
Quantization and Training of Low Bit-Width Convolutional
Neural Networks for Object Detection

Penghang Yin1, Shuai Zhang∗2, Yingyong Qi2, and Jack Xin2

1Department of Mathematics, University of California, Los Angeles. Email: yph@ucla.edu.
2Department of Mathematics, University of California, Irvine. Email: (szhang3, jack.xin, yqi)@uci.edu.

Abstract

We present LBW-Net, an efficient optimization based method for quantization and training
of the low bit-width convolutional neural networks (CNNs). Specifically, we quantize the
weights to zero or powers of two by minimizing the Euclidean distance between full-precision
weights and quantized weights during backpropagation. We characterize the combinatorial
nature of the low bit-width quantization problem. For 2-bit (ternary) CNNs, the quantization
of N weights can be done by an exact formula in O(N logN) complexity. When the bit-width
is three and above, we further propose a semi-analytical thresholding scheme with a single free
parameter for quantization that is computationally inexpensive. The free parameter is further
determined by network retraining and object detection tests. LBW-Net has several desirable
advantages over full-precision CNNs, including considerable memory savings, energy efficiency,
and faster deployment. Our experiments on PASCAL VOC dataset show that compared with
its 32-bit floating-point counterpart, the performance of the 6-bit LBW-Net is nearly lossless
in the object detection tasks, and can even do better in some real world visual scenes, while
empirically enjoying more than 4× faster deployment.

1 Introduction
Deep convolutional neural networks (CNNs) have demonstrated superior performance in various
computer vision tasks [3, 13, 14, 15, 16, 18, 21, 23, 24]. However deep CNNs typically have hundreds
of millions of trainable parameters which easily take up hundreds of megabytes of memory, and
billions of FLOPs for a single inference. This poses a significant challenge for the deployment of deep
CNNs on small devices with limited memory storage and computing power such as mobile phones. To
address this issue, recent efforts have been made to compress the model size and train neural networks
with heavily quantized weights, activations, and gradients [1, 2, 6, 7, 9, 17, 20, 22, 25, 26, 27], which
demand less storage and fewer FLOPs for deployment. These models include BinaryConnect[1],
BinaryNet[2], XNOR-Net [20], TWN [17], TTQ [27], DoReFa-Net[26] and QNN [9], to name a
few. In particular, binary (1-bit) and ternary (2-bit) weight models not only enable high model
compression rate, but also eliminate the need of most floating-point multiplications during forward
and backward propagations, which shows promise to resolve the problem. Compared with binary
models, ternary weight networks such as TWN strike a better balance between compression rate
and accuracy. It has been shown that ternary weight CNNs [17] can achieve nearly lossless accuracy
on MNIST[16] and CIFAR-10 [12] benchmark datasets. Yet with fully ternarized weights, there
is still noticeable drop in performance on larger datasets like ImageNet [4], which suggests the
necessity of relatively wider bit-width models with stronger model capacity for challenging tasks.

An incremental network quantization strategy (INQ) is proposed in [25] for converting pre-
trained full-precision CNNs into low bit-width versions whose weights are either zero or powers of
two. A b bit-width model can have 2b−1 + 1 distinct candidate values, in which 2 bits are used for
representing the zero and the signs, while the remaining b− 2 bits for the powers. More precisely,
the parameters are constrained to 2s × {0,±21−2b−2

,±22−2b−2

, . . . ,±1} associated with a layerwise
scaling factor 2s, s an integer depending only on the weight maximum in the layer. At inference

∗Equal contribution.

1

ar
X

iv
:1

61
2.

06
05

2v
2

 [
cs

.L
G

]
 1

7
A

ug
 2

01
7

time, the original floating-point multiplication operations can be replaced by faster and cheaper
binary bit shifting. The quantization scheme of [25] is however heuristic.

