. Using the FD discretization of (1a)
at

• (i, ĵ, k̂), (î, j, k̂) and (î, ĵ, k), respectively, in Subgrid 1
(Fig. 1(b));

• (î, j, k̂), (i, ĵ, k̂) and (i, j, k), respectively, in Subgrid 2
(Fig. 1(c));

• (î, ĵ, k), (i, j, k) and (i, ĵ, k̂), respectively, in Subgrid 3
(Fig. 1(d));
4

• (i, j, k), (î, ĵ, k) and (î, j, k̂), respectively, in Subgrid 4
(Fig. 1(e)),

he resulting matrix representations are

C(C1, C2, C3)ee1

ıω(
[
Z(f)

11 Z(f)
12 Z(f)

13 Z(f)
14

]
ef

+

[
M(f)

11 M(f)
12 M(f)

13 M(f)
14

]
hf ), (9a)

C(−C∗

1 , −C∗

2 , C3)ee2

ıω(
[
Z(f)

21 Z(f)
22 Z(f)

23 Z(f)
24

]
ef

+

[
M(f)

21 M(f)
22 M(f)

23 M(f)
24

]
hf ), (9b)

C(−C∗

1 , C2, −C∗

3 )ee3

ıω(
[
Z(f)

31 Z(f)
32 Z(f)

33 Z(f)
34

]
ef

+

[
M(f)

31 M(f)
32 M(f)

33 M(f)
34

]
hf ), (9c)

C(C1, −C∗

2 , −C∗

3 )ee4

ıω(
[
Z(f)

41 Z(f)
42 Z(f)

43 Z(f)
44

]
ef

+

[
M(f)

41 M(f)
42 M(f)

43 M(f)
44

]
hf ), (9d)

espectively. The detailed derivation of (9a) is introduced in
ppendix B.1; (9b), (9c) and (9d) can be obtained similarly. From
9), (1a) is discretized at face centers and vertices into

˜ee = ıω
(
Z(f)ef + M(f)hf

)
, (10a)

here

˜ = diag
(
C(C1, C2, C3), C(−C∗

1 , −C∗

2 , C3), C(−C∗

1 , C2, −C∗

3 ),

C(C1, −C∗

2 , −C∗

3 )
)
. (10b)

.2. Matrix representation of ∇ × E = ıωB at midpoints of edges

In this subsection, we discretize (1b) on subgrids 1, 2, 3 and 4
illustrated in Figs. 1(b), 1(c), 1(d), and 1(e), respectively. Similarly,
we recast all formulas for each subgrid into matrix–vector form.

Using the FD discretization for (1a) at

• (î, j, k), (i, ĵ, k), and (i, j, k̂), respectively, in Subgrid 1
(Fig. 1(b));

• (i, ĵ, k), (î, j, k) and (î, ĵ, k̂), respectively, in Subgrid 2
(Fig. 1(c));

• (i, j, k̂), (î, ĵ, k̂) and (î, j, k), respectively, in Subgrid 3
(Fig. 1(d));

• (î, ĵ, k̂), (i, j, k̂) and (i, ĵ, k), respectively, in Subgrid 4
(Fig. 1(e)),

the resulting matrix representations are

C(C1, C2, C3)∗ef 1
= ıω

([
Z(e)

11 Z(e)
12 Z(e)

13 Z(e)
14

]
ee

+
[
M(e)

11 M(e)
12 M(e)

13 M(e)
14

]
he

)
, (11a)

C(−C∗

1 , −C∗

2 , C3)∗ef 2
= ıω

([
Z(e)

21 Z(e)
22 Z(e)

23 Z(e)
24

]
ee

+
[
M(e)

21 M(e)
22 M(e)

23 M(e)
24

]
he

)
, (11b)

C(−C∗

1 , C2, −C∗

3 )
∗ef 3

= ıω
([
Z(e)

31 Z(e)
32 Z(e)

33 Z(e)
34

]
ee

+
[
M(e)

31 M(e)
32 M(e)

33 M(e)
34

]
he

)
, (11c)

C(C , −C∗, −C∗)∗e
1 2 3 f 4
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=

r
o
i

d
a

C

3

d

C

i
i

4

S

T
a

C

w

C
e

(

w

Λ

w
−

.
m

P

a
f

P

w

L

T

L

C
i

V

D
c
t

ıω
([
Z(e)

41 Z(e)
42 Z(e)

43 Z(e)
44

]
ee

+
[
M(e)

41 M(e)
42 M(e)

43 M(e)
44

]
he

)
, (11d)

respectively. In summary, from (11), (1a) is discretized at mid-
points of edges into

C̃∗ef = ıω
(
Z(e)ee + M(e)he

)
, (12)

where C̃ is defined in (10b).

3.3. Matrix representation of ∇ × H = −ıωD at midpoints of edges

Discretization of (1b) at the midpoints of edges and face cen-
ters is a verbatim repetition of the derivations in Sections 3.1 and
3.2 , except that E(r) and B(r) are replaced with H(r) and D(r),
espectively, and ω is replaced with −ω. The detailed derivations
f Section 3.3 are located in Appendix B.2 and those of Section 3.4
n Appendix B.3.

From (B.3a), (B.3b), (B.3c) and (B.3d) in Appendix B.2, the
iscretization of (1b) at midpoints of edges can be represented
s

˜∗hf = −ıω
(
E(e)ee + X(e)he

)
. (13)

.4. Matrix representation of ∇ × H = −ıωD at face centers

From (B.4a), (B.4b), (B.4c) and (B.4d) in Appendix B.3, the
iscretization of (1b) at face centers can be represented as

˜he = −ıω
(
E(f)ef + X(f)hf

)
. (14)

Finally, from (10a), (12), (13) and (14), the MEP (4) is dis-
cretized into the following GEP⎡⎢⎢⎣

0 0 −C̃∗ 0
0 0 0 −C̃
C̃ 0 0 0
0 C̃∗ 0 0

⎤⎥⎥⎦
⎡⎢⎣ee
ef
hf
he

⎤⎥⎦

= ıω

⎡⎢⎣
E(e) 0 0 X(e)
0 E(f) X(f) 0
0 Z(f) M(f) 0

Z(e) 0 0 M(e)

⎤⎥⎦
⎡⎢⎣ee
ef
hf
he

⎤⎥⎦

≡ ıω
[
E X
Z M

]⎡⎢⎣ee
ef
hf
he

⎤⎥⎦ . (15)

Assume ξ (r) = ζ (r)∗. In GEP (15), E and M are Hermi-
tian and X = Z∗. Thus, it is easily seen that (15) is a skew-
Hermitian/skew-Hermitian pencil; then, it becomes self-evident
that ω and ω̄ are both eigenvalues of the GEP (15). Furthermore,
if (ω, [e⊤

e , e⊤

f ,h⊤

f ,h⊤
e ]

⊤) is an eigenpair of (15), then it is easily
seen that (−ω, [−e⊤

e , e⊤

f ,h⊤

f , −h⊤
e ]

⊤) is also an eigenpair of (15).
In light of these properties, we have the following theorem.

