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ABSTRACT. We propose to combine cepstrum and nonlinear time-frequency (TF) analy-

sis to study multiple component oscillatory signals with time-varying frequency and am-

plitude and with time-varying non-sinusoidal oscillatory pattern. The concept of cepstrum

is applied to eliminate the wave-shape function influence on the TF analysis, and we pro-

pose a new algorithm, named de-shape synchrosqueezing transform (de-shape SST). The

mathematical model, adaptive non-harmonic model, is introduced and the de-shape SST

algorithm is theoretically analyzed. In addition to simulated signals, several different phys-

iological, musical and biological signals are analyzed to illustrate the proposed algorithm.

1. INTRODUCTION

Time series is a ubiquitous datatype in our life, ranging from finance, medicine, geology,

etc. It is clear that different problems depend on different interpretation and processing of

the observed time series. In some situations, the information can be easily read from the

signal, for example, the cardiac arrest could be easily read from the electrocardiogram

(ECG) signal; in others, it is less accessible, for example, the heart rate variability (HRV)

hidden inside the ECG signal; in yet others, the information might be masked and cannot

be read directly from the observed time series. This comes from the fact that while the time

series encodes the temporal dynamics of the system under observation, most of the time

the dynamical information we could perceive is masked or deformed due to the observation

process and the nature of the physiology. When the information is masked or deformed

but exists in the observed time series, we might need more sophisticated approaches to

extract the information relevant to the situation we have interest in. In general, inferring

the dynamical information from the time series is challenging.

We could view the challenge in two parts. First, we need to choose a model to quan-

tify the recorded signal, which captures the features or information about the underlying

dynamical system we have interest in. This model could come from the field background

knowledge, or in some cases it could be relatively blind. Second, we need to design an

associated algorithm to extract the desired features from the recorded signal. With the

acquired features, we could proceed to study the dynamical problem we have interest in.

We take physiological signals to illustrate the challenge of the modeling issue. Note

that the procedure could be applied to other suitable fields. It is well known that how the

signal oscillates contains plenty of information about a person’s health condition. Based

on the oscillatory behavior and the widely studied Fourier analysis, common features we

could discuss are the frequency, which represents how fast the signal oscillates, and the

amplitude, which represents how strongly the signal oscillates at that frequency. How-

ever, these features have been found limited when the signal is not stationary, which is a

property shared by most physiological signals. Indeed, these signals mostly oscillate with

time-varying frequency and amplitude. To capture this property, we could consider the
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adaptive harmonic model encoding the features instantaneous frequency (IF) and ampli-

tude modulation (AM) [12, 6]; that is, the signal is modeled as

(1) f0(t) = A(t)cos(2πφ(t)),

where A is a smooth positive function and φ is a smooth monotonically increasing function.

In other words, at time t, the signal f repeats itself as a sinusoidal function within about

1/φ ′(t) seconds, and the oscillation is modulated by the AM function A(t). These features

have been proved useful and could well represent the physiological dynamics and health

status, and have been applied to different problems [38, 40, 60].

There are actually more detailed features embedded in the oscillatory signals that cannot

be captured by (1). One particular feature is the non-sinusoidal oscillatory pattern. For

example, respiratory flow signals usually do not oscillate like the sinusoidal function, since

the inspiration is normally shorter than the expiration, and this difference is intrinsic to

the respiratory system [4]. These observations lead us to consider the following model

[58, 62, 28],

(2) f1(t) = A(t)s(φ(t)),

where A(t) and φ(t) are the same as those of (1), and s is a real 1-periodic function with

the unitary L2 norm, that is s(t + 1) = s(t) for all t, so that the first Fourier coefficient

ŝ(1) 6= 0, which could be different from the cosine function. We call the periodic signal

s(t) the wave-shape function, φ(t) the phase function, the derivative φ ′(t) the IF, and A(t)
the AM of f1(t). Note that when s is smooth enough, (2) could be expanded pointwisely

by the Fourier series as

(3) f1(t) =
∞

∑
k=0

A(t)ak cos(2πkφ(t)+αk),

where ak ≥ 0, k ∈ N∪{0} are associated with the Fourier coefficients of s, α0 = 0 and

αk ∈ [0,2π), k ∈ N, and a2
0 +2∑

∞
k=1 a2

k = 1. Note that we could have two different aspects

of the same signal f1. First, we could view it as an oscillatory signal with one oscillatory

component with non-sinusoidal oscillation (2). Second, we also could view it as an oscil-

latory signal with multiple oscillatory components with the cosine oscillatory pattern (3);

in this case, we call the first oscillatory component A(t)a1 cos(2πφ(t)+α1) the fundamen-

tal component and A(t)ak cos(2πkφ(t)+αk), k ≥ 2, the k-th multiple of the fundamental

component. Clearly, the IF of the k-th multiple is k-times that of the fundamental compo-

nent. Note that A(t)a0 could be viewed as the trend coming from the DC (direct current) or

zero-frequency term of the wave-shape function. While the second viewpoint (3) is better

for the theoretical analysis, the first viewpoint (2) is more physical in several applications.

Let us take the ECG signal as an example, where the IF, AM and the wave-shape func-

tion have their own physiological meanings. The oscillatory morphology of the ECG sig-

nal, the wave-shape function, reflects not only the electrical pathway inside the heart and

how the sensor detects the electrophysiological dynamics, but also the respiration as well

as the heart anatomy. Several clinical diseases are diagnosed by reading the oscillatory

morphology. With these physiological understanding, it is better to consider model (2) to

study the ECG signal and view IF, AM and wave-shape function as separate features. As

for IF and AM, it is well known that while the rate of the pacemaker is constant, the heart

rate generally is not constant. The discrepancy comes from neural and neuro-chemical in-

fluences on the pathway from the pacemaker to the ventricle. This non-constant heart beat

rate could be modeled as the IF of the ECG signal. The AM of the ECG signal is directly

related to the respiration via the variation of thoracic impedance. Indeed, when the lung is



WAVE-SHAPE FUNCTION ANALYSIS – WHEN CEPSTRUM MEETS TIME-FREQUENCY ANALYSIS 3

full of air, the thoracic impedance increases and hence and ECG amplitude decreases, and

vice versa. Note that IF and AM could be captured by both (2) and (3).

Several algorithms were proposed to extract IF and AM from a given oscillatory sig-

nal in the past decade, like empirical mode decomposition [29], reassignment method

(RM) [2], synchrosqueezing transform (SST) [12], concentration of frequency and time

[13], Blaschke decomposition [11], iterative filtering [9], sparsification approach [27], ap-

proximation approach [8], convex optimization [35], Gabor transform based on different

selection criteria [3, 48], etc. In general, we could view these methods as a nonlinear time-

frequency (TF) analysis. However, to capture the wave-shape function, an extra step is

needed – we could fit a non-sinusoidal periodic function to the signal after/while extract-

ing the IF by, for example, applying the functional regression [7, Section 4.7], designing

a dictionary [28] or unwrapping the phase [62]. The obtained features have been used to

study field problems, such as the sleep stage prediction [60], the blood pressure analysis

[59]. See [13] for a review of the applications.

As useful as the above-mentioned model and algorithms are to extract dynamical fea-

tures from time series, there are, however, several unsolved limitations. First, for most

physiological signals, the wave-shape function varies from time to time. The time-varying

wave-shape function might prevent the current available methods from extracting the

wave-shape function. We will provide physiological details in Section 2.2. Second, there

might be more than one oscillatory component in a signal, and each oscillatory component

has its own wave-shape function. See Figure 1 for an photoplethysmogram signal (PPG)

as an example. In this PPG signal, there are two oscillatory components, hemodynamic

rhythm and respiratory rhythm. Third, although we could obtain reasonable information

about IF and AM from the above-mentioned approaches, when the signal has multiple os-

cillatory components with non-sinusoidal waves, these methods are limited. In particular,

the multiples of different fundamental components will interfere with each other. Further-

more, an automatic determination of the number of oscillatory components becomes more

difficult when each component oscillates with a non-sinusoidal wave. Hence, modifica-

tions are needed.

FIGURE 1. A photoplethysmogram signal. It is visually clear that there

are two rhythms inside the signal. The faster one is associated with the

heart rate, which beats about 100 times per minute; the slower one is

associated with the respiration, which is about 18 times per minute.

In this paper, we resolve these limitations. We introduce the adaptive non-harmonic

model to model oscillatory signals with multiple components and time-varying wave-shape

functions. Motivated by cepstrum, we introduce an algorithm called de-shape SST to al-

leviate the influence caused by non-sinusoidal wave-shape functions in the TF analysis.

Hence, we provide an enhanced TF representation in the following sense – the de-shape

SST would provide a TF representation with only IF and AM information without the

influence of non-sinusoidal wave-shape functions.
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We illustrate the effectiveness of de-shape SST by showing results on a simulated signal.

In this example, the clean signal f (t) is composed of two oscillatory components f1 and

f2, where f1(t) = A1(t)(∑k∈Z δk ⋆h)(t)χ[0,60](t), A1(t) = 1.5e−( t−20
100 )2

, h(t) = e−18t2
, δk is

the Dirac delta measure supported at k, χI is the indicator function supported on I ⊂R and

f2(t) = A2(t)mod(φ2(t),1), where A2(t) > 0 and φ ′
2(t) > 0 are two non-constant smooth

function and mod(x,1) := x−⌊x⌋ for x ∈ R and ⌊x⌋ means the largest integer less than

or equal to x. Clearly, f1 oscillates at the fixed frequency φ ′
1(t) = 1 with a non-sinusoidal

wave-shape function – the wave-shape function of f1 looks like a Gaussian function; f2

oscillates with a time-varying frequency with the non-sinusoidal wave, which behaves like

a sawtooth wave. This signal is sampled at rate 100Hz, from t = 0 to t = 100 seconds.

Figure 2 shows the two constituents of the total signal f (t) = f1(t)+ f2(t), as well as A2(t)
and φ ′

2(t). Note that f1 “lives” during only part of the full time observation time interval.

The panels in Figure 3 show the results of short-time Fourier transform of f (t), the SST

of f (t) and the de-shape SST of f (t). It is clear that compared with the TF representation

provided by STFT or SST, the TF representation provided by the de-shape SST contains

only the fundamental frequency information of the two oscillatory components, even when

the wave-shape function is far from the sinusoidal wave. More discussions will be provided

in Section 4, including how A2(t) and φ2(t) are generated.

FIGURE 2. Top panel: f1(t); second panel: f2(t); third panel: the A2(t)
(dashed curve) and φ ′

2(t) (solid curve) of f2(t); bottom panel: f (t). To

enhance the visibility, we only show the signal from the 25-th second to

the 65-th second.

The paper is organized in the following way. In Section 2, we discuss the limitation of

model (2), and provide a modified model, the adaptive non-harmonic model. In Section

3, the existing cepstrum algorithms in the engineering field are reviewed, and the new

algorithm de-shape SST is introduced. The theoretical justification of the de-shape SST

is postponed to Appendix A. Section 4 shows the numerical results of de-shape SST on

several different simulated, medical, musical, and biological signals. Section 5 discusses

numerical issues of the de-shape SST algorithm. Section 6 summarizes the paper.

2. ADAPTIVE NON-HARMONIC MODEL

In this section we first review the phenomenological model based on the wave-shape

function (2) fixed over time. Then, we discuss the relationship between the wave-shape
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FIGURE 3. Upper left: the short time Fourier transform (STFT) of f (t);
upper right: the synchrosqueezed STFT of f (t); lower left: the de-shape

SST of f (t). It is clear that the de-shape SST provides only the funda-

mental frequency information of the two oscillatory components, even

when the wave-shape function is far from the sinusoidal wave; lower

right: the de-shape SST of f (t) superimposed with the ground truth IF’s

of both components in red. To enhance the visibility, we show the de-

shape SST only up to 6 Hz in the frequency axis.

function and several commonly encountered physiological signals, and discuss limitations.

This discussion leads us to introduce the adaptive non-harmonic model.

We start from introducing some notations. The Schwartz space is denoted as S ; the

tempered distribution space, which is the dual space of the Schwartz space, is denoted as

S ′; ℓp, where p> 0, indicates the sequence space including all sequences x :N→R so that

∑n∈N |x(n)|p < ∞, where x(n) is the n-th element of the sequence x. For each k ∈N∪{∞},

Ck indicates the space of continuous functions with all the derivatives continuous, up to

the k-th derivates, and Ck
c indicates the space of compactly supported continuous functions

with all the derivatives continuous, up to the k-th derivates. For each p ∈N, Lp includes all

measurable functions f so that
∫ ∞
−∞ | f (x)|pdx < ∞; L∞ includes all measurable functions

which are bounded almost surely. For f ∈S ′ and g ∈ E ′, where E ′ is the set of compactly

supported distributions, denote f ⋆ g to be the convolution. We will interchangeably use

F f or f̂ to denote the Fourier transform of the function f ∈ S ′. When f ∈ L1(R), the

Fourier transform is equally defined as f (ξ ) =
∫ ∞
−∞ f (t)e−i2πξ tdt; when f ∈ E ′, we know

that f̂ (ξ ) = 〈 f ,e−i2πξ ·〉, where 〈·, ·〉 indicates the evaluation of the distributions f at the

C∞ function e−i2πξ t . For a periodic function s, denote ŝ(k), k ∈ Z, to be its Fourier series

coefficients. For each N ∈ N, denote the Dirichlet kernel DN(x) := ∑
N
ℓ=−N ei2πℓx.
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2.1. Review of the wave-shape function. We continue the discussion of the model (2)

(4) f (t) = A(t)s(φ(t)),

where A ∈ C1(R) is strictly positive, φ ∈ C2(R) is strictly monotonically increasing, and

s∈C1,α , α > 1/2, is a 1-periodic function with the unitary L2 norm so that its Fourier series

coefficients satisfy |ŝ(1)|> 0, |ŝ(k)| ≤ δ |ŝ(1)| for some δ ≥ 0 and ∑
∞
k=N+1 |kŝ(k)| ≤ θ for

some θ ≥ 0 and N ∈ N. We need more conditions for the analysis. Take 0 ≤ ε ≪ 1, we

require |φ ′′(t)| ≤ εφ ′(t) and |A′(t)| ≤ εφ ′(t) for all t. This means that we allow the IF and

AM to vary in time, as long as the variations are slight from one period to the next.

2.2. Limitations in modeling physiological signals. While many physiological signals

are oscillatory and have “similar” patterns, at first glance they could be well modeled by

(4) and the analysis could proceed. However, it is not always possible to do so. In this

section we provide examples to discuss limitations.

2.2.1. Electrocardiographic signal. The ECG signal, which provides information of the

electrical activity of the heart, is ubiquitous in healthcare setting now. It not only con-

tains a wealth of information regarding the cardiac/cardiovascular health but also provides

a unique non-invasive portal to physiological dynamical states of the human body, via for

example the HRV assessment. While the HRV, the non-constant heart rate, could be stud-

ied by evaluating the IF of the ECG signal and well estimated by the “R peak detection

algorithm”, in several cases a modern TF analysis could help improve the estimation accu-

racy [25].

We now discuss the limitation of modeling the ECG signal by (4). Take the relation-

ship between the RR and QT intervals of the lead II ECG signal EII(t) as an example1.

The nonlinearity relationship between the QT interval and the RR interval has been well

accepted – for example, the Fridericia’s formula (QT interval is proportional to the cubic

root of RR interval) [20] or a fully nonlinear depiction [19, Figure 3].

