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1 Introduction

Rational Double af�ne Hecke algebras (RDAHA for short) have been intro-
duced by Etingof and Ginzburg in 2002. They are associative algebras
associated with a complex re�ection groupW and a parameterc. Their rep-
resentation theory is similar to the representation theory of semi-simple Lie
algebras. In particular, they admit a categoryO which is analogous to the
BGG category O. This category is highest weight with the standard modules
labeled by irreducible representations ofW. Representations inO are in�nite
dimensional in general, but they admit a character. An important question is
to determine the characters of simple modules.

One of the most important family of RDAHA’s is the cyclotomic one
(CRDAHA for short), whereW = G(�, 1, n) is the wreath product ofSn
and Z/� Z. One reason is that the representation theory of CRDAHA’s is
closely related to the representation theory of Ariki–Koike algebras, and that
the latter are important in group theory. Another reason is that the category
O of CRDAHA’s is closely related to the representation theory of af�ne Kac–
Moody algebras, see e.g. [17,43,46]. A third reason, is that this category has a
very rich structure called a categorical action of an af�ne Kac–Moody algebra.
This action onO was constructed previously in [41]. Such structures have been
introduced recently in representation theory and have already had remarkable
applications, see e.g. [9,29,40].

The structure ofO depends heavily on the parameterc. For generic values
of c the category is semi-simple. The most non semi-simple case (which is
also the most complicated one) occurs whenc takes a particular form of ratio-
nal numbers, see (6.2). For these parameters Rouquier made a conjecture to
determine the characters of simple modules inO [39]. Roughly speaking, this
conjecture says that the Jordan–Hölder multiplicities of the standard modules
in O are given by some parabolic Kazhdan–Lusztig polynomials. This conjec-
ture was known to be true in the particular case� = 1 [39]. Motivated by this
conjecture, Varagnolo–Vasserot introduced in [46] a new categoryA which is
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a subcategory of an af�ne parabolic categoryO at a negative level and should
be viewed as an af�ne and higher level analogue of the category of polynomial
representations ofGLN . They conjectured that there should be an equivalence
of highest weight categories betweenO andA.

In this paper we prove Varagnolo–Vasserot’s conjecture (Theorem6.9). A
�rst consequence is a proof of Rouquier’s conjecture (Theorem7.3). A second
remarkable application is a proof that the categoryO is Koszul (Theorem7.4),
yielding a proof of a conjecture of Chuang–Miyachi [8], because the af�ne
parabolic categoryO is Koszul by [42].

Our proof is based on an extension of Rouquier’s theory of highest weight
covers developed in [39]. Basically, [39] says that two highest weight covers
of the same algebra are equivalent as highest weight categories if they satisfy
a so called 1-faithful condition and if the highest weight orders on both covers
are compatible. Here, given a situation where the highest weight covers are
not necessarily 1-faithful, we construct bigger functors to which we can apply
Rouquier’s theory (see Proposition2.20).

The categoryO is a highest weight cover over the module categoryH of the
Ariki–Koike algebra via the KZ functor introduced in [22]. It is a 0-faithful
cover and if the parameters of the RDAHA satisfy some technical condition,
then it is even 1-faithful. A similar functor� : A � H was introduced in
[46] using the Kazhdan–Lusztig fusion product on the af�ne categoryO at a
negative level. A previous work of Dunkl and Griffeth [16] allows to show
without much dif�culty that there is a highest weight order onO which re�nes
the linkage order onA. A dif�cult part of the proof consists of showing that
the functor� is indeed a cover, meaning that it is an exact quotient functor,
and that it has the same faithfulness properties as the KZ functor. Once this is
done, the equivalence betweenO andA follows directly from the unicity of
1-faithful covers if the technical condition on parameters mentioned above is
satis�ed. To prove the equivalence without this condition, we need to replace
KZ and � by some other covers, see the end of the introduction for more
details on this.

A key ingredient in our proof is a deformation argument. More precisely, the
highest weight categoriesA, O admit deformed versions over a regular local
ring Rof dimension 2. Some technical results prove that the Kazhdan–Lusztig
tensor product can also be deformed properly, which allows us to de�ne the
deformed version of� . Next, a theorem of Fiebig asserts that the structure
of the categoryO of a Kac–Moody algebra only depends on the associated
Coxeter system [20]. In particular, the localization ofA at a height one prime
ideal p � R can be described in simpler terms. Two cases appear, eitherp
is subgeneric or generic. In the �rst case, considered in Sect.5.7.2, the cate-
gory A reduces to an analog subcategoryA inside the parabolic categoryO
of glN associated with a Levi subalgebra ofglN with 2 blocks. The latter is
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closely related to the higher level Schur–Weyl duality studied by Brundan and
Kleshchev in [5]. In the second case, considered in Sect.5.7.3, the category
A reduces to the corresponding category for� = 1, which is precisely the
Kazhdan–Lusztig category associated with af�ne Lie algebras at negative lev-
els. Finally, we show that to prove the desired properties of the functor� it is
enough to check them for the localization of� at each height one prime ideal
p and this proves the main result.

Now, let us say a few words concerning the organization of this paper.
Section2 contains some basic facts on highest weight categories and some

developments on the theory of highest weight covers in [39].
Section3 is a reminder on Hecke algebras, q-Schur algebras and categori-

�cations.
Section4 contains basic facts on the parabolic categoryO of glN and the

subcategoryA � O introduced in [5]. The results in [5] are not enough for us
since we need to consider a deformed categoryA with integral deformation
parameters. The new material is gathered in Sect.4.7.

In Sect.5 we consider the af�ne parabolic categoryO (at a negative level).
The monoidal structure onO is de�ned later in Sect.8. Using this monoidal
structure we construct a categorical action onO in Sect.5.4. Then, we de�ne
the subcategoryA � O in Sect.5.5. The rest of the section is devoted to the
deformation argument and the proof thatA is a highest weight cover of the
module category of a cyclotomic Hecke algebra satisfying some faithfulness
conditions.

In Sect.6 we �rst give a reminder on the categoryO of CRDAHA’s, follow-
ing [22,39]. Then, we prove our main theorems in Sects.6.3.2, 6.3.3using the
results from Sect.5.8. This yields a proof of Varagnolo–Vasserot’s conjecture
[46]. For the clarity of the exposition we separate the cases of rational and
irrational levels, although both proofs are very similar.

In Sect.7 we give some applications of our main theorem, including proofs
for Rouquier’s conjecture and Chuang–Miyachi’s conjecture.

Section8 is a reminder on the Kazhdan–Lusztig tensor product on the af�ne
categoryO at a negative level. We generalize their construction in order to get a
monoidal structure on arbitrary parabolic categories, deformed over an analytic
two-dimensional regular local ring. Several technical results concerning the
Kazhdan–Lusztig tensor product are postponed to the appendix.

To �nish, let us explain the relation of this work with other recent works.
The case of irrational level (proved in Theorem6.11) was conjectured in [46,

rem. 8.10(b)], as a degenerate analogue of the main conjecture [46, conj. 8.8].
There, it was mentioned that it should follow from [5, thm. C]. In the dominant
case, this has been proved recently [24, thm. 6.9.1].

While we were writing this paper I. Losev made public several papers
with some overlaps with ours. In [31,32] he developed a general formalism
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of categorical actions on highest weight categories. Then, he used this for-
malism in [33] to prove that the categoryA is equipped with a categorical
action, induced by the categorical action onO introduced in [46] (using the
Kazhdan–Lusztig fusion product). The categorical action onA gives an inde-
pendent proof of Theorem5.37(a), (b). Finally, he proposed a combinatorial
approach to prove thatA is a 1-faithful highest weight cover of the cyclo-
tomic Hecke algebra under some technical condition on the parameters of the
CRDAHA.

A �rst version of our paper was announced in July 2012 and has been
presented at several occasions since then. There, we proved this 1-faithfulness
for A (and the Varagnolo–Vasserot’s conjecture) under the same condition on
the parameters by a deformation argument similar, but weaker, to the one used
in the present paper.

The proof which we give in this article avoids this technical condition on the
parameters. It uses an idea introduced later, in [33]. There, I. Losev replaces
the highest weight coverA of the cyclotomic Hecke algebraH by a highest
weight cover, byA, of a bigger algebra thanH, which has better properties.

After this paper was written, B. Webster sent us a copy of a preliminary
version of his recent preprint [47] proposing another proof of Rouquier’s con-
jecture which does not use the af�ne parabolic categoryO.

Note that our construction does not use any categorical action onA. It only
uses representation theoretic arguments. However, since Theorem6.9 yields
an equivalence betweenA andO, we can recover a categorical action onA
from our theorem and the main result of [41]. This is explained in Sect.7.4.

2 Highest weight categories

In the paper the symbolRwill always denote a noetherian commutative domain
(with 1). We denote byK its fraction �eld. WhenR is a local ring, we denote
by k its residue �eld and bym its maximal ideal.

2.1 Rings and modules

For anyR-moduleM, let M � = HomR(M, R) denote the dual module. An
S-pointof R is a morphism� : R � S of commutative rings with 1. If
� is a morphism of local rings, we say that it is alocal S-point. We write
SM = M(�) = M � R S. If � is a R-module homomorphism, we abbreviate
alsoS� = � � R S.

Let P , M be the spectrum and the maximal spectrum ofR. Let P 1 � P
be the subset of height 1 prime ideals. For eachp � P , let Rp denote the
localization ofR at p. The maximal ideal ofRp is mp = Rp p and its residue
�eld is k p = Frac(R/ p).
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A closedk-point of R is a quotientR � R/ m = k wherem � M . To
unburden the notation we may write k� M .

A Þnite projective R-algebra is anR-algebra which is �nitely generated and
projective as anR-module.

We will mainly be interested in the case whereR is a local ring. In this case,
any projective module is free by Kaplansky’s theorem. Therefore, we’ll use
indifferently the words free or projective.

2.2 Categories

Given A a ring, we denote byAop the opposite ring in which the order of
multiplication is reversed. GivenC is a category, letCop be the opposite
category.

An R-categoryC is an additive category enriched over the tensor category
of R-modules. All the functorsF onC are assumed to beR-linear. We denote
the identity element in the endomorphism ring End(F) again byF. We denote
the identity functor onC by 1C . We say thatC isHom-Þniteif the Hom spaces
are �nitely generated overR. If the categoryC is abelian or exact, letK0(C )
be the Grothendieck group and write[C ] = K0(C ) � Z C. If C is additive,
it is an exact category with split exact sequences and[C ] is the complexi-
�ed split Grothendieck group. Let[M] denote the class of an objectM of
C .

Assume now thatC is abelian and has enough projectives. We say that
an objectM � C is projective overR if HomC (P, M) is a projectiveR-
module for all projective objectsP of C . The full subcategoryC � R-proj
of objects ofC projective overR is an exact subcategory and the canonical
functor Db(C � R-proj) � Db(C ) is fully faithful. An objectX � C which
is projective overR is relatively R-injectiveif Ext1

C (Y, X) = 0 for all objects
Y of C that are projective overR.

If C is the categoryA-mod of �nitely generated (left) modules over a �nite
projectiveR-algebraA, then an objectX � C is projective overR if and only
if it is projective as anR-module. It is relativelyR-injective if in addition
the dualX� = HomR(X, R) is a projective rightA-module. If there is no
risk of confusion we will say injective instead of relativelyR-injective. We
put C � = Aop-mod. The functor HomR(€, R) : Cop � C � restricts to an
equivalence of exact categoriesCop � R-proj

�
� C � � R-proj.

We denote by Irr(C ) the sets of isomorphism classes of simple objects
of C . Let Cproj, C inj � C be the full subcategories of projective and of
relativelyR-injective objects. IfC = A-mod, we abbreviate Irr( A) = Irr(C ),
A-proj = Cproj andA-inj = C inj .

Given anS-point R � S andC = A-mod, we can form theS-category
SC = S A-mod. Given anotherR-categoryC 	 as above and an exact (R-linear)
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functorF : C � C 	, thenF is represented by a projective objectP � C . We
setSF = HomSC (SP, €) : SC � SC 	.

Let A be aSerresubcategory ofC . The canonical embedding functor
h : A � C has a left adjointh� which takes an objectM in C to its
maximal quotient inC which belongs toA . It admits also a right adjointh!

which takes an objectM in C to its maximal subobject inC which belongs
to A . The functorh� is right exact, whileh! is left exact. The functorh is
fully faithful. Hence the adjunction morphismsh� h � 1A and 1A � h!h
are isomorphisms. By de�nition, the adjunction morphisms 1C � hh� and
hh! � 1C are respectively an epimorphism and a monomorphism.

Here, and in the rest of the paper, we use the following notation: a composi-
tion of functorsE andF is written asE F while a composition of morphisms
of functors� and� is written as� 
 � .

2.3 Highest weight categories over local rings

Let R be a commutative local ring. We recall and complete some basic facts
about highest weight categories overR (cf [39, §4.1] and [11], [15, §2]).

Let C be an abelianR-category which is equivalent to the categoryA-mod
of �nitely generated modules over a �nite projectiveR-algebraA.

The categoryC is a highest weight R-categoryif it is equipped with a
poset of isomorphism classes of objects(�( C ), � ) called thestandard objects
satisfying the following conditions:

€ the objects of�( C ) are projective overR
€ given M � C such that HomC (D, M) = 0 for all D � �( C ), we have

M = 0
€ given D � �( C ), there isP � Cproj and a surjectionf : P � D such

that ker f has a (�nite) �ltration whose successive quotients are objects
D	 � � with D	 > D

€ given D � � , we have EndC (D) = R
€ given D1, D2 � � with HomC (D1, D2) �= 0, we haveD1 � D2.

The partial order� is called thehighest weight orderof C . We write�( C ) =
{�(�) }� � 	 , for 	 an indexing poset. Note that if� 	 is an order coarser than�
(i.e., � � µ implies� � 	 µ), thenC is also a highest weight category relative
to the order� 	.

An equivalence of highest weight categoriesC 	 �
Š� C is an equivalence

which induces a bijection�( C 	)
�
Š� �( C ). A highest weight subcategoryis

a full Serre subcategoryC 	 � C that is a highest weight category with poset
�( C 	) an ideal of�( C ) (i.e., if D	 � �( C 	), D � �( C ) andD	 < D, then
D	 � �( C 	)).
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Highest weight categories come with associated projective, injective, tilting
and costandard objects, as described in the next proposition.

Proposition 2.1 LetC be a highest weight R-category. Given� � 	, there are
indecomposable objects P(�) � Cproj, I (�) � C inj , T(�) � C and (�) � C
(the projective, injective, tilting and costandard objects associated with�),
unique up to isomorphism such that

( ) HomC (�(µ),  (�)) � 
 �µ R andExt1C (�(µ),  (�)) = 0 for all
µ � 	,
(P) there is a surjection f: P(�) � �(�) such thatker f has a Þltration
whose successive quotients are�(µ) Õs withµ > �,
( I ) there is an injection f:  (�) � � I (�) such thatcoker f has a Þltration
whose successive quotients are (µ) Õs withµ > �,
(T) there is an injection f: �(�) � � T(�) and a surjection g: T(�) �
 (�) such thatcoker f (resp. kerg) has a Þltration whose successive
quotients are�(µ) Õs(resp. (µ) Õs) with µ < �.

We have the following properties of those objects.

€  (�), �(�), P(�), I (�) and T(�) are projective over R.
€ Given a commutative local R-algebra S, then SC is a highest weight

S-category on the poset	 with standard objects S�(�) and costandard
objects S (�) . If R � S is a local S-point, then the projective, injective
and tilting objects associated with� are SP(�), S I(�) and ST(�).

€ C � is a highest weight R-category on the poset	 with standard objects
� � (�) =  (�) � and with P� (�) = I (�) � , I � (�) = P(�) � ,  � (�) =
�(�) � and T� (�) = T(�) � .

Proof Note that the statements of the proposition are classical whenR is a
�eld.

The existence of the objects (�) giving Cop the structure of a highest
weight category and satisfying the Hom and Ext conditions is given by [39,
Proposition 4.19]. The unicity follows from Lemma2.7below. The description
of the projective, tilting and injective objects ofC � is clear.

It is shown in [39, Proposition 4.14] thatSC is a highest weight category with
�( SC ) = S�( C ). We denote byPS(�) , IS(�) , etc. the projective, injective,
etc. ofSC associated with� .

The existence ofP(�) is granted in the de�nition of highest weight cate-
gories. We show by descending induction on� that kP(�) � Pk(�) . This is
clear if � is maximal, for thenP(�) = �(�) . We have kP(�) = Pk(�) � Q,
whereQ is a direct sum ofPk(µ) ’s with µ > � . By induction,Pk(µ) = kP(µ) ,
henceQ lifts to �Q � Cproj, and there are mapsf : �Q � P(�) and
g : P(�) � �Q such that k(g f ) = idQ. SinceR is local and �Q is a �nitely
generated projectiveR-module, we deduce thatg f is an automorphism of�Q,
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hence �Q is a direct summand ofP(�) , so �Q = 0 and kP(�) = Pk(�) .
The unicity of P(�) is then clear, since givenM, N � Cproj, we have
k HomC (M, N)

�
� HomkC (kM, kN).

GivenR � Sa local point, the residue �eld k	 of Sis a �eld extension of k.
Since kA is a split k-algebra, it follows that givenP a projective indecompos-
able kA-module, then k	 P is a projective indecomposable k	 A-module. We
deduce thatPk	 (�) � k	 � k kP(�) , hencePS(�) � SP(�) .

The statements aboutI (�) follow from those aboutP(�) by duality.
The statements aboutT(�) are proven in the same way as those forP(�) ,

using Proposition2.4(b) below. ��

Note that (C , �( C )) is a highest weightR-category if and only if
(kC , k�( C )) is a highest weight k-category and the objects of�( C ) are
projective overR, see [39, thm. 4.15]. Note also that�(�) has a unique simple
quotientL(�) , and Irr(C ) = { L(�) }� � 	 .

Let C � andC  be the full subcategories ofC consisting of the� -�ltered
and -�ltered objects, i.e., objects having a �nite �ltration whose successive
quotients are standard, costandard respectively. These are exact subcategories
of C . Note that every object ofC � has a �nite projective resolution, where
the kernels of the differentials are inC � . As a consequence, the canonical
functor Db(C � ) � Db(C ) is fully faithful. Similarly, the canonical functor
Db(C  ) � Db(C ) is fully faithful, as every object ofC  has a �nite relatively
R-injective resolution.

Lemma 2.2 Let C , C 	 be highest weight R-categories. An exact functor� :
C � C 	 which restricts to an equivalence� : C � �

� C 	 � is an equivalence
of highest weight categoriesC

�
� C 	.

Proof Since� identi�es the projective objects inC and C 	, it induces an
equivalence of their bounded homotopy categories, hence an equivalence
Db(C ) � Db(C 	). Since� is exact, we are done. ��

Let C tilt = C � � C  be the full subcategory ofC consisting of thetilting
objects, i.e., the objects which are both� -�ltered and -�ltered.

Let T =
�

� � 	 T(�) . The Ringel dual of C is the categoryC � =
EndC (T)op-mod. It is a highest weight category on the poset	 op. The functor
Hom(T, €) : C � C � restricts to an equivalenceR : C  �

� (C � )� , called
theRingel equivalence. We haveR ( (�)) = � � (�) , R (T(�)) � P� (�) and
R ( I (�)) � T � (�) for � � 	 , see [39, Proposition 4.26]. The highest weight
categoryC is determined, up to equivalence, byC � and we put(C � )� = C .
There is an equivalence of highest weight categoriesC

�
� C �� such that the

composition
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Cproj �
� (C �� )proj R Š1

ŠŠ�
�

(C � )tilt R Š1

ŠŠ�
�

C inj

is isomorphic to the Nakayama duality HomA(€, A)� . This provides also an
equivalence of highest weight categoriesC � �

� C � .
Now, for M � C we set

lcdC (M) = min{i ; � µ � 	, Exti (M, T(µ)) �= 0},

rcdC (M) = min{i ; � µ � 	, Exti (T(µ), M) �= 0}.
(2.1)

Lemma 2.3 Assume R is a Þeld. Let� � 	 . Then

min{i ; � µ � 	, Exti (L(�), T(µ)) �= 0}

= min{i ; � µ � 	, Exti (L(�), �(µ)) �= 0}

= min{i ; � M � C � , Exti (L(�), M) �= 0}.

Proof Letc1, c2 andc3 be the quantities de�ned by the terms involving respec-
tively T(µ) ’s, �(µ) ’s andM � C � in the �rst two equalities. It is clear that
c1 � c2 = c3.

Take µ minimal such that Extc2(L(�), �(µ)) �= 0. There is an exact
sequence 0� �(µ) � T(µ) � M � 0 whereM has a �ltration with
subquotients�(�) ’s where� < µ . We deduce that Extc2(L(�), T(µ)) �= 0,
hencec1 � c2. ��

Let us recall a few facts on base change for highest weight categories.

Proposition 2.4 Let C be a highest weight R-category, and let R� S be a
local S-point. For any M, N � C the following holds:

(a) if S is R-ßat then SExtdC (M, N) = ExtdSC (SM, SN) for all d � N,
(b) if either M � Cproj or (M � C � and N � C  ), then we have SHomC

(M, N) = HomSC (SM, SN),
(c) if M is R-projective then M� Cproj (resp. M � C tilt , C � , C inj) if and

only if kM � kCproj (resp.kM � kC tilt , kC � , kC inj),
(d) if either (M � Cproj and N is R-projective) or (M � C � and N � C  )

thenHomC (M, N) is R-projective.

Proof Part (a) is [Bourbaki,Alg•bre, ch. X, §6, prop. 7.c].
The statements in (b), (d) are clear ifM is a freeA-module, and are preserved

under taking direct summands, so they hold forM � Cproj.
Let M � C � andN � C  . We have Ext1C (M, N) = Ext1SC (SM, SN) = 0.

As a consequence, ifM is an extension ofM1, M2 � C � and the statements (b),
(d) hold for Mi , N, then they hold forM, N. We proceed now by descending
induction on� to prove that the statement forM = �(�) . There is an exact
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sequence 0� M 	 � P(�) � �(�) � 0, whereM 	 is an extension of
�(� 	)’s with � 	 > � . The statements (b), (d) hold forP(�) and, by induction,
for M 	. Hence, they hold forM.

Part (c) is [39, prop. 4.30]. ��

Proposition 2.5 The indecomposable projective(resp. relatively R-injective,
tilting) objects ofC are the P(�) ( resp. I(�), T(�)), for � � 	.

Proof The statements are classical for kC , and Proposition2.4(b), (c) reduce
to that case. ��

Let us quote the following easy result for a later use.

Proposition 2.6 (a) Let C1, C2 be highest weightk-categories. An equiva-
lence of abeliank-categories F: C1 � C2 which induces a morphism of
posetsIrr(C1) � Irr(C2) is an equivalence of highest weight categories.

(b) Let C1, C2 be highest weight R-categories. An equivalence of abelian R-
categories F: C1 � C2 which induces an equivalence of highest weight
k-categorieskF : kC1 � kC2 is an equivalence of highest weight R-
categories.

Proof For part (a) we need to prove thatF maps�( C1) to �( C2). An equiv-
alence of abelian categoriesF takes indecomposable projective objects to
indecomposable projective objects. So it preserves the standard modules, as
�(�) is the largest quotient ofP(�) all of whose composition factors are
L(µ) ’s with µ < � . Part (b) follows from Proposition2.4(c). ��

Next, we state some basic facts on and� -�ltered modules. The situation
over a base ring that is not a �eld is slightly more complicated.

Lemma 2.7 Let C be a highest weight category over R and let M� C . The
following conditions are equivalent:

(a) Ext1C (�(�), M) = 0 for all � � 	
(b) there is a Þltration0 = M0 � M1 � · · · � Mr = M and there are

elements� i � 	 such that Mi / Mi Š1 �  (� i ) � R HomC (�(� i ), M) with
� i �= � j for i �= j and � i < � j implies i < j

(c) there is a Þltration0 = M0 � M1 � · · · � Mr = M, there are elements
� i � 	 and there are R-modules Ui such that Mi / Mi Š1 �  (� i ) � R Ui .

If the conditions above hold and M is projective over R, then M � C  .

Proof Assume (b). Let�, µ � 	 andU � R-mod. We have Ext> 0
C (�(�),

 (µ)) = 0 and HomC (�(�),  (µ)) � R-proj. We deduce that

Ext> 0
C (�(�),  (µ) � R U) = H> 0(RHomC (�(�),  (µ) � L

R U))

� H> 0(RHomC (�(�),  (µ)) � L
R U) = Ext> 0

C (�(�),  (µ)) � R U = 0.

This shows(b) � (a).
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Now, assume (a). Let� � 	 be minimal such that HomC ( (�), M) �= 0.
Fix an elementµ � � (no assumption onµ if HomC ( (�), M) = 0 for
all � � 	 ). There is an exact sequence 0� �(µ) � T(µ) � M 	 � 0,
whereM 	 is �ltered by �(�) ’s with � < µ . So, we have Ext1

C (M 	, M) = 0.
Hence the canonical map HomC (T(µ), M) � HomC (�(µ), M) is sur-
jective. There is an exact sequence 0� M 		 � T(µ) �  (µ) � 0,
whereM 		 is �ltered by  (�) ’s with � < µ. Since HomC (M 		, M) = 0, the
canonical map HomC ( (µ), M) � HomC (T(µ), M) is an isomorphism.
Consequently, the composition�(µ) � T(µ) �  (µ) induces a surjective
map HomC ( (µ), M) � HomC (�(µ), M).

If µ �= � , we have HomC ( (µ), M) = 0, hence HomC (�(µ), M) = 0.
This shows that the canonical map HomC (T(�), M) � HomC (�(�), M) is
an isomorphism. Hence, we have canonical isomorphisms

HomC ( (�), M)
�
� HomC (T(�), M)

�
� HomC (�(�), M).

Now, setU = HomC (�(�), M). We have

HomC ( (�) � R U, M) � HomR(U, HomC ( (�), M))

� HomR(U, HomC (�(�), M))

� HomC (�(�) � R U, M).

So, the canonical map�(�) � R U � M factors through a mapf :  (�) � R
U � M.

If µ �= � , we have HomC (�(µ),  (�)) = 0. Further, we have an isomor-
phism

HomC (�(�), f ) : HomC (�(�),  (�)) � R U
�
� HomC (�(�), M).

Consequently, the mapf = HomC ( A, f ) is injective. Hence, since

Ext2C (�(µ),  (�) � R U) = 0

for all µ , the long exact sequence gives a surjective map

Ext1C (�(µ), M) � Ext1C (�(µ), Coker( f )).

The left hand side is 0 by assumption, we deduce that Ext1
C (�(µ),

Coker( f )) = 0. We have

{µ � 	 ; HomC (�(µ), Coker( f )) �= 0} � { µ � 	 ; HomC (�(µ), M) �= 0} \ { � }.
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Therefore, by induction on the set{µ � 	 ; HomC (�(µ), M) �= 0}, we get
that Coker( f ) has a �ltration as required. Since we have an exact sequence

0 �  (�) � R U � M � Coker( f ) � 0,

we deduce thatM has also a �ltration as required.
Assume nowM is projective overR and consider a �ltration as in (b).

We show that HomC (�(�), M) is projective overR for all � by induc-
tion on r . There is an exact sequence 0� L � P(� r ) � �(� r ) � 0
whereL is �ltered by �(µ) ’s with µ > � r , so we have Hom(�(� r ), M) �
Hom(P(� r ), M). We deduce that Hom(�(� r ), M) is projective overR. By
induction, giveni � r Š 1, then Hom(�(� i ), Mr Š1) � Hom(�(� i ), M) is
projective overR and the result follows. ��

2.4 Highest weight covers

2.4.1 DeÞnition and characterizations

LetC be a highest weightR-category and letB be a �nite projectiveR-algebra.
Consider a quotient functorF : C � B-mod in the general sense of [23,
sec. III.I], i.e., there isP � Cproj and there are isomorphismsB

�
� EndC (P)op

andF
�
� HomC (P, €). We denote byG a right adjoint ofF and by : 1 � GF

the unit.
We say thatF is

€ ahighest weight coverif it is fully faithful on Cproj

€ d-faithful for somed � Z � Š1 if Ext i
C (M, N) = 0 for all M � C with

F(M) = 0, N � C � andi � d + 1.

As Lemma2.8below shows, ifF is d-faithful for somed � 0, then it is a
highest weight cover.

We denote by(B-mod)F� the full exact subcategory ofB-mod of objects
with a �ltration whose successive quotients are inF(�) . Let F � : C � �
(B-mod)F� be the restriction ofF.

We provide some characterizations ofd-faithfulness.

Lemma 2.8 Let F be a quotient functor. Let d� Z� 0 and letE = C � , E =
�( C ) or E = C tilt . The following conditions are equivalent

(i) F is d-faithful
(ii) given M � C with F(M) = 0 and N � E, we haveExt� d+ 1

C (M, N) = 0

(iii) given N� E, we have H� d(cone(N


Š� RGF(N))) = 0
(iv) given M � C , N � E and i � d, then F induces an isomorphism

ExtiC (M, N)
�
� ExtiB(F M, F N)
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(v) given M � Cproj, N � E and i � d, then F induces an isomorphism
ExtiC (M, N)

�
� ExtiB(F M, F N).

If R is a Þeld, these conditions are equivalent to

(vi) given� � 	 with F L(�) = 0, thenlcdC (L(�)) > d + 1.

Proof Note that (ii) in the caseE = C � is the statement (i). It is clear that
(ii) for E = �( C ) is equivalent to (ii) forE = C � , and these imply (ii)
for E = C tilt . Assume (ii) holds in the caseE = C tilt . Let M � C with
F(M) = 0. We prove by induction on� that Ext� d+ 1

C (M, �(�)) = 0.
There is an exact sequence 0� �(�) � T(�) � L � 0, where

L has a �ltration by �(µ) ’s with µ < � . We have Ext� d+ 1
C (M, T(�)) =

0 and, by induction, we have Ext� d+ 1
C (M, L) = 0. We deduce that

Ext� d+ 1
C (M, �(�)) = 0. So, (ii) holds forE = C � .

Let X = cone(N


Š� RGF(N)). We haveF(H i (X)) = 0 for all i . Given
Y � Db(C ) such thatF(Y) = 0, we have

HomDb(C )(Y, RGF(N)) � HomDb(B)(F(Y), F(N)) = 0,

hence HomDb(C )(Y, X[i ]) � HomDb(C )(Y, N[i + 1]) for all i .
Assume (ii). As usual, let� � m denote thecanonical truncationwhich takes

a complexC = (Cn, dn) to the subcomplex

� � m(C) = {· · · � CmŠ1 � Ker(dm) � 0 � · · · } .

Taking Y = � � d(X) above, we obtain HomDb(C )(� � d(X), X) = 0, hence
� � d(X) = 0. So, (iii) holds.

Note that the canonical map Exti
C (M, N) � ExtiB(F M, F N) is an iso-

morphism if and only if the canonical map Exti
C (M, N) � HomDb(C )(M,

RGF N[i ]) is an isomorphism.
Assume (iii). Applying Hom(M, Š) to the distinguished triangleN �

RGF(N) � X � , we deduce that (iv) holds.
It is clear that (iv)� (v). Assume (v). It follows from Lemma2.10 that

the canonical map Extd+ 1
C (M, N) � Extd+ 1

B (F(M), F(N)) is injective for
all M � C , and (ii) follows.

Assume �nally R is a �eld. The assertion (ii), in the caseE = C tilt , follows
from the caseM simple: that is assertion (vi). ��

Remark 2.9We leave it to the reader to check that the �rst three equivalences
in Lemma2.8hold whend = Š 1.

Lemma 2.10 Let F be an exact functor, let d � Š 1 and let N � C . Assume
F induces
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€ an isomorphismExtiC (P, N)
�
� ExtiB(F(P), F(N)) for P � Cproj and

i � d
€ an injectionExtd+ 1

C (P, N) �� Extd+ 1
B (F(P), F(N)) for P � Cproj.

Then, F induces

€ an isomorphismExtiC (M, N)
�
� ExtiB(F(M), F(N)) for M � C and i �

d
€ an injectionExtd+ 1

C (M, N) �� Extd+ 1
B (F(M), F(N)) for M � C .

Proof We prove by induction oni the �rst statement of the lemma. Consider
an exact sequence 0� M 	 � P � M � 0 with P � Cproj. We have a
commutative diagram with exact horizontal sequences

ExtiC (P, N) ��

�

��

ExtiC (M 	 , N) ��

��

Exti + 1
C (M, N) ��

��

Exti + 1
C (P, N)

��

��Exti + 1
C (M 	 , N)

��
ExtiB(FP, FN) ��ExtiB(FM 	 , FN) ��Exti + 1

B (FM, FN) ��Exti + 1
B (FP, FN) ��Exti + 1

B (FM 	 , FN)

where the fourth vertical map is an isomorphism fori + 1 � d and is injective
for i = d. By induction, the second vertical map is an isomorphism, hence
the third vertical map is injective. So, we have shown that the canonical map
Exti + 1

C (L, N) � Exti + 1
B (F(L), F(N)) is injective for all L � C , in partic-

ular for L = M 	. If i + 1 � d, we deduce that the third vertical map is an
isomorphism. ��

Let us summarize some of the results above.

Corollary 2.11 Let F : C � B-modbe a quotient functor.

€ F is (Š1)-faithful if and only if F� is faithful
€ F is a highest weight cover if and only if( M) : M � GF(M) is an

isomorphism for all M� Cproj

€ F is 0-faithful if and only if F� is fully faithful if and only if( M) : M �
GF(M) is an isomorphism for all M� C �

€ F is 1-faithful if and only if F� is an equivalence.

The next two lemmas relate highest weight covers ofC , C � andC � .

Lemma 2.12 Consider a highest weight cover F= HomC (P, €) : C �
B-mod. Then F� = HomC � (HomA(P, A), €) : C � � Bop-mod is a highest
weight cover.

Let d � 0. Then, F is d-faithful if and only if F� induces isomorphisms
ExtiC � (M, N)

�
� ExtiBop(F � M, F � N) for all M , N � (C � ) and i � d.
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Proof There is a commutative diagram

(C � )op
�

HomR(€,R) ��

F
��

(C � )

F �

��
(B-mod)op � Rproj

HomR(€,R)
� ��Bop-mod� Rproj

since

HomAop(HomA(P, A), HomR(€, R)) � HomR(HomA(P, A) � A €, R)

� HomR(HomA(P, €), R).

The lemma follows, since (higher) extensions can be computed in the exact
subcategories appearing in the diagram. ��

The next lemma is clear.

Lemma 2.13 Let T � C  and consider a Þnite projective R-algebra B with
a morphism of algebras� : B � EndC (T)op. Let F = HomC (T, €), P =
R (T) and F� = HomC � (P, €) : C � � B-mod.

The functor F� is a highest weight cover if and only if T is tilting, F is fully
faithful onC tilt and� is an isomorphism.

The functor F� is d-faithful if and only if T is tilting, � is an isomorphism
and F induces isomorphismsExtiC (M, N)

�
� ExtiB(F M, F N) for all M , N �

C  and i � d.

We say that anR-algebraB is self-injectiveif B is relativelyR-injective.

Lemma 2.14 Let F = HomC (P, €) : C � B-modbe a0-faithful functor. If
B is self-injective, then P is tilting.

Proof Let � � 	 . By Lemma2.10, we have an injection

Ext1C (�(�), P) �� Ext1B(F�(�), F(P)).

SinceF(P) = B is relativelyR-injective andF�(�) is projective overR, we
deduce that Ext1

B(F�(�), F(P)) = 0, hence Ext1C (�(�), P) = 0. It follows
from Lemma2.7that P is tilting. ��

Lemma 2.15 Let C be a highest weight category, T � C tilt and B =
EndC (T)op. Assume the restriction ofHomC (T, €) to C  is fully faithful and
B is self-injective. Then T is projective.

Proof This follows from Lemma2.14applied toC � , cf Lemma2.13. ��
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2.4.2 Base change

Let S be a local commutative �atR-algebra. IfF is d-faithful, then SF is
d-faithful, and the converse holds ifS is faithfully �at over R (for example, if
it is a localS-point).

Lemma 2.16 Let F be a quotient functor.
If K F is (Š1)-faithful, then F is(Š1)-faithful.
Assume R is a regular local ring. If RpF is 0-faithful (resp. is a highest

weight cover) for all p � P 1, then F is0-faithful (resp. is a highest weight
cover).

Proof The �rst statement is obvious, since objects ofC � are projective over
R.

Assume nowF is (Š1)-faithful. Let M � C � . Consider the exact sequence

0 � M
( M)
ŠŠŠ� GF M � coker( M) � 0.

AssumeRp coker( M) = 0 for all p � P 1. Then, the support of coker( M)
has codimension� 2, hence Ext1R(coker( M), M) = 0, sinceM is projective
over R. It follows that coker( M) is a direct summand of the torsion-free
moduleGF(M), hence coker( M) = 0. The lemma follows. ��

The corollary below is immediate.

Corollary 2.17 Let C be a highest weight category, T � C tilt and B =
EndC (T)op. Let F = HomC (T, €). Assume R is a regular local ring. Then,
the restriction of F toC  is fully faithful if the restriction of RpF to RpC  is
fully faithful for all p � P 1.