Theorem 2. Eigenvalues of the GEP (15) appear as the pair {ω, −ω}

f ω ∈ R ∪ ıR, and they appear as the quadruplet {ω, −ω, ω̄, −ω̄}

f ω ∈ C\(R ∪ ıR).

. SVD and the fast Eigensolver

Based on the exquisite skills developed in [1,2], we derive the
VD of C̃ in (10b) and propose a fast eigensolver for the GEP (15).

heorem 3 ([1,11]). Let Cℓ, ℓ = 1, 2, 3 be defined in (8). Then they
re simultaneously diagonalized by the unitary matrix T ∈ Cn×n, i.e.,

T = TΛ , ℓ = 1, 2, 3, (16)
ℓ ℓ

5

here Λℓ is the eigenvalue matrix for Cℓ. The detailed expressions
of T and Λℓ can be found in [11,21].

From (16), C(C1, C2, C3), C(−C∗

1 , −C∗

2 , C3), C(−C∗

1 , C2, −C∗

3 ) and
(C1, −C∗

2 , −C∗

3 ) in (B.2), (9b), (9c) and (9d), respectively, are
qual to

I3 ⊗ T )Λ̃(I3 ⊗ T ∗), (17)

here

˜ =

⎡⎣ 0 −Λ̃3 Λ̃2
Λ̃3 0 −Λ̃1

−Λ̃2 Λ̃1 0

⎤⎦ , (18)

ith (Λ̃1, Λ̃2, Λ̃3) = (Λ1, Λ2, Λ3), (−Λ̄1, −Λ̄2, Λ3), (−Λ̄1, Λ2,
Λ̄3) and (Λ1, −Λ̄2, −Λ̄3), respectively. Let Λ̃ℓ = diag{λ̃1ℓ, λ̃2ℓ,

. . , λ̃nℓ}, ℓ = 1, 2, 3. Doing a perfect shuffle of this Λ̃, i.e.,
ultiplying

= [e1, en+1, e2n+1, e2, en+2, e2n+2, . . . , en, e2n, e3n] ∈ R3n×3n

nd P⊤ to Λ̃ from the right and left, respectively, we can trans-
orm Λ̃ to a block diagonal matrix
⊤Λ̃P = L1 ⊕ L2 ⊕ · · · ⊕ Ln,

ith

m =

⎡⎣ 0 −λ̃m,3 λ̃m,2

λ̃m,3 0 −λ̃m,1

−λ̃m,2 λ̃m,1 0

⎤⎦ , m = 1, 2, . . . , n.

heorem 4. Let v0 ≡
[
ℓ1 ℓ2 ℓ3

]⊤ be a nonzero vector and

=

[ 0 −ℓ3 ℓ2
ℓ3 0 −ℓ1

−ℓ2 ℓ1 0

]
. (19)

hoose α, β ∈R such that v1 ≡
[
βℓ̄3 − ℓ̄2 ℓ̄1 − αℓ̄3 αℓ̄2 − βℓ̄1

]⊤

s a nonzero vector. Define v2 = v̄0 × v̄1. Then,

≡

[ v0√
ℓq

v1
∥v1∥2

v2√
ℓq∥v1∥2

]
, U =

[ v̄0√
ℓq

v̄2√
ℓq∥v1∥2

−
v̄1

∥v1∥2

]
are unitary matrices with ℓq = |ℓ1|

2
+ |ℓ2|

2
+ |ℓ3|

2, and

L∗L = V diag
(
0, ℓq, ℓq

)
V ∗, LL∗

= U diag
(
0, ℓq, ℓq

)
U∗. (20)

Furthermore, L has the following SVD

L = U diag
(
0,

√
ℓq,

√
ℓq

)
V ∗. (21)

Proof. See Appendix C.2. □

Define[
Ψ0 Ψ1 Ψ2

]
(22)

≡

⎡⎣Λ̃1 Λq − Λ̃1Λ̃
∗
s Λ̃∗

3 − Λ̃∗

2
Λ̃2 Λq − Λ̃2Λ̃

∗
s Λ̃∗

1 − Λ̃∗

3
Λ̃3 Λq − Λ̃3Λ̃

∗
s Λ̃∗

2 − Λ̃∗

1

⎤⎦ diag

×

(
Λ

−
1
2

q ,
(
3Λ2

q − ΛqΛ̃p
)−

1
2 ,

(
3Λq − Λ̃p

)−
1
2

)
with

Λ̃p = Λ̃sΛ̃
∗

s ≡ (Λ̃1 + Λ̃2 + Λ̃3)(Λ̃1 + Λ̃2 + Λ̃3)∗,
Λq = Λ∗

1Λ1 + Λ∗

2Λ2 + Λ∗

3Λ3.

From Theorem 4, we have the SVD of Λ̃ as

Λ̃ =
[
Ψ̄0 Ψ̄1 −Ψ̄2

]
diag(0, Λ1/2

q , Λ1/2
q )

[
Ψ0 Ψ2 Ψ1

]∗
. (23)

enote {Ψ0, Ψ1, Ψ2} in (22) by {Ψm0, Ψm1, Ψm2}
4
m=1 for the four

ases of {Λ̃ℓ}
3
ℓ=1 as in (18). Substituting (23) into (17), we obtain

he SVD of C, as shown in Theorem 5 below.
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w

Σ

P
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w
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n
t
t
s
t
f

A

w

A

i

Φ

A
e[
N[

w

,

heorem 5 (SVD of C). There exist unitary matrices

m ≡ (I3 ⊗ T )
[
Ψm1 Ψm2 Ψm0

]
,

m ≡ (I3 ⊗ T )
[
−Ψ̄m2 Ψ̄m1 Ψ̄m0

]
,

or m = 1, . . . , 4, and their first 2n columns

rm = (I3 ⊗ T )
[
−Ψ̄m2 Ψ̄m1

]
, Qrm = (I3 ⊗ T )

[
Ψm1 Ψm2

]
,

= 1, . . . , 4,

such that

C(C1, C2, C3) = P1 diag
(
Λ1/2

q , Λ1/2
q , 0

)
Q ∗

1 = Pr1Σ̂rQ ∗

r1,

(−C∗

1 , −C∗

2 , C3) = P2 diag
(
Λ1/2

q , Λ1/2
q , 0

)
Q ∗

2 = Pr2Σ̂rQ ∗

r2,

(−C∗

1 , C2, −C∗

3 ) = P3 diag
(
Λ1/2

q , Λ1/2
q , 0

)
Q ∗

3 = Pr3Σ̂rQ ∗

r3,

(C1, −C∗

2 , −C∗

3 ) = P4 diag
(
Λ1/2

q , Λ1/2
q , 0

)
Q ∗

4 = Pr4Σ̂rQ ∗

r4,

ithˆr = diag
(
Λ1/2

q , Λ1/2
q

)
.

