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Abstract. The transmission eigenvalue problem, except for its critical role in inverse scattering
problems, is of its own special interest due to the fact that the corresponding differential operator is
neither elliptic nor self-adjoint. In this paper, we provide the spectral analysis and propose a novel
iterative algorithm for the computation of a few positive real eigenvalues and the corresponding eigen-
functions of the transmission eigenvalue problem. Based on the continuous finite element method,
we first derive an associated symmetric quadratic eigenvalue problem (QEP) for the transmission
eigenvalue problem to eliminate the nonphysical zero eigenvalue while preserve all nonzero ones. In
addition, the derived QEP enables us to consider more refined discretization to overcome the limita-
tion on the number of degree of freedoms. We then transform the QEP to a parameterized symmetric
definite generalized eigenvalue problem (GEP) and develop a secant-type iteration for solving the
resulting GEPs. Moreover, we examine the spectral analysis for various existence intervals of desired
positive real eigenvalues, since a few lowest positive real transmission eigenvalues are of practical
interest in the estimation and the reconstruction of the index of refraction. Numerical experiments
show that the proposed method can find those desired smallest positive real transmission eigenvalues
accurately, efficiently, and robustly.
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1. Introduction. The transmission eigenvalue problem has recently attracted
much attention in the inverse scattering community [11, 20, 7, 17, 5, 6, 10, 8, 9]. This
is due to the reason that one can determine the transmission eigenvalues from the
far-field pattern of the scattered wave and then use them to estimate the material
properties of the scattering object [4, 2, 3, 5, 6, 23]. On the other hand, transmission
eigenvalues are also related to the validity of some recently developed reconstruction
method for scattering problems such as linear sampling method and factorization
method [9]. For the recent progress in the theories and applications of transmission
eigenvalue problems, we refer to [8] and the references therein.

In this paper, we consider the case of scattering of acoustic waves by a bounded
and simply connected inhomogeneous medium Ω ⊂ R2. This scattering model for the
2D Helmholtz equation can be considered as a special case of the Maxwell equations
for the electromagnetic wave scattering by a 3D cylinder model under some physical
assumptions on incident waves and cylinder parameters. In this simplified 2D case, the
transmission eigenvalue problem is to find k ∈ C and u, v ∈ L2(Ω) with u−v ∈ H2(Ω)
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such that

∆u+ k2n(x)u = 0, in Ω,(1.1a)

∆v + k2v = 0, in Ω,(1.1b)

u− v = 0, on ∂Ω,(1.1c)

∂u

∂n
− ∂v

∂n
= 0, on ∂Ω,(1.1d)

where n is the unit outer normal to the smooth boundary ∂Ω and the index of refrac-
tion n(x) is positive. Any nonzero value k such that there are nontrivial solutions u
and v of (1.1) is called a transmission eigenvalue.

Efficient numerical methods to determine transmission eigenvalues are required in
estimating the index of refraction [5, 23] and, in addition, numerical evidence obtained
for the discrete system might contribute to the progress of further theoretical develop-
ments such as the distribution of real eigenvalues for the original infinite dimensional
system. Nonetheless, numerical techniques for solving the transmission eigenvalues
are limited, and only a few papers have addressed the numerical computation on this
topic in the past few years. It is challenging because, firstly, the problem (1.1) is
neither elliptic nor self-adjoint so that it cannot be covered by the standard theory
of elliptic partial differential equations. Secondly, owing to the non-self-adjointness,
the resulting eigenvalue problem derived from the standard finite element method
is non-Hermitian. Moreover, the nonphysical transmission eigenvalue k = 0 has an
infinite-dimensional eigenspace as can be seen from the fact that any harmonic func-
tion on Ω is an eigenfunction of (1.1) with k = 0.

Among the numerical investigations on the computation of transmission eigen-
values, Colton, Monk and Sun [10] first proposed three finite element methods to
compute the Helmholtz transmission eigenvalues. However, the mesh has to be kept
rather coarse so that the QZ algorithm [18] can be used to find all approximate eigen-
pairs of the induced non-Hermitian eigenvalue problems. Then, Sun [24] proposed
two iterative methods together with the convergence analysis based on the existence
theory of the fourth order reformulation for the transmission eigenvalues [7, 20]. Ji,
Sun and Turner [14] proposed a mixed finite element method and provided a MAT-
LAB implementation on an adaptive algorithm to solve the corresponding general-
ized eigenvalue problem (GEP). Later, Monk and Sun [19] applied this method to
the Maxwell’s transmission eigenvalue problem. In [15], Ji, Sun and Xie used the
multilevel correction method to transform the solution of the transmission problem
to a series of solutions corresponding to linear boundary value problems and solved
them by the multigrid method.

1.1. Contributions. The main contribution of this paper is to study the spec-
tral analysis for a discrete model of (1.1) and to propose an efficient scheme for
computing positive real transmission eigenvalues and associated eigenvectors. Based
on the continuous finite element method in [10], we first show that the associated
discretization model of (1.1) can induce a symmetric quadratic eigenvalue problem
(QEP) which can completely exclude the inference of zero eigenvalues as presented
in [10]. According to the spectral decompositions on the coefficient matrices of the
QEP, which have particular structures, we then provide the spectral analysis for es-
timating various existing intervals of desired positive real eigenvalues of (1.1). Note
that only a few smallest positive real transmission eigenvalues are of practical inter-
est in the estimation and the reconstruction of the index of refraction [2, 23] while



TRANSMISSION EVPS: SPECTRAL ANALYSIS AND COMPUTING 3

a transmission eigenvalue with the smallest norm may not be the desire one owing
to the existence of complex transmission eigenvalues. These theoretical analyses and
practical applications further motivate us to develop an efficient and robust numerical
method for computing desired positive real transmission eigenvalues but avoiding any
possible complex eigenvalues.

1.2. Notations and overview. The following notations are frequently used
throughout this paper. Other notations will be clearly defined whenever they are
used. For convenience, we use λ to denote the square of the transmission eigenvalue
k, i.e., λ := k2. For a given mesh, ν and ρ are used to indicate the number of interior
nodes and the number of boundary nodes respectively. IN denotes the N×N identity
matrix with the given size N , and 0 is the zero vectors or matrices with appropriate
sizes. Given a real square matrix A, we write A ≻ 0 if A is symmetric positive definite.
The notation ·⊤ is used to represent the transpose of vectors or matrices.

This paper is organized as follows. In section 2, we review the continuous finite
element method in [10] for the discretization of the transmission eigenvalue problem
(1.1) and derive the associated symmetric QEP. In section 3, we study the spectral
analysis of the QEP and estimates various existing intervals of positive real eigenval-
ues of (1.1). Based on the spectral analysis, in section 4, we develop an efficient and
robust numerical method for the computation of positive real transmission eigenval-
ues. Numerical experiments with different n(x) on various domains are presented in
section 5 and concluding remarks are given in section 6.

2. Discretization of transmission eigenvalue problems. To treat the trans-
mission eigenvalue problem (1.1), Colton, Monk and Sun [10] proposed three finite
element methods: the Argyris method, the continuous finite element approximation
and the mixed finite element method. The continuous finite element method ends up
with much sparse matrices than the other two methods and the implementation is
also easy because only a linear finite element is used. The Argyris method takes more
works because it needs to calculate the affine transformation for each triangle of the
mesh. However, as numerical results presented in [10], these three methods did not
converge for computing a few real eigenvalues via the MATLAB built-in eigensolver
eigs for sparse matrices. In all cases, it must compute all eigenvalues using the
MATLAB function eig. This limits the maximum number of degree of freedoms that
can be used. Furthermore, the GEPs for (1.1) derived from continuous finite element
method and mixed finite element method contain a large number of spurious zeros,
which considerably influences convergence so that the eigs fails.

In this section, we will transform the GEP constructed by the continuous finite
element method into a QEP with symmetric and positive definite coefficient matrices
so that it can exclude the nonphysical transmission eigenvalue, k = 0, while preserves
all nontrivial ones of the original problem.