Proof Let P = R (T) andF � = HomC � (P, €) : C � � B-mod. The restric-
tion of F to C  is fully faithful if and only if the restriction ofF � to (C � )

is fully faithful. Now, F � is a quotient functor becauseT is tilting. Thus, by
Lemma2.16, if RpF � is 0-faithful for allp � P 1, thenF � is 0-faithful. Finally,
by Lemma2.13, RpF � is 0-faithful if the restriction ofRpF to RpC  is fully
faithful. ��

The following key result generalizes [39, prop. 4.42].

Proposition 2.18 Assume R is regular. IfkF is d-faithful, then F is d-faithful.
If in addition K F is(d + 1)-faithful, then F is(d + 1)-faithful.

Proof Assume kF is d-faithful. Let M � C with F(M) = 0 and let
N � C � . We haveRHomkC (kM, kN) � k � L

R RHomC (M, N). Let C be a
bounded complex of �nitely generated projectiveR-modules quasi-isomorphic
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to RHomC (M, N) and withC< r = 0. We assumer is maximal with this
property. Then, ExtrkC (kM, kN) � H r (kC) �= 0, hencer > d + 1, so
Ext� d+ 1

C (M, N) = 0. It follows thatF is d-faithful.
Assume nowK F is (d + 1)-faithful. ThenHd+ 2(C) is a torsionR-module.

If it is non-zero, thenCd+ 1 �= 0 a contradiction. So,Hd+ 2(C) = 0 andF is
(d + 1)-faithful. ��

2.4.3 Uniqueness results

We assume in this section thatR is normal.
Let B	 be anR-algebra, �nitely generated and projective overR, and such

that K B	 is split semi-simple.
Fix a poset structure on Irr(K B	). GivenE � Irr(K B	), let (K B	)� E (resp.

(K B	)< E) be the sum of the simpleK B	-submodules ofK B	 isomorphic to
someF � E (resp.F < E).

We say that a family{S(E)}E� Irr(K B	) of B	-modules, �nitely generated and
projective overR, areSpecht modulesfor B	 if

(B	 � (K B	)� E)/( B	 � (K B	)< E) � S(E)dimK E for E � Irr(K 	 B).

Note thatK S(E) � E and EndB	 (S(E)) = R. So, if {S	(E)}E� Irr(K B	) is
another family of Specht modules, thenS	(E) � S(E) for all E: the Specht
modules are unique, up to isomorphism (if they exist).

The same construction with the opposite order on Irr(K B	) leads to thedual
Specht modules S	(E) � B-mod with K S	(E) � E.

Assume that theK-algebraK B is semi-simple and thatF is a highest
weight cover. Then theK-categoryKC is split semi-simple and we have an
equivalenceK F : KC

�
� K B-mod. So, the functorK F induces a bijection

Irr(KC )
�
� Irr(K B) and we putS(�) K = K F(�(�)) � Irr(K B). The highest

weight order on Irr(KC ) yields a partial order on Irr(K B).
We will say thatF is ahighest weight cover of B for the order onIrr(K B)

coming from the one onIrr(KC ).
The next lemma follows from [39, Lemma 4.48].

Lemma 2.19 Let F be a highest weight cover and assume K B is semi-simple.
Then B has Specht modules S(�) = F(�(�)) and dual Specht modules
S	(�) = F( (�)) .

Proposition 2.20 Let F : C � B-mod and F	 : C 	 � B-mod be highest
weight covers. Assume R is regular, B is self-injective, and K B is semi-simple.
Assume that

€ the order onIrr(K B) induced by(C , F) reÞnes, or is reÞned by, the order
induced by(C 	, F 	)
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€ F is fully faithful onC � and onC 

€ F 	 is fully faithful onC 	� and onC 	

€ (a) F(P(�)) � F 	(C 	proj) for all � � 	 such thatlcdkC (L(�)) � 1 and
F( I (�)) � F 	(C 	inj) for all � � 	 such thatrcdkC (L(�)) � 1 or

(b) F(T(�)) � F 	(C 	tilt ) for all � � 	 such thatlcdkC � (L � (�)) � 1 or
rcdkC � (L � (�)) � 1.

Then, there is an equivalence of highest weight categories� : C
�
� C 	 such

that F	� � F.

Proof Lemma2.19shows there is a bijectionp : 	
�
� 	 	 such thatF(�(�)) �

F 	(� 	( p(�))) . Thus, both categories are highest weight for whichever of the
orders on Irr(K B) is coarser, and we may assume that the partial orders coin-
cide.

Let O = C � andO	 = C 	� . Lemma2.14shows thatP is tilting. So,R (P)
is tilting and projective and, identifyingC � with C � , we haveR Š1(P) �
R (P). Since F is fully faithful on C  , it follows from Lemma2.13 that
F � = HomC � (R (P), Š) is 0-faithful. Similarly, we deduce thatF � is fully
faithful on(C � ) , sinceF is 0-faithful. We prove in the same way thatF 	� =
HomC 	� (R (P	), €) is fully faithful on (C 	� )� and on(C 	� ) .

We haveF(P(�)) � F 	(C 	proj) if and only if F � (T � (�)) � F 	� ((C 	� )tilt ).
Similarly, we haveF( I (�)) � F 	(C 	inj) if and only if F � (T � (�)) �
F 	� ((C 	� )tilt ).

SinceC � � C � as highest weight categories, we deduce that the case
(a) of the proposition for(C , C 	, F, F 	) is equivalent to the case (b) of the
proposition for(C � , C 	� , F � , F 	� ). We assume from now on that we are in
case (a).

Let �P = P �
�

lcdkC (L(�)) � 1 P(�) , let �B = EndC ( �P)op and let �F =

HomC ( �P, €) : C � �B-mod. This is a 1-faithful cover by Lemma2.8
and Proposition2.18. So the functor �F restricts to an equivalence�F � :
C � �

� ( �B-mod) �F� , with inverse Hom�B( �F( A), €).
Consider �P	 � C 	proj such thatF 	( �P	) � F( �P). Fixing such an isomor-

phism, we obtain an isomorphism�B
�
� EndC 	 ( �P	)op. Note thatP	 is a direct

summand of�P	, sinceF 	(P	) � B � F(P). Let �F 	 = HomC 	 ( �P	, €) : C 	 �
�B-mod, a highest weight cover. Lemma2.19shows that�F 	(� 	(�)) � �F(�(�))

for all � � 	 .
Let i be the idempotent of�B such that �Pi = P. The right action ofB

on P provides an isomorphismB
�
� i �Bi . This equips �Bi with a structure of

( �B, B)-bimodule. Let �F = Hom �B( �Bi, €) : �B-mod � B-mod.

We have an isomorphism�F 
 �F
�
� HomC ( �P � �B

�Bi, €), hence �F 
 �F
�
� F.

Similarly, we have an isomorphism�F 
 �F 	 �
� F 	. Consider the exact functor
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� = HomC 	 ( �P	 � �B
�F( A), €) � Hom �B( �F( A), €) 
 �F 	� : (C 	)� � C � .

We have an isomorphism�F � 
 �
�
� �F 	� and there is a commutative diagram

C 	� � ��

�F 	�

������������������

F 	�

����
��

��
��

��
��

��
��

��
��

� C �

�F �

���� � � � � � � � � � � � � � ��

F �

��� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

�

( �B-mod) �F�

�F �

��
(B-mod)F�

SinceF � is fully faithful and �F � is an equivalence, we deduce that�F � is
fully faithful. SinceF 	� is fully faithful, we deduce that�F 	� is fully faithful.
It follows that � is fully faithful. Note that�(� 	(�)) � �(�) for all � � 	 .
Since �F(P) = �Bi � �F 	(P	), we have�( P	) � P.

De�ne

�� = HomC (�( A	), €) : C � C 	

Since�( A	) � C � , it follows that �� is exact onC  . We have

��( P) � HomC (�( A	), �( P	)) � HomC 	 ( A	, P	) � P	.

Let us �x an isomorphism��( P)
�
� P	. Let I � 	 be an ideal. De�ne(K P) I as

the sum of the simple submodules ofK P isomorphic toK  (µ) for someµ �
I . Let PI = P � (K P) I . Given� � 	 , we haveP� � / P<� �  (�) n for some
n > 0, sinceP is tilting (Lemma2.14) andK P is a progenerator ofKC . We
haveK ��(( K P) I ) = (K P	) I for all idealsI � 	 , hence��(  (�)) �  	(�)
for all � � 	 . We deduce that�� restricts to an exact functor� : C  � C 	 .
We have

�( A	) � C 	 P	 � HomC 	 ( �P	 � �B
�F( A), P	) � Hom �B( �F( A), �F 	(P	))

� Hom �B( �F( A), �F(P)) � HomC ( A, P) � P,

hence

F 	 
 �� = HomC 	 (P	, HomC (�( A	), €))

� HomC (�( A	) � C 	 P	, €) � HomC (P, €) = F.

SinceF  andF 	 are fully faithful, we deduce that� is fully faithful.
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We now apply what we have proven toC � andC 	� (cf Lemma2.12). We
obtain a full faithful exact functor� � : C � � C

	� , hence a fully faithful
exact functor� = �( €� )� : C � � C 	� such that�(�(�)) � �(� 	) for all
� � 	 . The composition�� is a fully faithful exact endofunctor ofC � and
F�� � F. It follows that�� �xes isomorphism classes of objects, hence it
is an equivalence. Similarly,� � is an equivalence, hence� is an equivalence
(C 	)� � C � . The proposition follows from Lemma2.2. ��

2.4.4 Covers of truncated polynomial rings in one variable

Let I be a non-empty �nite poset and{qi }i � I a family of elements ofR. We
denote bȳqi the image ofqi in k. We assume that giveni , j � I , thenq̄i = q̄ j
if and onlyi � j or j � i .

Let B = R[T]/
� �

i � I (T Š qi )
�
. This is a freeR-algebra, with basis

(1, T, . . . , TdŠ1). Given j � I , let Sj = R[T]/( T Š q j ) and Yj =
R[T]/

� �
i � j (T Š qi )

�
. We put Y =

�
j � I Yj , A = EndB(Y)op, G =

HomB(Y, €) : B-mod � A-mod, P = G(B) and F = HomA(P, €) :
A-mod � B-mod. Let �( j ) be the quotient ofG(Yj ) by the subspace of
mapsY � Yj that factor throughYj 	 for somej 	 > j .

Proposition 2.21 (a) C = A-mod is a highest weight R-category on the
poset I with standard objects the�( j )Õs. The functor F is a(Š1)-faithful
highest cover of B and we have F(�( j )) � Sj , F(P( j )) � Yj and
P( j ) = G(Yj ). If qi �=q j for i �= j , then F is a0-faithful cover of B.

(b) AssumeC 	 is a highest weight R-category with poset I and F	 : C 	 �
B-modis a highest weight cover. If R is a Þeld or K F	(�( j )) � K Sj for

all j , then there is an equivalence of highest weight categories� : C
�
� C 	

such that F	� � F.

Proof Let Ī be the quotient ofI by the relationi � j if q̄i = q̄ j . We have a
block decompositionB �

�
J� Ī R[T]/

� �
i � J(T Š qi )

�
, and if the proposition

holds for the individual blocks, then it holds forB. As a consequence, it is
enough to prove the proposition whenq̄i = q̄ j for all i , j � I . Choosing
i � I and replacingT by T Š qi , we can assume further thatq̄i = 0 for
all i � I . Since the poset structure onI is now a total order, we can assume
I = { 0, . . . , d Š 1} with the usual order, for somed � 1.

Assume �rst R is a �eld with B = R[T]/ Td. Note thatYj = R[T]/ TdŠ j

and that{Yj } j � I is a complete set of representatives of isomorphism classes
of indecomposableB-modules. Denote byej the idempotent ofA corre-
sponding to the projection ontoYj . Then, the projective indecomposable
A-modules are theP( j ) = Aej , j � I . Note that End(P(d Š 1)) = R.
Let L = AedŠ1A. We haveL2 = L, L � P(d Š 1)d as left A-modules and
A/ L � EndR[T]/( TdŠ1)

� �
0� i � dŠ2 R[T]/( TdŠi Š1)

� op. It follows thatA-mod
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is a highest weight category on the posetI , with �( j ) = Aej / Aej + 1Aej , see
[10, lem. 3.4]. Let us state some properties ofC , that can be easily checked. The
module�( j ) is uniserial, with composition seriesL( j ), L( j Š 1), . . . , L(0),
starting from the head. We have[ P( j ) : �( i )] = 1 if i � j , and[ P( j ) :
�( i )] = 0 otherwise. The moduleP = P(0) is projective and injective, while
P(d Š 1) = �( d Š 1). Note thatF is exact and its restriction toA-proj is fully
faithful. Since every�( j ) embeds inP, it follows that F is (Š1)-faithful.
Note thatF(�( j )) � R.

Consider nowC 	 and F 	 as in the proposition. SinceC 	 has d non-
isomorphic projective indecomposable modules, it follows that
{F 	(P	( j ))} j � I = { Yj } j � I . As a consequence, there is a permutation� of

I and an equivalence� : C -proj
�
� C 	-proj such that�( P(� ( j ))) � P	( j )

andF 	� � F. Such an equivalence extends to an equivalence� : C
�
� C 	, and

F 	� � F. So,C is a highest weight category with the order given byi � 	 j
if � ( i ) � � ( j ). Note that End(P( j )) = R if and only if j = d Š 1. It follows
that d Š 1 must be maximal for the order� 	, and considering the quotient
algebraA/ L as above, one sees by induction that� 	= � , i.e., � = 1, hence
� is an equivalence of highest weight categories. This shows the proposition
whenR is a �eld.

Assume nowR is a general local ring. TheR-modules�( j ) are free and
kA � EndkB(kY). We deduce thatC is a highest weight category andF is
a (Š1)-faithful highest weight cover. IfK B is semi-simple, it follows from
Proposition2.18thatF is 0-faithful (the regularity ofR is not necessary here).

We consider �nallyC 	 and F 	 as in the proposition. Since the canonical
map k HomB(Yi , Yj ) � HomkB(kYi , kYj ) is an isomorphism for alli , j ,
we deduce that kF 	 is a highest weight cover, hence equivalent to kF. As a
consequence,F 	 is 0-faithful and kF 	(P	( j )) � kYj for all j . We deduce that
[ P	( j ) : �( i )] = 
 i � j , and it follows that[K F 	(P	( j ))] = [ K Sj ] + · · · +
[K SdŠ1] in K0(K B-mod). There is a surjective morphism ofB-modulesB �
kF 	(P	( j )). It lifts to a surjective morphism ofB-modulesB � F 	(P	( j )).
SinceF 	(P	( j )) is free overR, there is a subsetJ of I of cardinality j with
F 	(P	( j )) � B/

� �
i � J(T Š qi )

�
. It follows that[K F 	(P	( j ))] =

�
i /� J [K S	

i ],
henceF 	(P	( j )) � Yj , as{qi }i � J = { qi }i � j . The proposition follows. ��

Similarly, setZ j = R[T]/
�

i � j (T Š qi ). Then, we can prove the following.

Corollary 2.22 Assume further thatC 	 is a highest weight R-category with
poset I and F	 : C 	 � B-mod is a 0-faithful cover. If K F	(� 	( j )) � K Sj
for all j , then we have F	(P	( j )) � Yj and F	(T 	( j )) � Z j .

Proof The isomorphismF 	(P	( j )) � Yj has been proved above. Let us prove
that F 	(T 	( j )) � Z j . As above, we can assume thatI = { 0, . . . , d Š 1}
with the usual order. Let(C 	)� i � C 	 be the highest weight subcategory
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associated with the ideal{ j � i ; j � I } � I . By [39, prop. 4.26], under the
embedding(C 	)� i � C 	 we haveT 	( j ) = P	(0)� j . The restriction ofF 	

to (C 	)� j is 0-faithful. Hence, the proof above implies thatF 	(P	(0)� j ) =
R[T]/

�
i � j (T Š qi ) = Z j . ��

2.5 Complement on symmetric algebras

Let R be a commutative noetherian ring. LetB be an R-algebra. We say
that B is symmetricif it is a �nitely generated projectiveR-module andB is
isomorphic toB� as a(B, B)-bimodule.

Proposition 2.23 Let B be a symmetric R-algebra. Assume R is a domain
with Þeld of fractions K and K B is a split semi-simple algebra. Let� be an
R-algebra endomorphism of B.

If K � is an automorphism of K B that induces the identity map on K0(K B),
then� is an automorphism.

Proof Let t � HomR(B, R) be a symmetrizing form forB, the image of 1
through an isomorphism of(B, B)-bimodulesB

�
� B� . Note thatt ([B, B]) =

0.
Since K B is split semi-simple, the character map is an isomorphism

K � Z K0(K B) � HomK (K B/ [K B, K B], K ). We deduce that� induces
the identity onK B/ [K B, K B], hencet 
 � = t.

Consider a maximal idealm of R, and let k= R/ m. The k-algebra kB is
symmetric, with symmetrizing form kt and(kt) 
 (k�) = kt. It follows that
kt (ker(k�)) = 0, hence ker(k�) = 0, since the kernel of a symmetrizing
form contains no nonzero ideal. We deduce that k� is an isomorphism.

We have shown that(R/ m)� is onto for every maximal idealm of R. It
follows that� is onto, hence it is an isomorphism, sinceB is a �nitely generated
projectiveR-module. ��

3 Hecke algebras, q-Schur algebras and categoriÞcations

Let R be aC[q, qŠ1]-algebra. LetqR be the image ofq in R. If no confusion
is possible, we may abbreviateq = qR.

3.1 Quivers

Assume thatqR �= 1. For any subsetI � R× we associate a quiverI (q)
with set of verticesI and with an arrowi � i qR wheneveri , i qR � I . We
may abbreviateI = I (q) when there is no risk of confusion. Note that we
do not assumeI (q) to be connected orI to be �nite. We will assume that
(qZ I (q))/ qZ is �nite.
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Let QR,1, . . . , QR,� � I such thatI =
� �

p= 1 I p, where I p =
I � qZ

R QR, p. We write i � j if i � qZ j . Each equivalence class has a
representative (possibly more than one) in the set{QR,1, QR,2, . . . , QR,� }.

If I (q) is stable under multiplication byqZ
R, andqR is not a root of 1, then

eachI p is isomorphic to the quiverA� . If I (q) is stable under multiplication
byqZ

R, andqR is a primitivee-th of 1, then eachI p is isomorphic to the quiver
A(1)

eŠ1.
For any subsetI � R we consider also the quiverI1 with the set of vertices

I and with an arrowi � i + 1 wheneveri , i + 1� I . We may abbreviateI = I1.

3.2 KacÐMoody algebras associated with a quiver

Let (ai j ) be the generalized Cartan matrix associated with the quiverI and let
slI be the (derived) Kac–Moody algebra overC associated with(ai j ). The Lie
algebraslI is generated byEi , Fi with i � I , subject to the usual relations.
Fix a subset� � [ 1, � ] such thatI is the disjoint unionI =

�
p� � I p. We

have a Lie algebra decompositionslI =
�

p� � slI p.
For eachi � I , let � i , �� i be the simple root and coroot corresponding

to Ei and let	 i be thei -th fundamental weight. SetQ =
�

i � I Z� i and
Q+ =

�
i � I N� i . SetP =

�
i � I Z	 i andP+ =

�
i � I N	 i .

Let X be the free abelian group with basis{� i ; i � I }. The assignment
� i �� � i Š � iq yields additive mapsQ, Q+ � X. If I is bounded below then
we may identify	 i with the (�nite) sum

�
d� N � iqŠd . So, we may consider

P, P+ as subsets ofX.
We will write P = PI , Q = QI , Q+ = Q+

I andX = XI if necessary. For
� � Q+ of heightd we writeI � = { i = (i1, . . . , id) � I d; � i1 +· · ·+ � id =
� }. The setI � is an orbit for the action of the symmetric groupS d on I d

by permutation. EachS d-orbit in I d is of this form.
For any subsetI � R we consider also the quiverI1 which yields in the

same way as above a Cartan datum and a Lie algebraslI .

3.3 Partitions

SetZ� (n) = { (� 1, . . . , � � ) � Z� ; � 1+· · ·+ � � = n}, C �
n = { � � Z� (n); � p �

0, � p}, and C �
n,+ = { � � Z� (n); � p > 0, � p}. An element ofC �

n is a
compositionof n into � parts. We will say that the composition� is dominant
if it satis�es the inequalities� 1 � � 2 � · · · � � � , and that it isanti-dominant
if we have� 1 � � 2 � · · · � � � .

LetP n be the set ofpartitionsof n, i.e., the set of non-increasing sequences
of positive integers with sumn. For � � P n, let |� | = n be the weight of� ,
let l (�) be the number of parts in� and let t � be the transposed partition.
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We associate to� the Young diagram Y(�) with � i boxes in thei -th row.
Let P �

n be the set of� -partitions of n, i.e., the set of� -tuples of partitions
� = (� 1, . . . , � � ) with

�
p |� p| = n. Let P =

�
n P n andP � =

�
n P �

n.
For each� � C �

n andd � [ 1, n] we setP � = { � � P � ; l (� p) � � p} with
P �

d = P � � P �
d.

Let A � Y(�) be the box which lies in thei -th row and j -th column
of the diagram of� p. Consider the elementp( A) = p in [1, � ]. Given
QR,1, QR,2, . . . , QR,� � I , we setq-resQ( A) = q j Š i

R QR, p. For � , µ � P �

we writeq-resQ(µ Š �) = a if µ is obtained by adding a box of residuea to
the Young diagram associated with� .

We may writeq-ress( A) = q-resQ( A) and conts( A) = sp + j Š i , wheresp

is a formal symbol such thatq
sp
R = QR, p. We callq-ress( A) theshifted residue

of A and conts( A) its shifted content. We may also abbreviateQp = QR, p.
Let � be the group of� -th roots of 1 inC× . Let S d be the symmetric

group ond letters and� d be the semi-direct productS d � � d, where� d is
the Cartesian product ofd copies of� . The group� d is a complex re�ection
group. The set Irr(C� d) is identi�ed with P �

d in such a way that� is associated
with the moduleX (�) C induced from the� |� 1| × · · ·× � |� � |-module� � 1� � �
� � 2� � · · · � � � � � � Š1. Here� � p is the irreducibleCS |� p|-module associated
with the partition� p and� p is the one dimensional� |� p|-module given by the
p-th power of the determinant.

Note that this labeling agrees with [39, sec. 6], [46, sec. 1.5] but it differs
from that of [24, sec. 2.3.4].

3.4 Hecke algebras

3.4.1 Cyclotomic Hecke algebras

Write HR,0 = R. Ford � 1, theafÞne Hecke algebraHR,d is theR-algebra
generated byT1, . . . , TdŠ1, X± 1

1 , . . . , X± 1
d subject to the relations

(Ti + 1)(Ti Š qR) = 0,

Ti Ti + 1Ti = Ti + 1Ti Ti + 1,

Ti Tj = Tj Ti if |i Š j | > 1,

Xi X j = X j Xi ,

Xi XŠ1
i = XŠ1

i Xi = 1,

Ti Xi Ti = qRXi + 1,

Xi Tj = Tj Xi if i Š j �= 0, 1.
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Thecyclotomic Hecke algebrais the quotientHQ
R,d of HR,d by the two-sided

ideal generated by
� �

p= 1(X1 Š QR, p).

If � = 1, then theR-algebraHQ
R,d is generated byTi with i � [ 1, d). It does

not depend on the choice of the unitQR,1. In this case we writeH+
R,d = HQ

R,d.

Givens = (s1, . . . , s� ) as above, we writeHs
R,d = HQ

R,d. For anyd < d	,
the R-algebra embeddingHR,d � HR,d	 given by Ti �� Ti , X j �� X j
for i � [ 1, d), j � [ 1, d], induces an embeddingHs

R,d � Hs
R,d	 . The R-

algebraHs
R,d	 is free as a left and as a rightHs

R,d-module. This yields a pair of

exact adjoint functors(Indd	

d , Resd
	

d ) betweenHs
R,d	 -mod andHs

R,d-mod. For
d � d	 there is also an algebra embeddingH+

R,d � Hs
R,d	 given byTi �� Ti for

i � [ 1, d). It yields a pair of exact adjoint functors(Indd	,s
d,+ , Resd

	,s
d,+ ) between

H+
R,d-mod andHs

R,d	 -mod.
Now, assume thatR = K is a �eld. Any �nite dimensionalHs

K,d-moduleM
can be decomposed into (generalized) weight spacesM =

�
i� I d Mi , with

Mi = { v � M; (Xr Š i r )nv = 0, r � [ 1, d], n � 0}. See [6, sec. 4.1] and the
references there for details. Decomposing the regular module, we get a system
of orthogonal idempotents{1i ; i � K d} in Hs

K,d such that 1i M = Mi for each
�nite dimensional moduleM of Hs

K,d.
Given � � Q+ of heightd, we set 1� =

�
i� K � 1i . The nonzero 1� ’s are

the primitive central idempotents inHs
K,d, i.e., the algebraHs

K,� = 1� Hs
K,d is

either zero or a single block ofHs
K,d [4,30].

3.4.2 Degenerate cyclotomic Hecke algebras

In the same way we can consider thedegenerate Hecke algebra HR,d and the
degenerate cyclotomic Hecke algebra Hs

R,d introduced in [5]. We assume here
s � R� . The algebraHR,d is generated by elementst1, . . . , tdŠ1, x1, . . . , xd
subject to the relations

t2
i = 1,

ti ti + 1ti = ti + 1ti ti + 1,

ti t j = t j ti if |i Š j | > 1,

xi x j = x j xi ,

ti xi + 1 = xi ti + 1,

xi t j = t j xi if i Š j �= 0, 1.

The degenerate cyclotomic Hecke algebraHs
R,d is the quotient ofHR,d by the

two-sided ideal generated by the element
� �

p= 1(x1 Š sR, p).
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The representation theory ofHs
R,d is very similar to that ofHs

R,d. For
instance, ifR = K is a �eld then the primitive central idempotents inHs

K,d are
again labeled by the elements� � Q+ of heightd, which permits us to de�ne
Hs

K,� = 1� Hs
K,d as above. For any subsetI � K we setHs

I =
�

� � Q+
I

Hs
K,� ,

Hs
I ,d = Hs

I � Hs
K,d. See e.g. [6, sec. 3] for more details.

3.4.3 Representations

We will use the following properties ofHs
R,d andHs

R,d:

€ the R-algebrasHs
R,d andHs

R,d are both symmetric by [34], [5, app. A],
€ the K-algebraHs

K,d is split semi-simple if and only if

d	

i = 1

(1 + qK + · · · + qi Š1
K )

	

u<v

	

Šd< r < d

(qr
K QK,u Š QK,v ) �= 0. (3.1)

Now, set� = exp(2
�

Š1�/�) . If qK = 1 andQK, p = � pŠ1, thenHs
K,d

is the algebraK � d of the group� d. Therefore, ifHs
K,d is semi-simple, then

the set Irr(Hs
K,d) is canonically identi�ed with Irr(K � d) by Tits’ deformation

Theorem. For each� � P �
d, one can de�ne aSpecht module S(�) s,q

R of Hs
R,d

as in Sect.2.4.3, using the dominance order� on P �
d, cf Sect.3.5 below. It

is free overR, and specializes toX (�) C asqR �� 1 andQR, p �� � pŠ1. The
Specht modulesS(�) s

R of Hs
R,d with � � P �

d are de�ned similarly.
Now, assume thatR is an analytic deformation ring in the sense of Sect.5.1

below. SetI =
� �

p= 1 q
sp+ Z
R andI =

� �
p= 1(sp + Z). The multiplication by

qR and the shift by 1 equips the setsI , I with structures of quiversI (q), I1
as explained in Sect.3.1.

Proposition 3.1 Assume that R is a local ring.

(a) The blocksHs
R,� of Hs

R,d (resp. the blocks HsR,� of Hs
R,d) are labeled by

the elements� � Q+
I (resp.� � Q+

I ) of height d. We havekHs
R,� = Hs

k,�
andkHs

R,� = Hs
k,� for each�.

(b) Assume that the mapexp(Š2�
�

Š1 €/�) yields an isomorphism of quivers
� : I1 � I (q). Given an element� � Q+

I , let � denote also its image in

Q+
I . Then, we have an R-algebra isomorphism� R : Hs

R,�
�
� Hs

R,� such
that � R(S(�) s

R) � S(�) s,q
R for each�.

Proof Part (a) is obvious, because the primitive central idempotents ofHs
k,d,

Hs
k,d lift to Hs

R,d, Hs
R,d sinceR is henselian.

More precisely, given� in Q+
I k

or in Q+
Ik

, to lift the idempotent 1� in Hs
k,d,

Hs
k,d into an idempotent inHs

R,d, Hs
R,d, we �rst consider the idempotent in
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Hs
K,d, Hs

K,d given by the sum of all 1i ’s, with i in I d = I d
R or in I d = I d

R,
such that the residue class ofi in kd is a summand of� . Note that, although
there may be an in�nite number of such tuplesi, this sum contains only a �nite
number of non zero terms. A standard computation in linear algebra implies
that it belongs indeed toHs

R,d, Hs
R,d, yielding an idempotent which specializes

to 1� .
Now, we concentrate on part (b). Note that [6, sec. 3.5, 4.5], [40, §3.2.6]

yield a K-algebra isomorphism� K : Hs
K,�

�
� Hs

K,� . We will prove that the
isomorphism� K in [40] (which differs from the one in [6]) restricts to an
isomorphism� R : Hs

R,�
�
� Hs

R,� .
We have the following formulae

� Š1
K (1i) = 1j wherej = �( i),

� Š1
K (xr 1i) = ( j Š1

r Xr Š 1 + i r )1j ,

� Š1
K ((tr + 1)1i) = (Tr + 1)

Xr Š Xr + 1 Š jr
Xr Š q Xr + 1

1j if i r = i r + 1,

� Š1
K ((tr + 1)1i) = (Tr + 1)

Xr Š Xr + 1

Xr Š q Xr + 1 + jr
1j if i r = i r + 1 + 1,

� Š1
K ((tr + 1)1i ) = (Tr + 1)

� Š1
K (xr ) Š � Š1

K (xr + 1) Š 1

Xr Š q Xr + 1

Xr Š Xr + 1

� Š1
K (xr ) Š � Š1

K (xr + 1)
1j else.

Let P � Hs
R,d andP � Hs

R,d be theR-subalgebras generated by theXr ’s
and thexr ’s respectively. We may assume thatR is in general position. Then,
the K-algebrasHs

K,d, Hs
K,d are semi-simple, and the same is true forKP

and K P. Therefore, we havexr 1i = i r 1i and Xr 1j = jr 1j = �( i r )1j =
exp(Š2�

�
Š1� Š1

K (xr ))1j . We deduce that� Š1
K (P) = P.

Now, we have

� Š1
K (xr ) Š � Š1

K (xr + 1) Š 1

Xr Š q Xr + 1

= qŠ1XŠ1
r + 1

� Š1
K (xr ) Š � Š1

K (xr + 1) Š 1

exp(Š2�
�

Š1(� Š1
K (xr ) Š � Š1

K (xr + 1) Š 1)/�) Š 1
,

Xr Š Xr + 1

� Š1
K (xr ) Š � Š1

K (xr + 1)

= Xr + 1
exp(Š2�

�
Š1(� Š1

K (xr ) Š � Š1
K (xr + 1))/�) Š 1

� Š1
K (xr ) Š � Š1

K (xr + 1)
.

Therefore, both expressions are units inP. Hence� K restricts to an isomor-
phism� R : Hs

R,�
�
� Hs

R,� .
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The isomorphism� R(S(�) s
R) � S(�) s,q

R follows from the unicity of Specht
modules. ��

3.5 Cyclotomicq-Schur algebras

For each� � P �
d, we consider the elementsw� =

�
w� S �

Tw and

x� =
� �

p= 1
� ap

i = 1(Xi Š QR, p) whereap = | � 1| + · · · + | � pŠ1| and S �
is the parabolic subgroup ofS d associated with� . The R-algebraSs

R,d =
EndHs

R,d

� �
� w� x� Hs

R,d

�
is called thecyclotomic q-Schuralgebra [13].

The categorySs
R,d-mod is a highest weight category whose standard objects

are theWeyl modules W(�) s,q
R labeled by multipartitions� � P �

d. The highest
weight order is given by thedominance order� on P �

d. The algebraSs
R,d is

Ringel self-dual, see [37, prop. 4.3, cor. 7.3].
There is a double centralizer property forSs

R,d andHs
R,d which produces a

highest weight cover� s
R,d : Ss

R,d-mod � Hs
R,d-mod, called thecyclotomic

q-Schur functor[36, sec. 5], [39]. The Specht moduleS(�) s,q
R is the image of

W(�) s,q
R under this functor. IfR = K is a �eld, then theK-algebraSs

K,d is
semi-simple if and only if condition (3.1) holds.

Using Hs
R,d instead ofHs

R,d, we de�ne thedegenerate cyclotomic q-Schur
algebra SsR,d and the cyclotomicq-Schur functor� s

R,d : Ss
R,d-mod �

Hs
R,d-mod in a similar way. See [2,5] for details. All the results onSs

R,d
recalled above have direct analogues forSs

R,d, see e.g., [24, sec. 6.6]. In par-
ticular, the Specht moduleS(�) s

R is the image of the Weyl moduleW(�) s
R by

theq-Schur functor.

3.6 Categorical actions on abelian categories

Let C be an abelianR-category.

DeÞnition 3.2 A pre-categoriÞcation(or pre-categorical action) on C is a
tuple(E, F, X, T) where (E, F) is an adjoint pair of exact functorsC � C
andX � End(E), T � End(E2) are endomorphisms of functors such that
€ for eachd � N, there is anR-algebra homomorphism� Ed : HR,d �

End(Ed) given by Xk �� EdŠk X EkŠ1, Tl �� EdŠlŠ1T ElŠ1 for k �
[1, d], l � [ 1, d),

€ the functorE is isomorphic to a right adjoint ofF.

Remark 3.3Given a pair of adjoint functors(E, F), the adjunction yields
a canonicalR-algebra isomorphism End(Fd) = End(Ed)op for eachd �
N, see e.g., [9, sec. 4.1.2]. Under this isomorphism, the morphismsX, T
yield morphismsX � End(F), T � End(F2) which induces anR-algebra
homomorphism� Fd : HR,d � End(Fd)op.
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Now, assume thatR = K is a �eld and thatC is Hom-�nite. Let I = I (q).

DeÞnition 3.4 [9,40] An slI -categoriÞcation(or categorical action) onC is
the datum of a pre-categori�cation(E, F, X, T) and a decompositionC =�

� � X C� . For i � I let Fi , Ei be the generalizedi -eigenspaces ofX acting
on F, E respectively. We assume in addition that

€ we haveF =
�

i � I Fi andE =
�

i � I Ei ,
€ the action ofEi , Fi , i � I on [C ] gives an integrable representation of

slI ,
€ we haveEi (C� ) � C� + � i andFi (C� ) � C� Š � i .

Remark 3.5The constructions above have a degenerate analogue. GivenI �
R and slI as above, the de�nition of a pre-categori�cation and of anslI -
categori�cation is the same, withHR,d replaced byHR,d andslI by slI . In
particular, for eachd � N there is anR-algebra homomorphism� Ed : HR,d �
End(Ed) given byXk �� EdŠk X EkŠ1, Tl �� EdŠlŠ1T ElŠ1.

Example 3.6Let R = K be a �eld which is an analytic algebra, see Sect.5.1.
Let s be as in Sect.3.3, and	 = 	 s =

� �
p= 1 	 Qp. Let Hs

I ,d =
�

� Hs
K,� ,

where� runs over elements ofQ+
I of heightd.

The abelianK -categoryL (	) I =
�

d� N Hs
I ,d-mod decomposes as

L (	) I =
�

� � Q+
I

L (	) I ,	 Š � with L (	) I ,	 Š � = Hs
K,� -mod.

The endofunctorsE =
�

d� N Resd+ 1
d andF =

�
d� N Indd+ 1

d of L (	) I
are exact and biadjoint. The right multiplication onHs

I ,d+ 1 by Xd+ 1 yields

an endomorphism of the functor Indd+ 1
d , denoted again byXd+ 1. The right

multiplication byTd+ 1 yields an endomorphism of Indd+ 2
d . We de�ne X �

End(F) andT � End(F2) by X =
�

d� N Xd+ 1 andT =
�

d� N Td+ 1.
The tuple (E, F, X, T) and the decomposition above give anslI -

categori�cation ofL(	) (the simpleslI -module with highest weight	 ) on
L (	) I , called theminimalslI -categoriÞcationof highest weight	 .

In the degenerate case, the induction and restriction functors give an abelian
slI -categori�cation ofL(	) on L (	) I =

�
d� N Hs

I ,d-mod, called again the
minimal slI -categori�cation of highest weight	 .

4 The categoryO

Fix integers�, N � 1 and �x a composition� � C �
N,+ .

4.1 Deformation rings

A deformation ringis a regular commutative noetherianC-algebraR with 1
equipped with aC-algebra homomorphismC[C× × C� ] � R. Let � R, � R, p
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be the images inRof the standard coordinatesz, z1, . . . , z� onC× andC� . Set
� R = (� R,1, . . . , � R,� ). De�ne sR,1, . . . , sR,� � R by sR, p = � p + � R, p. We
may abbreviatesp = sR, p, � = � R and� p = � R, p. For anyS-point� : R � S
we write� S = �(� R) and� S, p = �(� R, p).