If we model EII(t) by the model (4), and have

EII(t) = AII(t)sII(φII(t)) =
∞

∑
ℓ=1

AII(t)cII(ℓ)cos(2πℓφII(t)+αII,ℓ),(5)

where αII,0 = 0, αII,ℓ ∈ [0,2π) when ℓ ∈ N, cII(1) > 0 and cII(ℓ) ≥ 0 for ℓ 6= 1 are

related to Fourier series coefficients of the wave-shape function sII. Here, sII models the

oscillation in the lead II ECG signal, which is non-sinusoidal. Note that under this model,

the QT interval has to be “almost” linearly related to the RR interval. To see this, suppose

there is a 1-periodic function sII for the lead II ECG signal, where the R peak happens

at time 0, and a monotonically increasing function φII(t) so that the ECG signal could

be modeled as sII(φII(t)); that is, the wave-shape function is fixed all the time. Suppose

that the k-th R peak happens at time tk, where k ∈ Z; that is, tk = φ−1
II (k). By the mean

1The P, Q, R, S, and T are significant landmarks of the ECG signal. The P wave represents atrial depolar-

ization. The Q wave is any downward deflection after the P wave. The R wave follows as an upward deflection,

which is spiky, and the S wave is any downward deflection after the R wave. The Q wave, R wave, and S wave

form the QRS complex, which corresponds to the ventricular depolarization. The T wave follows the S wave,

which represents the ventricular repolarization. The QT interval (respectively RR interval) is the length of the

time interval between the start of the Q wave and the end of the T wave of one heart beat (respectively two R

landmarks of two consecutive heart beats). We could view the R peak as a surrogate of the cardiac cycle, and

hence the RR interval could be viewed as a surrogate of the inverse of the heart rate. See Figure 6 for an example

of the P, Q, R, S, and T landmarks and the RR and QT intervals. For more information about ECG signal, we

refer the readers to [21].
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value theorem, in this model we have the following relationship for the ECG signal at time

t ∈ [tk, tk+1] :

sII(φII(t))= ∑
k∈Z

sII(φII(t))χ[tk,tk+1)(t)

= ∑
k∈Z

sII(φII(tk)+(t − tk)φ
′
II(t̃k))χ[tk,tk+1)(t) = ∑

k∈Z
sII

(
t − tk

1/φ ′
II(t̃k)

)
χ[tk,tk+1)(t),(6)

where t̃k ∈ [tk, tk+1], χ[tk,tk+1) is a indicator function defined on [tk, tk+1), and the second

equality holds since φII(tk) = k and s is 1-periodic. While the RR interval between the k-th

and the (k + 1)-th R peaks is proportional to 1/φ ′
II(t̃k) up to order O(ε) by the slowly

varying IF assumption of φII, we know that the wave-shape function is approximately

linearly dilated according to 1/φ ′
II(t̃k). If the the wave-shape function is linearly dilated

according to the RR interval, then the QT interval should be linearly related with the RR

interval and hence the claim. Clearly, this model contradicts the physiological finding that

the QT interval should be nonlinearly related to the RR interval, so we need a modified

model to better quantify the ECG signal.

Furthermore, note that since the cardiac axis varies from time to time due to respiration,

physical activity and so on, even if the RR interval is fixed all the time and we focus on the

lead II ECG signal, we cannot find a fixed wave-shape function to exactly model the ECG

signal. Note that the wave-shape function variation caused by respiration could be applied

to extract the respiratory information from the ECG signal [7].

2.2.2. Respiratory signal. Oscillation is a typical pattern in breathing in normal subjects.

It is well known that there is a rhythmic controller in the Pre-Bötzinger complex in the

brain stem which regularly oscillates. In a normal subject the respiratory period is about

5 seconds per cycle. Note that when we are awake, we could also control our respiration

by our will, but to simplify the discussion, we do not take this into account. The existence

of breathing pattern variability has been well known [4]. For example, the period of each

respiratory cycle for a normal subject under normal status varies according to time. The

ratio between the length of inspiration period and the length of expiration period is not

linearly related to the instantaneous respiratory rate, and its variability also contains plenty

of physiological information [4]. In other words, the wave-shape function associated with

the respiration is not fixed all the time. By the same argument as that for the ECG signal,

this nonlinear relationship between the instantaneous respiratory rate and the wave-shape

function could not be fully captured by (4).

The same argument holds for the other physiological signals, like the photoplethys-

mography signal that reflects the hemodynamics information, the capnogram signal that

monitors inhaled and exhaled concentration or partial pressure of carbon dioxide and is a

surrogate of the oscillatory dynamics of the respiratory system, and so on.

2.2.3. Natural vibration of stiff strings. In this section we discuss the signal commonly

encountered in music, in particular the sound generated by the string musical instrument.

The acoustic signal generated by the string musical instrument could be well modeled by

the transversal vibration behavior of an ideal string. For an ideal string of length L > 0

placed on [0,L] with both ends fixed ideally, when the string has stiffness; that is, there is a

restoring force proportional to the displacement (or more generally the bending angle), we

could consider the following differential equation for y ∈ R+× [0,L] satisfying [17, 18]

(7) µ
∂ 2y

∂ t2
= T

∂ 2y

∂x2
−ESK2 ∂ 4y

∂x4
,
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where µ > 0 is mass per unit length, T ≥ 0 is tension, E ≥ 0 is Young’s modulus of the

string, S ≥ 0 is the cross-sectional areas of the string, and K ≥ 0 is the radius of gyration,

with the initial condition y(0,x) = 0 for all x ∈ [0,L] and the boundary condition y(t,0) = 0

and y(t,L) = 0 for all time t ≥ 0.

Consider the case of a pinned string, that is, y(t,0)= y(t,L)= 0 and
∂ 2y

∂x2 (t,0)=
∂ 2y

∂x2 (t,L)=

0 for all t. The solution y(t,x) is the transversal displacement of the string point x at

time t [17, 18], which is the linear combination of the normal modes represented by

yn(t,x) = sin(2πknx)sin(2πξnt) with kn =
n

2L
, ξ1 =

1
2L

√
T
µ and

(8) ξn = nξ1

√
1+βn2 ,

where β = π2ESK2

T L2 ; that is, the n-th component with the n-th lowest frequency is deviated

from nξ1 in a nonlinear way. In other words, the sound associated with the solution os-

cillates with a non-sinusoidal wave and the fundamental frequency is 1
2L

√
T
µ with several

multiples. Clearly, when E = 0, (7) is reduced to the wave equation, and the solution is

well known.

In music signal processing, this phenomenon is well known as inharmonicity, which ap-

pears in instruments, like piano and guitar. In these instruments, natural vibration appears

after the excitation (i.e., plucking or pressing the keyboard) of the modes. For the piano, β
is in the ranges from around 10−4 to 10−3. Obviously, the sound with inharmonicity does

not well fit (4).

2.3. Time-varying wave-shape function. The above discussions indicate that we need

a model with time-varying wave-shape functions. Thus, we wish to generalize (4). To

achieve this goal, we will directly generalize the equivalent expression (3) to capture an

oscillatory signal with the “time-varying wave-shape function”.

Definition 2.1 (Adaptive non-harmonic function). Take ε> 0, a non-negative ℓ1 sequence

c = {c(ℓ)}∞
ℓ=0, 0 <C < ∞, and N ∈ N. The set D

c,C,N
ε ⊂C1(R)∩L∞(R) of adaptive non-

harmonic (ANH) functions is defined as the set consisting of functions

f (t) =
1

2
B0(t)+

∞

∑
ℓ=1

Bℓ(t)cos(2πφℓ(t))(9)

satisfying the following conditions:

• the regularity condition :

Bℓ ∈C1(R)∩L∞(R), for ℓ= 0, . . .∞,(10)

φℓ ∈C2(R), for ℓ= 1, . . .∞.(11)

For all t ∈ R, Bℓ(t)≥ 0 for all ℓ= 0,1,2, . . . ,∞ and φ ′
ℓ(t)> 0 for all ℓ= 1, . . . ,∞.

• the time-varying wave-shape condition: for all t ∈ R,

(12)
∣∣φ ′

ℓ(t)− ℓφ ′
1(t)
∣∣≤ εφ ′

1(t)

for all ℓ= 1, . . . ,∞,

(13) Bℓ(t)≤ c(ℓ)B1(t)

for all ℓ= 0,1, . . . ,∞,

(14)
∞

∑
ℓ=N+1

Bℓ(t)≤ ε

√
1

4
B0(t)2 +

1

2

∞

∑
ℓ=1

Bℓ(t)2,
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and

(15)
∞

∑
ℓ=1

ℓBℓ(t)≤C

√
1

4
B0(t)2 +

1

2

∞

∑
ℓ=1

Bℓ(t)2.

• the slowly varying condition: for all t ∈ R,

|B′
ℓ(t)| ≤ εc(ℓ)φ ′

1(t), for ℓ= 0, . . .∞,(16)

|φ ′′
ℓ (t)| ≤ εℓφ ′

1(t), for ℓ= 1, . . .∞,(17)

and ‖φ ′
1(t)‖L∞ < ∞.

The adjective adaptive in ANH function indicates that the frequency and amplitude

are time-varying, and the adjective non-harmonic indicates that the oscillation might be

non-sinusoidal. When
Bℓ(t)
B1(t)

are constants for all ℓ = 0,1, . . . ,∞ and φ ′
ℓ(t) = ℓφ ′

1(t) +αℓ

for some αℓ ∈ R for all ℓ = 1, . . . ,∞, (9) is reduced to (3); when the other conditions for

the wave-shape function in (4) are further satisfied, (9) is reduced to (4). Thus, (9) is a

direct generalization of (3) by allowing cℓ and αℓ in (3) to vary, which quantifies the time-

varying wave-shape function. We call B1(t)cos(2πφ1(t)) the fundamental component and

φ ′
1 the fundamental IF (or pitch in the music signal analysis) of the signal f (t). Note

that the condition |φ ′′
1 (t)| ≤ εφ ′

1(t) says that locally the fundamental IF is nearly constant,

but it does not imply that the fundamental IF is nearly constant globally. By a slight

abuse of terminology, for ℓ > 1, we call Bℓ cos(2πφℓ(t)) the ℓ-th multiple, although φℓ

might not be proportional to φ1. Note that we can “view”

√
1
4
B0(t)2 + 1

2 ∑
∞
ℓ=1 Bℓ(t)2 as

the AM of f (t). This comes from the fact that in (3), A(t)2a2
0 + 2∑

∞
ℓ=1 A(t)2a2

ℓ = A2(t),
and Bk(t) is the the generalization of A(t)ak in (3) for k = 0,1, . . . ,∞. In this definition,

however, we do not control how large

√
1
4
B0(t)2 + 1

2 ∑
∞
ℓ=1 Bℓ(t)2 should be. Also note

that the series
( B0(t)/2√

1
4 B0(t)2+ 1

2 ∑
∞
ℓ=1 Bℓ(t)

2
, B1(t)/

√
2√

1
4 B0(t)2+ 1

2 ∑
∞
ℓ=1 Bℓ(t)

2
, . . . ,

)
has the unitary ℓ2 norm,

which is a generalization of the assumption that the wave-shape function has the unitary L2

norm. The condition (14) says that only the first N multiples are significant. The condition

(15) is a direct generalization of the C1,α condition of the wave-shape function in (4).

To see how the wave-shape function varies according to time, denote tk := φ−1
1 (k).

Clearly, for signals in Ik := [tk, tk+1), we could not find a single 1-periodic function s(t) so

that
f

B1(t)
|Ik is the composition of s and φ1(t). Thus, we could view the model (9) either

as an adaptive non-harmonic model with one oscillatory component with the time-varying

wave-shape function, or as an adaptive harmonic model with many oscillatory components

with the sinusoidal wave pattern.

Definition 2.2 (Adaptive non-harmonic model). Take ε> 0 and d > 0. The set Dε,d ⊂
C1(R)∩L∞(R) consists of superposition of ANH functions, that is

(18) f (t) =
K

∑
k=1

fk(t)

for some finite K > 0 and

fk(t) =
1

2
Bk,0(t)+

∞

∑
ℓ=1

Bk,ℓ(t)cos(2πφk,ℓ(t)) ∈ D
ck,Ck,Nk
εk

for some 0 ≤ εk ≤ ε , non-negative sequence ck = {ck(ℓ)}∞
ℓ=0, 0 < Ck < ∞ and Nk ∈ N,

where for all t ∈ R, the fundamental IF’s of all ANH functions satisfy



10 C.-Y. LIN, L. SU, AND H.-T. WU

• the frequency separation condition:

(19) φ ′
k,1(t)−φ ′

k−1,1(t)≥ d

for k = 2, . . . ,K
• the non-multiple condition: for each k = 2, . . . ,K, φ ′

k,1(t)/φ ′
ℓ,1(t) is not an integer

for ℓ= 1, . . . ,k−1.

3. DE-SHAPE SST

In this section, we propose an algorithm, de-shape SST, to study a given oscillatory

signal. De-shape SST provides a TF representation which contains essentially the IF and

AM information of the fundamental component of each ANH function and removes the

influence caused by the non-trivial wave-shape function. In Section 3.1, we provide a

review of how cepstrum is applied in engineering. In Section 3.2, the short time cepstral

transform (STCT) is introduced with a theoretical justification in Theorem 3.6 to generalize

cepstrum to the time-frequency analysis. The proof of the theorem is postponed to the

Appendix. In Section 3.3, we introduce the inverse STCT that will be used in the de-shape

algorithm. In Sections 3.4-3.5, the de-shape STFT and de-shape SST are discussed.

3.1. A quick review of cepstrum. Cepstrum is a commonly applied signal processing

technique [44]. One motivation of introducing cepstrum is the pitch detection problem in

music (recall that pitch means the fundamental frequency). It is closely related to the ho-

momorphic signal processing, which aims at converting signals structured by complicated

algebraic systems into simple ones. Since its invention in 1963 [5], the cepstrum has been

applied in various discrete-time signal processing problems, such as detecting the echo de-

lay, deconvolution, feature representations for speech recognition like the Mel-Frequency

Cepstral Coefficients (MFCC), and estimating the pitch of an audio signal. A thorough

review of the cepstrum can be found in [43, 44].

We start from recalling the complex cepstrum. For a suitable chosen signal f (t) ∈ R,

the cepstrum, denoted as f̃ C(q), where q ∈R is called quefrency2, is defined as the inverse

Fourier transform of the logarithm of the Fourier transform [44]:

(20) f̃ C(q) :=
∫

log f̂ (ξ )e2πiqξ dξ ,

whenever the inverse Fourier transform of log f̂ (ξ ) makes sense, where log is defined on

a chosen branch. We call the domain of f̃ C the quefrency domain. Numerically, since the

computation of the complex cepstrum requires the phase unwrapping process, it causes

instability. Therefore, we could also consider the real cepstrum, denoted as f̃ R, which is

represented as

(21) f̃ R(q) =
∫

log | f̂ (ξ )|e−2πiqξ dξ ,

whenever the Fourier transform of log | f̂ (ξ )| makes sense. Note that there is no difference

to take the Fourier transform or inverse Fourier transform since the signal is in general

real, so we take the Fourier transform instead of the inverse Fourier transform. In audio

signal analysis, the logarithm operation on the magnitude spectrum can be interpreted to

be an approximation of the perceptual scale of sound intensity, thus it is conventionally

measured in dB. Intuitively, the cepstrum measures “the rate of the harmonic peaks per

2The term “cepstrum” is invented by interchanging the consonants of the first part of the word “spectrum” in

order to signify their difference. Similarly, the word “quefrency” is the inversion of the first part of “frequency”.

By definition, the quefrency has the same unit as time.
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Hz”, namely the period of the signal, where the period is the inverse of the frequency;

that is, the prominent peaks in the cepstrum indicate the periods and their multiples in the

signal. Besides periodicity detection, this method has also been used in a wide variety of

fields which requires deconvolution of a source-filter model.

The main idea behind cepstrum is to find “the spectral distribution of the spectrum”,

which contains the period information of the signal. It is effective since it could transform

the “slow-varying envelope” of the spectrum to the low-quefrency range, separated from

the fast-varying counterpart of the spectrum, which is transformed to the high-quefrency

range and represents the period information of the signal.

Example 3.1. We consider an acoustic signal to demonstrate how the overall idea beyond

cepstrum or homomorphic signal processing could help in signal processing when the

signal comes from a complicated combination of two components. A human voice f ∈C∞

could be modeled by the glottal vibration, which is a pulse sequence g = p∑k∈Z δT0k ∈S ′,
where p ∈ S and T0 > 0, convolved with the impulse response of the vocal tract h ∈ S so

that ĥ is a non-negative function, i.e., f (t) = (g⋆h)(t). A mission of common interest is to

separate these two components.

First, the Fourier transform converts the convolution into multiplication in the frequency

domain f̂ (ξ ) = ĥ(ξ )ĝ(ξ ), where ĝ = 1
T0

p̂ ⋆∑k∈Z δk/T0
∈ C∞ by the Poisson summation

formula. Second, the logarithm converts multiplication into addition, but we have to be

careful when we take the logarithm. To simplify the discussion, we assume that supports

of both ĝ and ĥ are positive-valued. Thus, log( f̂ (ξ )) = log(ĝ(ξ ))+ log(ĥ(ξ )). Thus, the

convolution operator in the time domain becomes the addition operator. Although under

our simplified assumption, ĝ ∈C∞∩L∞ and ĥ ∈S , after taking logarithm we might not be

able to define the Fourier transform. So we further assume that log(ĝ(ξ )), log(ĥ(ξ )) ∈S ′

so that we could apply the Fourier transform. For example, if h is a Gaussian function,

log(ĥ(ξ )) is a quadratic polynomial function. We call the domain where F log( f̂ ) is de-

fined the quefrency domain.

