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Abstract

Recently, several data analytic techniques based on connection graph laplacian (CGL) ideas have
appeared in the literature. At this point, the properties of these methods are starting to be understood
in the setting where the data is observed without noise. We study the impact of additive noise on
these methods, and show that they are remarkably robust. As a by-product of our analysis, we propose
modifications of the standard algorithms that increase their robustness to noise. We illustrate our results
in numerical simulations.

1 Introduction

In the last few years, several interesting variants of kernel-based spectral methods have arisen in the
applied mathematics literature. These ideas appeared in connection with new types of data, where pairs
of objects or measurements of interest have a relationship that is “blurred” by the action of a nuisance
parameter. More specifically, we can find this type of data in a wide range of problems, for instance in the
class averaging algorithm for the cryo-electron microscope (cryo-EM) problem [62, 71], in a modern light
source imaging technique known as ptychography [45], in graph realization problems [24, 25], in vectored
PageRank [20], in multi-channels image processing [5], etc...

Before we give further details about the cryo-EM problem, let us present the main building blocks of
the methods we will study. They depend on the following three components:

1. an undirected graph G = (V, E) which describes all observations. The observations are the vertices of
the graph G, denoted as {Vi}ni=1.

2. an affinity function w : E → R+, satisfying wi,j = wj,i, which describes how close two observations
are (i and j index our observations). One common choice of wi,j = w(Vi, Vj) is of the form wi,j =
exp(−m(Vi, Vj)

2/ǫ), where m(x, y) is a metric measuring how far x and y are.

3. a connection function r : E → G, where G is a Lie group, which describes how two samples are
related. In its application to the cryo-EM problem, ri,j ’s can be thought of estimates of our nuisance
parameters, which are orthogonal matrices.

These three components form the connection graph associated with the data, which is denoted as
(G, w, r). They can be either given to the data analyst or have to be estimated from the data, depending
on the application.

This fact leads to different connection graph models and their associated noise models. For example,
in the cryo-EM problem, all components of the connection graph (G, w, r) are determined from the given
projection images, where each vertex represents an image [31, Appendix A]; in the ptychography problem
[45], G is given by the experimenter, r is established from the experimental setup, and w is built up from the
diffractive images collected in the experiment. Depending on applications, different metrics, deformations
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or connections among pairs of observations are considered, or estimated from the dataset, to present the
local information among data (see, for example, [1, 4, 15, 23, 47, 64, 66, 68]).

In this paper, since we focus on the connection graph Laplacian (CGL), we take the Lie Group G =
O(k)1, where k ∈ N, and assume that r satisfies ri,j = r−1

j,i . Our primary focus in this paper is on k = 1
and k = 2.

We now give more specifics about one of the problems motivating our investigation.

Cryo-EM problem In the cryo-EM problem, the experimenter collects 2-dimensional projection images
of a 3-dimensional macro-molecular object of interest, and the goal is to reconstruct the 3-dimensional
geometric structure of the macro-molecular object from these projection images. Mathematically, the col-
lected images XcryoEM := {Ii}Ni=1 ∈ R

m2
can be modeled as the X-ray transform of the potential of the

macro-molecular object of interest, denoted as ψ : R3 → R+. More precisely, in the setting that is usually
studied, we have Ii = Xψ(Ri), where Ri ∈ SO(3), SO(3) is the 3-dimensional special orthogonal group, Xψ

is the X-ray transform of ψ. The X-ray transform Xψ(Ri) is a function from R
2 to R+ and hence can be

treated by the data analyst as an image. We refer the reader to [31, Appendix A] for precise mathematical
details. (For the rest of the discussion, we write Ri = [R1

i R
2
i R

3
i ] in the canonical basis, where Rki are

three dimensional unit vectors.)
The experimental process produces data with high level of noise. Therefore, to solve this inverse

problem, it is a common consensus to preprocess the images to increase the signal-to-noise ratio (SNR)
before sending them to the cryo-EM data analytic pipeline. An efficient way to do so is to estimate the
projection directions of these images, i.e R3

i . This direction plays a particular role in the X-ray transform,
which is different from the other two directions. If R3

i ’s were known, we would cluster the images according
to these vectors and for instance take the mean of all properly rotationally aligned images to increase the
SNR of the projection images - more on this below - in a cluster as a starting point for data-analysis. With
these “improved” images, we can proceed to estimate Ri for the i-th image by applying, for example, the
common line algorithm [37], so that the 3-D image can be reconstructed by the inverse X-ray transform[33].
We note that R3

i is a unit vector in R
3 and hence lives on the standard sphere S2.

Conceptually, the problem is rendered difficult by the fact that the X-ray transform Xψ(Ri) is equivari-
ant under the action of rotations that leave R3

i unchanged. In other words, if rθ is an in-plane rotation, i.e
a rotation that leaves R3

i unchanged but rotates R1
i and R2

i by an angle θ, the image Xψ(rθRi) is Xψ(Ri)
rotated by the angle θ. In other words, Xψ(rθRi) = r2(θ)Xψ(Ri), where r2(θ) stands for the 2-dimensional
rotation by the angle θ. These in-plane rotations are clearly nuisance parameters if we want to evaluate
the projection direction R3

i .
To measure the distance between R3

i and R3
j , we hence use a rotationally invariant distance, i.e d2i,j =

infθ∈[0,2π]‖Pi − r2(θ)Pj‖22. In other words, we look at the Euclidian distance between our two X-ray
transforms/images after we have “aligned” them as best as possible. We now think of R3

i ’s - the vectors we
would like to estimate - as elements of the manifold S2, equipped with a metric gψ, which depends on the
macro-molecular object of interest. It turns out that the Vector Diffusion Maps algorithm (VDM), which
is based on CGL and which we study in this paper, is effective in producing a good approximation of gψ
from the local information di,j ’s and the rotations we obtain by aligning the various X-ray transforms. This
in turns imply better clustering of the R3

i ’s and improvement in the data-analytic pipeline for cryo-EM
problems [62, 71].

The point of this paper is to understand how the CGL algorithms perform when the input data is
corrupted by noise. The relationship between this method and the connection concept in differential
geometry is the following: the projection images Pi form a graph, and we can define the affinity and
connection among a pair of images so that the topological structure of the 2-dimensional sphere (S2, gψ)
is encoded in the graph. This amounts to using the local geometric information derived from our data to
estimate the global information - including topology - of (S2, gψ).

Impact of noise on these problems What is missing from these considerations and the current
literature is an understanding of how noise impact the procedures which are currently used and have
mathematical backing in the noise-free context. The aim of our paper is to shed light on the issue of the

1We may also consider U(k). But in this paper we focus on O(k) to simplify the discussion.
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impact of noise on these interesting and practically useful procedures. We will be concerned in this paper
with the impact of adding noise on the observations - collected for instance in the way described above.

Note that additive noise may have impact in all three building blocks of the connection graph associated
with the data. First, it might make the graph noisy. For example, in the cryo-EM problem, the standard
algorithm builds up the graph from a given noisy data set {Pi}ni=1 = {Ii + ξi}ni=1 - ξi is our additive
noise - using the nearest neighbors determined by a pre-assigned metric, that is, we add an edge between
two vertices when they are close enough in that metric. Then, clearly, the existence of the noise ξi will
likely create a different nearest neighbor graph from the the one that would be built up from the (clean)
projection images {Ii}ni=1. As we will see in this paper, in some applications, it might be beneficial to
consider a complete graph instead of a nearest neighbor graph.

The second noise source is how w and r are provided or determined from the samples. For example, in
the cryo-EM problem, although {Pi} are points located in a high dimensional Euclidean space, we determine
the affinity and connection between two images by evaluating their rotationally invariant distance. It is
clear that when Pi is noisy, the derived affinity and connection will be noisy and likely quite different from
the affinity and connection we would compute from the clean dataset {Ii}ni=1. On the other hand, in the
ptychography problem, the connection is directly determined from the experimental setup, so that it is a
noise-free even when our observations are corrupted by additive noise.

In summary, corrupting the observations by additive noise might impact the following elements of the
data analysis:

1. which scheme and metric we choose to construct the graph;

2. how we build up the affinity function;

3. how we build up the connection function.

More details on CGL methods

At a high-level, connection graph Laplacian (CGL) methods create a block matrix from the connection
graph. The spectral properties of this matrix are then used to estimate properties of the intrinsic structure
from which we posit the data is drawn from. This in turns lead to good estimation methods for, for
instance, geodesic distance on the manifold, if the underlying intrinsic structure is a manifold. We refer
the reader to Appendix B and references [3, 19, 20, 59, 61] for more information.

Given a n× n matrix W , with scalar entries denoted by wi,j and a nk × nk block matrix G with k× k
block entries denoted by Gi,j , we define a nk × nk matrix S with (i, j)-block entries

Si,j = wi,jGi,j

and a nk × nk block diagonal matrix D with (i, i)-block entries

Di,i =
∑

j 6=i
wi,jIdk,

which is assumed to be invertible. Let us call

L(W,G) := D−1S and L0(W,G) := L(W ◦ 1i 6=j , G). (1)

In other words, L0(W,G) is the matrix L(W,G) computed from the weight matrix W where the diagonal
weights have been replaced by 0.

Suppose we are given a connection graph (G, w, r), and construct the n × n affinity matrix W so that
wi,j = w(i, j) and the connection matrix G, the nk × nk block matrix with k×k block entries Gi,j = r(i, j),
the CGL associated with the connection graph (G, w, r) is defined as Idnk −L(W,G) and the modified CGL
associated with the connection graph (G, w, r) is defined as Idnk − L0(W,G). We note that under our
assumptions on r, i.e ri,j = r−1

j,i = r∗i,j the connection matrix G is Hermitian.
We are interested in the large eigenvalues of L(W,G) (or, equivalently, the small eigenvalues of the CGL

Idnk − L(W,G)), as well as the corresponding eigenvectors. In the case where the data is not corrupted
by noise, the CGL’s asymptotic properties have been studied in [59, 61], when the underlying intrinsic
structure is a manifold. Its so-called synchronization properties have been studied in [3, 20].
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The aim of our study is to understand the impact of additive noise on CGL algorithms. Two main results
are Proposition 2.1, which explains the effect of noise on the affinity, and Theorem 2.2, which explains the
effect of noise on the connection. These two results lead to suggestions for modifying the standard CGL
algorithms: the methods are more robust when we use a complete graph than when we use a nearest-
neighbor graph, the latter being commonly used in practice. One should also use the matrix L0(W,G)
instead of L(W,G) to make the method more robust to noise. After we suggest these modifications, our
main result is Proposition 2.3, which shows that even when the signal-to-noise-ratio (SNR) is very small, i.e
going to 0 asymptotically, our modifications of the standard algorithm will approximately yield the same
spectral results as if we had been working on the CGL matrix computed from noiseless data. We develop
in Section 2 a theory for the impact of noise on CGL algorithms and show that our proposed modifications
to the standard algorithms render them more robust to noise. We present in Section 3 some numerical
results.

Notation: Here is a set of notations we use repeatedly. T is a set of linear transforms. Idk stands
for the k × k identity matrix. If v ∈ R

n, D({v}) is a nk × nk block diagonal matrix with the (i, i)-th
block equal to viIdk. We denote by A ◦B the Hadamard, i.e entry-wise, product of the matrices A and B.
|||M |||2 is the largest singular value (a.k.a operator norm) of the matrix M . ‖M‖F is its Frobenius norm.

2 Theory

Our aim in this section is to develop a theory that explains the behavior of CGL algorithms in the
presence of noise. In particular, it will apply to algorithms of the cryo-EM type. We give in Subsection
2.1 approximation results that apply to general CGL problems. In Subsection 2.2, we study in details the
impact of noise on both the affinity and the connection used in the computation of the CGL when using
the rotationally invariant distance (this is particularly relevant for the cryo-EM problem). We put these
results together for a detailed study of CGL algorithms in Subsection 2.3. We also propose in Subsection
2.3 modifications to the standard algorithms.

2.1 General approximation results

We first present a result that applies generally to CGL algorithms.

Lemma 2.1. Suppose W and W̃ are n × n matrices, with scalar entries denoted by wi,j and w̃i,j and G

and G̃ are nd× nd block matrices, with d× d blocks denoted by Gi,j and G̃i,j. Suppose that

sup
i,j

|w̃i,j − wi,j | ≤ ǫ , and sup
i,j

‖G̃i,j −Gi,j‖F ≤ η ,

where ǫ, η ≥ 0. Suppose furthermore that there exists C > 0 such that 0 ≤ wi,j ≤ C, supi,j‖Gi,j‖F ≤ C

and supi,j‖G̃i,j‖F ≤ C. Then, if infi
∑

j 6=iwi,j/n > γ and γ > ǫ, we have

|||L(W,G)− L(W̃ , G̃)|||2 ≤
1

γ
C(η + ǫ) +

ǫ

γ(γ − ǫ)
C2 .

The proof of this lemma is given in Appendix A-2. This lemma says that if we can approximate
the matrix W well entrywise and each of the individual matrices Gi,j well, too, data analytic techniques

working on the CGL matrix L(W̃ , G̃) will do essentially as well as those working on the corresponding
matrix for L(W,G) in the spectral sense.