2.1. Continuous finite element approximation. We briefly review the dis-
cretization of the transmission eigenvalue problem (1.1) based on the standard piece-
wise linear finite element method (see [10] for detailed discussion). Let

Sh = The space of continuous piecewise linear functions on Ω,

S0
h = The subspace of functions in Sh that have vanishing DoF on ∂Ω,

SB
h = The subspace of functions in Sh that have vanishing DoF in Ω,

where DoF is the degrees of freedom. Taking test functions ηh, ζh ∈ S0
h and γh ∈ SB

h ,
and applying the integration by parts, one can show that the discretization of (1.1)
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is to seek u0,h, v0,h ∈ S0
h and uB,h ∈ SB

h satisfying∫
Ω

∇(u0,h + uB,h) · ∇ηhdx− λ
∫
Ω

n(u0,h + uB,h)ηhdx = 0,∫
Ω

∇(v0,h + uB,h) · ∇ζhdx − λ
∫
Ω

(v0,h + uB,h)ζhdx = 0,∫
Ω

∇(u0,h − v0,h) · ∇γhdx − λ
∫
Ω

(n(u0,h + uB,h)− (v0,h + uB,h))γhdx = 0,

for all ηh, ζh ∈ S0
h and γh ∈ SB

h . If {ϕj}νj=1 and {ψj}ρj=1 denote standard nodal bases

for the finite element spaces of S0
h and SB

h , respectively, then u0,h, v0,h and uB,h can
be written as u0,h =

∑ν
j=1 ujϕj , v0,h =

∑ν
j=1 vjϕj and uB,h =

∑ρ
j=1 wjψj .

Matrix Dimension Definition

Interior space stiffness matrix.
K ≻ 0 ν× ν

Kij =
∫
Ω
∇ϕi · ∇ϕjdx

E ν× ρ
Interior/Boundary stiffness matrix.

Eij =
∫
Ω
∇ϕi · ∇ψjdx

Interior space mass matrices.
Mn,M1 ≻ 0 ν× ν

(Mn)ij =
∫
Ω
nϕiϕjdx, (M1)ij =

∫
Ω
ϕiϕjdx

Fn, F1 ν× ρ
Interior/Boundary mass matrices.

(Fn)ij =
∫
Ω
nϕiψjdx, (F1)ij =

∫
Ω
ϕiψjdx

Boundary mass matrices.
Gn, G1 ≻ 0 ρ× ρ

(Gn)ij =
∫
Ω
nψiψjdx, (G1)ij =

∫
Ω
ψiψjdx

Table 1: Stiffness and mass matrices with n(x) > 1, x ∈ Ω.

We assume, without loss of generality, that n(x) > 1, x ∈ Ω, the analysis of the
case for 0 < n(x) < 1 is similar. Using the stiffness and mass matrices indicated in
Table 1, we can represent the weak form of the continuous finite element method for
problem (1.1) as a GEP

(2.1a) Kz = λMz

with

(2.1b) K :=

 K 0 E

0 K E

E⊤ −E⊤ 0

 , M :=

Mn 0 Fn

0 M1 F1

F⊤
n −F⊤

1 Gn −G1

 , z :=

uv
w

 ,
where u = (u1, . . . , uν)

⊤, v = (v1, . . . , vν)
⊤, and w = (w1, . . . , wρ)

⊤ are the asso-
ciated vectors of degree of freedoms. Note that the matrices K, Mn and M1, all
corresponding to the interior nodes, are symmetric positive definite.

2.2. Symmetric quadratic eigenvalue problems. We now show that the
GEP (2.1) can induce a symmetric QEP. In order to make the following discussion
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more concise, we first introduce some convenient notations. Let

M :=Mn −M1, F := Fn − F1, G := Gn −G1;(2.2)

K̂ = K − EG−1F⊤, M̂1 :=M1 − F1G
−1F⊤, M̂ :=M − FG−1F⊤;(2.3)

Ê = E −KM−1F, Ĝ = G− F⊤M−1F,(2.4)

and, furthermore, we assume that

(2.5)

[
M F

F⊤ G

]
≻ 0, or equivalently, M̂ ≻ 0 and G ≻ 0.

Let

Wℓ =

Iν 0 0

Iν −Iν −FG−1

0 0 Iρ

 and Wr =

 0 Iν 0

−Iν Iν 0

0 0 Iρ

 .
Then (2.1) is equivalent to the equation (WℓKWr)(W

−1
r z) = λ(WℓMWr)(W

−1
r z)

whose matrix-vector representation is given by

(2.6)

 0 K E

K̂⊤ 0 0

E⊤ 0 0


pu
w

 = λ

 0 Mn Fn

M̂⊤
1 M̂ 0

F⊤
1 F⊤ G


pu
w

 , p := u− v.

From the second row of equations in (2.6), we have

(2.7) λu = M̂−1(K̂⊤ − λM̂⊤
1 )p.

According to the third equations in (2.6), with the replacement of u by (2.7), w can
be also expressed as a function of p:

(2.8) λw = G−1[E⊤ − F⊤M̂−1K̂⊤ − λ(F⊤
1 − F⊤M̂−1M̂⊤

1 )]p.

Plugging (2.7) and (2.8) into the first row of equations in (2.6), and further replacing
Mn and Fn by M +M1 and F + F1, respectively (using (2.2)), one can show that if

we collect the terms of M̂−1M̂⊤
1 and M̂−1K̂⊤ according to the degree of λ, then we

can derive a quadratic equation in λ. Namely,

Ku+ Ew = λMnu+ λFnw

⇔ K (λu) + E(λw)− λ(M +M1)(λu)− λ(F + F1)(λw) = 0

⇔ λ2
[(

(M − FG−1F⊤) + (M1 − F1G
−1F⊤)

)
M̂−1M̂⊤

1 + FG−1F⊤
1 + F1G

−1F⊤
1

]
p

+λ
[
−
(
(M − FG−1G⊤) + (M1 − F1G

−1F⊤)
)
M̂−1K̂⊤ − FG−1E⊤

− (K − EG−1F⊤)M̂−1M̂⊤
1 − EG−1F⊤

1 − F1G
−1E⊤

]
p

+
[
(K − EG−1F⊤)M̂−1K̂⊤ + EG−1E⊤

]
p = 0

⇔ λ2
(
M1 + M̂1M̂

−1M̂⊤
1 + F1G

−1F⊤
1

)
p

+λ
(
−K − EG−1F⊤

1 − F1G
−1E⊤ − K̂M̂−1M̂⊤

1 − M̂1M̂
−1K̂⊤

)
p

+
(
K̂M̂−1K̂⊤ + EG−1E⊤

)
p = 0.
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Consequently, we show that the GEP (2.1) can be transformed to a QEP in (λ,p):

(2.9) Q(λ)p := (λ2A2 + λA1 +A0)p = 0,

where the coefficient matrices A2, A1 and A0 are given by

A2 =M1 + M̂1M̂
−1M̂⊤

1 + F1G
−1F⊤

1 ,(2.10a)

A1 = −K − K̂M̂−1M̂⊤
1 − M̂1M̂

−1K̂⊤ − EG−1F⊤
1 − F1G

−1E⊤,(2.10b)

A0 = K̂M̂−1K̂⊤ + EG−1E⊤ = KM−1K + ÊĜ−1Ê⊤.(2.10c)

Note that the last equality in (2.10c) is not obvious and requires further explanation.
The detail derivation can be found in the Appendix.

We then point out the particular matrix structures of the coefficient matrices
in (2.10). They play critical roles not only in our theoretical analysis, but also in
numerical computation of transmission eigenvalue problems.

Theorem 2.1. The coefficient matrices of the QEP (2.9) are symmetric and, in
particular, A2 and A0 are symmetric positive definite. As a result, its eigenvalues are
either real, but nonzero, or come in complex conjugate pairs (λ, λ).

Proof. The symmetry properties of the matrices A2, A1 and A0 are obvious from
(2.10). Moreover, we can further conclude that A2 and A0 are symmetric positive

definite thanks to the fact that M1, M̂ and G (see (2.5)) are symmetric positive
definite. Finally, 0 is not an eigenvalue of Q(λ) since A0 is nonsingular.

