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1 Introduction

Rational Double affine Hecke algebras (RDAHA for short) have been intro-
duced by Etingof and Ginzburg in 2002. They are associative algebras
associated with a complex reflection group W and a parameter c. Their rep-
resentation theory is similar to the representation theory of semi-simple Lie
algebras. In particular, they admit a category O which is analogous to the
BGG category O. This category is highest weight with the standard modules
labeled by irreducible representations of W. Representations in O are infinite
dimensional in general, but they admit a character. An important question is
to determine the characters of simple modules.

One of the most important family of RDAHA'’s is the cyclotomic one
(CRDAHA for short), where W = G (¢, 1, n) is the wreath product of S,
and Z/¢Z. One reason is that the representation theory of CRDAHA’s is
closely related to the representation theory of Ariki—Koike algebras, and that
the latter are important in group theory. Another reason is that the category
O of CRDAHA's is closely related to the representation theory of affine Kac—
Moody algebras, see e.g. [17,43,46]. A third reason, is that this category has a
very rich structure called a categorical action of an affine Kac—-Moody algebra.
This action on O was constructed previously in [41]. Such structures have been
introduced recently in representation theory and have already had remarkable
applications, see e.g. [9,29,40].

The structure of O depends heavily on the parameter ¢. For generic values
of ¢ the category is semi-simple. The most non semi-simple case (which is
also the most complicated one) occurs when c takes a particular form of ratio-
nal numbers, see (6.2). For these parameters Rouquier made a conjecture to
determine the characters of simple modules in O [39]. Roughly speaking, this
conjecture says that the Jordan—Ho6lder multiplicities of the standard modules
in O are given by some parabolic Kazhdan—Lusztig polynomials. This conjec-
ture was known to be true in the particular case £ = 1 [39]. Motivated by this
conjecture, Varagnolo—Vasserot introduced in [46] a new category A which is
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a subcategory of an affine parabolic category O at a negative level and should
be viewed as an affine and higher level analogue of the category of polynomial
representations of G L . They conjectured that there should be an equivalence
of highest weight categories between O and A.

In this paper we prove Varagnolo—Vasserot’s conjecture (Theorem 6.9). A
first consequence is a proof of Rouquier’s conjecture (Theorem 7.3). A second
remarkable application is a proof that the category O is Koszul (Theorem 7.4),
yielding a proof of a conjecture of Chuang—Miyachi [8], because the affine
parabolic category O is Koszul by [42].

Our proof is based on an extension of Rouquier’s theory of highest weight
covers developed in [39]. Basically, [39] says that two highest weight covers
of the same algebra are equivalent as highest weight categories if they satisfy
a so called 1-faithful condition and if the highest weight orders on both covers
are compatible. Here, given a situation where the highest weight covers are
not necessarily 1-faithful, we construct bigger functors to which we can apply
Rouquier’s theory (see Proposition 2.20).

The category O is a highest weight cover over the module category H of the
Ariki—Koike algebra via the KZ functor introduced in [22]. It is a O-faithful
cover and if the parameters of the RDAHA satisfy some technical condition,
then it is even 1-faithful. A similar functor ® : A — H was introduced in
[46] using the Kazhdan—Lusztig fusion product on the affine category O at a
negative level. A previous work of Dunkl and Griffeth [16] allows to show
without much difficulty that there is a highest weight order on O which refines
the linkage order on A. A difficult part of the proof consists of showing that
the functor @ is indeed a cover, meaning that it is an exact quotient functor,
and that it has the same faithfulness properties as the KZ functor. Once this is
done, the equivalence between O and A follows directly from the unicity of
1-faithful covers if the technical condition on parameters mentioned above is
satisfied. To prove the equivalence without this condition, we need to replace
KZ and ® by some other covers, see the end of the introduction for more
details on this.

A key ingredient in our proof is a deformation argument. More precisely, the
highest weight categories A, O admit deformed versions over a regular local
ring R of dimension 2. Some technical results prove that the Kazhdan—Lusztig
tensor product can also be deformed properly, which allows us to define the
deformed version of ®. Next, a theorem of Fiebig asserts that the structure
of the category O of a Kac—-Moody algebra only depends on the associated
Coxeter system [20]. In particular, the localization of A at a height one prime
ideal p C R can be described in simpler terms. Two cases appear, either p
is subgeneric or generic. In the first case, considered in Sect. 5.7.2, the cate-
gory A reduces to an analog subcategory A inside the parabolic category &
of gly associated with a Levi subalgebra of gl with 2 blocks. The latter is
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closely related to the higher level Schur—Weyl duality studied by Brundan and
Kleshchev in [5]. In the second case, considered in Sect. 5.7.3, the category
A reduces to the corresponding category for £ = 1, which is precisely the
Kazhdan—Lusztig category associated with affine Lie algebras at negative lev-
els. Finally, we show that to prove the desired properties of the functor @ it is
enough to check them for the localization of & at each height one prime ideal
p and this proves the main result.

Now, let us say a few words concerning the organization of this paper.

Section 2 contains some basic facts on highest weight categories and some
developments on the theory of highest weight covers in [39].

Section 3 is a reminder on Hecke algebras, q-Schur algebras and categori-
fications.

Section 4 contains basic facts on the parabolic category & of gly and the
subcategory A C ¢ introduced in [5]. The results in [5] are not enough for us
since we need to consider a deformed category A with integral deformation
parameters. The new material is gathered in Sect. 4.7.

In Sect. 5 we consider the affine parabolic category O (at a negative level).
The monoidal structure on O is defined later in Sect. 8. Using this monoidal
structure we construct a categorical action on O in Sect. 5.4. Then, we define
the subcategory A C O in Sect. 5.5. The rest of the section is devoted to the
deformation argument and the proof that A is a highest weight cover of the
module category of a cyclotomic Hecke algebra satisfying some faithfulness
conditions.

In Sect. 6 we first give a reminder on the category O of CRDAHA'’s, follow-
ing [22,39]. Then, we prove our main theorems in Sects. 6.3.2, 6.3.3 using the
results from Sect. 5.8. This yields a proof of Varagnolo—Vasserot’s conjecture
[46]. For the clarity of the exposition we separate the cases of rational and
irrational levels, although both proofs are very similar.

In Sect. 7 we give some applications of our main theorem, including proofs
for Rouquier’s conjecture and Chuang—Miyachi’s conjecture.

Section 8 is a reminder on the Kazhdan—Lusztig tensor product on the affine
category O at a negative level. We generalize their construction in order to get a
monoidal structure on arbitrary parabolic categories, deformed over an analytic
two-dimensional regular local ring. Several technical results concerning the
Kazhdan—Lusztig tensor product are postponed to the appendix.

To finish, let us explain the relation of this work with other recent works.

The case of irrational level (proved in Theorem 6.11) was conjectured in [46,
rem. 8.10(b)], as a degenerate analogue of the main conjecture [46, conj. 8.8].
There, it was mentioned that it should follow from [5, thm. C]. In the dominant
case, this has been proved recently [24, thm. 6.9.1].

While we were writing this paper 1. Losev made public several papers
with some overlaps with ours. In [31,32] he developed a general formalism
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of categorical actions on highest weight categories. Then, he used this for-
malism in [33] to prove that the category A is equipped with a categorical
action, induced by the categorical action on O introduced in [46] (using the
Kazhdan—Lusztig fusion product). The categorical action on A gives an inde-
pendent proof of Theorem 5.37(a), (b). Finally, he proposed a combinatorial
approach to prove that A is a 1-faithful highest weight cover of the cyclo-
tomic Hecke algebra under some technical condition on the parameters of the
CRDAHA.

A first version of our paper was announced in July 2012 and has been
presented at several occasions since then. There, we proved this 1-faithfulness
for A (and the Varagnolo—Vasserot’s conjecture) under the same condition on
the parameters by a deformation argument similar, but weaker, to the one used
in the present paper.

The proof which we give in this article avoids this technical condition on the
parameters. It uses an idea introduced later, in [33]. There, I. Losev replaces
the highest weight cover A of the cyclotomic Hecke algebra H by a highest
weight cover, by A, of a bigger algebra than H, which has better properties.

After this paper was written, B. Webster sent us a copy of a preliminary
version of his recent preprint [47] proposing another proof of Rouquier’s con-
jecture which does not use the affine parabolic category O.

Note that our construction does not use any categorical action on A. It only
uses representation theoretic arguments. However, since Theorem 6.9 yields
an equivalence between A and O, we can recover a categorical action on A
from our theorem and the main result of [41]. This is explained in Sect. 7.4.

2 Highest weight categories

In the paper the symbol R will always denote a noetherian commutative domain
(with 1). We denote by K its fraction field. When R is a local ring, we denote
by k its residue field and by m its maximal ideal.

2.1 Rings and modules

For any R-module M, let M* = Homg(M, R) denote the dual module. An
S-point of R is a morphism x : R — S of commutative rings with 1. If
x is a morphism of local rings, we say that it is a local S-point. We write
SM = M(x) =M Qg S. If ¢ is a R-module homomorphism, we abbreviate
also S¢p = ¢ ®r S.

Let ‘B, 9t be the spectrum and the maximal spectrum of R. Let 3y C ‘P
be the subset of height 1 prime ideals. For each p € ‘B, let Ry, denote the
localization of R at p. The maximal ideal of R is m, = Ry, p and its residue
field is k,, = Frac(R/p).
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A closed k-point of R is a quotient R — R/m = k where m € 9. To
unburden the notation we may write k € 9.

A finite projective R-algebrais an R-algebra which is finitely generated and
projective as an R-module.

We will mainly be interested in the case where R is a local ring. In this case,
any projective module is free by Kaplansky’s theorem. Therefore, we’ll use
indifferently the words free or projective.

2.2 Categories

Given A a ring, we denote by A°P the opposite ring in which the order of
multiplication is reversed. Given % is a category, let ¥°P be the opposite
category.