This result is useful because many methods rely on these connection graph ideas, with different input
in terms of affinity and connection functions [1, 15, 16, 23, 24, 25, 47, 62, 64, 66, 71]. However, it will often
be the case that we can approximate wi,j - which we think of as measurements we would get if our signals
were not corrupted by noise - only up to a constant. The following result shows that in certain situations,
this will not affect dramatically the spectral properties of the CGL matrix.
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Lemma 2.2. We work under the same setup as in Lemma 2.1 and with the same notations. However, we
now assume that

∃{fi}ni=1 , fi > 0 : sup
i,j

∣∣∣∣
w̃i,j
fi

− wi,j

∣∣∣∣ ≤ ǫ , and sup
i,j

‖G̃i,j −Gi,j‖F ≤ η .

Suppose furthermore that there exists C > 0 such that 0 ≤ wi,j ≤ C, supi,j‖Gi,j‖F ≤ C and supi,j‖G̃i,j‖F ≤
C. Then, if infi

∑
j 6=iwi,j/n > γ and γ > ǫ, we have

|||L(W,G)− L(W̃ , G̃)|||2 ≤
1

γ
C(η + ǫ) +

ǫ

γ(γ − ǫ)
C2 .

We note that quite remarkably, there are essentially no conditions on fi’s: in particular, w̃i,j and wi,j
could be of completely different magnitudes. The previous lemma also shows that, for the purpose of
understanding the large eigenvalues and eigenvectors of L(W,G), we do not need to estimate fi’s: we can

simply use L(W̃ , G̃), i.e just work with the noisy data.

Proof. Let us call W̃f the matrix with scalar entries w̃i,j/fi. We note simply that

L(W̃f , G̃) = L(W̃ , G̃) .

The assumptions of Lemma 2.1 apply to (W̃f , G̃) and hence we have

|||L(W,G)− L(W̃f , G̃)|||2 ≤
1

γ
C(η + ǫ) +

ǫ

γ(γ − ǫ)
C2 .

But since L(W̃f , G̃) = L(W̃ , G̃), we also have

|||L(W,G)− L(W̃ , G̃)|||2 ≤
1

γ
C(η + ǫ) +

ǫ

γ(γ − ǫ)
C2 .

In some situations that will be of interest to us below, it is however, not the case that we can find fi’s
such that

∃{fi}ni=1 , fi > 0 : sup
i,j

∣∣∣∣
w̃i,j
fi

− wi,j

∣∣∣∣ ≤ ǫ .

Rather, this approximation is possible only when i 6= j, yielding the condition

∀i, ∃fi > 0 : sup
i 6=j

∣∣∣∣
w̃i,j
fi

− wi,j

∣∣∣∣ ≤ ǫ .

This apparently minor difference turns out to have significant consequences, both practical and theo-
retical. We propose in the following lemma to modify the standard way of the computing the CGL matrix
to handle this more general case.

Lemma 2.3. We work under the same setup as in Lemma 2.1 and with the same notations. We now
assume that multiplicative approximations of the weights is possible only on the off-diagonal elements of
our weight matrix:

∃{fi}ni=1 , fi > 0 : sup
i 6=j

∣∣∣∣
w̃i,j
fi

− wi,j

∣∣∣∣ ≤ ǫ , and sup
i,j

‖G̃i,j −Gi,j‖F ≤ η .

Suppose furthermore that there exists C > 0 such that 0 ≤ wi,j ≤ C, supi,j‖Gi,j‖F ≤ C, and supi,j‖G̃i,j‖F ≤
C. Then, if infi

∑
j 6=iwi,j/n > γ and γ > ǫ, we have

|||L0(W,G)− L0(W̃ , G̃)|||2 ≤
1

γ
C(η + ǫ) +

ǫ

γ(γ − ǫ)
C2 ,

and

|||L(W,G)− L0(W̃ , G̃)|||2 ≤
1

γ
C(η + ǫ) +

ǫ

γ(γ − ǫ)
C2 +

C2

nγ
.
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Comment: Concretely, this lemma means that if we do not include the block diagonal terms in the
computation of the CGL obtained from our “noisy data”, i.e (W̃ , G̃), we will get a matrix that is very close
in spectral norm to the CGL computed from the “clean data”, i.e (W,G). The significance of this result
lies in the fact that recent work in applied mathematics has proposed to use the large eigenvalues and
eigenvectors of L(W,G) for various data analytic tasks, such as the estimation of local geodesic distances
when the data is thought to be sampled from an unknown manifold.

What our result shows is that even when fi are arbitrarily large, which we can think of as the situation
where the signal to noise ratio in W̃ is basically 0, working with L0(W̃ , G̃) will allow us to harness the power

of these recently developed tools. Naturally, working with (W̃ , G̃) is a much more realistic assumption than
working with (W,G) since we expect all our measurements to be somewhat noisy whereas results based on
(W,G) essentially assume that there is no measurement error in the dataset.

Proof. Recall also that the computation of the D matrix does not involve the diagonal weights. Therefore,

L(W,G) = L0(W,G) +D−1∆({wi,i}, Gi,i) ,

where ∆({wi,i}, Gi,i) is the block diagonal matrix with (i, i) block diagonal wi,iGi,i, and D
−1∆({wi,i}, Gi,i)

is a block diagonal matrix with (i, i) block diagonal

wi,i∑
j 6=iwi,j

Gi,i .

This implies that

|||L(W,G)− L0(W,G)|||2 ≤ sup
i

wi,i∑
j 6=iwi,j

|||Gi,i|||2 .

Our assumptions imply that
∑

j 6=iwi,j > γn, supiwi,i ≤ C and |||Gi,i|||2 ≤ ‖Gi,i‖F ≤ C. Hence,

|||L(W,G)− L0(W,G)|||2 ≤
C2

nγ
.

We still have L(W̃f , G̃) = L(W̃ , G̃) and of course

L0(W̃f , G̃) = L0(W̃ , G̃) .

Note further that the assumptions of Lemma 2.2 apply to the matrices (W ◦1i 6=j , G) and (W̃ ◦1i 6=j , G̃).
Indeed, the off-diagonal conditions on the weights are the assumptions we are working under. The diagonal
conditions on the weights in Lemma 2.2 are trivially satisfied here since both W ◦ 1i 6=j and W̃ ◦ 1i 6=j have
diagonal entries equal to 0. Hence, Lemma 2.2 gives

|||L0(W,G)− L0(W̃ , G̃)|||2 ≤
1

γ
C(η + ǫ) +

ǫ

γ(γ − ǫ)
C2 .

Using Weyl’s inequality (see [13]) and our bound on |||L(W,G)− L0(W,G)|||2, we therefore get

|||L(W,G)− L0(W̃ , G̃)|||2 ≤
1

γ
C(η + ǫ) +

ǫ

γ(γ − ǫ)
C2 +

C2

nγ
.

We now turn to the analysis of a specific algorithm, the class averaging algorithm in the cryo-EM
problem, with a broadly accepted model of noise contamination to demonstrate the robustness of CGL-like
algorithms.
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2.2 Impact of noise on the rotationally invariant distance

We assume that we observe noisy versions of the k-dimensional images/objects, k ≥ 2, we are interested
in. If the images in the - unobserved - clean dataset are called {Si}ni=1, we observe

Ii = Si +Ni .

Here {Ni}ni=1 are pure-noise images/objects. Naturally, after discretization, the images/objects we consider
are just data vectors of dimension p – we view Si and Ni as vectors in R

p. In other words, for a k-dim
image, we sample p points from the domain R

k, which is denoted as X := {xi}pi=1 ⊂ R
k and called the

sampling grid, and the image is discretized accordingly on these points. We also assume that the random
variables Ni’s, i = 1, . . . , n, are independent.

2.2.1 Distance measurement between pairs of images

We start from a general definition. Take a set of linear transforms T (k) ⊂ O(k). Consider the following
measurement between two objects/images, dij ≥ 0, with

d2ij = inf
O∈T (k)

‖Ii − O ◦ Ij‖22 ,

where ◦ means that the transform is acting on the pixels. For example, in the continuous setup where
Ij is replaced by fj ∈ L2(Rk), given O ∈ SO(k), we have O ◦ fj(x) := fj(O

−1x) for all x ∈ R
k. When

T (k) = SO(k), dij is called the rotationally invariant distance (RID).
In the discrete setup of interest in this paper, we assume that X = O

−1
X for all O ∈ T (k); that is, the

linear transform is exact (with respect to the grid X), in that it maps the sampling grid onto itself. For
concreteness, here is an example of sampling grid and associated exact linear transforms. Let k = 2 and
take the sampling grid to be the polar coordinates grid. Since we are in dimension 2, we pick m rays of
length 1 at angles 2πk/m, k = 0, . . . ,m − 1 and have l equally spaced points on each of those rays. We
consider Ii to be the discretization of the function fi ∈ L2(R2) which is compactly supported inside the
unit disk, at the polar coordinate grid. The set T (2) consisting of elements of SO(2) with angles θk = 2π k

m ,
where k = 1, . . . ,m, is thus exact and associated to the polar coordinate grid.

The discretization and notation merit further discussion. As a linear transform of the domain R
k,

O ∈ T (k) can be represented by a k × k matrix. On the other hand, in the discretized setup we consider
here, we can map T (k) to a set T of p × p matrices O which acts on the discretized images Ij . These
images are viewed as a set of p-dim vectors, denoted as I∨j , and O acts on a “flattened” or “vectorized”
(i.e 1-dimensional) version of the k-dimensional object of interest. Note that to each transform O there
corresponds a unique p × p matrix O. In the following, we will use O to denote the transform acting on
the pixels, and use O to mean its companion matrix acting on the vectorized version of the object we are
interested in. A simple but very important observation is that

(O ◦ Ii)∨ = OI∨i .

In other words, we will have inf
O∈T (k)‖Ii − O ◦ Ij‖ = infO∈T ‖I∨i −OI∨j ‖. To simplify the notation, when it

is clear from the context, we will use Ij to mean both the discretized object of interest and its vectorized
version.

In what follows, we assume that T always contains Idp. We study the impact of noise on dij through
a uniform approximation argument. Let us call for O ∈ T ,

d2ij,noisy(O) := ‖I∨i − OI∨j ‖2 , and d2ij,clean(O) := ‖S∨
i − OS∨

j ‖2 .

Essentially we will show that, when T contains only orthogonal matrices and is not “too large”,

sup
O∈T

sup
i 6=j

|d2ij,noisy(O)− d2ij,clean(O)− f(i, j)| = oP (1) ,

7



where f(i, j) does not depend on O. Our approximations will in fact be much more precise than this. But
we will be able to conclude that in these circumstances,

sup
i 6=j

∣∣∣∣ infO∈T
d2ij,noisy(O)− inf

O∈T
d2ij,clean(O)− f(i, j)

∣∣∣∣ = oP (1) .

We have the following theorem for any given set of transforms T .

Theorem 2.1. Suppose that for 1 ≤ i ≤ n, Ni are independent, with N∨
i ∼ N (0,Σi). Call tp :=

supi supO∈T
√

trace ((OΣiO′)2) and sp := sup1≤i≤n supO∈T
√

|||OΣiO′|||2. Then, we have

sup
O∈T

sup
i 6=j

|d2ij,noisy(O)− d2ij,clean(O)− trace
(
Σi + OΣjO

′) |

= OP

(
√
log[Card {T }n2]

(
tp + sp sup

i,O∈T
‖OSiO′‖

)
+ log[Card {T }n2]s2p

)
.

Proof. We first note that N∨
i − ON∨

j ∼ N (0,Σi + OΣjO
′). Applying Lemma A-2 to ‖N∨

i − ON∨
j ‖2 with

Qi = Id, we get

sup
O∈T

sup
i 6=j

∣∣‖N∨
i − ON∨

j ‖2 − trace
(
Σi + OΣjO

′)∣∣ =

OP

(
√
log[Card {T }n2] sup

i,j,O

[√
trace ((Σi + OΣjO′)2)

]
+ log[Card {T }n2] sup

i,j,O
|||(Σi + OΣjO

′)|||2
)
.

Of course, using the fact that for positive semi-definite matrices, (A + B)2 � 2(A2 + B2) in the positive-
semidefinite order, we have

trace
(
(Σi + OΣjO

′)2
)
≤ 2trace

(
Σ2
i + [OΣjO

′]2
)
.

Hence,

sup
O∈T

sup
i 6=j

∣∣‖N∨
i − ON∨

j ‖2 − trace
(
Σi + OΣjO

′)∣∣ =

OP

(
√
log[Card {T }n2] sup

i
sup
O∈T

√
trace

(
[OΣiO′]2

)
+ log[Card {T }n2] sup

i
sup
O∈T

|||OΣiO′|||2
)
.

We also note that
(S∨
i − OS∨

j )
′(N∨

i − ON∨
j ) ∼ N (0, γ2i,j,O) ,

where
γ2i,j,O = (S∨

i − OS∨
j )

′(Σi − OΣjO
′)(S∨

i − OS∨
j ) .

We note that

γ2i,j,O ≤ 2
(
‖S∨

i ‖2 + ‖OS∨
j O

′‖2
)
(|||Σi|||2 + |||OΣjO′|||2) ≤ 8 sup

i,O∈T
|||OΣiO′|||2 sup

i,O∈T
‖OS∨

i O
′‖2 .