The following theorem explains the spectral relation between the QEP (2.9) as
well as the GEP (2.1). More importantly, it points out that even though the kernel
of the GEP (2.1) is as large as the number of boundary nodes, the derived QEP (2.9)
can completely avoid the disturbance of these zero eigenvalues.

Theorem 2.2. It holds that

(2.11) σ(K − λM) = {0, . . . , 0}︸ ︷︷ ︸
ρ

∪ σ(Q(λ)).

Here, σ(·) denotes the spectrum of the associated matrix pencil.
Proof. By Theorem 2.1, the QEP (2.9) has 2ν nonzero eigenvalues of K − λM.

In contrast, by inspecting (2.1), it is easy to verify that K 0 E

0 K E

E⊤ −E⊤ 0


−K−1E

−K−1E

Iρ

 = 0.

Therefore, we conclude that the assertion of (2.11) holds.
When the transmission eigenvalue problem (1.1) is associated with a constant

index of refraction n(x) = n > 0, the corresponding QEP (2.9) can be expressed in a
more concise formulation. As the index of refraction is a constant, according to the
definitions in Table 1, Mn, Fn and Gn are equal to nM1, nF1 and nG1, respectively.
In this case, M , F , G in (2.2), K̂, M̂1, M̂ in (2.3) and Ê, Ĝ in (2.4) are reduced to

M = (n− 1)M1, F = (n− 1)F1, G = (n− 1)G1;(2.12a)

K̂ = K − EG−1
1 F⊤

1 , M̂1 =M1 − F1G
−1
1 F⊤

1 , M̂ = (n− 1)M̂1;(2.12b)

Ê = E −KM−1
1 F1, Ĝ = (n− 1)(G1 − F⊤

1 M
−1
1 F1).(2.12c)
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With the substitutions of equations (2.12) into equations (2.10), we see that

A2 =M1 +
1

n− 1
(M1 − F1G

−1
1 F⊤) +

1

n− 1
F1G

−1
1 F⊤

1 =
n

n− 1
M1,(2.13a)

A1 = −K − 1

n− 1
(K − EG−1

1 F⊤
1 )− 1

n− 1
(K − F1G

−1
1 E⊤)(2.13b)

− 1

n− 1
EG−1

1 F⊤
1 −

1

n− 1
F1G

−1
1 E⊤ = −n+ 1

n− 1
K,

(2.13c) A0 =
1

n− 1
[KM−1

1 K+(E−KM−1
1 F1)(G1−F⊤

1 M
−1
1 F1)

−1(E−KM−1
1 F1)

⊤].

3. Spectral analysis of transmission eigenvalue problems. Based on the
spirit of the proof for the existence of real eigenvalues for the continuous type trans-
mission eigenvalue problem (1.1) in [7], in this section, we first prove the existence of
positive real eigenvalues of the QEP (2.9) in some suitable interval. Moreover, in the
case that the index of refraction is a constant, we will show that the associated QEP
with coefficient matrices in (2.13) has at least 2(ν− 2ρ) positive real eigenvalues.

3.1. Non-constant refractive index. Let κ, κ, µ1, µ1
, dM and dm be scalars

defined by

κ := λmax(K), κ := λmin(K), µ1 := λmax(M1), µ
1
:= λmin(M1),(3.1)

dM := max


∥∥∥∥∥∥
M̂− 1

2 M̂⊤
1

G− 1
2F⊤

1

∥∥∥∥∥∥
2

, ∥M̂−1∥, ∥G−1∥

 ,(3.2)

dm := max

σ2
min

M̂− 1
2 M̂⊤

1

G− 1
2F⊤

1

 , σmin

(
M̂−1

)
, σmin

(
G−1

) ,(3.3)

where λmax(·) and λmin(·) (respectively, σmax(·) and σmin(·)) are the maximum and
minimum eigenvalues (respectively, singular values) of a given matrix, respectively,
and the notation ∥ · ∥ denotes the matrix 2-norm. Furthermore, we let

(3.4) U⊤
σ

[
K̂⊤

E⊤

]
Vσ =

[
diag {σ1, . . . , σν}

0⊤

]

be the singular value decomposition of
[
K̂⊤

E⊤

]
with 0 < σ1 ≤ · · · ≤ σν.

Theorem 3.1. Assume that

(3.5) dm(µ
1
+ dm) > d2M and dM <

κ2

4(κσp + µ1σ
2
p)

for some p. Then there are at least p real eigenvalues of the QEP (2.9) in the interval
[τ0, τ∗] and at least p real eigenvalues in [τ∗,∞), where

(3.6) 0 < τ∗ =
κ− 2dMσp
2(µ1 + dM )

, and 0 ≤ τ0 < min

{
τ∗,

(
dm −

d2M
µ
1
+ dm

)
σ2
1

κ

}
.



8 T. LI, W.-Q. HUANG, W.-W. LIN AND J. LIU

Proof. Let τ be a positive parameter for representing λ > 0 in (2.9) and (2.10).
From (2.10) and (2.3), we have

A2 =M1 +
[
M̂1 F1

] [M̂−1

0

0

G−1

][
M̂⊤

1

F⊤
1

]
,(3.7a)

A1 = −K −
[
K̂ E

] [M̂−1

0

0

G−1

][
M̂⊤

1

F⊤
1

]
−
[
M̂1 F1

] [M̂−1

0

0

G−1

][
K̂⊤

E⊤

]
,(3.7b)

A0 =
[
K̂ E

] [M̂−1

0

0

G−1

][
K̂⊤

E⊤

]
.(3.7c)

Then, from (3.7) and (3.1)–(3.4), the Rayleigh quotient of Q(τ) in (2.9) with respect
to a unit vector v ∈ Rν has the following relation:

v⊤Q(τ)v(3.8)

=

∥∥∥∥∥∥
[
M̂− 1

2

0

0

G− 1
2

][
K̂⊤

E⊤

]
v − τ

[
M̂− 1

2 M̂⊤
1

G− 1
2F⊤

1

]
v

∥∥∥∥∥∥
2

+ τ2v⊤M1v + τv⊤Kv

≥ dm

∥∥∥∥∥
[
K̂⊤

E⊤

]
v

∥∥∥∥∥
2

− 2τdM

∥∥∥∥∥
[
K̂⊤

E⊤

]
v

∥∥∥∥∥+ dmτ
2 + µ

1
τ2 − κτ

= (µ
1
+ dm)

(
τ − dM

µ
1
+ dm

∥∥∥∥∥
[
K̂⊤

E⊤

]
v

∥∥∥∥∥
)2

+

(
dm −

d2M
µ
1
+ dm

)∥∥∥∥∥
[
K̂⊤

E⊤

]
v

∥∥∥∥∥
2

− κτ

≥ σ2
1

(
dm −

d2M
µ
1
+ dm

)
− κτ

and we can deduce that v⊤Q(τ)v > 0 provided 0 < τ <
(
dm − d2

M

µ
1
+dm

)σ2
1

κ . Since the

eigenvalues of Q(τ) are continuous, from (3.8), the eigenvalue curves {λj(τ)}nj=1 of

Q(τ) with λ1(τ) ≤ · · · ≤ λn(τ) are all larger than zero for 0 < τ < τ0, where τ0 is
given by (3.6).

On the other hand, from (3.1)–(3.4) and (3.7), the Rayleigh quotient of Q(τ) with
respect to a unit vector v ∈ span {Vσ,p} satisfies

v⊤Q(τ)v = τ2

(
v⊤M1v + v⊤

[
M̂1 F1

] [M̂−1M̂⊤
1

G−1F⊤
1

]
v

)
− τ(v⊤Kv)(3.9)

− τv⊤

([
K̂ E

] [M̂−1M̂⊤
1

G−1F⊤
1

]
+
[
M̂1M̂

−1 F1G
−1
] [K̂⊤

E⊤

])
v

+ v⊤
[
K̂ E

] [M̂−1 0

0 G−1

][
K̂⊤

E⊤

]
v

≤ τ2(µ1 + dM )− τκ+ 2τdMσp + dMσ
2
p

for τ > 0. By assumption, it is clear that τ∗ in (3.6) is positive and minimizes the
right hand side of (3.9).