An R-category € is an additive category enriched over the tensor category
of R-modules. All the functors F' on ¢ are assumed to be R-linear. We denote
the identity element in the endomorphism ring End(F’) again by F. We denote
the identity functor on € by 1. We say that € is Hom-finite if the Hom spaces
are finitely generated over R. If the category % is abelian or exact, let Ko(%)
be the Grothendieck group and write [¢] = Ko(%) ®z C. If € is additive,
it is an exact category with split exact sequences and [%’] is the complexi-
fied split Grothendieck group. Let [M] denote the class of an object M of
% .

Assume now that ¢ is abelian and has enough projectives. We say that
an object M € ¥ is projective over R if Hom¢ (P, M) is a projective R-
module for all projective objects P of . The full subcategory ¢ N R-proj
of objects of & projective over R is an exact subcategory and the canonical
functor D?(€ N R-proj) — DP(%) is fully faithful. An object X € € which
is projective over R is relatively R-injective if Ext%(Y, X) = 0 for all objects
Y of ¢ that are projective over R.

If ¢ is the category A-mod of finitely generated (left) modules over a finite
projective R-algebra A, then an object X € ¥ is projective over R if and only
if it is projective as an R-module. It is relatively R-injective if in addition
the dual X* = Homg(X, R) is a projective right A-module. If there is no
risk of confusion we will say injective instead of relatively R-injective. We
put €* = A°P-mod. The functor Homg (e, R) : ¥°P — €™ restricts to an
equivalence of exact categories €°P N R-proj SE* N R-proj.

We denote by Irr(%) the sets of isomorphism classes of simple objects
of €. Let €P™, €™M C € be the full subcategories of projective and of
relatively R-injective objects. If ¥ = A-mod, we abbreviate Irr(A) = Irr (%),
A-proj = €P and A-inj = €.

Given an S-point R — S and ¥ = A-mod, we can form the S-category
§% = SA-mod. Given another R-category ¢” as above and an exact (R-linear)
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functor F : 4 — %€, then F is represented by a projective object P € €. We
set SF = Homgy(SP,e) : S€ — S¢€'.

Let o/ be a Serre subcategory of ¢’. The canonical embedding functor
h . &/ — % has a left adjoint 2* which takes an object M in % to its
maximal quotient in € which belongs to .o7. It admits also a right adjoint /'
which takes an object M in % to its maximal subobject in 4 which belongs
to 7. The functor h* is right exact, while A' is left exact. The functor 4 is
fully faithful. Hence the adjunction morphisms A*h — 1, and 1., — h'h
are isomorphisms. By definition, the adjunction morphisms 14 — hh* and
hh' — 14 are respectively an epimorphism and a monomorphism.

Here, and in the rest of the paper, we use the following notation: a composi-
tion of functors E and F is written as E F while a composition of morphisms
of functors ¥ and ¢ is written as i o ¢.

2.3 Highest weight categories over local rings

Let R be a commutative local ring. We recall and complete some basic facts
about highest weight categories over R (cf [39, §4.1] and [11], [15, §2]).

Let % be an abelian R-category which is equivalent to the category A-mod
of finitely generated modules over a finite projective R-algebra A.

The category € is a highest weight R-category if it is equipped with a
poset of isomorphism classes of objects (A (%), <) called the standard objects
satisfying the following conditions:

e the objects of A(%) are projective over R

e given M € ¥ such that Homg (D, M) = 0 for all D € A(%), we have
M =0

e given D € A(%), there is P € €P™ and a surjection f : P — D such
that ker f has a (finite) filtration whose successive quotients are objects
D' € Awith D' > D

e given D € A, we have End¢ (D) = R

e given D, Dy € A with Homy (D1, D7) # 0, we have D| < D;.

The partial order < is called the highest weight order of €. We write A (%) =
{A(M)}en, for A an indexing poset. Note that if <’ is an order coarser than <
(i.e., A < pimplies & <’ p), then € is also a highest weight category relative
to the order <’.

An equivalence of highest weight categories ¢’ 5 € is an equivalence
which induces a bijection A(%”) 5 A(F). A highest weight subcategory is
a full Serre subcategory ' C % that is a highest weight category with poset
A(%") an ideal of A(%) (ie.,if D' € A(€’), D € A(¥) and D' < D, then
D' € A(E))).
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Highest weight categories come with associated projective, injective, tilting
and costandard objects, as described in the next proposition.

Proposition 2.1 Let 4 be a highest weight R-category. Given ). € A, there are
indecomposable objects P().) € €P™, [ (L) € €™, T(A) € €andV (L) € €
(the projective, injective, tilting and costandard objects associated with A),
unique up to isomorphism such that

(V) Homg (A(w), V(X)) =~ 68;,,R and Extc}aﬂ(A(u), V() = 0 for all
nE A,

(P) there is a surjection f : P(A) — A(X) such that ker f has a filtration
whose successive quotients are A(u)’s with u > A,

(I) there is an injection f : V(L) < [ (A) suchthat coker f has afiltration
whose successive quotients are V(jL)’s with . > X,

(T) there is an injection f : A(A) — T (\) and a surjection g : T (L) —
V(A) such that coker f (resp. ker g) has a filtration whose successive
quotients are A(lL)’s (resp. V(iu)’s) with u < .

We have the following properties of those objects.

e V(A), A(N), P(L), I(X) and T (1) are projective over R.

e Given a commutative local R-algebra S, then SE is a highest weight
S-category on the poset A with standard objects SA()) and costandard
objects SV(L). If R — S is a local S-point, then the projective, injective
and tilting objects associated with ). are SP()\), SI(A) and ST (1).

e G is a highest weight R-category on the poset A with standard objects
A*(X) = V(O)* and with P*(A) = T(AM)*, I* (X)) = P(LV)*, V*(A) =
AN and T*(X) = T(A)*.

Proof Note that the statements of the proposition are classical when R is a
field.

The existence of the objects V(L) giving €°P the structure of a highest
weight category and satisfying the Hom and Ext conditions is given by [39,
Proposition 4.19]. The unicity follows from Lemma 2.7 below. The description
of the projective, tilting and injective objects of €™ is clear.

Itis shownin [39, Proposition4.14] that S is a highest weight category with
A(SE) = SA(F). We denote by Ps()), Is(L), etc. the projective, injective,
etc. of S% associated with A.

The existence of P(A) is granted in the definition of highest weight cate-
gories. We show by descending induction on A that kP (L) >~ Px()). This is
clear if XA is maximal, for then P(1) = A(X). We have kP (L) = Py (L) & Q,
where Q is adirect sum of Pe(u)’s with u > A.Byinduction, Pe(p) = kP(w),
hence Q lifts to O € %P, and there are maps f : Q — P() and
g: P — O such that k(gf) = idg. Since R is local and Qisa finitely
generated projective R-module, we deduce that g f is an automorphism of 0,
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hence Q is a direct summand of P(%), so Q = 0 and kP(L) = Pc(}).
The unicity of P() is then clear, since given M, N € €P™, we have
k Homy (M, N)— Homyy (KM, kKN).

Given R — S alocal point, the residue field k’ of S is a field extension of k.
Since kA is a split k-algebra, it follows that given P a projective indecompos-
able kA-module, then k' P is a projective indecomposable k’A-module. We
deduce that P/ (L) >~ k' ®k kP (L), hence Ps(A) >~ SP(}).

The statements about 7 (1) follow from those about P (A) by duality.

The statements about 7'()) are proven in the same way as those for P(A),
using Proposition 2.4(b) below. |

Note that (¢, A(%¥)) is a highest weight R-category if and only if
k€, kA(%)) is a highest weight k-category and the objects of A(%) are
projective over R, see [39, thm. 4.15]. Note also that A(A) has a unique simple
quotient L(X), and Irr(%) = {L (1)} ea-

Let €2 and € be the full subcategories of % consisting of the A-filtered
and V-filtered objects, i.e., objects having a finite filtration whose successive
quotients are standard, costandard respectively. These are exact subcategories
of . Note that every object of > has a finite projective resolution, where
the kernels of the differentials are in ¥’2. As a consequence, the canonical
functor D?(€2) — DY(%) is fully faithful. Similarly, the canonical functor
Db (€Y) — DP(%)isfully faithful, as every object of €V has a finite relatively
R-injective resolution.

Lemma 2.2 Let ¢, ¢ be highest weight R-categories. An exact functor @ :
€ — €' which restricts to an equivalence ® : EASED is an equivalence
of highest weight categories C>C.

Proof Since @ identifies the projective objects in 4" and ¢”, it induces an
equivalence of their bounded homotopy categories, hence an equivalence
D2(€) — D®(%"). Since @ is exact, we are done. O

Let €1l = @2 N %"V be the full subcategory of % consisting of the tilting
objects, i.e., the objects which are both A-filtered and V-filtered.

Let T = @,cp T(A). The Ringel dual of € is the category ¢° =
Endy (T)°P-mod. It is a highest weight category on the poset A°P. The functor
Hom(T, e) : € — %° restricts to an equivalence #Z : € V(€A called
the Ringel equivalence. We have Z(V (L)) = A°(L), Z(T (1)) >~ P°(A) and
Z(I (L)) >~ T°(1) for A € A, see [39, Proposition 4.26]. The highest weight
category % is determined, up to equivalence, by € and we put (6°)* = .
There is an equivalence of highest weight categories € >%€°° such that the
composition
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o~ . ng—l . %—1 ..
&Proj _)((gOO)prOJ (cgo)nlt @i
is isomorphic to the Nakayama duality Hom4 (e, A)*. This provides also an

equivalence of highest weight categories ¢ *—%°.
Now, for M € & we set

ledg (M) = min{i; 3 € A, Ext' (M, T(w)) # 0},

. 2.1
redg(M) = min{i; Iu € A, Ext' (T (n), M) # 0}. @D

Lemma 2.3 Assume R is a field. Let .. € A. Then

min{i; 3u € A, Ext' (L)), T(w)) # 0}
= min{i; Iu € A, Ext'(L(L), A(w)) # 0}
= min{i; IM € €, Ext' (L(}), M) # 0}.

Proof Let cy, ¢z and c3 be the quantities defined by the terms involving respec-
tively T'(u)’s, A(n)’sand M € €™ in the first two equalities. It is clear that
C1 = €2 = C3.