roof. By straightforward verification. □

Let

r = diag (Pr1, Pr2, Pr3, Pr4) , Qr = diag (Qr1,Qr2,Qr3,Qr4) ,

Σr = I4 ⊗ Σ̂r .

hen, we have˜= PrΣrQ ∗

r , diag(C̃, C̃∗) = Pr (I2 ⊗ Σr )Q∗

r ,

ith

r = diag (Pr ,Qr) , Qr = diag (Qr , Pr) .

he skew-Hermitian matrix on the left-hand side of (15) has a
ull space of large dimensions, which would substantially slow
he convergence of the desired smallest positive eigenvalues ob-
ained via shift-and-invert-type iterative algorithms. The null-
pace free technique first developed in [1,11] is used to overcome
his drawback and reduce the GEP (15) to the following null-space
ree GEP (NFGEP) of size 32n × 32n:

ryr = ω

(
ı
[

0 I2 ⊗ Σ−1
r

−I2 ⊗ Σ−1
r 0

])
yr ≡ ωBryr , (24a)

here

r ≡ diag(P∗

r ,Q
∗

r )
[
M−1Z −I24n
I24n 0

][
Φ−1 0
0 M−1

]
×

[
XM−1 I24n
−I24n 0

]
diag(Pr ,Qr ), (24b)

n which

=

[
E(e) 0
0 E(f)

]
−

[
0 X(e)

X(f) 0

][
M−1

(f) 0

0 M−1
(e)

][
0 Z(f)

Z(e) 0

]

=

[
E(e) − X(e)M−1

(e)Z(e) 0
0 E(f) − X(f)M

−1
(f) Z(f)

]
≡ diag(Φ(e), Φ(f)). (24c)

s a result, the electric and magnetic fields can be restored
fficiently by

e⊤
e e⊤

f h⊤

f h⊤
e
]⊤

= ı
[
−Z −I24n
E X

]−1

diag (Pr ,Qr) yr .

Moreover, combined with the derivations in Appendix D, the
FGEP (24a) can be rewritten as

A(f) 0
]
ỹr = ω

(
ı
[
0 B

])
ỹr , yr = Π⊤

2 ỹr , (25a)
0 A(e) B 0

6

here Π2 = [e1, e3, e4, e2]4×4 ⊗ I8n ∈ R32n×32n,

A(f) = diag
(
P∗

r , P∗

r

) [
F(f) M−1

(f) Z(f)Φ
−1
(f)

Φ−1
(f) X(f)M

−1
(f) Φ−1

(f)

]
diag (Pr , Pr) ,

(25b)

A(e) = diag
(
Q ∗

r ,Q ∗

r

) [
F(e) M−1

(e)Z(e)Φ−1
(e)

Φ−1
(e)X(e)M−1

(e) Φ−1
(e)

]
diag (Qr ,Qr)

(25c)

F(c) = M−1
(c) + M−1

(c)Z(c)Φ−1
(c)X(c)M−1

(c), c = e or f, (25d)

B =

[
0 Σ−1

r
−Σ−1

r 0

]
. (25e)

The nonzero eigenvalues of the MEP (4) are the same as
those of the NFGEP (25) and form pairs and quadruplets, as in
Theorem 2.

Theorem 6. Assume ξ (r) = ζ (r)∗. Then the NFGEP (25) has
eigenvalues {ω, −ω} if ω ∈ R ∪ ıR and {ω, −ω, ω̄, −ω̄} if ω ∈

C\(R ∪ ıR).

Proof. See Appendix C.3. □

To conclude, the matrix C in this section is singular and one-
third of its eigenvalues are zero; thus, a null-space free technique
is a suitable method to accelerate the procedure of convergence
of eigenvalues of the smallest modulus. If E(e), E(f), M(e), M(f),
Φ(e), Φ(f) in (24c) are HPD, Z∗

(e) = X(e), and Z∗

(f) = X(f), then from

(D.1), A(f) and A(e) in (25b) and (25c), respectively, are also HPD.
This implies that all eigenvalues of the NFGEP (25) are real.

The iterative eigensolver can now be applied to solve (25).
In the iterative processes, the matrix–vector multiplications Tq
and T ∗p for given vectors p and q can be performed by a se-
quence of elementwise multiplications, diagonal matrix–vector
multiplications and one-dimensional backward and forward FFTs,
the details of which can be found in Algorithm 3 and 4 in [22],
respectively.

5. Numerical results

In this section, with the aid of the bi-Lebedev scheme, we
present some numerical results of the MEP (4) with 3D reciprocal
bi-anisotropic chiral media using FD methods.

We take the media shown in Fig. 2(a) with the FCC lattice
as an example. Recall that the cubic working cell in Fig. 2(a)
is constructed from the primitive cell, usually a slanted paral-
lelepiped, of any Bravais lattice by some cutting and pasting [21].
The working cell naturally defines a Cartesian coordinate system
in which the lattice translation vectors of the FCC lattice are a1 =

a[ 1
√
2
, − 1

√
6
, 1

√
3
]
⊤, a2 = a[ 1

√
2
, 1

√
6
, − 1

√
3
]
⊤, a3 = a[0,

√
2
3 ,

1
√
3
]
⊤.

Here, a is the lattice constant and is set to 1. The reciprocal bi-
anisotropic chiral medium occupies the shadow region in the
working cell in Fig. 2(a), consisting of a dielectric sphere and a
cylinder with radii rs = 0.11a and rc = 0.08a, respectively, while
the background medium is air.

The magnetoelectric coupling ξ (r) and ζ (r) are defined in (3),
and the permeability is simply µ = I3. We use ε̃ = 2.5 ⊕[

2.5 2 + 0.5ı
2 − 0.5ı 5.5

]
to generate the desired permittivity tensor.

Unless otherwise specified, the results in this section are
obtained given the Bloch wave vector k =

13
14Q [0, 1, 0]⊤ +

1
14Q [

1
4 , 1,

1
4 ]

⊤ with Q =
√
2

⎡⎢⎢⎣
1
2

1
2 0

−
1

2
√
3

1
2
√
3

1
√
3

1
√ −

1
√

1
√

⎤⎥⎥⎦. Furthermore,
6 6 6
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Fig. 2. (a) Working cell of the FCC lattice [2]; (b) Relative errors of eigenvalues λi , i = 1, . . . , 16, with matrix dimension 48 × (6m)3 for m = 5, 6, . . . , 16; (c) Band
tructure of the reciprocal bi-anisotropic chiral media with γ = 1.0.
Fig. 3. (a) Demonstration of newborn positive eigenvalues when γ ≥ 1.228142; (b) Some original eigenvalues are pushed towards +∞.
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e take n1 = n2 = n3 = 60; accordingly, the matrix dimensions
of the GEP in (15) and the NFGEP in (24) are 10,368,000 and
6,912,000, respectively. The inexact SIRA [23,24] in conjunction
with the MINRES solver [25] and FFT-based matrix–vector multi-
plication [22] are utilized to solve the NFGEP in (25). The stopping
tolerances of the inexact SIRA and the MINRES are set to 10−11

and 10−3, respectively.
All numerical results are obtained on a computer with an Intel

Xeon E5-2650 v4 2.20 GHz 24-core CPU, 512 GB DDR4 memory,
Ubuntu 16.04.4 LTS OS, and an NVIDIA Tesla P100 GPU.