Recall also that it is well known that if Z1, . . . , ZN are N (0, γ2i ) random variables,

sup
1≤k≤N

|Zk| = OP (
√
logN sup

k
γk) .

This result can be obtained by a simple union bound argument. In our case, it means that

sup
O∈T

sup
i 6=j

|(S∨
i − OS∨

j )
′(N∨

i − ON∨
j )| = OP

(
√
log[Card {T }n2] sup

i,O∈T

√
|||OΣiO′|||2 sup

i,O∈T
‖OS∨

i O
′‖
)
.
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In light of the previous theorem, we have the following proposition.

Proposition 2.1. Suppose that for all 1 ≤ i ≤ n and O ∈ T , |||OΣiO′|||2 ≤ σ2p,
√

trace ([OΣiO′]2) /p ≤ s2p,
and ‖OS∨

i O
′‖ ≤ K, where K is a constant independent of p. Then,

sup
O∈T

sup
i 6=j

|d2ij,noisy(O)− d2ij,clean(O)− trace
(
Σi + OΣjO

′) | = OP (un,p) . (2)

where un,p :=
√
log[Card {T }n2](√ps2p +Kσp) + log[Card {T }n2]σ2p.

It follows that, if
√
log[Card {T }n2] max(

√
ps2p, σp) → 0, and T contains only orthogonal matrices,

sup
O∈T

sup
i 6=j

|d2ij,noisy(O)− d2ij,clean(O)− trace (Σi +Σj) | = OP (un,p) = oP (1) .

Furthermore, in this case,

sup
i 6=j

∣∣d2ij,noisy − d2ij,clean − trace (Σi +Σj)
∣∣ = oP (1) ,

where

d2ij,noisy := inf
O∈T

‖I∨i − OI∨j ‖2 , d2ij,clean := inf
O∈T

‖S∨
i − OS∨

j ‖2 .

In light of the previous proposition, the following set of assumptions is natural:

Assumption G1 : ∀i,O ∈ T , |||OΣiO′|||2 ≤ σ2p,
√
trace ([OΣiO′]2) /p ≤ s2p, and ‖OS∨

i O
′‖ ≤ K, where

K is a constant independent of p. Furthermore,
√
log[Card {T }n2] max(

√
ps2p, σp) → 0 and hence un,p → 0.

We refer the reader to Proposition A.1 on page 26 for a bound on Card {T } that is relevant to the class
averaging algorithm in the cryo-EM problem.

Proof of Proposition 2.1. The first two statements are immediate consequences of Theorem 2.1. For the
second one, we use the fact that since O ∈ T is orthogonal, trace (OΣjO

′) = trace (Σj).
Now, if F and G are two functions, we clearly have | inf F (x)− inf G(x)| ≤ sup |G(x)− F (x)|. Indeed,

∀x, F (x) ≤ G(x) + sup |G(x)− F (x)|. Hence, for all x,

inf
x
F (x) ≤ F (x) ≤ G(x) + sup |G(x)− F (x)| ,

and we conclude by taking inf in the right-hand side. The inequality is proved similarly in the other
direction. The results of Theorem 2.1 therefore show that

sup
i 6=j

∣∣d2ij,noisy − d2ij,clean − trace (Σi +Σj)
∣∣ = OP (

√
log[Card {T }n2](√ps2p +Kσp) + log[Card {T }n2]σ2p)

and we get the announced conclusions under our assumptions.

We now present two examples to show that our assumptions are quite weak and prove that the algo-
rithms we are studying can tolerate very large amount of noise.

Magnitude of noise: First example Assume that N∨
i ∼ p−(1/4+ǫ)N (0, Idp), where ǫ > 0. In this

case, ‖N∨
i ‖ ∼ p1/4−ǫ ≫ supi‖S∨

i ‖ if ǫ < 1/4. In other words, the norm of the error vector is much larger
than the norm of the signal vector. Indeed, asymptotically, the signal to noise ratio ‖S∨

i ‖/‖N∨
i ‖ is 0.

Furthermore, σp = p−(1/4+ǫ) and
√
ps2p = p−2ǫ. Hence, if Card {T } = O(pγ) for some γ, our conditions

translate into
√
log(np)max(p−(1/4+ǫ), p−2ǫ) → 0. This is of course satisfied provided n is subexponential

in p. See Proposition A.1 for a natural example of T whose cardinal is polynomial in p.
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Magnitude of noise: Second example We now consider the case where Σi has one eigenvalue equal
to p−ǫ and all the others are equal to p−(1/2+η), ǫ, η > 0. In other words, the noise is much larger in one
direction than in all the others. In this case, σ2p = p−ǫ and trace

(
Σ2
i

)
= p−2ǫ+(p−1)∗p−(1+2η) ≤ p−2ǫ+p−2η.

So if once again, Card {T } = O(pγ), our conditions translate into
√
log(np)max(p−ǫ + p−η, p−ǫ/2) → 0.

This example would also work if the number of eigenvalues equal to p−ǫ were o(p2ǫ/[log(np)]), provided√
log(np)max(p−η, p−ǫ/2) → 0.

Comment on the conditions on the signal in Assumption G1 At first glance, it might look like
the condition supi,O∈T ‖OS∨

i O
′‖ ≤ K is very restrictive due to the fact that, after discretization, Si has

p pixels. However, it is typically the case that if we start from a function in L2(Rk), the discretized and
vectorized image S∨

i is normalized by the number of pixels p, so that ‖S∨
i ‖ is roughly equal to the L2-norm

of the corresponding function. Hence, our condition supi,O∈T ‖OS∨
i O

′‖ ≤ K is very reasonable.

2.2.2 The case of “exact rotations”

We now focus on the most interesting case for our problem, namely the situation where O leaves our

sampling grid invariant. We call T (k)
exact ⊂ SO(k) the corresponding matrices O and Texact the companion

p × p matrices. We note that T (k)
exact depends on p, but since this is evident, we do not index T (k)

exact by p
to avoid cumbersome notations. From the standpoint of statistical applications, our focus in this paper is
mostly on the case k = 1 (which corresponds to “standard” kernel methods commonly used in statistical
learning) and k = 2.

We show in Proposition A.1 that if O ∈ Texact, O is an orthogonal p× p matrix. Furthermore, we show
in Proposition A.1 that Card {Texact} is polynomial in p. We therefore have the following proposition.

Proposition 2.2. Let

d2ij,noisy := inf
O∈T (k)

exact

‖Ii − O ◦ Ij‖2 , d2ij,clean := inf
O∈T (k)

exact

‖Si − O ◦ Sj‖2 .

Suppose Ni are independent with N∨
i ∼ N (0,Σi). When Assumption G1 holds with Texact being the set of

companion matrices of T (k)
exact, we have

sup
i 6=j

∣∣d2ij,noisy − d2ij,clean − trace (Σi +Σj)
∣∣ = oP (1) ,

and
sup

O∈T (k)
exact

sup
i 6=j

|d2ij,noisy(O)− d2ij,clean(O)− trace (Σi +Σj) | = OP (un,p) = oP (1) .

2.2.3 On the transform O
∗
ij,noisy

We now use the notations

dij,noisy(O) = ‖Ii − O ◦ Ij‖ , and dij,clean(O) = ‖Si − O ◦ Sj‖ .
Naturally, the study of

O
∗
ij,noisy = argmin

O∈T (k)
exact

dij,noisy(O) (3)

is more complicated than the study of inf
O∈T (k)

exact
dij,noisy(O). We will assume that the clean images are

nicely behaved when it comes to the dij,clean(O) minimization, in that rotations that are near minimizers
of dij,clean(O) are close to one another. More formally, we assume the following.

Assumption A0 : T (k)
exact is a subset of SO(k) and contains only exact rotations. Call O∗ij,clean :=

argmin
O∈T (k)

exact
d2ij,clean(O) and call T (k)

ij,ǫ :=
{
O ∈ T (k)

exact : d
2
ij,clean(O) ≤ d2ij,clean(O

∗
ij,clean) + ǫ

}
. We assume

that
∃δij,p > 0 : ∀ǫ < δij,p ∀O ∈ T (k)

ij,ǫ , d(O, O
∗
ij,clean) ≤ gij,p(ǫ) ,

for d the canonical metric on the orthogonal group and some positive gij,p(ǫ).
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Assumption A1 : δij,p can be chosen independently of i, j and p. Furthermore, there exists a function
g such that g(ǫ) → 0 as ǫ→ 0 and gij,p(x) ≤ g(x), if x ≤ δij,p ≤ δ.

We discuss the meaning of these assumptions after the statement and proof of the following theorem.

Theorem 2.2. Suppose that the assumptions underlying Theorem 2.1 hold and that Assumptions G1, A0

and A1 hold. Suppose further that T (k)
exact is the set of exact rotations for our discretization. Then, for any

η given, where 0 < η < 1, as p and n go to infinity,

sup
i 6=j

d(O∗ij,noisy, O
∗
ij,clean) = OP (g(u

1−η
n,p )) , (4)

where un,p is defined in (2). (Under Assumption G1, un,p → 0 as n and p tend to infinity.)

The informal meaning of this theorem is that under regularity assumptions on the set of clean images,
the optimal rotation computed from the set of noisy images is close to the optimal rotation computed from
the set of clean images. In other words, this step of the CGL procedure is robust to noise.

Proof. Clearly, O∗ij,clean is a minimizer of Lij(O) := d2ij,clean(O)+ trace (Σi +Σj), since the second term does

not depend on O. Naturally, if Assumptions A0 and A1 apply to d2ij,clean(O), they apply to d2ij,clean(O) +C,
for C any constant. In particular, taking C = trace (Σi +Σj), we see that Assumptions A0 and A1 apply
to the function Lij(O).

The approximation results of Proposition 2.2 guarantee that, under Assumptions G1, A0 and A1,
O
∗
ij,noisy is a near minimizer of d2ij,clean(O). Indeed, we have by definition,

d2ij,noisy(O
∗
ij,noisy) ≤ d2ij,noisy(O

∗
ij,clean). (5)

But under assumption G1, Proposition 2.2 and the fact that the elements of Texact are orthogonal matrices
imply that

∀O ∈ T , ∀i 6= j d2ij,noisy(O) = Lij(O) + OP (un,p) . (6)

Hence, we can rephrase Equation (5) as

Lij(O
∗
ij,noisy) ≤ Lij(O

∗
ij,clean) + OP (un,p) . (7)

Indeed, by plugging (6) into (5), we have

∀i 6= j, d2ij,clean(O
∗
ij,noisy) + trace (Σi +Σj) ≤ d2ij,clean(O

∗
ij,clean) + trace (Σi +Σj) + OP (un,p) .

Now, by definition of d2ij,clean, we have

d2ij,clean(O
∗
ij,clean) ≤ d2ij,clean(O

∗
ij,noisy) . (8)

So by (7) and (8), we have shown that

∀i 6= j, d2ij,clean(O
∗
ij,clean) + trace (Σi +Σj) ≤ d2ij,clean(O

∗
ij,noisy) + trace (Σi +Σj) ,

≤ d2ij,clean(O
∗
ij,clean) + trace (Σi +Σj) + OP (un,p) .

This clearly implies that

∀i 6= j, d2ij,clean(O
∗
ij,clean) ≤ d2ij,clean(O

∗
ij,noisy) ≤ d2ij,clean(O

∗
ij,clean) + OP (un,p) .

Since un,p → 0 as n and p grow, this means that, for any given η, with 0 < η < 1, with very high probability,

∀1 ≤ i 6= j ≤ n , O∗ij,noisy ∈ T (k)

ij,u1−η
n,p

.

We conclude, using Assumption A0, that with very high-probability,

∀1 ≤ i 6= j ≤ n , d(O∗ij,noisy, O
∗
ij,clean) ≤ g(u1−ηn,p ) .
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Interpretation of Assumptions A0-A1 Assumption A0 guarantees that all near minimizers of dij,clean(O)
are close to one another and hence the optimum. Our uniform bounds in Proposition 2.2 only guarantee
that O∗ij,noisy is a near minimizer of dij,clean(O) and nothing more. If dij,clean(O) had near minimizers that
were far from the optimum O

∗
ij,clean, it could very well happen that O∗ij,noisy end up being close to one of

these near minimizers but far from O
∗
ij,clean, and we would not have the consistency result of Theorem

2.2. Hence, the robustness to noise of this part of the CGL algorithm is clearly tied to some regularity or
“niceness” property for the set of clean images.

In the cryo-EM problem, these assumptions reflect a fundamental property of a manifold dataset –
its condition number [50]. Conceptually, the condition number reflects “how difficult it is to reconstruct
the manifold” from a finite sample of points from the manifold. Precisely, it is the inverse of the reach
of the manifold, which is defined to be the radius of the smallest normal bundle that is homotopic to the
manifold. This also highlights the fact that even if we were to run the CGL algorithm on the clean dataset,
without these assumptions, the results might not be stable and reliable since intrinsically distant points
(i.e distant in the geodesic distance) might be identified as neighbors.