Take w minimal such that Ext“2(L(A), A(n)) # 0. There is an exact
sequence 0 — A(u) — T(n) - M — 0 where M has a filtration with
subquotients A(v)’s where v < ©. We deduce that Ext2(L(A), T(u)) # 0,
hence ¢; < ¢5. O

Let us recall a few facts on base change for highest weight categories.

Proposition 2.4 Let € be a highest weight R-category, and let R — S be a
local S-point. For any M, N € € the following holds:

(a) if S is R-flat then S Ext.(M, N) = Ext%_(SM, SN) forall d € N,

(b) if either M € €P™ or (M € €™ and N € €V), then we have S Homy
(M, N) = Homgy (SM, SN),

(¢) if M is R-projective then M € €P™ (resp. M € €1, €2, €™) if and
only if kM € k6P (resp. kM € k€', k€2, k€M),

(d) if either (M € €P and N is R-projective) or (M € €> and N € €V)
then Homy (M, N) is R-projective.

Proof Part (a) is [Bourbaki, Algebre, ch. X, §6, prop. 7.c].

The statements in (b), (d) are clear if M is a free A-module, and are preserved
under taking direct summands, so they hold for M € €P™i.

LetM € € and N € ¢V. We have Extl. (M, N) = Ext§,(SM, SN) = 0.
Asaconsequence, if M is an extension of My, M> € %2 and the statements (b),
(d) hold for M;, N, then they hold for M, N. We proceed now by descending
induction on A to prove that the statement for M = A(X). There is an exact
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sequence 0 - M’ — P(L) — A(A) — 0, where M’ is an extension of
A())’s with A" > A. The statements (b), (d) hold for P (1) and, by induction,
for M’. Hence, they hold for M.

Part (c) is [39, prop. 4.30]. O

Proposition 2.5 The indecomposable projective (resp. relatively R-injective,
tilting) objects of € are the P(X) (resp. [ (L), T())), for . € A.

Proof The statements are classical for k%', and Proposition 2.4(b), (c) reduce
to that case. O

Let us quote the following easy result for a later use.

Proposition 2.6 (a) Let 6\, 6> be highest weight k-categories. An equiva-
lence of abelian k-categories F : €1 — 6> which induces a morphism of
posets It (6)) — Irr(62) is an equivalence of highest weight categories.

(b) Let 61, 63 be highest weight R-categories. An equivalence of abelian R-
categories F : €| — 6> which induces an equivalence of highest weight
k-categories KF : k61 — k%, is an equivalence of highest weight R-
categories.

Proof For part (a) we need to prove that F maps A(%1) to A(%>). An equiv-
alence of abelian categories F takes indecomposable projective objects to
indecomposable projective objects. So it preserves the standard modules, as
A(}) is the largest quotient of P (1) all of whose composition factors are
L(u)’s with u < A. Part (b) follows from Proposition 2.4(c). O

Next, we state some basic facts on V and A-filtered modules. The situation

over a base ring that is not a field is slightly more complicated.

Lemma 2.7 Let € be a highest weight category over R and let M € €. The

following conditions are equivalent:

() ExtL(A(M), M) =0 forallr € A

(b) there is a filtration 0 = Mo C My C --- C M, = M and there are
elements A; € A such that M; /M; _1 >~ V(A;) g Homy (A (X;), M) with
Ai #FAjfori # jand hj < Ajimpliesi < j

(c) there is a filtration 0 = My C M| C --- C M, = M, there are elements
Ai € A and there are R-modules U; such that M; /M;_1 >~ V(A;) Qr U;.

If the conditions above hold and M is projective over R, then M € €~ .

Proof Assume (b). Let A, u € A and U € R-mod. We have Extfgo(A(}»),
V(wn)) = 0 and Homg¢ (A()L), V() € R-proj. We deduce that

Extz’(A()., V() ®r U) = H”*(R Homy (A(), V(n) ®F U))
~ H”(RHom¢ (A(L), V(1)) ®f U) = ExtZ*(A(), V(1) ®r U = 0.

This shows (b) = (a).
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Now, assume (a). Let A € A be minimal such that Homg (V (L), M) # 0.
Fix an element u < A (no assumption on u if Homy(V(A), M) = 0 for
all A € A). There is an exact sequence 0 — A(u) — T(n) - M — 0,
where M’ is filtered by A(v)’s with v < . So, we have Ext(}(M/, M) = 0.
Hence the canonical map Homy (7T (1), M) — Homg(A(u), M) is sur-
jective. There is an exact sequence 0 — M" — T(u) — V(u) — 0,
where M” is filtered by V(v)’s with v < p. Since Homy(M”, M) = 0, the
canonical map Hom (V(u), M) — Homy (T (1), M) is an isomorphism.
Consequently, the composition A(u) — T () — V(u) induces a surjective
map Homy (V (), M) — Homeg (A(n), M).

If uw # A, we have Hom¢ (V (1), M) = 0, hence Hom¢ (A(w), M) = 0.
This shows that the canonical map Hom¢ (7' (1), M) — Homg (A(A), M) is
an isomorphism. Hence, we have canonical isomorphisms

Homg (V(L), M)— Homg (T (1), M)— Homy (A(L), M).
Now, set U = Hom¢ (A (L), M). We have

Homy(V(A) Qg U, M) ~ Hompg (U, Homy(V (L), M))
~ Homg (U, Homg¢ (A (ML), M))
~ Homy (AL Qg U, M).

So, the canonical map A(L) ®g U — M factors through amap f : V(L) ®r
U—> M.

If © # X, we have Homg (A (), V(X)) = 0. Further, we have an isomor-
phism

Homg (A1), f) : Homg(A(A), V(L)) Qg U= Homg (A(L), M).
Consequently, the map f = Homy (A, f) is injective. Hence, since
Exty (A(), V() @ U) =0

for all u, the long exact sequence gives a surjective map

ExtL (A1), M) — Extl(A(u), Coker(f)).

The left hand side is O by assumption, we deduce that Ext}g(A(u),
Coker(f)) = 0. We have

{neA; Homeg (A(w), Coker(f)) # 0} C {ne A; Homg (A(u), M) # 0} \ {A}.
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Therefore, by induction on the set {u € A; Homg(A(n), M) # 0}, we get
that Coker( f) has a filtration as required. Since we have an exact sequence

0—- VW) ®rU — M — Coker(f) — 0,

we deduce that M has also a filtration as required.

Assume now M is projective over R and consider a filtration as in (b).
We show that Homy (A (L), M) is projective over R for all A by induc-
tion on r. There is an exact sequence 0 — L — P(A;) — A(A,) — O
where L is filtered by A(n)’s with 4 > X, so we have Hom(A(A,), M) ~
Hom(P(A,), M). We deduce that Hom(A(A,), M) is projective over R. By
induction, given i < r — 1, then Hom(A(X;), M,_1) =~ Hom(A(A;), M) is
projective over R and the result follows. O

2.4 Highest weight covers
2.4.1 Definition and characterizations

Let % be ahighest weight R-category and let B be a finite projective R-algebra.
Consider a quotient functor F' : 4 — B-mod in the general sense of [23,
sec. IIL1], i.e., there is P € €P™ and there are isomorphisms B> Endy (P)%P
and F— Homy (P, ¢). We denote by G arightadjointof F andbyn : 1 — GF
the unit.

We say that F is

e a highest weight cover if it is fully faithful on €P™
o d-faithful for some d € Z>_ if Ext,,(M, N) = 0 for all M € € with
F(M)=0,N e €”andi <d + 1.

As Lemma 2.8 below shows, if F' is d-faithful for some d > 0, then it is a
highest weight cover.

We denote by (B-mod)f the full exact subcategory of B-mod of objects
with a filtration whose successive quotients are in F'(A). Let F AL A
(B-mod)®2 be the restriction of F.

We provide some characterizations of d-faithfulness.

Lemma 2.8 Let F be a quotient functor. Let d € Z>o and let & = CAE =
A(F) or & = €. The following conditions are equivalent
(i) F is d-faithful
(i) given M € € with F(M) = Oand N € &, we have Extz "' (M, N) = 0
(i) given N € &, we have H<(cone(N - RGF(N))) = 0
@iv) given M € ¢, N € & and i < d, then F induces an isomorphism
Extl, (M, N)—> Extyy(FM, FN)
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(v) given M € €PN € &andi < d, then F induces an isomorphism
Extl, (M, N)— Extiy(FM, FN).

If R is a field, these conditions are equivalent to

(vi) given A € A with FL(A) =0, then ledg(L(X)) > d + 1.

Proof Note that (ii) in the case & = €2 is the statement (i). It is clear that
(ii) for & = A(%) is equivalent to (ii) for & = €*, and these imply (ii)
for & = €. Assume (ii) holds in the case & = €. Let M € € with
F (M) = 0. We prove by induction on A that Ext%f”l (M, A())) =0.

There is an exact sequence 0 — A(A) — T(A) — L — 0, where
L has a filtration by A(u)’s with © < A. We have Exté‘”l(M, T(A)) =
0 and, by induction, we have Ext;dH(M ,L) = 0. We deduce that
Extz T (M, A(1)) = 0. So, (i) holds for & = €.

Let X = cone(N KN RGF(N)). We have F(H' (X)) = 0 for all i. Given
Y € D(%) such that F(Y) = 0, we have

hence Home(cg)(Y, X[i]) ~ Home(%)(Y, N[i + 1]) forall i.
Assume (ii). As usual, let T, denote the canonical truncation which takes
a complex C = (C", d") to the subcomplex

tm(C) ={-- = C" 1 = Ker(d™) — 0 — ---}.

Taking ¥ = 7<4(X) above, we obtain Hom ps () (t<a(X), X) = 0, hence
7<q4(X) = 0. So, (iii) holds.

Note that the canonical map Extfg(M ,N) —> Ext’é(F M, FN) is an iso-
morphism if and only if the canonical map Extig(M » N) — Hompp ) (M,
RGF N[i]) is an isomorphism.