5.1. Results for the bi-anisotropic model with the HPD weight matrix

First, we validate the convergence of the eigenvalues obtained
via the bi-Lebedev scheme when the weight matrix is HPD in
which case (25) has only real eigenvalues. Specifically, we set
γ = 1.0, a small random number, and ε = Q ε̃Q⊤, and we
compute the 16 smallest positive eigenvalues for (25) for n1 =

2 = n3 = 6m with m = 5, 6, . . . , 16. The relative errors
efined by |λm+1 − λm|/|λm| are shown in Fig. 2(b), which clearly

demonstrates the nice convergence property of the eigenvalues.
Second, we compute the band structure of the 3D reciprocal

bi-anisotropic chiral media with γ = 1.0 and ε = Q ε̃Q⊤. Now
that Φ(e) and Φ(f) in (24c) are HPD, we can relatively easily
compute the smallest 56 positive eigenvalues of (25). On the
basis of the band structure plotted in Fig. 2(c), it appears that the
bi-anisotropic complex media with the specific parameters does
NOT possess a bandgap.

5.2. Bifurcation of eigenvalues

The smallest eigenvalue of ε̃ is approximately 1.4505; thus,

the weight matrix
[
Q ε̃Q⊤ ıγ I3

]
becomes singular if γ = γ∗ ≈
−ıγ I3 I3 λ

7

√
1.4505 ≈ 1.20436. According to Theorems 3.2 and 3.3 in [2],

at this moment, the pencil Ar (γ∗) − ωıBr (γ∗) in (25) has a large
number of 2 × 2 Jordan blocks at ω = ∞, which are, however,
inaccessible in numerical calculations.

The following situation is more relevant to our calculations.
When γ = γ∗+0+, the Jordan blocks suddenly generate an abun-
ance of eigenvalue tetrads {ω, −ω, ω̄, −ω̄} that are all crowded

around ı∞ and have very small real parts. As γ gradually ex-
tends beyond γ∗, some of the tetrads {ω, −ω, ω̄, −ω̄} collide near
he origin and then move along the real axis in the positive
nd negative directions, respectively, which can be numerically
ccessible.
In practice, it remains challenging to find the exact γ for

he bifurcation described above to occur for the first time. Af-
er extensive manual intervention, we identify the interval, i.e.,
1.2307, 1.2309] for this specific case, in which such γ lies. Then,
e calculate the smallest few positive eigenvalues for dense and
niform samplings of γ in [1.2307, 1.2309] and plot the results in
ig. 3(a). Finally, we find that when γ ≈ 1.228142, a new positive
igenvalue is born for the first time, with a considerably lower
requency than the original ground state, as shown in Fig. 3(a).
n addition, from Fig. 3(b), it appears as if the newborn positive
igenvalues have pushed some of the original ones slightly to-
ard +∞. Conversely, these original eigenfields are rather stable

n the sense that they are resistant to the perturbation of γ and
he ensuing change in the nature of the GEP, in striking contrast
o the dramatic change in the eigenfrequency of the newborn
round state with respect to a tiny perturbation of γ .

.3. Localization property of newborn eigenfields

First, we use a volumetric slice plot to qualitatively explore the
ocalization property of eigenfields x1, x2, x3 and x4 associated
he smallest positive eigenvalues λ1 = 5.12924, λ1 = 4.8385,

1 = 0.8627, and λ1 = 0.4787 of four GEPs with (a) ε = ε̃,
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Fig. 4. The magnitude of selective components of the eigenvectors xi , i = 1, . . . , 4, mh(ρ) for x3 and me(ρ) for x4 outside V (ρ).
i
r
0
c

m

= 0.275, (b) ε = Q ε̃Q⊤, γ = 1.0, (c) ε = ε̃, γ = 1.23399 and
d) ε = Q ε̃Q⊤, γ = 1.228142, respectively. Note that x3 and x4
re newborn ground states.
In Fig. 4(a), according to (6), we plot the magnitude of the H2

omponent of x1 at grid points belonging to subgrid 1. In Fig. 4(b),
e plot the magnitude of the H3 component of x2 at the face
enters. Clearly, these eigenfields are distributed throughout Ωc
s shown in Fig. 2(a).
The magnitude of the H2 component of x3 at grid points

elonging to subgrid 1 and the magnitude of the E3 component
f x4 at the midpoints of edges can be found in Figs. 4(c) and
(d), respectively. These two figures indicate that the eigenfields
3 and x4 could be entirely within the bi-anisotropic medium

ompared with the shadow region in Fig. 2(a). a

8

To quantitatively measure the localization of x3 and x4, we
ntroduce a scaling parameter ρ > 0 and denote by V (ρ) the
egion occupied by spheres and cylinders with radius rs = ρ ×

.11a and rc = ρ×0.08a, respectively. Note that V (ρ) with ρ > 1
ontains the original region, V (1), and its neighborhood. Let

me(ρ) = max
i=0,...,n1−1,j=0,...,n2−1,k=0,...,n3−1

{|Ě3(i, j, k̂)||(i, j, k̂) ∈ Ωc\V (ρ)|},

h(ρ) = max
i=0,...,n1−1,j=0,...,n2−1,k=0,...,n3−1

{|Ȟ2(i, ĵ, k̂)||(i, ĵ, k̂) ∈ Ωc\V (ρ)|}.

We plot mh(ρ) for x3 and me(ρ) for x4 versus ρ in Figs. 4(e)
nd 4(f), respectively. Clearly, m (ρ) and m (ρ) drop substantially
h e
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round ρ = 1.2, which means that E3 and H2 are localized in the
hiral medium.
In fact, in addition to Ȟ2(0 : n1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1) and

ˇ3(0 : n1−1, 0 : n2−1, 0̂ : n̂3−1), other portions of x3 and x4 are
imilarly localized in the chiral medium and its neighborhood.

.4. Poynting vectors

For a plane-wave electromagnetic field, the Poynting vector
=

1
2ℜ(E × H̄) represents the flow of energy carried by the

lectromagnetic field along the wave vector direction, and its
agnitude equals the intensity of the field. However, for an
lectromagnetic field subject to the quasiperiodic condition (5),
his characteristic is generally invalid.

Now that we have the full components of the collocated
-field and H-field belonging to the same eigenfield, the Poynting

vector S can be calculated with little additional effort. Here,
we report the numerical behavior of the Poynting vector of the
eigenvectors x3 and x4 in Section 5.3.