In summary, the periodic glottal excitation is modeled as a series of harmonic peaks

in the frequency domain by the Poisson summation formula (contributing to pitch), while

the frequency response of the vocal tract, ĥ(ξ ), contributes to the amplitude of the spec-

trum. Let us further assume that after taking Fourier transform on log( f̂ (ξ )) the glottal

excitation lies in the high quefrency region while the vocal tract in the low quefrency re-

gion3, then a simple high pass filtering, which is called the liftering (again an interchange

of the consonants of “filtering”) process, can separate the two components. One simple

example of h is that when h is a Gaussian function, the Fourier transform of log(ĥ(ξ ))
is proportional to the second distributional derivative of the Dirac measure supported at

0. These two components could then be reconstructed by reversing the procedure – apply

the Fourier transform, take the exponential and apply the inverse Fourier transform. The

whole process is called the homomorphic deconvolution.

Although the real cepstrum avoids phase unwrapping, it is still limited by evaluating

the logarithm, which is prone to numerical instability either in synthetic data or real-world

data. To address this issue, it has been proposed in the literature to replace the logarithm

by the generalized logarithm function [34, 56, 53],

(22) Lγ(x) :=
|x|γ −1

γ
,

3In the music processing, the high-quefrency part in the cepstrum is related to the pitch while the low-

quefrency part to timbre (i.e., sound color).



12 C.-Y. LIN, L. SU, AND H.-T. WU

where γ > 0, or the root function [37, 1, 53], defined as

(23) gγ(x) := |x|γ ,
where γ > 0. Note that Lγ approximates the logarithm function as γ → 0. As gγ and Lγ

are related by a constant and a dilation, there is no practical difference which relaxation

we choose. Thus, although we could also consider the generalized logarithm function

Lγ [34, 56], to simplify the discussion, in this paper we relax the real cepstrum by the

root function gγ , and we call the resulting “cepstrum” the γ-generalized cepstrum (In the

literature it is also called the root cepstrum):

(24) f̃γ(q) :=
∫

gγ( f̂ (ξ ))e−2πiqξ dξ .

There are several proposals for the choice of γ . First, when γ = 2, the formulation is

equivalent to the autocorrelation function of f , which is a basic feature for single pitch

detection but has been found unfeasible for multipitch estimation (MPE). To deal with

the issue of multipitch, we should consider γ < 2 [34, 57]. γ = 0.67 is suggested by the

nonlinear relationship between the sound intensity and perceived loudness determined by

experiment, known as a case of Stevens’ power law, which states that the sound intensity

x and the perceived loudness y are related by y ∝ |x|0.67 [49, 24, 57]. Previous researches

also suggested γ to be 0.6 [36], 0.25 [31] and 0.1 [33]. In short, the γ-generalized cepstrum

has been shown more robust to noise than the real or complex cepstrum in the literature

of speech processing [37, 1]. In addition to the robustness, the γ-generalized cepstrum has

been found useful in various problems like speech recognition [24], speaker identification

[63], especially in multiple pitch estimation [31, 57, 33, 36, 51, 50]. Due to its usefulness

and for the sake of simplification, in the paper we focus on the γ-generalized cepstrum.

3.2. Combining cepstrum and time-frequency analysis – short time cepstral trans-

form (STCT). As useful as the Fourier transform is for many practical problem, however,

it has been well known that when the IF or AM is not constant, Fourier transform might

not perform correctly. Indeed, for the ANH functions, since IF and AM are time-varying,

the momentary behavior of oscillation is mixed up by the Fourier transform, and hence the

cepstrum approach discussed in the previous section fails. To study this kind of dynamical

signal, we need a replacement for the Fourier transform. A lot of efforts have been made in

the past few decades to achieve this goal. TF analysis based on different principals [16] has

attracted a lot of attention in the field and many variations are available. Well known exam-

ples include short time Fourier transform (STFT), continuous wavelet transform (CWT),

Wigner-Ville distribution (WVD), etc. We refer the reader to [13] for a summary of the

current progress of TF analysis. In this paper, we consider STFT, since it is a direct and

intuitive generalization of the Fourier transform. A generalization of cepstrum to other TF

analyses will be studied in future works.

Recall the definition of STFT. For a chosen window function h ∈ S , the STFT of f ∈
S ′ is defined by

(25) V
(h)
f (t,ξ ) =

∫
f (τ)h(τ − t)e−i2πξ (τ−t) dτ ,

where t ∈ R indicates time and ξ ∈ R indicates frequency4. We call V
(h)
f (t,ξ ) the TF

representation of the signal f . Since STFT could capture the spectrum or local oscillatory

4The phase factor ei2πξ t in this definition is not always present in the literature, leading to the name modified

STFT for this particular form. To slightly abuse the notation, we still call it STFT.
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behavior of a signal, we could combine the ideas of STFT and cepstrum, which leads to

the short time cepstral transform (STCT):

Definition 3.2. Fix γ > 0. For f ∈S ′ and h∈S , we have the short time cepstral transform

(STCT):

(26) C
(h,γ)
f (t,q) :=

∫
gγ(V

(h)
f (t,ξ ))e−i2πqξ dξ ,

where q ∈ R.

q in C
(h,γ)
f (t,q) is called the quefrency, and its unit is second or any feasible unit in the

time domain. Clearly, C
(h,γ)
f (t, ·) is the γ-generalized cepstrum of the signal f (·)h(· − t)

and in general C
(h,γ)
f (t,q) is not positive. To show the well-definedness of STCT, note that

while f ∈ S ′ and h ∈ S , V
(h)
f (t,ξ ) ∈ C∞ is smooth and slowly increasing on both time

and frequency axes. By a slowly increasing C∞ function f , we mean that f and all its

derivatives have at most polynomial growth at infinity. Thus, we know that gγ(V
(h)
f (t, ·)) is

continuous and slowly increasing. Hence its Fourier transform can be well-defined in the

distribution sense since a continuous slowly increasing function is a tempered distribution.

In the special case that f ∈ C∞ ∩L∞, gγ(V
(h)
f (t,ξ )) is a continuous function vanishing at

infinity faster than any power of |ξ |, and hence C
(h,γ)
f (t,q) is a well-defined continuous

function in the quefrency axis.

As discussed above, since the cepstrum provides the information about periodicity, we

call C
(h,γ)
f (t,q) the time-periodicity (TP) representation of the signal f . Before proceeding,

we consider the following example to demonstrate how the STCT works.

Example 3.3. Consider the Dirac comb f (t) = 1
ξ0

∑k∈Z δk/ξ0
, where ξ0 > 0. This is the

typical periodic distribution, and we could view it as an ANH function with K = 1, the

delta measure as the shape function, the constant fundamental frequency ξ0 Hz and the

constant fundamental period 1/ξ0, although the wave-shape function is more general than

what we consider in the ANH model; it is more general than the ANH model since with the

delta measure f (t) does not satisfy the ANH model. By the Poisson’s summation formula,

f (t) =∑k∈Z ei2πkξ0t , where the summation holds in the distribution sense. Choose a smooth

window function h ∈S so that ĥ is supported on [−∆,∆], where 0 < ∆ < ξ0/2. By a direct

calculation, the STFT of f is

(27) V
(h)
f (t,ξ ) = ∑

k∈Z
ĥ(ξ − kξ0),

and since ∆ < ξ0/2,

(28) |V (h)
f (t,ξ )|= ∑

k∈Z
|ĥ(ξ − kξ0)|.

To evaluate the STCT, where γ > 0, we need to evaluate |V (h)
f (t,ξ )|γ . Under our assump-

tion, it is trivial and we have

(29) |V (h)
f (t,ξ )|γ = ∑

ℓ∈Z
|ĥ(ξ − ℓξ0)|γ = (∑

ℓ∈Z
δℓξ0

⋆ |ĥ|γ)(ξ ),

where |ĥ|γ ∈C0
c (R). Note that the convolution is well-defined since ∑ℓ∈Z δℓξ0

is a tempered

distribution and |ĥ|γ is a compactly supported distribution. By taking Fourier transform of
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|V (h)
f (t,ξ )|γ and applying the Poisson summation formula, the STCT of f is

(30) C
(h,γ)
f (t,q) =

|̂ĥ|γ(q)
ξ0

∑
ℓ∈Z

δℓ/ξ0
(q) ,

which provides the period information.

This example indicates the overall behavior of STCT when there is only one periodic

function with a non-sinusoidal wave. In general, when there are more than one oscillatory

functions with non-sinusoidal waves and different fundamental frequencies, the calculation

is no longer direct since the multiples of different oscillatory functions may collide. More-

over, since the frequency and amplitude are time-varying, the calculation is more intricate.

For the signals in the set Dε,d defined in Definition 2.2, however, we have the following

Theorem showing how STCT works.

Before stating the theorem, we make the following general assumption about the win-

dow function.

Assumption 3.4. Fix ε> 0 and d > 0. Take f (t) = ∑
K
k=1 fk(t) ∈ Dε,d for some K ≥ 1.

Suppose the fundamental frequency satisfies

(31) inf
t∈R

φ ′
1,1(t)> 0.

Fix a window function h ∈ S , which is chosen so that ĥ is compactly supported and

supp(ĥ)⊂ [−∆,∆], where ∆ > 0. Also assume that ∆ is small enough so that

(32) 0 < ∆ < min{inf
t∈R

φ ′
1,1(t)/4, d/4}.

For a chosen window h ∈ S , denote

(33) Ik :=
∫

|h(x)||x|kdx,

where k ∈ {0}∪N. We mention that a more general window could be considered with

more error terms showing up in the proof. Since these extra efforts do not provide more

insight about the theory, we choose to work with this setup.

Definition 3.5. Let φk,ℓ(t) and Bk,ℓ(t) for k = 1, · · · ,K and ℓ∈N be defined as in Definition

2.2. Under Assumption 3.4, define

φk,−ℓ(t) :=−φk,ℓ(t) and Bk,−ℓ(t) := Bk,ℓ(t)

for ℓ ∈ N,

φk,0 = 0 ,

and define a set of intervals

Zk,ℓ(t) = [ℓφ ′
k,1(t)−∆, ℓφ ′

k,1(t)+∆]⊂ R ,(34)

associated with f , where k ∈ {1, . . . ,K} and ℓ ∈ Z.

The following Theorem describes the behavior of STCT when the signal is in Dε,d . The

proof of Theorem 3.6 is postponed to Appendix A.

Theorem 3.6. Suppose Assumption 3.4 holds. The STFT of f at time t ∈ R is

V
(h)
f (t,ξ ) =

1

2

K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)ĥ(ξ −φ ′
k,ℓ(t))e

i2πφk,ℓ(t)+ ε(t,ξ ),(35)
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where ξ ∈ R and ε(t,ξ ) is defined in (62). Furthermore, ε(t,ξ ) is of order ε and decays

at the rate of |ξ |−1 as |ξ | → ∞.

Take 0 < γ ≤ 1. For each k ∈ {1, . . . ,K}, denote a series bk ∈ ℓ1, where bk( j) = 0 for

all | j|> Nk and bk( j) = B
γ
k, j(t) for all | j| ≤ Nk. Then, for q > 0, we have

C
(h,γ)
f (t,q) =

|̂ĥ|γ(q)
2γ

K

∑
k=1

b̂k(q)+E1 +E2,(36)

where b̂k is is the discrete-time Fourier transform of bk, E1 is defined in (90), which is the

Fourier transform of δ3 defined in (78), and E2 is defined in (91), which is the Fourier

transform of ε3 defined in (75) and in general is a distribution. When K = 1, E1 = 0, and

when K > 1 it satisfies

|E1| ≤ 2∆I
γ
0

K

∑
k=2

B
γ
k,1(t)‖c

γ
k‖ℓ∞ Nk

k−1

∑
ℓ=1

[ 4∆

φ ′
ℓ,1(t)

+E(ℓ)(Nk)
]
,

where E(ℓ)(Nk)= o(Nk) is defined in (85). E2 satisfies |E2(ψ)| ≤ ‖ε3(t, ·)‖L∞‖ψ̂‖L1 for all

ψ ∈ S , and ε3 is of order εγ .

The equation (36) does not indicate the relationship between the relationship among

|̂ĥ|γ (q)
2γ ∑

K
k=1 b̂k(q), E1, and E2, so we could not conclude that we could obtain the inverse of

the IF from the STCT. We need more conditions to obtain what we are after. The following

corollary is immediate from Theorem 3.6.

Corollary 3.7. Fix ε > 0 and d > 0. Take f (t) = ∑
K
k=1 fk(t) ∈ Dε,d for some K ≥ 1. In

addition to Assumption 3.4, suppose

(37)
Bk,ℓ(t)√

1
4
B2

k,0(t)+
1
2 ∑

∞
ℓ=1 B2

k,ℓ(t)
> ε1/2

for all k = 1, . . . ,K and ℓ = 0,1, . . . ,Nk. Then, when ε < 1 is sufficiently small, ∆Nk is

sufficiently small and

√
1
4
B2

k,0(t)+
1
2 ∑

∞
ℓ=1 B2

k,ℓ(t) is sufficiently large for k = 1, . . . ,K, the

term
|̂ĥ|γ (q)

2γ ∑
K
k=1 b̂k(q) in (36) dominates and b̂k is a real, continuous and periodic function

of period 1/φ ′
k,1(t) for k = 1, . . . ,K.

The assumption that
√

1
4
B2

k,0(t)+
1
2 ∑

∞
ℓ=1 B2

k,ℓ(t) is sufficiently large for k = 1, . . . ,K

means that the ANH functions we have interest in have large enough AMs. Condition

(14) and Assumption (37) together mean that the first Nk multiples of the fundamental

component of the k-th ANH function are strong enough, while the remaining multiples

are not significant. When γ is chosen small enough, this assumption leads to the fact that

bk( j)=B
γ
k, j(t) is close to 1 for | j| ≤Nk, and “small” otherwise. Thus, the Fourier transform

of the ℓ1 series bk reflects faithfully the inverse of the IF. We could call 1/φ ′
k,1(t) the

instantaneous period (IP) of the k-th ANH function, which is the inverse of its fundamental

frequency.

Note that the assumption (37) can be generalized, but more conditions are needed to

guarantee that we obtain the IP. For example, if the condition (37) is failed for ℓ = 2 j so

that Bk,2 j(t) = 0 for j = 1, . . . ,⌊Nk/2⌋, then the ℓ1 series bk has an oscillation of period

2φ ′(t), and hence its Fourier transform is dominant in 1
2φ ′(t) instead of 1

φ ′(t) . This will lead

to an incorrect conclusion about the IF in the end. In this paper, to simplify the discussion,

we focus on this assumption. See more discussions in the Discussion section.
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The bounds for E1 and E2 need some discussions.

(1) The bound for E1 comes from controlling the possible overlaps between the multi-

ples of different ANH components in the STFT V
(h)
f (t,ξ ). When K = 1, there is no

danger of overlapping, so E1 = 0. When K > 1, the term Nk ∑
k−1
ℓ=1 [

4∆
φ ′
ℓ,1(t)

+E(ℓ)(Nk)]

is the upper bound of all possible overlaps between the k-th component and all ℓ-th
component, where ℓ∈ {1, . . . ,k−1}. The origin of this upper bound is the funda-

mental Erdös-Turán inequality, which gives a quantitative form of Weyl’s criterion

for equidistribution, and the convergence rate of E(ℓ)(Nk)→ 0 when Nk → ∞ de-

pends on the algebraic nature of the ratio φ ′
k,1(t)/φ ′

ℓ,1(t). Note that even when the

IF’s of all oscillatory components are constant, if K > 1, the E1 term still exists

due to the fundamental equidistribution property.

(2) When K > 1, the bound for E1 is the worst bound. Since we could not control

the locations of the overlaps between those multiples of different ANH compo-

nents in the STFT, when we evaluate the STCT by the Fourier transform, the

discrepancy caused by the overlaps, denoted as δ3 in (78), is bounded simply by

the Riemann-Lebesgue theorem. The bound is shown in (89). See Remark A.8

for more discussions. The constant could be improved. However, since the focus

here is showing how the result is influenced by the fundamental limitation of the

number of overlapped multiples, no effort has been made to optimize it.

(3) Note that the bound of E1 blows up when Nk → ∞. Thus, the bound of E1 is not

useful when Nk is “huge”. In practice, however, most non-sinusoidal oscillatory

signals have Nk less than 20. The most extreme case we have encountered up

to now is the ECG signal, which has Nk about 40. Thus, in practice, we could

choose a small ∆ so that E1 is well controlled for a “reasonable” Nk, and this is

the condition “∆Nk is sufficiently small” in Corollary 3.7. However, ∆ cannot be

chosen arbitrarily small. Note that the smaller the ∆ is, the longer the window will

be, and the larger the absolute moments Ik will be. Thus, the smaller the ∆ is, the

worse the bound of E2 is. In sum, when K > 1, except for special non-sinusoidal

oscillations with huge Nk, the bound for E1 could be well controlled for practical

applications.

(4) The term E2 comes from the non-constant AM and IF of each ANH component.