A local deformation ringis a deformation ringR which is a local ring such
that the residue class� k, p of � R, p is 0 for eachp. We will denote byŠe the
residue class� k of � R. We will always assume that e is a positive integer.

Remark 4.1Let R be a deformation ring. Then, for eachp � P , the local ring
Rp is regarded as a deformation ring with deformation parameters� Rp , � Rp . It
may not be a local deformation ring, since we may have� R, p /� p.

We will say that the deformation ringRis ingeneral positionif the elements
in {� R,u Š � R,v + a � R + b, � R Š c; a, b � Z, c � Q, u �= v} are pairwise
coprime.

Example 4.2Given a tuple� = (� 1, . . . , � � ) in C� , we have the deformation
ring C[C× × C� ] � R = C[�, �, � Š1] such thatz �� � andzp �� � p � . It is
in general position if� is generic.

4.2 Lie algebras

Let R be a deformation ring.
SetgR = glR,N . Let U(gR) be the enveloping algebra (overR) of gR. Let

tR � bR � gR be the diagonal torus and the Borel Lie subalgebra of upper
triangular matrices. LetpR,� � gR be the parabolic subalgebra spanned bybR
and the Levi subalgebramR,� = glR,� 1 � · · · � glR,� �

.
Let ei , j � gR be the(i , j )-matrix unit, and setei = ei ,i . Let (� i ) be the

basis oft�R dual to(ei ). It identi�es t�R with RN . In a similar way we identify
tR = RN .

Let �, � + be the sets of roots ofgR andbR. We say that� is regular if
mR,� = tR. Let � � be the set of roots ofmR,� . Set� +

� = � + � � � .
The dot action of the Weyl groupW ont�R is given byw€� = w(� + �) Š � ,

where� = (0, Š1, . . . , 1 Š N). Two weights arelinked if they belong to the
same orbit of the€-action.

Consider the partition[1, N] = J �
1 � J �

2 � · · · � J �
� given byi p = 1+ � 1 +

· · · + � pŠ1, j p = i p+ 1 Š 1 and J �
p = [ i p, j p] For eachk � J �

p we de�ne

pk = p. Set detp =
�

i � J �
p

� i and det=
� �

p= 1 detp.

The weights in the subsetP = ZN of PR = RN are calledintegral weights.
Given a subsetS � R, we write S� = { � � SN ; � i Š � i + 1 � N, � i �=
j1, j2, . . . , j� }. We call P�

R = R� the set of the� -dominantweights inPR.
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An � -partition� � P � can be viewed as an element inN� by adding zeroes
to the right of each partition� p such thatl (� p) � � p, i.e., we identify the� -
partition� = (� 1, � 2, . . . , � � ) with the N-tuple(� 10� 1Šl (� 1) · · · � � 0� � Šl (� � )).

Similarly, we can view the tuple� R � R� as a weight inPR by identifying
it with � R =

�
p � R, p detp. To simplify we may abbreviate� = � R.

Set� � = (� 1, � 1 Š 1, . . . , 1, . . . , � � , � � Š 1, . . . , 1). So, we have� � + � =
(s1, s1 Š 1, . . . , � R,1 + 1, s2, s2 Š 1, . . . , � R,2 + 1, . . . , � R,� + 1). We identify
the set of� -partitionsP � with a subset ofP�

R via the injective map

� : P � � P� + �, � �� � + � � + � Š �. (4.1)

The Casimir elements are� =
� N

i, j = 1 ei j � ej i and cas=
� N

i, j = 1 ei j ej i .
We may write� N = �, casN = cas to avoid confusions.

4.3 DeÞnition of the categoryO

A tR-moduleM is called aweighttR-moduleif it is a direct sum of itsweight
submodules M� = { m � M; xm = �( x)m, x � tR} as� runs overPR. Let
O�

R be theR-category of �nitely generatedU(gR)-modules which are weight
tR-modules and such that the action ofU(pR,� ) is locally �nite over R.

For � � P�
R, we consider theU(mR,� )-moduleV(�) R,� = V(� 	)C,� �

R� Š � 	 , where� 	 � P� is such that� Š � 	 is a character ofmR,� , R� Š � 	 is R,
equipped with the representation ofmR,� given by this character, andV(� 	)C,�
is the �nite-dimensional simplem� -module with highest weight� 	. We view
V(�) R,� as apR,� -module and de�ne the parabolic Verma moduleM(�) R,� =
U(gR) � U(pR,� ) V(�) R,� . If � is regular, we abbreviateM(�) R = M(�) R,� .

For � � P�
K , let L(�) K be the unique simple quotient ofM(�) K,� .

Let O�
R,� be the full subcategory ofO�

R consisting of the modules whose
weights belong toP+ � . Note thatM(�) R,� � O�

R,� if and only if � � P� + �,
and thatO�

K,� is the Serre subcategory ofO�
K generated by all the simple

modulesL(�) K with � � P� + � . For� � P � we set�(�) R,� = M(� (�)) R,� .
If R = C or if � = 0 we drop the subscriptsR or � from the notation.

4.4 DeÞnition of the categoryA

Let R be a deformation ring. Assume thatR is either a �eld or a local ring.
The categoryO�

R,� is a highest weightR-category with �( O�
R,� ) =

{M(�) R,� ; � � P� + � }. If R is a local ring with residue �eld k, the spe-
cialization at k identi�es the poset�( O�

R,� ) with �( O�
k,� ).

The partial order is given by theBGG-orderingon P�
R, which is the smallest

partial order such that� � � 	 if [M(� 	)k,� : L(�) k] �= 0. It is equivalent to
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the linkage orderingon P�
R, which is the transitive and re�exive closure of

the relation such that� is smaller than� 	 if and only if there are� � �(� 	),
w � W� such that� /� � � and� = ws� € � 	 � � 	 Š N� + modulom 
PR. We
will use the orderings interchangeably in the rest of the text.

DeÞnition-Proposition 4.3 Assume that� k,u Š � k,v /� N× for each u< v .
There are unique highest weight R-subcategories A�

R,� , A�
R,� {d} of O�

R,� with
�( A�

R,� ) = { �(�) R,� ; � � P � } and�( A�
R,� {d}) = { �(�) R,� ; � � P �

d }.

Proof It is enough to assume thatR = K is a �eld and to prove that�( A�
K,� )

is an ideal of the poset�( O�
K,� ). To do so, we must check that if� � P � ,

µ � P� + � and� � � \ � � , w � W� are such thatµ = ws� € � (�) and
� (�) Š µ � N� + , then we haveµ � � ( P � ). Write � = � k,l with k < l
andk = iu + x � ju, l = iv + y � jv. For eacha, b � K we writea > b if
and only ifa Š b � N× . Then, we haveu < v and

� k + sK,u Š x > � l + sK,v Š y, (4.2)

where� is viewed as aN-tuple(� 1, � 2, . . . , � N). We have

{(µ + �) a; iu � a � ju} = { � a + sK,u Š (a Š iu); iu � a � ju, a �= k}

�{ � l + sK,v Š y},

{(µ + �) b; iv � b � jv} = { � b + sK,v Š (b Š iv); iv � b � jv, b �= l }

�{ � k + sK,u Š x}.

To prove thatµ � � ( P � ), we must check that

min{(µ + �) a; iu � a � ju} � � K,u + 1,

min{(µ + �) b; iv � b � jv} � � K,v + 1.

By (4.2) and the assumption in the lemma, we have� K,v Š � K,u � N. Hence,
the �rst inequality is true, because for any� � P � , iu � a � ju, we have
� a + sK,u Š (a Š iu) � � K,u + 1, and� l + sK,v Š y � � K,v + 1 � � K,u + 1.
Now, to prove the second one, observe that by (4.2) we have

min{(µ + �) b; iv � b � jv} � min{� b + sK,v Š (bŠ iv); iv � b � jv} � � K,v + 1.

��

4.5 The categorical action onO

Let VR be the natural representation ofgR on RN . Let V �
R = HomR(VR, R)

be the dual representation. We have a pre-categorical action(e, f, X, T) on
O�

R,� such that
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e(M) = M � R V �
R, f (M) = M � R VR,

XM � End( f (M)) is the left multiplication by the Casimir element� , and
TM � End( f 2(M)) is the left multiplication by 1� � , see e.g. [5, sec. 3.4].

Now, assume thatR = K is a �eld. SetI = { � K,1, . . . , � K,� } + Z.
For eachµ � P� + �, we write wt(µ) =

� N
k= 1 �  µ+ �,� k". We have wt(µ) �

X I if and only if  µ, � k" � I for all k. Note that wt(µ) =
�

i � I (mi (µ) Š
mi + 1(µ)) 	 i , wheremi (µ) =  {k � [ 1, N];  µ + � ; � k" = i }.

For each� � X I , let O�
K,�,� � O�

K,� be the Serre subcategory generated by
the modulesL(µ) K such thatµ � P� + � and wt(µ) = � . The linkage principle
yields the decompositionO�

K,� =
�

� � X I
O�

K,�,� . This decomposition yields
anslI -categorical action onO�

K,� .
Let VI be the natural representation ofslI . It is a representation with the

basis{vi ; i � I }. We have the following formulas, see, e.g. [5, lem. 4.3].

Proposition 4.4 For �, µ � P�
K we write�

i
� µ if µ + � is obtained from

� + � by replacing an entry equal to i by i+ 1.
(a) fi (M(�) K,� ) has a� -Þltration with sections of the form M(µ) K,� , one

for eachµ such that�
i

� µ,
(b) ei (M(�) K,� ) has a� -Þltration with sections of the form M(µ) K,� , one

for eachµ such thatµ
i

� �,
(c) the elements[L(µ) K ], [M(µ) K,� ] in [O�

K,� ] are homogeneous of weight
wt(µ),

(d) as anslI -module, we have[O�
K,� ] =

� �
p= 1

� � (VI ).

4.6 DeÞnition of the functor�

Recall thatR is a deformation ring which is either a �eld or a local ring.
Let h : A�

R,� � O�
R,� be the canonical embedding. Its left adjoint ish� .

Consider the endofunctorsE, F of A�
R,� given byE = h� ehandF = h� f h.

Since f preserves the subcategoryA�
R,� , we haveF = f |A�

R,�
. SoF is exact

and(E, F) is an adjoint pair. Further, the endomorphismsX, T of f, f 2 yield
endomorphisms ofF, F2.

Next, consider the moduleTR,d = T �
R,� {d} = f d(�( #)R,� ) in A�

R,� {d}. The
algebra homomorphism� f d factors through anR-algebra homomorphism [5,
lem. 3.4]

! s
R,d : Hs

R,d � EndA�
R,�

(TR,d)op = EndO�
R,�

(TR,d)op.

Composing HomA�
R,�

(TR,d, €) with the pullback by! s
R,d we get a functor

� s
R,d : A�

R,� � Hs
R,d-mod.
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Remark 4.5To avoid confusions we may writeA�
R,� (N) = A�

R,� , TR,d(N) =
TR,d.

Remark 4.6For eachp � P , the pre-categori�cation(e, f, X, T) on O�
R,�

yields a pre-categori�cation onO�
Rp ,� andO�

kp ,� by base-change. It yields also
a tuple(E, F, X, T) on A�

Rp ,� and A�
kp ,� as above. In particular, this yields

a moduleTRp ,d in A�
Rp ,� , an Rp-algebra homomorphism! s

Rp ,d : Hs
Rp ,d �

EndA�
Rp ,�

(TRp ,d)op, and a functor� s
Rp ,d : A�

Rp ,� {d} � Hs
Rp ,d-mod.

Now, assume thatR = K is a �eld and recall the following.

Proposition 4.7 [5] Let � K,u Š � K,v /� Z× all u, v.

(a) Assume that� p � d for all p. Then, the map! s
K,d is a K -algebra isomor-

phism Hs
K,d � EndA�

K,�
(TK,d)op.

(b) Assume that� is either dominant or anti-dominant. Then, the category
A�

K,� is a sum of blocks ofO�
K,� , the functors E, F are biadjoint, the

module TK,d is projective in A�K,� and a simple module of A�K,� is a
submodule of a parabolic Verma module if and only if it lies in the top of
TK,d.

(c) Assume that� K,u Š � K,v �= 0 for all u �= v and that� p � d for all p.
Then, the category A�K,� is split semi-simple. Assume further that� is either
dominant or anti-dominant. Then� s

K,d is an equivalence of K -categories
which maps�(�) K,� to S(�) s

K .

Proof For � dominant, part (a) is proved in [5, thm. 5.13, cor. 6.7]. For non-
dominant�, a proof is given in [4, lem. 5.5] using [5]. It can also be proved
using [40, lem. 5.4].

Part (b) is proved in [5]. For instance, the bi-adjointness ofE, F is obvi-
ous becauseA�

K,� is a sum of blocks ofO�
K,� , and to prove the third claim

one checks �rst thatTK,0 is projective and then that the functorF preserves
projective modules. The last claim of (b) is proved in [5, thm. 4.8].

The �rst statement of (c) follows from the linkage principle. By [5, lem. 4.2],
the moduleTK,d is a projective generator in this case. Therefore, the functor
� s

K,d is an equivalence ofK -categories. It maps�(�) K,� to S(�) s
K by [5,

thm. 6.12]. ��

Remark 4.8Assume that� p � d and � K,u Š � K,v /� Z× for eachp, u, v.
Then, the tuple(E, F, X, T) de�ne a pre-categorical action onA�

K,� .

4.7 The categoryA with � = 2

If � K,u Š � K,v � Z< 0 for someu < v , then the categoryA�
K,� is well de�ned

but it may not be a sum of blocks ofO�
K,� . In this section we generalize
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Proposition4.7in order to allowintegraldeformation parameters. To simplify,
we’ll assume that� = 2. This is enough for our purpose. Similar results can
be obtain for arbitrary� . Note that, for� = 2, the composition� is always
either dominant or anti-dominant.

The aim of this section is to prove the following.

Proposition 4.9 Assume that� = 2, � 1, � 2 � d and� K,1 Š � K,2 /� N× . Put
s = � + � . Then, the following hold

(a) ! s
K,d is an isomorphism HsK,d � EndA�

K,�
(TK,d)op,

(b) TK,d is projective in A�K,� ,
(c) a simple module of A�K,� is a submodule of a parabolic Verma module if

and only if it lies in the top of TK,d.

In order to prove this, we �rst prove the following.

Proposition 4.10 Assume that� = 2, � 1, � 2 � d and� K,1 Š � K,2 � Z< 0.
Set� 	 = (� 	

1, � 	
2) and � 	

K = (� 	
K,1, � 	

K,2) with � 	 = � + (0, 1), � 	
K = � K Š

(0, 1). Put s = � + � and s	 = � 	 + � 	. Then, we have s= s	 and there
is an equivalence of highest weight categories A�

K,� {d} � A� 	

K,� 	 {d} which

intertwines the morphisms! s
K,d, ! s	

K,d and the functors� s
K,d, � s	

K,d.

Proof The proof is rather long and consists of several steps.
Write g = glK,N , g	 = glK,N+ 1 andeN+ 1 = diag(0, . . . , 0, 1). Set also

n =
� N

i = 1 KeN+ 1,i andu =
� N+ 1

i = 1 Kei ,N+ 1.
Fix " � K . Let g-Mod be the category of allg-modules. We de�ne the

functors

R : g	-Mod � g-Mod, M �� KerM (eN+ 1 Š ")

I : g-Mod � g	-Mod, M �� U(g	) � U(p) (M � K K" )

wherep = pK,N,1 is the standard parabolic of type(N, 1) and K" is the
obviousglK,1-module. Letm = mK,N,1 be the Levi subalgebra ofp.

Let C� " � g	-Mod be the full subcategory of modules for whicheN+ 1 is
semi-simple with weights in" + N. The functorR restricts to an exact functor
C� " � g-Mod, and sinceU(g	) = K [n] � K U(p), the functorI takes values
in C� " .

Lemma 4.11 The functorI : g-Mod � C� " is exact, fully faithful, and is
left adjoint toR : C� " � g-Mod.

Proof Let us �rst prove the adjointness. GivenM � g-Mod, L � g	-Mod,
we have Homg	 (I (M), L) � Homg(M, Homn̄(K" , L)). If L � C� " , then
we have Hom̄n(K" , L) = HomKeN+ 1(K" , L). We deduce that there is an
isomorphism Homg	 (I (M), L) � Homg(M, R (L)). SoI is left adjoint toR .
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Now, let us prove the fully faithfulness ofI . We haveU(g	) � U(u) K =
K[n] � K U(g) as(m, g)-bimodules. The leftm-action comes from the adjoint
action ofKeN+ 1 onn and the diagonal adjoint action ofg. The rightg-action
is the opposite of the adjoint action ofg on itself. We haveI (M) � K [n] � K
(M � K K" ) as anm-module. We deduce that the unit 1� RI is invertible.

��

Lemma 4.12 LetA , A 	 be two abelian artinian categories, andI : A � A 	

a fully faithful functor with an exact right adjointR . Then, the following hold

(a) the full subcategoryIm(I ) of A 	 is extension closed,
(b) if R induces an isomorphism[A ] � [ A 	] thenR , I are inverse equiva-

lences of categories.

Proof The functorI is a right exact, henceIR is also right exact. Given an
exact sequence 0� I (M) � L � I (M 	) � 0 in A 	 with M, M 	 � A , we
obtain a commutative diagram whose rows are exact sequences

0 ��I (M) ��L ��I (M 	) ��0

IRI (M) ��

��

IR (L) ��

��

IRI (M 	) ��

��

0.

The vertical maps are given by the counitIR � 1. SinceI is fully faithful,
the unit 1 � RI is an isomorphism. Thus, the left and right vertical maps
are invertible. It follows that the two sequences are actually isomorphic, hence
Im(I ) is extension-closed. This proves part (a).

To prove (b), since 1� RI , it is enough to check that the counit is an
isomorphismIR � 1. SinceR is exact and sinceRIR

�
� R by adjunction,

for eachM � A the kernel and the cokernel ofIR (M)
�
� M are killed byR .

Hence their classes in the Grothendieck groups are 0. Hence they are both 0.
��

Corollary 4.13 The full subcategoryIm(I ) of C� " is extension-closed and
I , R induce inverse equivalencesg-Mod � Im(I ).

Let t, t	 be the Cartan subalgebras ofg, g	. Set PK = t� , P	
K = (t	)� .

We abbreviateO = OK (N) and O	 = OK (N + 1). Given � � PK , let
M(�) = M(�) K be the corresponding Verma module inO. For � 	 � P	

K , we
de�ne M(� 	) � O	 similarly.

We haveI (M(�)) � M(� 	), where � 	 = � + "� N+ 1. Thus, we have
R M(� 	) � RI (M(�)) � M(�). We deduce thatI , R are inverse equiva-
lences between the category of� -�ltered g-modules inO and the category of
g	-modules which are extensions of objectsM(� 	) with � 	 � PK + "� N+ 1.
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Now, �x d, �, � 	, � K , � 	
K as in Proposition4.10. Put " = � 2,K + N. We

abbreviateO� = O�
K (N) andO� 	

= O� 	

K (N + 1). Write alsoA = A�
K,� (N)

and A	 = A� 	

K,� 	 (N + 1). Let � , � 	 be the maps (4.1) associated with the

parabolic categoriesO� , O� 	
. For� � P�

K , � 	 � P� 	

K let M(�) � , M(� 	)� 	 be the
parabolic Verma modulesM(�) K,� , M(� 	)K,� 	 in O� , O� 	

.
Consider the sets of weightsE(d) = { � (�) ; � � P 2

d} and E	(d) =
{� 	(�) ; � � P 2

d} in P�
K , P� 	

K respectively. Since� 1, � 2 � d, we have an
isomorphism of posetsE(d) � E	(d) such that� �� � 	 = � + "� N+ 1.

Let Q : O � O� be the functor sending a module to its largest quotient
in O� . This is the left adjoint to the inclusion functorO� � O. We de�ne
Q	 : O	 � O� 	

in the same way.

Lemma 4.14 The functorsQ	I , R induce inverse equivalences of highest cat-
egories A{d} � A	{d}.

Proof Let � � P�
K and� 	 = � + "� N+ 1. Assume� 	 � P� 	

K . Let {� i ; i � I � }
be the set of simple roots in� +

� . There is an exact sequence


i � I � 	

M(si € � 	) � M(� 	) � M(� 	)� 	 � 0.

We havesi € � /� P�
K for i � I � , henceQM(si € �) = 0. So, fori �= n we have

QR M(si € � 	) � QR M(si € � + "� N+ 1) � QRI M(si € �) � QM(si € �) = 0.

On the other hand, we haveR M(sN €� 	) = 0 becauseM(sN €� 	) � C>" . Since
QR is right exact, this yields an isomorphismQR M(� 	)� 	 � QR M(� 	). Note
thatR restricts to a functorO� 	

� C� " � O� . We deduce that

R M(� 	)� 	 � QR M(� 	)� 	 � QR M(� 	) � QM(�) � M(�) � .

Thus,R restricts to an exact functorA	{d}� � A{d}� . SinceA	{d}� contains
a progenerator forA	{d}, R is right exact andA{d} is preserved under taking
quotients, we deduce thatR restricts to an exact functorA	{d} � A{d}. For
a future use, note also thatR yields an isomorphism[ A	{d}] � [ A{d}].

LetS be the endofunctor ofO	 sending a module to the quotient by its largest
submodule on whicheN+ 1 doesn’t have the eigenvalue" . Let us consider the
functorSI onO. It is right exact and takes values inC� " . ForN � O, the mod-
uleSI (N) is the quotient ofI (N) by its largest submodule contained inC>" .
SinceR is exact and vanishes onC>" , we deduce that 1� RI � RSI onO.

Next, for � � E(d) the counitIR � 1 yields a mapI M(�) � � M(� 	)� 	

which is obviously surjective. LetM be its kernel. Applying the exact functor
R to the exact sequence 0� M � I M(�) � � M(� 	)� 	 � 0 yields the
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exact sequence 0� R (M) � M(�) � � M(�) � � 0. We deduce that
R (M) = 0. SinceM � C� " , this implies thatM � C>" . Thus, applying the
right exact functorS to the exact sequence above yields the isomorphism
SI M(�) � � SM(� 	)� 	 . Now, the constituents ofM(� 	)� 	 have a highest
weight of the formµ 	 for someµ � t� , becauseM(� 	)� 	 � A	{d}. Hence, the
only submodule ofM(� 	)� 	 contained inC>" is 0. SoSM(� 	)� 	 � M(� 	)� 	 ,
henceSI M(�) � � M(� 	)� 	 .

Now, consider an exact sequence 0� M1 � M � M2 � 0 in
A{d}� . SinceSI is right exact, we have an exact sequenceSI (M1) �
SI (M) � SI (M2) � 0. By induction on the length of a� -�ltration, we have
SI (M1), SI (M2) � A	{d}. Thus, the image of the mapSI (M1) � SI (M)
lies in A	{d}, henceSI (M) � A	{d}. We deduce thatSI ( A{d}� ) � A	{d}.
SinceA{d}� contains a progenerator forA{d}, SI is right exact andA	{d}
is preserved under taking quotients, we deduce thatSI restricts to a functor
A{d} � A	{d}.

Finally, let us consider the functorQ	I . SinceR takesO� 	
� C� " to O� ,

the functorQ	I : O� � O� 	
� C� " is left adjoint toR . SoQ	I is right exact

and we have an exact sequence



i � I �

M(si € �) � M(�) � M(�) � � 0.

Sincesi €� 	 /� P� 	

K for i � I � , we haveQ	 M(si €� 	) = 0, henceQ	I M(si €�) �
Q	 M(si € � 	) = 0. We deduce that

Q	I M(�) � � Q	I M(�) � Q	 M(� 	) � M(� 	)� 	 .

Therefore, sinceQ	I is right exact andQ	I M(�) � � M(� 	)� 	 , the same argu-
ment as forSI , see above, implies thatQ	I restricts to a functorA{d} � A	{d}
which is left adjoint toR .

Next, we compare the functorsQ	I , SI on A{d}. For eachN � A{d} we
write SI (N) = I (N)/ L andQ	I (N) = I (N)/ M. Sinced < � 	

2 = � 2 + 1
andQ	I (N) � A	{d}, the constituents ofQ	I (N) are inC� " \ C>" . Hence,
the constituents ofI (N) which are inC>" are contained inM. SinceL � C>" ,
we deduce thatL � M. Thus we have an epimorphismSI � Q	I on A{d}.
Hence, sinceR is exact, the isomorphism 1� RSI and the unit 1� RQ 	I
yield a commutative triangle

1
� ��

		���
���

���
RSI

����
RQ 	I ,
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from which we deduce that the unit is surjective. Now, by adjunction, com-
posing the unit and counit gives the identityR � RQ 	IR � R . Hence the
unit is injective, hence is an isomorphism, on Im(R ). But, since 1� RSI , the
functorR : A	{d} � A{d} is essentially surjective. We deduce that 1� RQ 	I
on A{d}.

Therefore, the functorR : A	{d} � A{d} is exact and yields an isomor-
phism[ A	{d}] � [ A{d}], while Q	I : A{d} � A	{d} is a fully faithful left
adjoint. Hence, Lemma4.12shows thatQ	I , R are inverse equivalences of
categories. ��

Recall the setI = { � K,1, . . . , � K,� } + Z.

Lemma 4.15 The functorsQ	I , R between A{d}, A	{d} commute with
Ei , Fi , X, T (whenever Ei , Fi , i � I , make sense).

Proof SinceQ	I , R are inverse equivalences, it is enough to consider the case
of R . Next, since(E, F) is an adjoint pair, by unicity of the left adjoint, it
is enough to consider the case of the functorF. Let VN =

� N
i = 1 Kvi . Let

M � g	-Mod.
If M � C� " , then VN+ 1 � K M � C� " and the decompositionVN+ 1 =

VN � KeN+ 1 yields an isomorphismR (VN+ 1 � K M) = VN � K R (M),
because KerM (eN+ 1 Š " + 1) = 0. So, we have an isomorphism of functors
R 
 f � f 
 R : C� " � g-Mod. SinceR takesA	{d} to A{d}, and sincef
preserves the categoriesA, A	, this yields an isomorphism of functorsR 
 f �
f 
 R : A	{d} � A{d + 1}. We deduce that the functorsFi {d} : A	{d} �
A	{d + 1} andFi {d} : A{d} � A{d + 1} are intertwined byR whenever they
are de�ned (i.e., ifi � I \ { " Š N + 1}).

Let i : VN � M � VN+ 1 � M be the canonical inclusion andp : VN+ 1 �
M � VN � M be the canonical projection. We havep 
 � N+ 1 
 i = � N . It
follows that the action ofX commutes with the isomorphismR 
 f

�
� f 
 R .

It is clear that the induced isomorphismR 
 f 2 �
� f 2 
 R commutes with the

action ofT. ��

This �nishes the proof of Proposition4.10. ��
Now, we can prove Proposition4.9.

Proof of Proposition4.9 We may assume that� K,1Š � K,2 � Z< 0. Set� 	
1 = � 1,

� 	
K,1 = � K,1, � 	

2 = � 2+ � K,2Š � K,1 and� 	
K,2 = � 	

K,1. Recall thats = � + � and
s	 = � 	 + � 	. By Proposition4.10, there is an equivalence of highest weight
categories� : A�

K,� {d} � A� 	

K,� 	 {d} which intertwines the morphisms! s
K,d,

! s	

K,d and the functors� s
K,d, � s	

K,d. In particular, we have�( TK,d) = TK,d, see

the proof of Proposition4.10. Now, we can apply Propositions4.7to A� 	

K,� 	 {d},
because� 	

K,1 = � 	
K,2. This proves the proposition. ��
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Remark 4.16Under the hypothesis in Proposition4.9, the tuple(E, F, X, T)
is a pre-categorical action onA�

K,� .

4.8 The categoriesA and O of a Levi subalgebra

Fix a pair of distinct elementsu, v � [ 1, � ]. We will represent an(� Š 1)-
tuple a as a collection of elementsa€, ap with p � [ 1, � ] \ { u, v}. If a is
an � -tuple of elements of a ring we writea
 = (au, av) anda€ = au + av.
Finally, we consider the positive root system� +

�, u,v = � + � � �, u,v with
� �, u,v =

�
� k,l ; pk = pl or( pk, pl ) = (u, v), (v, u)

�
.

We will be interested by two types of Levi subalgebras ofgR:

€ �rst, we have the Lie subalgebramR,� associated with� � ,
€ next, we have the Lie subalgebramR,�, u,v associated with� �, u,v .

Note that the Levi subalgebramR,�, u,v may not be standard. To each of these
Lie algebras we associate a module category. To do so, �x a composition#p
of � p for eachp.

First, for each tuplea = (ap) � N� we write P{a} = { � � P;  �, detp" =
ap, � p} and P� {a} = P� � P{a}. Consider the categories ofmR,� -modules
given by (the tensor product is overR)

O#
R,� (�) =

��

p= 1

O
#p
R,� p

(� p), O#
R,� (�) {a} =

��

p= 1

O
#p
R,� p

(� p){ap}. (4.3)

Next, for each tuplea = (a€, ap) � N� Š1, we set P{a} = { � �
P;  �, det€" = a€,  �, detp" = ap} and P� {a} = P� � P{a}. Consider
the categories ofmR,�, u,v -modules given by

O#
R,� (�, u, v) = O#


R,� 

(� €) � R

�

p�=u,v

O
#p
R,� p

(� p), (4.4)

O#
R,� (�, u, v){a} = O#


R,� 

(� €){a€} � R

�

p�=u,v

O
#p
R,� p

(� p){ap}. (4.5)

We will be mainly interested by the two extreme cases where#p = (� p)
for each p, or where#p = (1� p) for each p. In the �rst case, we get the
categoriesO�

R,� (�) , O�
R,� (�, u, v), in the second one we get the categories

OR,� (�) , OR,� (�, u, v).
We will also use highest weight subcategoriesA�

R,� (�) � O�
R,� (�) and

A�
R,� (�, u, v) � O�

R,� (�, u, v) which are de�ned as in De�nition4.3. They
decompose in a similar way as in (4.3)–(4.5). We will write �( A�

R,� (�)) =
{�(�) R,� ; � � P � } and�( A�

R,� (�, u, v)) = { �(�) R,� ; � � P � }, hoping it
will not create any confusion.
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Using (4.3), (4.4) and the pre-categori�cation(e, f, X, T) on O�
R,� intro-

duced in Sect.4.5, we de�ne a pre-categori�cation(e, f, X, T) on O�
R,� (�) ,

O�
R,� (�, u, v) such that, in both cases, the functorse, f are the direct sums of

the functorse, f of each of the factors.
Next, using the canonical embeddings we de�ne tuples(E, F, X, T) on

A�
R,� (�) andA�

R,� (�, u, v) as in Sect.4.6.

5 The category O

Fix integers�, N � 1 and �x a composition� � C �
N,+ . Recall thatgR = glR,N .

Let Rbe a deformation ring. Thus, we have elements� R � R× and� R, p � R
for p � [ 1, � ]. For eachp, we de�nesR, p � R by sR, p = � p + � R, p.

We may abbreviate� = � R, sp = sR, p and� p = � R, p.

5.1 Analytic algebras

Fix an integerd � 1.
Fix a compact polydiscD � Cd. Here, we viewCd as a Stein analytic space.

By ananalytic algebrawe’ll mean the localizationR of the ring of germs of
holomorphic functions onD with respect to some multiplicative subset. See
[1,25] for more details on analytic algebras. The following properties hold

€ R is a noetherian regular ring of dimensiond,
€ R is a UFD, hence every height 1 prime ideal is principal,
€ for any maximal idealm � M , the localizationRm of R is a henselian local

C-algebra.

Since R is an analytic algebra, for any entire functionf =
�

n� N anzn

on C and for anyx � R, the series
�

n� N anxn is convergent and de�nes an
elementf (x) in R. In particular, we have a well-de�ned element exp(x) � R.
Analogously, for any analytic functionf : [0, 1] � Mn(R) and for any
v � Rn, there is a unique analytic functionv(t) on [0, 1] with values inRn

such thatv(0) = v anddv(t)/ dt = f (t)v(t).
An analytic deformation ringis an analytic algebraR which is also a defor-

mation ring. Then, we may view� R, � R, p as germs of holomorphic functions
on D. We will alwaysassume that� R(D) � C \ R� 0. Thus, for any closed
point R � C the element� C belongs toC \ R� 0.

Note that ifR is an analytic algebra of dimension� 2, then we can always
choose some deformation parameters� R, � R, p such thatR is in general posi-
tion.

For an analytic deformation ringR we write qR = exp(Š2�
�

Š1/� R)
and QR, p = q

sp
R = exp(Š2�

�
Š1sR, p/� R). We may abbreviateq = qR,

Qp = QR, p and� = � R.
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5.2 AfÞne Lie algebras

5.2.1 Notations

Let LgR = g � R[t, tŠ1] and letg	
R be the Kac–Moody central extension of

LgR by R. Let 1 be the canonical central element and let$ be the derivation
of g	

R acting ast$t on LgR and acting trivially on1.
PutgR = R$ � g	

R andtR = R$ � R1 � tR. Let bR, pR,� � gR be the
preimages ofbR andpR,� under the projectionR$ � R1 � (g � R[t]) � gR.
The elementc = � R Š N of R is called thelevel. Consider theR-algebras
gR,� = U(gR)/( 1 Š c) and g	

R,� = U(g	
R)/( 1 Š c). For d � N we set

gR,� d = g � td R[t], g	
R,+ = R1 � gR,� 0 andgR,+ = R$ � g	

R,+ .
For a g	

R,+ -module M of level c we consider the induced module
I ndR(M) = g	

R,� � U(g	
R,+ ) M. We can view agR-module as ag	

R,+ -module of
levelcwheregR,� 1 acts trivially. Write againI ndR(M) for the corresponding
induced module.

For d � 1 let QR,d � gR,� be theR-submodule spanned by the prod-
ucts of d elements ofgR,� 1. Set QR,0 = R. Given agR,� -module M, let
M(d), M(Šd) � M be the annihilator ofQR,d and of QR,Šd =  QR,d
respectively. SetM(� ) =

�
d� N M(d) andM(Š� ) =

�
d� N M(Šd). Note

that M(d) is a gR,+ -submodule ofM and thatM(� ), M(Š� ) are gR-
submodules ofM.

A gR,� -moduleM is smoothif M = M(� ) and if M is �at over R. Let
S R,� be the category of the smoothgR,� -modules.

For each%� g andr � Z, let %(r ) be the element%� tr . For eachs � Z,
theSugawara operatorLs is the formal sum

Ls =
1

2�

�

r � Šs/ 2

N�

i , j = 1

e(Šr )
i , j e(r + s)

j ,i +
1

2�

�

r < Šs/ 2

N�

i , j = 1

e(r + s)
i , j e(Šr )

j ,i

It lies in a completion ofgR,� and it satis�es the relation[Ls, %(r )] = Š r %(r + s).
The af�ne Casimir element iscas= $ + L0.

If R = C we’ll drop the subscriptR everywhere from the notation.

5.2.2 AfÞne root systems

The elements oftR and
PR = t �
R are calledafÞne coweightsandafÞne weights

respectively. Let
� be the set of roots ofgR and let
� + be the set of roots of
bR. We will call an element of
� anafÞne root. Let 
� re be the system ofreal
roots. The set of simple roots in
� + is {� 0, � 1, . . . , � NŠ1}. Let �� � tR be the
af�ne coroot associated with the real af�ne root� .
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Let(€ : €) : 
PR× tR � Rbe the canonical pairing. Let
 , 	 0, �� be the af�ne
weights given by(
 : $) = (	 0 : 1) = 1, (	 0 : R$� tR) = (
 : tR � R1) = 0
and �� = � + N	 0. We will use the identi�cation
PR = R
 � PR � R	 0 =
R × PR × R given by� i �� (0, � i , 0) if i �= 0, 	 0 �� (0, 0, 1) and
 ��
(1, 0, 0).

Let  € : €" : 
PR × 
PR � R be the non-degenerate symmetric bilinear form
given by(� : �� i ) = 2 � : � i "/  � i : � i " and(� : 1) =  � : 
 ". It yields an
isomorphism� : tR � t�R. Using it we identify �� with an element of
PR for
any� � 
� re.

Let 
W = W � Z � be the af�ne Weyl group and letsi = s� i be the simple
af�ne re�ections relatively to� i . The group
W acts on
PR. For x � tR let
Tx � End( 
PR) be the operator given by

Tx(�) = � +  � : 1" �( x) Š
�
 �, x" + (�( x) : �( x))  � : 1"/ 2

�

.

The action of the re�ection with respect to the af�ne real root� + r 
 , with
� � � andr � Z, is given bys� + r 
 = s� 
 Tr �� . The€-actionof 
W is given
by w € µ = w(µ + ��) Š �� for each� � PR andµ � 
PR. Two weights in
P�

R
arelinked if they belong to the same orbit of the€-action.

The set ofintegral afÞne weightsis 
P = Z
 + P+ Z	 0. ReplacingP by P�

in the de�nitions above we get the corresponding sets of integral� -dominant
af�ne weights 
P� . We de�ne the set
P�

R � 
PR of � -dominant af�ne weights in
the obvious way. To� � P�

R we setz� = Š � : 2� + � "/ 2� and we associate
the af�ne weight
� = (z� , �, c) � 
P�

R. For w � W, x � Z� and� � PR we
havew €
� = �w € � andTx €
� = �� + � x.

5.3 The category O

5.3.1 DeÞnition

A tR-moduleM is called aweighttR-moduleif it is a direct sum of theweight
submodules M� = { m � M; xm = �( x)m, x � tR} with � � 
PR.