To quantitatively measure the localization of x3 and x4, as seen
n Figs. 5(a) and 5(b), we define

e,x(ρ) = max
i=0,...,n1−1,j=0,...,n2−1,k=0,...,n3−1

{∥S(î, j, k)∥2|(î, j, k) ∈ Ωc\V (ρ)},

where ∥ · ∥2 is the Euclidean norm. Similarly, let me,y(ρ), me,z(ρ),
mc(ρ), mf ,x(ρ), mf ,y(ρ), mf ,z(ρ) and mv(ρ) denote the maximal
norm of S at points (i, ĵ, k), (i, j, k̂), (î, ĵ, k̂), (i, ĵ, k̂), (î, j, k̂), (î, ĵ, k),
and (i, j, k) ∈ Ωc\V (ρ), i = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1,
k = 0, . . . , n −1, respectively. From the curves of these maximal
3

9

norms versus ρ in Figs. 5(c) and 5(d), we can clearly see, similar
to the eigenfield itself, the associated Poynting vector is also
concentrated in the chiral medium. Furthermore, we can reveal
more details of these Poynting vectors. From Figs. 5(c) and 5(d),
we see that the maximal norms of S(î, j, k) and S(i, j, k) for x3, and
S(î, j, k), S(i, ĵ, k), S(i, j, k̂) and S(î, ĵ, k̂) for x4, i = 0, . . . , n1 − 1,
j = 0, . . . , n2 − 1, k = 0, . . . , n3 − 1, are O(10−6). Hence, we
oom in on only the region of high density to display S(î, j, k)
nd S(i, j, k) for x3, and, S(î, j, k), S(i, ĵ, k), S(i, j, k̂) and S(î, ĵ, k̂)
or x4 in Figs. 6(a) and 6(b), respectively. The results show that all
rrows have exciting patterns. As shown in the left two subfigures
f Fig. 6(c) for x3, the Poynting vectors form symmetric patterns
n the xy-plane for a fixed z-axis. The modes on the top and
ottom have opposite directions. The right subfigure shows that
he modes from top to bottom form an s-shape pattern. The
oynting vector of the eigenvector x4 shown in Fig. 6(b) has
ore diverse shapes. We zoom in on four representative shapes
nd display them in Fig. 6(d). The results demonstrate that each
attern is generated by a different rotation. We find that some of
he patterns in Fig. 6(b) have a similar rotation style, while some
f them are different.

. Conclusion

In this paper, we have established the FD discretization of (4)
y virtue of the bi-Lebedev scheme and proposed a null-space
ree method to compute the band structure of 3D periodic bi-
nisotropic complex media. Although we take only the case with
scalar magnetoelectric coupling constant and FCC lattice as an
xample, it is not difficult to see that the formulas and algorithms
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Fig. 6. Details of Poynting vector S of x3 and x4 in the localized region.
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nvolved can be readily adapted for 3D bi-anisotropic complex
edia with very general magnetoelectric coupling tensors and
ther Bravais lattices. Here, a formulation of the discrete single-
url operator can easily be built from the counterpart in the
tandard Yee scheme. Moreover, many apparatuses, notably, the
VD of the discrete single-curl operator and NFGEP, developed
or Yee’s scheme [1] can readily be generalized to the bi-Lebedev
cheme, as shown in Section 4. The combination of all these
uilding blocks results in a clean and fast method for the band
tructure calculation of 3D bi-anisotropic complex media.
With sound mathematical theory as guidance, we have pre-

icted and numerically verified the existence of some exotic
igenfields that are highly concentrated in the 3D reciprocal
i-isotropic chiral material in [2]. Since there are many more
arameters in the permittivity tensor ε, permeability tensor µ

nd magnetoelectric coupling tensors ξ and ζ selected in the
D bi-anisotropic model, the approach used to make the weight

atrix
[

ε ξ

ζ µ

]
indefinite is more flexible and the resulting models

re supposedly more realizable. In this work, we have taken a
olid step forward in this direction. That is, we have found a
maller critical chirality parameter γ∗ ≈ 1.20436, even though
he largest entry of ε is 5.5, and have captured possibly the first
ewborn ground state at γ = 1.228142. Moreover, the spatial
istribution of the Poynting vector corresponding to the exotic
igenfield displays some intriguing patterns. We plan to study
hese patterns, especially their physical roots and implications, in
he future. Last, we expect that the physical phenomena observed

n this work will motivate further theoretical and experimental

10
nvestigations. It would be exciting to see its application in the
ield of metamaterial physics and engineering.
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ppendix A. Definition of matrix S(c)(s) for c = e or f

Define

S(e)(x, s) = diag
(
š (0̂ : n̂ − 1, 0 : n − 1, 0 : n − 1)

)
, (A.1a)
pq pq 1 2 3
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S
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S

S

S

S

S

S

E

f

E

Z

A
p

B

•

s

=

=

(e)
pq (y, s) = diag

(
špq(0 : n1 − 1, 0̂ : n̂2 − 1, 0 : n3 − 1)

)
, (A.1b)

S(e)pq (z, s) = diag
(
špq(0 : n1 − 1, 0 : n2 − 1, 0̂ : n̂3 − 1)

)
, (A.1c)

S(e)pq (s) = diag
(
špq(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1)

)
, (A.1d)

S(f)pq (x, s) = diag
(
špq(0 : n1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1)

)
, (A.1e)

S(f)pq (y, s) = diag
(
špq(0̂ : n̂1 − 1, 0 : n2 − 1, 0̂ : n̂3 − 1)

)
, (A.1f)

S(f)pq (z, s) = diag
(
špq(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, 0 : n3 − 1)

)
, (A.1g)

S(f)pq (s) = diag
(
špq(0 : n1 − 1, 0 : n2 − 1, 0 : n3 − 1)

)
, (A.1h)

or p, q = 1, 2, 3 and
(c)(s) =

[
S(c)
uv (s)

]4
u,v=1 ∈ C12n×12n,

or c = e or f with
(c)
11 (s) = diag

(
S(c)11 (x, s), S(c)22 (y, s), S(c)33 (z, s)

)
,

(c)
22 (s) = diag

(
S(c)11 (y, s), S(c)22 (x, s), S(c)33 (s)

)
,

(c)
33 (s) = diag

(
S(c)11 (z, s), S(c)22 (s), S(c)33 (x, s)

)
,

(c)
44 (s) = diag

(
S(c)11 (s), S(c)22 (z, s), S(c)33 (y, s)

)
,

nd

(c)
12 (s) =

⎡⎣ 0 S(c)12 (x, s) 0
S(c)21 (y, s) 0 0

0 0 0

⎤⎦ = S(c)
21 (s)∗,

(c)
13 (s) =

⎡⎣ 0 0 S(c)13 (x, s)
0 0 0

S(c)31 (z, s) 0 0

⎤⎦ = S(c)
31 (s)∗,

(c)
14 (s) =

⎡⎣0 0 0
0 0 S(c)23 (y, s)
0 S(c)32 (z, s) 0

⎤⎦ = S(c)
41 (s)∗,

(c)
23 (s) =

⎡⎣0 0 0
0 0 S(c)23 (x, s)
0 S(c)32 (s) 0

⎤⎦ = S(c)
32 (s)∗,

(c)
24 (s) =

⎡⎣ 0 0 S(c)13 (y, s)
0 0 0

S(c)31 (s) 0 0

⎤⎦ = S(c)
42 (s)∗,

(c)
34 (s) =

⎡⎣ 0 S(c)12 (z, s) 0
S(c)21 (s) 0 0

0 0 0

⎤⎦ = S(c)
43 (s)∗.