Assume (iii). Applying Hom(M, —) to the distinguished triangle N —
RGF(N) - X ~-, we deduce that (iv) holds.

It is clear that (iv) = (v). Assume (v). It follows from Lemma 2.10 that
the canonical map Extiéfrl(M, N) — Ext‘éﬂ(F(M), F(N)) is injective for
all M € €, and (ii) follows.

Assume finally R is a field. The assertion (ii), in the case & = &t follows
from the case M simple: that is assertion (vi). O

Remark 2.9 We leave it to the reader to check that the first three equivalences
in Lemma 2.8 hold when d = —1.

Lemma 2.10 Let F be an exact functor, letd > —1 and let N € €. Assume
F induces
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e an isomorphism Ext,.(P, N)— Exti,(F(P), F(N)) for P € €™ and
i <d
e an injection Ext%’fl(P, N) — Ext‘éH(F(P), F(N)) for P € proj.

Then, F induces

e an isomorphism Extfbp(M, N)—N> Ethé(F(M), F(N)) for M € € andi <
d
e an injection Ext‘é)“(M, N) — Ext‘éJrl(F(M), F(N)) for M € €.

Proof We prove by induction on i the first statement of the lemma. Consider
an exact sequence 0 - M’ — P — M — 0 with P € €P™. We have a
commutative diagram with exact horizontal sequences

Extly (P, N) ——— Extl,(M', N) ——— Ext}' (M, N) —— Exti}!(P, N) ——— Ext}'(M', N)

] | | l |

Extly (FP, FN) ——— Extly (FM', FN) —— Ext;"! (FM, FN) — Ext”! (FP, FN) —— Ext}; ' (FM', FN)

where the fourth vertical map is an isomorphism fori + 1 < d and is injective
for i = d. By induction, the second vertical map is an isomorphism, hence
the third vertical map is injective. So, we have shown that the canonical map
Ext.' (L, N) — Extif '(F(L), F(N)) is injective for all L € %, in partic-
ular for L = M'. If i + 1 < d, we deduce that the third vertical map is an
isomorphism. m|

Let us summarize some of the results above.

Corollary 2.11 Let F : € — B-mod be a quotient functor.

o F is (—1)-faithful if and only if F® is faithful

e F is a highest weight cover if and only if n(M) : M — GF(M) is an
isomorphism for all M € €P™

e F is O-faithful if and only if F™ is fully faithful if and only if n(M) : M —
G F (M) is an isomorphism for all M € €*

e F is -faithful if and only if F® is an equivalence.

The next two lemmas relate highest weight covers of €, ¢* and €°.

Lemma 2.12 Consider a highest weight cover F = Homg(P,e) : € —
B-mod. Then F* = Homg+«(Hom (P, A), e) : €* — B°P-mod is a highest
weight cover.

Let d > 0. Then, F is d-faithful if and only if F* induces isomorphisms

Extl..(M, N)— Extho, (F*M, F*N) for all M, N € (¢*)¥ and i < d.
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Proof There is a commutative diagram

(%A)op Hom;:(o,R) (cg*)v

Fl lF*

(B-mod)°P N RP™ B°P-mod NRP™

—_—
Hompg (e, R)
since

Hom gop(Hom 4 (P, A), Homg (e, R)) >~ Homzr(Homa (P, A) @4 e, R)
~ Homg(Homy4 (P, o), R).

The lemma follows, since (higher) extensions can be computed in the exact
subcategories appearing in the diagram. |

The next lemma is clear.

Lemma 2.13 Let T € €V and consider a finite projective R-algebra B with
a morphism of algebras ¢ : B — Endy(T)°P. Let F = Homy (T, e), P =
Z(T) and F° = Homyo (P, e) : €° — B-mod.

The functor F° is a highest weight cover if and only if T is tilting, F is fully
faithful on € and ¢ is an isomorphism.

The functor F° is d-faithful if and only if T is tilting, ¢ is an isomorphism
and F induces isomorphisms Ext%(M, N):> Ext’é(FM, FN) forallM, N €
¢V andi <d.

We say that an R-algebra B is self-injective if B is relatively R-injective.

Lemma 2.14 Let F = Homg (P, o) : € — B-mod be a O-faithful functor. If
B is self-injective, then P is tilting.

Proof Let A € A. By Lemma 2.10, we have an injection
ExtL(A(L), P) = Exth(FA(L), F(P)).

Since F(P) = B is relatively R-injective and F'A () is projective over R, we
deduce that Ext}B(FA()»), F(P)) = 0, hence Ext}g(A(k), P) = 0. It follows
from Lemma 2.7 that P is tilting. O

Lemma 2.15 Let € be a highest weight category, T € €' and B =
End (T)°P. Assume the restriction of Home (T, ) to € is fully faithful and
B is self-injective. Then T is projective.

Proof This follows from Lemma 2.14 applied to €, cf Lemma 2.13. O
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2.4.2 Base change

Let S be a local commutative flat R-algebra. If F is d-faithful, then SF is
d-faithful, and the converse holds if S is faithfully flat over R (for example, if
itis a local S-point).

Lemma 2.16 Let F be a quotient functor:

If K F is (—1)-faithful, then F is (—1)-faithful.

Assume R is a regular local ring. If RyF is O-faithful (resp. is a highest
weight cover) for all p € Py, then F is O-faithful (resp. is a highest weight
cover).

Proof The first statement is obvious, since objects of €2 are projective over
R.
Assume now F is (—1)-faithful. Let M € 2. Consider the exact sequence

00— M M GFM — cokern(M) — 0.

Assume Ry, coker n(M) = 0 for all p € ‘B;. Then, the support of coker (M)
has codimension > 2, hence Ext}e (coker n(M), M) = 0, since M is projective
over R. It follows that coker n(M) is a direct summand of the torsion-free
module G F (M), hence coker n(M) = 0. The lemma follows. O

The corollary below is immediate.

Corollary 2.17 Let € be a highest weight category, T € €W and B =
Endy(T). Let F = Homg (T, o). Assume R is a regular local ring. Then,
the restriction of F to €~ is fully faithful if the restriction of RyF to RFCKV is

Sfully faithful for all p € L.

Proof Let P = Z(T) and F° = Homy+ (P, e) : €° — B-mod. The restric-
tion of F to € is fully faithful if and only if the restriction of F° to (¢°)V
is fully faithful. Now, F° is a quotient functor because 7 is tilting. Thus, by
Lemma 2.16, if R, F° is O-faithful for all p € P, then F* is O-faithful. Finally,
by Lemma 2.13, Ry F ¢ is O-faithful if the restriction of Ry F to Rp%v is fully
faithful. |

The following key result generalizes [39, prop. 4.42].

Proposition 2.18 Assume R is regular. IfK F is d-faithful, then F is d-faithful.
If in addition K F is (d + 1)-faithful, then F is (d + 1)-faithful.

Proof Assume kF is d-faithful. Let M € % with F(M) = 0 and let
N € €*. We have R Homyy (kM , kN) >~k ®% R Hom¢ (M, N). Let C be a
bounded complex of finitely generated projective R-modules quasi-isomorphic
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to RHomy (M, N) and with C=" = 0. We assume r is maximal with this
property. Then, Exty.(kM,kN) ~ H"(kC) # 0, hence r > d + 1, so
Ext;T! (M, N) = 0. It follows that F is d-faithful.

Assume now K F is (d + 1)-faithful. Then H?*?(C) is a torsion R-module.
If it is non-zero, then C4*! £ 0 a contradiction. So, H4*t?(C) = 0 and F is
(d + 1)-faithful. O

2.4.3 Uniqueness results

We assume in this section that R is normal.

Let B’ be an R-algebra, finitely generated and projective over R, and such
that K B’ is split semi-simple.

Fix a poset structure on Irr (K B’). Given E € Irr(K B'), let (K B') < (resp.
(K B") ~E) be the sum of the simple K B’-submodules of K B” isomorphic to
some F < E (resp. F < E).

We say that a family {S(E)} gerr(k 5y of B’-modules, finitely generated and
projective over R, are Specht modules for B’ if

(B'N(KB)<g)/(B'N (KB _g) ~ S(E)MK E for E € Irr(K'B).

Note that KS(E) ~ E and Endp/(S(E)) = R. So, if {S'(E)}genr(k ) 18
another family of Specht modules, then S’(E) >~ S(E) for all E: the Specht
modules are unique, up to isomorphism (if they exist).

The same construction with the opposite order on Irr (K B”) leads to the dual
Specht modules S'(E) € B-mod with KS'(E) ~ E.

Assume that the K-algebra K B is semi-simple and that F is a highest
weight cover. Then the K-category K% is split semi-simple and we have an
equivalence K F : K %= K B-mod. So, the functor K F induces a bijection
Irr(K%); Irr (K B) and weput S(A\) g = K F(A()L)) € Irr(K B). The highest
weight order on Irr(K %) yields a partial order on Irr(K B).

We will say that F' is a highest weight cover of B for the order on Irt (K B)
coming from the one on Irr(K6).

The next lemma follows from [39, Lemma 4.48].

Lemma 2.19 Let F be a highest weight cover and assume K B is semi-simple.
Then B has Specht modules S(A) = F(A(X)) and dual Specht modules
S’ (L) = F(V(V).

Proposition 2.20 Ler F : € — B-mod and F' : €' — B-mod be highest
weight covers. Assume R is regular, B is self-injective, and K B is semi-simple.
Assume that

o the order on Irr (K B) induced by (6, F) refines, or is refined by, the order
induced by (¢, F')
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e F is fully faithful on €* and on €~
o F'is fully faithful on €™ and on €'Y
e (a) F(P(N) € F/(€"") forall » € A such that ledge(L(})) < 1 and
F(I(}) € F'(€™) forall » € A such that redig (L(A)) < 1 or
(b) F(T (V) € F'(€'M) for all » € A such that ledygo (L°(1)) < 1 or
redggo (L°(1)) < 1.

Then, there is an equivalence of highest weight categories ® : €€ such
that F'® ~ F.