Substituting τ∗ into the right-hand side of the last inequality in (3.9), we get

v⊤Q(τ∗)v ≤ − (κ− 2dMσp)
2

4(µ1 + dM )
+ dMσ

2
p < 0,
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provided that the assumption (3.5) holds. Since σj is of the increasing order in j,

we know that dM ≤ κ2

4(κσj+µ1σ
2
j )

for 1 ≤ j ≤ p, and hence we can deduce that

vQ(τ∗)v < 0 for v ∈ span {Vσ,p}.
For a given τ0 satisfies (3.6) we see that the eigenvalue curves of Q(τ) in (2.9)

satisfy λj(τ
∗) < 0 for j = 1, . . . , p. It is clear that λj(∞) > 0, j = 1, . . . , p. By Inter-

mediate Value Theorem, we conclude that [τ0, τ∗] and [τ∗,∞), respectively, contain
at least p real eigenvalues of Q(τ).

3.2. Constant refractive index. We now consider the case of constant index
of refraction, i.e., n(x) = n > 1. In this situation, the coefficient matrices of the QEP
(2.9) are as shown in (2.13).

For the theoretical derivation, we first note that sinceG1−F⊤
1 M

−1
1 F1 is symmetric

positive definite (cf. (2.5)), A0 in (2.13c) can be further written as

(3.10) A0 = KM−1
1 K +K0K

⊤
0 ,

where K0 := (E −KM−1
1 F1)(G1 − F⊤

1 M
−1
1 F1)

− 1
2 with rank(K0) = ρ. So, by (2.13)

and (3.10), the QEP (2.9) with constant index of refraction n > 1 can be simplified
to

(3.11) Qn(λ)p :=
[
λ2nM1 + λ(−n− 1)K + (KM−1

1 K +K0K
⊤
0 )
]
p = 0.

Lemma 3.2. Let P2, P1, P0 be ν × ν so that P⊤
2 = P2 ≻ 0, P⊤

1 = P1 and
P⊤
0 = P0 ≻ 0. Consider the linear symmetric GEP in τ ∈ R.

(3.12) P (τ)x(τ) = β(τ)P0x(τ), P (τ) := −P1 − τP2.

Let β1(τ) ≤ · · · ≤ βν(τ) be the eigenvalue curves of the matrix pair (P (τ), P0), and
xj(τ) be the associated eigenvector satisfying x⊤

i P0xj = δij, i, j = 1, . . . ,ν, where δij
denoted the Kronecker delta. Then

(i) βj(τ) ∈ R is strictly decreasing in τ for each j = 1, . . . ,ν [13].
(ii) (λ,x) is an eigenpair of the QEP

(3.13) (λ2P2 + λP1 + P0)x = 0

with x⊤P0x = 1 if and only if (β(λ),x) is an eigenpair of (3.12) and

(3.14) β(λ) =
1

λ
.

Proof.
(i) Given τ ∈ R. Since P (τ) = −P1 − τP2 is symmetric and P0 is symmetric

positive definite, we know that all eigenvalues of (3.12) are real. From [16],
the positive definiteness of P0 implies that β(τ) is differentiable for all but a
finite number of τ . Moreover, since, for j = 1, . . . ,ν,

(3.15) βj(τ) = x⊤
j P (τ)xj(τ),

and 2p⊤
j (τ)

′A0pj(τ) =
d
dτ (p

⊤
j (τ)A0pj(τ)) =

d
dτ 1 = 0, one can see that if we

take the derivative of βj(τ) in (3.15) with respect to τ and note that A2 ≻ 0,
then

β′
j(τ) = 2p⊤

j (τ)
′A(τ)pj(τ) + p⊤

j (τ)A
′(τ)pj(τ)

= 2βj(τ)p
⊤
j (τ)

′A0pj(τ)− p⊤
j (τ)A2pj(τ) = −p⊤

j (τ)A2pj(τ) < 0,
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which indicates that the eigenvalue curves βj(τ), j = 1, . . . ,ν, are strictly
decreasing.

(ii) First, we note that λ ̸= 0 since P0 is invertible (cf. Theorem 2.1). The
equation (3.14) follows directly from the fact that (λ,x) with λ ̸= 0 and
x⊤P0x = 1 is an eigenpair of the QEP (3.13) if and only if

(−P1 − λP2) =
1

λ
P0x.

Theorem 3.3. A real eigenvalue of the QEP (3.11) (if it exists) must be positive.
Proof. Consider the linear GEP(

(n+ 1)K − τnM1

)
p(τ) = β(τ)A0p(τ), τ ∈ R,

where A0 is defined as in (3.10). By Lemma 3.2 (ii), λ is a real eigenvalue of the
QEP (3.11) if and only if βj(λ) intersects the hyperbola y = 1/τ for some j, i.e.,
βj(λ) = 1/λ. When τ = 0, since K and A0 both are symmetric positive definite, and
n > 0, we have βj(0) > 0, j = 1, . . . , ν. Nevertheless, as shown is Lemma 3.2 (i),
βj(τ) is strictly decreasing in τ , for j = 1, . . . , ν, it follows that βj(λ) = 1/λ holds
only for λ > 0.

Consider the spectrum decomposition of (K,M1),

(3.16a) Kxi = ξiM1xi

with eigenpairs (ξi,xi) satisfying

(3.16b) 0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξν and x⊤
i M1xj = δij , i, j = 1, . . . ,ν.

Theorem 3.4. The QEP Qn(λ) in (3.11) has at least 2(ν−2ρ) real eigenvalues.
To prove this theorem, we first introduce the following lemma.

Lemma 3.5. Consider ν × ν matrices A⊤ = A, B̂ = B̂⊤ ≻ 0 and B = B̂ + bb⊤

with rank(b) = ρ≪ ν. Let β1 ≤ · · · ≤ βν and β̂1 ≤ · · · ≤ β̂ν be ordered eigenvalues of

matrix pairs (A,B) and (A, B̂), respectively. Then, we have the inequalities

β̂j ≥ βj ≥ β̂j−2ρ, j = 1, . . . ,ν,

with β̂j−2ρ = −∞ if j − 2ρ ≤ 0.

Proof. Let B̂ = LL⊤ be the Cholesky decomposition of B̂. Then

(A, B̂)
eq.∼ (Aℓ, Iν), Aℓ := L−1AL−⊤,(3.17)

(A,B)
eq.∼ (Aℓ, (Iν + bℓb

⊤
ℓ )), bℓ := L−1b.(3.18)

Here,
eq.∼ denotes the equivalence transformation between matrix pairs.

Since Iν + bℓb
⊤
ℓ is symmetric positive definite, there exists an orthogonal Qℓ

such that Iν + bℓb
⊤
ℓ = Qℓ

(
Iν +

[
D2

ρ

0
0
0

])
Q⊤

ℓ with D2
ρ = diag

{
d21, . . . , d

2
ρ

}
≻ 0.

Therefore, performing congruence transformations consecutively on the matrix pair

(Aℓ, (Iν + bℓb
⊤
ℓ )) in (3.18) by matrices Qℓ and Jν = Iν −

[
∆ρ

0

][
Iρ 0

]
with ∆ρ =

diag
{
1− 1√

1+d2
i

}ρ

i=1
, we can obtain the following equivalence relation:

(Aℓ, (Iν + bℓb
⊤
ℓ ))

eq.∼
(
Q⊤

ℓ AℓQℓ,

[
Iν +D2

ρ

0

0

0

])
(3.19)

eq.∼
(
JνQ

⊤
ℓ AℓQℓJν, Iν

)
= (Q⊤

ℓ AℓQℓ − FℓF
⊤
ℓ , Iν),
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where Fℓ =
[

∆ρ

0

∣∣∣Aρ

][
Âρ

Iρ

Iρ
0

][
∆ρ 0

A⊤
ρ

]
∈ Rν×2ρ with Aρ = Q⊤

ℓ AℓQℓ

[
Iρ
0

]
∈ Rν×ρ and

Âρ =
[
Iρ 0

]
Aρ ∈ Rρ×ρ.