When the IF and AM are constant, this term becomes zero. Note that when γ is

chosen small, bk becomes more like a constant sequence and b̂k(q) behaves more

like a Dirichlet kernel. On the other hand, E2 becomes large when γ is small.

The theorem and the corollary say that the STCT encodes the IF information in the

format of IP via a periodic function. To better understand periodic functions b̂k, we take a

look at the following example.

Example 3.8. Consider a signal f (t) = s(ξ0t), where ξ0 > 0 and s is real, smooth and

1-periodic. This special case has only one oscillatory component, K = 1, with the fixed

wave-shape function and a constant IF. Thus we do not worry about the error terms E1

and E2 in Theorem 3.6. By a direct expansion, f (t) = ∑
N
k=0 c(k)cos(2πkξ0t +αk), where

N ∈ N∪{∞}, α0 = 0, c(1) > 0 and αk ∈ [0,2π) and c(k) ≥ 0 for all k 6= 1. To simplify

the calculation, we choose a smooth window function h so that ĥ is supported on [−∆,∆],
where 0 < ∆ < ξ0/2. By the Plancherel identity and a direct calculation, we have

(38) V
(h)
f (t,ξ ) =

N

∑
k=−N

c(k)ĥ(ξ − kξ0)e
i(2πkξ0t+αk),
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where we denote c(−k) = c(k) for all k ∈ N. Since ∆ < ξ0/2, for 0 < γ ≪ 1, we have

(39) |V (h)
f (t,ξ )|γ =

N

∑
k=−N

c(k)γ |ĥ(ξ − kξ0)|γ =
[ N

∑
k=−N

c(k)γ δkξ0
⋆ |ĥ|γ

]
(ξ ).

The evaluation of the Fourier transform of [∑N
k=−N c(k)γ δkξ0

⋆ |ĥ|γ ](ξ ) is straightforward

and we have for q > 0,

C
(h,γ)
f (t,q) = F [|V (h)

f (t, ·)|γ ](q) = |̂ĥ|γ(q)
N

∑
k=−N

c(k)γ e−i2πkξ0q = |̂ĥ|γ(q)S(γ)
1/ξ0

(q),(40)

where S
(γ)
1/ξ0

(q) is a periodic distribution with the period of length 1/ξ0 so that
̂
S
(γ)
1/ξ0

(k) =

c(k)γ for k ∈ {−N,−N +1, . . . ,N −1,N} and
̂
S
(γ)
1/ξ0

(k) = 0 otherwise.

We could take a look at a special case to have a better picture of what we get eventually.

Suppose N is finite and c(k) = 1 for k ∈ {−N, . . . ,N}. In this case, we have

C
(h,γ)
f (t,q) = |̂ĥ|γ(q)DN(ξ0q),

where DN(ξ0q) is the Dirichlet kernel, which is periodic with the period 1/ξ0 since DN(ξ0q)=
sin(π(2N+1)ξ0q)

sin(πξ0q)
. Also, it becomes more and more spiky at ℓ/ξ0 and eventually the Delta

comb supported on ℓ/ξ0, ℓ ∈ Z, when N → ∞. On the other hand, when N is finite and

small, the STCT could be oscillatory but still contains information we need. For example,

when N = 1, D1(ξ0q) = sin(π3ξ0q)
sin(πξ0q)

and D1(ξ0q) still has dominant values at q = ℓ/ξ0 for

ℓ ∈ Z .

3.3. inverse STCT. Based on Theorem 3.6 and a careful observation, we see that to de-

termine the fundamental frequency for an ANH signal f (t), a candidate frequency should

have the saliency of its multiples in the TF representation V
(h)
f (t,ξ ), and the associated

period and its multiples in the TP representation C
(h,γ)
f (t,q). In [51, 50], this observation

is summarized as a practical principle called the constraint of harmonicity, which is de-

scribed as follows: at a specific time t0, a pitch candidate, ξ1 > 0, is determined to be the

true pitch when there exists Mv,Mu ∈ N such that there are

(1) A sequence of “peaks” found around V
(h)
f (t0,ξ1), V

(h)
f (t0,2ξ1), . . ., V

(h)
f (t0,Mvξ1);

(2) A sequence of “peaks” found around C
(h,γ)
f (t0,q1), C

(h,γ)
f (t0,2q1), . . ., C

(h,γ)
f (t0,Muq1);

(3) ξ1 = 1/q1.

The sequence {ξ1,2ξ1, . . . ,Mvξ1} is commonly called harmonic series associated with

multiples of the pitch ξ1. The constraint of harmonicity principle leads to the following

consideration. If we “invert” the quefrency axis of the TP representation by the operator

I ,

(41) I : q 7→ 1/q,

when q > 0, then by the relationship that the period is the inverse of the frequency, we

could obtain information about the frequency in C
(h,γ)
f (t,I q). Note that I is open from

(0,∞) to (0,∞) and the differentiation of I is surjective on (0,∞), so for a distribution T

defined on (0,∞), we could well-define the composition T ◦I , or the pull-back of T via

I [26, Theorem 6.1.2]. Since in general C
(h,γ)
f (t, ·) is a tempered distribution, we could

consider the following definition to extract the frequency information for f :
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Definition 3.9. For a function f ∈ S ′, window h ∈ S and γ > 0, the inverse short time

cepstral transform (iSTCT) is defined on R×R+ as

(42) U
(h,γ)
f (t,ξ ) :=C

(h,γ)
f (t,I ξ ),

where ξ > 0 and U
(h,γ)
f (t, ·) is in general a distribution.

The unit of ξ in U
(h,γ)
f (t,ξ ) is Hz or any feasible unit in the frequency domain. We

mention that in the special case that f ∈C∞ ∩L∞, U
(h,γ)
f (t,ξ ) is a well-defined continuous

function in the frequency axis. Also, if C
(h,γ)
f (t, ·) is integrable and we want to preserve the

integrability, we could weight C
(h,γ)
f by the Jacobian of I . However, since the integrability

is not the main interest here, we do not consider it. We view U
(h,γ)
f (t,ξ ) as a TF represen-

tation determined by a nonlinear transform composed of several transforms. While this

operator looks natural at the first glance, it is actually not stable. See the following exam-

ple for the source of the instability.

Example 3.10. Let us continue the discussion of Example 3.8. Suppose N is finite and

hence C
(h,γ)
f (t,q) = |̂ĥ|γ(q)DN(ξ0q) for q> 0. Thus, by inverting the axis by ξ 7→ 1/ξ when

ξ 6= 0, the iSTCT becomes U
(h,γ)
f (t,ξ ) = |̂ĥ|γ(1/ξ )DN(ξ0/ξ ), where ξ > 0. Clearly, due to

the oscillatory nature of the Dirichlet kernel, the non-zero region of DN(ξ0q) around q = 0

would be flipped to the high frequency region, which amplifies the unwanted information

in the low frequency and represents it in the high frequency region. To be more precise,

since DN(ξ0q) decays monotonically from 2N to about −0.43N as q goes from 0 to x1 ∈
( 1
(2N+1)ξ0

, 2
(2N+1)ξ0

), where x1 is the local extremal point, in iSTCT, U
(h,γ)
f (t,ξ ) increases

from about −0.43N to 2N as η goes from 1/x1 to ∞. This indicates that |U (h,γ)
f (t,ξ )|> N

for all ξ > Ξ for some Ξ > 1/x1.

Motivated by the above example, in practice, we need to apply a filtering process on the

STCT to stabilize the algorithm. Here is the main idea. Since our interest is to capture the

IF’s of the signal, we have to effectively remove components unrelated to IF’s in the STCT.

In practice, the irrelevant components lie in the low quefrency region. Therefore, we need

to apply a long-pass lifter on U
(h,γ)
f (t,ξ ), where the lifter refers to a “filter” processed in

the cepstral domain, again by inverting the first four letters of “filter”, to distinguish it

from the filter processed in the spectral domain [5, 43]. Moreover, since the quefrency is

measured in the unit of time, a lifter is identified as a short-pass or long-pass one rather

than a low-pass or a high-pass one [5, 43]. In short, a long-pass lifter passes mainly the

component of high quefrency (long period) while rejects mainly the component of low

quefrency (short period).

3.4. de-shape STFT. Take the music signal as an example to examine the iSTCT. The

constraint of harmonicity principle tells us that while at a fixed time t we could find a har-

monic series associated with multiples of the pitch ξ0 in the TF representation V
(h)
f (t,ξ ),

we should find a sequence of peaks in the TF representation U
(h,γ)
f (t,ξ ), denoted as {ξ1,ξ1/2, . . . ,ξ1/Mu}

and this sequence is called the sub-harmonic series associated with the fundamental fre-

quency ξ1 in the literature. This observation motivates a combination of the STFT and

iSTCT to extract the pitch information; that is, we consider the following combination of



WAVE-SHAPE FUNCTION ANALYSIS – WHEN CEPSTRUM MEETS TIME-FREQUENCY ANALYSIS 19

the TF representation and TP representation via the iSTCT, which we coined the name

de-shape STFT:

Definition 3.11. For a function f ∈ S ′, window h ∈ S and γ > 0, the de-shape STFT is

defined on R×R+ as

(43) W
(h,γ)
f (t,ξ ) :=V

(h)
f (t,ξ )U

(h,γ)
f (t,ξ ),

where ξ > 0 is interpreted as frequency.

In general, since V
(h)
f (t,ξ ) is a C∞ function in the frequency axis and U

(h,γ)
f (t,ξ ) is a dis-

tribution in the frequency axis, the de-shape STFT is well-defined as a distribution. Again,

in the special case that f ∈ C∞ ∩L∞, W
(h,γ)
f (t,ξ ) is a well-defined continuous function in

the frequency axis.

The motivation beyond the nomination “de-shape” is intuitive – since the harmonic

series associated with multiples of the fundamental frequency ξ0 in V
(h)
f (t,ξ ) overlaps

with the sub-harmonic series associated with multiples of the fundamental frequency ξ0

in U
(h,γ)
f (t,ξ ) only at ξ0, by multiplying V

(h)
f (t,ξ ) and U

(h,γ)
f (t,ξ ), only the information

associated with the pitch is left in the result. Thus, the influence caused by the non-trivial

wave-shape function in the TF representation is removed, and hence we could view the de-

shape process as an adaptive and nonlinear filtering technique for the STFT. Since ξ > 0

in W
(h)
f (t,ξ ) is interpreted as frequency, the de-shape STFT provides a TF representation.

We mention that in the music field, a similar idea called the combined temporal and

spectral representations has been applied to the single pitch detection problem [46, 15].

With our notation, the proposed idea of detecting the pitch at time t, denoted as ξ0(t), is

simply by ξ0(t) = argmaxξ>0 |W
(h,γ)
f (t,ξ )| [46, 15]. In the last section of [46], the authors

showed a figure of polyphonic music and slightly addressed the “potential” of this idea in

multiple pitch estimation problems. But this idea was not noticed until [51, 50], which

gives an explicit methodology, systematic investigation, and evaluation of using this idea

in multiple pitch estimation.

3.5. Sharpen de-shape STFT by the synchrosqueezing transform – de-shape SST.

While the de-shape STFT could alleviate the influence of the wave-shape function, it again

suffers from the Heisenberg-Gabor uncertainty principle and tends to be blurred in the TF

representation [16]. One approach to sharpen a TF representation is by applying the SST,

and we propose to combine SST to obtain a sharp TF representation without the influence

of the wave-shape function. SST is a nonlinear TF analysis technique, which is special

case of the more general RM method [2]. In summary, it aims at moving the spectral-

leakage terms caused by Heisenberg-Gabor uncertainty principle to the correct location,

and therefore sharpens the TF representation with high concentration [12, 6, 55, 42]. The

main step in SST is estimating the frequency reassignment vector, which guides how the

TF representation should be nonlinearly deformed. The resulting TF representation has

been applied to several fields. For example, in the physiological signal processing, SST

leads to a a better estimation of IF and AM, which is applied to study sleep dynamics

[60], coupling [30] and others, or a better spectral analysis, which is applied to study the

noxious stimulation problem [39]; in the mechanical engineering, it has been applied to

estimate speed of rotating machinery [61] and others; in finance, it is applied to detect

the non-stationary dynamics in the financial system [23]; in the music processing, such

an approach can better discriminate closely-located components, and applications have be

found in chord recognition [32], sinusoidal synthesis [47] and others.
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The frequency reassignment vector associated with a function f ∈ S ′ is determined by

(44) Ω
(h,υ)
f (t,ξ ) :=





−ℑ
V
(Dh)
f (t,ξ )

2πV
(h)
f (t,ξ )

when |V (h)
f (t,ξ )|> υ

−∞ when |V (h)
f (t,ξ )| ≤ υ

,

where Dh(t) is the derivative of the chosen window function h ∈ S , ℑ means the imag-

inary part and υ > 0 gives a threshold so as to avoid instability in computation when

|V (h)
f (t,ξ )| is small. The theoretical analysis of the frequency reassignment vector has

been studied in several papers [12, 58, 6], and we refer the reader with interest to these

papers. In general, we could consider variations of the reassignment vectors for different

purposes. For example, the reassignment vectors used in the second order SST [42]. To

keep the discussion simple, we focus on the original SST.

The SST of V
(h)
f (t,ξ ) is therefore defined as

(45) SV
(h,υ)
f (t,ξ ) =

∫

Nυ (t)
V
(h)
f (t,η)

1

α
g


 |ξ −Ω

(h,υ)
f (t,η)|
α


 dη .

where ξ ≥ 0, α > 0, g ∈ S and 1
α g( ·

α ) converges weakly to the Dirac measure supported

at 0 when α → 0, Nυ(t) := {ξ ≥ 0| |V (h)
f (t,ξ )|> υ}; similarly, we have the de-shape SST

defined as

(46) SW
(h,γ,υ)
f (t,ξ ) =

∫

Nυ (t)
W

(h,γ)
f (t,η)

1

α
g


 |ξ −Ω

(h,υ)
f (t,η)|
α


 dη ,

where ξ ≥ 0. Numerically, g could be chosen to be the Gaussian function with α > 0 or as

a direct discretization of the Dirac measure when α ≪ 1. For numerical implementation

details and the stability results of SST, we refer the reader with interest to [6].

With the de-shape STFT, the wave-shape information is decoupled from the IF and AM

in the TF representation; with the de-shape SST, the TF representation is further sharpened.

We could continue to do the analysis to, for example, carry out the wave-shape reconstruc-

tion, count the oscillatory components, etc. Furthermore, we could combine the de-shape

SST information and current wave-shape analysis algorithms, including the functional re-

gression [7, Section 4.7], designing a dictionary [28] or unwrapping the phase [62], to

study the oscillatory signal with time-varying wave-shape function. The work of estimat-

ing the time-varying wave-shape function with applications will be explored systematically

in a coming work.

4. NUMERICAL RESULTS

In this section we demonstrate how the de-shape SST performs in various kinds of

signals with multiple ANH components with non-trivial time-varying shape function. We

consider a wide range of physiological, biological, audio and mechanical signals, which

are generated in different dynamical system and recorded by different sensors. The signals

are: (1) abdominal fetal ECG signal, (2) different photoplethysmography signals under

different challenges – respiratory and heartbeat, motion and heartbeat, and non-contact

PPG signal, (3) music and bioacoustic signals including the violin sonata, choir and wolves

sound. The code of SST and de-shape SST and test datasets are available via request.
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For a fair comparison, the parameters for computing the de-shape SST are set to be the

same for all signals throughout the paper: γ = 0.3 for the STCT and υ = 10−4% of the

root mean square energy of the signal under analysis for the de-shape SST.

4.1. Simulated signal. We continue the example shown in the Introduction section, make

clear how f2 is generated, and consider a more complicated example. Take W to be the

standard Brownian motion defined on R and define random processes ΦA,σ ,a := (|W |+1)⋆Kσ

‖(|W |+1)⋆Kσ ‖L∞ [0,100]
+

a and Φφ ,σ ,b,c := b|W |
‖W‖L∞ [0,100]

⋆Kσ + c, where a,b,c ∈ R, Kσ is the Gaussian function with

the standard deviation σ > 0. A2(t) is a realization of ΦA,10,0.9, A3(t) is a realization of

ΦA,10,0.9, φ2(t) is a realization of Φφ ,5,2,π/2, and A3 is a realization of Φφ ,5,1,4 on [0,100].
Here all realizations are independent.