LetO�,�
R be theR-linear abelian category of �nitely generatedgR,� -modules

M such thatM is a weighttR-module, thepR,� -action onM is locally �nite
over R, and the highest weight of any subquotient ofM is of the form
� with
� � P�

R.
For eachµ � 
P�

R, let M(µ) R,� be the parabolic Verma module with the
highest weightµ . For� � P�

R we haveM(
�) R,� = I nd(M(�) R,� ). Here$,1
act onM(�) R,� by multiplication byz, c respectively. IfR = K is a �eld, let
L(µ) K denote the top ofM(µ) K,� . For � � P�

R we abbreviateM(�) R,� =
M(
�) R,� andL(�) K = L(
�) K .
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If � is regular, we writeOR = O�,�
R andM(�) R = M(�) R,� . If p� = g we

write O+ ,�
R = O�,�

R andM(�) R,+ = M(�) R,� . If R = C we omit the subscript
C from the notation.

Let O�,�, f
R � O�,�

R be the full subcategory consisting of the modules whose

weight spaces are free of �nite rank overR. Let O�,�,�
R � O�,�, f

R be the
full extension closed additive subcategory generated by the parabolic Verma
modules. The categoryO�,�,�

R consists of the modulesM � O�,�, f
R such that

kM � O�,�,�
k for each k� M .

Given � � PR as in Sect.4.2, let O�,�
R,� � O�,�

R be the full subcategory
consisting of the modulesM such that the highest weight of any subquotient
of M is of the form�� + � with � � P� . We setO�,�,�

R,� = O�,�
R,� � O�,�,�

R . If
R = C or � = 0 we drop the subscriptsR or � from the notation.

Remark 5.1The operatorcasacts locally nilpotently on any module ofO�,� .
Replacing this condition bycasis locally Þniteyields a bigger category which
decomposes as the direct sum

�
a� Z O�,� [a], whereO�,� [a] consists of the

modules such thatcasŠ a is locally nilpotent.
More generally, for eachd � Z, we may consider the categoryO�,�

R,� [a]{d}
which consists of the modules whose subquotients have highest weights of
the form(z� + � + a, � + �, c) with � � P� {d}. Here, we setP{d} = { � �
P;  �, det" = d} andP� {d} = P� � P{d}. To insist on the rank ofglN we may
write O�

R,� (N) = O�,�
R,� . We will use similar notation for all related categories,

e.g., we may writeO�,�
R,� (N)[a]{d} = O�,�

R,� [a]{d}.

Remark 5.2In [28] the authors setR = C and consider a categoryO	 of g	-
modules, rather thang� -modules as above. Forgetting the$-action gives an
equivalenceO+ ,� � O	. A quasi-inverse takes ag	-moduleM to itself, with
the action of$ equal to the semi-simpli�cation ofŠL0. See [44, prop. 8.1] for
details.

More generally, forgetting the$-action gives again an equivalence from
O�,�

R to a category ofg	
R-modules, and we may identify both categories. In

particular, forM � O�
R we can view theg	

R,� -moduleI ndR(M) as an object
of O�,�

R .
We will use this identi�cation without further comments whenever it is

necessary.

5.3.2 Basic properties

Let R be either a �eld or a local ring.
Let e = Š � k, where� k is the residue class of� R. We will always assume

that e is a positive integer.
For agR,� -moduleM we set
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€  M = M with the gR-action twisted by the automorphism such that
%(r ) �� (Š1)r %(Šr ) and1 �� Š 1,

€ †M = M with the gR-action twisted by the automorphism † such that
%(r ) �� Š t%(r ) and1 �� 1,

€ M � is the R-dual of M with the gR-action given by(%(r )!, m) =
Š(!, %(r )m) and(1!, m) = Š (!, 1m).

We de�ne thegR,� -modulesDM, D M by DM = ( M � )(� ) andD M =
†DM.

Lemma 5.3 The functor D is a duality onO+ , f
R andD is a duality onO�,�, f

R .
Both commute with base change.

Proof For anyM � O�,�
R , theR-moduleDM consists of those linear forms in

M � which vanish onQR,Šd M for somed � 1. Hence, we haveD M = † M � ,
whereM � is the set ofg� -�nite elements ofM � . Since the automorphism † 
takes the Borel subalgebrabR � gR to its opposite, the functorD preserves
O�,�, f

R . It is the usual BGG duality, which �xes the simple objects whenR is
a �eld.

For anyM � O+
R, the R-moduleDM consists of those linear forms inM �

which vanish onQR,Šd M for somed � 1, we haveDM =  M � , whereM �

is the set ofg-�nite elements ofM � . The functorD preservesO+ , f
R . It is the

duality introduced in [28], which does not �x the simple objects whenR is a
�eld.

For the second claim we must prove that for anyS-point R � S we have
D(SM) = SD(M) andSD (N) = D (SN) for eachM � O+ , f

R , N � O�,�, f
R .

The proof is the same as in lemma [28, lem. 8.16]. ��

A generalized Weyl moduleis a module inO�,�, f
R of the formI ndR(M),

whereM is agR,+ -module with a �nite �ltration by gR,+ -submodules such
that the subquotients are annihilated byQR,1 and lie inO�

R asgR-modules.

Lemma 5.4 A gR,� -module which is free over R belongs toO�,�, f
R if and only

if it is a quotient of a generalized Weyl module ofO�,�, f
R . ��

Remark 5.5The functorsM �� †M,  M, M � commute with each other and
we have a canonical isomorphism ofgR-modules( M)(� ) =  (M(Š� )).

Remark 5.6We de�ne the involution † ongR-modules and the dualitiesD on
O� andD onO+ in a similar way as above. We have a canonicalgR,� -module
isomorphism†I ndR(M) = I ndR(†M).

For each� � 
P�
R, the truncated category� O�,�

R is the Serre subcategory
of O�,�

R consisting of the modules whose simple subquotients have a highest
weight in � Š N
� + . The following hold, see e.g. [19,20], [44, sec. 3, 7] for
more details.
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Proposition 5.7 (a) O�,�
R is the direct limit of the subcategories� O�,�

R ,
(b) � O�,�

R is a highest weight R-category with�( � O�,�,�
R ) = � O�,�

R �
�( O�,�

R ),
(c) for � � # the obvious inclusion� O�,�

R � # O�,�
R preserves the tilting

modules and commutes with taking extensions. ��

In particular, we’ll regard the tilting modules as objects ofO�,�,�
R , although

O�,�
R is not a highest weightR-category.
Next, from Proposition2.4 we deduce that theR-categoryO�,�

R is Hom-
�nite and that for any localS-point R � S the base change preserves the
tilting modules. Further, ifM, N are tilting, then HomgR(M, N) is free over
R and the canonical mapSHomgR(M, N) � HomgS(SM, SN) is invertible.

We callO+ ,�
R theKazhdanÐLusztig categoryof gR, i.e., the af�ne parabolic

category O associated with the standard maximal parabolic ingR, see [28].

5.3.3 The linkage principle and the highest weight order onO

Assume thatR is a local ring. Let us recall the partial order on
P�
R given in

[46].
First, to each
� = (z, �, c) in 
PR, we associate itsintegral afÞne root system

which is given by
�( 
�) = { � � 
� ;  
� : � "k � Z}. Since
�( 
�) = 
�( 0, �, c),
we may write
�(�, c) for 
�( 
�) .

Now, given
�, 
� 	 � 
P�
R, we write
� $ 
� 	 if and only if there are� � 
�( 
� 	),

w � W� such that� /� � � and
� = ws� €
� 	 � 
� 	 Š 
� + modulom 
PR.

DeÞnition 5.8 (a) Thelinkage orderingis the partial order� � on 
P�
R is the

transitive and re�exive closure of the relation$ . For�, � 	 � P�
R we abbre-

viate� � � � 	 if and only if
� � � 
� 	. So, we may view� � as a partial order
on P�

R.
(b) TheBGG ordering� b on P�

R is the smallest partial order such that� � b� 	

if [M(� 	)k,� : L(�) k] �= 0.

Remark 5.9The de�nition of � � is motivated by the following remark: the
parabolic version of the Jantzen formula in [26] for the determinant of the
Shapovalov form of a parabolic Verma module inO�,�

k implies that� � re�nes
� b. The BGG order induces an highest weight order on� O�,�

R for each� .
Hence� � induces also an highest weight order on� O�,�

R for each� .

Remark 5.10The partial orders� � , � b on P�
R can be viewed as partial orders

onP � under the inclusion� . They depend on k. To avoid any confusion we
may say that these partial orders arerelative to the Þeldk.

Remark 5.11If p� = b, then� � coincides with� b by [26].
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5.4 The categorical action on O

From now on, unless speciÞed otherwise, weÕll assume that R is a regular
local analytic deformation ring of dimension� 2.

First, let us brie�y recall the main properties of the Kazhdan–Lusztig tensor
product%� R, see Sect.8.3. Details will be given in Propositions8.21, 8.29, 8.30
and8.36.

Recall thatVR is the natural representation ofgR, and that the modules
VR, V �

R � O+ ,�,�
R are given byVR = I ndR(VR), V �

R = I ndR(V �
R). We

have exact endofunctorse, f on O�,�,�
R given by e(M) = M %� RV �

R and
f (M) = M %� RVR. The functorse, f preserve the tilting modules. IfR = K
is a �eld thene, f extend to biadjoint endofunctors ofO�,�

K .
SinceRis an analytic algebra, the elementqR = exp(Š2�

�
Š1/� R) of Ris

well-de�ned and the operator exp(2�
�

Š1L0) acts on any moduleM � O�,�
R .

Let X be the endomorphism of the functorf which acts onf (M) by the
operator exp(Š2�

�
Š1L0)

�
exp(2�

�
Š1L0) %� R exp(2�

�
Š1L0)

�
, see (8.2),

(8.10). Let T be the endomorphism off 2 de�ned in (8.10). By Remark3.3
the endomorphismsX, T can be viewed as endomorphisms ofe, e2.

Now, let R = K be a �eld. Let � � PK be as in Sect.4.2. Set I =
{� K,1, � K,2, . . . , � K,� }+ Z + � K Z. Writei � j if i Š j � � K Z. PutI = I / � .
We will identify qi

K with the elementi / � in I .
For eachi � K let fi , ei be the generalizedqi

K -eigenspace andqŠ(N+ i )
K -

eigenspace ofX acting on f ande. The functorsei , fi are biadjoint, see [9,
rem. 7.22]. The action ofei , fi on parabolic Verma modules can be computed

explicitly. Recall that for�, µ � P�
K we write �

i
� µ if µ + � is obtained

from � + � by replacing an entry equal toi by i + 1.

Lemma 5.12 (a) For each� � P�
K , the module fi (M(�) K,� ) has a Þltration

with sections of the formM(µ) K,� , one for eachµ such that�
j

� µ for
some j� K with i � j ,

(b) for each� � P�
K , the module ei (M(�) K,� ) has a Þltration with sections of

the formM(µ) K,� , one for eachµ such thatµ
j

� � for some j� K with
i � j ,

(c) e, f are exact endofunctors ofO�,�
K,� ,

(d) e =
�

i � I ei and f =
�

i � I fi onO�,�
K,� .

Proof Propositions8.21, 8.29 imply that f (M(�) K,� ) has a �ltration (not
necessarily unique) whose associated graded consists of the sum of the modules

M(µ) K,� such that�
i

� µ for somei � K .
Next, the same proof as in [28, prop. 2.7], using the formulaL0 = cas/ 2� +

�
r > 0

� N
i, j = 1 e(Šr )

i j e(r )
j i /�, shows that the operator exp(2�

�
Š1L0) acts on
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M(µ) K,� by the scalar exp(Š2�
�

Š1z	
µ ) for anyµ � P�

K , whereŠz	
µ =  µ :

2� + (N Š 1)det+ µ"/ 2� .
Using this, a direct computation shows that any subquotient off (M(�) K,� )

which is isomorphic toM(µ) K,� , for some af�ne weightµ such that�
i

� µ,
belongs to the generalized eigenspace ofX(M(�) K,� ) with eigenvalueqi

K .
This proves (a).

The discussion above implies thatf =
�

i � K fi , as endofunctors ofO�,�,�
K .

We deduce thatf =
�

i � K fi on O�,�
K , becausef is exact and any object in

O�,�
K is a quotient of an object inO�,�,�

K . We prove thate =
�

i � K ei in a
similar way.

For �, µ � P�
K such that�

i
� µ for somei � K , we have� � P� + � if

and only ifµ � P� + �. By Lemma5.12, we deduce thate, f restrict to exact
endofunctors onO�,�

K,� . Note thatei , fi act by zero onO�,�
K,� wheneveri /� I .

This proves (d). ��

Now, we de�ne anslI -categorical action onO�,�
K,� . For each� � P + � we

write mi (�) = #{k � [ 1, N]; q � + �,� k"
K = i } and wt(�) =

�
i � I

�
mi (�) Š

miq (�)
�
	 i . For� � XI letO�,�

K,�,� � O�,�
K,� be the Serre subcategory generated

by the modulesL(�) K with
�

i � I mi (�) � i = � .

Claim 5.13 For �, µ � P{d} + � we have

� , 
µ are linked &� mi (�) = mi (µ) for all i � I &� wt(�) = wt(µ) .

Hence, we have a decompositionO�,�
K,� =

�
� � XI

O�,�
K,�,� by the linkage

principle.

Proposition 5.14 The tuple(e, f, X, T), together with the decomposition of
O�,�

K,� above, is anslI -categoriÞcation onO�,�
K,� .

Proof By Lemma5.12we haveei (O
�,�
K,�,� ) � O�,�

K,�,� + � i Š� qi
and fi (O

�,�
K,�,� ) �

O�
K,�,� Š � i + � qi

. Further, a direct computation using Lemma5.12 shows that

the operatorsei , fi with i � I yield a representation ofslI on [O�,�
K,� ] such

that [M(�) K,� ] is a weight vector of weight wt(�) . The rest follows from
Lemma5.12and Proposition8.36. ��

5.5 The category A and the functor�

Let Rbe either a �eld or a local deformation ring. We have the following basic
fact.

Lemma 5.15 [46] The map� identiÞesP � with an ideal in P� for the partial
orders� � or � b relative tok.
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Proof It is enough to consider the case of the ordering� � , because it re�nes
� b. SinceR is a local deformation ring with residue �eld k, we have� k = 0
and� k = Š e. Then, the claim follows from [46, prop. A.6.1]. ��

For each� � P � , we abbreviate���(�) R,� = M(� (�)) R,� where� is
the application de�ned in (4.1). Following [5,46] we introduce the abelian
R-categoryA�,�

R,� � O�,�
R,� which is the SerreR-linear subcategory generated

by {���(�) R,� ; � � P � }.
Since� k = 0, by Lemma5.15, A�,�

k = A�,�
k,� is a highest weight k-category.

Using [39, thm. 4.15], this implies thatA�,�
R,� is a highest weightR-category

such that�( A�,�
R,� ) = { ���(�) R,� ; � � P � }. The highest weight order onA�,�

R,�
is given by the partial order� � or � b onP � relative to k.

We will write L(�) ,P(�) R,� ,T(�) R,� respectively for the simple, projective,
tilting objects associated with���(�) R,� . LetA�,�,�

R,� = (A�,�
R,� )� be the full exact

subcategory of� -�ltered objects. For eachd � N, let A�,�
R,� {d} � A�,�

R,� be the
highest weight subcategory generated by�( A�,�

R,� {d}) = { ���(�) R,� ; � � P �
d }.

Now, assume thatR is analytic of dimension� 2. By Lemma5.12 the
endofunctor f of O�,�,�

R maps(A�,�
R,� {d})� to (A�,�

R,� {d + 1})� . We de�ne
inductively an objectT�,�

R,� {d} in A�,�
R,� {d} by settingT�,�

R,� {0} = ���( #)R,� and
T�,�

R,� {d} = f (T�,�
R,� {d Š 1}). We will abbreviateTR,d = T�,�

R,� {d} to unburden
the notation. To avoid any confusion we may writeT�,�

R,� (N){d} = T�,�
R,� {d}

andTR,d(N) = TR,d.

Lemma 5.16 (a) We havekTR,d = Tk,d.
(b) The moduleTR,d is tilting in A�,�

R,� .

Proof Part (a) follows from Lemma8.34. To prove (b), note �rst thatTR,0
is tilting by Proposition2.4, because kTR,0 = Tk,0 is � -�ltered and simple.
Since the functorf preserves the tilting modules ofO�,�

R,� by Lemma8.33, we
deduce thatTR,d is tilting. ��

By Proposition8.36, we have anR-algebra homomorphism

� s
R,d : Hs

R,d � EndA�,�
R,�

�
TR,d

� op (5.1)

and a functor

� s
R,d = HomA�,�

R,�
(TR,d, €) : A�,�

R,� {d} � Hs
R,d-mod.

The main result of the section is Theorem5.37. To prove it, we will study in
the subsequent subsections some properties of� s

R,d and� s
R,d when localized

to codimension one.
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Remark 5.17SinceTR,d is tilting, it is uniquely determined by its special-
ization kTR,d = Tk,d. If R is a regular local ring of dimension> 2, then we
may de�neTR,d as the unique module inA�,�

R,� {d} (up to isomorphism) which
specializes toTk,d. We do not know how to de�ne either� s

R,d or � s
R,d if

dim R > 2.

Remark 5.18For eachp � [ 1, � ], let � p � P �
1 be the� -partition with(1) on

the p-th component and# elsewhere. The proof of Lemma5.12implies that
the moduleTK,1 has a� -�ltration with sections of the form���(�) K,� with
� � P �

1, and that the operatorX � End(TK,1) has the eigenvalueq
sp
K on

���(� p)K,� .

5.6 The afÞne Lie algebra of a Levi subalgebra

Consider the root system
� � = { � + r 
 ; � � � � , r � Z} � { r 
 ; r � Z× }.
Let mR,� be the Lie subalgebra ofgR spanned bytR and the root subspaces
associated with
� � . We may viewmR,� as the af�ne Kac–Moody algebra
associated with the Levi subalgebramR,� of gR. We de�ne the associative
R-algebramR,�,� in the same way as we de�nedgR,� in Sect.5.2.1.

The Weyl group of
� � is the subgroup
W� of 
W generated by the af�ne
re�ectionss� with � � 
� � . Thus, we have
W� = { wTx; w � W� , x � Z� � }.

SetbR,� = mR,� � bR. The categoryO�
R(�) consists of the �nitely generated

mR,�,� -modules which are weighttR-modules with a locally �nite action of
bR,� (over R), and such that the highest weight of any constituent is of the
form 
� with � � PR. The decompositionmR,� =

� �
p= 1 glR,� p yields an

equivalenceO�
R(�) =

� �
p= 1 O�

R(� p), here the tensor product is overR.
Given a tuple# = (#p) of compositions of the� p’s, let O#,�

R (�) � O�
R(�)

be the subcategory which is identi�ed under the equivalenceO�
R(�) =

� �
p= 1 O�

R(� p) with the category
� �

p= 1 O
#p,�
R (� p). Given a deformation para-

meter � and a tuplea � N� , we also consider the categoriesO#,�
R,� (�) =

� �
p= 1 O

#p,�
R,� p

(� p) and O#,�
R,� (�) {a} =

� �
p= 1 O

#p,�
R,� p

(� p){ap}. Setting#p =

(� p) for eachp, we get theKazhdanÐLusztig categoryO+ ,�
R (�) = O�,�

R (�)
of the Lie algebramR,� . Let O+ ,�

R (�) {a} � O+ ,�
R (�) be the full subcategory

de�ned in the similar way.
To avoid confusions, we may setA�,�

R,� (N) = A�,�
R,� if g = glN .

Then, we de�neA+ ,�
R,� (�) � O+ ,�

R,� (�) to be the subcategory isomorphic to
� �

p= 1 A
� p,�
R,� p

(� p).
As above, we drop the subscriptsR, � if R = C or � = 0.

123



R. Rouquier et al.

5.7 Reductions to codimension one

5.7.1 Preliminaries

For eachz � Z andu, v � [ 1, � ] we write fu,v,z(� R, � R) = � R,u Š � R,v Š z� R
and fu,v (� R) = fu,v,0(� R, � R).

DeÞnition 5.19 We will say that the deformation ringR is generic if
fu,v,z(� R, � R) �= b for any tuple(u, v, z, b) with u < v andz, b � Z, and that
it is subgenericif � R /� Q and fu,v,z(� R, � R) = b for a unique tuple(u, v, z, b)
as above (withu < v ).

Remark 5.20If R is a local deformation ring, i.e., if� k, p = 0 and� k = Š e
with e � N× , then for eachp � P such thatfu,v,z(� kp , � kp ) = b we have also
b = z e.

Now, assume thatR is a local deformation ring. Then, the categoryA�,�
R,�

is a highest weightR-category by Sect.5.5, either for the partial order� � or
� b relative to k by Lemma5.15. In other words, the highest weight order on
A�,�

R,� is induced from the highest weight order onA�,�
k via base change, which

yields a canonical bijection�( A�,�
R,� ) � �( A�,�

k ).
By base change again, these highest weight orders onA�,�

R,� induce highest
weight orders onA�,�

Rp ,� andA�,�
kp ,� for eachp � P . Note thatRp is a local ring,

but may not be a local deformation ring because� kp , p may be�= 0. So, we
have the posets isomorphisms

�( A�,�
k ) �( A�,�

R,� )� k

 � Rp ���( A�,�
Rp ,� )

� kp ���( A�,�
kp ,� ) .

We will reduce the study ofA�,�
R,� to the study ofA�,�

kp ,� for p � P 1. We will
say thatp is generic if kp is generic and thatp is subgenericif k p is subgeneric.

Remark 5.21Let R, I be as in Sect.5.4. If R is subgeneric then each com-
ponentI p is a quiver of typeA� , while if R is generic then� = [ 1, � ] (i.e.,
the quiverI has exactly� components).

In order to use the Kazhdan–Lusztig tensor product, we’ll be mainly inter-
ested by the case whereR is either a �eld or a regular local deformation ring
of dimension� 2. Note that ifR has dimension 2, then we can always choose
it in such a way that it is in general position.

The following basic fact is important for the rest of the paper.

Proposition 5.22 Assume that R is a local deformation ring in general
position.
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(a) If p � P 1 thenp is either generic or subgeneric.
(b) The K-categoryA�,�

K,� is split semi-simple.
(c) If R is analytic, then the condition(3.1) holds in the fraction Þeld K .
(d) If � p � d for all p, then the map� s

K,d : Hs
K,d � EndA�,�

K,�
(TK,d)op in

(5.1) is an isomorphism of K -algebras. The functor� s
K,d is an equivalence

of categories and it maps���(�) K,� to S(�) s,q
K .

Proof Since R is a UFD andp has height 1, we havep = Rg for some
irreducible elementg � R. Now, if fu,v,z(� kp , � kp ) = b and � kp = c for
someu �= v, z, b � Z andc � Q theng must be a unit ofR becauseR is in
general position. This is a contradiction. For the same reason, we may have
fu,v,z(� kp , � kp ) = b for at most one tuple(u, v, z, b). Therefore, ifp is not
generic, then we have� kp /� Q. Part (a) is proved.

Part (b) follows from the linkage principle. More precisely, recall that for
k � J �

p we setpk = p. Then, sinceR is in general position, we have


�(� K , � K ) = { � � 
� ;  (0, � K , � K ) : � " � Z},

= { � k,l + z
 ; f pk, pl ,a(� K , � K ) � Z},

= � � .

Thus, the linkage classes are reduced to points, because two� -dominant
weights which areW� -conjugate under the€-action are equal. HenceA�,�

K,�
is split semi-simple.

Part (c) is obvious, becauseqK = exp(Š2�
�

Š1/� K ), QK, p =
exp(Š2�

�
Š1sp/� K ), � K /� Q and(sK,u Š sK,v + � K Z) � Z = # for each

u �= v.

Let us prove part (d). As a �nite dimensional split semi-simpleK -algebra,
the center ofHs

K,d is spanned by the primitive central idempotents. These
idempotents are of the form 1� =

�
i� I � 1i where� � Q+ has heightd, see

Sect.3.4. For each nonzero 1� , there is a unique� -partition � of d such that�
i � K ni (�)� i = � . From Lemma5.12we deduce that, if� p � d for all p,

then for eachi � I � we have

fi(TK,0) = ���(�) K,� . (5.2)

Since � s
K,d(1� ) is the projection fromTK,d onto its direct summand�

i� I � fi(TK,0), the latter is nonzero whenever 1� is nonzero. So, the map
� s

K,d is injective. To prove that it is an isomorphism, we are reduced to check
the following.

Claim 5.23 Hs
K,d andEndA�,�

K,�
(TK,d)op have the same dimension over K .
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To prove the claim, by Proposition8.29, it is enough to check that theK-
algebrasHs

K,d and EndA�
K,�

(TK,d)op have the same dimension. This follows
from Proposition4.7.

Next, since theK-algebraA�,�
K,� is split semi-simple by part (b), the

standard modules���(�) K,� , with � � P �
d , form a complete set of inde-

composable projective modules inA�,�
K,� . So, formula (5.2) implies that

TK,d =
�

i� I d fi(TK,0) is a projective generator inA�,�
K,� . So � s

K,d is an
equivalence. Since the unique simple and projective module in the block
Hs

K,� is the Specht moduleS(�) s,q
K , where� is as in (5.2), we deduce that

� s
K,d(�(�) K,� ) = S(�) s,q

K . ��

5.7.2 The reduction to the Þnite type with� = 2

For each tuplea � N� Š1, let O�,�
R,� {a} � O�,�

R,� be the full subcategory con-
sisting of the modules whose simple subquotients have a highest weight of
the form �� + � k with � � P� {a}. SetA�,�

R,� {a} = O�,�
R,� {a} � A�,�

R,� . We de�ne
O�,�

k,� {a} andA�,�
k,� {a} in the obvious way.

Let p �� po be the permutation of[1, � ] such thatpo = � + 1 Š p. Let
k �� ko be the unique permutation of[1, N] which is blockwise increasing
and which takes the blockJ �

p to J � o

po . Applying this permutation to the entries

of a weight� � P�
R yields a weight� o � P� o

R .
Assume thatR is a local ring with a subgeneric residue �eld. Leth =

(u, v, z) be the unique triple such thatu < v and fu,v,z(� k, � k) = z e. Given a
tuple" = " R � R� , let " k � k� be its residue class. Assume thatfu,v (" k) =
ze. We will identify " R with the weight

�
p " R, p detp � PR.

If z � 0, we abbreviateO�
R,h{a} = O�

R," (�, u, v){a}. If z > 0, we

write O�
R,h{a} = O� o

R," o(� o, vo, uo){ao}. See Sect.4.8 for the notation. We
de�ne A�

R,h{a} in the same manner. For eachd � N, we write A�
R,h{d} =�

a A�
R,h{a}, where a runs over the set of all(� Š 1)-compositions of

d. Depending on the sign ofz, we write M(�) R,h for M(� + ") R,� or
M(� o + " o)R,� , and�(�) R,h for �(�) R," or �(� o)R," o.

Proposition 5.24 (a) We haveO�,�
R,� �

�
a� N� Š1 O�,�

R,� {a}, O�,�
k,� �

�
a� N� Š1

O�,�
k,� {a}.

(b) There are equivalences of highest weight R-categoriesQ R : O�,�
R,� {a} �

O�
R,h{a} and of highest weightk-categoriesQk : O�,�

k,� {a} � O�
k,h{a},

such thatkQ R(M) = Qk(kM) for each M � O�,�
R,� {a} andQ R(M(� +

� R)R,� ) = M(�) R,h for each� � P� .
(c) The equivalences in(b) restrict to equivalences of highest weight cate-

gories Q R : A�,�
R,� {a} � A�

R,h{a} and Qk : A�,�
k,� {a} � A�

k,h{a}. In
particular Q R(���(�) R,� ) = �(�) R,h for all � .
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Proof For k � J �
p we setpk = p. Since k is subgeneric, the integral root

system
�(� k, � k) is given by


�(� k, � k) = { � � 
� ;  (0, � k, � k) : � " � Z},

= { � k,l Š r 
 ; f pk, pl ,r (� k, � k) � Z},

= � � � {± (� k,l Š z
) ; pk = u, pl = v}.

Therefore, the linkage principle yields a decompositionO�,�
k,� =

�
a� N� Š1

O�,�
k,� {a}. This decomposition holds overR by Proposition2.4. This proves

part (a).
The set 
�(� k, � k) is a Coxeter system whose set of positive roots is


�(� k, � k)+ = 
�(� k, � k) � 
� + , see [27, sec. 2.2]. The set� �, u,v = � � �
{± � k,l ; pk = u, pl = v} is also a Coxeter system with positive roots
� +

�, u,v = � �, u,v � � + .
If z � 0 then
�(� k, � k)+ = � +

� � { � k,l Š z
 ; pk = u, pl = v}. Fix an
integral coweight�� such that� k,l ( �� ) = Š z if pk = u, pl = v and� k,l ( �� ) =
Šz if pk = pl . The conjugation by�� yields a bijection! : 
�(� k, � k)

�
� � �, u,v

such that� + r 
 �� � for all �, r . It maps positive roots to positive ones.
If z > 0 then
�(� k, � k)+ = � +

� � {Š � k,l + z
 ; pk = u, pl = v}. The
permutationk �� ko of [1, N] induces a bijection� �, u,v

�
� � � o,vo,uo, � �� � o.

The bijection! : 
�(� k, � k)
�
� � � o,vo,uo such that� + r 
 �� � o identi�es the

subsets of positive roots in both sides.
In both cases the map! is an isomorphism of Coxeter systems. Now, for

each weight� � P� + � we consider the sets of roots
� [� + � k, � k] = { � �

� ;  (0, � + � k, � k) : � " = 0} and� �, u,v [� + " k] = { � � � �, u,v ;  � + " k :
� " = 0}. Since k is subgeneric, we have


� [� + � k, � k] = { � k,l Š r 
 ; f pk, pl ,r (� k, � k) = Š � : � k,l "},

= { � � � � ;  � : � " = 0}

�{± (� k,l Š z
) ; pk = u, pl = v,  � : � k,l " = Š z e},

= � � [� ] � {± (� k,l Š z
) ; pk = u, pl = v,  � + " k : � k,l "= 0},

= � � [� + " k] � {± (� k,l Š z
) ; pk = u, pl = v, � k,l "

� � �, u,v [� + " k]} .

If z � 0 then!
�

� [� + � k, � k]) = � �, u,v [� + " k]. Therefore, by [20, thm. 11],

there is an equivalence of k-categoriesQk : O�
k,� {a} � Ok," (�, u, v){a}

such thatL(µ + � k)k �� L(µ + " k)k for eachµ � P{a}. The proof of
loc. cit. is given by constructing an analogue of Soergel’s functor which
identi�es, block by block, the endomorphism rings of projective generators of
O�

R,� {a} andOR," (�, u, v){a} with the endomorphism ring of the same sheaf
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over a moment graph (modulo a base change of deformation rings, from a
localization of the functions ring of the Cartan subalgebras ofg andm(�, u, v)
to R). This construction yields indeed an equivalence of abelianR-categories
Q R : O�

R,� {a} � OR," (�, u, v){a} such that kQ R(M) = Qk(kM) for any
M � O�

R,� {a}.
If z � 0 then!

�

� [� + � k, � k]) =

�
� �, u,v [� + " k]

� o = � � o,vo,uo[� o + " o
k ].

ForŠ� k,l + z
 � 
�(� k, � k)+ , we also have

 � o + " o
k : h(Š� k,l + z
) " =  � o + " o

k : Š � ko,l o"

= Š �, � k,l " Š z e,

= Š � : � k,l " Š � K,u + � K,v + z� k

=  (0, � + � k, � k) : Š� k,l + z
 ".

Thus, by [20, thm. 11] and the discussion above, we have equivalences of
categories

Q R : O�
R,� {a} � OR," (� o, vo, uo){ao}, Qk : O�

k,� {a} � Ok," (� o, vo, uo){ao}

such that kQ R(M) = Qk(kM) andL(µ + � k)k �� L(µ o + " o
k )k for each

µ � P{ao}.
Now, we can prove part (b). To simplify, we assumez � 0. The casez > 0

is proved in a similar way.
First, note thatQk restricts to an equivalence of abelian categories

O�,�
k,� {a} � O�

k," (�, u, v){a}. We denote it again byQk. SinceO�,�
R,� {a} and

O�
R," (�, u, v){a} are the full subcategories ofO�

R,� {a} andOR," (�, u, v){a},
respectively, consisting of the modules whose simple subquotients have a high-
est weight of the form�� + � k and � + " k respectively, with� � P� , we
deduce thatQ R restricts to an equivalence of abelianR-categoriesO�,�

R,� {a} �
O�

R," (�, u, v){a}.
Next, sinceQk(L(µ + � k)k,� ) = L(µ + " k)k,� for eachµ � P� , the functor

Q R is an equivalence of highest weightR-categories such thatQ R(M(µ +
� R)R,� ) = M(µ + " R)R,� for eachµ � P� by Proposition2.6.

Parts (b) and (c) are proved. ��

Remark 5.25We do not know how to choose the equivalence of categories
Q R in such a way that it intertwines the endofunctorse, f of O andO. We
will not need this.

In the rest of this section, to unburden the notation, assume thatz � 0. The
casez > 0 is completely similar.

Fix a (� Š 1)-compositiona = (a€, ap) of the positive integerd. Then, we
have the tilting moduleTR,a€(� €) � A� 


R," 

(� €) and, for eachp �= u, v, the

123



Categori�cations and cyclotomic rational double af�ne…

tilting moduleTR,ap(� p) � A
� p
R (� p). Recall that� 
 = (� u, � v), " 
 = (" u, " v)

and� € = � u + � v. Note that, sincefu,v (") = ze � 0, the categoryA� 

R," 


(� €)
(with � = 2) satis�es the assumptions in Proposition4.9. LetTR,h,d � A�

R,h{d}
be the tilting module which is identi�ed, under the equivalence (4.4), with the
direct sum of the modulesTR,a€(� €) �

�
p�=u,v TR,ap(� p), where the sum

runs over the set of all(� Š 1)-compositionsa of d. We also writeTk,h,d =
kTR,h,d � A�

k,h{d}.
Now, let R be either a �eld or a regular local deformation ring of dimension

2. Assume further thatR is analytic and in general position.
The categoryA�,�

K,� is split semi-simple. We have de�ned the moduleTR,d �
A�,�

R,� , the R-algebra homomorphism� s
R,d : Hs

R,d � EndA�,�
R,�

(TR,d)op, and

the functor� s
R,d : A�,�

R,� {d} � Hs
R,d-mod. By base-change, we getTRp ,d,

� s
Rp ,d and� s

Rp ,d for eachp � P , see Remark4.6.

Lemma 5.26 Assume thatp � P 1 is subgeneric. Then, we have an isomor-
phismQ Rp (TRp ,d) = TRp ,h,d.

Proof The moduleQ Rp (TRp ,d) is tilting, becauseQ Rp is an equivalence of
highest weight categories. SinceTRp ,0 andTRp ,h,0 are parabolic Verma mod-
ules, we haveQ Rp (TK,0) = TRp ,h,0.

Next, the functorQkp induces an isomorphism of the (complexi�ed)
Grothendieck groups[O�,�

kp ,� {a}] � [ O�
kp ,h{a}] such thatQkp ([L(� +

� kp )kp ]) = [ L(� + " kp )kp ]. Since it also preserves the classes of the standard
modules, the explicit formulae in Lemma5.12imply thatQkp : [O�

kp ,h{a}] �

[O�,�
kp ,� {a}] commutes with the action of the operatorse, f on both sides.

Since Tkp ,d = f d(Tkp ,0) and Tkp ,h,d = f d(Tkp ,h,0), we deduce that
[Qkp (Tkp ,d)] = [ Tkp ,h,d] in [O�

kp ,h]. Therefore, we haveQkp (Tkp ,d) =
Tkp ,h,d because two tilting modules are isomorphic if they have the same class
in the Grothendieck group. SinceQ Rp (TRp ,d) is tilting and kpQ Rp (TRp ,d) =
Qkp (Tkp ,d), by Proposition2.4(b) the isomorphism over kp can be lift to an
isomorphismQ Rp (TRp ,d) = TRp ,h,d. ��

Proposition 5.27 Let p � P 1 be subgeneric. Assume that� p � d for all p.
Then,

(a) TRp ,d is projective inA�,�
Rp ,� ,

(b) � s
Rp ,d is an isomorphismHs

Rp ,d � EndA�,�
Rp ,�

(TRp ,d)op,

(c) � s
Rp ,d is fully faithful on(A�,�

Rp ,� {d})� and(A�,�
Rp ,� {d}) .

Proof Since kp is subgeneric, we may �xu, v, z as above. So, we have
fu,v,z(� kp , � kp ) = z e. Hence, by Proposition5.24and Lemma5.26, there is
an equivalence of highest weightRp-categoriesQ Rp : A�,�

Rp ,� {d} � A�
Rp ,h{d}
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taking���(�) Rp ,� to �(�) Rp ," andTRp ,d to TRp ,h,d. By base change, it spe-
cializes to an equivalence of highest weight kp-categoriesQkp : A�,�

kp ,� {d} �
A�

kp ,h{d}.
Recall that� 
 = (� u, � v) and� € = � u + � v. To unburden the notation, we

may identify the highest weightRp-categoriesA�
Rp ,h{d} andA� 


Rp ," 

(� €){d} via

the equivalence (4.4). The later is a particular case of the categories which have
been studied in Sect.4.7. Note that we have" kp ,u Š " kp ,v = ze /� N× . Thus,
Proposition4.9(c) implies thatTkp ,h,d is projective. Hence, part (a) follows
from Proposition2.4and Lemma5.26.