About T (k)
exact and extensions We are chiefly interested in this paper about 2-dimensional images and

hence about the case k = 2 (see the cryoEM example). It is then clear that when our polar coordinate

grid is fine, T (k)
exact is also a fine discretization of SO(2) and contains many elements. (More details are

given in Subsection A-3.) The situation is more intricate when k ≥ 3, but since it is a bit tangential to
the main purpose of the current paper, we do not discuss it further here. We refer the interested reader to
Subsection A-3 for more details about the case k ≥ 3.

We also note that our arguments are not tied to using a standard polar coordinate grid for the dis-

cretization of the images. For another sampling grid, we would possibly get another T (k)
exact. Our arguments

go through when : a) if O ∈ T (k), the operation O◦ maps our sampling grid of points onto itself; b)
Card

{
T (k)

}
grows polynomially in p.

2.2.4 Extensions and different approaches

At the gist of our arguments are strong concentration results for quadratic forms in Gaussian random
variables. Naturally, our results extend to other types of random variables for which these concentration
properties hold. We refer to [43] and [29] for examples. A natural example in our context would be a

situation where Ni = Σ
1/2
i Xi, and Xi has i.i.d uniformly bounded entries. This is particularly relevant in

the case where Σi is diagonal for instance - the interpretation being then that the noise contamination is
through the corruption of each individual pixel by independent random variables with possibly different
standard deviations. The arguments in Lemma A-1 handle this case, though the bound is slightly worse
than the one in Lemma A-2 when a few eigenvalues of Σi are larger than most of the others. Indeed, the
only thing that matters in this more general analysis is the largest eigenvalue of Σi, so that in the notation
of Assumption G1,

√
ps2p is replaced by

√
pσ2p. Hence, our approximation will require in this more general

setting that σp = o(p−1/4), whereas we have seen in the Gaussian case that we can tolerate a much larger
largest eigenvalue.

We also note that we could of course settle for weaker results on concentration of quadratic forms, which
would apply to more distributions. For instance, using bounds on E

(
|‖Ni‖2 −E

(
‖Ni‖2

)
|k
)
would change

the dependence of results such as Proposition 2.1 on Card {T }n2 from powers of logarithm to powers of
1/k. This is in turn would mean that our results would become tolerant to lower levels of noise but apply
to more noise distributions.

2.3 Consequences for CGL algorithm and other kernel-based methods

2.3.1 Reminders and preliminaries

Recall that in CGL methods performed with the rotationally invariance distance - henceforth RID -
induced by SO(k), we mostly care about the spectral properties - especially large eigenvalues and cor-

responding eigenvectors - of the CGL matrix L(W̃ , G̃), where W̃ is a n × n matrix and G̃ is a nk × nk

12



block-matrix with k × k blocks defined through

W̃i,j = exp(−d2ij,noisy/ǫ), G̃i,j = O
∗
ij,noisy ,

where O∗ij,noisy is defined in Equation (3).
The “good” properties of CGL stem from the fact that the matrix L(W,G), the CGL matrix associated

with the clean images, has “good” spectral properties. For example, when a manifold structure is assumed,
the theoretical work of [59, 61] relates the properties of L(W,G) - the matrix obtained in the same manner
as above when we replace dij,noisy by dij,clean and O

∗
ij,noisy by O

∗
ij,clean - to the geometric and topological

properties of the manifold from which the data is sampled. The natural approximate “sparsity” of the
spectrum of this kind of matrices is discussed in Section B.

In practice, the data analyst has to work with L(W̃ , G̃). Hence, it could potentially be the case that

L(W̃ , G̃) does not share many of the good properties of L(W,G). Indeed, we explain below that this is in
general the case and propose a modification to the standard algorithm to make the results of CGL methods
more robust to noise. All these arguments suggest that it is natural to study the properties of the standard
CGL algorithm applied to noisy data.

We mention that CGL algorithms may apply beyond the case of the rotational invariance distance and
O(k) and we explain in Subsubsection 2.3.3 how our results apply in this more general context.

2.3.2 Modified CGL algorithm and rotationally invariant distance

We now show that our modification to the standard algorithm is robust to noise. More precisely, we
show that the modified CGL matrix L0(W̃ , G̃) is spectrally close to the CGL matrix computed from the
noise-free data, L(W,G).

Proposition 2.3. Consider the modified CGL matrix L0(W̃ , G̃) computed from the noisy data and the
CGL matrix L(W,G) computed from the noise-free data. Under Assumptions G1 and A0-A1, we have,
if trace (Σi) = trace (Σj) = trace (Σ) for all (i, j),

|||L0(W̃ , G̃)− L(W,G)|||2 = oP (1) ,

provided there exists γ > 0, independent of n and p such that

inf
i

∑

j 6=i

exp(−d2ij,clean/ǫ)
n

≥ γ > 0 .

Note that the previous result means that L0(W̃ , G̃) and L(W,G) are essentially spectrally equivalent:
indeed we can use the Davis-Kahan theorem or Weyl’s inequality to relate eigenvectors and eigenvalues
of L0(W̃ , G̃) to those of L(W,G) (see [63], [13] or [28] for a brief discussion putting all the needed results
together). In particular, if the large eigenvalues of L(W,G) are separated from the rest of the spectrum,

the eigenvalues of L0(W̃ , G̃) and corresponding eigenspaces will be close to those of L(W,G).

Proof. The proposition is a simple consequence of our previous results and Lemma 2.3 above. Indeed, in
the notation of Lemma 2.3, we call

wi,j =

{
exp(−d2ij,clean/ǫ) if i 6= j

1 if i = j
and w̃i,j =

{
exp(−d2ij,noisy/ǫ) if i 6= j

1 if i = j
.

Similarly, we call

Gi,j =

{
O
∗
ij,clean if i 6= j

Idd if i = j
and G̃i,j =

{
O
∗
ij,noisy if i 6= j

Idd if i = j
.

Under Assumption G1, we know that, if fi = exp(−2trace (Σ) /ǫ), supi 6=j |wi,j−w̃i,j/fi| = oP (1). Similarly,
under Assumptions G1, A0 and A1, we know, using Theorem 2.2 that

sup
i,j

d(Gi,j , G̃i,j) = oP (1)
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and therefore, since k, the parameter of SO(k), is held fixed in our asymptotics,

sup
i,j

‖Gi,j − G̃i,j‖F = oP (1) .

Since we assumed that

inf
i

∑

j 6=i

exp(−d2ij,clean/ǫ)
n

≥ γ > 0 ,

i.e, in the notations of Lemma 2.3

inf
i

∑
j 6=iwi,j
n

≥ γ > 0 ,

where γ is independent of n and p, all the assumptions of Lemma 2.3 are satisfied when n and p are large
enough, and we conclude that, in the notations of this lemma,

|||L0(W,G)− L0(W̃ , G̃)|||2 = oP (1) .

Furthermore, we have 0 ≤ wi,j , w̃i,j ≤ 1, ‖Gi,j‖F ≤
√
k and ‖G̃i,j‖F ≤

√
k, the latter two results coming

from the fact that the columns of Gi,j and G̃i,j have unit norm. So we conclude that

|||L(W,G)− L0(W̃ , G̃)|||2 = oP (1) .

Is the modification of the algorithm really needed? It is natural to ask what would have happened
if we had not modified the standard algorithm, i.e if we had worked with L(W̃ , G̃) instead of L0(W̃ , G̃). It
is easy to see that

L(W̃ , G̃) = L0(W̃ , G̃) + D

where D is a block diagonal matrix with

D(i, i) =
w̃i,i∑
j 6=i w̃i,j

Idk =
1∑

j 6=i w̃i,j
Idk .

Under our assumptions,

|||n exp(−2trace (Σ) /ǫ)D−D

({∑
j 6=i exp(−d2ij,clean/ǫ)

n

}n

i=1

)
|||2 = oP (1) .

We also recall that under Assumption G1, trace (Σ) can be as large as p1/2−η - a very large number in
our asymptotics. So in particular, if n is polynomial in p, we have then n−1 exp(2trace (Σ) /ǫ) → ∞. This
implies that

L(W̃ , G̃) = L0(W̃ , G̃) + D

is then dominated in spectral terms by D. So it is clear that in the high-noise regime, if we had used the
standard CGL algorithm, the spectrum of L(W̃ , G̃) would have mirrored that of D - which has little to do
with the spectrum of L(W,G), which we are trying to estimate - and the noise would have rendered the
algorithm ineffective.

By contrast, by using the modification we propose, we guarantee that even in the high-noise regime,
the spectral properties of L0(W̃ , G̃) mirror those of L(W,G). We have hence made the CGL algorithm
more robust to noise.

On the use of nearest neighbor graphs In practice, variants of the CGL algorithms we have
described use nearest neighbor information to replace wi,j by 0 if wi,j is not among the k largest elements
of {wi,j}nj=1. In the high-noise setting, the nearest-neighbor information is typically not robust to noise,
which is why we proposed to use all the wi,j ’s and avoid the nearest neighbor variant of the CGL algorithm,
even though the latter probably makes more intuitive sense in the noise-free context. A systematic study
of the difference between these two variants is postponed to future work.
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Comparison with previous results in the literature As far as we know, the study of the impact
of high-dimensional additive noise on kernel methods was started in [30]. Compared to this paper, our
extension is two-fold: 1) the noise level (i.e trace (Σ)) that is studied in the current paper is much higher
than what was studied in [30]. This is partly a result of the fact that the current paper focuses on the
Gaussian kernel whereas [30] studied many more kernels. 2) [30] focused on standard kernel methods -
based on the graph Laplacian, such as diffusion maps - where the connection information is not included
in the data analysis. Incorporating this new element creates new difficulties. In other respects, we also
refer to [57] for another study of the influence of noise in a different setup.

2.3.3 CGL beyond the rotational invariance distance

The previous analysis has been carried out for the RID and corresponding rotations for whom we
studied the impact of additive noise in Subsection 2.2. However, it is clear that our results apply much
more broadly. We have the following proposition.

Proposition 2.4. Suppose we are given a collection di,j,noisy of (scalar-valued) dissimilarities between
noisy versions of objects i and j, 1 ≤ i, j ≤ n. Suppose objects i and j have (scalar-valued) dissimiliarity
di,j,clean. Consider the asymptotic regime where n→ ∞ and suppose that there exists ξn ∈ R such that

sup
i 6=j

|d2i,j,noisy − d2i,j,clean − ξn| = oP (1) .

Call w̃i,j = exp(−d2i,j,noisy/ν) and wi,j = exp(−d2i,j,clean/ν) the corresponding affinities. ν is held fixed in
our asymptotics, though the way affinities are computed may change with n.

Suppose G̃i,j is the connection between noisy versions of objects i and j and Gi,j is the connection

between the clean version of objects i and j. Suppose that wi,j, Gi,j and G̃i,j satisfy the assumptions of
Lemma 2.3, with ǫ and η possibly random but oP (1) and γ bounded below as n→ ∞. Then

|||L(W,G)− L0(W̃ , G̃)|||2 = oP (1) .

Proof. This proposition is just a consequence of Lemma 2.3. Indeed, the affinities are all bounded by 1.
Furthermore, we can use fi = exp(−ξn/ν) and all the approximation results needed in Lemma 2.3 are true,
so the result follows.

2.3.4 A situation without robustness to noise

So far, our work has been quite general and has shown that when the noise is Gaussian (or Gaussian-
like) and its covariance Σi is such that trace (Σi) = trace (Σj) for all i, j, CGL algorithms can be made
robust to noise.

It has been recognized [26, 29, 30, 32] that to study the robustness of various statistical procedures
in high-dimension, it is essential to move beyond the Gaussian-like situation and study for instance el-
liptical/scale mixture of Gaussian models. This largely due to the peculiar geometry of high-dimensional
Gaussian and Gaussian-like vectors (see above references and [38]).

If we now write down a model for the noise where Ni = λiZi, where Zi are i.i.d N (0,Σ), λi’s are
i.i.d with E

(
λ2i
)
= 1 and λi ∈ R is independent of Zi, it is easy to modify our analysis (assuming for

instance that λ2i are bounded, though this condition could easily be relaxed) and to realize that our main
approximation result in Proposition 2.1 is replaced by

sup
i 6=j

∣∣d2ij,noisy − d2ij,clean − [λ2i + λ2j ]trace (Σ)
∣∣ = oP (1) .

In this situation, Theorem 2.2 is still valid. However, Proposition 2.3 is not valid anymore. The matrix
L0(W̃ , G̃) can be approximated by a matrix that depends both on the signal and the distribution of the λ2i ’s.
And there is no guarantee in general that this matrix will have approximately the same spectral properties
as L(W,G) or L0(W,G), the CGL matrix generated from the noise-free signals. This suggests that even
our modification of the original CGL algorithm will not be robust to this “elliptical”-noise contamination.
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3 Numerical work

Although the robustness properties of CGL methods were not well studied in the past, these methods
have been successfully applied to different problems; for example, [2, 25, 45, 59, 62, 71]. In this section,
we show simulated examples to illustrate the practical performance of our theoretical findings about CGL
methods. We refer interested readers to the aforementioned papers for details and results of its applications.

To demonstrate the main finding of this paper - that CGL methods are robust to high-levels of noise
in the spectral sense - we take the noise to be a random Gaussian vector Z ∼ N (0, cIp/p

α), where α ≤ 1
and c > 0. Note that the amount of noise, or the trace of the covariance matrix of Z, is cp1−α and will
blow up when p→ ∞ and α < 1.