The signal f2 is generated by A2(t)mod(φ2,1). To generate f3, denote tk = φ−1
3 (k). The

signal f3 is A3(t)χ[30,100](∑k δtk ⋆χ[−3/100,3/100]).
Consider a clean signal f (t) = f1(t)+ f2(t)+ f3(t) from t = 0 to t = 100 sampled at

100Hz. Clearly, while f1, f2 and f3 are oscillatory, the wave-shape functions are all non-

trivial and the wave-shape functions of f2 and f3 are time-varying, and f2 and f3 exist for

only part of the full time observation time. To further challenge the algorithm, we add a

white noise ξ (t) to g by considering Y (t) = f (t)+ξ (t), where for all t, ξ (t) is a student t4

random variable with the standard deviation 0.5. The signal-to-noise (SNR) ratio of Y (t)

is 1.8dB, where SNR is defined as 20log
std( f )
std(ξ )

and std means the standard deviation. The

signal f1 and f2 are shown in Figure 2, and the signal of f3(t), g(t) and Y (t) are shown in

Figure 4. The results of STCT, iSTCT, de-shape STFT and de-shape SST of g(t) and Y (t)
are shown in Figure 5. The ground truths are superimposed for the comparison.

There are several findings. Note that even when the signal is clean, we could see several

interferences in either STFT or SST. For example, we could see the “bubbling pattern” in

these TF representations around 2Hz from 0 to 60 seconds (indicated by red arrows), which

comes from the interference of the 2nd-multiple of f1 and the fundamental component of

f2. These interferences are eliminated in de-shape SST, since the wave-shape is “decom-

posed” in the analysis. Second, when the signal is clean, we could see a “curve” starting

from about 3.4Hz at 0 second and climbing up to 4Hz at 40s in STFT and SST (indicated

by green arrows). Certainly this is not a true component but an artifact, which comes from

the incidental appearance of different multiples of different ANH functions. This might

mislead us and conclude that there is an extra component. Note that this possible arti-

fact is eliminated in the de-shape SST. Third, around 85s, the IF’s of f2 and f3 cross over

(indicated by blue arrows). How to directly decouple signals with this kind of cross-over

IF’s with TF analysis technique is still an open question. Last but not the least, while the

SNR is low, the de-shape SST could still be able to provide a reasonable IF information

regarding the components. This comes from the robustness of the frequency reassignment

vector, which has been discussed in [6]. We mention that we could further stabilize the

TF representation determined by the de-shape SST by the currently proposed multi-taper

technique called concentration of frequency and time (ConceFT) [13]. We refer the reader

with interest to [13] for a detailed discussion of ConceFT.

4.2. ECG signal. As discussed in Section 2.2.1, we need the modified wave-shape func-

tion to better capture the features in the ECG signal. We now show that by the de-shape

SST, we could obtain a TF representation without the influence of the time-varying wave-

shape function. For the ECG signal, we follow the standard median filter technique to

remove the baseline wandering [10], and the sliding window is chosen to be 0.1 second.
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FIGURE 4. Top: the simulated signal f3; top middle: f = f1 + f2 + f3;

top bottom: ξ (t), bottom: Y = f (t) + ξ (t). To enhance visibility, we

only show the signal over [25,65].

4.2.1. Normal ECG signal. The lead II ECG signal f (t) is recorded from a normal subject

for 85 seconds, which is sampled at 1000Hz. The average heart rate of the subject is about

70 times per minute; that is, the IF is about 1.2 Hz. By reading Figure 6, it is clear that

the ECG signal is oscillatory with a non-trivial wave-shape function, and the wave-shape

function is time varying, as is discussed in Section 2.2.1.

Figure 6 shows the analysis result. We could see a dominant curve in the STCT, which

shows the period information of the oscillation and it is about 0.9 second per wave. The

iSTCT flips the period information back to frequency information, and hence we see a

dominant curve around 1.2 Hz. Eventually, the multiples associated with the ECG wave-

form are well eliminated by the de-shape STFT SW
(h)
f and the TF representation is sharp.

Thus we conclude that the de-shape SST provides a more faithful TF representation and

decouples the IF, AM and the wave-shape function information. Moreover, the dominant

curve around 1.2 Hz fits the ground truth instantaneous heart rate (IHR), which indicates

the potential of the de-shape SST in the ECG signal analysis.

4.2.2. Abdominal fetal ECG. The fetal ECG could provide critical information for physi-

cians to make clinical decision. While several methods are available to obtain the fetal

ECG, the abdominal fetal ECG signal is probably the most convenient and cheap one. We

take the abdominal fetal ECG signal with the annotation provided by a group of cardiol-

ogists from PhysioNet [22]. In this database, four electrodes are placed around the navel,

a reference electrode is placed above the pubic symphysis and a common mode reference

electrode is placed on the left leg, which leads to four channels of abdominal ECG signal.

The signal is recorded at 1000Hz for 300 seconds. In this example we show the result with

the third abdominal ECG signal. Note that while the signal is carefully collected, the signal

to noise ratio of the abdominal fetal ECG is relatively low. We refer the reader with in-

terest to https://www.physionet.org/physiobank/database/adfecgdb/ for more

details.

https://www.physionet.org/physiobank/database/adfecgdb/
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FIGURE 5. Top left: the STFT of the clean signal f , |V (h)
f (t,ξ )|; top

middle: the SST of f , |SV
(h)
f (t,ξ )|. The colored arrows indicates three

findings mentioned in the main context; top right: the STCT of f ,

|C(h)
f (t,ξ )|; middle left: the inverse STCT of f , |U (h,γ)

f (t,ξ )|; middle

middle: de-shape STFT of f , |W (h,γ)
f (t,ξ )|; middle right: the de-shape

SST of f , |SW
(h,γ)
f (t,ξ )|; bottom left: the STFT of the noisy signal Y ,

|V (h)
Y (t,ξ )|; bottom middle: the de-shape SST of the noisy signal Y ,

|SW
(h,γ)

Y (t,ξ )|; bottom right: the de-shape SST of the clean signal f ,

|SW
(h,γ)
f (t,ξ )|, superimposed with φ ′

1(t), φ ′
2(t) and φ ′

3(t) in red.

The results of different TF analyses, including de-shape SST, are shown in Figure 7.

In the STFT and SST, we could see a light curve around 2Hz, which coincides with the

fetal IHR we have interest in. However, this information is masked by the multiples of the

maternal ECG signal. In the de-shape SST, the wave-shape influence is removed and the

fetal IHR is better extracted, and the estimated fetal IHR coincides well with the annotation

provided by the physician. The curve around 1.5Hz is the IHR associated with the maternal
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FIGURE 6. Top: the ECG signal f recorded for 85 seconds from a

normal subject. The basic landmarks of the ECG signal, P, Q, R,

S, and T, and the QT and RR intervals are shown. Note that the

QT interval (respectively RR interval) is the length of the time inter-

val between the start of the Q wave and the end of the T wave of

one heart beat (respectively two R landmarks of two consecutive heart

beats). To enhance the visibility, we only show the first 10 seconds.

Second row, left panel: |V (h)
f (t,ξ )|; middle panel: |SV

(h)
f (t,ξ )|; right

panel: |SW
(h,γ)
f (t,ξ )|. Third row, left panel: |C(h,γ)

f (t,ξ )|; middle panel:

|U (h,γ)
f (t,ξ )|; right panel: |SW

(h,γ)
f (t,ξ )| superimposed with the instan-

taneous heart rate. To enhance the visibility, we show |C(h,γ)
f (t,ξ )|,

|U (h,γ)
f (t,ξ )| and |SW

(h,γ)
f (t,ξ )| only up to 4Hz in the frequency axis.

heart beats. The potential of applying de-shape SST to study fetal ECG will be explored

and reported in future works.

4.3. PPG signal. Pulse waves represent the hemodynamics, and it can be monitored via

plethysmographic technologies in different regions of the body. These technologies often

use photo sensors usually placed on the earlobe or finger, by illuminating the tissue and si-

multaneously measuring the transmitted or the reflected light using a specific wavelength.

More recently, noncontact techniques such as video signals (e.g., PhysioCam [14]) have
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FIGURE 7. Top: the abdominal fetal ECG signal f recorded for 300

seconds from a recorded in labor, between 38 to 41 weeks gestation.

To enhance the visibility, we only show the signal of 30 seconds long.

The annotation of the fetal heart beats are marked in red. Middle left

panel: |V (h)
f (t,ξ )|; middle right panel: |SV

(h)
f (t,ξ )|; bottom left panel:

|SW
(h,γ)
f (t,ξ )|; bottom right panel: |SW

(h,γ)
f (t,ξ )| superimposed with the

fetal instantaneous heart rate (IHR) determined by a group of cardiolo-

gists. To enhance the visibility, we show |SW
(h,γ)
f (t,ξ )| only up to 4Hz in

the frequency axis. The curve around 1.5Hz is the IHR associated with

the maternal heart beats.

been used to monitor the pulse wave from the face at a distance. Collectively, the appli-

cation of photosensors to monitor pulse wave are known as photoplethysmography (PPG).

See, for example, [14] for a review of the PPG technique. In addition to acquire the hemo-

dynamical information, it also contains the respiration information. Indeed, mechanically,

inspiration leads to a reduction in tissue blood volume, which leads to a lower amplitude of

the PPG signal. Since none of the pulse wave or the respiration-induce variation oscillates

like a sinusoidal wave, the signal should be modeled by the ANH model.

4.3.1. PPG signal with respiration. Figure 8 shows a PPG signal from the Capnobase

dataset5 and its analysis result with the de-shape STFT. The PPG signal, the capnogram

signal and the ECG signal are simulateneously recorded from a subject without any motion

at 300 Hz for 480 seconds. By a visual inspection, it is clear that there are two oscillations

5http://www.capnobase.org

http://www.capnobase.org
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inside the PPG signal – the faster (respectively slower) oscillations are associated with the

heartbeat (respectively respiration). Clearly, the non-sinusoidal oscillatory waves compli-

cate STFT V
(h)
f and SST SV

(h)
f , while these multiples are elliminated in the de-shape STFT

and de-shape SST. Also, we could see that the estimated IHR and instantaneous respira-

tory rate (IRR) estimated from the PPG signal fit the IHR and IRR derived directly from

the ECG signal and the capnogram signal. This indicates the potential of simultaneously

obtaining IHR and IRR from the PPG signal.

We mention that when γ is chosen to be 2, the heartbeat component is missed (the

result is not shown). This coincides with the general knowledge that γ = 2 is not a good

periodicity detector when there exists multiple periodicity in the signal.

4.3.2. PPG signal with motion. Figure 9 shows the result of one PPG sample used in the

training dataset of ICASSP 2015 signal processing cup6. The sample is a 5-minute PPG

signal sampled at 125Hz when the subject runs with changing speeds, scheduled as: rest

(30s) → 8km/h (1min) → 15km/h (1min) → 8km/h (1min) → 15km/h (1min) → rest

(30s). From the recorded signal it is not easy to see how the motion and heartbeat vary.

The heartbeat component starts from around 1.7 Hz at 50 seconds, to 2.2 Hz from 150

to 170 seconds, when the subject has just finished the 15km/h running section. Then, the

heartbeat goes lower in the 8km/h section and higher in the final 15km/h section.

Note that the IF of the heartbeats (marked by the red arrow) lies between two other

components, supposedly contributed by motion. The higher frequency component associ-

ated with motion has IF about twice the IF of the lower one. We conjecture that the higher

one is contributed by the movement of body while the lower is contributed by the move-

ment of arms and legs. The body finishes a period by just one step, while the leg finished

a period by two steps (one leg needs to finish a forward and backward movement). This

is very similar to the “octave” detection problem in music signal processing (see Section

4.4.1) and it is quite natural to catch two components here as they are indeed (at least) two

different oscillatory signals, where the one has IF almost twice from the other one. An

extensive study of this signal is needed to fully understand how the body motion influences

the physiological signal and will be reported in a future work.

4.3.3. Non-contact PPG signal. Figure 10 shows the non-contact PPG signal recorded

from a normal subject when he is walking on the treadmill at 0.6 Hz. The sampling rate

is 100Hz. The non-contact PPG is collected with the PhysioCam technology, and we refer

the reader with interest to [14] for details. The ECG signal is simultaneously recorded

from the subject at the sampling rate 1000Hz, so we have the true IHR for comparison.

Clearly the signal is noisy and contains the walking rhythm; that is, the non-contact PPG

signal is composed of two oscillatory signals – one is associated with the hemodynamics

and one is associated with the walking rhythm. Despite the heavy corruption terms in the

low frequency, which comes from the “trend” inside the signal, we could see that the de-

shape STFT successfully extracts the walking rhythm around 0.6 Hz and the IF around

2Hz, which coincides with the IHR determined from the ECG signal. A systematic study

of this kind of signal, including the associated de-trend technique, is critical for practical

applications and will be reported in a future work.

4.4. Music and bioacoustic sounds. The idea of de-shape STFT has been applied in the

task called automatic music transcription (AMT) [46, 15, 51, 50], and this approach has

6http://www.zhilinzhang.com/spcup2015/

http://www.zhilinzhang.com/spcup2015/
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FIGURE 8. Top row: the photoplethysmography signal f recorded from

a normal subject for 480 seconds. To enhance the visibility, we only

show the segment between the 150-th second and 250-th second. Sec-

ond row: left: |V (h)
f (t,ξ )|; middle: |SV

(h)
f (t,ξ )|; right: the de-shape SST

of the capnogram signal superimposed with the instantaneous respira-

tory rate (IRR) in red, which is estimated from the PPG signal. Here,

only up to 2Hz in the frequency axis is shown to enhance the visibility.

Bottom row: left: |SW
(h,γ)
f (t,ξ )|. To enhance the visibility, we show

|SW
(h,γ)
f (t,ξ )| only up to 4Hz in the frequency axis. Clearly, the mul-

tiples of each component are eliminated; middle: |SW
(h,γ)
f (t,ξ )| super-

imposed with the estimated instantaneous heart rate (IHR) and IRR. The

red curve around 0.3Hz is associated with the IRR and the red curve

around 1.6 Hz is associated with the IHR. The blue curve is five times

the IRR curve, which indicates that the component with the higher fre-

quency is not a multiple of the component with lower frequency; right:

the de-shape SST of the electrocardiographic signal superimposed with

the IHR in red, which is estimated from the PPG signal. Here, only up

to 2Hz in the frequency axis is shown to enhance the visibility.
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FIGURE 9. Top row: the photoplethysmography signal f recorded from

a normal subject, who is scheduled to run at different speeds. Second

row: the first 100 seconds photoplethysmography signal f . It is clear

that the signal is composed of several components with complicated dy-

namics. Third row: |V (h)
f (t,ξ )| is shown on the left and |SV

(h)
f (t,ξ )|

is shown on the right. Bottom row: |U (h,γ)
f (t,ξ )| is shown on the left

and |SW
(h,γ)
f (t,ξ )| is shown on the right. The heartbeat component is

marked by red arrows. To enhance the visibility, we shown |U (h,γ)
f (t,ξ )|

and |SW
(h,γ)
f (t,ξ )| only up to 6Hz in the frequency axis.

been shown competitive in comparison to the state-of-the-art AMT methods in the MIREX-

MF0 challenge, an annual competition in the field of music information retrieval (MIR).7

AMT is still a technology under active development by now, where one big challenge is

how to correctly identify the pitches of the notes played at the same time. In this subsection,

we show the potential of applying the de-shape SST to the AMT problem.

7http://www.music-ir.org/mirex/wiki/MIREX_HOME

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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FIGURE 10. Top: the non-contact PPG signal f recorded from a nor-

mal subject walking on the treadmill at a fixed speed. Middle left:

|V (h)
f (t,ξ )|; middle right: |SV

(h,γ)
f (t,ξ )|; bottom left: |SW

(h,γ)
f (t,ξ )|;

bottom right: |SW
(h,γ)
f (t,ξ )| superimposed with the instantaneous heart

rate. To enhance the visibility, we show |U (h,γ)
f (t,ξ )| and |SW

(h,γ)
f (t,ξ )|

only up to 5Hz in the frequency axis.

4.4.1. Violin sonata. Figure 11 shows a 6-second segment from Mozart’s Violin Sonata

in E minor, K.304, where the annotations are provided by musicians. The sampling rate

of the signal is 44.1 kHz. This segment contains the sounds of two instruments, violin

(melody) and piano (accompaniment). The number of concurrent pitches of this signal at

every timestamp varies from 1 to 4, where the violin is played in single pitch and the piano

in multiple pitches. The patterns of the two instruments are different, which can be seen

from reading the TF representations of STFT and SST. The violin sound exhibits a clear

vibrato (i.e., periodic variation of the IF) together with a strong and frequency-dependent

AM effect. See the red arrows in Figure 11 for an example. It is to say that the spectral

envelope of the sound varies strongly during one cycle of vibrato [18]. On the other hand,

piano notes have stable IF’s, strong attack and long decay of AMs, and, as mentioned in

Section 2.2.3, the inharmonicity makes the high-order harmonic peaks deviate from the

integral multiple of the fundamental frequency f1. The notes of this segment are with

pitches ranging from E2 (the fundamental frequency is 82.4 Hz) to G5 (the fundamental

frequency is 784.0 Hz), and they are shown in the red lines in Figure 11. The resolution of

the labels formatted in Musical Instrument Digital Interface (MIDI) is one semitone.
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We indicate one specific tricky problem commonly encountered in this kind of signal.