Proof Lemma 2.19 shows there is a bijection p : A= A’ such that F (A(N)) ~
F’(A’(p()))). Thus, both categories are highest weight for whichever of the
orders on Irr (K B) is coarser, and we may assume that the partial orders coin-
cide.

Let 0 = €° and 0" = €'°. Lemma 2.14 shows that P is tilting. So, Z(P)
is tilting and projective and, identifying €'* with €°, we have Z~'(P) ~
Z(P). Since F is fully faithful on €V, it follows from Lemma 2.13 that

¢ = Homgo (#Z(P), —) is O-faithful. Similarly, we deduce that F* is fully
faithful on (¢°°)V, since F is O-faithful. We prove in the same way that F’® =
Home e (Z(P'), e) is fully faithful on (47°)2 and on (¢"°)V.

We have F(P (X)) € F'(€'P) if and only if F¥(T*(1)) € F'*(€'*").
Similarly, we have F(I(1)) € F'(¢"™) if and only if F°(T°(L) €
F/O((%/O)tilt)‘

Since €° ~ €% as highest weight categories, we deduce that the case
(a) of the proposition for (¢, ¢”, F, F') is equivalent to the case (b) of the
proposition for (¢°, €', F°, F’®). We assume from now on that we are in
case (a).

Let PN =P @lcdk%(umsl P(A), let B = Endg(P)°P and let F =
Homy (P,e) : € — B-mod. This is a 1-faithful cover by Lemma 2.8
and Proposition 2.18. So the functor F restricts to an equivalence FA
A5 (B-mod)*2, with inverse Homé(ﬁ(A), °).

Consider P’ € €'P™ such that F'(P’) ~ F(P). Fixing such an isomor-
phism, we obtain an isomorphism B> End%ﬂ(ﬁ/ )0p Note that P’ is a direct
summand of P’, since F/(P') ~ B ~ F(P).Let F' = Homgﬂ/(P °): ¢ —
B-mod, ahighest weight cover. Lemma 2.19 shows that F/ (A'(V)) >~ F (A())

forall L € A. ~ ~
Let i be the idempotent of B such that Pi = P. The right action of B

on P provides an isomorphism B—>iBi. This equips Bi with a structure of
(B, B)-bimodule. Let F= HomB(Bl o) : B-mod — B-mod.

We have an isomorphism FoFS Homcg(P ®p Bl, e), hence FoFSF.

Similarly, we have an isomorphism F o F'> F'. Consider the exact functor
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® = Homy/ (P’ ®j F(A), 8) ~ Homz(F(A), 8) o F'* : ()* — €2,

We have an isomorphism F* o ®— F’2 and there is a commutative diagram

%/A

(B-mod)f2

Since F2 is fully faithful and F2isan equivalence, we deduce that FA s
fully faithful. Since F’2 is fully faithful, we deduce that F' is fully faithful.
It follows that & is fully faithful. Note that ®(A’(A)) >~ A(A) forall A € A.
Since F(P) = Bi ~ F'(P'), we have ®(P’) ~ P

Define

U = Homy (P (A), e) : € — €'
Since ®(A") € €2, it follows that W is exact on V. We have
U(P) ~ Homy (®(A"), ®(P')) ~ Homgy (A', P') ~ P'.
Letus fix an isomorphism LIJ(P):> P’.Let] C Abeanideal. Define (K P); as
the sum of the simple submodules of K P isomorphic to KV (1) for some u €
I.Let P = PN (KP);.Given A € A, we have P<; /P-; ~ V(1)" for some
n > 0, since P is tilting (Lemma 2.14) and K P is a progenerator of K¢'. We
have KW ((K P);) = (K P'); for all ideals I C A, hence ¥(V())) ~ V'(})
forall € A. We deduce that ¥ restricts to an exact functor ¥ : €V — €'V.

We have

®(A") ®4 P’ ~Homy (P’ ®j F(A), P') ~ Hom (F(A), F'(P))
~ Hom 3(F(A), F(P)) ~ Homg (A, P) ~

hence

F' o W = Homy (P', Homg (®(A'), o))
~ Homy(®(A') @ P’, ¢) ~ Homy (P, 8) = F

Since FV and F'V are fully faithful, we deduce that W is fully faithful.
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We now apply what we have proven to ¢* and ¢”* (cf Lemma 2.12). We
obtain a full faithful exact functor W, : €*V — ¢"*V, hence a fully faithful
exact functor Y = W(e*)* : €24 — %€’® such that Y(A(L)) =~ A()) for all
A € A. The composition ®Y is a fully faithful exact endofunctor of ¥ and
F®Y ~ F. It follows that @Y fixes isomorphism classes of objects, hence it
is an equivalence. Similarly, Y ® is an equivalence, hence & is an equivalence
(€™ — €*. The proposition follows from Lemma 2.2. O

2.4.4 Covers of truncated polynomial rings in one variable

Let I be a non-empty finite poset and {g;};c; a family of elements of R. We
denote by g; the image of ¢; in k. We assume that given i, j € I, theng; = g;
ifandonlyi < jorj <i.

Let B = R[T]/(Hie](T — qi)). This is a free R-algebra, with basis
(l,T,...,Td_l). Given j € I, let §; = R[T]/(T — ¢q;) and ¥; =
RITI/([1;5;(T —a»). Weput Y = @, ¥;, A = Endp(Y)®, G =
Hompg(Y,e) : B-mod — A-mod, P = G(B) and FF = Homu(P,e) :
A-mod — B-mod. Let A(j) be the quotient of G(Y;) by the subspace of
maps ¥ — Y that factor through Y for some j’ > ;.

Proposition 2.21 (a) ¥ = A-mod is a highest weight R-category on the
poset I with standard objects the A(j)’s. The functor F is a (—1)-faithful
highest cover of B and we have F(A(j)) ~ Sj, F(P(j)) ~ Y; and
P(j)=G(Y;).Ifqi#q;j fori # ], then F is a O-faithful cover of B.

(b) Assume €' is a highest weight R-category with poset I and F' : €' —
B-mod is a highest weight cover. If R is a field or K F'(A(j)) ~ K S; for

all j, then there is an equivalence of highest weight categories @ : €>¢
such that F'® ~ F.

Proof Let I be the quotient of I by the relation i ~ j if §; = qj- We have a
block decomposition B > @ ;j R[T1/([1;c,; (T —g:)). and if the proposition
holds for the individual blocks, then it holds for B. As a consequence, it is
enough to prove the proposition when g; = ¢; for all i, j € I. Choosing
i € I and replacing T by T — g;, we can assume further that g; = 0 for
all i € I. Since the poset structure on / is now a total order, we can assume
I ={0,...,d — 1} with the usual order, for some d > 1.

Assume first R is a field with B = R[T]/T?. Note that Y; = R[T]/ T~/
and that {Y};c; is a complete set of representatives of isomorphism classes
of indecomposable B-modules. Denote by e; the idempotent of A corre-
sponding to the projection onto Y;. Then, the projective indecomposable
A-modules are the P(j) = Aej, j € I. Note that End(P(d — 1)) = R.
Let L = Aey_1A. We have L2 = L, L ~ P(d — 1)? as left A-modules and
A/L ~ End g7y ra-1) (Bo<i<q_a RIT1/(T?771)) It follows that A-mod
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is a highest weight category on the poset I, with A(j) = Aej/Aej1Aej, see
[10,lem. 3.4]. Let us state some properties of ¢, that can be easily checked. The
module A () is uniserial, with composition series L(j), L(j — 1), ..., L(0),
starting from the head. We have [P(j) : A(i)] = 1ifi > j, and [P()) :
A(i)] = 0 otherwise. The module P = P (0) is projective and injective, while
P(d—1) = A(d —1). Note that F is exact and its restriction to A-proj is fully
faithful. Since every A(j) embeds in P, it follows that F is (—1)-faithful.
Note that F(A(j)) ~ R.

Consider now %’ and F’ as in the proposition. Since ¢’ has d non-
isomorphic  projective indecomposable modules, it follows that
{F/(P’(j))}jel = {Y;};er. As a consequence, there is a permutation o of
I and an equivalence ® : €-proj =S¢ -proj such that ®(P (o (j))) =~ P’'(j)
and F'® =~ F.Such an equivalence extends to an equivalence @ : €%, and
F'® >~ F. So, ¢ is a highest weight category with the order given by i <" j
ifo(i) < o(j). Note that End(P(j)) = R if and only if j = d — 1. It follows
that d — 1 must be maximal for the order </, and considering the quotient
algebra A/L as above, one sees by induction that <'=<, i.e., 0 = 1, hence
@ is an equivalence of highest weight categories. This shows the proposition
when R is a field.

Assume now R is a general local ring. The R-modules A(j) are free and
kA ~ Endgp(kY). We deduce that % is a highest weight category and F is
a (—1)-faithful highest weight cover. If K B is semi-simple, it follows from
Proposition 2.18 that F is O-faithful (the regularity of R is not necessary here).

We consider finally 4" and F’ as in the proposition. Since the canonical
map k Hompg(Y;, Y;) — Homygpg(kY;, kY;) is an isomorphism for all i, j,
we deduce that kF’ is a highest weight cover, hence equivalent to kF. As a
consequence, F” is O-faithful and k F'(P’(j)) >~ kY for all j. We deduce that
[P'(j) : A@i)] = 8=, and it follows that [K F'(P'(j)] = [KS;]1+ --- +
[K Sz—1]in Ko(K B-mod). There is a surjective morphism of B-modules B —
KF'(P'(j)). It lifts to a surjective morphism of B-modules B — F’(P’(})).
Since F'(P’(j)) is free over R, there is a subset J of I of cardinality j with
F'(P'(j)) = B/([1;c;(T —4i))-Itfollows that [K F'(P'(j))] = X ;4 ,[K S]],
hence F'(P'(j)) ~ Y}, as {gi}ics = {gi}i> ;. The proposition follows. O

Similarly, set Z; = R[T']/ Higj (T —gi)- Then, we can prove the following.