3.1 1-dim manifold

Our first example is a dataset sampled from a low dimensional manifold, which is embedded in a high
dimensional space. This dataset can be viewed as a collection of high dimensional points which is (locally)
parametrized by only few parameters2, but in a nonlinear way.

As a concrete example, we take the twisted bell-shaped simple and closed curve, denoted as M, embed-
ded in the first 3 axes of Rp, where p≫ 2, via ι : [0, 2π) → R

p:

ι : t 7→ [ cos(t), (1− 0.8e−8 cos2 t) cos(π(cos(t)+ 1)/4), (1− 0.8e−8 cos2 t) sin(π(cos(t)+ 1)/4), 0, . . . , 0 ] ∈ R
p .

M is a 1-dim smooth manifold without boundary; that is, no matter how big p is, locally the points on
M can be parametrized by only 1 parameter. See Figure 1 (A) for an illustration. We mention that one
interesting dataset of this kind is the 2-D tomography from noisy projections taken at unknown random
directions [60].

For our numerical work, we independently sample n points uniformly at random from [0, 2π). Due to the
non-linear nature of ι, it is equivalent to non-uniformly sampling n points from M independently. Denote
the clean data as Y = {yi}ni=1 ⊂ M. The data X = {xi}ni=1 we analyze is the clean data contaminated by
noise, i.e xi = yi + Zi, with Zi i.i.d with the same distribution as Z. We measure the signal-to-noise ratio

of the dataset by the quantity snrdb := 20 log
√
EXTX√
EZTZ

. We take n = p = 1000 and α = 1/4. Note that

α = 1/4 is the critical value in our analysis beyond which our results do not apply. It corresponds to a
high-noise level; for example, the snrdb will be −9.25 and −18.73 respectively when c = 0.25, 0.4.

Then, we build up the connection graph by setting V := X and E := {(i, j); i, j ∈ V}. Note that in
practice, it is common to use a nearest-neighbor scheme to build up the graph, denoted as GNN, for the sake
of computational efficiency. However, since the sets of nearest neighbors are not stable under the action
of the noise, we also consider here the complete graph scheme, denoted as G. Next we assign the weight
function as w : (i, j) 7→ e−‖xi−xj‖2Rp/m, where m is the 25% quantile of all Euclidean distances between
pairs of (xi, xj) ∈ E, and the connection function is defined to be a trivial one, that is, r(i, j) = 1 for all
(xi, xj) ∈ E.

With the connection graph, we build up the CGL matrix (in this 1-dim manifold with the trivial
connection, it is equivalent to the graph Laplacian (GL)) from G

NN and G for comparison, denoted as

LNN(W̃ , G̃) and L(W̃ , G̃) respectively (see (1)). We have seen in the analysis described earlier in the paper
that, when α < 1, we have to remove the diagonal terms of the CGL matrix in order to preserve spectral
properties. So, we also consider the matrix L0(W̃ , G̃) for the comparison.

We then evaluate the eigenvalues and eigenvectors of the above three different CGL’s. To simplify
the notation, we use the same notations to denote the eigenvectors u1, u2, u3 . . . ∈ R

n associated with the
eigenvalues 1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ 0. We now show two sets of results to demonstrate the robustness
of the CGL methods studied in this paper.

Dimension Reduction and Data Visualization: To achieve this, we may embed the sampled points into
R
m by the truncated diffusion maps (tDM) with time t > 0 and precision δ > 0:

Φt,m : xi 7→ (λt2u2(i), λ
t
3u3(i), . . . , λ

t
m+1um+1(i)) ∈ R

m,

2By definition, although locally the manifold resembles Euclidean space near a point, globally it might not. Thus, in general
we can only parametrize the manifold locally. This feature captures the possible nonlinear structure in the data.
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Figure 1: Clean samples from the twisted bell-shaped manifold. (A): the clean samples. Here we only plot the
first 3 axes of the high dimensional data Y. The color of each point is a surrogate of the norm of each embedded
point – blue means a relative small norm and dark red means a relative large norm; the scale above the figure refers
to {‖xi‖2}ni=1

, i.e the norm of the data vectors in R
p.(B): the results of the truncated diffusion maps (tDM), Φ1,3,

when the connection graph is GNN and the diagonal entries are not removed, where the number of nearest neighbors
is chosen to be 100; (C): the result of tDM, Φ1,3, when the connection graph is G and the diagonal entries are not
removed; (D): the result of tDM, Φ1,3, when the connection graph is G and the diagonal entries are removed. Note
that without surprise, the “parametrization” of the bell shaped manifold is recovered in (B), (C) and (D). For (B),
(C), and (D), the scales above the figures refer to the norm of {Φ1,3(xi)}ni=1

; those vectors are of course 3-dimensional,
which explains the difference in magnitude of our scales.

where λm+1 > δ and λm+2 ≤ δ; that is, we map the i-th data point to R
m using the first m non-trivial

eigenvectors of the CGL. We choose δ = 0.2 in this simulation. The embedding results of Y, Φ1,3, based
on the above different CGL’s are shown in Figure 1, and the results from X with c = 0.4 are shown in
Figure 2. Ideally, we would expect to recover the “parametrization” of the dataset by the idea that the
eigenvectors of the CGL represent a set of new coordinates for the data points, so the high dimensional
dataset can be visualized in this new set of coordinates or its dimension can be reduced. In this specific
example, we would expect to find a simple and closed curve out of the noisy dataset which represents the
dataset in R

3. Clearly when the dataset is clean, we succeed in the task no matter which CGL we use.
However, if the dataset is noisy, at high-noise levels, the embedding might not be that meaningful if we
use LNN(W̃ , G̃) or L(W̃ , G̃). Indeed, as shown in Figure 2, with LNN(W̃ , G̃) the structure of the dataset is

barely recovered; with L(W̃ , G̃), even though we can get the simple closed curve3 back, there are several
outliers which might deteriorate the interpretation. In this noisy case, we can only succeed in the task if
we choose L0(W̃ , G̃), as is discussed in this paper.

Nearest Neighbors Estimation Estimating nearest neighbors of a given data point from a noisy dataset
is not only important but also challenging in practice (for example, it is essential in the class averaging
algorithm for the cryo-EM problem). This problem is directly related to local geodesic distance estimation
when the dataset is modeled by the manifold. Their theoretical properties make diffusion maps and vector
diffusion maps particularly well-suited for these tasks. To determine the neighbors, we need the notion of
distance. In addition to the naive L2 distance between points, we consider the diffusion distance between
two points xi, xj ∈ X by

dDD(xi, xj) := ‖Φt,m(xi)− Φt,m(xj)‖Rm .

Then, we determine the nearest neighbors of each data point based on these distances, where we choose
t = 1 and δ = 0.2 for the diffusion distance. More precisely, we first determine 10 nearest neighbors of xi,
denoted as xij , j = 1, . . . , 10, from the noisy dataset X , for all i. Then, since we know the ground truth, we
may check the true relationship between yi and yij , j = 1, . . . , 10, i.e dDD(yi, yij ) for various CGL methods,
or ‖yi − yij‖ if we use L2 distance. Clearly, if the method preserves nearest neighbor information, at least
approximately, the ranks of the yij ’s measured in terms of distances to yi should be small. To quantify
the estimation accuracy, we collect the ranks of all estimated nearest neighbors, and plot the cumulative
distribution results in Figure 3. In other words, if we call Rij the rank of yij in terms of distance to yi, we
plot the cdf of {{Rij}10j=1}ni=1 for the various distances we use. (There are many other methods one could

3The main idea behind tDM is embedding the dataset to a lower dimensional Euclidean space so that the structure
underlying the data can be extracted. Please see Section B-5 for details.
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Figure 2: Noisy samples from the twisted bell-shaped manifold with α = 1/4 and c = 0.4. (A): the noisy samples.
Note that we only plot the first 3 axes of the data X , so the “big” noise seems small, since 997 out of 1000 coordinates
are not plotted. To emphasize the relationship among data points, the color of each point is a surrogate of the norm
of each embedded point – blue means a relative small norm and dark red means a relative large norm; the scale
above the figure refers to {‖xi‖}ni=1

, i.e the norm of our 1000-dimensional vectors. (B): the results of the truncated
diffusion maps (tDM), Φ1,3, when the connection graph is GNN and the diagonal entries are not removed, where the
number of nearest neighbors is chosen to be 100. We can barely see the circle structure in the middle, and there are
several big outliers; (C): the result of tDM, Φ1,3, when the connection graph is G and the diagonal entries are not
removed. Note that when compared with (B), the embedding is better in the sense that the “parametrization”, the
simple and close curve, is better recovered. But we can still observe several outliers; (D): the result of tDM, Φ1,3,
when the connection graph is G and the diagonal entries are removed. Note that compared with (C), the embedding
is yet better in the sense that the number of outliers is reduced and the parametrization of the manifold is recovered.
Note that for (B), (C),(D), the scale above the figures refer to {‖Φ1,3(xi)‖}ni=1

, which are 3-dimensional vectors. The
different scales indicate the presence of outliers. Compare also with the scales in Figure 1, (B), (C), (D).

use to do these comparisons, such as using Kendall’s τ and variants (see [34]). The one we use here has the
benefit of simplicity.) When the dataset is clean, all methods perform the same, as is predicted in Theorem
B.7. It is clear from the results that when the noise is large, the result based on the L2 distance is much
worse than the others. The performance based on the diffusion distance from LNN(W̃ , G̃) is better when

the noise level is not big, but still a non-negligible portion of error exists; the results based on L(W̃ , G̃)

and L0(W̃ , G̃) are much better, while the result based on L0(W̃ , G̃) is the best.
In conclusion, in addition to showing the robustness of CGL to noise, we have demonstrated the

spectrally close relationship between L0(W̃ , G̃) and L(W,G), which is proved in Proposition 2.3.

Figure 3: The result of nearest neighbors estimation. In all subfigures, the x-axis is the true rank of an estimated
nearest neighbor and the y-axis is its cumulative distribution. To emphasize the difference, we only show the area
ranging from 90% to 100% in the y-axis. The gray dashed (gray, black dashed and black respectively) curve is the
cumulative distribution of the true ranks of the estimated nearest neighbors estimated from the ordinary Euclidean
distance (diffusion distance based on LNN(W̃ , G̃), L(W̃ , G̃) and L0(W̃ , G̃) respectively). From left to right: clean
samples from the bell shaped manifold, noisy samples with α = 1/4 and c = 0.25, 0.4, 0.5 respectively. It is clear
that when the noise is large, the result based on the L2 distance is much worse than the others. The result based on
LNN(W̃ , G̃) is slightly better, but not that ideal, L(W̃ , G̃) is even better and L0(W̃ , G̃) is the best.

18



3.2 2-dim images

In Subsection 3.1, we investigated numerically the influence of noise on CGL methods when the con-
nection function is trivial. In this subsection, we discuss an example where the connection function plays
an essential role in the analysis. We consider a dataset which contains randomly rotated versions of a set
of objects, and the task is to align these objects in addition to classifying them. We encounter this kind of
datasets and problems in, for example, image processing [59, 62, 71], shape analysis [40], phase retrieval
problems [2, 45], etc. In [2, 45, 59, 62, 71] and others, the CGL methods have been applied to solve the
problem.

To focus specifically on demonstrating the influence of noise on this problem, we work with 2-dimensional
images observed in polar coordinates. If an image is defined in Cartesian coordinates, then in general a nu-
merical rotation will introduce numerical artifacts and errors since resampling or interpolation procedures
are then involved to compare two rotated images. These numerical issues are alleviated if we work with
polar coordinates. To further minimize these numerical artifacts, we use surrogate images as our dataset
– by a surrogate image, we mean a function defined on the circle S1, which is discretized into p equally
spaced points. In other words, we consider images defined in polar coordinates, where we only have one
sample on the radial axis.

Now we discretize the 2× 2 rotational group, SO(2), which is the same as the circle S1, into p equally
spaced points, that is, T (2) := {ei2πk/p}pk=1 - the sample ei2πk/p ∈ T (2) simply rotates vectors in R

2 by
an angle 2πk/p. Note that since the surrogate images are defined on p equally spaced points on S1, the
rotations in T (2) act exactly on the images without introducing any numerical error. We choose nK different
surrogate images, denoted as {fi}nK

i=1 ⊂ R
p. Then we randomly and independently rotate each of them by

nR angles; that is, for all k = 1, . . . , nK and l = 1, . . . , nR, we have Si := Rk,l ◦ fk, where Rk,l ∈ T (2),
Rk,l ◦ fk means rotating fk by Rk,l and i = (k− 1)nR + l. We assume that argminR∈T (2) ‖fi −R ◦ fj‖ > 0,
for all i, j = 1, . . . , nK ; that is, the image fi is not a rotated version of another one fj . In the end we get
n = nKnR randomly rotated images {Si}ni=1 ⊂ R

p. Denote by σ the standard deviation of all pixels of all
images in {fi}nK

i=1. The data X = {Ii}ni=1 we analyze is the clean data contaminated by the noise which is
i.i.d. sampled from Z, that is, we have Ii = Si + Zi.