Applying the interlace theorem [21, Chapter 10] to (3.17)–(3.19) we have that

β̂j ≥ βj ≥ β̂j−2ρ, for j = 1, . . . ,ν.
Proof of Theorem 3.4. Throwing away the low-rank term of Qn(λ) in (3.11), we

define

(3.20) Q̂n(λ) := λ2nM1 − λ(n+ 1)K +KM−1
1 K.

For Qn(λ) in (3.11), let (βj(τ),pj(τ)), j = 1, . . . ,ν, be eigenpairs of the GEP

(3.21)
(
(n+ 1)K − τnM1

)
pj(τ) = βj(τ)

(
KM−1

1 K +K0K
⊤
0

)
pj(τ).

For Q̂n(λ) in (3.20), let (β̂j(τ), p̂j(τ)), j = 1, . . . ,ν, be eigenpairs of the GEP

(3.22)
(
(n+ 1)K − τnM1

)
p̂j(τ) = β̂j(τ)KM

−1
1 Kp̂j(τ);

Applying Lemma 3.5 to (3.22) and (3.21) we get

(3.23) β̂j(τ) ≥ βj(τ) ≥ β̂j−2ρ(τ).

According the eigendecomposition of (K,M1) in (3.16), we can compute the 2ν’s

eigenvalues of Q̂n(λ) by solving the ν’s quadratic equations x⊤
i Q̂n(λ)xi = 0, i =

1, . . . ,ν. Actually, one can see that the 2ν’s eigenvalues of Q̂n(λ) are real with values
given by (

λ̂−i , λ̂
+
i

)
=

1

2n

(
(n+ 1)ξi −

√
∆i, (n+ 1)ξi +

√
∆i

)
=
( 1
n
ξi, ξi

)
,

where ∆i = (n+ 1)2ξ2i − 4nξ2i = (n− 1)2ξi for i = 1, . . . ,ν.

Now, we can connect the relation between the eigenvalues {λ̂−i , λ̂
+
i } of Q̂n(λ) as

well as the eigenvalue cures β̂j(τ) in (3.22). By Lemma 3.2, β̂j(τ) is strictly decreasing

in τ so that β̂j(τ) intersects the hyperbola y = 1/τ > 0 at two points λ̂−ν−j+1 and

λ̂+ν−j+1 with β̂j(λ̂
−
ν−j+1) = n/ξν−j+1 and β̂j(λ̂

+
ν−j+1) = 1/ξν−j+1, for j = 1, . . . ,ν.

From (3.23), we have

βν(λ̂
+
ν ) ≥ βν−1(λ̂

+
ν ) ≥ · · · ≥ β2ρ+1(λ̂

+
ν ) ≥ β̂1(λ̂+ν ) =

1

λ̂+ν
> 0.

Since βj(τ) is also strictly decreasing, it follows that βj(τ) must intersects y = 1
τ > 0

at two points, for j = 2ρ+1, . . . ,ν. Therefore, we deduce that Qn(λ) has no less than
2(ν− 2ρ) real eigenvalues.

Theorem 3.6. The QEP (3.11) only has real eigenvalues when the index of
refraction n is sufficiently large so that

√
n+ 1/

√
n ≥ 2θ/ξ1, where ξ1 is the smallest

positive eigenvalue of (K,M1) and θ :=

∥∥∥∥[M
− 1

2
1 K

K⊤
0

]∥∥∥∥.
Proof. Given p ∈ Rν with p⊤M1p = 1, we see that

(3.24) p⊤Qn(λ)p = nλ2 − (n+ 1)(p⊤Kp)λ+

∥∥∥∥∥
[
M

− 1
2

1 K

K⊤
0

]
p

∥∥∥∥∥
2

.
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According to the arrangement of ξi in (3.16b), the discriminant of (3.24) satisfies

(n+ 1)2(p⊤Kp)2 − 4n

∥∥∥∥∥
[
M

− 1
2

1 K

K⊤
0

]
p

∥∥∥∥∥
2

≥ (n+ 1)2ξ21 − 4nθ2 ≥ 0,

provided that
√
n+1/

√
n ≥ 2θ/ξ1. Thus, the QEP (3.24) has only real eigenvalues if

n is sufficiently large.
The foregoing theorems indicate the appropriate requirements of the index of

refraction n > 1 for the QEP (3.11) to guarantee the existence of real eigenvalues. In
contrast, the following theorem states that, under what conditions of n together with
a specified eigenpair, the corresponding eigenvalue is complex.

Theorem 3.7. Let (λ,p) be an eigenpair of the QEP (3.11). If n > 1 in Qn(λ)
is sufficiently small with O(n − 1) < σmin(K0)

1 and if the associated eigenvector p
satisfies p ∩ span{K0} ≠ ∅. Then λ is a complex eigenvalue.

Proof. Write p =
∑ν

i=1 αixi with p ∩ span{K0} ̸= ∅ and p⊤M1p = 1. Then,
from (3.16) follows that

p⊤Qn(λ)p = nλ2 − (n+ 1)

( ν∑
i=1

ξiα
2
i

)
λ+

ν∑
i=1

ξ2i α
2
i + p⊤K0K

⊤
0 p

= [1 + (n− 1)]λ2 − [2 + (n− 1)]

( ν∑
i=1

ξiα
2
i

)
λ+

ν∑
i=1

ξ2i α
2
i + p⊤K0K

⊤
0 p.

Thus, when O(n− 1) < σmin(K0), the discriminant of p⊤Qn(λ)p = 0 is negative as

4

[ ( ν∑
i=1

ξiα
2
i

)2

−
ν∑

i=1

ξ2i α
2
i︸ ︷︷ ︸

=−
∑

i<j(ξi−ξj)2α2
iα

2
j

− p⊤K0K
⊤
0 p

]
+O(n− 1) < 0.

In other words, the eigenvalue λ of the QEP (3.11) is complex.

4. The Secant-Type Iteration. The existence and location of positive real
transmission eigenvalues are important in practice due to the fact that only a few
lowest positive real eigenvalues of (1.1) are required in order to estimate the index
of refraction in inverse scattering theory [2]. To this end, we develop an efficient
and robust eigensolver for solving the derived QEP (2.9) to detect some positive real
transmission eigenvalues of (1.1).

Linearization is a classical strategy to treat a QEP [25]. For example, in order to
find the smallest positive eigenvalue of the QEP (2.9), one can, through the linearizing
process, transform the QEP (2.9) into an equivalent GEP:

(4.1)

[
−A1 −A2

Iν 0

][
p

λp

]
=

1

λ

[
A0 0

0 Iν

][
p

λp

]
.

On the one hand, the size of the enlarged problem (4.1) is smaller in contrast to
(2.1); on the other hand, (4.1) does not suffer from the influence of the nonphysical
transmission eigenvalue λ = k2 = 0 as A0 is symmetric positive (cf. Theorem 2.1 and
Theorem 2.2).

1Here O denotes the “big O”.
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Then, we can compute the extreme eigenvalues and associated eigenvectors of
(4.1) by applying iteration schemes, such as the Arnoldi method [1, 12]. However, the
desired positive real eigenvalues may not be the extreme values owing to the possibility
of the existence of complex transmission eigenvalues. Even though one can further
consider the shifted-and-invert technique to detect the desired eigenvalues in some
suitable region, we may still lose some positive real eigenvalues under inappropriate
selections of the shift value. Moreover, in practice, an explicit factorization of the
shifted operator, σ2A2 + σA1 + A0 with a shift σ, is hard to compute because the
matrix K̂M̂−1K̂ in (2.10c) is dense so that it is impossible to formally construct A0

when ν is large.
Fortunately, based on the symmetry and positive definiteness of the matrices in

(2.10), in what follows, we will propose a secant-type iteration to find a few, if any,
smallest positive real eigenvalues of the QEP (2.9) via the idea in [13].

Given a τ ≥ 02, we now consider the linear symmetric eigenvalue problem in τ

(4.2) A(τ)p(τ) = β(τ)A0p(τ), A(τ) := −A1 − τA2.