In this paper, we present the exact solution of the general b-bit approximation problem of a
real weight vector W f in the least squares sense. If b = 2 and the dimension of W f is N , the
computational complexity of the 2 bit solution is O(N logN). At b ≥ 3, the combinatorial nature
of the solution renders direct computation too expensive for large scale tasks. We shall develop
a semi-analytical quantization scheme involving a single adjustable parameter µ to set up the
quantization levels. The exponent s in the scaling factor can be calculated analytically from µ and
the numbers of the downward sorted weight components between quantization levels. If the weight
vector comes from a Gaussian ensemble, the parameter µ can be estimated analytically. However,
we found that the weight vectors in CNNs (in particular ResNet) are strongly non-Gaussian. In
this paper, µ is determined based on the object detection performance after retraining the network.
This seems to be a natural choice in general as quantization is often part of a larger computer vision
problem as is here. Therefore, the optimal parameter µ should not be decided by approximation
(the least squares problem) errors alone. Indeed, we found that at b ≥ 4, µ = 3

4‖W
f‖∞ gives the

best detection performance, which suggests that a percentage of the large weights plays a key role
in representing the image features and should be encoded during quantization.

Network retraining is necessary after quantization as a way for the system to adjust and absorb
the resulting errors. Besides warm start, INQ [25] requires a careful layerwise partitioning and
grouping of the weights which are then quantized and re-trained incrementally group by group
rather than having all weights updated at once. Due to both classification and detection networks
involved in this work, we opted for a simpler retraining method, a variant of the projected stochastic
gradient descent (SGD) method (see [17] and references therein). As a result, our LBW-Net can be
trained either from scratch or a partial warm start. During each iteration, besides forward and
backward propagations, only an additional low cost thresholding (projection) step is needed to
quantize the full-precision parameters to zero or powers of two. We train LBW-Net with randomly
initialized weights in the detection network (R-FCN in [3]), and pre-trained weights in ResNet [8].
We conduct object detection experiments on PASCAL VOC data sets [5] as in [3, 21]. We found
that at bit-width b = 6, the accuracies of the quantized networks are well within 1% of those of
their 32-bit floating-point counterparts on both ResNet-50 and ResNet-101 backbone architectures.
In some complex real world visual scenes, the 6-bit network even detects persons missed by the
full-precision network.

The rest of the paper is organized as follows. In section 2, we construct the exact solution of the
general low bit-width approximation problem and present our semi-analytical quantization scheme
with a single adjustable parameter µ. We also outline the training algorithm and the choice of µ. In
section 3, we describe our experiments, the datasets, the object detection results, the non-Gaussian
and sparsity properties of the floating weights in training. In section 4, we conclude with remarks
on future work.

2 Training low bit-width convolutional neural networks

2.1 Weight quantization at low bit-width
For general quantization problem, we seek to minimize the Euclidean distance between the given
full-precision weight vector W f and quantized weight vector W q, which is formulated as the
following optimization problem:

min
W q
‖W q −W f‖2 subject to W q ∈ Q,

whereQ is the set of quantized states. To quantize the full-precision weights into low-precision ones of
b bits (b ≥ 2), we constrain the quantized weights to the value set of 2s×{0,±21−n,±22−n, . . . ,±1}
for some integer s ∈ Z, where n = 2b−2 and 2s serves as the scaling factor. The minimal distance
problem becomes:

(s∗, Q∗) = arg min
s∈Z,Q

‖2sQ−W f‖2 subject to Qi ∈ {0,±21−n, . . . ,±1}. (1)

Then the optimal quantized weight vector is given by 2s
∗
Q∗. A precise characterization of (1) is as

follows.