We now build up the connection graph by setting V := {Ii}ni=1 and E := {(i, j); Ii, Ij ∈ V}; that is,

we take the complete graph scheme. Next we assign the weight function as w : (i, j) 7→ e−d
2
RID(Ii,Ij)/m,

where m is the 25% quantile of all non-zero RID distances defined on E, and the connection function as
r : (i, j) 7→ argminR∈T (2) ‖Ii−R ◦ Ij‖. For comparison purposes, we also take the nearest neighbor scheme
to construct the connection graph, denoted by (GNN, wNN, rNN), where we choose 100 nearest neighbors -
as defined by the RID distance - to construct edges. When the images are noise-free, due to the connection
function, we can recover Rk,l’s up to a rotation from the top eigenvector v1 of different CGL’s built up from
different connection graphs, (G, w, r) or (GNN, wNN, rNN), with or without removing the diagonal entries.
To simplify the notation, we will use the same notation v1 to denote the top eigenvector of the different
CGL’s. Precisely, the estimated rotation is built up from v1, denoted as v ∈ C

n, by setting v(i) = v1(i)
|v1(i)|

when |v1(i)| > 0 and v(i) = 1 when |v1(i)| = 0. (In a slight departure from the descriptions given earlier
in the paper, the ri,j ’s are not 2 × 2 matrices here, but complex numbers describing the corresponding
rotations. Hence, v1 is in C

n. If we had used 2× 2 matrices, v1 would have been in R
2n and we could have

computed the vector v by using pairs of entries of v1.)
To evaluate the performance of the estimated rotation when noise exists, we construct a complex vector

u ∈ C
n whose i-th entry - where i = (k − 1)nR + l, k = 1, . . . , nK and l = 1, . . . , nR - is the complex form

of Rk,l. We then evaluate the difference between the estimated rotation of the l-th object and the ground
truth by observing the angle of u(i)∗v(i). In other words, this quantity shows the discrepancy between
the true rotation and the estimated rotation. To visualize this result, we plot the vector z ∈ R

n where
z(i) is the angle of the complex number u(i)∗v(i). In Figure 4, the resulting z’s with p = 1000, nK = 5,
nR = 200, α = 1/4 and c = 6σ are illustrated. Note that since there are 5 different images, we see a
piecewise function with 5 different values when the images are clean. When noise exists, we can see clearly
the benefit of removing the diagonal entries (see Figure 4, (H)).

We mention that depending on the problem, the affinity function and the connection function are
constructed in different ways (see, for example [2, 40, 45, 59, 62, 71]). Also, the CGL is only one of several
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Figure 4: (A): a clean surrogate image. (B)-(D): alignment vectors z computed from clean images; (E): a noisy
surrogate image. (F)-(H): alignment vectors z computed from noisy images with c = 6σ. (A) and (E): the black
curve is a clean surrogate image, and the gray curve is its noisy version; (B) and (F): the result from the CGL built
up from G

NN; (C) and (G): the result from the CGL built from G and the diagonal entries are not removed; (D)
and (H): the result from the CGL built from G with the diagonal entries removed. It is clear that when the images
are clean, all different CGL’s give equivalent results. But in the presence of noise, the CGL built up from G

NN is
obviously worse.

techniques we could use to analyze datasets described by the connection graph. We might consider other
techniques, such as, semidefinite programming relaxation [69], nonlinear independent component analysis
[66], and other methods, to obtain the information we are interested in, reorganize the data, etc...
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APPENDIX

to “Connection graph Laplacian methods can be made robust to noise”

A Technical results

A-1 On quadratic forms

Lemma A-1. Suppose Z1, . . . , Zn are random vectors in R
p, with Zi = Σ

1/2
i Xi, where Xi has mean 0 and

covariance Idp. We further assume that for every convex 1-Lipschitz function f , if mf(Xi) is a median of
f(Xi), P (|f(Xi)−mf(Xi)| > t) ≤ 2 exp(−cit2). Zi’s are possibly dependent. Let {Qi}ni=1 be p× p positive
definite matrices. Call |||Qi|||2 the largest eigenvalue of Qi. Then we have

sup
1≤i≤n

∣∣∣∣
√
Z ′
iQiZi −E

(√
Z ′
iQiZi

)∣∣∣∣ = OP (sup
i

√
|||QiΣi/ci|||2

√
log n) .

This implies that, when supi
√

|||QiΣi/ci|||2
√
log n→ 0 ,

sup
1≤i≤n

∣∣Z ′
iQiZi − trace (ΣiQi)

∣∣ = OP (sup
i

√
|||QiΣi/ci|||2

√
log n

[
sup
i

√
trace (ΣiQi) ∨ 1

]
) .

As explained in [43], the condition we require on Xi is satisfied by many distributions. We refer also
to [29] for many examples. Here are two examples. The Gaussian distribution in dimension p satisfies
the previous assumptions with ci = 1/2, independently of the dimension. When Xi’s have independent
coordinates supported on intervals of width at most Bi, ci is proportional to 1/Bi.

Proof. The map Xi →
√
X ′
iΣ

1/2
i QiΣ

1/2
i Xi is convex and

√
|||QiΣi|||2 =

√
|||Σ1/2

i QiΣ
1/2
i |||2-Lipschitz as a

function of Xi. Indeed, it is a norm, which gives convexity. The Lipschitz-property comes from the triangle

inequality. Hence, under our assumptions, since Zi = Σ
1/2
i Xi, we have

P

(∣∣∣∣
√
Z ′
iQiZi −E

(√
Z ′
iQiZi

)∣∣∣∣ > t

)
≤ 2 exp(−cit2/(|||QiΣi|||2)) .

By a simple union bound, we get

P

(
sup

1≤i≤n

∣∣∣∣
√
Z ′
iQiZi −E

(√
Z ′
iQiZi

)∣∣∣∣ > t

)
≤ 2

n∑

i=1

exp(−cit2/[|||QiΣi|||2]) ≤ 2n exp(−t2/(sup
i

|||QiΣi/ci|||2))

Taking tK = K
√
log(n)|||QiΣi/ci|||2, for K a constant, gives the first result. The second result follows

from remarking that |a2− b2| = |a− b||a+ b| ≤ |a− b|2+2|b||a− b|. When supi
√

|||QiΣi/ci|||2
√
log n→ 0,

this gives immediately

sup
1≤i≤n

∣∣∣∣∣Z
′
iQiZi −

[
E

(√
Z ′
iQiZi

)]2∣∣∣∣∣ = OP (sup
i

√
|||QiΣi/ci|||2

√
log n sup

i

[√
trace (ΣiQi) ∨ 1

]
) ,

after we notice that trace (ΣiQi) = E (Z ′
iQiZi) ≥

[
E
(√

Z ′
iQiZi

)]2
. Finally, using the variance bound in

Proposition 1.9 of [43], we see that,

E
(
Z ′
iQiZi

)
−
[
E

(√
Z ′
iQiZi

)]2
≤ 2|||ΣiQi/ci|||2 .

Under our assumption that supi
√
|||QiΣi/ci|||2

√
log n→ 0, we have supi

√
|||QiΣi/ci|||2 → 0 and therefore

sup
i

|||ΣiQi/ci|||2 = o(sup
i

√
|||ΣiQi/ci|||2) .

This gives the second bound.
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In the case of the Gaussian distribution, the previous bounds can be improved, using an observation
found in [42].

Lemma A-2. Suppose Z1, . . . , Zn are random vectors in R
p, with Zi ∼ N (0,Σi). Zi’s are possibly depen-

dent. Let {Qi}ni=1 be p× p positive definite matrices. Then we have, if Si = Σ
1/2
i QiΣ

1/2
i

sup
1≤i≤n

∣∣Z ′
iQiZi − trace (Si)

∣∣ = OP

(
sup

1≤i≤n

√
log(n)

√
trace

(
S2
i

)
+ |||Si|||2 log(n)

)
.

Proof. By rotational invariance of the Gaussian distribution, we have

Wi , Z ′
iQiZi − trace (Si)

L
=

p∑

k=1

λk(Si)(X
2
k − 1) ,

where Xk’s are i.i.d N (0, 1). Using Lemma 1, p, 1325 in [42], we see that

P

( |Wi|
2

>
√
trace

(
S2
i

)√
x+ |||Si|||2x

)
≤ exp(−x) .

Taking x = K log(n) in the previous inequality and a simple union bound gives the announced result.

A-2 Proof of Lemma 2.1

Proof. We have L(W,G) = D−1S = (D/n)−1(S/n). If we call di,i =
∑

j 6=iwi,j and d̃i,i =
∑

j 6=i w̃i,j , we see
that

|di,i/n− d̃i,i/n| ≤ sup
j 6=i

|wi,j − w̃i,j | .

Hence,
sup

1≤i≤n
|di,i/n− d̃i,i/n| ≤ sup

1≤i≤n
sup
j 6=i

|wi,j − w̃i,j | ≤ sup
i,j

|wi,j − w̃i,j | ≤ ǫ .

We conclude that
|||D/n− D̃/n|||2 ≤ ǫ .

Under our assumptions, it is clear that |||(D/n)−1|||2 ≤ 1/γ. The previous display also implies that
|||(D̃/n)−1|||2 ≤ 1/(γ − ǫ).

Furthermore, since

(D/n)−1 − (D̃/n)−1 = (D/n)−1[D/n− D̃/n](D̃/n)−1 ,

we see that
|||(D/n)−1 − (D̃/n)−1|||2 ≤

ǫ

γ(γ − ǫ)
.

Also,
‖S/n− S̃/n‖2F ≤ sup

i,j
‖Si,j − S̃i,j‖2F .

Naturally, since Si,j = wi,jGi,j and S̃i,j = w̃i,jG̃i,j ,

‖Si,j − S̃i,j‖2F ≤ |wi,j |2‖Gi,j − G̃i,j‖2F + |wi,j − w̃i,j |2‖G̃i,j‖2F ≤ C2(η2 + ǫ2) .

Hence,
|||S/n− S̃/n|||2 ≤ ‖S/n− S̃/n‖F ≤ C(η + ǫ).

We also note that ‖S̃/n‖F ≤ C2. So we can conclude that

|||D−1S − D̃−1S̃|||2 ≤ |||D−1(S − S̃) + (D−1 − D̃−1)S̃|||2 ≤
1

γ
C(η + ǫ) +

ǫ

γ(γ − ǫ)
C2 .
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A-3 Card {T }: an example when T (k)
exact ⊂ SO(k)

Naturally, when working with discretized images/objects with p pixels/voxels, we need to also discretize
SO(k). In light of results like Proposition 2.1, one natural question we have to deal with concerns the
cardinality of the discretized set of transformations, T (k), and the corresponding set for companion matrices,
T . The following proposition answers this question.

The images/objects are discretized in polar coordinates. In other words, each point on our grid can
be identified by its location on a ray emanating from the origin and reaching a point p on the sphere of
radius r0 centered at the origin. The discretization of each ray does not have to be uniform. But this
discretization is the same for all rays.

In the case of SO(2), this simply means that we discretize the circle of radius r0, and our points lay
on the corresponding radii. In this situation, it is natural to represent each point on our grid through
(r, θ). To give a concrete example, we assume that θ ∈ {2π k

M }M−1
k=0 and r ∈ {r1, . . . , rα} with rα = r0. The

discretization of SO(2) corresponds simply to rotations by an angle θk, where θk = 2π k
M . These rotations

clearly map our grid onto itself.
We assume that our images or objects, after having been uniformly discretized in polar coordinates,

fit in a k-dimensional cube. Then we assume that the rotation group is properly discretized so that each
rotation is exact in the sense that it commutes with discretization. In other words, the rotation does not
change the pixel values - pixels are simply swapped and pixel values are not averaged or aggregated in
other ways. Note that when the image or object is discretized in Cartesian coordinates, the discretization
and rotation will not commute and a distortion is inevitable. We postpone the study of such a phenomenon
to future work.

Proposition A.1. When T (k)
exact is the discretized version of SO(k) we just discussed, we have

Card
{
T (k)
exact

}
= Card {Texact} = O(pk−1) .

Furthermore, the elements of Texact are permutation matrices. In particular, they are orthogonal matrices.

Comment : Proposition A.1 shows that in checking Assumption G1, we can assume that Card {T } is
polynomial in p. This implies that Assumption G1 will be satisfied when max(σp,

√
ps2p) = o([log(np)]−1/2).

Hence the conditions we will have to check on σp and
√
ps2p will be quite unrestrictive and we will see that

this implies that CGL algorithms are robust to considerable amount of additive noise.

Proof. Our polar-coordinate discretization amounts to discretizing a sphere of radius r0 in R
k with M

points and discretizing each ray linking a point on that sphere to the origin along α points. We naturally
have the relationship Mα = p.

Now elements of T (k)
exact are orthogonal matrices with determinant 1, hence they can be characterized

by their action on k − 1 vectors in R
k which span a subspace of dimension k − 1.

Let us pick k− 1 elements among our M points on the sphere of radius r0. We require that these k− 1
elements span a subspace of dimension k − 1 in R

k. We call the corresponding vectors v1, . . . , vk−1.