By Lemma 3.2, we know that all eigenvalue curves βq(τ) of (4.2) are real and are
decreasing in τ for q = ν, . . . , 1. Furthermore, λ is a positive real eigenvalue of the
QEP (2.9) if and only if it is a fixed point of one of the curves 1/βq(λ) for some
q = ν, . . . , 1, i.e.,

βq(λ) =
1

λ
.

This motivates us to develop a secant-type iteration to compute some smallest positive
eigenvalues of (2.9). Algorithm 4.1 summarizes the practical details.

( ) ( ) - ( ) -a secant b pseudo secant c mixed secant

Fig. 1: Secant-type update

4.1. Geometrical explanation of the Secant-Type Iteration. To seek “the
dth smallest” positive real eigenvalue λd of the QEP (2.9), the Secant-Type Iteration
(Algorithm 4.1) intends to find the intersection point of “the qth largest”, q = ν−d+1,
eigenvalue curve βq(τ) and the hyperbola y = 1/τ . The iterative procedure starts with
the initial guess (τs, τt) as in lines 2 and 4 of Algorithm 4.1, and successively updates
the τ -pair via three appropriate strategies – secant, pseudo-secant and mixed-secant
(see Figure 1). In all three cases, the point (τs, βq(τs)) is always kept below the
hyperbola (cf. Figure 1). For convenience, we omit the index q and denote βs and

2Since we are only interested in finding the positive real eigenvalues of the QEP (2.9), we restrict
our discussion on the case τ ≥ 0.
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Algorithm 4.1: The Secant-Type Iteration

Input: A2, A1, A0, s: number of desired eigenpairs, tol : convergent tolerance.
Output: The s smallest eigenpairs (λd,pd), d = 1, . . . , s, of the QEP (2.9).

1 for d = 1, . . . , s do
2 set τs = λd−1 with λ0 := 0 and set q = ν− d+ 1;
3 find the qth largest eigenpair (βq(τs), zq(τs)) of (A(τs), A0), where A(τ) is

defined as in (4.2);

4 set τt =
1

βq(τs)
;

5 repeat
6 if |τs − τt| < tol then
7 return (λd,pd) = (τt, zq(τt));
8 else
9 find the qth largest eigenpair (βq(τt), zq(τt)) of (A(τt), A0);

10 set a = βq(τt)− βq(τs), b = τtβq(τs)− τsβq(τt) and c = τs − τt;
11 if τtβq(τt) < 1 then
12 τs ← τt, βq(τs)← βq(τt) and zq(τs)← zq(τt);
13 if b2 − 4ac > 0 then % secant update

14 τt ← −b+sign(b)
√
b2−4ac

2a ;

15 else % pseudo-secant update

16 τt ←
1+
√

1−τtβq(τt)

βq(τt)
;

17 end

18 else if τtβq(τt) > 1 then % mixed-secant update

19 find the qth largest eigenpair (βs
q , z

s
q) of (A(

1
βq(τs)

), A0);

20 τs ← 1
βq(τs)

, βq(τs)← βs
q and zq(τs)← zsq;

21 τt ← −b+sign(b)
√
b2−4ac

2a ;

22 end

23 end

24 until the dth largest positive real eigenpair (λd,pd) is convergent

25 end

βt the values of the qth eigenvalue curve βq(τ) evaluated at the points τs and τt,
respectively.

• Secant update: The update criterion is primarily divided into two cases ac-
cording to the location of the point (τt, βt). When (τs, βs) and (τt, βt) both lie below
the hyperbola, we first inspect whether the secant line through (τs, βs) and (τt, βt)
intersects with the hyperbola curve y = 1/τ . If so, we separately update the point
(τs, βs) by (τt, βt) and update τt by the intersection point of which is closer to the
vertical axis (see Figure 1(a)). If the difference of τs and τt is small enough, we have
caught the desired eigenvalue; otherwise, we solve the GEP (A(τt), A0) to obtain βt
and continue the step of the next iteration. This strategy is named by the secant
update.

• Pseudo-secant update: The hyperbola and the secant line through the points
(τs, βs) and (τt, βt), however, may not always intersect each other. In this case, the
classical secant iteration, such as in [13], may update τt by the fixed-point iteration
(or basic iteration), i.e., τt ← 1

βt
, for the next iterative process. Here, to accelerate
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the convergence behavior, we modify this procedure by a pseudo-secant update. From
Figure 1(b), one can see that we “create” a secant line from the point (τt, βt) to an
unknown point (τ, 1τ ) with τ > τt so that this secant line is tangent to the hyperbola
at the point (τ, 1τ ). Once, the unknown τ on the hyperbola is solved with τ > τt, we
then update (τs, βs)← (τt, βt) and τt ← τ , respectively.
• Mixed-secant update: It is surely possible that we may encounter the case

τtβt > 1 (as in Figure 1(c)). In this case, we know that the line from (τs, βs) to (τt, βt)
must intersect the hyperbola and, moreover, the desired eigenvalue must be located
between τs and τt. Therefore, we update τt using the strategy of the secant update. In
addition, we also use the fixed-point iteration to update τs ← 1

βs
. In order to further

update βs, we need to solve the qth largest eigenpair of GEP (A( 1
βs
), A0). On the one

hand, such an update can maintain the updated (τs, βs) is still below the hyperbola
(since the eigenvalue curves are strictly decreasing). On the other hand, the fixed
point iteration can be viewed as a pseudo-secant iteration by creating a secant line
from (τs, βs) to the point ( 1

βs
, βs) on the hyperbola. From this viewpoint, we call this

update procedure the mixed-secant update.

4.2. Practical implementations. At the first glance, in order for the Secant-
Type Iteration to solve the QEP (2.9), we have to generate the coefficient matrices
A2, A1 and A0 in (2.10), respectively. However, it is not possible to construct these
matrices beforehand as the resulting matrices may be dense. Instead, we consider how
to perform the matrix-vector multiplications and how to solve some linear systems
through these matrices in (2.2)–(2.4) based on suitable eigensolvers to the symmetric
definite GEP (4.2) in lines 3, 9 and 19 of Algorithm 4.1.

The generalized Lanczos scheme [26] is an efficient algorithm to solve the sym-
metric definite GEP (4.2) as A0 is symmetric positive definite and, for a given τ ≥ 0,
A(τ) is symmetric. Thus, in order to generate the (generalized) Lanczos vectors, we
are required to compute the matrix-vector multiplications A2q, A1q and A0q, and to
solve the linear system A0x = b for given ν-vectors q and b.

In the implementation, we will generate the matrices in (2.2)–(2.4) in advance and
use the formulas (2.10) to compute the matrix-vector multiplications. For example,
the multiplication of A0 and q, via the MATLAB notation, is to compute

K̂*(M̂\(K̂′*q)) + Ê ∗ (G\(Ê′*q)).

On the other hand, to solve the linear system A0x = b, we adopt the representation
of A0 in the second equality of (2.10c) and apply the Sherman-Morrison-Woodbury
formula [12] to write the inverse of A0 as follows

A−1
0 = (KM−1K + ÊĜ−1Ê⊤)−1(4.3)

= K−1MK−1 −K−1MK−1Ê(Ĝ+ Ê⊤K−1MK−1Ê)−1Ê⊤K−1MK−1

= K−1(M − Z0C
−1
0 Z⊤

0 )K−1,

where Z0 = MK−1Ê and C0 = Ĝ + (K−1Ê)⊤Z0. Finally, we remark that since
M ≻ 0 and G ≻ 0, we have C0 ≻ 0. Therefore, to further improve the performance of
solving the linear system A0x = b by (4.3), we can compute the Cholesky of K, M

and Ĝ, respectively, before calling the Secant-Type Iteration.

5. Numerical experiments. In what follows, we will demonstrate that the
derived QEPs (2.9) and (3.11) enable us to consider more finer mesh discretization to
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overcome the limitation on the number of degree of freedoms in [10]. Furthermore,
we will also show the efficiency and robustness of Algorithm 4.1 for computing some
desired positive real transmission eigenvalues.