Take the signal from 0.76 to 1.14 seconds as an example. The highest note of piano, B3 (the

fundamental frequency is 246.9 Hz), is just one half of the violin note, B4 (the fundamental

frequency is 493.88 Hz). It is to say, all multiples of violin note are (nearly) overlapped

with the piano note, thereby violates the frequency separation condition in Definition 2.2.

The problem of detecting these “overlaps” is commonly understood as the octave detection

[52]. A systematic study of this specific problem is out of the scope of this paper, and it

will be discussed in a future work.

From the result of the de-shape SST, we see that the multiples are distinguished from the

IF’s and are eliminated. All the notes of both violin and piano are well captured. For violin

we can even obtain the vibrato rate and vibrato depth of the notes, which are not recorded

in the MIDI ground truth. We could also see that the octave problem mentioned above is

well resolved. However, we can still see some false detections in the “inner part” of the

music. For example, there is a component appearing at around 330 Hz from 1.46 to 1.8

seconds, but there is no note played here. To explain this, notice that the fake component

has frequency twice of a piano note while at the same time one half of the violin note. This

causes an issue called the stacked harmonics ambiguity, which is caused by double or even

more octave ambiguities. This open problem has also been raised in [51, 50]. Again, a

systematic study of this specific problem is out of the scope of this paper, and it will be

discussed in future works.

4.4.2. Choir. Figure 12 shows the analysis result of a recorded choir music with the anno-

tation provided by experts. Similar to the above example, the choir music also has multiple

components and usually in consonant intervals. Moreover, in the choir music, every per-

ceived individual note is typically sung in unison by more than one performer. However,

since there is always some small and independent variation of the IF among performers,

the resulting sound would have wider mainlobe in the STFT than the other music sung by

a single performer. Such a phenomenon, called pitch scattering [54], usually appears in

choir and symphony music, as a challenge in correctly estimate the pitch of every note.

This example is a 3-part choir (first soprano, second soprano and alto), with pitches

ranging from B3 (the fundamental frequency is 246.9 Hz) to E5 (the fundamental fre-

quency is 659.3 Hz). We could see in Figure 12 that the pitch scattering issue can be

partially addressed by the SST. However, we can still find some intertwined components,

like the component at around 920 Hz from 2.2 to 3.5 seconds, which might be contributed

by more than two notes with different vibrato behaviors. By using the de-shaped SST, this

wide-spread terms are correctly identified as the multiples and removed. All labeled notes

are captured and there are few false alarm terms.

Although we have shown the usefulness of de-shape SST in both physiological and

musical signals, we need to emphasize some differences between them. In comparison to

physiological data, musical signals can have a much larger number of components (e.g.,

more than 10 components in a symphony), which complicate the patterns of the multiples.

Besides, most of the musical works are composed following the theory of harmony, which

holds a principle that a sound is consonant when the ratio of the IF’s are in simple ratios.

This implies that the spectra of the components are highly overlapped. Moreover, the

octave is very often seen in music composition. Therefore, musical signals usually violate

Definition 2.2 and make the problem of AMT ill-posed. To reduce the ambiguities of

octaves and other consonant intervals, we may impose more strict constraints when we

analyze the signal, like the constraint of harmonicity discussed in Section 3.3. For more

information of this approach in AMT, readers could refer to [51, 50].
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FIGURE 11. Top: the Mozart violin sonata signal f , which is zoomed

in to the period from 4.2 second to 4.7 second to enhance the visualiza-

tion. Since there are several oscillatory components with complicated

wave-shape function, it is not clear what information is hidden inside,

even it is hard to identify oscillations. Middle left: |V (h)
f (t,ξ )|; middle

right: |SV
(h)
f (t,ξ )|; bottom left: |SW

(h,γ)
f (t,ξ )|, where the red arrows in-

dicate the violin sound with vibrato; bottom right: |SW
(h,γ)
f (t,ξ )| with

the annotations superimposed in red. To enhance the visibility, we show

|SW
(h,γ)
f (t,ξ )| only up to 1000Hz in the frequency axis.

4.4.3. Wolf howling. An important topic in conservation biology is monitoring the number

of wolves in the field [45]. Analyzing the wolf howling signal is an efficient approach to

evaluate how many wolves are there in the field under survey. In this final example we

show the analysis result with a field signal recorded The sound is downloaded from Wolf

Park website8. The signal is sampled at 11.025 kHz for 40 seconds. In Figure 13 we could

directly see that while TF representations provided by STFT and SST are complicated by

the multiples caused by the non-trivial wave-shape, the TF representation provided by de-

shape SST contains only the fundamental components. By reading the de-shape SST, we

could suggest that there are at least three wolves in the field, since during the recording

period, there are at most three dominant curves at a fixed time. However, the ground truth

for this database is not provided, and identifying each single wolf needs field experts, so

8http://www.wolfpark.org/Images/Resources/Howls/Chorus_1.wav

http://www.wolfpark.org/Images/Resources/Howls/Chorus_1.wav
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FIGURE 12. Top: the choir signal f , which is zoomed in to the period

from 4.2 second to 4.7 second to enhance the visualization. Middle left:

|V (h)
f (t,ξ )|; middle right: |SV

(h)
f (t,ξ )|; bottom left: |SW

(h,γ)
f (t,ξ )|; bot-

tom right: |SW
(h,γ)
f (t,ξ )| with the annotations superimposed in red. To

enhance the visibility, we show |SW
(h,γ)
f (t,ξ )| only up to 800Hz in the

frequency axis.

this conclusion is not confirmed, and a further collaborative exploration with biologists is

needed. To sum up, this suggests that the de-shape SST has potential to provide an audio

visualization for this kind of application.

5. NUMERICAL ISSUES

While the numerical implementation of STCT, iSTCT, de-shape STFT and de-shape

SST are straightforward, we should pay an attention to evaluate iSTCT. In particular, the

map from C
(h,γ)
f (t,η) to U

(h,γ)
f (t,ξ ) depends on the inverse map I , which is numerically

unstable. To stabilize it, there are two critical process: (1) long-pass lifter; (2) discretize I

by a suitable weighting, for example, by the Jacobian of I , so that the iSTCT is defined

on the uniform frequency grid. Let the sampling frequency of the signal f (t) be ζ > 0

and we sample N ∈ N points from f . Then, for the N-point STFT, the frequency axis is

discretized into ηn = nζ/N, where n = 0,1, . . . ,N−1, ηn is the n-th index in the frequency

axis, and the frequency resolution is ∆ζ := ζ/N. Similarly, the quefrency axis in STCT is

discretized into qn = n/ζ , where n = 0,1, . . . ,N − 1, qn is the n-th index in the quefrency

axis and the quefrency resolution is ∆q := 1/ζ . We discretize the frequency axis of iSTCT
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FIGURE 13. Top: the wolf howling signal f . Since each component in-

side the signal oscillates at the frequency at least 400Hz, the oscillation

could not be visualized except the overall amplitude modulation. Middle

left: |V (h)
f (t,ξ )|; middle right: |SV

(h)
f (t,ξ )|; bottom left: |SW

(h,γ)
f (t,ξ )|;

bottom right: the zoom-in |SW
(h,γ)
f (t,ξ )| only up to 1000Hz in the fre-

quency axis. The three red arrows at around 18 seconds indicate that

there are at least three wolves.

in the same way as that of STFT; that is, the frequency axis of iSTCT is discretized into

ηn, where n = 0,1, . . . ,N −1, and the frequency resolution is ∆ζ .

To implement the long-pass lifter mentioned in Section 3.3, we consider a simple but

effective hard threshold approach by choosing a cutoff quefrency qc, where c ∈N is chosen

by the user; that is, all entries with index less than c are set to zero and the other entries are

not changed. While it depends on the characteristic of the signal, in practice we suggest to

choose the cutoff quefrency in the range of 10 ≤ c ≤ 20 and numerically it performs well.

One main issue of the mapping I is that it maps uniform grid to a non-uniform grid

and hence there are insufficient low-quefrency elements in C
(h,γ)
f (t,I η), which could be

directed implemented by inverting the quefrency axis index of C
(h,γ)
f (t,η), to represent

the high-frequency content in U
(h,γ)
f (t,ξ ). For example, we have only about ⌊0.1/∆q⌋ =

⌊0.1ζ⌋ entries on the quefrency interval [0.1,0.2] in C
(h,γ)
f (t,η), while we have ⌊ 5N

ζ
⌋ en-

tries on the frequency interval [5,10] in U
(h,γ)
f (t,ξ ). On the other hand, there are too many

high-quefrency elements to represent the low-frequency content. Therefore, we suggest to
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do interpolation over the quefrency axis in the STCT to alleviate this issue. Denote the

finer grid in the quefrency axis as q̃ j, j = 1, . . . ,M and M > N. Further, if we want to pre-

serve the integrability of the function after the mapping I , we should weight the entries

by the Jacobian of I . To sum up, after obtaining C
(h,γ)
f with a finer resolution in the que-

frency axis, the elements in C
(h,γ)
f are weighted and summed up to the closest frequency

bin corresponding to it; that is, we implement iSTCT by

(47) U
(h,γ)
f (t,ηn) = ∑

j∈P(ηn)

C
(h,γ)
f (t, q̃ j) q̃ j,

where P(ηn) := { j : 1/(ηn+0.5∆ζ )< q̃ j ≤ 1/(ηn−0.5∆ζ )} for each n = 0,1, . . . ,N−1.

6. CONCLUSIONS

To handle oscillatory signals in the real world, we provide a model capturing oscilla-

tory features, including IF, AM and time-varying wave-shape function. To alleviate the

limitation of TF analysis caused by the existence of non-trivial wave-shape function, we

consider the idea of cepstrum and introduce the STCT, de-shape STFT and de-shape SST.

A theoretical proof is provided to study how STCT works. When the STCT and its theoret-

ical proof is combined with the previous study of SST, we have a theoretical understanding

of the efficiency of de-shape SST. In addition to the simulated signal, several real datasets

are studied and confirm the potential of the proposed algorithms. The proposed algorithm

could be easily combined with several other algorithms to study a given database. For

example, we could apply ConceFT [13] to stabilize the influence of the noise, the RM

technique [2] could be applied to further sharpen the TF representation if causality is not

an issue, we could apply the adaptive local iterative filtering [9] to reconstruct each os-

cillatory component, we could consider the template fitting scheme by designing a good

dictionary based on the available information from the de-shape SST [27], to name but a

few. However, there are several problems left unanswered in this paper. We summarize

them below.

To facilitate the discussion, we could call the sequence {Bk,ℓ(t)}Nk

ℓ=−Nk
in (35) the spec-

tral envelope of the k-th ANH model. The assumption in Theorem 3.6 says that the spectral

envelope of an ANH function should be “far away” from 0. In the ideal case, we would

expect that the spectral envelope is “slow-varying” in comparison to the harmonic series in

the spectrum, so that the cepstrum can well extract the periodicity-related elements from

the filter-like elements. This ideal case is satisfied by the assumption in Theorem 3.6 in the

sense that the IP information is recovered in the STCT. However, this is not always true

for real-world signals; in some challenging cases we could see non-trivial patterns in the

spectral envelope, which breaks the assumptions in Theorem 3.6. This contaminates the

information associated with the IP information we have interest in, and hence causes fake

detection of periodicity. Here we discuss two real scenarios when the spectral envelope

has a non-trivial pattern.

The first scenario could be observed in the ECG signal with the fundamental frequency

around ξ1 > 0. For example, in some cases, we could find relatively stronger peaks around

3ξ1, 6ξ1 and 9ξ1 in comparison to other peaks in the spectrum. Therefore, in the cepstrum

we can find not only a prominent peak at q1 = 1/ξ1 but also a small bump around q1/3.

To take a closer look at this phenomenon, we recall that it has been well known that the

12-lead ECG signals, denoted as E(t) ∈R12, are the projection of the representative dipole

current, denoted as d(t) ∈ R3, where t ∈ R, of the electrophysiological cardiac activity on

different directions. Physiologically, for a normal subject d(t) is oscillatory with the period
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about 1 second. If we could record d(t), the recorded signal is called the vectocardiogram

signal. For the ℓ-th ECG channel, where ℓ = 1, . . . ,12, there is an associated projection

direction vℓ ∈ R3. The ℓ-th ECG channel is thus the projection of d(t) on vℓ; that is,

Eℓ(t) = vT
ℓ d(t) or E(t) = vT d(t), where v = [v1v2 . . .v12] ∈ R3×12. In general, v changes

according to time due to the cardiac axis deviation caused by the respiratory activity and

other physical movements. To simplify the discussion, we ignore this facts. Thus, since

d(t) is oscillatory, it is clear that Eℓ(t) is also oscillatory. In some cases, this complicated

procedure leads to an oscillation in the spectral envelop, and hence the first scenario.

The second example is the sound of clarinets. Clarinet is one kind of woodwind instru-

ment which makes air resonating in a cylindrical tube with one ended closed. Because of

such a physical structure, the even-numbered harmonics including 2ξ1 and 4ξ1 are highly

suppressed9, which breaks the assumption of Corollary 3.7, and is discussed after Corol-

lary 3.7. But, in many real cases, the cepstrum of the clarinet note do have a peak at q1

and its multiples because the even-number harmonics are not totally eliminated. In several

real examples, including the Clarinet and ECG examples, the unwanted terms in the above

situations can be simply eliminated by hard-thresholding; however, it is not that easy to

achieve this naive idea, and a systematic study of this challenge is needed, where we might

incorporate more background knowledge into the analysis.

Next, we discuss another scenario when the proposed method works on multi-component

signals. Consider an octave signal mentioned in Section 4.4.1, where one of the two com-

ponents has the fundamental frequency ξ1,1 and the one of the other is higher than it by

one octave, thereby with the fundamental frequency 2ξ1,1. Suppose the phases of these

two components match in a way so that the spectrum of the multi-component signal has

stronger peaks at even-order harmonics, especially ξ1,2 = 2ξ1,1, ξ1,4 = 4ξ1,1, ξ1,6 = 6ξ1,1,

ξ1,8 = 8ξ1,1, etc. In this special case, the spectral envelope oscillates and we may recall

the IF’s of both components in the de-shape SST. Note that this special case contradicts

the assumption of the ANH model so that we could not model it as a composition of two

ANH functions, and the proposed method may or may not work. In the real-world music,

the condition of phase matching does not always happen, and it makes the octave detection

problem even harder, as is discussed in Section 4.4.1. We mention that while it is a diffi-

cult job in signal processing, human beings could identify the difference via learning the

oscillatory pattern of the signal or the “timbre”. For example, the timbre of the note C4,

which has the fundamental frequency 262 Hz, is different from that of the combined note

(or called “an interval” in music) C4+C5, where the fundamental frequency of C5 is 524

Hz. By learning the timbre, we could tell the difference. The above scenarios all have their

own interest but are out of the scope of this paper. We will report a systematic study in a

future work.

We mention that there are several challenging cases in processing real-world multi-

pitch signals, like missing fundamental or stacked harmonics, both of which have been

discussed in [51, 50]. These could be treated as exceptional cases of the proposed model

and a modification of the model and algorithm is needed to better handle these signals.

Last but not the least, from the data analysis viewpoint, in general we cannot decide the

model parameters, like the ε , and the sequence c, a priori. This is an estimation problem in

nature, and has been open for a while. However, for most problems we face in practice, we

have some background knowledge that could guide us to “guess the model”. For example,

9The absence of even harmonics is (part of) what is responsible for the “warm” or “dark” sound of a clarinet

compared to the “bright” sound of a saxophone.
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for the fetal ECG extraction problem, the heart rates of the mother and the fetus have a well-

known range guided by the physiological background, and this is the information we could

use to determine the parameters. But for a randomly given dataset without any background

knowledge, at this moment, there is still no ideal way to determine the model parameters

directly from the data itself. This fundamental estimation problem will be explored in a

future work.

APPENDIX A. PROOF OF THEOREM 3.6

In this section, we provide an analysis of STCT in Theorem 3.6 step by step

• first step: approximate the ANH function by a “harmonized” function by Taylor’s

expansion and evaluate its STFT;

• second step: evaluate the γ power of the absolute value of STFT. Since in general

there will be more than one ANH component in the ANH function, we have to

handle the possible interference between different ANH components. We will

apply the Erdös-Turán inequality to control the interference;

• third step: find the Fourier transform of the γ power of the absolute value of STFT

and finish the proof.

We start from the first Lemma, which allows us to locally approximate an ANH function

by a sinusoidal function.