Suppose now that O ∈ T (k)
exact. Then, for each i, Ovi has to be one of the elements of our discretized

sphere. Therefore,

Card
{
T (k)
exact

}
≤Mk−1 =

( p
α

)k−1
≤ pk−1 .

Now let O ∈ T (k)
exact and let O be the companion matrix of O. Note that if Ii is our image and I∨i ∈ R

p is
its discretized version, OI∨i swaps the position of the entries of the vector I∨i , since O maps our grid onto
itself. Hence O is a permutation matrix and it is therefore orthogonal.

Another approach We note that another approach can be employed to generate a sampling grid X and
an associated set of exact transformations for k ≥ 3. Take m points in Rk denoted as X = {xi}mi=1. Take
a finite subgroup, T of SO(k). Now consider the sampling grid X , {Rxi; R ∈ T, xi ∈ X}. Since T is a
subgroup, we know that the sampling grid X is of finite size; that is, |X| ≤ m|T |. It is also clear that T is
an exact set of transforms for X, by simply using the fact that T is a group.
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Note that the standard polar coordinate grid in R
2 described above can be viewed as an instance of

the method we just discussed, with T consisting of powers of the rotation by the angle 2π
M .

Note however that the classification of finite subgroups of SO(k), for k ≥ 3, imposes strong constraints
on the sampling grids obtained by such a construction.

B Background on CGL methods

In this section, we discuss the noise-free connection graph Laplacian (CGL) L(W,G) defined in (1),
understand its asymptotical behavior under the assumption that the point clouds we collect are distributed
on a manifold, and show that the CGL matrix built up under this assumption enjoy a sparsity property
which allows the robustness result shown in this paper. In addition, we will discuss the fact that the CGL
matrix can be viewed as a generalization of the graph Laplacian (GL) [61]. We will see that although GL
and CGL share several similar properties but are fundamentally different.

We would assume the background knowledge of differential geometry in the following discussion. For
a reader who is not familiar with the subject, we refer him to [10, 12, 14, 27, 36] for the topics we will
encounter.

We start from some notations. Denote M to be a d-dimensional compact, connected and smooth
Riemannian manifold embedded in R

p via ι, where d ≤ p. Denote the tangent bundle as TM. The tangent
plane at y ∈ M is denoted as TyM. Introduce the metric g on M induced from the canonical metric of
the ambient space R

p. Denote d(y, y′) to be the geodesic distance between y, y′ ∈ M. Denote by ∇ the
covariant derivative of the vector field, ∆g the Laplace-Beltrami operator, ∇2 the connection Laplacian of
the tangent bundle associated with the Levi-Civita connection, and by Ric the Ricci curvature of (M, g).
We denote the spectrum of ∇2 (resp. ∆g) by {−λl}∞l=0 (resp. {−γl}∞l=0), where 0 = λ0 ≤ λ1 ≤ . . . (resp.
0 = γ0 < γ1 ≤ . . .), and the corresponding eigenspaces by Fl := {X ∈ L2(TM) : ∇2X = −λlX} (resp.
El := {φ ∈ L2(M) : ∆gφ = −γlφ}), l = 0, 1, . . .. In general, while γ0 = 0 always exists, λ0 may not: a
simple example is found considering S2 with the standard metric. It is well known [36] that dim(Fl) <∞,
the eigen-vector-fields are smooth and form a basis for L2(TM) (resp. dim(El) < ∞, the eigenfunctions
are smooth and form a basis for L2(M)), that is, L2(TM) = ⊕l∈N∪{0}Fl (resp. L2(M) = ⊕l∈N∪{0}El),
the completion of ⊕l∈N∪{0}Fl with relative to the measure induced by g. To simplify the statement, we
assume that λl (resp. γl) for each l are simple and Xl (resp. φl) is a normalized basis of Fl (resp. El).
Denote B(Fk) (resp. B(Ek)) the set of bases of Fk (resp. Ek), which is identical to the orthogonal group
O(dim(Fk)) (resp. O(dim(Ek))). Denote the set of the corresponding orthonormal bases of L2(TM) by
B(TM, g) = Π∞

k=1B(Fk) (resp. B(M, g) = Π∞
k=1B(Ek)).

Given the collected data X = {xi}ni=1 ⊂ R
p, where xi are signal random vector i.i.d. sampled from

a random vector X. We assume a manifold structure inside the signal random vector; that is, we view
X : Ω → R

p as a measurable function with respect to the probability space (Ω,F , P ), and assume that its
range is ι(M). Note that we cannot define the probability density function (p.d.f.) of X on the ambient
space R

p when d < p since ι(M) is degenerate, but we can still discuss how we sample points from ι(M),
which leads to the p.d.f. of X on M. Indeed, we employ the following definition which is based on the
induced measure [17, Section 4]. Denote B̃ to be the Borel sigma algebra on ι(M), and P̃X the probability
measure of X, defined on B̃, induced from P . Assume that P̃X is absolutely continuous with respect to
the volume density on ι(M) associated with g, that is, dP̃X(x) = f(ι−1(x))ι∗dV (x), where f : M → R and
x ∈ ι(M). We interpret f as the p.d.f. of X on M. To alleviate the notation, in the following we abuse the
notation and will not distinguish between ι(M) and M.

Pick up the kernel function K(x) = e−x
2
. Note that the kernel function can be more general, for

example, K ∈ C2(R), non-zero, non-negative and monotonic decreasing, but we focus ourselves on this

kernel to make the explanation clear. Denote µ
(k)
l :=

∫
Rd ‖x‖lK(k)(‖x‖)dx, where k = 0, 1, 2, l ∈ N ∪ {0},

and K(k) means the k-th order derivative of K. We assume µ
(0)
0 = 1 and

√
h is small enough so that

√
h

is smaller than the reach [50] and the injectivity radius [27] of the manifold M, inj(M).
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B-1 Connection Graph and Affinity Graph

An affinity graph, denoted as (G, w), is actually a special case of the connection graph in the sense that
the connection function is not defined on the affinity graph. If we take a constant function r0 : E → 1, the
affinity graph becomes a connection graph (G, w, r0).

We mention that in practice, if we decide to construct the connection graph from a given dataset, there
are several different ways depending on the application and goal. For example, in addition to the examples
discussed in the main context, in the geometric approach to the signal processing [58, 66], the affinity is
defined to be the Mahalanobis distance reflecting the intrinsic property of the underlying state space; in
the chair synchronization problem [40], the affinity between two chair meshes is defined based on their
Hausdorff distance. The quality of the chosen affinity might influence the analysis result directly.

B-2 Connection Graph Laplacian and its Applications

Now we discuss the CGL. Consider the symmetric matrix L(W,G)s := D−1/2SD−1/2, which is similar
to L(W,G). Since L(W,G)s is symmetric, it has a complete set of eigenvectors vn,i, i = 1, . . . , nd and its
associated eigenvalues µn,i, where the eigenvalues are bounded by 1 [59]. We would order the eigenvalues
in the decreasing order. Note that the eigenvectors of L(W,G)s is related to those of L(W,G) via D−1/2.

First, note that L(W,G) is an operator acting on v ∈ R
nd by

(L(W,G)v)[i] =

∑
j:(i,j)∈E w(i, j)r(i, j)v[j]∑

k:(i,k)∈E w(i, k)
, (B-1)

where v can be viewed as a vector-valued function defined on V so that v[j] := (v((j−1)d+1), . . . ,v(jd)) ∈
R
d. We could interpret this formula as a generalized random walk on the affinity graph. Indeed, if we view

the vector-valued function v as the status of a particle defined on the vertices, when we move from one
vertex to the other one, the status is modified according to the relationship between vertices encoded in
r. We mention that depending on the connection function, the structure L(W,G) might be very different,
which leads to different analysis results and conclusion. We will give a precise example regarding this
statement later. Now we discuss an important property of the CGL – the synchronization, which has been
studied in [3, 20] and applied to the following problems, for example,

1. a new imaging technique aiming to obtain the atomic scale resolution images of a macro-scale object
called “ptychographic imaging problem” [45];

2. a frame design called “polarization” for the phase retrieval problem [2];
3. a spectral relaxation approach to solve the least squares solution of the rotational synchronization

problem [69];
4. graph realization problem by synchronization over the euclidean group [24, 25].

Here we give an intuition about this synchronization notion. Suppose there exists a vector-valued status
v ∈ R

nd of norm 1 which is “synchronized” according to the encoded relationship r in the sense that
v[j] = r(j, i)v[i] for all (i, j) ∈ E, then L(W,G)v[i] will be the same as v[i], and hence the functional
associated with the eigenvalue problem

max
v∈Rnd; ‖v‖=1

v
TL(W,G)v

is maximized with the eigenvalue 1, and its eigenvector is the synchronized vector v. Thus, the top
eigenvector of L(W,G), when viewed as the vector-valued status on the vertex, is the “synchronized” status
with respect to the connection function. We mention that the existence of the synchronized vector-valued
function is equivalent to the notion of “consistency” studied in [20].

When the connection function is constant; that is, the connection matrix G0 := 11T , where 1 is a
n× 1 vector with all entries 1, the GL is defined as L := Id−L(W,G0). Notice a natural interpretation of
L(W,G0) – since the sum of each row of L(W,G0) is 1, L(W,G0) is the transition matrix associated with
a random walk on G. To avoid confusion, the eigenvectors and eigenvalues of L(W,G0)s are denoted as
un,i and νn,i, where i = 1, . . . , n, and 0 ≤ νn,i ≤ 1 are ordered in the decreasing order. As a special case of
CGL, the GL has several applications which deserves discussion, for example
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1. in the spectral clustering algorithm, we only need to find the first k trivial eigenvectors [44, 67];

2. to evaluate the Cheeger ratio, we need the second eigenvalue [18];

3. to visualize the high dimensional data, we need the first 3 non-trivial eigenvectors;

4. in the cryo-EM problem, if we want to reconstruct the rotational position of each projection image,
we need the first 9 non-trivial eigenvectors [35];

5. in the 2d random tomography problem [60], only the first 2 non-trivial eigenvectors are needed;

6. in the orientability detection problem [59], we need the first eigenvector.

More algorithms depending on the eigenstructure of the GL can be found, to mention but a few, in
[22, 41, 46, 51, 54, 55, 64, 65]. We comment that if the p.d.f f is not uniform, then a specific normalization
stated in [21] allows us to study the dynamics of the underlying dynamical system [48, 49].

B-3 Asymptotical behavior of CGL

To better understand the CGL, we focus on the frame bundle and its associated tangent bundle [59]
here to simplify the exploration. For CGL associated with a more general principal bundle structure, we
refer the reader to [61].

Assumption B.1. (D1) M is a smooth and compact d-dim manifold. When the boundary ∂M is not
empty, it is assumed to be smooth, and we denote Mδ := {x ∈ M : d(x, ∂M) ≤

√
δ};

(D2) The p.d.f. f ∈ C3(M) is uniformly bounded from below and above, that is, 0 < pm ≤ f(x) ≤ pM <∞.
However, to simplify the exploration, we assume here that f is uniform, that is, f is a constant
function defined on M. When f is non-uniform, its theoretical results can be found in [21, 61].

Under Assumption B.1, we collect the data X independently and identically sampled from M and build
up the following graph. First define a graph GM := (V, E) by taking V = X , and E = {(xi, xj); xi ∈ X}.
Then define the affinity function w on E by

w : (i, j) 7→ Kh (xi, xj) := K
(
‖xi − xj‖2Rp/h

)
,

where h > 0 is the chosen bandwidth. Note that we choose to use the Euclidean distance, instead of the
geodesic distance, to build up w since in practice we have only an access to the Euclidean distance (or
other metric, depending on the application). Asymptotically this discrepancy will disappear.

Assumption B.2. (D3) For each point xi ∈ X , we also have a sample on the frame bundle b(i) ∈ O(M)
so that the b(i) is the basis of the tangent space TxiM. In particular, we are given a group-valued
function b : X → O(d).

With Assumption B.2, we define the connection function on E as

r : (i, j) 7→ b(i)TPxi,xjb(j) ∈ O(d)

where Pxi,xj presents the parallel transport of the vector field from xj to xi. As a result, we have a
connection graph (GM, w, r). With (GM, w, r), we build up the the CGL by Id− L(W,G), where W and G
are the weight matrix and connection matrix associated with w and r. Under this framework, the GL is
when we work with the trivial line bundle associated with M.

The geometrical meaning of the connection function deserves some discussions. First, note that although
all tangent planes TxiM are isomorphic to R

d [27], but they are different in the sense that we cannot
“compare” TxiM and TxjM directly. Precisely, it makes sense the say u − v when u, v ∈ R

d, but we can
not evaluate ui − uj when ui ∈ TxiM and uj ∈ TxjM. To carry out the comparison between different
tangent planes, we need a bit more work. Indeed, b(i) ∈ O(d) is a basis of the tangent plane of TxiM,
which practical meaning is mapping R

d isomorphically to TxiM. In other words, given a vector field Y ,
b(i)TY (xi) evaluates its coordinate at xi. The parallel transport Pxi,xj is a geometrical generalization of
the notion “translation” in the Euclidean space – it is an isometric map mapping TxjM to TxiM. As a
result, r(i, j) ∈ O(d) is an isometric map from R

d to R
d, and geometrically it maps the coordinate of a

vector field at xj , that is, v[j], to the vector field at xi, that is, b(j)v[j], then parallelly transports b(j)v[j]

29



to xi, and then evaluate the coordinate of Pxi,xjb(j)v[j] with related to the basis b(i). We emphasize
that the connection function in the connection graph associated with the frame bundle encodes not only
the geometry but also the topology of the manifold. In practice, this constraint may lead to a better
understanding of the underlying data structure. For example, in the cryo-EM problem, this viewpoint
leads to a better angular classification result.