The numerical experiments in this paper are carried out using MATLAB R2013a
on a MacBook Pro Retina with 2.6GHz Intel Core i5 processor and 8GB of RAM.
The computed transmission eigenvalues by means of Algorithm 4.1 are consistent with
values obtained by running the MATLAB codes in [14] for the attached coarse mesh
data.

In all examples, we compute the first four positive real eigenvalues of the QEP
(2.9) through Algorithm 4.1. The triangulation of a given domain was generated by a
MATLAB toolbox called DistMesh [22]. The stopping criterion tol in Algorithm 4.1
and the tolerance by calling the generalized Lanczos scheme [26] are set by 10−6 and
10−14, respectively. For a given mesh size, we use λhj to denote the jth smallest positive

real eigenvalue of the QEP (2.9) computed by Algorithm 4.1 and use khj :=
√
λhj to

indicate the corresponding transmission eigenvalue, j = 1, 2, 3, 4.

5.1. Model problems with the constant index of refraction n(x) = 16.
Setting n = 16, we first compute the four positive real transmission eigenvalues on
various domains: (i) a disk centered at (0, 0) with radius 1/2; (ii) a unit square

centered at the origin; (iii) a triangle with vertices (−
√
3
2 ,−

1
2 ), (

√
3
2 ,−

1
2 ) and (0, 1);

(iv) a dumbbell consisting of two disks, both with radius 1/2 and centered at (-1,0)
and (1,0) respectively, connected by a rectangular channel centered at (0, 0) with
the width 2 and the height 1; and (v) a peanut-like region enclosed by the equation

x21+x
2
2 = 1

4 +
x2
1

x2
1+x2

2
(see Figure 2). The triangulation of each domain is of the regular

mesh size h ≈ 0.004.

Fig. 2: Model domains

The first four desired transmission eigenvalues for each domain are shown in
Table 2 and the contours plots of the associated u-vectors as well as v-vectors, which
have the connections (2.7) and (2.8) together with each eigenpair (λ,p), are given in
Figure 4. Note that A2, A1, A0 in the QEP (3.11) are ν×ν matrices and K0 in (3.10)
is a ν× ρ matrix. Figure 3 presents the relative residuals

(5.1)
∥(λ2A2 + λA1 +A0)

p
∥p∥2
∥2

|λ|2|n(x)|∥M1∥2 + |λ||n(x) + 1|∥K∥2 + ∥A0∥2
,

with n(x) = 16, and the inner-outer iterations for computing the desired eigenvalues
of each domain. Here, the so-called “outer iteration” is the iteration numbers of the
Secant-Type Iteration; and the “inner iteration” records the number of steps (i.e.,
the dimension of the associated Krylov subspace) by calling the generalized Lanczos
scheme [26] to solve the GEPs in lines 3, 9 and 19 of Algorithm 4.1.
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Domain
Degree of Freedoms Transmission Eigenvalues

ν ρ kh1 kh2 kh3 kh4

disk 55,901 780 1.988092 2.613109 2.613123 3.226967

square 71,321 1,076 1.879649 2.444358 2.444358 2.866634

triangle 93,114 1,302 1.818525 2.287172 2.287173 2.837825

dumbbell 149,051 1,871 1.961928 1.961985 2.517941 2.518188

peanut 168,548 1,492 1.452506 1.503795 1.703846 1.987087

Table 2: The first four transmission eigenvalues with n(x) = 16 and h ≈ 0.004.

(a) Relative residuals (b) Inner-outer iterations

Fig. 3: (a) Relative residuals (5.1) of the QEP (3.11) with the desired approximate
eigenpairs (λ,p) for the case n(x) = 16. (b) The number of bars represents iteration
numbers of the loop 5–24 in Algorithm 4.1; while the height of each bar is the number
of steps by calling the generalized Lanczos scheme [26].

The numerical experiments reveal that, even we refine the mesh size so that
h ≈ 0.004 is less than one-tenth of the mesh sizes in [10, 24], the novel Secant-Type
Iteration can accurately and efficiently compute some lowest positive real transmission
eigenvalues of the problem (1.1). The relative residuals are roughly of the order eps
and the Secant-Type Iteration can fast capture the desired eigenvalues with iteration
numbers no more than four steps. From the observation of the numbers of outer
iterations for computing λh3 on the domains square and triangle, we see that the
Secant-Type Iteration can quickly capture λh3 with 2 iterations. This is because that
the difference between λh2 and λh3 are very small (see Table 2) so that when λh2 is
convergent, it is indeed a good initial guess τs instead of setting τs = 0 for finding λh3 .
Therefore, when we need to compute a few transmission eigenvalues, the experiment
indicates that the latest computed approximate eigenvalue would be a good initial
value for finding the next desired one (see line 2 of Algorithm 4.1), especially when
the adjoint eigenvalues are very close to each other.

5.2. Model problems with non-constant n(x). Next, we consider the case
when the index of refraction n(x) is not a constant. To compare with the known
results presented in [23, 24, 14], we consider the domains disk and square as described
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(a) Disk domain.
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(b) Square domain.
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(c) Triangle domain.

Fig. 4: The contour plots of the u-vectors (the first row) and the v-vectors (the second
row) corresponding to the transmission eigenvalues with n(x) = 16 and h ≈ 0.004.
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(d) Dumbbell domain.
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(e) Peanut domain.

Fig. 4: The contour plots of the u-vectors (the first row) and the v-vectors (the second
row) corresponding to the transmission eigenvalues with n(x) = 16 and h ≈ 0.004.

in subsection 5.1, and choose the indices of refraction as 8 + 4|x| and 8 + x1 − x2,
respectively. The mesh sizes and triangulations are kept the same as in Table 2. The
numerical results are shown in Table 3 and the contour plots of the u-vectors and
v-vectors corresponding to each transmission eigenvalue are presented in Figure 5.

5.3. Efficiency and robustness of the Secant-Type Iteration. For the
transmission eigenvalue problem (1.1), there are two major advantages on consider-
ing the QEP (2.9) and further on solving (2.9) by the Secant-Type Iteration method
for the parameterized GEPs (4.2): (i) The influence of nonphysical zero eigenvalues
of (1.1) can be eliminated; (ii) Positive real transmission eigenvalues can be com-
puted, avoiding any complex ones. To demonstrate these superiorities, we compare
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Domain n(x)
Transmission Eigenvalues

kh1 kh2 kh3 kh4

disk 8 + 4|x| 2.759592 3.527535 3.527555 4.308419

square 8 + x1 − x2 2.822306 3.538893 3.539185 4.118040

Table 3: Transmission eigenvalues for non-constant index of refraction n(x) with
h ≈ 0.004.
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(a) Disk domain with n(x) = 8 + 4|x|.
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(b) Square domain with n(x) = 8 + x1 − x2.

Fig. 5: The contour plots of the u-vectors (the first row) and the v-vectors (the second
row) corresponding to the transmission eigenvalues with h ≈ 0.004.
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the numerical results of the QEP (2.9) with those of its linearized GEP (4.1).

In this example, we consider the discretization on the disk domain centered at
(0, 0) with radius 0.5. The mesh size h is set to be 0.002 which produces a discrete
triangular mesh with interior nodes ν = 225, 134 and boundary points ρ = 1, 571.
Moreover, the index of refraction is taken by n(x) = 1.2.

As mentioned in section 4, it is difficult to apply the shifted-and-invert technique
for the QEP (2.9) or the corresponding linearized GEP (4.1) since the resulting ma-
trices may be dense. Thus, we first rewrite the linearized GEP (4.1) to the following
standard eigenvalue problem

(5.2)

[
−A−1

0 A1 −A−1
0 A2

Iν 0

][
p

λp

]
=

1

λ

[
p

λp

]
.

and then call the MATLAB built-in function eigs to compute the first 600 largest
magnitude eigenvalues of (5.2) with a function handle computing matrix-vector prod-
ucts and solving linear systems without explicitly forming coefficient matrices (cf.
subsection 4.2). The distribution of these eigenvalues are shown in Figure 6 (a). As a
comparison, we implement the Secant-Type Iteration on the parameterized GEP (4.2)
induced by (2.9) to compute the first four lowest positive real transmission eigenval-
ues λhj , j = 1, 2, 3, 4. The values of the approximate eigenvalues are also marked in
Figure 6 (a) and they are exactly the first four positive real eigenvalues computed by
(5.2) (with difference less than 10−7). Moreover, we also give the contour plots of the
u-vectors and v-vectors corresponding to each transmission eigenvalue in Figure 7.