With
(c)
u,v = S(c)

u,v(ε), M(c)
u,v = S(c)

u,v(µ), X (c)
u,v = S(c)

u,v(ξ ), Z(c)
u,v = S(c)

u,v(ζ ),

or c = e or f, u, v = 1, . . . , 4, we define

(c) = [E (c)
u,v]

4
u,v=1, M(c) = [M(c)

u,v]
4
u,v=1, X(c) = [X (c)

u,v ]
4
u,v=1,

(c) = [Z(c)
u,v]

4
u,v=1.

ppendix B. Discretization of MEP with 3D Bi-anisotropic com-
lex media

.1. Matrix representation of ∇ × E = ıωB at face centers

Subgrid 1 (Fig. 1(b)):
Consider the FD discretization of (1a) by the standard Yee

cheme at face centers (i, ĵ, k̂), (î, j, k̂) and (î, ĵ, k), respectively.

E3(i, j + 1, k̂) − E3(i, j, k̂)
−

E2(i, ĵ, k + 1) − E2(i, ĵ, k)

δy δz

11
= ıωB1(i, ĵ, k̂), (B.1a)

E1(î, j, k + 1) − E1(î, j, k)
δz

−
E3(i + 1, j, k̂) − E3(i, j, k̂)

δx

= ıωB2(î, j, k̂), (B.1b)

E2(i + 1, ĵ, k) − E2(i, ĵ, k)
δx

−
E1(î, j + 1, k) − E1(î, j, k)

δy

= ıωB3(î, ĵ, k), (B.1c)

for i = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1 and k = 0, . . . , n3 − 1.
From (2) and (3), it holds that

B1(i, ĵ, k̂) = (ζ11E1 + ζ12E2 + ζ13E3 + µ11H1 + µ12H2

+ µ13H3)(i, ĵ, k̂),

B2(î, j, k̂) = (ζ21E1 + ζ22E2 + ζ23E3 + µ21H1 + µ22H2

+ µ23H3)(î, j, k̂),

B3(î, ĵ, k) = (ζ31E1 + ζ32E2 + ζ33E3 + µ31H1 + µ32H2

+ µ33H3)(î, ĵ, k).

Denote Z(f)
pq (·) = S(f)

pq (·, ζ ) and M(f)
pq (·) = S(f)

pq (·, µ), which are
defined in (A.1), and [hfl]

4
l=1 are defined in (7). Combining the

above results with the matrix form of the discrete single-curl
operator, (B.1) can be recast into

C(C1, C2, C3)ee1

= ıω(
[
Z(f)

11 Z(f)
12 Z(f)

13 Z(f)
14

]
ef

+

[
M(f)

11 M(f)
12 M(f)

13 M(f)
14

]
hf ). (B.2)

B.2. Matrix representation of ∇ ×H = −ıωD at midpoints of edges

In this subsection, we discretize (1b) on subgrids 1, 2, 3 and 4
illustrated in Figs. 1(b), 1(c), 1(d), and 1(e), respectively. Similarly,
we recast all formulas for each subgrid into matrix–vector form.

Using the FD discretization for (1b) at

• (î, j, k), (i, ĵ, k) and (i, j, k̂), respectively, in Subgrid 1
(Fig. 1(b));

• (i, ĵ, k), (î, j, k) and (î, ĵ, k̂), respectively, in Subgrid 2
(Fig. 1(c));

• (i, j, k̂), (î, ĵ, k̂) and (î, j, k), respectively, in Subgrid 3
(Fig. 1(d));

• (î, ĵ, k̂), (i, j, k̂) and (i, ĵ, k), respectively, in Subgrid 4
(Fig. 1(e)),

the resulting matrix representations are

C(C1, C2, C3)∗hf 1

= − ıω
([
E (e)
11 E (e)

12 E (e)
13 E (e)

14

]
ee

+
[
X (e)

11 X (e)
12 X (e)

13 X (e)
14

]
he

)
, (B.3a)

C(−C∗

1 , −C∗

2 , C3)∗hf 2

− ıω
([
E (e)
21 E (e)

22 E (e)
23 E (e)

24

]
ee

+
[
X (e)

21 X (e)
22 X (e)

23 X (e)
24

]
he

)
, (B.3b)

C(−C∗

1 , C2, −C∗

3 )
∗hf 3

− ıω
([
E (e)
31 E (e)

32 E (e)
33 E (e)

34

]
ee

+
[ (e) (e) (e) (e)]h )

, (B.3c)
X31 X32 X33 X34 e
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=

r

B

t

=

=

h

v

v

w

(

(

(

(

T

C

P

B

w

a

T
I
e
−

C(C1, −C∗

2 , −C∗

3 )
∗hf 4

− ıω
([
E (e)
41 E (e)

42 E (e)
43 E (e)

44

]
ee

+
[
X (e)

41 X (e)
42 X (e)

43 X (e)
44

]
he

)
, (B.3d)

espectively.

.3. Matrix representation of ∇ × H = −ıωD at face centers

In this subsection, we discretize (1b) on subgrids 1, 2, 3 and 4
illustrated in Figs. 1(b), 1(c), 1(d), and 1(e), respectively. Similarly,
we recast all formulas for each subgrid into matrix–vector form.

Using the FD discretization for (1b) at

• (i, ĵ, k̂), (î, j, k̂) and (î, ĵ, k), respectively, in Subgrid 1
(Fig. 1(b));

• (î, j, k̂), (i, ĵ, k̂) and (i, j, k), respectively, in Subgrid 2
(Fig. 1(c));

• (î, ĵ, k), (i, j, k) and (i, ĵ, k̂), respectively, in Subgrid 3
(Fig. 1(d));

• (i, j, k), (î, ĵ, k) and (î, j, k̂), respectively, in Subgrid 4
(Fig. 1(e)),

he resulting matrix representations are

C(C1, C2, C3)he1

− ıω
([

E (f)
11 E (f)

12 E (f)
13 E (f)

14

]
ef

+

[
X (f)

11 X (f)
12 X (f)

13 X (f)
14

]
hf

)
, (B.4a)

C(−C∗

1 , −C∗

2 , C3)he2

− ıω
([

E (f)
21 E (f)

22 E (f)
23 E (f)

24

]
ef

+

[
X (f)

21 X (f)
22 X (f)

23 X (f)
24

]
hf

)
, (B.4b)

C(−C∗

1 , C2, −C∗

3 )he3

= − ıω
([

E (f)
31 E (f)

32 E (f)
33 E (f)

34

]
ef

+

[
X (f)

31 X (f)
32 X (f)

33 X (f)
34

]
hf

)
, (B.4c)

C(C1, −C∗

2 , −C∗

3 )he4

= − ıω
([

E (f)
41 E (f)

42 E (f)
43 E (f)

44

]
ef

+

[
X (f)

41 X (f)
42 X (f)

43 X (f)
44

]
hf

)
, (B.4d)

respectively.