Corollary 2.22 Assume further that ¢’ is a highest weight R-category with
poset I and F' : €' — B-mod is a O-faithful cover. If K F'(A'(j)) ~ KS;
for all j, then we have F'(P'(j)) ~ Y and F'(T'(j)) ~ Z;.

Proof The isomorphism F'(P'(j)) ~ Y ; has been proved above. Let us prove
that F'(T'(j)) >~ Z;. As above, we can assume that [ = {0,...,d — 1}
with the usual order. Let (¥")S C % be the highest weight subcategory
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associated with the ideal {j < i; j € I} C I. By [39, prop. 4.26], under the
embedding (4)S C %’ we have T'(j) = P’(0)S/. The restriction of F’
to (¢")S/ is O-faithful. Hence, the proof above implies that F/(P’(0)S/) =
R[T]/Higj(T—qi):Zj. O

2.5 Complement on symmetric algebras

Let R be a commutative noetherian ring. Let B be an R-algebra. We say
that B is symmetric if it is a finitely generated projective R-module and B is
isomorphic to B* as a (B, B)-bimodule.

Proposition 2.23 Let B be a symmetric R-algebra. Assume R is a domain
with field of fractions K and K B is a split semi-simple algebra. Let \r be an
R-algebra endomorphism of B.

If K is an automorphism of K B that induces the identity map on Ko(K B),
then r is an automorphism.

Proof Let t € Homg(B, R) be a symmetrizing form for B, the image of 1
through an isomorphism of (B, B)-bimodules B> B*. Note that ¢ ([B, B]) =
0.

Since K B 1is split semi-simple, the character map is an isomorphism
K ®7 Ko(KB) — Homg (K B/[K B, KB], K). We deduce that i induces
the identity on K B/[K B, K B], hence t o iy = t.

Consider a maximal ideal m of R, and let k = R/m. The k-algebra kB is
symmetric, with symmetrizing form k¢ and (k#) o (kyr) = kt. It follows that
kt (ker(kyr)) = 0, hence ker(ky) = 0, since the kernel of a symmetrizing
form contains no nonzero ideal. We deduce that ki is an isomorphism.

We have shown that (R/m)y is onto for every maximal ideal m of R. It
follows that v is onto, hence it is an isomorphism, since B is a finitely generated
projective R-module. O

3 Hecke algebras, q-Schur algebras and categorifications

Let R be a Clg, q_l]—algebra. Let gg be the image of ¢ in R. If no confusion
is possible, we may abbreviate g = gr.

3.1 Quivers

Assume that gg # 1. For any subset .# C R* we associate a quiver .#(q)
with set of vertices .# and with an arrow i — i gg wheneveri,igr € .#. We
may abbreviate .# = .# (gq) when there is no risk of confusion. Note that we
do not assume .#(g) to be connected or .# to be finite. We will assume that
q%7(q))/q" is finite.
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Let Or.1,...,Ore¢ € Z such that J = Ufml 4y, where ./, =
N ql% OR,p- We write i = jifi € q”j. Bach equivalence class has a
representative (possibly more than one) in the set {Qg. 1, Or.2, ..., ORr.¢}.

If .# (g) is stable under multiplication by ¢ %, and g is not a root of 1, then
each .7, is isomorphic to the quiver A. If .#(g) is stable under multiplication

Z . . .o . . . . .
by g%, and g is a primitive e-th of 1, then each .}, is isomorphic to the quiver
AD
e—1"

For any subset / C R we consider also the quiver /7 with the set of vertices

I and with an arrow { — i+1 whenever i, i4+1 € 1. We may abbreviate [ =I;.

3.2 Kac-Moody algebras associated with a quiver

Let (a;;) be the generalized Cartan matrix associated with the quiver .# and let
sl be the (derived) Kac-Moody algebra over C associated with (a;;). The Lie
algebra sy is generated by E;, F; with i € ., subject to the usual relations.
Fix a subset Q C [1, £] such that .# is the disjoint union .¢ = I—lpeQ Sp. We
have a Lie algebra decomposition sl » = P rea Sl

For each i € .7, let «;, &; be the simple root and coroot corresponding
to E; and let A; be the i-th fundamental weight. Set Q = ;. , Z«; and
0t =@, No;. Set P =@, , ZA; and Pt = P, , NA;.

Let X be the free abelian group with basis {g;; i € .#}. The assignment
o; > & — &g yields additive maps 0, QT — X.If .# is bounded below then
we may identify A; with the (finite) sum >,y &; g—4- S0, we may consider
P, Pt as subsets of X.

We willwrite P = Py, Q0 = Qs, 0" = Q} and X = X s if necessary. For
a € O ofheightd we write #% = {i = (i,...,iq) € 74, o+, =
). The set .#¢ is an orbit for the action of the symmetric group G4 on .74
by permutation. Each & 4-orbit in .#¢ is of this form.

For any subset / C R we consider also the quiver /1 which yields in the
same way as above a Cartan datum and a Lie algebra sl;.

3.3 Partitions

SetZf(n) = {(vi,...,v) € Z% vi+--+vp = n},%,f = {v € Z'(n); vy =
0, Vp}, and Cf,fﬂL = {v € Ztn); v, > 0, Vp}. An element of Cg,f is a
composition of n into £ parts. We will say that the composition v is dominant
if it satisfies the inequalities v| > v > --- > vy, and that it is anti-dominant
if wehave vy < vy < --- < vy

Let &2, be the set of partitions of n, i.e., the set of non-increasing sequences
of positive integers with sum n. For A € &, let |A\| = n be the weight of A,
let /(L) be the number of parts in A and let ‘A be the transposed partition.
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We associate to A the Young diagram Y (A) with X; boxes in the i-th row.
Let @f be the set of £-partitions of n, i.e., the set of £-tuples of partitions
h=0N ) with 3 AP = n.Let Z = | ], &, and 2 = ||, ).
For each v € ‘K,f and d € [1,n] we set Z2¥ = {r» € P I(AP) < v, } with
Py =2"N Wﬁ.

Let A € Y(A) be the box which lies in the i-th row and j-th column
of the diagram of A”. Consider the element p(A) = p in [1, £]. Given
ORr1, OR2,.... Qry € I, we set g-res(A) = q{e_l QRr,p.-For A, u e Pt
we write g-res@ (i — A) = a if u is obtained by adding a box of residue a to
the Young diagram associated with A.

We may write g-res’ (A) = g-res€(A) and cont® (4) = sp+j—i,wheres),
is a formal symbol such that q;” = QRg,p. Wecall g-res’ (A) the shifted residue
of A and cont® (A) its shifted content. We may also abbreviate O, = Qg -

Let T" be the group of £-th roots of 1 in C*. Let &4 be the symmetric
group on d letters and I'y be the semi-direct product 4 x I'?, where I'? is
the Cartesian product of d copies of I'. The group I'y is a complex reflection
group. The set Irr (CI'y) is identified with 325 in such a way that A is associated
with the module 2" (A)¢ induced from the I'; 1) X - - - X I'j;¢,-module ¢; 1 x'®
G2 ® - @ e xt ™. Here ¢ is the irreducible CG&yr|-module associated
with the partition A? and x  is the one dimensional I'"*"I-module given by the
p-th power of the determinant.

Note that this labeling agrees with [39, sec. 6], [46, sec. 1.5] but it differs
from that of [24, sec. 2.3.4].

3.4 Hecke algebras
3.4.1 Cyclotomic Hecke algebras

Write Hg o = R. For d > 1, the affine Hecke algebra Hpg 4 is the R-algebra
generated by 71, ..., Ty_1, Xfl, R X;El subject to the relations

(Ti + )(Ti —gqr) =0,
LiTinT =TinTiTiy,
LT, =T,;T; ifli —j|>1,
XiX;j=X;X;,
XX =x71x =1,
I XiT; = qrXi+1,
X,T; =T;jX; ifi—j#0,1.
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The cyclotomic Hecke algebra is the quotient Hg’ 4 of Hg 4 by the two-sided
ideal generated by ny:l (X1 — Qr.p).

If £ = 1, then the R-algebra Hg’d is generated by T; withi € [1, d). It does

not depend on the choice of the unit Q1. In this case we write H;’ q= ng, d

Given s = (s1, ..., s¢) as above, we write H;Q,d = ng,d‘ Forany d < d/,
the R-algebra embedding Hg 4 — Hpg 4 givenby 7; — T;, X; — X;
fori € [1,d), j € [1,d], induces an embedding H;?,d — H‘;e g The R-
algebra Hj, , is free as a left and as a right H}’ 4-module. This yields a pair of
exact adjoint functors (Indd/, Resgl) between H;e ,-mod and H;’ 4-mod . For

d < d'there is also an algebra embedding H; ¢ = Hy , givenby T; — T, for
d',s

i € [1,d). It yields a pair of exact adjoint functors (Ind; */,

Resg’i) between
H;’ 4-mod and H}, ,-mod.
Now, assume that R = K is a field. Any finite dimensional H', ,-module M

can be decomposed into (generalized) weight spaces M = @ s« M;, with
Mi={veM; (X,—i,)"v=0, r €[1,d], n > 0}. See [6, sec. 4.1] and the
references there for details. Decomposing the regular module, we get a system
of orthogonal idempotents {1;; i € K d} in H;( 4 such that 1;M = M; for each
finite dimensional module M of Hy ;.

Given o € Q7 of height d, we set 1, = Zie]("‘ 1;. The nonzero 1,’s are
the primitive central idempotents in Hy ;. i.e., the algebra H}, , = 1,Hj , is
either zero or a single block of H’K 4 [4.30].

3.4.2 Degenerate cyclotomic Hecke algebras

In the same way we can consider the degenerate Hecke algebra Hpg 4 and the
degenerate cyclotomic Hecke algebra Hy, , introduced in [5]. We assume here

s € Rt The algebra Hp 4 is generated by elements #1, ..., f7—1, X1, ..., X4
subject to the relations

tF=1,
litig1ti = lig1litiya,
Litj =tjt; if |i — j| > 1,
XiXj=XjX;,
fixit1 = xit; +1,
Xt =1jx; ifi —J #0,1.