To prove (b) we use Proposition2.23. Let us check the assumptions. First,
the fraction �eld of Rp is K . SinceR is in general position, theK-algebra
Hs

K,d is split semi-simple. Next, by [13, thm. 3.30], the decomposition map
K0(Hs

K,d) � K0(Hs
kp ,d) is surjective.

Now, let us construct an endomorphism&Rp of Hs
Rp ,d. By Remark4.6,

we have a pre-categori�cation(E, F, X, T) on A�
Rp ,h. Let ! s

Rp ,d : Hs
Rp ,d �

EndA�
Rp ,h

(TRp ,h,d)op be the correspondingRp-algebra homomorphism. It is
an isomorphism by Proposition4.9 and the Nakayama’s lemma. Next, by
Proposition3.1, we have anRp-algebra isomorphism� Rp : Hs

Rp ,d � Hs
Rp ,d.

SinceQ Rp (TRp ,d) = TRp ,h,d, by functoriality, we have an isomorphism� Rp :
EndA�,�

Rp ,�
(TRp ,d)op � EndA�

Rp ,h
(TRp ,h,d)op. We set&Rp = � Š1

Rp

 (! s

Rp ,d)Š1 


� Rp 
 � s
Rp ,d and we write&K = K&Rp .

To prove (b), we must check that&Rp is invertible. By Proposition2.23, this
follows from the following.

Claim 5.28 The endomorphism&K of Hs
K,d is an automorphism and it yields

the identity on the Grothendieck group.

Now, we prove the claim. SinceRis in general position, by Proposition5.22,
the K-algebra morphisms� s

K,d : Hs
K,d � EndA�,�

K,�
(TK,d)op is an isomor-

phism. Hence&K is an automorphism.
Consider the equivalences of categories� s

K,d : A�,�
K,� {d} � Hs

K,d-mod and
� s

K,d : A�
K,h{d} � Hs

K,d-mod induced by� s
K,d and! s

K,d. The corresponding
maps between isomorphism classes of simple modules �t into the commutative
square

Irr(A�,�
K,� {d})

� s
K,d ��

Q K
��

Irr(Hs
K,d)

Irr( A�
K,h{d})

� s
K,d ��Irr(Hs

K,d),

� K

��
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because we have� s
K,d(���(�) K,� ) = S(�) s,q

K , � s
K,d(�(�) K," ) = S(�) s

K
by Propositions5.22(d), 4.7(d), and we have� K (S(�) s

K ) = S(�) s,q
K ,

Q K (���(�) K,� ) = �(�) K," . This implies that&K is identity on the Grothendieck
group. The claim is proved.

Finally, let us prove part (c). Let! s
Rp ,d, � Rp and� Rp be as above. Then,

we can view! s
Rp ,d as an isomorphismHs

Rp ,d � EndA�,�
Rp ,�

(TRp ,d)op. We

don’t know whether� s
Rp ,d = ! s

Rp ,d. However, since they are both invertible,
they differ obviously by an automorphism ofHs

Rp ,d. Thus, the equivalence
Q Rp intertwines the functors� s

Rp ,d and� s
Rp ,d, up to a twist by an automor-

phism ofHs
Rp ,d. Therefore, it is enough to prove that� s

Rp ,d is fully faithful

on ( A�
Rp ,h{d})� and( A�

Rp ,h{d}) .
By Proposition4.9, a simple module ofA�

kp ,h,d is a submodule of a parabolic
Verma module if and only if it lies in the top ofTkp ,h,d. Thus, the functor� s

kp ,d

is faithful on( A�
kp ,h{d})� . By [7, cor. 4.18], the categoryA�

kp ,h{d} is Ringel
self-dual, i.e., we have an equivalenceA�

kp ,h{d} � ( A�
kp ,h{d})� . Therefore, by

Lemma2.13, the functor� s
kp ,d is also faithful on( A�

kp ,h{d}) . Note that [7]
considers the categoryA� without any shift" , but our situation reduces to this
one by Proposition4.10. Now, part (c) follows from Proposition2.18. ��

Remark 5.29If � u Š � v /� Z e for all u �= v, then� s
Rp ,d is a 1-faithful highest

weight cover.

5.7.3 The reduction to� = 1

Assume that the deformation ringR is a local ring with a generic residue �eld
k. We have the following lemma.

Lemma 5.30 For �, � 	 � P� , if � + � k � � � 	 + � k then �� + � k � 
W� €
�� 	 + � k.

Proof By an easy induction we may assume that there are elements� �

�(� k, � k) \ � � andw � W� with �� + � k = ws� € �� 	 + � k. We have


�(� k, � k) � 
� � &�  (0, � k, � k) : � " /� Z, � � � 
� \ 
� � ,

&�  � k : � " + r � /� Z, � � � � \ � � , � r � Z,

&� k is generic.

Thus� � 
� � , hencews� � 
W� . ��
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For a � N� let O�,�
R,� {a} � O�,�

R,� be the full subcategory of the modules

whose simple subquotients have a highest weight of the form�� + � k with
� � P� {a}.

Proposition 5.31 (a) We haveO�,�
R,� =

�
a� N� O�,�

R,� {a} and O�,�
k,� =

�
a� N� O�,�

k,� {a}.
(b) There are equivalences of highest weight R-categoriesQ R : O�,�

R,� {a} �
O+ ,�

R (�) {a} and of highest weightk-categoriesQk : O�,�
k,� {a} �

O+ ,�
k (�) {a} such thatkQ R(M) = Qk(kM) and Q R(M(� + � ) R,� ) =

M(�) R,+ .
(c) The equivalences in(b) restricts to equivalences of highest weight cate-

goriesQ R : A�,�
R,� � A+ ,�

R (�) andQk : A�,�
k,� � A+ ,�

k (�). In particular,
we haveQ R(���(�) R,� ) = ���(�) R for all �.

Proof Since k is generic, the linkage principle and Lemma5.30imply that if a
parabolic Verma module inO�,�

k,� has a highest weight of the form�� + � k with
� � P� {a}, then any constituent has also a highest weight of the same form. So
we have a decompositionO�,�

k,� =
�

a� N� O�,�
k,� {a}. The decomposition overR

follows from Proposition2.4. Part (a) is proved.
For the same reason as above, we haveO�

R,� =
�

a� N� O�
R,� {a}, where

O�
R,� {a} is the full subcategory of the modules whose simple subquotients

have a highest weight of the form�� + � k with � � P{a}.
Further, by [20, thm. 11] there is an equivalence of highest weight k-

categoriesQk : O�
k,� {a} � O�

k (�) {a} such thatL(� + � k)k �� L (�) k. For
the same reason as explained in the proof of Proposition5.24, the proof of
[20, thm. 11] yields an equivalenceQ R : O�

R,� {a} � O�
R(�) {a} such that

kQ R(M) = Qk(kM) for any M � O�
R,� {a}.

Since� + � k is � -dominant if and only if� is � -dominant, this equivalence
restricts to an equivalence of abelian categoriesO�,�

k,� {a} � O+ ,�
k (�) {a}. We

denote it again byQk. SinceO�,�
R,� {a} andO+ ,�

R (�) {a} are full subcategories of
O�

R,� {a} andO�
R(�) {a} consisting of the modules whose simple subquotients

have a highest weight of the form�� + � k and
� , respectively, with� � P� {a},
we deduce thatQ R restricts to an equivalence of abelianR-categoriesQ R :
O�,�

R,� {a} � O+ ,�
R (�) {a}. SinceQk(L(� + � k)k) = L(�) k for all � � P� {a}, by

Proposition2.6we deduce thatQk andQ R are indeed equivalences of highest
weight categories and thatQ R(M(� + � ) R,� ) = M(�) R,+ . This proves parts
(b), (c). ��

Now, let R be either a �eld or a regular local deformation ring of dimension
2. Assume further thatR is analytic and in general position.
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Consider the Kazhdan–Lusztig categoryO+ ,�
R (� p) of glR,� p. The equiv-

alence of categoriesO�
R(�) =

� �
p= 1 O�

R(� p) yields an equivalence of

categoriesO+ ,�
R (�) =

� �
p= 1 O+ ,�

R (� p).

Let V(� p) � O+ ,�
R (� p) be the module induced from the natural represen-

tation of glR,� p. The endofunctorf p = € %� RV(� p) of O+ ,�
R (� p) extends to

an endofunctor ofO+ ,�
R (�) in the obvious way. We denote it again byf p. Let

f =
� �

p= 1 f p.

We setTR,0(�) =
� �

p= 1 TR,0(� p). For eachd � N, we consider the tilting

moduleTR,d(�) = f d(TR,0(�)) in O+ ,�
R (�) . We have introduced a module

TR,d in O�,�
R,� .

By base change, for eachp � P , we get the modulesTRp ,d � O�,�
Rp ,� and

TRp ,d(�) � O+ ,�
Rp

(�). The same proof as in Lemma5.26yields the following.

Lemma 5.32 Assume thatp � P 1 is generic. Then, we have an isomorphism
Q Rp (TRp ,d) = TRp ,d(�).

On the other hand, for eacha � N� , we setH �
R,a =

� �
p= 1 H+

R,ap
. By base

change, it yields theRp-algebraH �
Rp ,a.

Lemma 5.33 Let p � P 1 be generic. Then, we have an Rp-algebra isomor-
phism

Hs
Rp ,d =



a� C �
d

MatS d/ S a

�
H �

Rp ,a
�
. (5.3)

Proof Let I = { � Rp ,1, � Rp ,2, . . . , � Rp ,� } + Z + � Rp Z andI = I Rp = I / � .
Let I kp be the image ofI in the residue �eld kp. Sincep is generic, the quiver
I kp has exactly� components given byI kp , p = (� kp , p + Z + � kp Z)/ �
with p � [ 1, � ]. Hence, the quiverI Rp has also� componentsI 1 =
I Rp ,1, . . . , I � = I Rp ,� which specialize toI kp ,1, . . . , I kp ,� respectively.

For each tuplep = ( p1, p2, . . . , pd) in [1, � ]d, we consider the idempotent
in Hs

kp ,d given by 1p =
�

i 1i , wherei = (i1, i2, . . . , id) runs over the set

I kp ,p =
� d

r = 1 I kp , pr and 1i is as in Sect.3.4. Note that, although there may
be an in�nite number of such tuplesi, this sum contains only a �nite number of
non zero terms. Next, for eacha � C �

d , we de�ne a central idempotent 1(a) in
Hs

kp ,d by 1(a) =
�

p� (a) 1p, wherea is identi�ed with the tuple(1a12a2 · · · � a� )

and(a) is the set of all permutations ofa in [1, � ]d. Then, we writeHs
kp ,(a) =

1(a)Hs
kp ,d.

It is well-known that there are kp-algebra isomorphismsHs
kp ,d =

�
a� C �

d
Hs

kp ,(a), H �
kp ,a = 1a Hs

kp ,d1a andHs
kp ,(a) = MatS d/ S a

�
H �

kp ,a

�
, where
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S a = S a1 × · · · × S a� , see [12]. We must prove that the isomorphism�
a� C �

d
MatS d/ S a

�
H �

kp ,a

�
� Hs

kp ,d lifts to an isomorphism ofRp-algebras. To
do that, by the Nakayama’s lemma, it is enough to prove that this isomorphism
lifts to an Rp-algebra homomorphism

�
a� C �

d
MatS d/ S a

�
H �

Rp ,a

�
� Hs

Rp ,d.

First, by Proposition3.1, for each tuplei � (I kp )d, the sum 1i =
�

i 	 1i 	

over all elementsi 	 � I d whose residue class is equal toi, is an idempotent in
the Rp-subalgebraHs

Rp ,d of Hs
K,d. Therefore, for each tuplep � [ 1, � ]d,

the idempotent 1p � Hs
K,d given by 1p =

�
i 	 1i 	 , where i 	 runs over

the setI p =
� d

r = 1 I pr , belongs also to theRp-subalgebraHs
Rp ,d and it

specializes to the idempotent 1p � Hs
kp ,d given above. In particular, for

eacha � C �
d , the idempotent inHs

K,d given by 1(a) =
�

p� (a) 1p belongs
indeed toHs

Rp ,d and it specializes to the idempotent 1{a} � Hs
kp ,d given

above. Further, settingHs
Rp ,(a) = 1(a)Hs

Rp ,d, we getRp-algebra isomorphisms

Hs
Rp ,d =

�
a� C �

d
Hs

Rp ,(a) andH �
Rp ,a = 1a Hs

Rp ,d1a.
Now, we construct anRp-algebra homomorphism

�
a� C �

d
MatS d/ S a�

1aHs
Rp ,d1a

�
� Hs

Rp ,d which lifts the isomorphism over the residue �eld
kp mentioned above.

To do that, it is convenient to use the formalism ofquiver Hecke algebras.
Let Rs

K,d be thecyclotomic quiver Hecke algebraof rankd associated withs.
It is theK-algebra generated by elements 1i , xi,k, � i,l with i � I d, k � [ 1, d]
andl � [ 1, d), subject to the relations in [40, sec. 3.2.1] associated with the
quiver I and to the cyclotomic relations given by(xi,1) { p; qsp= i1} = 0 for
all i’s. Note that theK-algebraRs

K,d is �nite dimensional, and that we have
1i = 0 except for a �nite number ofi’s.

By [6,40] we have aK-algebra isomorphismRs
K,d = Hs

K,d which identi�es
the idempotents 1i , i � I d, from both sides. In particular, for each integerl �
[1, d) and eachd-tuplep such thatpl �= pl + 1, the element� p,l =

�
i� I p

� i,l

in Rs
K,d can be viewed as an element ofHs

K,d which belongs toHs
Rp ,d and

which satis�es the relations� sl (p),l � p,l = 1p and� p,l � sl (p),l = 1sl (p).
Next, let w � S d. Assume thatw is of minimal length in its rightS a-

coset. Fix a reduced decompositionw = srm · · · sr2sr1. Consider the elements
� w,a and�̄ a,w of Hs

Rp ,d given by� w,a = � srm,srmŠ1···sr1(a) · · · � sr2,sr1(a) � sr1,a and
�̄ a,w = � sr1,sr2···srmw(a) · · · � srmŠ1,srmw(a) � srm,w(a). We have�̄ a,w � w,a = 1a and
� w,a �̄ a,w = 1w(a).

The expected map
�

a� C �
d

MatS d/ S a

�
1aHs

Rp ,d1a
�

� Hs
Rp ,d takes the

square matrix(xv(a),w( a))v,w in MatS d/ S a

�
1aHs

Rp ,d1a
�

with xv(a),w( a) �
1aHs

Rp ,d1a and v, w � S d as above to the sum
�

v,w � w,a xv(a),w( a) �̄ v,a.
��
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Now, givenp = ( p1, p2, . . . , pd) in [1, � ]d, we write fp = f p1 f p2 · · · f pd

andTR,p(�) = fp(TR,0(�)) . We have an isomorphismTR,d(�) =
�

p TR,p(�) .
Recall that we identify a compositiona = (a1, . . . , a� ) in C �

d with the
� -tuple (1a12a2 · · · � a� ). Then, we have an isomorphismTR,a(�) =

� �
p= 1

TR,ap(� p).
Next, consider the action of the symmetric groupS d on[1, � ]d by permuta-

tion. Each orbit contains a unique element given by a compositiona � C �
d . Let

(a) denote this orbit. We have a bijectionS d/ S a
�
� { a} given byw �� w(a),

whereS a is the stabilizer ofa. We writeTR,(a)(�) =
�

p�{ a} TR,p(�) .
For eachp � (a) we have a canonical isomorphismTR,p(�) = TR,a(�) .

Therefore, we haveTR,(a)(�) =
�

w� S d/ S a
TR,a(�) . We deduce that

EndA+ ,�
R (�) (TR,(a)(�)) = MatS d/ S a

�
EndA+ ,�

R (�) (TR,a(�))
�
.

Next, recall thatO+ ,�
R (�) =

�
a� C �

d
O+ ,�

R (�)( a) and thatTR,p(�) � O+ ,�
R

(�) {a} if and only if p � (a). Therefore, we have

EndA+ ,�
R (�) (TR,d(�)) =



a� C �
d

EndA+ ,�
R (�) (TR,(a)(�))

=


a� C �
d

MatS d/ S a

�
EndA+ ,�

R (�) (TR,a(�))
�
. (5.4)

For eachp � [ 1, � ], the gR,� p-moduleTR,ap(� p) � A+ ,�
R (� p) gives rise

to an R-algebra homomorphismH+
R,ap

� EndA+ ,�
R (� p)(TR,ap(� p))op given

by (5.1). Taking the tensor product , we get anR-algebra homomorphism
H �

R,a � EndA+ ,�
R (�) (TR,a(�)) op.

Now, assume thatp � P 1 is generic. Combining theR-algebra homomor-
phism above with base change, (5.3) and (5.4), we get anRp-algebra homomor-
phism� +

Rp ,d(�) : Hs
Rp ,d � EndA+ ,�

Rp
(�) (TRp ,d(�)) op. Further, the composition

with � +
Rp ,d(�) yields a functor� +

Rp ,d(�) = HomA+ ,�
Rp

(�)

�
TRp ,d(�), €

�
:

A+ ,�
Rp

(�) {d} � Hs
Rp ,d-mod.

Lemma 5.34 Letp � P 1 be generic. The following holds

(a) TRp ,d(�) is projective inA+ ,�
Rp

(�) {d},

(b) � +
Rp ,d(�) is an isomorphismHs

Rp ,d � EndmRp ,� (TRp ,d(�)) op,

(c) � +
Rp ,d(�) is fully faithful on(A+ ,�

Rp
(�) {d})� and(A+ ,�

Rp
(�) {d}) .
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Proof We have an equivalence of highest weight categoriesO+ ,�
kp

(�) =
� �

p= 1 O+ ,�
kp

(� p) and each factorO+ ,�
kp

(� p) is a copy of the Kazhdan–Lusztig

category. ThereforeO+ ,�
kp

(�) is equivalent to a category of modules over a

quantum group by [28]. HenceA+ ,�
kp

(�) {d} is equivalent to the module cate-
gory of aq-Schur algebra (with� = 1) as a highest weight category, and this
equivalence takes� +

kp ,d(�) to the q-Schur functor.
Hence, some standard facts onq-Schur algebras imply thatTkp ,d(�) is

projective inA+ ,�
kp

(�) {d}, proving part (a), and that the kp-algebra homomor-
phismHs

kp ,d � Endmkp ,� (Tkp ,d(�)) op is an isomorphism, proving part (b) by
Nakayama’s lemma and (5.4), (5.3), see e.g. [39].

Now, we concentrate on part (c). A standard argument due to Donkin implies
that the q-Schur functor� s

kp ,d is faithful on (Ss
kp ,d-mod) for � = 1. More

precisely, recall that� s
kp ,d = HomSs

kp ,d
(Ss

kp ,d e, €) for some idempotente �

Ss
kp ,d. Recall also that theSs

kp ,d-moduleSs
kp ,d e is faithful and that any Weyl

module embeds inSs
kp ,d e, see e.g., [35, p. 188]. Thus, the claim follows from

[35, thm. 4.5.5]. So, from the equivalence above, we deduce that� +
kp ,d(�) is

faithful on (A+ ,�
kp

(�) {d}) . Since the q-Schur algebra is Ringel self-dual, we

deduce that� +
kp ,d(�) is also faithful on(A+ ,�

kp
(�) {d})� . Therefore, the part (c)

of the lemma follows from Proposition2.18. ��

We can now prove the main result of this section. Recall that we have intro-
duced a moduleTR,d in A�,�

R,� , an R-algebra homomorphism� s
R,d : Hs

R,d �
EndA�,�

R,�
(TR,d)op, and a functor� s

R,d : A�,�
R,� {d} � Hs

R,d-mod.
By base-change, we getTRp ,d, � s

Rp ,d and � s
Rp ,d for eachp � P , see

Remark4.6. Recall also that, sinceR is in general position, theK-category
A�,�

K,� is split semi-simple and condition (3.1) holds inK .

Proposition 5.35 Letp � P 1 be generic. Assume that� p � d for all p. Then

(a) TRp ,d is projective inA�,�
Rp ,� ,

(b) � s
Rp ,d is an isomorphismHs

Rp ,d � EndA�,�
Rp ,�

(TRp ,d)op,

(c) � s
Rp ,d is fully faithful on(A�,�

Rp ,� {d})� and(A�,�
Rp ,� {d}) .

Proof Assuming part (b), the Proposition5.31and Lemma5.34imply parts
(a) and (c). Let us prove (b).

The proof is similar to the proof of Proposition5.27. It is based on Propo-
sition 2.23. Recall thatHs

K,d is a split semi-simpleK -algebra, and by [13,
thm. 3.30], that the decomposition mapK0(Hs

K,d) � K0(Hs
kp ,d) is surjec-

tive. We construct an endomorphism&Rp of Hs
Rp ,d as follows. By Lemma5.34,
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we have an isomorphism� +
Rp ,d(�) : Hs

Rp ,d � EndmRp ,� (TRp ,d(�)) op. Next,
by Proposition5.31 and Lemma5.32, we have an equivalence of cate-
gories Q Rp : O�,�

Rp ,� {a} � O+ ,�
Rp

(�) {a} which mapsTRp ,d to TRp ,d(�).
By functoriality, it induces an isomorphism� Rp : EndA�,�

Rp ,�
(TRp ,d)op �

EndA+ ,�
Rp

(�) (TRp ,d(�)) op. We set&Rp = (! s
Rp ,d)Š1 
 � Rp 
 � s

Rp ,d. The same

proof as in Proposition5.27 implies that the map&K = K&Rp induces the
identity on the Grothendieck group. So&Rp is an automorphism by Proposi-
tion 2.23. This implies that� s

Rp ,d is an isomorphism. ��

Remark 5.36If qkp �= 1 then� s
Rp ,d is a 1-faithful highest weight cover.

5.8 The category A as a highest weight cover

Let R be a local analytic deformation ring of dimension 2 in general position.
Let � k = Š eandsR = � + � R. Recall the moduleTR,d � A�,�

R,� and the functor
� s

R,d : A�,�
R,� � Hs

R,d-mod.
The �rst main result of this paper is the following theorem.

Theorem 5.37 Assume that� p � d for all p.

(a) The map� s
R,d : Hs

R,d � EndA�,�
R,�

�
TR,d

� op is an R-algebra isomorphism.

(b) The moduleTR,d is projective inA�,�
R,� .

(c) The functor� s
R,d is fully faithful onA�,�,�

R,� andA�,�, 
R,� .

Proof First, by Proposition5.22, the categoryA�,�
K,� is split semi-simple and

condition (3.1) holds in the fraction �eldK .
To prove part (a), observe that sinceTR,d is tilting, the R-module

EndA�,�
R,�

(TR,d) is projective. SinceHs
R,d is also projective overR, we have

Hs
R,d =

�

p� P 1

RpHs
R,d, EndA�,�

R,�
(TR,d) =

�

p� P 1

Rp EndA�
R,�

(TR,d),

see [Bourbaki,Alg•bre commutative, ch. VII, §4, n
 2]. Next, we have
RpHs

R,d = Hs
Rp ,d andRp EndA�,�

R,�
(TR,d) = EndA�,�

Rp ,�
(TRp ,d) for eachp � P .

Thus, it is enough to prove that the map� s
Rp ,d is invertible for eachp � P 1. By

Proposition5.22, the primep is generic or subgeneric. Thus part (a) follows
from Proposition5.27and Proposition5.35.

Now, let us prove that� s
R,d is fully faithful on A�,�, 

R,� . SinceTR,d is tilt-
ing, by Corollary2.17 it is enough to check that� s

Rp ,d is fully faithful on

(A�,�
Rp ,� {d}) for p � P 1. This has already been proved in Propositions5.27

and5.35.
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As a consequence, the tilting moduleTR,d is projective by Lemma2.15,
because the algebra EndA�,�

R,�
(TR,d) being isomorphic toHs

R,d is symmetric.
Part (b) is proved.

We deduce that� s
R,d is quotient functor. Therefore by Lemma2.16 it is

fully faithful over A�,�,�
R,� if � s

Rp ,d is fully faithful on (A�,�
Rp ,� {d})� for p � P 1.

Again, this has been proved in Propositions5.27 and5.35. The theorem is
proved. ��

The following corollary is a straightforward consequence of the theorem by
specializing to the residue �eld, see also [33].

Corollary 5.38 Assume that� p � d for all p.

(a) The map� �
k,d : H �

k,d � EndA�, Še
k

�
Tk,d

� op is ak-algebra isomorphism.

(b) The moduleTk,d is projective inA�, Še
k .

Remark 5.39The moduleTk,d may not be projective inO�,�
k .

Remark 5.40Let R be any local deformation ring. Assume that� p � d for
eachp. From Theorem5.37(b), Proposition2.4and Remark5.17we deduce
thatTR,d is well-de�ned and is projective inA�,�

R,� .

5.9 The functor F and induction

In Sect.4.6 we de�ned a pre-categorical action(E, F, X, T) on A�,�
R,� . Now,

we de�ne a tuple(E, F, X, T) onA�,�
R,� in the following way. Leth : A�,�

R,� �
O�,�

K,� be the canonical embedding. Consider the endofunctorsE, F of A�,�
R,�

given byE = h� eh, F = h� f h. Since f preserves the subcategoryA�,�
R,� , we

haveF = h! f h = f |A�,�
R,�

. In particular, the functorF is exact,(E, F) is an

adjoint pair and we haveE(A�,�
R,� {d + 1}� ) � (A�,�

R,� {d})� . Then, we de�ne
X � End(F) = End( f ) andT � End(F2) = End( f 2) as in Proposition5.14.

Let d, k be positive integers such thatd + k � � p for all p. In this sec-
tion we compare the functorsFk : A�,�

R,� {d} � A�,�
R,� {d + k} and Indd+ k

d =
Hs

R,d+ k � Hs
R,d

€ : Hs
R,d-mod � Hs

R,d+ k-mod.

By de�nition Fk(TR,d) = TR,d+ k and we have a commutative diagram

Hs
R,d

� s
R,d

�
��

��

��

EndA�,�
R,�

(TR,d)op

Fk

��
Hs

R,d+ k
� s

R,d+ k

�
��EndA�,�

R,�
(FkTR,d)op.
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Therefore, we have a morphism of functors onA�,�
R,� {d}

' k : Indd+ k
d � s

R,d � HomA�,�
R,�

(TR,d+ k, FkTR,d)

� EndA�,�
R,�

(TR,d)op HomA�,�
R,�

(TR,d, €)

� HomA�,�
R,�

(EkTR,d+ k, TR,d)

� EndA�,�
R,�

(TR,d)op HomA�,�
R,�

(TR,d, €)

� HomA�,�
R,�

(EkTR,d+ k, €)

� HomA�,�
R,�

(TR,d+ k, Fk€)

= � s
R,d+ kFk,

where the map in the third line is given by composition.

Lemma 5.41 Assume that d+ k � � p for all p. Then' k : Indd+ k
d � s

R,d �
� s

R,d+ kFk is an isomorphism.

Proof It is enough to prove that' k is an isomorphism of functors on
(A�,�

R,� {d})� . We must prove that the map

HomA�,�
R,�

(EkTR,d+ k, TR,d) � EndA�,�
R,�

(TR,d)op HomA�,�
R,�

(TR,d, M)

� HomA�,�
R,�

(EkTR,d+ k, M)

given by composition is an isomorphism for eachM � (A�,�
R,� {d})� .

Since� s
R,d is 0-faithful,E(A�,�

R,� {d+ 1}� ) � (A�,�
R,� {d})� and� s

R,d(TR,d) �
Hs

R,d as(Hs
R,d, Hs

R,d)-bimodules, the left hand side is isomorphic to

HomHs
R,d

(� s
R,d(EkTR,d+ k), Hs

R,d) � Hs
R,d

HomHs
R,d

(Hs
R,d, � s

R,d(M))

and the right hand side is isomorphic to HomHs
R,d

(� s
R,d(EkTR,d+ k), � s

R,d
(M)). Hence, we are reduced to prove that the natural map

HomHs
R,d

(� s
R,d(EkTR,d+ k), Hs

R,d) � Hs
R,d

HomHs
R,d

(Hs
R,d, � s

R,d(M))

� HomHs
R,d

(� s
R,d(EkTR,d+ k), � s

R,d(M))

given by composition is an isomorphism. We claim that� s
R,d(EkTR,d+ 1) �

Hs
R,d+ k asHs

R,d-modules. Thus it is a projectiveHs
R,d-module, and the iso-

morphism follows.
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To prove the claim, note that since� s
R,d = HomA�,�

R,�
(TR,d, €) is fully faith-

ful on(A�,�
R,� {d}) , using the dualityD onA�,�

R,� {d} and the fact thatD (TR,d) �
TR,d, we deduce that the contravariant functor HomA�,�

R,�
(€, TR,d) : A�,�

R,� {d} �

(Hs
R,d)op-mod is fully faithful on (A�,�

R,� {d})� . Therefore, we have isomor-
phisms

� s
R,d(EkTR,d+ k) � HomA�,�

R,�
(TR,d, EkTR,d+ k)

� Hom(Hs
R,d)op

�
HomA�,�

R,�
(EkTR,d+ k, TR,d), Hs

R,d
�

� Hom(Hs
R,d)op

�
HomA�,�

R,�
(TR,d+ k, FkTR,d), Hs

R,d
�

� Hom(Hs
R,d)op

�
Hs

R,d+ k, Hs
R,d

�
.

Finally, sinceHs
R,d+ k is self-injective, there is an isomorphism ofHs

R,d-
modulesHs

R,d+ k � Hom(Hs
R,d)op

�
Hs

R,d+ k, Hs
R,d

�
. The claim is proved. ��

Remark 5.42Recall thatX acts on Indd+ 1
d = Hs

R,d+ 1 � Hs
R,d

€ by right multi-
plication byXd+ 1 onHs

R,d+ 1, and the action ofX on E is the transposition of
its action onF under the adjunction, see Remark3.3. Hence, it follows from
the de�nition of ' 1 that it intertwines the action ofX on Indd+ 1

d and onF, i.e.,
we have

' 1 
 (� s
R,d+ 1X) = (X� s

R,d) 
 ' 1.

Similarly we have

' 2 
 (� s
R,d+ 2T) = (T� s

R,d) 
 ' 2,

for the action ofT on Indd+ 2
d and onF2.

6 The category A and CRDAHAÕs

6.1 Reminder on rational DAHAÕs

6.1.1 DeÞnition of the categoryO

Let R be a local ring with residue �eldC. Let W be a complex re�ection
group, leth be the re�ection representation ofW overR and letSbe the set of
pseudo-re�ections inW. Let A be the set of re�ection hyperplanes inh. We
write hreg = h\

�
H� A H.

Let c : S � R be a map that is constant on theW-conjugacy classes. The
RDAHA(=rational double afÞne Hecke algebra) attached toW with parameter
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c is the quotientHc(W, h)R of the smash product ofRWand the tensor algebra
of h � h� by the relations

[x, x	] = 0, [y, y	] = 0, [y, x] =  x, y" Š
�

s� S

cs � s, y" x, �� s"s,

for all x, x	 � h� , y, y	 � h. Here €, €" is the canonical pairing betweenh�

andh, the element� s is a generator of Im(s|h� Š 1) and �� s is the generator of
Im(s|h Š 1) such that � s, �� s" = 2.

Let R[h], R[h� ] be the subalgebras ofHc(W, h)R generated byh� and
h respectively. The categoryO of Hc(W, h)R is the full subcategory of the
category ofHc(W, h)R-modules consisting of objects that are �nitely gen-
erated asR[h]-modules andh-locally nilpotent, see [22, § 3]. We denote it
by Oc(W, h)R. It is a highest weightR-category. The standard modules are
labeled by the set Irr(CW) of isomorphism classes of irreducibleW-modules.
The standard module associated withE � Irr(CW) is the induced module
�( E)R = IndH(W)R

W� R[h� ](RE). Here RE is regarded as aW � R[h� ]-module
such thath � R[h� ] acts by zero. LetL(E) be the unique simple quotient of
�( E)R, and letP(E)R be the projective cover of�( E)R.

By [22, § 4.2.1] there is a functor

(€)' : Oc(W, h)R � Oc' (W, h� )op
R ,

which is an equivalence over the subcategories of modules inOc(W, h)R,
Oc' (W, h� )op

R that are free overR. Here c' : S � R is de�ned by
c' (s) = c(sŠ1). For anyE � Irr(CW) we write E' = HomR(E, R). We
have�( E)'

R �  (E' )R and (E)'
R � �( E' )R.

6.1.2 TheKZ-functor

Let R be an analytic regular local ring. There is a quotient functor

KZ R : Oc(W, h)R � H(W, h)R-mod

de�ned in [22, § 5.3], whereH(W, h)R is the Hecke algebra associated withW
and a parameter which depends onc. Note that loc. cit. uses regular complete
local rings, but the same construction can be done for analytic ones.

Proposition 6.1 The functorKZ R is 0-faithful.

Proof By Proposition2.18 it is enough to prove that over the residue �eld
C the functor KZ is(Š1)-faithful. In other words, we must prove that KZ is
faithful onOc(W, h)�

C .
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Write O = Oc(W, h)C, let Otor � O be the full subcategory consisting
of the objectsM such thatM � C[h] C[hreg] = 0. By [22, thm. 5.14], the
functor KZ is isomorphic to the quotient functorO � O/ Otor . A � -�ltered
objectM is free overC[h] by [22, prop. 2.21], so it has no torsion submodules.
Therefore, the map HomO (M, N) � HomO (KZ(M), KZ(N)) is injective for
eachM, N � O� . We are done. ��

6.1.3 Induction and restriction functors

A parabolic subgroup W	 � W is the stabilizer of some pointb � h. It is
a complex re�ection group with the set of re�ectionsS	 = S � W and with
re�ection representationh/ hW	

, wherehW	
is the subspace of points �xed by

W	. Bezrukavnikov and Etingof [3] de�ned parabolic induction and restriction
functors

OIndW
W	 : Oc(W	, h/ hW	

)R � Oc(W, h)R,
OResWW	 : Oc(W, h)R � Oc(W	, h/ hW	

)R.

Here we viewc as a parameter forW	 by identifying it with its restriction to
S	. In loc. cit. the authors work over a �eld. The de�nition is the same over
a ring R. The functorOIndW

W	 is left adjoint toOResWW	 , and both functors are
exact. In particularOIndW

W	 maps projective objects to projective objects.
Let R be an analytic regular local ring. By [41, thm. 2.1] we have isomor-

phisms of functors

KZ R 
 OResWW	 � HResWW	 
 KZ R, KZ R 
 OIndW
W	 � HIndW

W	 
 KZ R, (6.1)

whereOResWW	 andHIndW
W	 refer to the restriction and induction functors for

Hecke algebrasH(W	, h/ hW	
)R �� H(W, h)R, see loc. cit. for more details.

Again, in loc. cit. we work over a �eld, but the same proof works overR.
We will be mainly interested in the case whereW	 = WH is the pointwise

stabilizer of a hyperplaneH. We will abbreviateO(WH )R = Oc(WH , h/ H)R
andOIndH = OIndW

WH
.

6.1.4 Support of modules

Let R be a local ring with residue �eld k. We abbreviateOR = Oc(W, h)R. If
R = K is a �eld, let Ch(M) denotethe characteristic varietyof M as de�ned
in [22, § 4.3.4]. It is a closed subvariety ofh � h� . Recall the notation lcdO
and rcdO from (2.1).
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Lemma 6.2 Assume R= K is a Þeld. For any M� OK we have

lcdOK (M) = rcdOK (M) = dimh Š dim Ch(M).

Proof The equality dim Ch(M) = dimh Š rcdO (M) is proved in [22,
cor. 4.14]. Further, the proof of [22, lem. 5.2] yields dim Ch(M) =
dim Ch(M ' ). This implies that rcdO (M) = rcdO (M ' ). On the other hand,
by [22, prop. 4.7], if T is a tilting generator ofOK then T ' is a tilting
generator ofO '

K and ExtiOK
(T, M) � ExtiO '

K
(M ' , T ' ). We deduce that

lcdOK (M) = rcdOK (M ' ) = rcdOK (M). ��

Lemma 6.3 For E � Irr(CW) we havercdOk (L(E)) � 1 if and only if there
exist H � A and P � O(WH )proj

R such that P(E) is a direct summand of
OIndH (P).

Proof By [21, thm. 6.8] we have Ch(L(E)) = hW	 �
{0} � h

�
h� for

some parabolic subgroupW	 � W. So rcdOk (L(E)) � 1 is equivalent, by
Lemma6.2, to the fact thathW	

has codimension� 1 in h, which is equivalent
to W	 � WH for some hyperplaneH in A . By [43, prop. 2.2], the latter is true
if and only if OResWWH

(L(E)) �= 0, which is equivalent to

HomO R

� OIndW
WH

(P), L(E)
�

= HomO(WH )R

�
P, OResWWH

(L(E))
�

�= 0,

for someP � O(WH )proj
R . Hence rcdOk (L(E)) � 1 is equivalent toP(E)

being a direct summand ofOIndW
WH

(P) for someH � A andP � O(WH )proj
R .