2

Theorem 1. Let b ≥ 2, n = 2b−2, and k0, . . . , kn−1 ∈ N. Suppose that W f
[k0]

keeps the k0 largest

components in magnitude of W f and zeros out the other components; W f
[k1]

extracts the next k1
largest components and zeros out the other components, and so on. The solution Q∗ to (1) is:

Q∗ =

n−1∑
t=0

sign(W f
[k∗

t]
)2−t,

where

(k∗0 , . . . , k
∗
n−1) = arg min

k0,...,kn−1∈N
g

(
n−1∑
t=0

‖W f
[kt]
‖12−t,

n−1∑
i=0

kt2
−2t

)
(2)

with

g(u, v) := v
(
2blog2

4u
3v c − u

v

)2
− u2

v
.

The bracket in g(u, v) is the floor operation. Moreover, the optimal power of scaling is:

s∗ = blog2
4
∑n−1

t=0 2−t‖W f
[k∗

t]
‖1

3
∑n−1

t=0 k
∗
t 2
−2t

c.

In Theorem 1, we have assumed that the components of W f have no ties in magnitudes, as such
situation occurs with zero probability for random floating vectors from continuous distributions.
To solve the problem (1) by Theorem 1, we need to sort the elements of W f in magnitude, and find
the optimal numbers of weights k∗0 , . . . , k∗n−1 at n quantization levels by solving (2). We can then
obtain the optimal scaling factor 2s

∗
. The largest k∗0 weights (in magnitude) are quantized to ±2s∗ ,

and the next largest k∗1 weights to ±2s∗−1, and so on. Finally, all the remaining small weights are
pruned to 0.

The subproblem (2) is intrinsically combinatorial however. In the simplest case b = 2 with
ternary weight networks, by Theorem 1, k∗0 = argmink0∈N g(‖W f

[k0]
‖1, k0), and the solution to (1)

is given by Q∗ = sign(W f
[k∗

0]
), s∗ =

⌊
log2

4 ‖W f

[k∗
0]
‖1

3 k∗
0

⌋
. Therefore, the weight ternarization mainly

involves sorting magnitudes of the elements in W f and computing a cumulative sum of the sorted
sequence, which requires a computational complexity of O(N log(N)), where N is number of entries
in W f . When b > 2 and n > 1, solving (2) by direct enumeration becomes computationally too
expensive for large scale problems such as convolutional neural networks and thus impractical.
Hereby we propose a low-cost approximation of Q∗, motivated by the empirical quantization schemes
in [17, 25]. To this end, by selecting a proper threshold value µ, we set

Q̃∗i =


0 if |W f

i | < 22−n

3 µ,

sign(W f
i)2

1−n if 22−n

3 µ ≤ |W f
i | < 22−nµ

sign(W f
i)2
−t if 2−tµ ≤ |W f

i | < 2−t+1µ, t = 1, . . . , n− 2,

sign(W f
i) if µ ≤ |W f

i |.

(3)

Note that the case t = n − 1 in (3) needs special treatment because one of the neighboring
quantized values is 0. The parameter µ is the only free parameter in (3).

Theorem 2. The optimal power s̃∗ of the scaling factor with respect to the approximate Q̃∗ in (3)
is

s̃∗ =

log2 4
∑n−1

t=0 2−t‖W f

[k̃∗
t]
‖1

3
∑n−1

t=0 k̃
∗
t 2
−2t

. (4)

Here W[k̃∗
t]

is defined as in Theorem 1, and k̃∗t is the number of entries of W f in the t-th largest
group according to the division of (3).

3

We remark that the output of Q̃∗ consists of mostly the scaled signs, hence Q̃∗ resembles a
“phase factor”. On the other hand, the scaling factor 2s̃

∗
is the corresponding amplitude. Putting

the two factors together, one can view the low bit-width weight approximation as an approximate
polar decomposition of the real weight vector. The proof of Theorem 1 is in the appendix from
which Theorem 2 follows.