The degenerate cyclotomic Hecke algebra H Ise, 4 18 the quotient of Hg 4 by the
two-sided ideal generated by the element Hszl (X1 — SR, p)-
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The representation theory of Hy , is very similar to that of H} ,. For
instance, if R = K is a field then the primitive central idempotents in Hy. , are

again labeled by the elements o € Q7 of height d, which permits us to define
Hy , = lqHy , as above. Forany subset I C K we set H] = @QGQ;r Hy

H‘;,d =H;nN H‘;(’d. See e.g. [6, sec. 3] for more details.
3.4.3 Representations

We will use the following properties of Hy , and Hy ;:

e the R-algebras H} , and Hy, ; are both symmetric by [34], [S, app. A,
e the K-algebra H} K.a 18 spht semi-simple if and only if

d
[Ta+ax+-+agH [T 1 @k Qku— Qkw) #0. (3.1)

i=1 u<v —d<r<d

Now, set { = exp(2/—1r/0). If gx = 1 and Qg , = ¢!, then H}, ,
is the algebra KTy of the group I'y. Therefore, if Hj . 1s semi-simple, then
the set Irr (H}, d) is canonically identified with Irr(K r'y) by Tits’ deformation

Theorem. For each A € ﬁf, one can define a Specht module S ()L);eq of H;’ d
as in Sect. 2.4.3, using the dominance order < on Pt of Sect. 3.5 below. It
is free over R, and specializes to 2" (A)c as gg — 1 and Qg , — ¢P~!. The

Specht modules S(4)% of Hy , with A € ﬂﬁ are defined similarly.
Now, assume that R is an analytic deformation ring in the sense of Sect. 5.1

below. Set .7 = |J* =14 3”+Z and | = Uf,zl(sp + 7). The multiplication by
g and the shift by 1 equlps the sets ., I with structures of quivers . (q), I;
as explained in Sect. 3.1.

Proposition 3.1 Assume that R is a local ring.

(a) The blocks Hy, , of Hy ,; (resp. the blocks Hy , of Hy ;) are labeled by

the elements a € Q}Z (resp. a € Q;r) of height d. We have kH}, , = Hy_ ,
andkHy , = H, , for each a.

(b) Assume that the map exp(—2mw+/—1 o /k) yields an isomorphism of quivers
B : 11 —> F(q). Given an element « € Q;“, let o denote also its image in

Q}. Then, we have an R-algebra isomorphism ag : H%’a; Hlse,a such
that ag (S(A)%) = S(A)S’q for each \.
Proof Part (a) is obvious, because the primitive central idempotents of Hy ,,
Hﬁ g lift to Hy R.d> Hp d since R is henselian.

More precisely, given « in Q L orin of 1> to lift the idempotent 1, in H; ;.
H{ , into an idempotent in H}, ,, H » 4> We first consider the idempotent in
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Hy 4 Hg , given by the sum of all 1j’s, with i in g1 = fd orin ¢ = II%,
such that the residue class of i in k¢ is a summand of «. Note that, although
there may be an infinite number of such tuples i, this sum contains only a finite
number of non zero terms. A standard computation in linear algebra implies
that it belongs indeed to H}, +H }‘37 4» yielding an idempotent which specializes
to 1y.

Now, we concentrate on part (b). Note that [6, sec. 3.5, 4.5], [40, §3.2.6]
yield a K-algebra isomorphism ag : Hjy —>H k.- We will prove that the
isomorphism ok in [40] (which dlffers from the one in [6]) restricts to an
isomorphism o : HR,a_)H;e,a

We have the following formulae

ag!(l) =1 wherej= (),
ag 1) = G X — 1401,

X, = Xps1 —jr
0+ D) = (T + DL g, =,

Xr—qXrp1
_Xr+1 o .
a7 ((t + D1y = (T, +1)’—1- ifi, =i 41+ 1,
K " ! X, _qu+1+]r ! " ™
X)) —ap (x —1 X, — X
o (DI =(T, + 2K ) — g Gr) L else.
Xy —qXrt1 op () —ag (Xr41)

Let P C Hj Raqand P C H; r.q be the R-subalgebras generated by the X,’s
and the x,’s respectlvely We may assume that R is in general position. Then,
the K-algebras H k. H H; k.q are semi-simple, and the same is true for KP
and KP. Therefore we have x- i = i1 and X, 1J = jrlJ = By =

exp(—2m v/ —lag (x,))l We deduce that o (P)
Now, we have

ag! () — o (xpp1) — 1

Xy —qXry1
_ g ix! 1 o Yooy — g (xr+1) —1
"Hexp(=2m /=T (e () — e o) = D) = 1
Xr - Xr+1

oy (6) — g ()
exp(— 277\/_(05[( (xr)—aK Cr1))/K) =1

o Yoo) — o Yoegn)

= Xr+l

Therefore, both expressions are units in P. Hence ok restricts to an isomor-
phism ag : Hy, ,— Hp ,
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The isomorphism ag (S(1)%) >~ S(1)? follows from the unicity of Specht
modules. O

3.5 Cyclotomic ¢g-Schur algebras

For each A € @5, we consider the elements w; = Zwe@ T, and
X5 = Hf, 1Ha (X; — Qr,p) wWhere a, = AN 4+ -+ AP~ and GA
is the parabolic subgroup of G, associated with A. The R-algebra S} 4=
Endy (6B, waAHR’d) is called the cyclotomic q-Schur algebra [13].

The ’category S?e, 4-mod is a highest weight category whose standard objects
are the Weyl modules W(A)}q labeled by multipartitions A € 96 The highest
weight order is given by the dominance order < on @e The algebra S} R.a 18
Ringel self-dual, see [37, prop. 4.3, cor. 7.3].

There is a double centrahzer property for S ®.q and H; ®.q Which produces a
highest weight cover E R’ 4 - Sk g-mod — H ®.q-mod, called the cyclotomic
q-Schur functor [36, sec. 5], [39]. The Specht module S )51 & 1s the image of
Wn)5R! & under this functor. If R = K is a field, then the K-algebra S; K.d is
semi-simple if and only if condition (3.1) holds.

Using Hp, ¢ instead of HS r.q» We define the degenerate cyclotomic q-Schur
algebra S r.q and the cyclotomlc g-Schur functor E R d - S;e, 4 mod —
HISQ d-mod in a similar way. See [2,5] for details. All the results on Sfe, d
recalled above have direct analogues for S .q» See e.g., [24, sec. 6.0]. In par-
ticular, the Specht module S(A)’ is the image of the Weyl module W (1) by
the ¢-Schur functor.

3.6 Categorical actions on abelian categories

Let € be an abelian R-category.

Definition 3.2 A pre-categorification (or pre-categorical action) on € is a
tuple (E, F, X, T) where (E, F) is an adjoint pair of exact functors ¢ — ¢
and X € End(E), T € End(E?) are endomorphisms of functors such that
e for each d € N, there is an R-algebra homomorphism ¢z« : Hgr g —
End(E?) given by X; — EY*XE1 1) s EITES! for k €
[1,d],l €[1,d),
e the functor E is isomorphic to a right adjoint of F.
Remark 3.3 Given a pair of adjoint functors (E, F), the adjunction yields
a canonical R-algebra isomorphism End(F 4y = End(E?)P for each d €
N, see e.g., [9, sec. 4.1.2]. Under this isomorphism, the morphisms X, T
yield morphisms X € End(F), T € End(F 2) which induces an R-algebra
homomorphism ¢ ya : Hg 4 — End(F9)°P.
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Now, assume that R = K is afield and that ¢’ is Hom-finite. Let ¥ = .7 (q).

Definition 3.4 [9,40] An sl s-categorification (or categorical action) on € is
the datum of a pre-categorification (E, F, X, T') and a decomposition ¢ =
D, cx €. Fori € .7 let F;, E; be the generalized i-eigenspaces of X acting
on F, E respectively. We assume in addition that

e wehave F =@,_, Fiand E = @,_, Ei,

e the action of E;, F;, i € .# on [¥] gives an integrable representation of
sly,

e we have E; (%)) C C+o;, and F;(€)) C Cr—q;-

Remark 3.5 The constructions above have a degenerate analogue. Given I C
R and sl; as above, the definition of a pre-categorification and of an sl;-
categorification is the same, with Hg 4 replaced by Hg 4 and sl ~ by sl;. In
particular, foreachd € N there is an R-algebrahomomorphism ¢ga : Hg g —
End(E?) given by X; > E4*XE*1 T} s E-IZITEL,

Example 3.6 Let R = K be a field which is an analytic algebra, see Sect. 5.1.
Let s be as in Sect. 3.3, and A = A® = Zf;:l Ag,. LetHY, , = B, Hy .
where « runs over elements of Q} of height d.

The abelian K-category .Z(A) s = @uey H’, ;-mod decomposes as
LNy = GaaeQ} ZL(N) g A—q With L(A) g p—a = Hka—mod.

The endofunctors E = @y Resg+1 and F = @,y Indj“ of Z(A).s
are exact and biadjoint. The right multiplication on Hesﬂ? a1 by Xa1 yields
an endomorphism of the functor IndZH, denoted again by X ;4. The right
multiplication by 7,41 yields an endomorphism of Indg+2. We define X €
End(F) and T € End(F?) by X = @ ey Xa+1 and T = @ oy Tu+1-

The tuple (E, F,X,T) and the decomposition above give an slys-
categorification of L(A) (the simple s[-module with highest weight A) on
ZL(N).g, called the minimal sly-categorification of highest weight A.

In the degenerate case, the induction and restriction functors give an abelian
slj-categorification of L(A) on Z(A); = @, ey H ]S 4-mod, called again the
minimal sl7-categorification of highest weight A.