��

6.2 The categoryO of cyclotomic rational DAHAÕs

Let R be a local ring. Fix� R � R× ands = (sR,1, . . . , sR,� ) � R� .

6.2.1 DeÞnition

Recall that� is the group of� -th roots of unity inC× and that� d is the semi-
direct productS d � � d, where� d is the Cartesian product ofd copies of� .
For# � � let #i � � d be the element with# at thei -th place and with 1 at the
other ones. Letsi j � S d be the transposition(i , j ). Write s#

i j = si j #i #
Š1
j for

# � � andi �= j .
Fix a basis(x, y) of R2. Let xi , yi denote the elementsx, y respectively

in thei -th summand of(R2)� d. There is a unique action of the group� d on
(R2)� d such that for distincti , j , k we have#i (x j ) = #Š
 i j x j , #i (y j ) = # 
 i j y j
andsi j (xi ) = x j , si j (xk) = xk, si j (yi ) = y j andsi j (yk) = yk.
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Fix k � R and c# � R for each # � � . Note that � d is a com-
plex re�ection group with re�ection representationh = R� d and S =
{s#

i j }1� i �= j � d,# � �
�

{#i }1� i � d. Letc : S � R be the map given byc(s#
i j ) = k,

c(#i ) = c# / 2. We consider the algebraHc(W, h)R for W = � d. We will
call Hc(� d, h)R theCRDAHA(=cyclotomic RDAHA). It is the quotient of the
smash product ofR� d and the tensor algebra of(R2)� d by the relations

[yi , xi ] = 1 Š k
�

j �=i

�

#� �

s#
i j Š

�

#� � \{ 1}

c# #i ,

[ yi , x j ] = k
�

#� �

#s#
i j if i �= j ,

[xi , x j ] = [ yi , y j ] = 0.

We will use a presentation ofHc(� d, h)R where the parameters are
h, h0, h1, . . . , h� Š1 with (settinghŠ1 = h� Š1)

k = Š h, Šc# =
� Š1�

p= 0

#Š p(hp Š hpŠ1) for # �= 1.

The notationh = hR, hp = hR, p here is the same as in [39, sec. 6.1.2]. Finally,
we choose the elementshR, hR, p in the following way:

hR=Š 1/� R, hR, p =Š sR, p+ 1/� R Š p/�, p = 0, 1, . . . , � Š 1. (6.2)

In the rest of this section we assume that the residue Þeld isk = C and that
sk, p � Z for all p.

Write � = � k andsp = sk, p. We abbreviateOs,�
R {d} = Oc(� d, h)R. If

� = 1, thenc only depends on� , we abbreviateO�
R(S d) = Oc(S d, h)R.

The categoryOs,�
R {d} is a highest weightR-category such that�( Os,�

R {d}) =
{�(�) s,�

R ; � � P �
d} and�(�) s,�

R = �( X (�) C)R. We writeL(�) s,� , P(�) s,�
R ,

T(�) s,�
R , I (�) s,�

R for the corresponding simple, projective, tilting, injective
object inOs,�

R {d}.

6.2.2 Comparison of partial orders

The partial order on the set�( Os,�
R {d}) � P �

d is de�ned as follows. LetA, B
be boxes of� -partitions. We sayA ( s B if we have conts( A) < conts(B) or
if conts( A) = conts(B) and p( A) > p(B). We de�ne a partial order� s,� on
P �

d by setting� � s,� µ if and only if there are orderingsY(�) = { An} and
Y(µ) = { Bn} such thatAn � s Bn for all n.

Lemma 6.4 Assume� < 0. Then� s,� is a highest weight order onOs,�
R {d}.
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Proof By the proof of [16, thm. 4.1], if [�(�) s,�
k : L(µ) s,�

k ] �= 0 then there
exist orderingsY(�) = { An} andY(µ) = { Bn} and non negative integersDn
such that

Dn = p( An) Š p(Bn) + �
�
conts( An) Š conts(Bn)

�
/�,

for all n and(conts( An) Š conts(Bn))/� � Z. Our notation matches those of
loc. cit. in the following way:r = � , c0 = � Š1, dp = Š � hp. Now, since� < 0
and p( An), p(Bn) � [ 1, � ], we haveDn � 0 if and only if An � s Bn. ��

Set s* = (Šs� , Šs� Š1, . . . , Šs1). For each� � P �
d we write � * =

(t � � , . . . , t � 2, t � 1). We have the following lemma which is similar to [33,
lem. 2.2].

Lemma 6.5 Assume that� < 0 and that sp = � p � d for all p. Then the
order � s* ,� reÞnes the order� � , i.e., for any�, µ � P �

d such thatµ � � � we
haveµ * � s* ,� � * .

Proof First, for any� � P �
d and A � Y(�) , we have the transposed box

A* � Y(� * ) such that conts
*
( A* ) = Š conts( A) and p( A* ) = � + 1 Š p( A).

Therefore, we haveA ) s B if and only if A* ( s* B* .
Let �, µ � P �

d be such thatµ � � � . Assume thatw � W� , � � 
� + are

such that �� (µ) + �� : � " > 0 andws� € �� (µ) = �� (�). We must prove that
µ * � s* ,� � * , which is equivalent toµ � s,� � .

Write � = � k,l + r 
 and� 	 = sk,l (µ + � � ) + er� k,l Š � � . Setn =  µ + � � :
� k,l "Š er > 0. We havew(� 	 + � � ) = � + � � and(� 	 + � � )k = (µ + � � )k Š n,
(� 	 + � � )l = (µ + � � )l + n.

For k � [ 1, N] let k	 = k Š � 1 Š � 2 Š · · · Š � pkŠ1 where pk is such
thatk � J �

pk
. Then the diagramY(� 	) is obtained from the diagramY(µ) by

removingn boxes from the right end of thek	-th row of thepk-th partition of
µ and addingn boxes the right end of thel 	-th row of thepl -th partition ofµ .

We number the removed boxes byB1, B2, . . . , Bn ordered from left to right,
and the added boxes byA1, A2, . . . , An ordered from left to right. We claim
that B j � A j for 1 � j � n.

To prove this, note �rst thatB j � A j if and only if Bn � An, because we
have conts(B j ) Š conts( A j ) = conts(Bn) Š conts( An), p(B j ) = p(Bn) and
p( A j ) = p( An).

Now let us compareBn andAn. Observe that

conts(Bn) = (µ + � � )k Š 1, conts( An) = (� 	+ � � )l Š 1= (µ + � � )l + nŠ 1.

Recall that� = � k,l + r 
 is a positive root. Therefore, we have eitherr > 0,
and then
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conts(Bn) Š conts( An) =  µ + � � : � k,l " Š n = er > 0,

or we haver = 0 andk � l , and then conts(Bn) = conts( An) and p(Bn) =
pk � pl = p( An). We deduce thatBn � An. Hence we have shownµ � s,� � 	.

Next, recall thatw � W� is such that the tuple� + � � is � -dominant.
Thus, we can writew = s� ms� mŠ1 · · · s� 1 such that� i = � k,l for somek < l
with pk = pl , that #i = s� i Š1s� i Š2 · · · s� 1(� 	 + � � ) Š � � � NN and that
n = Š #i + � � , � i " > 0. We set#0 = � 	. Repeating the argument of the
last paragraph with� = � i yields thatY(#i + 1) is obtained fromY(#i ) by
removingn boxes in thel 	-th row of# pl

i and adding them to thek	-th row. Order
the removed boxes byB1, B2, . . . , Bn and the added one byA1, A2, . . . , An
in the same way as above. Then the same computation as above yields that
conts( A j ) = conts(B j ) andp( A j ) = p(B j ) for all j = 1, 2, . . . , n. Therefore
we have#i + 1 = #i for the order� s,� . We deduce that� = #m+ 1 = #m+ 1 = � 	.
Thereforeµ � s,� � . The lemma is proved. ��

6.2.3 TheKZ-functor

Now, letRbe a local analytic deformation ring and setqR= exp(Š2�
�

Š1/� R)
� R× . Consider the KZ-functor KZsR,d : Os,�

R {d} � Hs
R,d-mod.

Lemma 6.6 Assume that(3.1) holds in K. ThenIrr(Hs
K,d) = { S(�) s,q

K ; � �

P �
d}, Irr(Os,�

K {d}) = { �(�) s,�
K ; � � P �

d} and the bijectionIrr(Os,�
K {d})

�
� Irr

(Hs
K,d) induced byKZs

K,d takes�(�) s,�
K to S(�) s,q

K .

Proof The �rst statement follows from the semi-simplicity ofHs
K,d and from

[22, thm. 2.19]. The second one follows from Tits’ deformation Theorem,
because the modules KZs

K,d(�(�) s,�
K ) andS(�) s,q

K are both the generic point
of a �at family of modules whose �ber at the special point is theC� d-module
X (�) C, see [41, lem. 3.1] for details. ��

6.2.4 Ringel duality

By [22, prop. 4.10], there is an equivalence of categoriesR : Os* ,�
R {d}� �

�
�
Os,�

R {d}�
� op that restricts to an equivalenceOs* ,�

R {d}tilt �
�

�
Os,�

R {d}proj
� op.

Hence, it induces an equivalenceOs* ,�
R {d}� �

� Os,�
R {d}op. We haveR (�

(� * )s* ,�
R ) � �(�) s,�

R . Consider the isomorphism ofR-algebras

+: Hs
R,d

�
� (Hs*

R,d)op, Ti �� Š qRTŠ1
i , X j �� XŠ1

j .
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It induces an equivalence

R H = +� (€' ) : Hs*

R,d-mod� R-proj
�
� (Hs

R,d-mod)op � R-proj,

where€' is the dual as anR-module.
By [22, §5.4.2], there is a commutative diagram

Os* ,�
R {d}� R

�
��

KZs*
R,d

��

�
Os,�

R {d}�
� op

KZs
R,d

��
Hs*

R,d-mod� R-proj
R H

�
��(Hs

R,d-mod)op � R-proj .

(6.3)

In particular, ifR = K is a �eld satisfying the condition (3.1), then Lemma6.6
yields KR H(S(� * )s* ,q

K ) � S(�) s,q
K .

We will also consider theR-algebra isomorphisms

IM : Hs
R,d

�
� Hs*

R,d, Ti �� Š qRTŠ1
i , X j �� XŠ1

j

and

� : (Hs
R,d)op �

� Hs
R,d, Ti �� Ti , X j �� X j .

Note that the composition IM� R Š1
H is given by� � (€' ).

6.3 Proof of VaragnoloÐVasserotÕs conjecture

Let R be a local analytic deformation ring of dimension 2 in general position
with residue �eld k= C. Fix e, � , N � N× . Fix � R � R× such that� k = Š e
and � � C �

N,+ . We setsR, p = � p + � R, p, qR = exp(Š2�
�

Š1/� R) and
QR, p = exp(Š2�

�
Š1sR, p/� R). We may abbreviate� = � k, sp = sk, p.

6.3.1 Small rank cases

As a preparation for the proof, we start by comparing the highest weight covers
KZs

R,d : Os,�
R {d} � Hs

R,d-mod and� s
R,d : A�,�

R,� {d} � Hs
R,d-mod ford = 1,

2.
First, assume thatd = 1. Then� d = � is a cyclic group. The Hecke algebra

associated with� is Hs
R,1 = R[X1]/

� � �
p= 1(X1 Š QR, p)

�
.

Proposition 6.7 We haveKZs
R,1(P(�) s,�

R ) � � s
R,1(T(�) R,� ) for any� � P �

1.

123



R. Rouquier et al.

Proof For eachp � [ 1, � ] let � p � P �
1 be the� -partition with 1 on the

p-th component and# elsewhere. By Remark5.18, Proposition5.22(d) and
Lemma6.6, we have

KZs
K,1(�(� p)s,�

K ) � K [X1]/( X1 Š QK, p) � � s
K,1(���(� p)K,� ).

By Theorem5.37 and Proposition6.1 the functors KZsR,1 and � s
R,1 are 0-

faithful cover ofHs
R,1-mod with opposite orders. Therefore, Corollary2.22

shows that KZsR,1(P(�) s,�
R ) � � s

R,1(T(�) R,� ) for any� � P �
1. ��

Now, assume thatd = 2. Recall the Hecke algebraH+
R,2 = R[T1]/( T1 +

1)(T1 Š qR) associated with the groupS 2. Write � + = (2) and� Š = (12) in
P 1

2. The categoryO�
R(S 2) is a special case ofOs,�

R {1} with � = 2. The proof
of Proposition6.7yields

KZ+
R,2(P(�  )�

R) � � +
R,2(T(�  )R,� ),  = + , Š. (6.4)

Consider the induction functor Ind2,s
2,+ : H+

R,2-mod � Hs
R,2-mod.

Proposition 6.8 Assume� p � 2 for all p. For  = + , Š, there exists a tilting
objectT � A�,�

R,� {2} such that� s
R,2(T ) � Ind2,s

2,+ (� +
R,2(T(�  )R,� ).

Proof By Theorem5.37(a), the module� s
R,2(TR,2) is the regular representa-

tion of Hs
R,2. Write T+

R,2 = V %� 2
R . We have� +

R,2(T+
R,2) � H+

R,2. Thus, there
is an isomorphism ofHs

R,2-modules

� s
R,2(TR,2) � Ind2,s

2,+ (� +
R,2(T+

R,2)). (6.5)

If e > 2 then � k �= Š 2, henceH+
k,2 is semi-simple andT+

R,2 �
T(� + )R,�

�
T(� Š )R,� . Since� s

R,2 is 0-faithful, it maps indecomposable fac-
tors of TR,2 to indecomposableHs

R,2-modules. So, the proposition follows
from (6.5) and the Krull–Schmidt theorem.

Now, assume thate = 2, thenqk = Š 1. The indecomposable tilting modules
in A+ ,�

R,� {2} areT(� + )R = T+
R,2 andT(� Š )R = ���(� Š )R. We need to prove the

proposition forT(� Š )R. We have� +
R,2(T(� Š )R) � R[T1]/( T1 + 1). Consider

the action ofH+
R,2 on T+

R,2. ThenT(� Š )R is the image ofT1 Š qR acting on
T+

R,2. Since the functorTR,0 %� R € is exact, we deduce thatTR,0 %� RT(� Š )R is
the image ofT1Š qR acting onTR,2. By consequence,� s

R,2

�
TR,0 %� RT(� Š )R

�

is the image of the right multiplication byT1 Š qR on � s
R,2(TR,2) = Hs

R,2.
Therefore, we have

� s
R,2

�
TR,0 %� RT(� Š )R

�
� Ind2,s

2,+

�
� +

R,2(T(� Š )R)
�
. (6.6)
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We claim thatTR,0 %� RT(� Š )R is tilting in A�,�
R,� {2}. Indeed, by Propo-

sition 8.30, the specialization map EndA�,�
R,�

(TR,2) � EndA�,�
k,�

(Tk,2) takes

T1 Š qR to T1 Š qk. SinceTR,0 %� RT(� Š )R is free overR by Lemma8.27
and since it is the image of the operatorT1 Š qR : TR,2 � TR,2,
the image ofT1 Š qk : Tk,2 � Tk,2 is k(TR,0 %� RT(� Š )R). The same
argument as above implies thatTk,0 %� kT(� Š )k is also the image of the oper-
ator T1 Š qk : Tk,2 � Tk,2. We deduce that there is an isomorphism
k(TR,0 %� RT(� Š )R) � Tk,0 %� kT(� Š )k. Since Tk,0 %� kT(� Š )k is tilting by
Proposition8.11, the claim follows from Proposition2.4(c). The proposition
is proved. ��

6.3.2 Proof of the main theorem

We can now prove conjecture [46, conj. 8.8].

Theorem 6.9 Assume that� p � d for each p. Then, we have an equiva-

lence of highest weight categories� �, Še
d : A�, Še{d}

�
� O� * ,Še{d} such that

� �, Še
d (���(�)) � �(� * )� * ,Še and� �

d � IM � KZ � *

d � �, Še
d .

Proof Let R be a local analytic deformation ring of dimension 2 in general
position with residue �eld k= C. Assume that� k = Š e. SetsR, p = � p+ � R, p.

Let C = Os* ,�
R {d} andC 	 = A�,�

R,� {d}. We consider the highest weight cov-

ersF = IM � KZs*

R,d : C � Hs
R,d-mod andF 	 = � s

R,d : C 	 � Hs
R,d-mod.

We claim that they satisfy the conditions in Proposition2.20, so the theorem
holds. Let us check these conditions.

First,Hs
R,d is symmetric. SinceR is in general position, the condition (3.1)

holds inK , henceHs
K,d is semi-simple.

We haveK F(�(� * )s* ,�
K ) = S(�) s,q

K by Lemma6.6 and Sect.6.2.4, and
we have andK F 	(���(�) K,� ) = S(�) s,q

K by Proposition5.22. So the order
on Irr(Hs

K,d) induced by(C , F) re�nes the order induced by(C 	, F 	) by
Lemma6.5.

Since IM� is an equivalence, by Proposition6.1the functorF is fully faith-
ful on C � . Hence it is also fully faithful onC  , by (6.3) and [22, §4.2.1].
Theorem5.37(c) gives the fully faithfulness ofF 	 onC 	 � andC 	  .

It remains to check thatF(T(�) s* ,�
R ) � F 	(C	 tilt ) for all � � P �

d such
that lcdkC � (L � (�)) � 1 or rcdkC � (L � (�)) � 1. Recall from Sect.6.2.4that
C � � C � � Os,�

R {d}op andL � (�) corresponds toL(� * )s,� . By Lemma6.2,
we have

rcdC � (L � (�)) = lcdOs,�
k {d}(L(� * )s,� ) = rcdOs,�

k {d}(L(� * )s,� ) = lcdC � (L � (�)).
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We have

F(T(�) s* ,�
R ) � IM � KZs*

R,d(R Š1(P(�) s,�
R )) � � � (KZs

R,d(P(�) s,�
R )' ).

By Lemma6.3 and the Krull–Schmidt theorem, it is enough to prove that
for any re�ection hyperplaneH of � d and anyP � O(WH )proj

R , we have

� � (KZs
R,d(OInd� d

WH
(P)) ' ) � F 	(C 	 tilt ).

Since� � (€' ) commutes with induction functors and �xes isomorphism classes
of R-freeHs

R,1-modules andH+
R,2-modules, we deduce from (6.1) that

� � (KZs
R,d(OInd� d

WH
(P)) ' ) � KZs

R,d(OInd� d
WH

(P)).

There are two possibilities forH:

€ eitherH is conjugate to ker(#i Š 1) for somei � [ 1, d]. ThenWH � � . We
identify O(WH )R � Os,�

R {1} andOInd� d
WH

� OInd� d
� 1

. By Proposition6.7,
for any projectiveP � Os,�

R {1}, there existsT � A�,�
R,� {1}tilt such that

KZs
R,1(P) � � s

R,1(T). By (6.1), we have KZsR,d
OInd� d

WH
� Indd

1 KZs
R,1.

Using Lemma5.41, this yields KZs
R,d(OInd� d

WH
(P)) � Indd

1(� s
R,1(T)) �

� s
R,d(FdŠ1(T)). The moduleFdŠ1(T) is tilting by Proposition8.29(a), so

KZs
R,d(OInd� d

WH
(P)) � F 	(C	 tilt );

€ or H is conjugate to ker(s#
i j Š 1) for some# � � andi �= j . ThenWH �

S 2 andO(WH )R � O�
R(S 2). By (6.1), we have KZsR,d(OInd� d

WH
(P)) �

Indd,s
2,+ (KZ(P)). By (6.4) and Proposition6.8 there existsT � A�,�

R,� {2}tilt

such that� s
R,2(T) � Ind2,s

2,+ (KZ(P)). Using Lemma5.41, this yields

Indd,s
2,+ (KZ(P)) � Indd

2(� s
R,2(T)) � � s

R,d(FdŠ2(T)).

SinceFdŠ2(T) is tilting, we have KZsR,d(OInd� d
WH

(P)) � F 	(C 	 tilt ).

We have checked that(C , F), (C 	, F 	) satisfy all the conditions in Proposi-
tion 2.20, the theorem is proved. ��

Remark 6.10In [46, (8.2)] the parameters of the CRDAHA are chosen in
a different way. More precisely, the symbolhp in [46] corresponds to our
parameterhp Š hpŠ1. Further, the parameters(h, hp) are specialized to
(Š1/ e, sp+ 1/ eŠ p/�) in [46] instead of(1/ e, sp+ 1/ eŠ p/�) as above.
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6.3.3 Proof of the main theorem for irrational levels

Let � � C \ Q. We will prove the following result, which was conjectured in
[46, rem. 8.10(b)], as a degenerate analogue of [46, conj. 8.8]. If� is dominant,
a proof was given in [24, thm. 6.9.1].

Theorem 6.11 Assume that� � C \ Q and that� p � d for each p. Then,

we have an equivalence of highest weight categories� �,�
d : A� {d}

�
� O� * ,� {d}

such that� �,�
d (�(�)) � �(� * )� * ,� and� �

d � IM � KZ � *

d � �,�
d .

Let Rbe the completion at(�, 0, . . . , 0) of the ring of polynomials onC� + 1.
It is a local deformation ring such that� R, � R,1, . . . , � R,� are the standard
coordinates. The residue �eld is k= C and we have� k = � , � k, p = 0.
Further, for eachu, v and eachp � P , we have� kp ,u Š � kp ,v /� Z× . We set
sR, p = � p+ � R, p. Now, we consider the functor� s

R,d : A�
R,� {d} � Hs

R,d-mod
given in Sect.4.6.

Lemma 6.12 The functor� s
R,d is a highest weight cover. It is fully faithful on

( A�
R,� {d})� and( A�

R,� {d}) .

The proof is by reduction to codimension one, and is very similar to the
proof of Theorem5.37. We will be sketchy.

We say that a prime idealp � P is genericif � kp ,u �= � kp ,v for eachu �= v,
and that it issubgenericif there is a unique pairu �= v such that� kp ,u = � kp ,v .

Claim 6.13 For eachp � P 1 the following hold.

(a) p is either generic or subgeneric,
(b) if p is generic, then there is an equivalence of highest weight categories

Qkp : O�
kp ,� {a} � O+

kp
(�) {a},

(c) if p is subgeneric with� kp ,u = � kp ,v and u �= v, then there is an equiva-
lence of highest weight categoriesQkp : O�

kp ,� {a} � O�
kp

(�, u, v){a}.

Proof Part (a) is easy. Parts (b), (c) are proved as in Propositions5.24, 5.31,
using [20, thm. 11]. The details are left to the reader. ��

Proof of Lemma6.12 Now, the moduleQkp (Tkp ,d) can be identi�ed explic-
itly, using the same argument as in the proof of Lemmas5.26, 5.32. Indeed,
it is enough to check thatQkp takes a parabolic Verma module to a parabolic
Verma module with the same highest weight and that the induced linear map
[O�

kp ,� ] � [ O�
kp

(�, u, v)] commutes with the linear operators induced by the
categori�cation functorse, f .

Using the same argument as in the proof of Theorem5.37, we only need to
prove the lemma for� s

kp ,d andp � P 1. Hence, by Claim6.13, we are reduced
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to the case� = 1 or 2. If � = 1 everything is obvious, because the category
O+ (�) is semi-simple. If� = 2, we may assume� kp = 0, the result follows
from Proposition4.7and the last paragraph of the proof of Proposition5.27.

Proof of Theorem6.11 Consider the highest weight cover IM� KZs*

R,d :

Os* ,�
R {d} � Hs

R,d-mod. Since theR-algebrasHs
R,d andHs

R,d are isomorphic

by Proposition3.1, we can regard IM� KZs*

R,d and � s
R,d as highest weight

covers of the categoryHs
R,d-mod. We claim that they satisfy the conditions

in Proposition2.20, so the theorem follows. Let us check the conditions.
First,Hs

R,d is Frobenius, andHs
R,d is semi-simple because (3.1) holds obvi-

ously in K . The compatibilities of orders is again given by Lemma6.5.
Since IM� is an equivalence, IM� KZs*

R,d is fully faithful on � - and  -
�ltered objects by Proposition6.1 and (6.3). The corresponding property for
� s

R,d follows from Lemma6.12.

It remains to check that IM� KZs*

R,d(T(�) s* ,�
R ) � � s

R,d(( A�
R,� {d})tilt ) for all

� � P �
d such that lcd

kOs* ,�
R {d}� (L � (�)) � 1 or rcd

kOs* ,�
R {d}� (L � (�)) � 1. The

proof is the same as in Theorem6.9. Details are left to the reader. ��

7 Consequences of the main theorem

7.1 Reminder on the Fock space

Let R, qR, I = I (q) andQR,1, QR,2, . . . , QR,� be as in Sect.3.1. Consider
the dominant weight inP = PI given by 	 Q =

� �
p= 1 	 Qp. Note that

	 Q =
�

p� � 	 p, with 	 p =
�

u; Qu� Qp
	 Qu . Let s = (s1, . . . , s� ) be as in

Sect.3.3. Then, we may write	 s = 	 Q.
TheFock space of multi-charge sis the vector spaceF(	 s) =

�
� � P � C

|�, s". We will abbreviate	 = 	 s. We will call {|�, s"; � � P � } thestandard
monomial basisof F(	) .

There is an integrable representation ofslI onF(	) given by

Fi (|�, s") =
�

q-ress(µ Š�) = i

|µ, s", Ei (|�, s") =
�

q-ress(� Šµ) = i

|µ, s". (7.1)

Let ni (�) be the number of boxes of residuei in � . To avoid any confusion we
may writens

i (�) = nQ
i (�) = ni (�) . Each basis vector|�, s" is a weight vector

of weightwt(|�, s") = 	 Š
�

i � I ni (�) � i .
The	 -weight space ofF(	) has dimension one and is spanned by the ele-

ment |#, s". The slI -submoduleL(	) � F(	) generated by|#, s" is the
simple module of highest weight	 . It decomposes as the tensor product
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L(	) =
�

p� � L(	 p), whereL(	 p) is the simpleslI p-module of highest
weight	 p.

Remark 7.1Assume that the quiverI (q) is the disjoint union of� components
of type A� . Then, we haveF(	) = L(	) =

� �
p= 1 L(	 p).

Remark 7.2The weight wt(�) associated with the element� � P� + � should
not be confused with the weightwt(|�, s") above, which is associated with the
� -partition� � P � . The former has the level 0 while the latter has the level� .
We have wt(� (�)) = wt(|�, s") Š

� �
p= 1 	 � p modZ 
.

Indeed, the equation above holds for� = # . Thus, it is proved by induction
using the following equivalences for�, µ � P � , see Sect.7.1,

� (�)
i

� � (µ) * qK -ress(µ Š �) = qi
K ,

� wt(� (�)) Š wt(� (µ)) = wt(|�, s") Š wt(|µ, s") = � i .

7.2 RouquierÕs conjecture

Let K = C. Fix integerse, � � 1 and �x s = (s1, . . . , s� ) � Z� . Set
	 = 	 s. Set I = Z and I = I / eZ. So, we haveslI = 
sle and the Fock
spaceF(	) is an integrable
sle-module. Consider theUglovÕs canonicalbases
{G± (�, s); � � P � } of F(	) introduced in [45, sec. 4.4].

SetOs* ,Še =
�

d� N Os* ,Še{d}. We identify the complexi�ed Grothendieck

group[Os* ,Še] with F(	) via the linear map& : [Os* ,Še]
�
� F(	) such that

[�(� * )s* ,Še] �� | �, s".
Since the categoryOs* ,Še is preserved under the substitutions �� (1 +

s1, 1 + s2, . . . , 1 + s� ) we may assume thatsp = � p � d for eachp. Set
A�, Še =

�
d� N A�, Še{d}.

The following result has been conjectured by Rouquier [39, sec. 6.5].

Theorem 7.3 We have&([T(� * )s* ,Še]) = G+ (�, s) and &([L(� * )s* ,Še]) =
GŠ (�, s).

Proof Let c±
�,µ (s) � Z be such thatG± (�, s) =

�
µ c±

�,µ (s) |µ, s".
Let F(	) {d} � F(	) be the subspace spanned by the set{|�, s"; � � P �

d}.
Assume that� p � d for eachp. We identify the complexi�ed Grothendieck
group[A�, Še{d}] with F(	) {d} via the linear map such that[���(�) ] �� | �, s".

Let L(�) be the top of���(�) in A�, Še{d}. By [46, prop. 8.2], we have
[L(�) ] =

�
µ cŠ

�,µ (s) [���(µ) ] in [A�, Še{d}]. Therefore, the isomorphism

[A�, Še{d}]
�
� F(	) {d} maps[L(�) ] to GŠ (�, s).

Since the equivalence of categoriesA�, Še{d}
�
� Os* ,Še{d} in Theorem6.9

mapsL(�) to L(� * )s* ,Še and since the isomorphism[Os* ,Še{d}]
�
� F(	) {d} is
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the composition of the map[Os* ,Še{d}]
�
�[ A�, Še{d}] induced by the inverse

of the equivalence with the isomorphism[A�, Še{d}]
�
� F(	) {d} above, we

deduce that the map[Os* ,Še{d}]
�
� F(	) {d} takes[L(� * )s* ,Še] to GŠ (�, s).

Next, letP(�) be the projective cover of���(�) in A�, Še{d}. By the Brauer
reciprocity we have(P(�) : ���(µ)) = [ ���(µ) : L(�) ]. Therefore we have
[P(�) ] =

�
µ dŠ

�,µ (s)[���(µ) ] in [A�, Še{d}], where the matrix
�
dŠ

�,µ (s)
�

is the
transpose of the inverse matrix of

�
cŠ

�,µ (s)
�
.

By [45, thm. 5.15], we havedŠ
�,µ (s) = c+

� * ,µ * (s* ). Using the equivalence

of categoriesA�, Še{d}
�
� Os* ,Še{d}, we get[ P(� * )s* ,Še] =

�
µ c+

� * ,µ * (s* )[�

(µ * )s* ,Še] in [Os* ,Še{d}]. By removing* everywhere, we get the following
equality in[Os,Še{d}]

[ P(�) s,Še] =
�

µ

c+
�,µ (s)[�(µ) s,Še]. (7.2)

Next, by Sect.6.2.4we have the equivalenceR : Os* ,Še,� {d}
�
� Os,Še,�

{d}op such that�(� * )s* ,Še �� �(� s,Še) andT(� * )s* ,Še �� P(�) s,Še. The
inverse ofR yields an isomorphism of Grothendieck groups[Os,Še{d}]

�
�

[Os* ,Še{d}] such that [�(�) s,Še] �� [ �(� * )s* ,Še] and [ P(�) s,Še] ��
[T(� * )s* ,Še]. The image of the equality (7.2) under this isomorphism gives the
identity [T(� * )s* ,Še] =

�
µ c+

�,µ (s)[�(µ * )s* ,Še] in [Os* ,Še{d}]. We deduce

that the isomorphism[Os* ,Še{d}]
�
� F(	) {d} maps the element[T(� * )s* ,Še]

to
�

µ c+
�,µ (s)|µ, s" = G+ (�, s). We are done. ��

7.3 The categoryO of CRDAHAÕs is Koszul

Recall thatI � [ 0, e) and that	 i , � i are the fundamental weights and
the simple roots of
sle. For t = (t1, . . . , te) � Ze let Os

t � Os,Še be the
Serre subcategory generated by the modules�(�) s,Še such that the following
condition holds

	 s Š
eŠ1�

i = 1

(ns
i (�) Š ns

0(�)) � i =
eŠ1�

i = 1

(ti Š ti + 1)	 i + (� + te Š t1)	 0. (7.3)

Set |s| = s1 + · · · + s� and|t| = t1 + · · · + te. From (7.3) we get that
|t | = | s| moduloZ e. Hence, up to translating theti ’s simultaneously by the
same integer, we may assume thatt � Ze(|s|). Note that the left hand side of
(7.3) is equal towt(|�, s") moduloZ 
 .

Since the categoryOs
t is preserved under the substitutionss �� (1+ s1, 1+

s2, . . . , 1 + s� ) andt �� (1 + t1, 1 + t2, . . . , 1 + t� ), we may assume that
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s = � * , t = µ * for some compositions� � C �
N , µ � Ce

N such thatµ i , � p � d
for eachi, p.

The following result has been conjectured by Chuang and Miyachi [8,
conj. 6].

Theorem 7.4 The categoryOs
t is (standard) Koszul and its Koszul dual coin-

cides with the Ringel dual ofOt
s.

Proof Recall thats = � * and t = µ * . Theorem6.9 yields an equivalence
� �, Še : A�, Še �

� Os,Še such that� �, Še(���(�)) is isomorphic to�(� * )s,Še.
Let O�, Še

µ = O�, Še
� � O�, Še with � =

�
i µ i � i . It is the Serre subcategory

generated by the simple modules with highest weight� such thatmi (�) = µ i
for all i � Z/ eZ, see Sect.5.4. Let A�

µ = A�, Še � O�, Še
µ .

Lemma 7.5 The functor� �, Še gives an equivalenceA�
µ

�
� Os

t .

Proof By (7.3) we have�(� * )s,Še � Os
t if and only if

	 sŠ
eŠ1�

i = 1

(ns
i (�

* ) Š ns
0(� * )) � i =

eŠ1�

i = 1

(ti Š ti + 1)	 i + (� + te Š t1)	 0. (7.4)

Next, observe thatns
i (�) = ns*

Ši (�
* ) for all i � Z/ eZ. Indeed, letb =

(x, y, p) be a box in rowx, columny of the Young diagram of the partition� p.
Then, we have a bijection form the set of bowes of� onto the set of boxes of� *

such thatb = (x, y, p) maps tob* = (y, x, � Š p+ 1). Thus, the claim follows
from the relation conts(b) = yŠ x+ sp = Š (xŠ y)Š s*

� Š p+ 1 = Š conts
*
(b* ).

It follows that�(� * )s,Še � Os
t if and only if

	 s Š
eŠ1�

i = 1

(ns*

Ši (�) Š ns*

0 (�)) � i =
eŠ1�

i = 1

(ti Š ti + 1)	 i + (� + te Š t1)	 0,

&� 	 s*
Š

eŠ1�

i = 1

(ns*

Ši (�) Š ns*

0 (�)) � Ši =
eŠ1�

i = 1

(ti Š ti + 1)	 Ši + (� + teŠ t1)	 0,

&� 	 � Š
eŠ1�

i = 1

(n�
i (�) Š n�

0(�)) � i =
eŠ1�

i = 1

(tŠi Š tŠi + 1)	 i + (� + te Š t1)	 0,

&� wt(|�, � ") =
eŠ1�

i = 1

(tŠi Š tŠi + 1)	 i + (� + te Š t1)	 0 mod Z
.

Sincet * = (Šte, . . . , Š t2, Š t1), we deduce thattŠi Š tŠi + 1 = t *
i Š t *

i + 1 for
all i . Hence, we have�(� * )s,Še � Os

t if and only if
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wt(|�, � ") =
eŠ1�

i = 1

(t *
i Š t *

i + 1)	 i + (� + t *
e Š t *

1)	 0 mod Z
.

Recall that wt(� (�)) = wt(|�, � ") Š �	 0 moduloZ 
, see Remark7.2. Since
t * = µ , we deduce that�(� * )s,Še � Os

t if and only if

wt(� (�)) =
e�

i = 1

(µ i Š µ i + 1)	 i mod Z
.

Since A�
µ = A�, Še � O�, Še

µ and ���(�) = M(� (�)) , we deduce that
�(� * )s,Še � Os

t if and only if ���(�) � A�
µ . ��

To conclude, note that, by [42, thm. B.4], the highest weight categoryA�
µ is

(standard) Koszul, and its Koszul dual is equivalent to the Ringel dual ofAµ
� .

The theorem follows. ��

7.4 Categorical actions on A

Recall thatI = Z/ eZ. By [41, thm. 5.1, cor. 4.5], there is anslI -categorical
action(E, F, X, T) onOs,Še with E =

�
d� N

OResd+ 1
d , F =

�
d� N

OIndd+ 1
d ,

and such that the functor KZs =
�

d� N KZs
d is a morphism ofslI -

categori�cationsOs,Še � L (	 s)I . In this section we construct a similar
slI -categori�cation for the categoryA.

Let R = C, � = 0, and let � � C �
N,+ . Assume thatd � � p for

all p. Recall the tuple(E, F, X, T) on A�, Še from Sect.5.9. Let � d =
� �, Še

d : A�, Še{d}
�
� O� * ,Še{d} be the equivalence in Theorem6.9. We have the

following.

Lemma 7.6 Assume that d+ 1 � � p for all p. Then, the functors F :
A�, Še{d} � A�, Še{d + 1} and E : A�, Še{d + 1} � A�, Še{d} are biad-
joint. Further, there are isomorphisms of functorsOIndd+ 1

d � d � � d+ 1 F and
OResd+ 1

d � d+ 1 � � d E, which intertwines X� d with � d+ 1 IM(X), and T� d
with � d+ 2 IM(T).

Proof We abbreviate KZd = KZ �
d, KZ*

d = KZ � *

d , � d = � �
d , A = A�, Še,

O = O�, Še andO = O� * ,Še. By Theorem6.9 we have� d � IM � KZ*
d � d

onA{d}.
Recall from Proposition8.29 that e, f are biadjoint functors onO. Let

F 	 = � d+ 1 F � Š1
d : O{d} � O{d+ 1}. We claim that there is an isomorphism

of functorsF 	 � OIndd+ 1
d . Let us prove it.
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Since� d+ 1 F � Indd+ 1
d � d by Lemma5.41, and since IM� commutes

with the induction functor, we have KZd+ 1 F 	 � Indd+ 1
d KZd. By (6.1), we

also have KZd+ 1
OIndd+ 1

d � Indd+ 1
d KZd. Hence, we get an isomorphism of

functors

& : KZd+ 1 F 	 �
� KZd+ 1

OIndd+ 1
d .