Lemma A.1. Take ε> 0, a sequence c∈ ℓ1, N ∈N and 0≤C <∞. For f (t)=∑
∞
ℓ=0 Bℓ(t)cos(2πφℓ(t))∈

D
c,C,N
ε , for each ℓ ∈ {0}∪N we have

|Bℓ(t + s)−Bℓ(t)| ≤εc(ℓ)|s|(φ ′
1(t)+

1

2
‖φ ′′

1 ‖L∞ |s|),(48)

|φ ′
ℓ(t + s)−φ ′

ℓ(t)| ≤εℓ|s|(φ ′
1(t)+

1

2
‖φ ′′

1 ‖L∞ |s|).(49)

Proof. Assume that s > 0. The proof for s ≤ 0 is the same. By the assumption of Bℓ(t),
we have

|Bℓ(t + s)−Bℓ(t)|=
∣∣∣∣
∫ s

0
B′
ℓ(t +u)du

∣∣∣∣

≤ εc(ℓ)
∫ s

0
φ ′

1(t +u)du by the slowly varying condition (16),

≤ εc(ℓ)
∫ s

0

(
φ ′

1(t)+
∫ u

0
φ ′′

1 (t+y)dy

)
du ≤ εc(ℓ)

(
φ ′

1(t)s+
1

2
‖φ ′′

1 ‖L∞s2

)
.

The proof of (49) follows by the same argument.

|φ ′
ℓ(t + s)−φ ′

ℓ(t)|=
∣∣∣∣
∫ s

0
φ ′′
ℓ (t +u)du

∣∣∣∣

≤ εℓ
∫ s

0
φ ′

1(t +u)du by the slowly varying condition (16),

= εℓ
∫ s

0

(
φ ′

1(t)+
∫ u

0
φ ′′

1 (t + y)dy

)
du ≤ εℓ

(
φ ′

1(t)s+
1

2
‖φ ′′

1 ‖L∞ s2

)
.

�

The following Lemma leads to the first part of the Theorem, (35), regarding the STFT.

In short, for the superposition of ANH functions in Dε,d , at each time t the function behaves

like a sinusoidal function and the STFT could be approximately explicitly.
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Lemma A.2. Fix ε> 0 and d > 0. Take f (t) = ∑
K
k=1 fk(t) ∈ Dε,d . Then, the STFT of f at

t ∈ R is

V
(h)
f (t,ξ ) =

1

2

K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)ĥ(ξ −φ ′
k,ℓ(t))e

i2πφk,ℓ(t)+ ε0(t,ξ ),(50)

where ξ ∈R and ε0(t,ξ ) is defined in (62). Furthermore, |ε0(t,ξ )| is of order ε and decays

at the rate of |ξ |−1 as |ξ | → ∞.

Proof. Since f ∈ L∞ ∩C1 ⊂ S ′ and h ∈ S , by the linearity of the STFT, we have

V
(h)
f (t,ξ ) =

K

∑
k=1

∞

∑
ℓ=0

V
(h)
fk,ℓ

(t,ξ ) ,(51)

where fk,ℓ(·) := Bk,ℓ(·)cos(2πφk,ℓ(·)) for ℓ= 0,1, . . .. Denote

Ṽ
(h)
fk,ℓ

(t,ξ ) :=
∫

Bk,ℓ(t)cos(2π(φk,ℓ(t)+φ ′
k,ℓ(t)(x− t)))h(x− t)e−i2πξ (x−t)dx(52)

where k = 1, · · · ,K and ℓ = 0, · · · ,∞. Next, fix k ∈ {1, . . . ,K}, we evaluate the difference

between V
(h)
fk,ℓ

(t,ξ ) and Ṽ
(h)
fk,ℓ

(t,ξ ). For each ℓ ∈ N∪{0}, denote

(53) εk,ℓ(t,ξ ) :=V
(h)
fk,ℓ

(t,ξ )−Ṽ
(h)
fk,ℓ

(t,ξ ) .

We show that |εk,ℓ(t,ξ )| is of order ε and linearly dependent on ck(ℓ) for all t,ξ ∈R. First,

note that
∣∣εk,ℓ(t,ξ )

∣∣≤
∫ ∣∣Bk,ℓ(x)−Bk,ℓ(t)

∣∣ |h(x− t)|dx

+Bk,ℓ(t)
∫ ∣∣cos(2πφk,ℓ(x))− cos(2π(φk,ℓ(t)−φ ′

k,ℓ(t)(x− t)))
∣∣ |h(x− t)|dx(54)

and that
∣∣cos(2πφk,ℓ(x))− cos(2π(φk,ℓ(t)−φ ′

k,ℓ(t)(x− t))
∣∣

≤2π
∣∣φk,ℓ(x)−φk,ℓ(t)−φ ′

k,ℓ(t)(x− t)
∣∣≤ 2π

∫ x−t

0

∣∣φ ′
k,ℓ(t +u)−φ ′

k,ℓ(t)
∣∣du(55)

Denote

Mk := ‖φ ′
k,1‖L∞ .

Clearly, ‖φ ′′
k,1‖L∞ ≤ εMk. Combining the above inequalities and Lemma A.1, we have

|εk,ℓ(t,ξ )| ≤
∫

|Bk,ℓ(x)−Bk,ℓ(t)||h(x− t)|dx

+2πBk,ℓ(t)
∫ ∫ x−t

0
|φ ′

k,ℓ(t +u)−φ ′
k,ℓ(t)|du|h(x− t)|dx

≤ε
[
ck(ℓ)

(
φ ′

k,1(t)I1 +
1

2
εMkI2

)
+πBk,ℓ(t)ℓ(φ

′
k,1(t)I2 +

1

3
εMkI3)

]

which is of order ε since φ ′
k,1(t) and Bk,1(t) are bounded. Note that εk,0(t,ξ )≤ εck(ℓ)(φ

′
k,1(t)+

εMkI2/2) since the phase φk,0 = 0. Furthermore, note that |εk,ℓ(t,ξ )| decays at the rate of

|ξ |−1 as |ξ | → ∞ since

Bk,ℓ(x)cos(2πφk,ℓ(x))−Bk,ℓ(t)cos(2π(φk,ℓ(t))+φ ′
k,ℓ(t)(x− t)) ∈C1.(56)

Denote

E
(1)
k (t,ξ ) :=

∞

∑
ℓ=0

εk,ℓ(t,ξ ),



38 C.-Y. LIN, L. SU, AND H.-T. WU

which converges by (15) that ∑
∞
ℓ=1 ℓBk,ℓ(t)≤Ck

√
1
4
B2

k,0(t)+
1
2 ∑

∞
ℓ=1 B2

k,ℓ(t), and hence

|E(1)
k (t,ξ )| ≤ ε

(
‖ck‖ℓ1

[
φ ′

k,1(t)I1 +
1

2
εMkI2

]

+πCk

√
1

4
B2

k,0(t)+
1

2

∞

∑
ℓ=1

B2
k,ℓ(t)(φ

′
k,1(t)I2 +

1

3
εMkI3)

)
.(57)

Thus, E
(1)
k (t,ξ ) is of order ε .

Finally, for each k ∈ {1, . . . ,K}, denote

E
(2)
k (t,ξ ) :=

∞

∑
ℓ=Nk+1

Ṽ
(h)
fk,ℓ

(t,ξ ).

By the Plancherel identity, we have

Ṽ
(h)
fk,ℓ

(t,ξ ) =
1

2
Bk,ℓ(t)[ĥ(ξ −φ ′

k,ℓ(t))e
i2πφk,ℓ(t)+ ĥ(ξ +φ ′

k,ℓ(t))e
−i2πφk,ℓ(t)] .(58)

Thus, by the assumption that (14) that ∑
∞
ℓ=Nk+1 Bk,ℓ(t) ≤ ε

√
1
4
B2

k,0(t)+
1
2 ∑

∞
ℓ=1 B2

k,ℓ(t), we

have

(59)
∣∣∣E(2)

k (t,ξ )
∣∣∣≤ 1

2
∑

ℓ∈Z\{−Nk,··· ,Nk}
Bk,ℓ(t)|ĥ(ξ −φ ′

k,ℓ(t))| ≤ εI0

√
1

4
B2

k,0(t)+
1

2

∞

∑
ℓ=1

B2
k,ℓ(t),

where the last inequality holds since ‖ĥ‖L∞ ≤ I0 by a direct bound. Thus, we have

(60)
K

∑
k=1

∞

∑
ℓ=0

Ṽ
(h)
fk,ℓ

(t,ξ ) =
1

2

K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)ĥ(ξ −φ ′
k,ℓ(t))e

i2πφk,ℓ(t)+
K

∑
k=1

E
(2)
k (t,ξ ),

where |E(2)
k (t,ξ )| is of order ε . Furthermore, |E(2)

k (t,ξ )| decays faster than |ξ |−1 as |ξ | →
∞ since ∑

∞
ℓ=1 Bk,ℓ(t)< ∞ and ∑

K
k=1 ∑

Nk

ℓ=0 Ṽ
(h)
fk,ℓ

(t,ξ ) decays faster than |ξ |−1 as |ξ | → ∞.

We thus have

(61) V
(h)

f̃
(t,ξ ) =

K

∑
k=1

∞

∑
ℓ=0

V
(h)

f̃k,ℓ
(t,ξ ) =

1

2

K

∑
k=1

∑
ℓ∈Z

Bk,ℓ(t)ĥ(ξ −φ ′
k,ℓ(t))e

i2πφk,ℓ(t).

Putting (53) and (60) together, we have

V
(h)
f (t,ξ ) =

K

∑
k=1

∞

∑
ℓ=0

V
(h)
fk,ℓ

(t,ξ ) =
K

∑
k=1

∞

∑
ℓ=0

[Ṽ
(h)
fk,ℓ

(t,ξ )+ εk,ℓ(t,ξ )]

=
K

∑
k=1

[
1

2
∑
ℓ∈Z

Bk,ℓ(t)ĥ(ξ −φ ′
k,ℓ(t))e

i2πφk,ℓ(t)+E
(1)
k (t,ξ )] ,

=
K

∑
k=1

[1

2

Nk

∑
ℓ=−Nk

Bk,ℓ(t)ĥ(ξ −φ ′
k,ℓ(t))e

i2πφk,ℓ(t)+E
(1)
k (t,ξ )+E

(2)
k (t,ξ )

]
.

Denote

(62) ε0(t,ξ ) :=
K

∑
k=1

[E
(1)
k (t,ξ )+E

(2)
k (t,ξ )],

which is of order ε and |ε0(t,ξ )| decays at the rate of |ξ |−1 as |ξ | → ∞. We thus have the

proof. �
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Lemma A.3. Fix ε> 0 and d > 0. Take f (t) = ∑
K
k=1 fk(t) ∈ Dε,d . Fix a window function

h ∈ S . For each t ∈ R and ξ ∈ R, we have

K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)ĥ(ξ −φ ′
k,ℓ(t))e

i2πφk,ℓ(t)(63)

=
K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)ĥ(ξ − ℓφ ′
k,1(t))e

i2πφk,ℓ(t)+ ε1(t,ξ ),

where ε1(t,ξ ) is defined in (67) satisfying

(64) |ε1(t,ξ )| ≤ ε2πI1

K

∑
k=1

φ ′
k,1(t)

Nk

∑
ℓ=−Nk

Bk,ℓ(t)χZ̃k,ℓ
(ξ ),

where Z̃k,ℓ(t) := [(ℓ− ε)φ ′
k,1(t)−∆,(ℓ+ ε)φ ′

k,1 +∆]. Note that the support of ε1(t,ξ ) is

inside [−maxk((Nk + ε)φ ′
k,1(t))−∆, maxk((Nk + ε)φ ′

k,1(t))+∆]. In particular, we have

V
(h)
f (t,ξ ) =

1

2

K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)ĥ(ξ − ℓφ ′
k,1(t))e

i2πφk,ℓ(t)+ ε2(t,ξ ),(65)

where ε2(t,ξ ) = ε0(t,ξ )+ ε1(t,ξ ), which is of order ε and |ε2(t,ξ )| decays at the rate of

|ξ |−1 as |ξ | → ∞.

Proof. The proof is straightforward by the smoothness assumption of h and Taylor’s ex-

pansion. Indeed, by the assumption that

∣∣∣∣
φ ′

k,ℓ(t)

φ ′
k,1(t)

− ℓ

∣∣∣∣≤ ε , we know that |φ ′
k,ℓ(t)−ℓφ ′

k,1(t)| ≤

εφ ′
k,1(t) for all ℓ= 1, . . .. Thus, since ĥ is compactly supported on [−∆,∆], we have that for

ξ ∈ Z̃k,ℓ,

(66) |ĥ(ξ −φ ′
k,ℓ(t))− ĥ(ξ − ℓφ ′

k,1(t))| ≤ εφ ′
k,1(t)‖ĥ′‖L∞ ≤ 2πεφ ′

k,1(t)I1,

where we use the bound ‖ĥ′‖L∞ ≤ 2πI1; for ξ /∈ Z̃k,ℓ,

|ĥ(ξ −φ ′
k,ℓ(t))− ĥ(ξ − ℓφ ′

k,1(t))|= 0.

Denote

(67) ε1(t,ξ ) :=
K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)(ĥ(ξ −φ ′
k,ℓ(t))− ĥ(ξ − ℓφ ′

k,1(t)))e
i2πφk,ℓ(t).

By a direct bound, we have

|ε1(t,ξ )|=|
K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)(ĥ(ξ −φ ′
k,ℓ(t))− ĥ(ξ − ℓφ ′

k,1(t)))e
i2πφk,ℓ(t)|(68)

≤
K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)|ĥ(ξ −φ ′
k,ℓ(t))− ĥ(ξ − ℓφ ′

k,1(t))|

≤ε2πI1

K

∑
k=1

φ ′
k,1(t)

Nk

∑
ℓ=−Nk

Bk,ℓ(t)χZ̃k,ℓ
,

which leads to the claim. The proof of (65) comes from a direct combination of (50) and

(63).

�
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By the assumption that 0 < ∆ ≤ φ ′
1,1(t)/4, we know that for a fixed k ∈ {1, . . . ,K},

Zk,i(t)∩Zk, j(t) = /0 for all i 6= j, where Zk,ℓ is defined in (34). Thus, when K = 1, we know

that for any γ > 0, the γ power of the absolute value of the major term in (65) becomes
∣∣∣∣∣

N1

∑
ℓ=−N1

B1,ℓ(t)ĥ(ξ −φ ′
1,ℓ(t))e

i2πφ1,ℓ(t)

∣∣∣∣∣

γ

=
N1

∑
ℓ=−N1

B
γ
1,ℓ(t)|ĥ(ξ −φ ′

1,ℓ(t))|γ

since the supports of ĥ(ξ −φ ′
1,i(t)) and ĥ(ξ −φ ′

1, j(t)) do not overlap, when i 6= j. However,

when K > 1, although Zk,1(t)∩Zℓ,1(t) = /0 when k 6= ℓ since ∆ < d/4, there is no guarantee

that Zk,i(t)∩Zℓ, j(t) = /0 when k 6= ℓ and i 6= j. So, when K > 1, we need to be careful when

we take the power.

Definition A.4. Fix ε> 0 and d > 0. Take f (t) = ∑
K
k=1 fk(t) ∈Dε,d . Define S1(t) = /0, and

for each k ∈ {2, . . . ,K}, define

(69)

Sk(t) := {i,−i|1≤ i≤Nk, Zk,i(t)∩Zℓ, j(t) 6= /0, j ∈{1, . . . ,Nℓ}\Sℓ(t), ℓ= 1, . . . ,k−1}∪{0}.

Furthermore, define

Yno-OL(t) := ∪K
k=1 ∪i∈{0,±1,...,±Nk}\Sk

Zk,i(t)⊂ R(70)

Ywith-OL(t) := ∪K
k=1 ∪i∈Sk

Zk,i(t)⊂ R.

The set Sk(t) indicates the multiples of the k-th ANH function that have the danger of

overlapping with the other ANH functions. To be more precise, for k ∈ {2, . . . ,K} and ℓ ∈
{1, . . . ,k−1}, the supports of ĥ(ξ −iφ ′

k(t)) and ĥ(ξ − jφ ′
ℓ(t)), where i∈{0,±1, . . . ,±Nk}\Sk

and j ∈ {0,±1, . . . ,±Nℓ}\Sℓ do not overlap. The sets Yno-OL(t) and Ywith-OL(t) are used to

control the overlapping of multiples associated with different ANH components. Note

that the supports of all summands in ∑
K
k=1 ∑ℓ∈{0,±1,...,±Nk}\Sk

Bk,ℓ(t)|ĥ(ξ −ℓφ ′
k,1(t))| do not

overlap.

To evaluate |V (h)
f (t,ξ )|γ , we need the following bounds to control the influence of taking

the γ power.