We now state the pointwise convergence and the spectral convergence of the L(W,G). These theorems
apply to the GL, while we replace the vector fields by the functions with the same regularity and the
connection Laplacian operator by the Laplace-Beltrami operator and b(i) = 1 (see [61] for details).

Theorem B.3 (CGL Pointwise Convergence [59, 61]). Suppose Assumption B.1 and Assumption B.2 hold
and X ∈ C4(TM). For all xi /∈ M√

h with high probability (w.h.p.)

b(i)
(
(Id− L(W,G))X̄

)
[i] = h

µ2
2d

∇2X(xi) +O(h2) +O

(
1

n1/2hd/4−1/2

)

where X̄ ∈ R
nd and X̄[i] = b(i)−1X(xi). For all xi ∈ M√

h, we have w.h.p.

b(i)
(
(Id− L(W,G))X̄

)
[i] = O(

√
h)Pxi,x0∇∂dX(x0) +O(h) +O

(
1

n1/2hd/4−1/2

)
,

where x0 = argminy∈∂M d(xi, y) and ∇∂d is the derivative in the normal direction.

To state the spectral convergence result, define an operator TC,h : C(TM) → C(TM):

TC,hX(y) :=

∑
j:(i,j)∈EKh(y, xj)Py,xjX(xj)∑

j:(i,j)∈EKh(y, xj)
,

where X ∈ C(TM). To simplify the discussion, we assume that the eigenvalues of the heat kernel of the
connection Laplacian et∇

2
are simple. When there exists an eigenvalue with multiplicity greater than 2,

the theorem can be proved using the projection operators onto the eigenspaces. We mention that in the
special case GL, the point convergence theorem was first established in [8] under the uniform sampling and
boundary-free assumption, and then extended to a more general setup in [21, 39, 56, 61], and the spectral
convergence was established in [9, 67].

Theorem B.4 (CGL Spectral Convergence [61]). Suppose Assumption B.1 and Assumption B.2 hold and

fix t > 0. Denote µC,t,h,i to be the i-th eigenvalue of T
t/h
C,h with the associated eigenvector XC,t,h,i. Also

denote µt,i > 0 to be the i-th eigenvalue of et∇
2
with the associated eigen-vector field Xt,i. We assume that

both µC,t,h,i and µt,i decrease as i increases, respecting the multiplicity. Fix i ∈ N. Then there exists a
sequence hn → 0 such that

lim
n→∞

µC,t,hn,i = µt,i, and lim
n→∞

‖XC,t,hn,i −Xt,i‖L2(TM) = 0

in probability.

With these Theorems, we are able to discuss why different connection functions lead to different analysis
results. Consider S2 embedded in R

3 with the standard metric. If we define the connection function
according to the Levi-Civita connection, then the top eigenvalue of et∇

2
is strictly less than 1 due to the

hairy-ball theorem [36]. In other words, asymptotically we are not able to find a synchronized vector-
valued status on it. On the other hand, if we take the trivial connection function, that is, r(i, j) = I2, then
asymptotically we obtain ∆g acting on two independent functions. Since the dimension of the null space
of ∆g is the number of the connected components of the manifold, the top eigenvalue of the CGL with the
trivial connection function is 1; that is, a synchronized vector-valued status exists. See Figure 5 for the
result.

The main reason leading to this difference is rooted in the connection theory, and we refer the interested
reader to [14].
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Figure 5: The first 10 eigenvalues of the Id− L(W,G) with related to a non-trivial connection function determined
from the Levi-Civita connection of the frame bundle of S2 (left) and a trivial connection function (right). 1000 points
are sampled uniformly from S2. Note that the eigenvalues on the right figure are the same as those of GL while the
multiplicities of all the eigenvalues are 2.

B-4 The “Sparsity” of the CGL

We define the following “sparsity” condition.

Definition 1. Fix γ > 0. For a n × n matrix Q, we sort its eigenvalues νQ,ℓ, ℓ = 1, . . . , n, so that
|νQ,1| ≥ |νQ,2| ≥ . . . ≥ |νQ,n|. Then Q satisfies the γ-sparsity property if

|νQ,ℓ| ≤ e−CQℓ
γ

for all ℓ, where CQ > 0 depends on Q.

We now claim that the CGL under the manifold assumption satisfies the 2/d-sparsity property. Note
that this theorem also holds for the GL.

Theorem B.5. Asymptotically when n → ∞, for ℓ ∈ N, µn,ℓ ≤ e−CLℓ
2/d

, where the constants CL > 0
depends d, the lower bound of the Ricci curvature k and the diameter D.

Proof. Note that the Weyl’s theorem [12] holds for the connection Laplacian, that is,

Ñ(µ) ∼ 1

(4π)d/2Γ(d/2 + 1)
µd/2,

where Ñ(µ) is the number of eigenvalues of ∇2 less than µ > 0, and we have the consequence that [70]

λj ≥ c′(d, k,D)j2/d, (B-2)

where j ∈ N and c′(d, k,D) is the universal constant depending only on d, the lower bound of the Ricci
curvature k and the diameter D. Note that since µn,ℓ → e−λℓ in probability, we have

µn,ℓ ≤ e−c
′(d,k,D)ℓ2/d .

Hence, combined with Theorem B.4, we conclude the claim with CL := c′(d, k,D).

B-5 Vector Diffusion Maps and Diffusion Maps

In this subsection, we discuss a potential application of the CGL and GL – estimate the local geodesic
distance. Fix t > 0, we define the vector diffusion maps (VDM) Vt,n : X → R

(nd)2 by

Vt,n : xi 7→
(
(µn,lµn,r)

t〈vn,l[i], vn,r[i]〉
)nd
l,r=1

,

where vn,l[i] is a d-dim vector containing the ((i− 1)d+ 1)-th entry to the (id)-th entry of the eigenvector
vn,l. With this map, the Hilbert-Schmidt norm of the (i, j)-th block of L(W,G)s satisfies

‖L(W,G)2ts (i, j)‖2HS = 〈Vt,n(xi), Vt,n(xj)〉,

that is, ‖L(W,G)2ts (i, j)‖2HS becomes an inner product for the finite dimensional Hilbert space. The reason
we need to consider L(W,G)2ts but not L(W,G)ts is that all eigenvalues µn,l of L(W,G)s reside in the interval
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[−1, 1], and we can not guarantee the positivity of µn,l when n is finite. We can then define the vector
diffusion distance (VDD) to quantify the affinity between nodes i and j:

dC,t,n := ‖Vt,n(xi)− Vt,n(xj)‖2.

The theoretical properties of VDM and VDD will be clear when n→ ∞. Fix a ∈ B(TM, g) and t > 0,
define the following map embedding x ∈ M to ℓ2:

V a
t : x 7→

(
1√

d(4π)d/2t(d+1)/2
e−(λk+λl)t/2〈Xk(x), Xl(x)〉

)∞

k,l=1

. (B-3)

With V a
t , we define a new affinity between pairs of points by

dC,t(x, y) := ‖V a
t (x)− V a

t (y)‖ℓ2 . (B-4)

Due to Theorem B.3 and Theorem B.4, the VDM (resp. VDD) is a discretization of V a
t (resp. dC,t), so

we may abuse the notation and call V a
t VDM and dC,t VDD. We have the following Theorem saying that

locally dC,t approximates the geodesic distance:

Theorem B.6 ([59]). Take a Riemannian manifold (M, g). For all t > 0, the VDM V a
t is diffeomorphic.

Furthermore, suppose x, y ∈ M so that x = expy v, where v ∈ TyM. When ‖v‖2 ≪ t≪ 1 we have

d2C,t(x, y) = ‖v‖2 +O(t‖v‖2). (B-5)

Although GL is a special case of CGL, with GL we may define a different embedding which has different
features. Given t > 0 and 0 ≤ δ < 1, the diffusion maps (DM) with diffusion time t4 as

Φt,n : xi 7→
(
νtn,lun,l(i)

)n
l=2

. (B-6)

One similar but different algorithm is the Laplacian eigenmaps [7, 8], that is, xi is mapped to (un,l(i))
m
l=2,

which can be viewed as a special DM with diffusion time t = 0 and 1 < m ≤ n is chosen by the user.
Yet another similar quantity referred to as the global point signature proposed in [55], which maps xi to(
(− ln νn,l)

−1/2un,l(i)
)m
l=2

, wherem is chosen by the user. Another variation is the commute time embedding
[53]. We mention in the Laplacian eigenmaps, global point signature and commute time embedding, the
notion “diffusion” does not exist. Although these mappings are diffeomorphic to each other whenm = n via
a linear transformation, asymptotically their behaviors are different. Furthermore, even if the connection
function is trivial, the VDM and DM are different. With DM, we introduce a new metric between sampled
points, which is referred to as diffusion distance (DD):

dDM,t,n(xi, xj) := ‖Φt,n(xi)− Φt,n(xj)‖Rn−1 . (B-7)

To study dDM,t,n, we take a ∈ B(M, g) and t > 0, and map x ∈ M to the Hilbert space ℓ2 by [11]

Φat : x 7→
√

vol(M)
(
e−γℓtφℓ(x)

)∞
ℓ=1

, (B-8)

With the map Φat , we are able to define a new affinity between pairs of points:

dDM,t(x, y) := ‖Φat (x)− Φat (y)‖ℓ2 . (B-9)

Due to Theorem B.3 and Theorem B.4, the DM (resp. DD) is a discretization of Φat (resp. dDM,t), so we
may abuse the notation and call Φat DM and dDM,t DD.

It has been shown that the DM satisfies the following “almost isometric” property [59]:

Theorem B.7. Take a Riemannian manifold (M, g). For all t > 0, Φat is diffeomorphic. Furthermore,
suppose x, y ∈ M so that x = expy v, where v ∈ TyM. When ‖v‖2 ≪ t≪ 1 we have

d2DM,t(x, y) = ‖v‖2 +O(t‖v‖2). (B-10)

4In practice, we may consider the truncated diffusion maps (tDM) with diffusion time t and accuracy δ, which is defined as

Φt,n,m(δ,t) : xi 7→
(

νt
n,lun,l(i)

)m(δ,t)

l=2
, where m(δ, t) ∈ N such that λt

m(δ,t) > δλt
1 and λt

m(δ,t)+1 ≤ δλt
1 [21]
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Figure 6: Left: the Trefoil knot; middle: the truncated DM with the first 2 non-trivial eigenvectors of the GL; right:
the truncated DM with the first 3 non-trivial eigenvectors of the GL.

The above theorems, when combined with the above spectral convergence theorem, says that the VDD
and DD provide an accurate estimation of the geodesic between two close points. While combined with the
manifold sparsity property, we have the following practical fact – if we are allowed a positive small error
when we estimate the geodesic distance, we do not need to recover the whole eigen-structure. Instead, the
first few eigenvalues and eigenvectors are enough.

We have the following statement shown in [6, 52]. Fix ǫ > 0 and (M, g) is a d-dim manifold satisfying
Ric(g) ≥ (d − 1)kg, vol(M) ≤ V, inj(M) ≤ I. Then there exists a t0 = t0(d, k, I, ǫ) such that for all
0 < t < t0, these is NE = NE(d, k, I, V, ǫ, t) so that if N ≥ NE , the truncated diffusion maps

Φat,N : x 7→
√

vol(M)
(
e−γℓtφℓ(x)

)N
ℓ=1

(B-11)

is an embedding of M into R
N and

1− ǫ <

∣∣∣∣∣
(2t)(n+2)/4

√
2(4π)n/4√

vol(M)
dΦN,t|x

∣∣∣∣∣ < 1 + ǫ. (B-12)

Before ending this section, we show an interesting example regarding the data visualization and embed-
ding issue. Take the Trefoil knot M embedded in R

3 by ι(t) = [sin(t)+2 sin(2t), cos(t)−2 cos(2t), − sin(3t)],
where t ∈ [0, 2π). We refer to Figure 6 for an illustration. Note that the Trefoil knot is not homeomorphic
to S1. We sample 1000 points uniformly from [0, 2π) independently; that is, we sample 1000 points on M
non-uniformly. If we want to visualize the dataset, we may apply the tDM to embed M to R

3 (or R2). The
result is shown in Figure 6. The results deserve some discussion. Note that the tDM maps the Trefoil knot
into a circle, which is not homeomorphic to the Trefoil knot; that is, the topology of the Trefoil knot is not
preserved. Note that for the visualization purpose, we only choose the first 3 (or 2) eigenvectors, which
leads to a map which deteriorate the topology. If we want to guarantee the preservation of the topology,
we need the embedding theorem counting how many eigenvectors we need. This opens the following ques-
tion, in particular when the dataset is noisy – how to balance between different data analysis results, for
exampling, how to balance between preserving the topology information and data visualization?
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