2.2 Training algorithm
We used a projected SGD-like algorithm as in [17, 20] for training LBW-Net. At each gradient-
descent step, the minibatch gradient is evaluated at the quantized weights, and a scaled gradient is
subtracted from the full-precision weights instead of the quantized weights per standard projected
gradient method. The quantization is then done layer by layer by the formulas (3) and (4) with µ
selected as 3

4‖W
f‖∞ for each layer at bit-width 4 or above. To compute the optimal power s∗ in

(4), we find it sufficient to use the partial sums
∑3

t=0 2
−t‖W f

[k̃∗
t]
‖1 and

∑3
t=0 k̃

∗
t 2
−2t instead, as the

tail values are negligible. In addition, we adopted batch normalization [10], adaptive learning rate,
and Nesterov momentum [19] to promote training efficiency.

3 Experiments
We implemented our LBW-Net with the R-FCN [3] structure on PASCAL VOC dataset which has
20 object categories. Same as [3] , the training set is the union of VOC 2007 trainval and VOC
2012 trainval (“07+12”), and test results are evaluated on the VOC 2007 test set. So there are in
total 16, 551 images with 40, 058 objects in the training set, and 4, 952 images in the test set. The
performance of object detection is measured by mean Average Precision (mAP). 1 Our experiments
are carried out on Caffe [11] with an Nvidia Titan X GPU under Linux system.

3.1 R-FCN on PASCAL VOC
We first employed ResNet-50 as the backbone network architecture for R-FCN. In the experiments,
we tested 4, 5, 6-bit LBW-Net and compared evaluation results with the corresponding 32-bit
floating point models. For fair comparison, all these tests used the same initial weights, which are
pre-trained convolutional feature maps from ResNet-50 while the weights in the other convolution
layers are randomly initialized. A similar procedure is applied for experiments with ResNet-101.
In [22], comparable results to ours were reported on ResNet-50 based detection. However, their
method did not work on the deeper ResNet-101 based detection. Interestingly, although failed for
ResNet-101 based detection, their approach succeeded in the classification task using Resnet-101,
which suggests that quantization of detection networks is trickier in practice.

In the R-FCN structure, there is no fully-connected layer. We quantized all convolutional layers
with the same low bit-width quantization formula for each layer.

R-FCN, ResNet-50 mAP R-FCN, ResNet-101 mAP
4-bit LBW 74.37% 4-bit LBW 76.79%
5-bit LBW 76.99% 5-bit LBW 77.83%
6-bit LBW 77.05% 6-bit LBW 78.24%

32-bit full-precision 77.46% 32-bit full-precision 78.94%

Table 1: Object detection experiments on PASCAL VOC with R-FCN + ResNet-50/ResNet-101.
Training set is VOC 07+12 trainval. The results are evaluated on VOC 07 test.

1All mAP scores are computed with the Python version of the test codes provided by RCNN/Fast RCNN/Faster
RCNN GitHub repositories.

4

32-bit 6-bit

Figure 1: Curated examples of 6-bit LBW detection results on 3 sample images, compared with those
from the corresponding full precision model. The left columns are results of 32-bit full-precision
model, while the right images come from 6-bit LBW model. The network is R-FCN + ResNet-50,
and the training data is 2007+2012 trainval. The threshold value 0.5 is used for display.

Table 1 shows mAP results from our experiments. With larger bit-width, LBW models achieved
higher mAP values, true for both R-FCN + ResNet-50 and R-FCN + ResNet-101. The models
trained with the 6-bit LBW scheme almost approach the best mAP of 32-bit full precision models.
Besides these quantitative measures, in Fig. 1, we illustrate detection accuracies using R-FCN +
ResNet-50 via samples processed by 6-bit LBW in comparison with those by the ‘ground truth’ full
precision model. The first 2 photos are chosen from the 2007 Pascal VOC dataset and the third
photo is taken at a university campus with a much more complicated visual scene. In the first 2
photos, both the 6-bit LBW and full precision models detected the major objects correctly, with
nearly the same bounding box positions and high classification scores. In the third photo, the 6-bit
LBW even surpassed the performance of the full precision model, by detecting a student at the very
left side of the top staircase with a score of 0.710. Also the 3rd student from the right (the student
in the middle) on the top staircase is detected with a score of 0.952 (0.906) by the 6 bit LBW vs.
0.886 (0.820) by the full precision model. Interestingly, these three students are all side-viewed.