The functorOIndd+ 1
d maps projectives to projectives. LetGd be the right

adjoint to KZd. Since KZd is a highest weight cover, the unit : 1 �
Gd KZd is invertible on projective modules. Hence, the isomorphism&
yields an isomorphism of functors on projective modulesGd+ 1 KZd+ 1 F 	 �
Gd+ 1 KZd+ 1

OIndd+ 1
d � OIndd+ 1

d . Composing it with , we get a morphism
&	 : F 	 � OIndd+ 1

d on the projectives, such that KZd+ 1 &	 = &. Since KZd+ 1
is (Š1)-faithful, it follows from Lemma2.8 and Remark2.9 that&	 is injec-
tive, hence invertible because both terms coincide in the Grothendieck group
by Lemma5.12 and [41, prop. 4.4(3)]. Thus,&	 is an isomorphism on the
projective modules.

Now, since� d+ 1, � d are equivalences, bothF 	 andOIndd+ 1
d are exact on

O{d}. Thus,&	 extends to an isomorphism of functors&	 : F 	 �
� OIndd+ 1

d on
O{d} such that KZd+ 1 &	 = &by [41, lem. 1.2]. The claim is proved.

Let E	 : A{d + 1} � A{d} be the right adjoint ofF. The uniqueness of
right adjoints implies that� d E	 � Š1

d+ 1 � OResd+ 1
d . Now, sinceOResd+ 1

d is
also left adjoint toOIndd+ 1

d by [41, prop. 2.9] and since� d is an equivalence,
we deduce thatE	 is left adjoint toF, henceE � E	 onA{d + 1}.

Now, let XH � End(Indd+ 1
d ) and TH � End(Indd+ 2

d ) be as in Exam-
ple3.6. The isomorphism Indd+ 1

d KZd � KZd+ 1
OIndd+ 1

d in (6.1) intertwines
XŠ1

H KZd with KZd+ 1 XŠ1. The isomorphism Indd+ 1
d � d � � d+ 1F in

Lemma5.41intertwinesXH � d with � d+ 1X by Remark5.42. Hence,&inter-
twines KZd+ 1 � d+ 1X� Š1

d with KZd+ 1 XŠ1. We deduce that&	 intertwines
� d+ 1X� Š1

d with XŠ1. The proof forT is similar. The lemma is proved. ��

For eacha � N, set� + a = (� 1 + a, � 2 + a, . . . , � � + a).

Lemma 7.7 For any d � N and any a � a	 � N such that d �
� p + a for all p, there is an equivalence of highest weight categories

- = - a,a	
: A� + a,Še{d}

�
� A� + a	,Še{d} which maps���(�) to ���(�), inter-

twines(E, F, X, T) on both sides and such that� � + a
d � � � + a	

d - a,a	
.

Proof The CRDAHA’s associated with(� + a)* and (� + a	)* are the
same. Hence, we haveO(� + a)* ,Še{d} = O(� + a	)* ,Še{d}. We de�ne - a,a	

=
(� � + a	,Še

d )Š1 � � + a,Še
d . By Lemma7.6, the functor- intertwines(E, F) on

both sides. ��
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For eachd, we de�ne the category�A�, Še{d} as the limit of the inductive
system of categories(A� + a,Še{d}, - a,a	

)a,a	� N. We have an equivalence of
highest weight categories�� �, Še

d : �A�, Še{d}
�
� O� * ,Še{d} and a highest weight

cover �� �
d : �A�, Še{d} � H �

d-mod. In particular, the blocks of�A�, Še{d} are in
bijection with the blocks ofH �

d-mod via �� �
d . For µ = 	 � Š � , let �A�, Še

µ be
the block corresponding toH �

� -mod.
Now, let �A�, Še =

�
d� N

�A�, Še{d}. The category�A�, Še carries a pre-
categorical action(E, F, X, T) given by Lemma7.7. The following is now
obvious.

Proposition 7.8 The tuple(E, F, X, T) and the decomposition�A�, Še =�
µ � XI

�A�, Še
µ deÞne anslI -categorical action on�A�, Še.

Proof We haveE =
�

i � I Ei andF =
�

i � I Fi , whereEi , Fi are de�ned
as in Sect.5.4. By Theorem6.9, the equivalence�� �, Še =

�
d� N

�� �, Še
d :

�A�, Še �
� O� * ,Še yields a linear isomorphism[ �A�, Še]

�
�[ O� * ,Še] which maps

[���(�) ] to [�(� * )� * ,Še]. Hence by Lemma5.12and [41, prop. 4.4], it inter-
twines the operatorsEi , Fi on the left hand side with the operators the operators
EŠi , FŠi on the right hand side. Thus, the operatorsEi , Fi with i � I yield
a representation ofslI on [ �A�, Še]. ��

7.5 The category A and the cyclotomic q-Schur algebra

Let k be a �eld containingC. Fix a positive integerd and a composition
� . We will say that� is d-dominant if we have� p Š � p+ 1 � d for each
p = 1, . . . , � Š 1 and that it isanti-dominantif we have� p+ 1 Š � p � d for
eachp as above. The following propositions generalize some of the results in
[5]. They are proved as Theorem6.9using Proposition2.20.

Proposition 7.9 Let � p � d and� k,u Š � k,v /� N× for all p = 1· · · � and all
u < v . Set s= � + � . Assume that� is either d-dominant or d-anti-dominant.
Then, there is an equivalence of highest weightk-categories

Gs
k,d : A�

k,� {d}
�
� Ss*

k,d-mod

which intertwines the functors

� s
k,d : A�

k,� {d} � Hs
k,d-mod,

IM � � s*

k,d : Ss*

k,d-mod � Hs
k,d-mod.

Furthermore, we haveGs
k,d(�(�) k,� ) � W(� * )s*

k for all � Õs.
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Proof If � k,u Š � k,v /� Z× for all u, v, then the proposition is proved in [5]. The
general case, i.e., the case where� k,uŠ � k,v /� N× , is proved as Proposition7.10
below. ��

Proposition 7.10 Let � p � d for all p = 1, . . . , �. Assume that� is either
d-dominant or d-anti-dominant. Set s= � . Then, there is an equivalence of
highest weightk-categories

Gs
k,d : A�,�

k {d}
�
� Ss*

k,d-mod

which intertwines the functors

� s
k,d : A�,�

k {d} � Hs
k,d-mod,

IM � � s*

k,d : Ss*

k,d-mod � Hs
k,d-mod.

Furthermore, we haveGs
k,d(���(�) k) � W(� * )s* ,q

k for all � Õs.

Proof We can assume k= C. Let R be a local analytic deformation ring of
dimension 2 in general position with residue �eld k. Assume that� k = Š e. Set
sR, p = � p + � R, p. Let C = Os,�

R {d} andC 	 = Ss
R,d-mod. Since the highest

weight categoriesOs* ,�
R {d} andA�,�

R,� {d} are equivalent by Theorem6.9, it is
enough to compareC , C 	.

Consider the highest weight covers

F = KZs
R,d : C � Hs

R,d-mod,

F 	 = � s
R,d : C 	 � Hs

R,d-mod.

We claim that they satisfy the conditions in Proposition2.20, so the theorem
holds. Let us check these conditions.

We’ll assume that� is d-dominant. Then, there is a partial order which
re�nes both highest weight orderss,� � onC and� onC 	, see [39, prop. 6.4].

The functorF is fully faithful on C � andC  , by the proof of Theorem6.9.
By [37, prop. 3.1, 3.5, cor. 6.11, thm. 6.18] and Proposition4.9, that any

tilting module inC 	 is isomorphic to the image of an object ofHs
R,d-mod by the

right adjoint to the Schur functorF 	. Note that [37, thm. 6.18] is proved over a
�eld, but it remains true over the ringR by Proposition2.4. We deduce thatF 	

is fully faithful on (C 	)� , by [39, prop. 4.40]. Next, by [37, prop. 4.3, cor. 7.2],
theR-categoryC 	 is Ringel self-dual, i.e., we have an equivalenceC 	 � (C 	)� .
Therefore, by Lemma2.13, the functorF 	 is also fully faithful on(C 	) .

Finally, we prove thatF(T(�)) � F 	(C 	tilt ) for all � � P �
d such that

lcdkC � (L � (�)) � 1 or rcdkC � (L � (�)) � 1 as in Theorem6.9, using some
analogues (for the Schur algebra) of Propositions6.7, 6.8.

Note that Proposition7.10gives a proof of Yvonne’s conjecture in [48]. ��
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8 The KazhdanÐLusztig category

Fix integers�, N � 1 and �x a composition� � C �
N,+ . Let Rbe a deformation

ring. We may abbreviate� = � R. If R = C we may also drop the subscriptR
from the notation.

8.1 Coinvariants

Fix a �nite totally ordered setA. SetRA =
�

a� A R((ta)), whereta is a formal
variable. LetgA

R be the central extension ofg � RA by R associated with the
cocycle(%� f, � � g) ��  %: � "

�
a� A Resta= 0(gd f).

Write1for the canonical central element ofgA
R, and letU(gA

R) � gA
R,� be the

quotient of the enveloping algebra (overR) by the two-sided ideal generated
by 1 Š c. By the symbol

�
R,a we’ll mean the (ordered) tensor product of

R-modules with respect to the ordering ofA. Given a moduleMa � S R,�
for eacha � A, the Lie algebragA

R,� acts naturally on the tensor product�
R,a Ma, wherea runs over the setA.
Let C be a connected projective curve isomorphic toP1. By a chart on C

centered atx we mean an automorphism# of P1 such that# (x) = 0. We will
say that# = { #a; a � A} is anadmissible system of chartsif the conditions
(a), (b) in [28, sec. 13.1] hold. Let a = #Š1

a denote the automorphism
which is the inverse of#a and letxa be the center of#a. Thexa’s are distinct
points ofC. We writeC# = C \ { xa; a � A}, DR = DR,# = R[C# ] and
� R = � R,# = g � DR.

For any f � DR, let a f � R((ta)) be the power series expansion at 0 of
the rational functionf 
  a on P1. Taking f to the A-tuple Af = (a f ) gives
a R-algebra homomorphismDR � RA and aR-Lie algebra homomorphism
� R � gA

R by the residue theorem.
We can now de�ne the sets ofcoinvariants.

DeÞnition 8.1 Let A = [ 1, n]. Given Na � U(gR)-mod andMa � S R,� for
eacha � A, we set

 N1, . . . , Nn"R= H0(gR,
�

R,aNa),   M1, . . . , Mn""R= H0(� R,
�

R,aMa).

By [28, sec. 13.3] theR-module  M1, . . . , Mn""R does not depend on the
choice of the admissible system of charts, up to a canonical isomorphism.
Further, it only depends on the cyclic ordering ofA, so that we have a canonical
isomorphism

  M1, . . . , Mn""R =   M2, . . . , Mn, M1""R.

Let 1 = 1R denote the parabolic Verma moduleM(0)R,+ .
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Lemma 8.2 (a) Taking coinvariants is a right exact functor. It commutes with
base change. More precisely, if A = [ 1, n], then for any morphism of
deformation rings R� S the obvious map

�
R,aMa �

�
S,aSMa

induces an S-module isomorphism

S  M1, . . . , Mn""R =   SM1, . . . , SMn""S.

(b) Assume that for each a� A there is an integer da � 1 such that
Ma(da) generates Ma as a gR,� -module. Then, the obvious inclusion�

R,aMa(da) �
�

R,aMa induces a surjective R-module homomor-
phism

 M1(d1), . . . , Mn(dn)"R �   M1, . . . , Mn""R.

In particular, if A = [Š m, n] and M0 � OR, Ma � O+ ,�
R for each

a � A \ { 0}, then the R-module  MŠm, . . . , Mn""R is Þnitely generated.
(c) Assume that Ma = I ndR(Na) is a generalized Weyl module for each

a � A. Then, the obvious inclusion
�

R,aNa �
�

R,aMa induces an
isomorphism of R-modules N1, . . . , Nn"R �   M1, . . . , Mn""R.

(d) If M1 = 1, then the canonical inclusion
�

R,a�=1Ma �
�

R,aMa induces
an R-module isomorphism  M2, . . . , Mn""R �   M1, M2, . . . , Mn""R.

Proof Part (a) is obvious. See, e.g., [28, sec. 9.13]. For part (b) note that the
gR-action onMa preserves theR-submoduleMa(da) for eacha � A. Then,
the �rst claim follows from [28, prop. 9.12]. The proof in loc. cit. is done under
the hypothesis that� � C. It extends easily to the case of any� = � R � R.
The second claim follows from Lemma5.4(b), the �rst claim, part (a) and
from the fact thatOR is Hom �nite (over R) and that the tensor product maps
OR× O+

R intoOR. Part (c) is proved in [28, prop. 9.15]. The proof in loc. cit. is
done under some restrictive conditions on thegR-modulesNa and under the
hypothesis that� � C, but it extends to our setting. Part (d) is proved in [28,
prop. 9.18]. The loc. cit. the proof is given forR = C, but it generalizes to our
case. ��

Remark 8.3Assume thatR = K is a �eld and that� K /� Q� 0. Then, we have
1 = L(0)K , see e.g. [28, prop. 2.12].

8.2 The monoidal structure on O over a Þeld

Let R = K be a �eld which is an analytic algebra. Fix an element� K in
K \ Q� 0. Let 1 � O+ ,�

K be as in Sect.8.1. In [28], Kazdhan and Lusztig have
de�ned a braided monoidal structure(O+ ,�

K , %� K , aK , cK ) with unit1onO+ ,�
K .

In this section we’ll de�ne abimodule category(O�,�
K , %� K , a, c) over it. This

means thatO�,�
K is a left and rightmodule categoryover O+ ,�

K , see [38] for
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details, and that the functorsaK , cK satisfy an analogue of the hexagon axiom
that expresses the commutativity of the left and right actions.

8.2.1 DeÞnition of the bimodule category

First, we de�ne a tuple(O�,�
K , %� K , a, c) such that the following hold:

€ %� K : O+ ,�
K × O�,�

K � O�,�
K and %� K : O�,�

K × O+ ,�
K � O�,�

K are bilinear
functors such thatV %� K € and€ %� K V are exact for eachV � O+ ,�

K ,
€ there are functorial (left and right) unit isomorphisms for eachM � O�,�

K

1 %� K M � M, M %� K 1 � M,

€ there are functorial associativity isomorphisms for eachV1, V2 � O+ ,�
K and

M � O�,�
K

aV1,V2,M : (V1 %� K V2) %� K M � V1 %� K (V2 %� K M),

aV1,M,V2 : (V1 %� K M) %� K V2 � V1 %� K (M %� K V2),

aM,V1,V2 : (M %� K V1) %� K V2 � M %� K (V1 %� K V2),

€ there are functorial commutativity isomorphisms for eachV � O+ ,�
K and

M � O�,�
K

cV,M : V %� K M � M %� K V,

€ 1,asatisfy the triangle axioms (left and right) forV � O+ ,�
K andM � O�,�

K ,

(V %� K 1) %� K M ��

������������� V %� K (1 %� K M)

��� � �
� � �

� � �
� � �

V %� K M

€ a satis�es the pentagon axiom (left and right) for eachV1, V2, V3 � O+ ,�

andM � O�,�

V1 %� K ((V2 %� K V3) %� K M) �� V1 %� K (V2 %� K (V3 %� K M))

(V1 %� K (V2 %� K V3)) %� K M

��

(V1 %� K V2) %� K (V3 %� K M)

��

((V1 %� K V2) %� K V3) %� K M,

													

��
 
 
 
 
 
 
 
 
 
 
 
 
 
 


plus the diagrams obtained by cyclic permutation ofM, V1, V2, V3,
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€ aK , cK satisfy the hexagon axiom for eachV1, V2 � O+ ,�
K andM � O�,�

K

V1 %� K (M %� K V2) ��(M %� K V2) %� K V1

���������������

(V1 %� K M) %� K V2

���������������

��������������� M %� K (V2 %� K V1)

(M %� K V1) %� K V2
��M %� K (V1 %� K V2),

���������������

plus the diagrams obtained by cyclic permutation ofM, V1, V2.

Remark 8.4The notion ofbimodule functors, and, in particular, of equivalence
of bimodule categories is de�ned in the obvious way. Generally one impose
the functor%� to be biexact. Our choice simpli�es the exposition in the rest of
the paper.

Now, let us de�ne the functor%� K . The bifunctor %� K on O+ ,�
K is de�ned

in [28]. By [49], the same de�nition yields functorsO+ ,�
K × O�,�

K � O�,�
K

andO�,�
K × O+ ,�

K � O�,�
K . Note that [28,49] deal only with the �eldK = C

and� � C \ Q� 0. The same de�nition works equally well over any �eldK
containingC and for any� � K \ Q� 0.

More precisely, let, = [Š m, n], A = [Š m, n + 1] and �x an admissible
system of charts#. Given a smoothg� -moduleMa for eacha � , , we consider
the functorM ��   MŠm, . . . , Mn, DM""�

K .

Proposition 8.5 Assume that M0 � O�,�
K and that Ma � O+ ,�

K for a �= 0.

(a) There is a module%�
K,aMa � O�,�

K such that, for each M � S K,� , we
have

HomgK ( %�
K,aMa, M) =   MŠm, . . . , Mn, DM""�

K .

(b) We have a functorial isomorphism

  %�
K,aMa, DM""K =   MŠm, . . . , Mn, DM""K .

Proof It is easy to prove thatO�,�
K is the category of the �nitely generated

smoothgK,� -modulesM such thatM(d) belongs toO�
K for all d � 1. Thus,

part (a) follows from [49, def. 1.2, thm. 1.6]. Part (b) is proved as in [28,
sec. 7.10, 13.4]. ��

Remark 8.6ThegK,� -module %�
K,aMa does not depend on the choice of the

admissible system of charts, up to a canonical isomorphism.
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Now, we setA = [Š 1, 0] and we consider the charts#Š1, #0, #1 centered
at 1,� , 0 respectively, given in [28, sec. 13.5]. Then, Proposition8.5yields
modulesV %� K M andM %� K V in O�,�

K for eachV � O+ ,� andM � O�,�
K .

The endomorphisms of functorsaK , cK are de�ned in [28, sec. 14, 18].
There, they are only de�ned forO+ ,� , but forO�,�

K one can proceed in the same
way. More precisely, since the spaces of coinvariants are �nite dimensional by
Lemma8.2 and sinceK is an analytic algebra, the proof of [28, thm. 17.29]
works equally well in our case. Hence, standard facts about linear ordinary
differential equations yield a canonical isomorphism

  V1 %� K M1, V2 %� K DM2""K =   V1, M1, V2, DM2""K

for all M1, M2 � O�,�
K and allV1, V2 � O+ ,�

K . Then, we de�neaV1,M1,V2 using
this isomorphism and Proposition8.5as in [28, sec. 18.2]. The other associa-
tivity constraints are constructed in the same way using the cyclic invariance
of coinvariants. The braidingcK is also de�ned as in [28], since any module
from O�,�

K admits an action of the Sugawara operators. For more details, see
the proof of Proposition8.30below, where some analoguesaR, cR of aK , cK
are constructed over a ringR.

8.2.2 Proof of the axioms

Now, we must check thataK andcK satisfy the axioms of a bimodule category
overK . The proof is essentially the same as in [28]. We will give a few details
for the comfort of the reader. We must prove the following.

Proposition 8.7 The functors%� K : O+ ,�
K × O�,�

K � O�,�
K and %� K : O�,�

K ×
O+ ,�

K � O�,�
K give a bimodule category(O�,�

K , %� K , aK , cK ) over the braided
monoidal category(O+ ,�

K , %� K , aK , cK ). The unit of(O+ ,�
K , %� K , aK , cK ) is

the module1. ��

By [28, sec. 31, 32], the braided monoidal category(O+ ,�
K , %� K , aK , cK ) is

rigid with the duality functorD. This means thatD is exact and that for any
moduleM � O+ ,�

K there are functorial morphisms

i M : 1 � M %� K DM, eM : DM %� K M � 1

such that the functorDM %� K € is left adjoint toM %� K € . Equivalently, the
functor€ %� K M is left adjoint to the functor€ %� K DM.SinceD is an involution,
the functors above are indeed biadjoint.

Lemma 8.8 For each M � O�,�
K , there are functorial isomorphisms

1 %� K M � M and M %� K 1 � M which satisfy the triangle axioms.
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Proof We de�ne the unit isomorphism��� M : 1 %� K M � M to represent the
isomorphism of functors given, for eachM1, M2 � O�,�

K , by

HomgK (M1, M2) �   M1, DM2""�
K

�   1, M1, DM2""�
K

� HomgK (1 %� K M1, M2).

In the chain of isomorphisms above, the second one is given in Lemma8.2(b),
the other ones are as in Proposition8.5. A similar construction yields the
isomorphismrrr M : M %� K 1 � M.

Now, it is enough to check the triangle axiom forV = 1 � O+ ,�
K and

M � O�,�
K (then, the general version follows using the pentagon axiom for the

quadrupleV, 1, 1, M). So we must check that the composition

(1 %� K 1) %� M
a1,1,M��1 %� K (1 %� K M)

1 %� K ��� M��1 %� K M

is given by the unitrrr 1 : 1 %� K 1 � 1. This follows from Proposition8.5(b) and
the invariance of coinvariants under cyclic permutation as in [28, sec. 18.2].
This allows us to identify the morphism

  (1 %� K 1) %� K M, N""K �   1 %� K (1 %� K M), N""K �   1 %� K M, N""K

induced by��� M , a1,1,M with the morphism

  (1 %� K 1) %� K M, N""K �   1 %� K M, N""K

induced byrrr 1. ��

Next, let us quote the following technical lemma.

Lemma 8.9 For M � O+ ,�
K the functors€ %� K M and€ %� K DM on O�,�

K are
exact and biadjoint to each other. The same holds for the functors M%� K € and
DM %� K €.

Proof If O�,�
K = O+ ,�

K the lemma follows from the rigidity of(O+ ,�
K , %� K , aK ,

cK ). The general case is proved in the same way, using the rigidity ofM, DM
in O+ ,�

K and Lemma8.8 instead of the unit axiom of(O+ ,�
K , %� K , aK , cK ). ��

We can now prove Proposition8.7.

Proof of Proposition8.7 We must check that the isomorphismsaK , cK satisfy
the pentagon and the hexagon axioms. This is proved as in proposition [28,
prop. 31.2], using an auxiliary module category called theDrinfeld category.
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Set R� = K [[ � ]] and K � = K((� )) . Put � R� = � K� = Š 1/� .
Consider the elementsv = exp(

�
Š1� � ) andq = vŠ2 in R� . Whenever

this makes sense we writevz =
�

r � N � r (
�

Š1� z)r / r !.
The categoryO� of deformation representationsof g consists of the rep-

resentations ofgR� on topologically freeR� -modulesM such thatM is a
weight tR� -module and the weights ofM belong to a union of �nitely many
cones� Š Q+ and the weight subspaces are free of �nite type overR� .

Following Drinfeld and [18,28] we put onO� a structure of a braided
monoidal category(O� , � R� , a� , c� ) where� R� is the tensor product of
R� -modules anda� is the Knizhnik–Zamolodchikov associator, i.e.,

a� = { aM1,M2,M3 : (M1 � R� M2) � R� M3 � M1 � R� (M2 � R� M3)}

is de�ned in [28, sec. 19.10]. Note that we do not imposeM to be of �nite
rank overR� . However, since the weight subspaces ofM are free of �nite
type overR� , by standard facts about linear ordinary differential equations,
the series obtained by restrictinga� to a weight subspace in the tensor product
of three objects ofO� is well-de�ned. The braiding is given by the following
formula, see [28, sec. 19.12],

c� = { cM1,M2 = v� � : M1 � R� M2 � M2 � R� M1}

where� �ips the factors and� is the Casimir element. Recall that

€ the functor� R� is R� -bilinear and biexact,
€ there is a unit object1, which is simple (equal toR� with the trivial action),

with functorial unit isomorphisms1 � R� M � M, M � R� 1 � M,
€ the unit1 and the functora� satisfy the triangle axiom,
€ the functora� satis�es the pentagon axiom,
€ the functorsa� andc� satisfy the hexagon axiom.

Restricting the braided monoidal structure onO� to some parabolic sub-
categories, we de�ne in the obvious way

€ a braided monoidal category(O+
� , � R� , a� , c� ) called theDrinfeld cat-

egory,which consists of the modules which are free of �nite rank over
R� ,

€ a bimodule category(O�
� , � R� , a� , c� ) over(O+

� , � � , a� , c� ).

Now, we may assume that there is a local analytic deformation ringR � R�
of dimension 1 with residue �eldK such that the inclusionR � R� is given by
the expansion at� = � . Assume also that� R = � R� = Š 1/� is the germ
of an holomorphic function over some polydisc such that the specialization
mapR � K takes� R to � K . SinceR� is �at over R, the base change yields
an exact functorO�,�

R � O�,�
R�

.
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Lemma 8.10 (a) There is a faithful braided functor and a faithful bimodule
functor

(O+ ,�,�
R , %� R, aR, cR) � (O+ ,�,�

R�
, %� R� , aR� , cR� ),

(O�,�,�
R , %� R, aR, cR) � (O�,�,�

R�
, %� R� , aR� , cR� ).

(b) There is a braided equivalence and a bimodule equivalence

(O+ ,�,�
R�

, %� R� , aR� , cR� ) � (O+ ,�
� , � R� , a� , c� ),

(O�,�,�
R�

, %� R� , aR� , cR� ) � (O�,�
� , � R� , a� , c� ).

(c) The specialization gives a braided functor and a bimodule functor

(O+ ,�,�
R , %� R, aR, cR) � (O+ ,�,�

K , %� K , aK , cK ),

(O�,�,�
R , %� R, aR, cR) � (O�,�,�

K , %� K , aK , cK ).

Proof SinceR is a regular local ring of dimension 1, we de�ne the functor%� R
and the morphisms of functorsaR, cR as in [28, sec. 29, 31]. We may as well
de�ne them as in Sect.8.3below. Part (a) follows from Lemma8.22. Part (b)
is proved as in [28, sec. 31]. Part (c) is proved as in [28, thm. 29.1]. ��

We can now �nish the proof of Proposition8.7. Composing the functors in
(a), (b), we get faithful functors(O+ ,�,�

R , %� R, aR, cR) � (O+ ,�
� , � R� , a� ,

c� ) and(O�,�,�
R , %� R, aR, cR) � (O�,�

� , � R� , a� , c� ). This implies that
aR, cR satisfy the pentagon and the hexagon axioms. Hence, from (c), we
deduce thataK , cK also satisfy the pentagon and the hexagon axioms. The
details are left to the reader.

8.2.3 Properties of the functor%� K

We haveO+ ,�
K = O+

K , because the categoryO+
K is semi-simple. The tensor

product equips theC-vector space[O+ ,�
K ] with a commutativeC-algebra struc-

ture and theC-vector space[O�,�
K ] with a bimodule structure over[O+ ,�

K ].
We’ll need the following properties of the functor%� K .

Proposition 8.11 (a) The functor%� K preserves the� -Þltered modules.
(b) The functor%� K preserves the tilting modules.
(c) The functor%� K is biexact onO+ ,�,�

K × O�,�,�
K and onO�,�,�

K × O+ ,�,�
K .

It equips[O+ ,�,�
K ] with a commutativeC-algebra structure and[O�,�,�

K ]
with a bimodule structure over[O+ ,�,�

K ].
(d) The functorI nd gives aC-algebra isomorphism[O+ ,�

K ] � [ O+ ,�,�
K ]

and a module isomorphism[O�,�
K ] � [ O�,�,�

K ].
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Proof First, we prove part (a). FixM1 � O+ ,�,�
K and M2 � O�,�,�

K . The
moduleM1 %� K M2 belongs to the categoryO�,�

K by Proposition8.5. We must
prove that it lies inO�,�,�

K .
Fix � such thatM2 andM1 %� K M2 belong to the Serre subcategory� O�,�

K
of O�,�

K . Since � O�,�
K is a highest weight category with a duality functor

D , it is enough to check that forM3 � �( � O�,�
K ) we have the equality

Ext1� O�,�
K

(M1 %� K M2, D M3) = 0.

Fix an exact sequence 0� Q � P � M3 � 0 with P a projective mod-
ule in� O�,�

K . SinceP, M3 have� -�ltrations, the moduleQ is again a� -�ltered
object of� O�,�

K . SinceP is projective, we have Ext1
� O�,�

K
(M1 %� K M2, D P) = 0.

Therefore, sinceD is exact and contravariant, the long exact sequence of the
Ext-group and Proposition8.5yield a vector space exact sequence

0 �   M1, M2, †M3""�
K �   M1, M2, †P""�

K �   M1, M2, †Q""�
K

� Ext1� O�,�
K

(M1 %� K M2, D M3) � 0.

Thus, we get the equality of dimensions

dim Ext1� O�,�
K

(M1 %� K M2, D M3) = dim   M1, M2, †P""K

Š dim   M1, M2, †Q""K

Š dim   M1, M2, †M3""K .

The right hand side is zero by the following lemma.

Lemma 8.12 For M2, M3 � O�,�,�
K and M1 � O+ ,�,�

K we have

dim   M1, M2, †M3""K =
�

(M1 : M(� 1)+ ) ( M2 : M(� 2)� )

× (M3 : M(� 3)� ) ( L(� 1) � M(� 2)� : M(� 3)� ),

where the sum is over all� 1 � P+
K and� 2, � 3 � P�

K .

Proof Let d(M1, M2, †M3) denote the right hand side in the equality of the
lemma.

First, assume thatM3 = M(� 3)� , M2 = M(� 2)� andM1 = M(� 1)+ . We
have†M3 = I nd(†M(� 3)� ). Thus†M3 is again a generalized Weyl module
and Lemma8.2(a) yields

  M1, M2, †M3""K =  L(� 1), M(� 2)� , †M(� 3)� "K ,
= HomgK (L(� 1) � K M(� 2)� , D M(� 3)� )� .
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SinceL(� 1)� K M(� 2)� � O�,�
K , by [14, prop. A.2.2(i i )] we get dim  M1, M2,

†M3""K = (L(� 1) � K M(� 2)� : M(� 3)� ).
The same argument implies that dim  M1, M2, †M3""K = d(M1, M2, †M3)

if M1, M2, M3 are generalized Weyl modules.
Now, we concentrate on the general case. First, observe that using the

third construction of %� K in [28, sec. 6] it is easy to check that%� K is
right biexact. Further, by Proposition8.5, we have  M1, M2, †M3""�

K =
HomgK (M1 %� K M2, D M3). Thus the left hand side is left exact in each of
its variables. So, given exact sequencesM (2)

a � M (1)
a � M (3)

a � 0 of
� -�ltered modules witha = 1, 2, 3, we have

dim   M (1)
1 , M (1)

2 , †M (1)
3 ""K �

�

�,�,# = 2,3

dim   M (�)
1 , M (�)

2 , †M (# )
3 ""K . (8.1)

Using the �rst part of the proof (i.e., the case of generalized Weyl modules)
and (8.1), we get that for anyM2, M3 � O�,�,�

K andM1 � O+ ,�,�
K we have

dim   M1, M2, †M3""K � d(M1, M2, †M3).

To prove the equality, for eacha we �x an exact sequence 0� M (2)
a �

M (1)
a � M (3)

a � 0 of � -�ltered modules such thatM (1)
a is a generalized

Weyl module andM (3)
a = Ma. Clearly, such exact sequences always exist.

Then, we have

dim   M (1)
1 , M (1)

2 , †M (1)
3 ""K = d(M (1)

1 , M (1)
2 , †M (1)

3 ),

dim   M (�)
1 , M (�)

2 , †M (# )
3 ""K � d(M (�)

1 , M (�)
2 , †M (# )

3 ), � �, �, # .

Thus the equality follows from (8.1). ��
Next, we prove part (b). Assume thatM1 � O+ ,�

K andM2 � O�,�
K are tilting.

We must check thatM1 %� K M2 is still tilting. For N � O�,�,�
K we must prove

that Ext1
O�,�

K
(N, M1 %� K M2) = 0. Since the functors€ %� K M2 and€ %� K DM2

are exact and biadjoint by Lemma8.9, we have

Ext1O�,�
K

(N, M1 %� K M2) = Ext1O�,�
K

(N %� K DM2, M1).

SinceDM2 is � -�ltered, part (a) yields Ext1
O�,�

K
(N %� K DM2, M1) = 0.

Finally, we prove parts (c), (d). The functor%� K is right biexact. The same
argument as above using Proposition8.5 and Lemma8.12 implies that it is
biexact on� -�ltered modules. More precisely, for eachM � O�,�,�

K the
functor HomgK (€ %� € , D M) on O+ ,�,�

K × O�,�,�
K is exact and€ %� K € takes
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values inO�,�,�
K . Thus, if 0 � N1 � N2 � N3 � 0 is exact inO+ ,�,�

K
and if N � O�,�,�

K , then we have an exact sequenceN1 %� K N � N2 %� K N �
N3 %� K N � 0 and(N2 %� N : M3) = (N1 %� K N : M3) + (N3 %� K N : M3)
if M3 is a parabolic Verma module. Thus, also we have an exact sequence
0 � N1 %� K N � N2 %� K N � N3 %� K N � 0.

Since it is exact, the tensor product%� K factors to the Grothendieck groups
[O+ ,�,�

K ] and[O�,�,�
K ]. The exact functorI nd(€) givesC-linear isomorphisms

[O+ ,�
K ] � [ O+ ,�,�

K ] and[O�,�
K ] � [ O�,�,�

K ], because the parabolic Verma
modules form bases of the Grothendieck groups of� -�ltered objects. The
compatibility with the monoidal structures follows from Proposition8.5 and
Lemma8.12. ��

Remark 8.13By [28, prop. 31.2] the braided monoidal category(O+ ,�
K , %� K , a,

c) admits abalancing. More precisely, we have

c2 = exp(Š2�
�

Š1L0)
�

exp(2�
�

Š1L0) %� K exp(2�
�

Š1L0)
�
. (8.2)

The proof in loc. cit. implies that (8.2) holds also for tensor products of
modules fromO�,�

K andO+ ,�
K .

8.3 The monoidal structure on O over a ring

Let R be either a �eld or a regular local ring of dimension� 2 with residue
�eld k. Assume that� k = Š e wheree is a positive integer. In this section
we’ll construct a version%� R of the functor %� K above, which is de�ned over
the ringR.

8.3.1 DeÞnition of the functor%� R

Let , = [Š m, n]. Fix a moduleM0 � O�,�,�
R and a moduleMa � O+ ,�,�

R
for eacha �= 0. The goal of this section is to construct a module%�

R,aMa in

O�,�,�
R , wherea runs over, , which is functorial in theMa’s. The construc-

tion of thegR,� -module %�
R,aMa is essentially the same as in [28, sec. 29].

However, our setting differs from that of [28] from several aspects

€ the categoryO�,�
R is de�ned over a regular local ringR of dimension� 2,

€ the modulesMa do not all belong to the categoryO+ ,�
R ,

€ the modulesMa may not have integral weights,
€ we work withgR-modules, rather thang	

R-modules.

The last point is easy to deal with: we’ll switch fromgR-modules tog	
R-

modules as in Remark5.2without mentioning it explicitly.
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First, assume �rst thatR = K is a �eld andMa � S K,� for eacha. Then,
the module %�

K,aMa is de�ned in Proposition8.5. More precisely, ifK = C,
then the smoothg	

� -module %�
K,aMa is constructed in [28]. It is proved there

that, if Ma belongs toO+ ,� for eacha, then %�
K,aMa belongs also toO+ ,� .

Next, it is proved in [49] that, if Ma � O+ ,� for a �= 0 and ifM0 � O�,� , then
%�

K,aMa belongs toO�,� . If K �= C, then we de�ne %�
K,aMa as in the case

K = C.
Now, let R be any commutative noetherianC-algebra with 1. SetA =

[Š m, n + 1] and - = { n + 1}. To simplify the notation we’ll also write
- = n + 1. Recall that#a is a chart onC centered atxa for eacha � A, and
thatDR = R[C\{ xa; a � A}]. Let
� R be the central extension of� R = g� DR
by R associated with the cocycle(%1 � f1, %2 � f2) �� Res#- = 0( f2d f1). Set
� = c + N and� 	 = Š c + N. The quotient by the ideal(1 Š c) yields an
algebra homomorphismU(
� R) � � R,� .

Lemma 8.14 (a) There is an R-algebra homomorphism� R,� 	 � g,
R,� such

that%� f �� %� , f.
(b) There is an R-algebra homomorphismg	

R,� 	 � � R,� 	 such that%�

f (t) �� %� f (#- ), and an R-algebra homomorphism� R,� 	 � g-
R,� 	

such that%� f �� %� - f.
(c) Composing the maps in(b)we get an R-algebra embeddingg	

R,� 	 � g-
R,� 	

such that%� f (t) �� %� f (t- ).