Appendix C. Proofs for some theorems

C.1. Proof for Theorem 1

Proof. Let Π = [Πpq]
4
p,q=1 ∈ R12n×12n with Πpp = In ⊕ 0n ⊕ 0n,

for p = 1, . . . , 4, Π12 = Π21 = Π34 = Π43 = 0n ⊕ In ⊕ 0n, Π13 =

Π31 = Π24 = Π42 = 0n⊕0n⊕ In, Π14 = Π41 = Π23 = Π32 = 03n.
Then we have

Π⊤S(c)(s)Π = diag
(
S(c)1 (s), S(c)2 (s), S(c)3 (s), S(c)4 (s)

)
(C.1a)

with

S(c)(s) = [S(c)(x, s)]3 , S(c)(s) = [S(c)(y, s)]3 , (C.1b)
1 pq p,q=1 2 pq p,q=1

12
S(c)3 (s) = [S(c)pq (z, s)]3p,q=1, S(c)4 (s) = [S(c)pq (s)]3p,q=1, (C.1c)

which implies that S(c)(s) is HPD. □

C.2. Proof of Theorem 4

Proof. From (19), it holds that

L∗L = ℓqI3 −

[
ℓ1
ℓ2
ℓ3

] [
ℓ̄1 ℓ̄2 ℓ̄3

]
,

LL∗
= ℓqI3 −

⎡⎣ℓ̄1
ℓ̄2
ℓ̄3

⎤⎦[
ℓ1 ℓ2 ℓ3

]
.

It is easy to see that both L∗L and LL∗ have eigenvalues 0, ℓq
and ℓq. Moreover, v0 and v̄0 are the eigenvectors of L∗L and LL∗,
respectively, corresponding to zero eigenvalue. Since v1 and v2
satisfy

[
ℓ̄1 ℓ̄2 ℓ̄3

]
v1 = 0 and

[
ℓ̄1 ℓ̄2 ℓ̄3

]
v2 = 0, {v1, v2}

and {v̄1, v̄2} are the eigenvectors of L∗L and LL∗, respectively,
corresponding to eigenvalues ℓq, ℓq. By the definitions of vi, i =

0, 1, 2, we have v∗

i vj = 0 for i ̸= j and ∥v2∥2 = ∥v0∥2∥v1∥2 =√
ℓq∥v1∥2. This implies that U and V are unitary, and L∗L and LL∗

ave eigendecompositions in (20).
Rewrite v1 and v2 as

1 =

⎡⎢⎣ βℓ̄3 − ℓ̄2

ℓ̄1 − αℓ̄3

αℓ̄2 − βℓ̄1

⎤⎥⎦ = L∗w = −L̄w,

2 = v̄0 × v̄1 =

⎡⎢⎣(αℓ2 − βℓ1)ℓ̄2 − (ℓ1 − αℓ3)ℓ̄3
(βℓ3 − ℓ2)ℓ̄3 − (αℓ2 − βℓ1)ℓ̄1
(ℓ1 − αℓ3)ℓ̄1 − (βℓ3 − ℓ2)ℓ̄2

⎤⎥⎦
= (ℓqI − v0v∗

0)w,

here w =
[
α β 1

]⊤. Then, we have

v̄1)∗Lv1 = −w∗L∗Lv1 = −ℓqw∗v1 = 0,

v̄2)∗Lv2 = w∗(ℓqI − v̄0v⊤

0 )L(ℓqI − v0v∗

0)w = ℓ2qw
∗Lw = ℓ2qv

∗

1w

= 0,

v̄1)∗Lv2 = (v̄1)∗L(ℓqI − v0v∗

0)w = ℓq(v̄1)∗Lw = −ℓq(v̄1)∗v̄1

= −ℓq∥v1∥2
2,

v̄2)∗Lv1 = w∗(ℓqI − v̄0v̄∗

0)Lv1 = ℓqw∗Lv1 = ℓqv∗

1v1 = ℓq∥v1∥2
2.

his implies the SVD of L in (21). □

.3. Proof for Theorem 6

roof. Define ỹr = [ỹ∗

r1, ỹ∗

r2]
∗. From (25), we have

−1A(e)B−1A(f)ỹr1 = −ω2ỹr1,

hich implies that if ω is an eigenvalue of (24a), then −ω is also

n eigenvalue. Let ŷr =

[
B 0
0 I

]
ỹr . Then, (25) can be rewritten as[

0 −ıA(e)
−ıB−1A(f)B

−1 0

]
ŷr = ωŷr . (C.2)

he matrix in (C.2) forms a complex skew-Hamiltonian matrix.
t follows that if ω is an eigenvalue of (C.2), then ω̄ is also an
igenvalue of (C.2). Therefore, (25) has eigenvalues ω, −ω, ω̄ and
ω̄. □
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ppendix D. Mathematical derivation of (25)

Since

M−1ZΦ−1
=

[
M−1

(f) 0

0 M−1
(e)

][
0 Z(f)

Z(e) 0

][
Φ−1

(e) 0
0 Φ−1

(f)

]

=

[
0 M−1

(f) Z(f)Φ
−1
(f)

M−1
(e)Z(e)Φ−1

(e) 0

]
,

Φ−1XM−1
=

[
Φ−1

(e) 0
0 Φ−1

(f)

][
0 X(e)

X(f) 0

][
M−1

(f) 0

0 M−1
(e)

]

=

[
0 Φ−1

(e)X(e)M−1
(e)

Φ−1
(f) X(f)M

−1
(f) 0

]
and

M−1
+ M−1ZΦ−1XM−1

= M−1
+ M−1

[
0 Z(f)

Z(e) 0

][
Φ−1

(e) 0
0 Φ−1

(f)

][
0 X(e)

X(f) 0

]
M−1

= diag
(
F(f),F(e)

)
with

F(c) = M−1
(c) + M−1

(c)Z(c)Φ−1
(c)X(c)M−1

(c), c = e or f,

the product of matrices in (24b) can be reformulated as[
M−1Z −I24n
I24n 0

][
Φ−1 0
0 M−1

][
XM−1 I24n
−I24n 0

]
=

[
(M−1

+ M−1ZΦ−1XM−1) M−1ZΦ−1

Φ−1XM−1 Φ−1

]

=

⎡⎢⎢⎢⎣
F(f) 0 0 M−1

(f) Z(f)Φ
−1
(f)

0 F(e) M−1
(e)Z(e)Φ−1

(e) 0
0 Φ−1

(e)X(e)M−1
(e) Φ−1

(e) 0
Φ−1

(f) X(f)M
−1
(f) 0 0 Φ−1

(f)

⎤⎥⎥⎥⎦ .