At inference time, we have observed an immediate at least 4× speedup given by our 6-bit

5

R-FCN model. For the three images shown in Fig. 1, the computing time are 0.507s, 0.441s, and
32.269s using a 32-bit R-FCN+ResNet-50 on GPU, while the costs are 0.098s, 0.106s and 6.113s
respectively by our 6-bit counterpart.

3.2 Statistical Analysis of Weights
In Fig. 2, we illustrate the weight distributions of two floating convolutional layers by histograms.
The p-values of a standard hypothesis testing procedure in statistics on normality showed up very
small (less than 10−5), indicating the strong non-Gaussian behavior of the floating weights in
training. This phenomenon posed a challenge to the analytical effort of estimating the parameter µ
in quantization using probability distribution functions as suggested for TWN [8].

In Table 2 and Table 3 , we show the weight percentage distribution of two sample convolutional
layers in R-FCN + ResNet50 between different magnitude levels of the quantization for low-bit
width and full-precision models. The three low bit-width models involve truncation and encoding
operations. The 6 bit-width columns appear to approach the 32-bit float columns on most rows.
However, the percentages on the last three (two) rows under the low-bit LBW models in Table
2 (3) are identical to each other and are much larger than the corresponding percentage in the
full precision model. This shows that the trained low-bit LBW models captured rather well a
small percentage of the large weights. In deep CNNs, the large magnitude weights occupy a small
percentage yet have a significant impact on the model accuracy. That is why we chose the partition
parameter µ to be near the maximum norm of the weights.

It is worthwhile to note from the two tables that the 4-bit LBW can save lots of memory
thanks to both low-bit weights and high sparsity. Over 82% (58%) of the weights are zeros in the
convolutional residual block (RPN layer) of the R-FCN plus ResNet50 network. With the help of
’Mask’ technology in circuit chip design, zero-valued weights will be skipped and the computational
efficiency can be much improved. However, as shown in Table 1, the 4-bit LBW still suffers a
few more percentages of accuracy loss than the 5-bit and 6-bit models. The 6-bit LBW model
approximates the feature representation capability of the full precision network the best with a
sufficient number of smaller levels of quantized weights. For that reason, it almost recovers the
performance of the full precision model on the test set. The 6-bit LBW model saves around 5.3×
weights memory with a small loss of accuracy. The memory savings and the near lossless accuracy
of the 6-bit LBW may work well on a modern chip design where all multiplication operations in
the convolutional layers can be replaced by bit-wise shift operations, thus highly improving the
computing efficiency in applications.

Conv layer in residue block RPN layer [22]

Kurtosis = 6.113, Skewness = −0.112 Kurtosis = 9.398, Skewness = −0.481

Figure 2: Histograms of the float weights in 2 convolutional layers of 32-bit full-precision trained R-
FCN + ResNet-50 model. For both of these 2 layers, the p-values of normal distribution hypothesis
testing are extremely small, less than 10−5. Also the excess kurtosis measures are much larger
than the value for normal distribution, which is 0. Thus these weights are far from being normally
distributed.

6

R-FCN, ResNet-50 4-bit LBW 5-bit LBW 6-bit LBW 32-bit full-precision
|w| < 2−16 82.882% 10.072% 0.030% 0