To demonstrate the efficiency of Algorithm 4.1, we compare the iteration num-
bers of the Secant-Type Iteration with those of the classical secant iteration. The
classical secant iteration will use the secant update (line 14 of Algorithm 4.1) when
the hyperbola and the secant line pass through (τs, βq(τs)) and (τt, βq(τt)) have inter-
section points; otherwise, (τs, βq(τs))← (τt, βq(τt)) and τt ← 1

βt
. Table 4 records the

iteration numbers by performing these two methods to compute the first four positive
real transmission eigenvalues, and Figure 6 (b) presents the iteration processes of the
eigenvalue curve βν(τ) for finding λ1.

•Robustness: From Figure 6 (a), we see that, when n(x) = 1.2, the transmission
eigenvalue problem (1.1) has numerous complex eigenvalues, and the lowest positive
real transmission eigenvalues are very far away from the origin. On the one hand, since
the shifted-and-invert technique cannot be used to improve the efficiency, to solve
the enlarged eigenvalue problem (5.2) will additionally compute a lot of unwanted
complex eigenvalues. On the other hand, even if we can apply the shifted-and-invert
technique, inappropriate choices of shift values may lose some desired real eigenvalues.
In contrast, using the novel Secant-Type Iteration to solve the parameterized GEP
(4.2) can accurately and robustly capture the wanted eigenvalues without losing the
actual information.

• Efficiency: Table 4 shows that the classical secant iteration costs much more
iteration processes, compared with the Secant-Type Iteration, to compute the desired
eigenvalues. This is due to that, from Figure 6 (b), the eigenvalue curves are very close
to the hyperbola which increases the difficulty for finding the intersection points. To
our experiment, the Secant-Type Iteration takes 35 iteration numbers to find the first
positive real eigenvalue of the QEP (2.9), but, the classical secant iteration requires
575 iteration steps, which is more than 16 times compared with our method, to
capture this value. This indicates that the strategies of the pseudo-secant update and
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the mixed-secant update in Algorithm 4.1 can indeed accelerate the convergence rate
and reveals the efficiency of the novel Secant-Type Iteration proposed in this paper.

(a) Eigenvalues of (4.1) (b) Iterations of βν(τ)

Fig. 6: (a) The eigenvalue distribution of the GEP (4.1) with n(x) = 1.2 and the first
four smallest positive real eigenvalues. (b) The iteration processes of the eigenvalue
curve βν(τ) computed by Secant-Type Iteration and the classical secant iteration.

Method
Iteration Numbers

λh1 λh2 λh3 λh4

Secant-Type Iteration 35 8 6 14

Classical Secant Iteration 575 11 4 63

Table 4: Iteration numbers by running the Secant-Type Iteration and the classical
secant iteration to compute the first four positive transmission eigenvalues on the disk
domain with n(x) = 1.2 and h ≈ 0.002.

6. Conclusions. The study of efficient eigensolvers for the transmission eigen-
value problem is a challenging and important issue. To this end, based on the contin-
uous finite element discretization method in [10], we derive a symmetric QEP induced
from the GEP (2.1) to exclude the influence of nonphysical zero eigenvalues so as to
detect a few desired transmission eigenvalues by existing iterative methods instead of
finding the whole spectra of (2.1). According the derived QEP, we analyze various
existence intervals of positive real eigenvalues and indicate some sufficient conditions
for the possibility of complex eigenvalues.

In order to capture the positive real transmission eigenvalues which are of prac-
tical interest in the inverse scattering theory, we further transform the QEP to the
symmetric definite GEP (4.2) with a parameter τ ≥ 0 so that we can exactly avoid
any complex transmission eigenvalues and find the positive real eigenvalues by solving
the intersection points of the hyperbola as well as the eigenvalue curves of (4.2). To
achieve this goal, we develop a novel Secant-Type Iteration method (Algorithm 4.1)
which is a modification of the classical secant iteration by introducing the pseudo-
secant update in order to accelerate the convergence rate.
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Fig. 7: The contour plots of the u-vectors (the first row) and the v-vectors (the
second row) corresponding to the transmission eigenvalues of the disk domain with
n(x) = 1.2 and h ≈ 0.002.

Numerical examples demonstrate that we can consider more finer mesh based
on the new derived QEP to remedy the limits of the number of degree of freedoms
as appeared in [10]. Furthermore, via several experiments on various domains with
different indices of refraction and additional comparisons with other numerical solvers,
we can conclude that the novel Secant-Type Iteration method can accurately and
efficiently compute the desired transmission eigenvalues. More importantly, it is a
robust method for finding the positive real transmission eigenvalues even though the
original problem (1.1) has numerous cluster of complex eigenvalues.

Appendix. In what follows, we show that the equality appearing in (2.10c)
holds, that is, we prove that

(A.1) A0 := K̂M̂−1K̂ + EG−1E⊤ = KM−1K + ÊĜ−1Ê⊤,

where K̂, M̂ and Ê, Ĝ are defined as in (2.3) and (2.4), respectively.

Proof of (A.1). First, according to the definitions of M̂ and Ĝ in (2.3) and (2.4)
respectively, the Sherman-Morrison-Woodbury formula [12] implies that

M̂−1 = (M − FG−1F⊤)−1 =M−1 +M−1FĜ−1F⊤M−1,(A.2a)

Ĝ−1 = (G− F⊤M−1F )−1 = G−1 +G−1F⊤M̂−1FG−1.(A.2b)

Furthermore, we have the equality

ĜG−1F⊤ = (G− F⊤M−1F )G−1F⊤ = F⊤M−1(M − FG−1F⊤) = F⊤M−1M̂,

or equivalently,

(A.3) G−1F⊤M̂−1 = Ĝ−1F⊤M−1.
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From (2.13c) and (2.3), we can rewrite A0 as follows:

A0 = K̂M̂−1K̂⊤ + EG−1E⊤(A.4)

= (K − EG−1F⊤)M̂−1(K − FG−1E⊤) + EG−1E⊤

=
[
K − EG−1F⊤ E

] [M̂−1 0

0 G−1

][
K − FG−1E⊤

E⊤

]

=
[
K E

] [ I 0

−G−1F⊤ I

][
M̂−1 0

0 G−1

][
I −FG−1

0 I

][
K

E⊤

]

=
[
K E

] [ M̂−1 −(G−1F⊤M̂−1)⊤

−G−1F⊤M̂−1 Ĝ−1

][
K

E⊤

]
,

Substituting (A.3) into (A.4) and replacing M̂−1 by (A.2a), we then perform the
congruence transformation on the middle matrix in the last equality of (A.4) with the

matrix
[

I
F⊤M−1

0
I

]
, to get[

I M−1F

0 I

][
M̂−1 −(G−1F⊤M̂−1)⊤

−G−1F⊤M̂−1 Ĝ−1

][
I 0

F⊤M−1 I

]

=

[
I M−1F

0 I

][
M−1 +M−1FĜ−1F⊤M−1 −M−1FĜ−1

−Ĝ−1F⊤M−1 Ĝ−1

][
I 0

F⊤M−1 I

]

=

[
M−1 0

0 Ĝ−1

]
.

As a result, (A.4) can be transformed by

A0 =
[
K E

] [ M̂−1 −(G−1F⊤M̂−1)⊤

−G−1F⊤M̂−1 Ĝ−1

][
K

E⊤

]

=
[
K E

] [I −M−1F

0 I

][
M−1 0

0 Ĝ−1

][
I 0

−F⊤M−1 I

][
K

E⊤

]

=
[
K E −KM−1F

] [M−1 0

0 Ĝ1

][
K

E⊤ − F⊤M−1K

]
= KM−1K + (E −KM−1F )(G− F⊤M−1F )−1(E⊤ − F⊤M−1K)

= KM−1K + ÊĜ−1Ê⊤,

which completes the proof of (A.1).
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