Lemma A.5. Suppose x ≥ y ≥ 0. For 0 < γ ≤ 1, we have

(x+ y)γ ≤ xγ + γyγ .(71)

Proof. When x = y = 0, this is the trivial case. Suppose x ≥ y > 0 or x > y ≥ 0. By Taylor’s

expansion, we have

(72) (x+ y)γ = xγ(1+
y

x
)γ ≤ xγ + γ

y

x
xγ = xγ + γ

(y

x

)1−γ
yγ .

Since y/x ≤ 1, we obtain the bound. �

Lemma A.6. Suppose Assumption 3.4 holds and take 0 < γ ≤ 1. Then we have

|V (h)
f (t,ξ )|γ =

1

2γ

K

∑
k=1

Nk

∑
ℓ=−Nk

B
γ
k,ℓ(t)|ĥ(ξ − ℓφ ′

k,1(t))|γ +δ3(t,ξ )+ ε3(t,ξ ) ,(73)

where δ3(t,ξ ) is defined in (74) and ε3(t,ξ ) is defined in (75). Moreover, δ3(t,ξ ) =
0 when K = 1. When K > 1, δ3(t,ξ ) is supported on Ywith-OL(t) and is bounded by
I
γ
0

2γ ∑
K
k=2 ∑ℓ∈Sk

B
γ
k,ℓ(t)χZk,ℓ

(ξ ). ε3(t,ξ ) satisfies |ε3(t,ξ )| ≤ |ε2(t,ξ )|γ .
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Proof. Let δ3(t,ξ ) and ε3(t,ξ ) be defined as

(74)

δ3(t,ξ ) :=
∣∣∣1
2

K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)ĥ(ξ −ℓφ ′
k,1(t))e

i2πφk,ℓ(t)
∣∣∣
γ
− 1

2γ

K

∑
k=1

Nk

∑
ℓ=−Nk

B
γ
k,ℓ(t)|ĥ(ξ −ℓφ ′

k,1(t))|γ

and

ε3(t,ξ ) := |V (h)
f (t,ξ )|γ −

∣∣∣1
2

K

∑
k=1

Nk

∑
ℓ=−Nk

Bk,ℓ(t)ĥ(ξ − ℓφ ′
k,1(t))e

i2πφk,ℓ(t)
∣∣∣
γ
.(75)

That is,

(76) |V (h)
f (t,ξ )|γ = 1

2γ

K

∑
k=1

Nk

∑
ℓ=−Nk

B
γ
k,ℓ(t)|ĥ(ξ − ℓφ ′

k,1(t))|γ +δ3(t,ξ )+ ε3(t,ξ ).

According to Lemmas A.5 and A.3, when ε is small enough, by the triangular inequality

that
∣∣|V (h)

f (t,ξ )|− | 1
2 ∑

K
k=1 ∑

Nk

ℓ=−Nk
Bk,ℓ(t)ĥ(ξ − ℓφ ′

k,1(t))e
i2πφk,ℓ(t)|

∣∣≤ |ε2(t,ξ )|, we have

(77) |ε3(t,ξ )| ≤ |ε2(t,ξ )|γ .

Note that when ξ ∈Yno-OL(t), δ3(t,ξ )= 0 since the supports of all summands in ∑
K
k=1 ∑

Nk

ℓ=−Nk
Bk,ℓ(t)|ĥ(ξ −

ℓφ ′
k,1(t))| do not overlap for each ξ ∈ Yno-OL(t). Therefore, we have

(78)

δ3(t,ξ )=
1

2γ

(∣∣∣
K

∑
k=2

∑
ℓ∈Sk

Bk,ℓ(t)ĥ(ξ − ℓφ ′
k,1(t))e

i2πφk,ℓ(t)
∣∣∣
γ
−

K

∑
k=2

∑
ℓ∈Sk

B
γ
k,ℓ(t)|ĥ(ξ − ℓφ ′

k,1(t))|γ
)

.

Hence,

|δ3(t,ξ )|=
∣∣∣∣∣
∣∣∣1
2

K

∑
k=1

∑
ℓ∈Sk(t)

Bk,ℓ(t)ĥ(ξ − ℓφ ′
k,1(t))e

i2πφk,ℓ(t)
∣∣∣
γ
− 1

2γ

K

∑
k=1

∑
ℓ∈Sk(t)

B
γ
k,ℓ(t)|ĥ(ξ − ℓφ ′

k,1(t))|γ
∣∣∣∣∣

=
1

2γ

K

∑
k=1

∑
ℓ∈Sk(t)

B
γ
k,ℓ(t)|ĥ(ξ − ℓφ ′

k,1(t))|γ −
∣∣∣∣∣
1

2

K

∑
k=1

∑
ℓ∈Sk(t)

Bk,ℓ(t)ĥ(ξ − ℓφ ′
k,1(t))e

i2πφk,ℓ(t)

∣∣∣∣∣

γ

,

since
∣∣ 1

2 ∑
K
k=1 ∑ℓ∈Sk(t)

Bk,ℓ(t)ĥ(ξ −ℓφ ′
k,1(t))e

i2πφk,ℓ(t)
∣∣γ ≤ 1

2γ ∑
K
k=1 ∑ℓ∈Sk(t)

B
γ
k,ℓ(t)|ĥ(ξ −ℓφ ′

k,1(t))|γ
by Lemma A.5. Note that when K = 1, S1(t) = /0. Putting these together, we have

(79) |δ3(t,ξ )| ≤
1

2γ

K

∑
k=2

∑
ℓ∈Sk

B
γ
k,ℓ(t)‖ĥ‖γ

L∞ χZk,ℓ
(ξ )≤ I

γ
0

2γ

K

∑
k=2

∑
ℓ∈Sk

B
γ
k,ℓ(t)χZk,ℓ

(ξ )

which completes the proof. �

Before finishing the proof, we need to control the error introduced by δ3(t,ξ ) in Lemma

A.6 when K ≥ 2. Note that δ3(t,ξ ) is supported on Ywith-OL(t). We now control this set.

Lemma A.7. Suppose Assumption 3.4 holds and K > 1. For each t ∈R, we have for each

k ∈ {2, . . . ,K} the following bound:

(80)
#Sk(t)

Nk

≤
k−1

∑
ℓ=1

[ 4∆

φ ′
ℓ,1(t)

+E(ℓ)(Nk)
]
,

where #Sk(t) is the cardinal number of the set Sk(t) and E(ℓ)(Nk) ≥ 0 is defined in (85).

Clearly
#S1(t)

N1
= 0.
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This Lemma gives a bound of the set Sk(t), which indicates that only a small fraction

of the multiples of the k-th ANH function has the danger of overlapping with other ANH

function.

Proof. Fix k ∈ {2,3, . . . ,K} and ℓ ∈ {1, . . . ,k−1}. Define a set

(81) Sk,ℓ(t) := {m|m ∈ N∪{0}, Zk,m(t)∩Zℓ, j 6= /0, j ∈ N∪{0}},
which is the set of multiples of φ ′

k,1(t) that overlap some multiples of φ ′
ℓ,1(t). Clearly,

Sk(t) ⊂ ∪k−1
ℓ=1Sk,ℓ(t) and Sk,ℓ1

(t) and Sk,ℓ2
(t) might overlap when ℓ1 6= ℓ2. Thus, #Sk(t) ≤

∑
k−1
ℓ=1#Sk,ℓ(t). To evaluate the cardinality of the set Sk,ℓ(t), denote a sequence sk,ℓ(m),

m ∈ N, so that

(82) sk,ℓ(m) = mφ ′
k,1(t) (mod φ ′

ℓ,1(t)).

By the compactly supported assumption of ĥ, when sk,ℓ(m) lands in

Zk,ℓ := [0,2∆]∪ [φ ′
ℓ,1(t)−2∆,φ ′

ℓ,1(t)),

we know that Zk,m(t)∩Zℓ, j 6= /0 for some j; that is,

Sk,ℓ(t) = {0 ≤ m ≤ Nk |sk,ℓ(m) ∈ Zk,ℓ}.
When φ ′

k,1(t)/φ ′
ℓ,1(t) is a rational number, that is, φ ′

k,1(t)/φ ′
ℓ,1(t) = a/b, where a,b ∈ N

and are co-prime numbers, then the sequence {sk,ℓ(m)}m∈N only lands on {0,φ ′
ℓ,1(t)/b, . . . ,(b−

1)φ ′
ℓ,1(t)/b} uniformly on [0,φ ′

ℓ,1(t)) since the integer a has a multiplicative inverse mod-

ulo b; that is, there exists n0 such that an0 (mod b) = 1. Thus the claim holds with the

worst bound

(83)
#Sk(t)

Nk

≤
k−1

∑
ℓ=1

4∆

φ ′
ℓ,1(t)

.

When φ ′
k,1(t)/φ ′

ℓ,1(t) is an irrational number, the sequence {sk,ℓ(m)} is equidistributed

on [0,φ ′
ℓ,1(t)] by Weyl’s criterion. We apply the following well-known Erdös-Turán in-

equality [41, Corollary 1.1] to bound
#Sk,ℓ(t)

Nk
:

∣∣∣#Sk,ℓ(t)

Nk

− 4∆

φ ′
ℓ,1(t)

∣∣∣≤ 1

J+1
+

3

Nk

J

∑
n=1

1

n

∣∣∣∣∣
Nk

∑
m=0

ei2πnsk,ℓ(m)

∣∣∣∣∣(84)

for all positive J. Denote E
(ℓ)
J (Nk) to be the right hand side of (84). Then the best upper

bound we could obtain from Erdös-Turán inequality is

(85) E(ℓ)(Nk) := min
J∈N

E
(ℓ)
J (Nk),

which goes to zero when Nk → ∞; that is, when Nk → ∞, the chance that sk,ℓ(m) would

land in Zk,ℓ is 4∆
φ ′
ℓ,1(t)

. Thus, in general we know that for the pair (k, ℓ), we have

#Sk,ℓ(t)

Nk

≤ 4∆

φ ′
ℓ,1(t)

+E(ℓ)(Nk)

and hence

(86) #Sk,ℓ(t)≤ Nk

[ 4∆

φ ′
ℓ,1(t)

+E(ℓ)(Nk)
]
,
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which is the number of multiples of φ ′
k,1(t) that are close to some multiples of φ ′

ℓ,1(t). In

conclusion, we have

(87)
#Sk(t)

Nk

≤
k−1

∑
ℓ=1

[ 4∆

φ ′
ℓ,1(t)

+E(ℓ)(Nk)
]
.

�

By putting the above Lemmas together, we can prove Theorem 3.6, which shows that the

STCT does provide the necessary information for the fundamental IF of the ANH function,

even when there are more than one component.

Proof of Theorem 3.6. Note that in general |V (h)
f (t, ·)|γ is a tempered distribution, so we

can define the Fourier transform in the distribution sense. Define a ℓ1 sequence bk, where

bk(ℓ) = B
γ
k,ℓ(t) for all ℓ ∈ {0, . . . ,Nk}, bk(ℓ) = 0 for all ℓ > Nk, and bk(−ℓ) = bk(ℓ) for all

ℓ ∈ N∪{0}. By a direct calculation, for q > 0, we have

F (
Nk

∑
ℓ=−Nk

B
γ
k,ℓ(t)δℓφ ′

k,1(t)
⋆ |ĥ|γ)(q)

=|̂ĥ|γ(q)
Nk

∑
ℓ=−Nk

bk(ℓ)e
i2πℓφ ′

k,1(t)q = |̂ĥ|γ(q)
∞

∑
ℓ=−∞

bk(ℓ)e
i2πℓφ ′

k,1(t)q = |̂ĥ|γ(q)b̂k(q),(88)

where b̂k is the discrete-time Fourier transform of the ℓ1 sequence bk, which is a continuous

and real.

For the term δ3, since δ3(t, ·) is compactly supported, continuous by (78) and is bounded

by (79), δ3(t, ·)∈ L1 and its Fourier transform could be well defined as a function. Since the

support of δ3, which is determined by the overlapped multiples of different ANH functions,

could not be controlled, we apply the Riemann-Lebesgue theorem to evaluate a simple

bound:

|
∫

δ3(t,ξ )e
−i2πξ qdξ | ≤ I

γ
0

2γ

K

∑
k=2

∑
ℓ∈Sk(t)

B
γ
k,ℓ(t)

∫
χZk,ℓ

(ξ )dξ

≤2∆I
γ
0

K

∑
k=2

∑
ℓ∈Sk(t)

B
γ
k,ℓ(t)≤ 2∆I

γ
0

K

∑
k=2

B
γ
k,1(t) ∑

ℓ∈Sk(t)

c
γ
k(ℓ)(89)

since |Zk,ℓ| = 2∆. To control ∑ℓ∈Sk(t)
c

γ
k(ℓ), we apply the simple bound ck(ℓ) ≤ ‖ck‖ℓ∞ for

all ℓ= 0,1, . . . ,Nk. This leads to

∑
ℓ∈Sk(t)

c
γ
k(ℓ)≤ #Sk(t)‖c

γ
k‖ℓ∞ ≤ ‖c

γ
k‖ℓ∞Nk

k−1

∑
ℓ=1

[ 4∆

φ ′
ℓ,1(t)

+E(ℓ)(Nk)
]
,

where the last inequality holds by Lemma A.7. Thus, the first term

(90) E1 := F [δ3(t, ·)]
is bounded by

|E1| ≤ 2∆I
γ
0

K

∑
k=2

B
γ
k,1(t)‖c

γ
k‖ℓ∞ Nk

k−1

∑
ℓ=1

[ 4∆

φ ′
ℓ,1(t)

+E(ℓ)(Nk)
]
.

Note that K = 1, since δ3(t,ξ ) = 0, we know that E1 = 0 and the bound holds trivially.
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The error term ε3(t,ξ ) is of order εγ but in general it decays at the rate of |ξ |−γ as |ξ |→
∞, so its Fourier transform is evaluated in the distribution sense. Denote E2 := F [ε3(t, ·)].
We have

(91) |E2(ψ)|=
∣∣
∫

ε3(t,ξ )ψ̂(ξ )dξ
∣∣≤ ‖ε3(t, ·)‖L∞‖ψ̂‖L1

for all ψ ∈ S . We have thus obtained the claim.

�

Remark A.8. Note that the bound for E1, which is the Fourier transform of δ3, is the worst

bound, since we could not control the locations of the overlaps between those multiples of

different ANH components in the STFT. The problem we encounter could be simplified to

the following analytic number theory problem: given an irrational number α . Denote

βn = nα − [nα], where n ∈ N∪{0} and [x] means the integer part of x. Denote the set

I = {n,−n|n ∈N∪{0}, 0 ≤ βn < ζ}∪{n,−n|βn > 1−ζ}, where ζ > 0 is a small number.

Then, what is the spectral distribution of ∑n∈I δn ⋆ g, where g is a smooth and compact

function supported on [−ζ/2,ζ/2]?

Proof of Corollary 3.7. By (37), bk(ℓ) is non-zero for ℓ ∈ {−Nk, . . . ,0, . . . ,Nk}. Thus b̂k is

a continuous, real, and periodic function with the period equal to 1/φ ′
k,1(t). By (57), (59),

and (64), ε2(t,ξ ) is bounded by Qε , where

Q :=
K

∑
k=1

[(
‖ck‖ℓ1 [φ ′

k,1(t)I1 +
1

2
εMkI2]+πCk

√
1

4
B2

k,0(t)+
1

2

∞

∑
ℓ=1

B2
k,ℓ(t)(φ

′
k,1(t)I2 +

1

3
εMkI3)

)

+I0

√
1

4
B2

k,0(t)+
1

2

∞

∑
ℓ=1

B2
k,ℓ(t)+2πI1φ ′

k,1(t)
Nk

∑
ℓ=−Nk

Bk,ℓ(t)χZ̃k,ℓ

]
.

Thus, when
√

1
4
B2

k,0(t)+
1
2 ∑

∞
ℓ=1 B2

k,ℓ(t) is sufficiently large and ε is sufficiently small,

1
2γ ∑

K
k=1 ∑

Nk

ℓ=−Nk
B

γ
k,ℓ(t)|ĥ(ξ −ℓφ ′

k,1(t))|γ dominantes |ε2(t,ξ )|γ , since B
γ
k,ℓ(t)> εγ/2

(
1
4
B2

k,0(t)+

1
2 ∑

∞
ℓ=1 B2

k,ℓ(t)
)γ/2

and ε3(t,ξ ) is bounded by Qγ εγ . Moreover, when ∆Nk is sufficiently

small, 1
2γ ∑

K
k=1 ∑

Nk

ℓ=−Nk
B

γ
k,ℓ(t)|ĥ(ξ − ℓφ ′

k,1(t))|γ also dominates δ3(t,ξ ), and hence we fin-

ish the proof. �
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