2−16 ≤ |w| < 2−15 0 0 0.060% 0.076%
2−15 ≤ |w| < 2−14 0 0 0.141% 0.225%
2−14 ≤ |w| < 2−13 0 0 0.233% 0.271%
2−13 ≤ |w| < 2−12 0 0 0.486% 0.613%
2−12 ≤ |w| < 2−11 0 0 0.922% 1.283%
2−11 ≤ |w| < 2−10 0 0 1.964% 2.610%
2−10 ≤ |w| < 2−9 0 0 3.776% 4.945%
2−9 ≤ |w| < 2−8 0 0 7.343% 9.524%
2−8 ≤ |w| < 2−7 0 18.392% 13.509% 16.713%
2−7 ≤ |w| < 2−6 0 21.221% 21.221% 23.581%
2−6 ≤ |w| < 2−5 0 24.270% 24.270% 22.993%
2−5 ≤ |w| < 2−4 0 17.706% 17.706% 12.627%
2−4 ≤ |w| < 2−3 15.479% 6.700% 6.700% 3.784%
2−3 ≤ |w| < 2−2 1.408% 1.408% 1.408% 0.608%
2−2 ≤ |w| < 2−1 0.228% 0.228% 0.228% 0.098%

2−1 ≤ |w| 0.003% 0.003% 0.003% 0

Table 2: Statistics of low-bit and full precision weights (w) of one convolutional residual block layer
in R-FCN + ResNet-50 at different bit-widths. For 4, 5, 6-bit LBW models, the weights in the first
row of partition are exactly equal to 0, and come from rounding down small floating weights during
training.

4 Concluding Remarks
We discovered the exact solution of the general low-bit approximation problem of a real weight
vector in the least squares sense, and proposed a low cost semi-analytical quantization scheme
with a single adjustable parameter. This parameter is selected and optimized through training
and testing on object detection data sets to approach the performance of the corresponding full
precision model. The accuracy of our 6-bit width model is well-within 1% of the full precision model
on PASCAL VOC data set, and can even outperform the full-precision model on real-world test
images with complex visual scenes. Moreover, the deployment of our low-bit model appears to be
more than 4× faster. In future work, we plan to improve the low bit width models (especially the 4
bit-width model) further by exploring alternative training algorithms and refining our approximate
quantization scheme.

Acknowledgments

This work was partially supported by NSF grants DMS-1522383 and IIS-1632935, and ONR grant
N00014-16-1-7157.

Appendix
Proof of Theorem 1. We first fix the number of entries in Q quantized to ±2−t to be kt, t =
0, . . . , n− 1. Then it is easy to show that

‖Q‖2 =

n−1∑
i=0

kt2
−2t and |〈Q,W f 〉| ≤

n−1∑
t=0

‖W f
[kt]
‖12−t. (5)

7

R-FCN, ResNet-50 4-bit LBW 5-bit LBW 6-bit LBW 32-bit full-precision
|w| < 2−19 58.188% 4.000% 0.016% 0.019%

2−19 ≤ |w| < 2−18 0 0 0.031% 0.022%
2−18 ≤ |w| < 2−17 0 0 0.047% 0.045%
2−17 ≤ |w| < 2−16 0 0 0.095% 0.089%
2−16 ≤ |w| < 2−15 0 0 0.185% 0.177%
2−15 ≤ |w| < 2−14 0 0 0.370% 0.355%
2−14 ≤ |w| < 2−13 0 0 0.751% 0.714%
2−13 ≤ |w| < 2−12 0 0 1.501% 1.413%
2−12 ≤ |w| < 2−11 0 0 2.993% 2.836%
2−11 ≤ |w| < 2−10 0 7.949% 5.952% 5.616%
2−10 ≤ |w| < 2−9 0 11.676% 11.685% 11.061%
2−9 ≤ |w| < 2−8 0 21.571% 21.588% 20.625%
2−8 ≤ |w| < 2−7 0 31.553% 31.539% 31.370%
2−7 ≤ |w| < 2−6 39.837% 21.137% 21.134% 23.257%
2−6 ≤ |w| < 2−5 1.953% 2.093% 2.091% 2.397%
2−5 ≤ |w| < 2−4 0.022% 0.021% 0.022% 0.004%

2−4 ≤ |w| 0.0001% 0.0001% 0.0001% 0

Table 3: Statistics of low-bit and full precision weights (w) of one RPN layer in R-FCN + ResNet-50
at different bit-widths. For 4, 5, 6-bit LBW models, the weights in the first row of partition are
exactly equal to 0, and come from rounding down small floating weights during training.