Proof Part (a) is standard. To prove (b), observe that the chart#- can be
regarded as an element in the subalgebra{ f � DR; f (x- ) = 0}. Thus, we
have anR-algebra homomorphismR[t, tŠ1] � DR such thatf (t) �� f (#- )
and anR-algebra homomorphismDR � R((t- )) such thatf �� - f . ��

Now, for eacha � , we �x a smooth moduleMa � S R,� which is a weight
tR-module. SetWR =

�
R,a�, Ma. Since theMa’s are smooth, theR-module

WR has a natural structure ofg,
R,� -module. We viewWR as a� R,� 	 -module

via the map in Lemma8.14(a). Note thatWR is a weighttR-module.
For d � 1 let GR,d be theR-submodule of� R,� 	 spanned by the products

of d elements ing � D1
R with D1

R = { f � DR; f (x- ) = 0}. Note thatGR,d
is a weighttR-module for the adjoint action. We have the following natural
decreasing �ltration of weighttR-modulesWR . GR,1WR . GR,2WR . · · ·
Consider the weighttR-moduleWR,d given byWR,d = WR/ GR,dWR. Let

WR,d =


� � PR

WR,d,�

be the decomposition ofWR,d into the sum of its weightR-submodules.
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The modulesWR,d with d � 1 form a projective system. The limit
WR =
lim
/

WR,d in the category of weighttR-modules decomposes as the direct sum

of weight R-submodules
WR =
�

� � PR

WR,� , where 
WR,� is the projective

limit of R-modules lim
/

WR,d,� .

For each� � PR and eachd � 1, we de�ne theR-module

ZR,d,� = (WR,d,� )� .

TheR-modulesZR,d,� with d � 1 form an inductive system ofR-submodules
ZR,1,� � ZR,2,� � · · · Consider the weighttR-module ZR,� given by
ZR,� =

�
� � PR

ZR,� ,� , whereZR,� ,� = lim
�

ZR,d,� .

From now on, we’ll assume thatR is a regular ring of dimension� 2 and
that the modulesM0, Ma belong toO�,�, f

R , O+ ,�, f
R respectively, for eacha � ,

with a �= 0.

Lemma 8.15 (a) The R-module WR,d,� is Þnitely generated.
(b) The R-module ZR,d,� is Þnitely generated and projective.

Proof Since Ma belongs toO�
R, there is an integerda � 0 such thatMa

is generated by theR-submoduleMa(da) as agR,� -module. Then, the same
proof as in [28, prop. 7.4] implies that

WR = XR,dW1
R + GR,dWR, W1

R =
�

R,aMa(da), (8.3)

where XR,d is the R-submodule of� R,� 	 spanned by the product of< d
elements ing � #- . The right hand side of the �rst equality in (8.3) is de�ned
using the� R,� 	 -module structure onWR.

Now, sinceMa � O�
R and R is noetherian, the weighttR-submodules of

the tR-submoduleMa(da) � Ma are �nitely generated overR. Indeed, the
weight tR-submodules ofMa are �nitely generated becauseMa � O�

R, and
each weighttR-submodule ofMa(da) is contained in the sum of a �nite number
of weight tR-submodules ofMa (becauseMa is �at over R and the result is
well-known over the fraction �eldK of R). Therefore, part (a) of the lemma
is an easy consequence of (8.3).

SinceR is a regular ring of dimension� 2, any �nitely generated re�exive
R-module is projective. Since it is the dual of a �nitely generatedR-module,
the R-moduleZR,d,� is �nitely generated and re�exive. Hence it is projective
as anR-module for eachd, � . ��

Under the previous hypothesis, we can now prove the following.

Lemma 8.16 (a) There is a natural representation ofg	
R,� 	 on 
WR.

(b) There is a natural smooth representation ofg	
R,� on ZR,� .
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Proof The proof is adapted from [28]. We will be sketchy. Recall thatWR is
a � R,� 	 -module. The� R,� 	 -action does not induce a� R,� 	 -action on
WR in a
natural way. However, under the second map in Lemma8.14(b), it descends
to a representation ofg-

R,� 	 on 
WR as in [28, sec. 4.9]. More precisely, given
f (t- ) in tŠn

- R[[ t- ]] for somen � N, we �x a sequence of elementsg1, g2, . . .
in DR such that- gd Š f (t- ) � td

- R[[ t- ]] for eachd, and we de�ne the action
of %� f (t- ) on the element(wd) � 
WR, with wd � WR,d andd � 1, by
setting%� f (t- ) · (wd) = (%� gd · wn+ d).

Twisting this representation by the mapg	
R,� 	 � g-

R,� 	 in Lemma8.14(c),
we get a representation ofg	

R,� 	 on 
WR. Taking its dual, we get a representation
of g	

R,� on ZR,� . See [28, sec. 6.3] for details.
TheR-moduleZR,� is �at, because the direct summandZR,� ,� is the limit

of the inductive system of �at submodules(ZR,d,� ). To prove that it is smooth,
it is enough to check thatZR,� = ZR,� (� ). This is obvious, because we
haveZR,d � ZR,� (d), whereZR,d =

�
� ZR,d,� . ��

Now, we consider the behavior ofZR,� under �at base changes.

Lemma 8.17 Let S be a commutative noetherian R-algebra with1 which is
ßat as an R-module. Then, we have a canonicalg	

S,� -module isomorphism
SZR,� = ZS,� .

Proof Since taking tensor products is right exact, we have a canonicalS-
module isomorphismSWR,d,� = WS,d,� . Since S is �at over R, for any
R-modules X, Y such thatX is �nitely presented overR, the canonical
homomorphismSHomR(X, Y) � HomS(SX, SY) is an isomorphism. By
Lemma8.15, theR-moduleWR,d,� is �nitely generated. Therefore, since direct
limits commute with tensor products, we have

SZR,� =


�

lim
�

SHomR(WR,d,� , R) =


�

lim
�

HomS(WS,d,� , S) = ZS,� .

��

We can now prove the following

Lemma 8.18 Assume that R= K is a Þeld.

(a) Theg	
K,� -module ZK,� belongs toO�,�

K .
(b) The Sugawara operatorL0 preserves the Þnite dimensional K -subspace

ZK,d,� of ZK,� for each d, �.
(c) The characteristic polynomial ofL0 on ZK,d,� is a product of linear factors

with coefÞcients in R.
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Proof For any smooth modulesMa � S K,� , a construction of theg	
� -module

%�
K,aMa is given in [28, sec. 4]. It is called there theÞrst construction. The

smoothg	
� -moduleDZK,� is precisely the one given by thethird construc-

tion in [28, sec. 6]. IfMa belongs toO+ ,�
K for all a, then the �rst and third

constructions coincide by [28, thm. 7.9]. If M0 � O�,�
K and Ma � O+ ,�

K for
eacha �= 0, then both constructions coincide by [49, prop. 5.8], and the �rst
construction yields a module inO�,�

K by [49, thm. 1.6]. This proves part (a).
Part (b) is a standard computation using the relation[L0, %(r )] = Š r %(r ) for

each%� g andr � Z.
Since ZK,� � O�,�

K , part (c) follows from elementary properties of the
action of the Sugawara operator on objects ofO�,�

K . ��

Now, we come back to the case whereR is a regular local ring of dimension
� 2.

Lemma 8.19 There is a natural smooth representation ofgR,� on ZR,� .

Proof Since theg	
R,� -moduleZR,� is smooth, it is equipped with a canonical

action of the Sugawara operatorL0. For eachr � R we set

rZR,� = { v � ZR,� ; (L0 Š r )nv = 0, n � 0}.

ReplacingR by K everywhere in the construction above, we get theg	
K,� -

module ZK,� . Since theg	
R,� -module ZR,� is smooth, it is �at overR.

Thus, we have an obvious inclusionZR,� � K ZR,� = ZK,� . Hence, by
Lemma8.18, we have a direct sum decompositionZR,� =

�
r

rZR,� .
Therefore, we can consider theR-linear operator$ on ZR,� which acts by

multiplication with(Šr ) on theR-submodulerZR,� . It equipsZR,� with the
structure of a smoothgR,� -module. ��

DeÞnition 8.20 Assume thatR is a regular local ring of dimension� 2. Let
, = [Š m, n]. Assume thatM0 � O�,�, f

R andMa � O+ ,�, f
R for a � , with

a �= 0. Then, we de�ne thegR,� -module %�
R,aMa, wherea runs over the set

, , to be equal toDZR,� . It is a smooth module by Lemma8.19and by the
de�nition of D.

8.3.2 Properties of the functor%� R

Set, = [Š m, n]. Our next goal is to prove the following.

Proposition 8.21 (a) Assume that M0 � O�,�,�
R and Ma � O+ ,�,�

R for each
a � , with a �= 0. Then, there is a module%�

R,aMa in O�,�,�
R which
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is functorial in the MaÕs and such that for each M� O�,�, f
R we have a

functorial isomorphism

HomgR( %�
R,aMa, M) =   MŠm, . . . , Mn, DM""�

R.

(b) The functor%� R commutes with ßat base change(of the ring R). ��

First, assume thatM0 � O�,�, f
R and Ma � O+ ,�, f

R for eacha � , with
a �= 0.

Lemma 8.22 Let S be a commutative noetherian R-algebra with1 which is
regular of dimension� 2and which is ßat as an R-module. We have canonical
gS,� -module isomorphism S( %�

R,aMa) = %�
S,aSMa.

Proof By Lemma8.17we haveSZR,� = ZS,� . Thus, the lemma follows
from the proof of Lemma5.3, which insures thatD commutes with base
change. ��

Next, we prove the following.

Lemma 8.23 We have %�
R,aMa � O�,�, f

R . The functor %�
R,a on O�,�, f

R and

O+ ,�, f
R is right exact.

Proof Theg	
R,� 	 -action onWR yields a representation ofg	

R,� on  WR. Con-
sider theR-submoduleW1

R � WR introduced in (8.3). We claim that W1
R is

ag	
R,+ -submodule of WR. Indeed, the element%� f (t) in g	

R,� acts on WR

by the operator
�

a�, %� a f (Š1/# - ). Further, for eacha � , the function
1/# - is regular atxa and, thus, since the system of charts is de�ned overC, the
expansiona(1/# - ) is a well-de�ned Laurent formal series inC[[ ta]] . There-
fore we havea f (Š1/# - ) � R[[ ta]] for each f � R[t]. We deduce that there
is ag	

R,� -homomorphism

I nd( W1
R) �  WR. (8.4)

Next, recall that the �rst map in Lemma8.14(b) yields ag	
R,� 	 -action on

WR and thatg	
R,� 	 acts on
WR by Lemma8.16. By de�nition of the actions,

the canonicalR-module homomorphismWR � 
WR is ag	
R,� 	 -module homo-

morphism. Taking the dual ofWR in the category of weighttR-modules, we
get theg	

R,� -moduleZR given by

ZR =


� � PR

ZR,� , ZR,� = (WR,� )� . (8.5)
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Twisting (8.4) by  and taking its transpose, we get ag	
R,� -homomorphism

ZR �  I nd( W1
R)� . Since ZR,� � ZR(� ), this map restricts to ag	

R,� -
homomorphism

†ZR,� � DI nd( W1
R). (8.6)

Using (8.3) it is easy to see that the map (8.6) is an inclusion.

Claim 8.24 Let N � O�,�, f
R and let M � N be a submodule which is ßat as

an R-module. Then, we have M� O�,�, f
R .

To prove the claim, observe �rst that, sinceN is a weighttR-module with
�nitely generated weight subspaces overR, so is alsoM. Thus, sinceM is
�at and since any �at �nitely generatedR-module is free (becauseR is a
noetherian local ring), theR-moduleM is indeed free. It is easy to check that
M satis�es the other axioms of the categoryO�,�, f

R , except the fact that it
is �nitely generated. For this last property, recall that for each� the category
� O�,�

R is a highest weight category overR. Since it is equivalent to the category
of �nitely generated modules over a �nitely generated projectiveR-algebra, it
is noetherian. ThereforeM is �nitely generated. The claim is proved.

Now, recall that†ZR,� is �at over R and thatI nd( W1
R) is a generalized

Weyl module ofO�,�, f
R . Thus, the claim implies that†ZR,� � O�,�, f

R . Hence

DZR,� � O�,�, f
R . This proves the �rst part of the lemma.

To prove the second part, it is enough to observe that the functor(Ma) ��
†ZR,� is left exact, because it is the composition of a tensor product overR
of free R-modules, of a dual overR of free R-modules, and of the functor of
taking smooth vectors (which is left exact), and thatD is an exact endofunctor
of O�,�, f

R . ��
Now, we consider the functor represented by the module%�

R,aMa. The

lemma below gives a functorial isomorphism for each moduleM in O�,�, f
R

HomgR( %�
R,aMa, M) =   MŠm, . . . , Mn, DM""�

R. (8.7)

Lemma 8.25 For each M, N � O�,�, f
R , we have functorial R-module isomor-

phisms

HomgR(N, M) =  N, DM""�
R,   %�

R,aMa, DM""�
R=  MŠm, . . . , Mn, DM""�

R.

Proof There is a naturalR-module inclusion HomgR(N, M) � HomgR(N� R
DM, R), becauseM, N are weighttR-modules whose weight subspaces are
free R-modules of �nite type. We must prove that this inclusion is indeed
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an isomorphism. The proof is the same as in [46, prop. A.2.6], see also [28,
prop. 2.31].

Next, by de�nition of coinvariants, we also have a canonicalR-module
isomorphism HomgR(N � R DM, R) �   N, DM""�

R. This proves the �rst
isomorphism in the lemma.

Now, we concentrate on the second one. Consider the� R,� -module ZR.
By construction, we have HomR(DM, ZR) = HomR(WR � R DM, R).
Thus, we have also Hom� R,� (DM, ZR) = Hom� R(WR � R DM, R).
Thus, sinceDM is smooth andZR,� = ZR(� ), the canonical inclusion
Hom� R,� (DM, ZR,� ) � Hom� R,� (DM, ZR) is indeed an isomorphism. So
we get an isomorphism HomgR,� (DM, ZR,� ) =   MŠm, . . . , Mn, DM""�

R.

Finally, since†ZR,� belongs toO�,�, f
R , we have

HomgR,� ( %�
R,aMa, M) = HomgR,� (DZR,� , M) = HomgR,� (DM, ZR,� ).

��

Next, we consider the behavior of the tensor product%� R on � -�ltered
modules. Assume thatM0 � O�,�,�

R andMa � O+ ,�,�
R for a �= 0. First, note

the following.

Lemma 8.26 For each M� O�,�,�
R the R-module  MŠm, . . . , Mn, †M""R is

free of Þnite type.

Proof Since thisR-module is �nitely generated by Lemma8.2, it is enough
to check that its rank is the same at the special point and at the generic point
of Spec(R). By Lemma8.2we must check that

dimk   kMŠm, . . . , kMn, †kM""k = dimK   K MŠm, . . . , K Mn, †K M""K .

For eachM � O�,�,�
R , N � �( O�,�

R ), we have(K M : K N) = (kM : kN).
Therefore, the claim follows from Lemma8.12. ��

Now, we can prove the following.

Lemma 8.27 We have%�
R,aMa � O�,�,�

R .

Proof Taking � large enough we can assume that all modules belong
to the category� O�,�, f

R . Since � O�,�
R is a highest weight category over

R, to prove that %�
R,aMa has a � -�ltration, it suf�ces to check that

Ext1� O�,�
R

( %�
R,aMa, M) = 0 for eachM �  (� O�,�

R ), see [39, lem. 4.21].

Since the category� O�,�
R is preserved by taking extensions inO�,�

R , we must
check that Ext1

O�,�
R

( %�
R,aMa, D M) = 0 for eachM � �( O�,�

R ). To simplify
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the notation, we assume that[Š m, n] = [ 1, 2]. By (8.7), it is enough to check
that, given an exact sequence

0 � Q � P � M � 0

with P projective, the following left exact sequence ofR-modules is indeed
exact

0 �   M1, M2, †M""�
R �   M1, M2, †P""�

R �   M1, M2, †Q""�
R � 0.

Note thatM1, M2, M3, Q, P, M are� -�ltered. To prove the claim we may
consider the right exact sequence of freeR-modules of �nite type

0 �   M1, M2, †Q""R �   M1, M2, †P""R �   M1, M2, †M""R � 0.

We must prove that it is exact. To do so, it is enough to prove that it is exact
after specialization at the special point and at the generic point of Spec(R).
Now, the sequences

0 �   kM1, kM2, †kQ""k �   kM1, kM2, †kP""k �   kM1, kM2, †kM""k � 0,

0�   K M1, K M2, †K Q""K �   K M1, K M2, †K P""K �   K M1, K M2, †K M""K � 0

are both exact by Lemma8.12. Thus, the lemma follows from Lemma8.2. ��

We can now prove Proposition8.21: it is a direct consequence of Lem-
mas8.22, 8.25and8.27.

8.3.3 The functors e and f

We consider the modulesVR, V �
R in O+ ,�

R given by

VR = M(� 1)R,+ , V �
R = M(Š� N)R,+ .

The following hold.

Lemma 8.28 (a) If R = K is a Þeld thenVK , V �
K are simple.

(b) The modulesVR, V �
R are tilting.

(c) We have DVR = †VR = V �
R, VR = I nd(VR) andV �

R = I nd(V �
R).

Proof If R = K is a �eld, then VK , V �
K are simple, proving part (a). To

prove (b), note that under base change we getVk = kVR andV �
k = kV �

R.
The modulesVk andV �

k are simple and standard. Thus, they are both tilting.
ThereforeVR, V �

R are also tilting modules by Proposition2.4. Part (c) is clear,
because (b) implies thatD VR = VR andD V �

R = V �
R. ��
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Next, we de�ne the endofunctorse, f of O�,�,�
R andO�,�

R respectively by

e = € %� RV �
R, f = € %� RVR,

e = € � R V �
R, f = € � R VR.

The goal of this section is to prove the following.

Proposition 8.29 (a) The endofunctors e, f of O�,�,�
R are exact and preserve

the subcategoryO�,�, tilt
R .

(b) We have functorial isomorphismske(M) � e(kM) andk f (M) � f (kM)
for each module M inO�,�, tilt

R .
(c) If R = K is a Þeld then e, f extend to exact biadjoint endofunctors of

O�,�
K .

(d) The functor I ndR gives a C-vector space isomorphism[O�,�
R ] �

[O�,�,�
R ] which commutes with theC-linear maps e, f . ��

Proposition 8.30 Assume that R is a local analytic algebra.

(a) There is a braided monoidal category(O+ ,�,�
R , %� R, aR, cR).

(b) There is a bimodule category(O�,�,�
R , %� R, aR, cR) over(O+ ,�,�

R , %� R, aR,
cR).

(c) For each module M � O�,�, tilt
R and each integer d� 1, we have

a k-algebra isomorphismk EndgR( f d(M)) � Endgk ( f d(kM)) which
commutes with the associativity and the commutativity constraintsaR, cR.

��

To prove these propositions, we need more material. First, we de�ne the
associativity and the commutativity constraintsaR, cR for %� R. From now on
we’ll assume thatR is a local analytic algebra.

Lemma 8.31 Assume that V1, V2 � O+ ,�, f
R and M � O�,�, f

R . Then, there are
functorial isomorphismsaV1,M,V2 : (V1 %� RM) %� RV2 � V1 %� R(M %� RV2).

Proof We apply the same construction as in the caseR = C in [28, sec. 17, 18].
We will be very brief. We allow the system of charts# to vary in the set of
C-points of an af�ne schemeV . Taking the coinvariants, we construct a bundle
of R-modules of �nite rank overV . This bundle is equipped with an integrable
R-linear connection. SinceR is an analytic algebra, it admits a �at section.
This section givesR-linear isomorphisms, see [28, thm. 17.29],

  V1 %� RM, V2 %� RDN""R =   V1, M, V2, DN""R,

  DN %� RV1, M %� RV2""R =   DN, V1, M, V2""R

for eachM, N � O�,�, f
R andV1, V2 � O+ ,�

R .
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Using these isomorphisms and the invariance of coinvariants under cyclic
permutation, we get functorial isomorphisms [28, sec. 18.2]

  V1 %� RM, V2 %� RDN""R   (V1 %� RM) � R V2, DN""R,

  DN %� RV1, M %� RV2""R   V1 %� R(M � R V2), DN""R.

Hence, from (8.7) we deduce a functorial isomorphism

HomgR((V1 %� RM) %� RV2, DN) = HomgR(V1 %� R(M %� RV2), DN),

which yields a module isomorphismaV1,M,V2 : (V1 %� RM) %� RV2 �
V1 %� R(M %� RV2). ��

The isomorphismsaM,V1,V2 andaM,V1,V2 are constructed in a similar way.
The details are left to the reader.

Now, we consider the commutativity constraint. To do so, for each mod-
ules V � O+ ,�, f

R and M � O�,�, f
R we consider the morphism of functors

  V, M, DN""R �   M, V, DN""R induced by theR-linear map

V � R M � R DN � M � R V � R DN, x � y � z �� � y � � x � ¯� z.

Here, we set� = exp(
�

Š1� L0) exp(L1) and�̄ = exp(Š
�

Š1� L0) exp(L1).

Lemma 8.32 Assume that V� O+ ,�, f
R and M � O�,�, f

R . Then, there is a
functorial isomorphismcV,M : V %� RM � M %� RV which represents the
morphism of functors  V, M, DN""R �   M, V, DN""R.

Proof The isomorphismcV,M is de�ned as in [28, sec. 14]. More precisely,
setting A = [ 0, 1], M0 = V and M1 = M, we consider the� R,� -module
ZR in (8.5). SwitchingV and M we de�ne Z	

R in a similar way. Since the
Sugawara operatorsL0, L1 act onV, M and sinceR is an analytic algebra, we
can de�ne theR-module isomorphismP : Z	

R � ZR which is the transpose
of the R-linear mapV � R M � M � R V such thatx � y �� � y � � x. Now,
recall thatZ	

R,� = Z	
R(� ) andZR,� = ZR(� ). One check as in loc. cit. that

P induces ag	
R,� -isomorphismZ	

R,� � ZR,� . We de�ne the isomorphism
cV,M to be the mapDZR,� � DZ	

R,� which is the transpose ofP. The
second part of the lemma is proved as in [28, sec. 14.6]. ��

Next, we consider the behavior of the functorse, f on tilting modules.

Lemma 8.33 The functors e, f on O�,�,�
R are exact. They preserve the sub-

categoryO�,�, tilt
R .
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Proof Let S � R be theC-subalgebra ofR generated by�. The modules
VR, V �

R are de�ned overS, i.e., we haveVR = RVS andV �
R = RV �

S with
VS = I ndS(VS), V �

S = I ndS(V �
S).

Now, the second claim is proved as Proposition8.11(b). SinceVR, V �
R are

tilting by Lemma8.28, it is enough to check thate, f are biadjoint onO�,�,�
R

(hence exact) proving the �rst claim on the way. To do so, sinceR is a regular
ring, we may assume thatR is �at over S. Then, sincee, f commute with �at
base change by Lemma8.22, we may assume thatR = S is a regular local
ring of dimension 1. So, we are in the same setting as in [28, sec. 31].

Next, proving the lemma is equivalent to proving thatVR andV �
R arerigid,

see the appendix to part IV of [28] for details. This is proved in the proof
of [28, prop. 31.3], modulo a technical assumption which is checked in [28,
lem. 31.6]. ��

Finally, we consider the behavior of the tensor product%� R under the spe-
cialization ofR to the residue �eld k.

Lemma 8.34 For each module M� O�,�, tilt
R , we have functorial isomor-

phismske(M) = e(kM) andk f (M) = f (kM).

Proof By (8.7), for N � O�,�, f
R we have functorial isomorphisms

HomgR( %�
R,aMa, N) =   MŠm, . . . , Mn, DN""�

R,

Homgk ( %�
k,akMa, kN) =   kMŠm, . . . , kMn, DkN""�

k.

If Ma, N are tilting, then  MŠm, . . . , Mn, DN""R is free of �nite type overR
by Lemma8.26. Therefore, by Lemma8.2we have a functorial isomorphism
k HomgR( %�

R,aMa, N) = Homgk ( %�
k,akMa, kN). So, for M, N � O�,�, tilt

R
we have functorial isomorphisms k HomgR(e(M), N) = Homgk (e(kM), kN)
and similar isomorphisms forf .

On the other hand, by Lemma8.33 the modulese(M), f (M) are tilting.
Thus, we have functorial isomorphisms

Homgk (ke(M), kN) = Homgk (e(kM), kN),

Homgk (k f (M), kN) = Homgk ( f (kM), kN).
(8.8)

This proves the lemma. ��

Remark 8.35In Lemma8.10we considered the specialization functor in [28,
thm. 29.1], from a regular local ring of dimension 1 to its residue �eld. In
Lemma8.34, we consider a specialization functor from a regular local ring of
dimension 2 to its residue �eld.

We can now �nish the proof of Propositions8.29and8.30.
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Proof of Proposition8.29 Parts (a), (b), (c) follow from Lemmas8.22,
8.33, 8.34and8.9. Part (d) is proved as Proposition8.11(b). ��

Proof of Proposition8.30 The isomorphisms of functorsaR, cR are con-
structed in Lemmas8.31, 8.32. For parts (a), (b) we must prove thataR, cR
satisfy the hexagon and the pentagon axioms. The tensor product%� R com-
mutes with a �at base change of the ringRby Lemma8.22. The isomorphisms
of functorsaR, cR commute also with a �at base change. Therefore, embed-
ding R in its fraction �eld K , we are reduced to prove thataK , cK satisfy the
hexagon and the pentagon axioms. This is proved in Proposition8.7.

Now, letM � O�,�, tilt
R andN � O�,�, tilt

R . By (8.8) and Propositions2.4, 8.29,
the specialization at k gives functorial isomorphisms

k HomgR(V �
R %� RM, N) = Homgk (V �

k %� k(kM), kN),

k HomgR(M %� RV �
R, N) = Homgk ((kM) %� kV �

k, kN).

They are induced by the base-change homomorphisms

k  V �
R, M, DN""R �   V �

k, kM, D(kN)""k,

k  M, V �
R, DN""R �   V �

k, kM, D(kN)""k. (8.9)

We must check that they intertwine the isomorphisms

cV �
R,M : V �

R %� RM � M %� RV �
R, cV �

k ,kM : V �
k %� k(kM) � (kM) %� kV �

k.

To do so, recall thatcV �
R,M represents the transpose of the morphism of functors

PR :   V �
R, M, DN""R �   M, V �

R, DN""R, x � y � z �� � y � � x � ¯� z.

So the claim follows from the commutativity of the following square

k  V �
R, M, DN""R

(8.9)
��

kPR ��k  M, V �
R, DN""R

(8.9)
��

  V �
k, kM, D(kN)""k

Pk ��  kM, V �
k, D(kN)""k.

The commutation of the specialization with the associativity constraint is
proved in a similar way. ��

8.4 From O to the cyclotomic Hecke algebra

Let R be a local analytic deformation ring of dimension� 2. Setv = vR =
exp(Š

�
Š1�/� R) andq = qR = v2

R. The endomorphismsX,T of the functors
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f , f 2 are given byX = cR 
 cR andT = vR · aŠ1
R 
 (1 %� RcR) 
 aR. More

precisely, for eachM � O�,�
R we have

XM = cVR,M 
 cM,VR,

TM = vR · aŠ1
M,VR,VR


 (1M %� RcVR,VR) 
 aM,VR,VR. (8.10)

Next, �x an integerd � 1 and consider the endomorphisms off d given by
X j = 1dŠ j X1 j Š1 andTi = 1dŠi Š1T1i Š1 with j � [ 1, d], i � [ 1, d). We can
now prove the following.

Proposition 8.36 (a) X j , Ti yield an R-algebra homomorphism

� R,d : HR,d � End( f d)op.

(b) � R,d gives an R-algebra homomorphism

� s
R,d : Hs

R,d � EndgR(TR,d)op.

Proof The braid relationsTi Ti + 1Ti = Ti + 1Ti Ti + 1 andTi Tj = Tj Ti if |i Š j | >
1 are well-known formal consequences of the axioms of a braided monoidal
category.

Next, consider the relationTi Xi Ti = v2
RXi + 1. The hexagon axiom yields

the following relations

aVR,M,VR 
 (cM,VR
%� R1VR) 
 TM = vR · c f (M),VR,

TM 
 (cVR,M %� R1VR) 
 aŠ1
VR,M,VR

= vR · cVR, f (M).

Therefore we haveTM 
 (XM %� R1VR) 
 TM = v2
R · X f (M). We deduce that

(Ti )M 
 (Xi )M 
 (Ti )M = v2
R · (Xi + 1)M .

Now, let us prove the relationsXi X j = X j Xi and Xi Tj = Tj Xi for i �=
j , j + 1. We are reduced to check the relations(X1)M 
 (Xi )M = (Xi )M 
 (X1)M
and (Ti )M 
 (X1)M = (X1)M 
 (Ti )M for i �= 1. They follow from the
functoriality of c anda. Let us check the �rst one in details fori = 1, j = 2.
The diagram

f (M) %� RVR
XM %� 1��

c f (M),VR
��

f (M) %� RVR

c f (M),VR
��

VR %� R f (M)
1 %� XM ��

cVR, f (M)

��

VR %� R f (M)

cVR, f (M)

��
f (M) %� RVR

XM %� 1��f (M) %� RVR
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is commutative becauseXM is an endomorphism off (M) andcR is a mor-
phism of functors. Now the composition of both vertical maps is equal to
X f (M) = (X2)M , while the upper and the lower horizontal maps are both
equal to(X1)M . We are done.

To prove the Hecke relation(Ti + 1)(Ti Š qR) = 0, observe that the action
of � on VR � R VR is a diagonalizable operator with eigenvalues 1 andŠ1.
Thus, from (8.10) we get that(Ti Š v2

R)(Ti + 1) = 0.
Finally, let us check the cyclotomic relation. By (8.2), (8.10), the endomor-

phism(X1)TR,0 of TR,d is identi�ed with the endomorphismf dŠ1(XTR,0,VR)
of f dŠ1(TR,1), whereXTR,0,VR is an operator onTR,1 = TR,0 %� RVR. We must
prove that this operator satis�es the equation

� �
p= 1(XTR,0,VR Š q

sp
R ) = 0. We

may assume thatR = K is a �eld. Then, the claim follows from Remark5.18.
��

Index of notation

2: R, K , k, m.
2.1: M � , SM, S� , P , M , P 1, Rp, mp, kp.
2.2: Aop, Cop, 1C , K0(C ), [C ], [M], A-mod, C � , Irr(C ), Cproj, C inj ,

Irr( A), A-proj, A-inj, SC , SF, h, h� , h!.
2.3: �( C ), � , 	 , P(�) , I (�) , T(�) ,  (�) , � � (�) , P� (�) , I � (�) , T � (�) ,

 � (�) , L(�) , C � , C  , C tilt , C � , R , � � (�) , P� (�) , T � (�) , C � ,
lcdC (M), rcdC (M).

2.4.1: F : C � B-mod,G, (B-mod)F� , F � , F � , F � .
2.4.3: (K B	)� E, S(�) , S	(�) .
3: q, qR.
3.1: I , I (q), QR, p, I p, I1.
3.2: slI , � , � i , �� i , 	 i , Q = QI , Q+ = Q+

I , P = PI , P+ = P+
I ,

X = XI , � i , I � , slI .
3.3: Z� (n),C �

n ,C �
n,+ ,P n, |� |, l (�) , t � , Y(�) ,P �

n,P ,P � ,P � ,P �
d , p( A),

q-resQ, q-ress, conts, q
sp
R = QR, p, Qp = QR, p, � , S d, � d, X (�) C.

3.4.1: HR,d, Ti , Xi , HQ
R,d, H+

R,d, Hs
R,d, Indd	

d , Resd
	

d , Indd	,s
d,+ , Resd

	,s
d,+ , Mi , 1i ,

1� , Hs
K,� .

3.4.2: HR,d, Hs
R,d, ti , xi , Hs

K,� , Hs
I , Hs

I ,d.
3.4.3: � , S(�) s,q

R , � , S(�) s
R.

3.5: w� , x� , S � , Ss
R,d, W(�) s,q

R , � s
R,d, Ss

R,d, W(�) s
R.

3.6: (E, F, X, T), � Ed , 	 = 	 s, Hs
I ,d, L (	) I , L (	) I ,	 Š � , L(	) ,

L (	) I .
4: � , N, � .
4.1: � R = � , � R, p = � p, � R, sR, p = sp, � S, � S, p, e.
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4.2: gR, U(gR), tR, bR, pR,� , mR,� , ei , j , ei , � i , t�R, � , � + , � � , � +
� , W,

w € � , � , i p, j p, J �
p, pk, detp, det, P, PR, S� , P�

R, � � , � = � R, � ,
� = � N , cas= casN .

4.3: M� , O�
R, V(�) R,� , M(�) R,� , L(�) K , O�

R,� , �(�) R,� .
4.4: A�

R,� , A�
R,� {d}.

4.5: VR, V �
R, e, f , I , wt(µ) , mi (µ) , O�

K,�,� , VI , �
i

� µ .
4.6: h, E, F, TR,d = T �

R,� {d}, ! s
R,d, � s

R,d, A�
R,� (N) = A�

R,� , TR,d(N) =
TR,d.

4.7: a€, ap, a
 , � �, u,v , � +
�, u,v , mR,� , mR,�, u,v , P{a}, P� {a}, det€, � 
 , � €,

� �, u,v , � +
�, u,v , O#

R,� (�) , O#
R,� (�) {a}, O#

R,� (�, u, v), O#
R,� (�, u, v){a},

A�
R,� (�) , A�

R,� (�, u, v).

5.1: qR = exp(Š2�
�

Š1/� R), QR, p = q
sp
R = exp(Š2�

�
Š1sR, p/� R).

5.2.1: LgR, g	
R, 1, $, gR, tR, bR, pR,� , c, gR,� , g	

R,� , gR,� d, g	
R,+ , gR,+ ,

I ndR(M), QR,d, M(d), M(Šd), M(� ), M(Š� ), S R,� , %(r ), Ls,
cas.

5.2.2: 
PR, 
� , 
� + , 
� re, �� , (€ : €), 
 , 	 0, �� ,  € : €", 
W, si , Tx, w €µ , 
P, 
P� ,

P�

R, 
� , z� .
5.3.1: O�,�

R , M(µ) R,� , L(µ) K , M(�) R,� , L(�) K , OR, M(�) R, O+ ,�
R , M

(�) R,+ ,O�,�, f
R ,O�,�,�

R ,O�,�
R,� ,O�,�,�

R,� ,O�,� [a], P{d}, P� {d},O�
R,� (N),

O�,�
R,� (N)[a]{d}, O	.

5.3.2:  M, †M, M � , DM, D M, � O�,�
R .

5.3.3: 
�( 
�) , 
�(�, c), 
� $ 
� 	, � � , � b.
5.4: %� R, VR, V �

R, e, f , X, T, I , i � j , I , ei , fi , mi (�) , wt(�) , O�,�
K,�,� .

5.5: ���(�) R,� , A�,�
R,� , L(�) , P(�) R,� , T(�) R,� , A�,�

R,� {d}, T�,�
R,� {d}, TR,d,

TR,d(N), � s
R,d, � s

R,d.
5.6: mR,� , mR,�,� , 
W� , bR,� , O�

R(�) , O#,�
R (�) , O#,�

R,� (�) , O#,�
R,� (�) {a},

O+ ,�
R (�) , O+ ,�

R (�) {a}, A+ ,�
R,� (�) .

5.7.1: fu,v,z(� R, � R).
5.7.2: O�,�

R,� {a}, A�,�
R,� {a}, po, � o, h, " = " R, O�

R,h{a}, A�
R,h{a}, M(�) R,h,

�(�) R,h, Q R, TR,a€(� €), TR,h,d.
5.7.3: V(� p), f p,TR,d(�) ,H �

R,a, fp,TR,p(�) ,TR,(a)(�) , � +
Rp ,d(�) , � +

Rp ,d(�) .
5.9: E, F.
6.1.1: W, h, S, A , hreg, c, Hc(W, h)R, � s, �� s, R[h], R[h� ], Oc(W, h)R,

�( E)R, L(E), P(E)R, (€)' , c' .
6.1.2: KZ R.
6.1.3: W	, S	, hW	

, OIndW
W	 , OResWW	 , WH , O(WH )R, OIndH .

6.1.4: Ch(M).
6.2.1: #i , s#

i j , xi , yi , k, c# , hR, hR, p, Os,�
R {d}, O�

R(S d), �(�) s,�
R , L(�) s,� ,

P(�) s,�
R , T(�) s,�

R , I (�) s,�
R .
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6.2.2: ( s, � s,� , s* , � * .
6.2.3: KZs

R,d.
6.2.4: R H .
6.3.1: � + , � Š .
7.1: 	 Q, F(	 s), |�, s", ni (�) = ns

i (�) = nQ
i (�) , wt(|�, s").

7.2: G± (�, s), Os* ,Še.
7.3: Os

t , |s|.
7.4: � d, - = - a,a	

, �A�, Še{d}, �� �, Še
d , �� �

d , �A�, Še
µ , �A�, Še.

8.1: RA, gA
R, gA

R,� ,
�

R,a, C, # = { #a; a � A},  a, xa, C# , DR = DR,# ,
� R = � R,# , a f , Af ,  N1, . . . , Nn"R,   M1, . . . , Mn""R.

8.2: (O+ ,�
K , %� K , aK , cK ), (O�,�

K , %� K , a, c), #Š1, #0, #1,
8.4: v = vR.
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