his implies that

Π1

[
M−1Z −I24n
I24n 0

][
Φ−1 0
0 M−1

][
XM−1 I24n
−I24n 0

]
Π⊤

1

diag

⎛⎝⎡⎣ F(f) M−1
(f) Z(f)Φ

−1
(f)

Φ−1
(f) X(f)M

−1
(f) Φ−1

(f)

⎤⎦ ,

[
F(e) M−1

(e)Z(e)Φ−1
(e)

Φ−1
(e)X(e)M−1

(e) Φ−1
(e)

]⎞⎠ , (D.1)

here Π1 = [e1, e3, e4, e2]4×4 ⊗ I12n ∈ R48n×48n. Let Π2 =

e1, e3, e4, e2]4×4 ⊗ I8n ∈ R32n×32n. Then

1diag (Pr ,Qr) Π⊤

2 = Π1diag (Pr ,Qr ,Qr , Pr) Π⊤

2

= diag (Pr , Pr ,Qr ,Qr) (D.2a)
13
nd

2

[
0 I2 ⊗ Σ−1

r
−I2 ⊗ Σ−1

r 0

]
Π⊤

2

=

⎡⎢⎣ 0 0 0 Σ−1
r

0 0 −Σ−1
r 0

0 Σ−1
r 0 0

−Σ−1
r 0 0 0

⎤⎥⎦ . (D.2b)

ubstituting (D.1) and (D.2) into (24), we obtain (25).

eferences

[1] R.-L. Chern, H.-E. Hsieh, T.-M. Huang, W.-W. Lin, W. Wang, SIAM J. Matrix
Anal. Appl. 36 (2015) 203–224.

[2] T.-M. Huang, T. Li, R.-L. Chern, W.-W. Lin, J. Comput. Phys. 379 (2019)
118–131.

[3] C. Kittel, Introduction to Solid State Physics, Wiley, New York, NY,
2005.

[4] K.M. Ho, C.T. Chan, C.M. Soukoulis, Phys. Rev. Lett. 65 (25) (1990) 3152.
[5] S.G. Johnson, J.D. Joannopoulos, Opt. Express 8 (3) (2001) 173–190.
[6] Z. Chen, Q. Du, J. Zou, SIAM J. Numer. Anal. 37 (2000) 1542–1570.
[7] D.C. Dobson, J. Pasciak, Comput. Methods Appl. Math. 1 (2001) 138–153.
[8] J. Jin, The Finite Element Method in Electromagnetics, John Wiley, New

York, NY, 2002.
[9] J.-C. Nédélec, Numer. Math. 50 (1) (1986) 57–81.

[10] R.L. Chern, C.C. Chang, Chien-C. Chang, R.R. Hwang, Phys. Rev. E 68 (2003)
26704.

[11] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, W. Wang, SIAM J. Matrix Anal. Appl.
34 (2013) 369–391.

[12] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, W. Wang, Math. Comput. Model. 58
(2013) 379–392.

[13] F. Xu, Y. Zhang, W. Hong, K. Wu, T.-J. Cui, IEEE Trans. Microw. Theory Tech.
51 (11) (2003) 2221–2227.

[14] K. Yee, IEEE Trans. Antennas and Propagation 14 (1966) 302–307.
[15] S. Davydycheva, V. Druskin, in: M. Oristaglio, B. Spies (Eds.), Three-

DImensional Electromagnetics, Society of Exploration Geophysicists, 1999,
pp. 138–145.

[16] S. Davydycheva, V. Druskin, T. Habashy, Geophysics 68 (5) (2003)
1525–1536.

[17] P. Jaysaval, D.V. Shantsev, S. de la Kethulle de Ryhove, T. Bratteland,
Geophys. J. Int. 207 (2016) 1554–1572.

[18] E. Alkan, V. Demir, A. Elsherbeni, E. Arvas, IEEE Trans. Antennas and
Propagation 58 (3) (2010) 817–823.

[19] E. Alkan, V. Demir, A. Elsherbeni, E. Arvas, Double-Grid Finite-Difference
Frequency-Domain (DG-FDFD) Method for Scattering from Chiral Objects,
in: Synthesis Lectures on Computational Electromagnetics, vol. 8, Morgan
& Claypool Publishers LLC, 2013.

[20] M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G. Hart, S. Curtarolo,
Comput. Mater. Sci. 136 (2017) S1–S828.

[21] T.-M. Huang, T. Li, W.-D. Li, J.-W. Lin, W.-W. Lin, H. Tian, Solving Three
Dimensional Maxwell Eigenvalue Problem with Fourteen Bravais Lattices,
Technical Report, 2018, arXiv:1806.10782.

[22] T.-M. Huang, W.-W. Lin, H. Tsai, W. Wang, Comput. Phys. Comm. 245
(2019) 106841.

[23] Z. Jia, C. Li, Sci. China Math. 57 (2014) 1733–1752.
[24] C.-R. Lee, Residual Arnoldi Method: Theory, Package and Experi-

ments (Ph.D. thesis), Department of Computer Science, University of
Maryland at College Park, 2007, TR-4515.

[25] W.R. Ferng, W.-W. Lin, C.-S. Wang, Comput. Math. Appl. 33 (1997) 23–40.

http://refhub.elsevier.com/S0010-4655(20)30384-2/sb1
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb1
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb1
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb2
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb2
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb2
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb3
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb3
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb3
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb4
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb5
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb6
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb7
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb8
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb8
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb8
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb9
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb10
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb10
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb10
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb11
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb11
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb11
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb12
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb12
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb12
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb13
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb13
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb13
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb14
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb15
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb15
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb15
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb15
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb15
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb16
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb16
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb16
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb17
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb17
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb17
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb18
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb18
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb18
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb19
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb19
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb19
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb19
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb19
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb19
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb19
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb20
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb20
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb20
http://arxiv.org/abs/1806.10782
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb22
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb22
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb22
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb23
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30384-2/sb25

	The bi-Lebedev scheme for the Maxwell eigenvalue problem with 3D bi-anisotropic complex media
	Introduction
	Discretization of , , , , ,  on the Lebedev grid
	Discretization of MEP with 3D Bi-anisotropic complex media
	Matrix representation of = at face centers
	Matrix representation of = at midpoints of edges
	Matrix representation of = - at midpoints of edges
	Matrix representation of = - at face centers

	SVD and the fast Eigensolver
	Numerical results
	Results for the bi-anisotropic model with the HPD weight matrix
	Bifurcation of eigenvalues
	Localization property of newborn eigenfields
	Poynting vectors

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Definition of matrix S(c)(s) for c=eorf
	Appendix B. Discretization of MEP with 3D Bi-anisotropic Complex Media
	Matrix representation of = at face centers
	Matrix representation of = - at midpoints of edges
	Matrix representation of = - at face centers

	Appendix C. Proofs for some theorems
	Proof for thm1 
	Proof of thm:SVDL 
	Proof for thm3.5 

	Appendix D. Mathematical Derivation of eq:NFGEPLebedev 
	References