Therefore, for any s ∈ Z,

‖2sQ−W f‖2 = 22s‖Q‖2 − 2s+1〈Q,W f 〉+ ‖W f‖2

≥ 22s
n−1∑
i=0

kt2
−2t − 2s+1

n−1∑
t=0

‖W f
[kt]
‖12−t + ‖W f‖2 (by (5))

= (

n−1∑
i=0

kt2
−2t)

(
2s −

∑n−1
t=0 ‖W

f
[kt]
‖12−t∑n−1

i=0 kt2
−2t

)2

−
(
∑n−1

t=0 ‖W
f
[kt]
‖12−t)2∑n−1

i=0 kt2
−2t

+ ‖W f‖2

(6)

Since s ∈ Z, by symmetry of the parabola, it suffices to find the nearest power of 2 to
∑n−1

t=0 ‖W
f
[kt]
‖12−t∑n−1

i=0 kt2−2t
.

So the lower bound in (6) is achieved at s =

⌊
log2

4
∑n−1

t=0 ‖W
f
[kt]
‖12−t

3
∑n−1

i=0 kt2−2t

⌋
. Let us define g(u, v) :=

v(2log2b 4u
3v c − u

v)
2− u2

v . Then we examine the minimum value of g(
∑n−1

t=0 ‖W
f
[kt]
‖12−t,

∑n−1
i=0 kt2

−2t)

over all possible combinations of natural numbers k0, . . . , kn−1, i.e., the optimal numbers of quantized
weights at the n levels are given by

(k∗0 , . . . , k
∗
n−1) = arg min

k0,...,kn−1∈N
g

(
n−1∑
t=0

‖W f
[kt]
‖12−t,

n−1∑
i=0

kt2
−2t

)

Finally, to achieve the minimum in (6) with respect to (k∗0 , . . . , k
∗
n−1), we must have

Q∗ =

n−1∑
t=0

sign(W f
[k∗

t]
)2−t

so that 〈Q∗,W f 〉 =
∑n−1

t=0 ‖W
f
[k∗

t]
‖12−t, and choose s∗ =

⌊
log2

4
∑n−1

t=0 ‖W
f

[k∗
t]
‖12−t

3
∑n−1

i=0 k∗
t 2

−2t

⌋
.

8

References
[1] Courbariaux, M. & Bengio, Y. & David, J. (2015) BinaryConnect: Training Deep Neural

Networks with Binary Weights during Propagations. Advances in Neural Information Processing
Systems 28, pp. 3123–3131.

[2] Courbariaux, M. & Hubara, I. & Soudry, D. & El-Yaniv, R. & Bengio, Y. (2016) Binarized
Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1
or -1. CoRR.

[3] Dai, J. & Li, Y. & He, K. & Sun, J. (2016) R-FCN: Object Detection via Region-based Fully
Convolutional Networks. Advances in Neural Information Processing Systems 29.

[4] Deng, J. & Dong, W. & Socher, R. & Li, L. & Li, K. & Li, F. (2009) ImageNet: A
Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition.

[5] Everingham, M. & Van Gool, L. & Williams, C. & Winn, J. & Zisserman, A. (2010) The
PASCAL Visual Object Classes (VOC) Challenge. IJCV.

[6] Guo, Y. & Yao, A. & Chen, Y. (2016) Dynamic Network Surgery for Efficient DNNs.
Advances in Neural Information Processing Systems 29.

[7] Han, S. & Mao, H. & Dally, W. (2016) Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. International Conference
on Learning Representations.

[8] He, K. & Zhang, X. & Ren, S. & Sun, J. (2015) Deep Residual Learning for Image
Recognition. arXiv preprint arXiv:1512.03385.

[9] Hubara, I. & Courbariaux, M. & Soudry, D. & El-Yaniv, R. & Bengio, Y. (2016) Quantized
Neural Networks: Training Neural Networks with Low Precision Weights and Activations.
arXiv preprint arXiv:1609.07061.

[10] Ioffe, S. & Szegedy, C. (2015) Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167.

[11] Jia, Y. & and Shelhamer, E. & Donahue, J. & Karayev, S. & Long, J. & Girshick, R. &
Guadarrama, S. & Darrell, T. (2014) Caffe: Convolutional Architecture for Fast Feature
Embedding. arXiv preprint arXiv:1408.5093.

[12] Krizhevsky, A. (2009) Learning Multiple Layers of Features from Tiny Images.

[13] Krizhevsky, A. & Sutskever, I. & Hinton, G. (2012) Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems 25, pp.
1097-1105.

[14] LeCun, Y. & Bengio, Y. & Hinton, G. (2015) Deep Learning. Nature 521(7553): 436-444.

[15] LeCun, Y. & Boser, B. & Denker, J. & Henderson, D. & Howard, R. & Hubbard, W.
& Jackel, L. (1989) Backpropagation Applied to Handwritten Zip Code Recognition Neural
Computation 1(4): 541-551.

[16] LeCun, Y. & Bottou, L. & Bengio, Y. & Haffner, P. (1998) Gradient-based Learning Applied
to Document Recognition. Proceedings of the IEEE 86(11): 2278-2324.

[17] Li, F. & Zhang, B. & Liu, B. (2016) Ternary Weight Networks. arXiv preprint arXiv:1605.04711.

[18] Liu, W. & Anguelov, D. & Erhan, D. & Szegedy, C. & Reed, S. (2015) Ssd: Single shot
multibox detector. arXiv preprint arXiv:1512.02325.

[19] Nesterov, Y. (1983) A Method for Solving the Convex Programming Problem with Convergence
Rate O(1/k2). Soviet Mathematics Doklady 27(2):372-376.

[20] Rastegari, M. & Ordonez, V. & Redmon, J. & Farhadi, A. (2016) XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks. European Conference on Computer
Vision, pp. 525-542.

9

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1512.02325

[21] Ren, S. & He, K. & Girshick, R. & Sun, J. (2015) Faster r-cnn: Towards Real-time Object
Detection with Region Proposal Networks. Advances in neural information processing systems
28, pp. 91–99.

[22] Park E. & Ahn J. & Yoo S. (2017) Weighted-Entropy-Based Quantization for Deep Neural
Networks. CVPR, pp. 5456-5464.

[23] Simonyan, S. & Zisserman, A. (2014) Very Deep Convolutional Networks for Large-scale
Image Recognition. arXiv preprint arXiv:1409.1556.

[24] Szegedy, C. & Liu, W. & Jia, Y. & Sermanet, P. & Reed, S. & Anguelov, D. & Erhan, D.
& Vanhoucke, V. & Rabinovich, A. (2015) Going deeper with convolutions. IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1–9.

[25] Zhou, A. & Yao, A. & Guo, Y. & Xu, L. & Chen, Y. (2017) Incremental Network
Quantization: Towards Lossless CNNs with Low-Precision Weights. International Conference
on Learning Representations.

[26] Zhou, S. & Wu, Y. & Ni, Z. & Zhou, X. & Wen, H. & Zou, Y. (2016) DoReFa-Net:
Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients. arXiv
preprint arXiv: 1606.06160.

[27] Zhu, C. & Han, S. & Miao, H. & Dally, W. (2016) Trained Ternary Quantization. arXiv
preprint arXiv:1612.01064.

10

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1612.01064

	1 Introduction
	2 Training low bit-width convolutional neural networks
	2.1 Weight quantization at low bit-width
	2.2 Training algorithm

	3 Experiments
	3.1 R-FCN on PASCAL VOC
	3.2 Statistical Analysis of Weights

	4 Concluding Remarks