4 The category O

Fix integers £, N > 1 and fix a composition v € ‘516 4

4.1 Deformation rings

A deformation ring is a regular commutative noetherian C-algebra R with 1
equipped with a C-algebra homomorphism C[C* x C*] — R. Let kg, Tz, »
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be the images in R of the standard coordinates z, z1, . .., z¢ on C* and Ct. Set
TR = (TR,1, P ‘L'R7g). Define SR,1,---,8Rt € R by SR,p = Vp + TR,p- We
may abbreviate s, = sg p,k = kg and 7, = Tg ,.Forany S-pointx : R — §
we write kg = x (kgr) and 75, = x (TR, p).

A local deformation ring is a deformation ring R which is a local ring such
that the residue class i , of Tg , is O for each p. We will denote by —e the
residue class xi of kg. We will always assume that e is a positive integer.

Remark 4.1 Let R be a deformation ring. Then, for each p € ‘B, the local ring
Ry, is regarded as a deformation ring with deformation parameters kg,,, TR, - It
may not be a local deformation ring, since we may have tg , ¢ p.

We will say that the deformation ring R is in general position if the elements
in{tpy — TRy +akr+b, kg —c; a,b € Z, c € Q, u # v} are pairwise
coprime.

Example 4.2 Given a tuple ¢ = (¢, ..., ¢¢) in C, we have the deformation
ring C[C* x CY — R = CJz, «, k'] such that z > « and p > ¢p T dtis
in general position if ¢ is generic.

4.2 Lie algebras

Let R be a deformation ring.

Set gr = glg n. Let U(gr) be the enveloping algebra (over R) of gg. Let
tg C br C gr be the diagonal torus and the Borel Lie subalgebra of upper
triangular matrices. Let pr , C gg be the parabolic subalgebra spanned by br
and the Levi subalgebramg , = glg ,, ®--- ® glg ,,-

Let e; j € gg be the (i, j)-matrix unit, and set ¢; = ¢; ;. Let (¢;) be the
basis of t} dual to (¢;). It identifies t}, with RN . In a similar way we identify
tg = RV.

Let IT, TTT be the sets of roots of gg and bg. We say that v is regular if
mg., = tg. Let IT, be the set of roots of mg ,,. Set IT}" = [T N I1,.

The dot action of the Weyl group W on t} is givenby w e A = w(A+p) —p,
where p = (0, —1,...,1 — N). Two weights are linked if they belong to the
same orbit of the e-action.

Consider the partition [1, N] = JuJy, U---uJ,) givenbyi, = 1+v; +
“oF+Vpo1, jp = ipt1 — land J, = [ip, j,| For each k € J, we define
pk = p. Setdet, = ZieJ; €; and det = Zf):] det,.

The weights in the subset P = Z" of Px = R" are called integral weights.
Given a subset S C R, we write S* = {A € SV; A; — A1 € N, Vi #
Jis J2, -, jo}. We call Py = RY the set of the v-dominant weights in Pg.
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An £-partition A € 7" can be viewed as an element in N” by adding zeroes
to the right of each partition A7 such that [(A”) < v, i.e., we identify the ¢£-
partition A = (A, A2, ..., A%) with the N-tuple (110" /) ... 1 Loue=10:9)y,

Similarly, we can view the tuple Tz € R’ as a weight in Pg by identifying
it with tg = > » TR,p detp. To simplify we may abbreviate T = tR.

Setp, = (wi,vi—1,...,1,...,v, 00 — , 1). So, we have p, + 7 =
(s1,81—1,...,tg1+1,52,85 — 1, ...y TR2 + 1, ..., Tr.¢ + 1). We identify
the set of £-partitions &V with a subset of Py via the injective map

. P> P +1, A= A+p,+T1T—p. 4.1

1 1 —_— N .. . —_— N .. ..
The Casimir elements are » = 2=l ¢ij @ eji and cas = i j=1¢€ijeji-
We may write oy = w, casy = cas to avoid confusions.

4.3 Definition of the category &

A tg-module M is called a weight tg-module if it is a direct sum of its weight
submodules M) = {m € M; xm = A(x)m, x € tg} as A runs over Pg. Let
O’y be the R-category of finitely generated U (gg)-modules which are weight
tg-modules and such that the action of U (pg,,) is locally finite over R.

For A € Pl‘é, we consider the U(mg ,)-module V(L)g, = V(A )¢, ®
R;_;s, where ' € PV is such that A — )’ is a character of mg ,,, Ry, is R,
equipped with the representation of mg ,, given by this character, and V (1")c
is the finite-dimensional simple m,-module with highest weight A". We view
V(X)) r.v as apg,,-module and define the parabolic Verma module M (A) g, =
U(gr) ®u(pg.,) V(MR- If v is regular, we abbreviate M(A)g = M (AR, .

For A € Pg,let L(1)k be the unique simple quotient of M (A)k .

Let O . be the full subcategory of &y consisting of the modules whose
weights belong to P + 7. Note that M(A)R v € Op  ifandonlyif A € P+,
and that 0% _ is the Serre subcategory of Oy generated by all the simple
modules L(A) g withA € PV+7.ForA € 2" we set AR =M@ X))R.v-

If R = Corif T = 0 we drop the subscripts R or T from the notation.

4.4 Definition of the category A

Let R be a deformation ring. Assume that R is either a field or a local ring.
The category O . is a highest weight R-category with A(ﬁ}’e’ ) =
{M(M)Rr,v; A € PV + t}. If R is a local ring with residue field k, the spe-
cialization at k identifies the poset A(ﬁ}’e? ;) with A(ﬁl‘(”r).
The partial order is given by the BGG-ordering on Py, which is the smallest
partial order such that A < A" if [M (1), : L(A)x] # 0. It is equivalent to
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the linkage ordering on P, which is the transitive and reflexive closure of
the relation such that A is smaller than A’ if and only if there are B € H(A ),
w € W, such that B ¢ T1, and A = wsg @ A € 1’ — NII™ modulo m Pgr. We
will use the orderings interchangeably in the rest of the text.

Definition-Proposition 4.3 Assume that t , — Tc,v ¢ N X for each u < wv.
There are unique highest weight R-subcategories A, R AgAd}of ﬁ}é with
A(AR ) ={AM)R; » € P} and A(Ay {d}) = {A(k)R A€ @”}

Proof 1tis enough to assume that R = K is a field and to prove that A(A K’r)
is an ideal of the poset A(ﬁ,”w). To do so, we must check that if L € £V,
we P’ +rand B e IT\I1,, w € W, are such that © = wsg e & (1) and
@ (L) — p € NIIT, then we have u € @ (£?Y). Write B = o with k < [
andk =i, +x < jy,,l =iy +y < jy.Foreacha, b € K we write a > b if
and only if a — b € N*. Then, we have u < v and

Mo+ Sku—X>d +Skv— Y, (4.2)
where A is viewed as a N-tuple (L1, Az, ..., Ay). We have

{(w+pas iv <a < ju} ={ha +Sku—(@a—1iy); iy <a< jy, a#k}
U{)“l+SK,v —)’},

{(w+pps iy Sb < ot ={Ap + 550 — (b—iy); iy <b< jy, bF#}
U{dg + sk — x}.

To prove that u € w ("), we must check that

mm{(u + ,O)a, lu <a< Ju
min{(p + p)p; iy <b < j

By (4.2) and the assumption in the lemma, we have 7k , — 7k, € N. Hence,
the first inequality is true, because for any A € &', i, < a < j,, we have
Aa+sku—(a—iy) 2t +1l,and A +5sxky—y 2>tk +1 210, + 1.
Now, to prove the second one, observe that by (4.2) we have

min{(u + p)p: by <b < o} Z2min{ry + sk v —(b—iv); iy <b < o} Z2TK0+ 1

O

4.5 The categorical action on &
Let Vg be the natural representation of gg on RV Let V;S = Hompg(Vg, R)

be the dual representation. We have a pre-categorical action (e, f, X, T) on
O’y . such that
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e(M)=MQr Vg, f(M)=M®g Vg,

Xy € End(f(M)) is the left multiplication by the Casimir element w, and
Ty € End(f2 (M)) is the left multiplication by 1 ® w, see e.g. [5, sec. 3.4].

Now, assume that R = K is afield. Set I = {tx 1,..., Tk .¢} + Z.

Foreach u € PV + 1, we write wt(u) = Z,j(vzl E(utp.e)- Wehave wt(u) €
X7 if and only if (i, €) € I for all k. Note that wt(p) = D ;.;(mi(n) —

miy1(n)) Aj, where m;(n) = tt{k € [1, N]; (n + p; €x) = i}.

Foreach 1 € X, let 0}, K.t C oy K.t be the Serre subcategory generated by
the modules L (u) g such that uePrP ”+r and wt(u) = A. Thelinkage principle
yields the decomposition &}, K.t =, X, oy, K.7.,.- This decomposition yields
an sl;-categorical action on ﬁ’l‘){’ .

Let V; be the natural representation of sl;. It is a representation with the
basis {v;; i € I}. We have the following formulas, see, e.g. [5, lem. 4.3].

Proposition 4.4 For A, u € Py we write A 4 W if u + p is obtained from
A+ p by replacing an entry equal to i by i + 1.
(@) fitM(M)k,v) has a A-filtration with sections of the form M ()., one

for each wu such that A BN ",
(b) e;(M(A)k v) has a A-filtration with sections of the form M(u)k ., one

for each wu such that 5 A,
(c) the elements [L(w)k]1, [M(n)k v] in [ﬁ;(,t] are homogeneous of weight

wt(w),
(d) as an slj-module, we have [0 ] = ®2:1 N (V).

4.6 Definition of the functor ®

Recall that R is a deformation ring which is either a field or a local ring.

Leth : Ay . — Oy . be the canonical embedding. Its left adjoint is h*.
Consider the endofunctors E, F of A”R ; givenby E = h*eh and F = h* fh.
Since f preserves the subcategory A'; R.o» Wehave F = f| A% . So F is exact

and (E, F) is an adjoint pair. Further, the endomorphisms X, T of f, f2 yield
endomorphisms of F, F2.

Next, consider the module Tg 4 = TI‘Q),r{d} = fd(A(Q))R,,) in Akr{d}. The
algebra homomorphism ¢ 4 factors through an R-algebra homomorphism [5,
lem. 3.4]

$r.a : Hrq = Endyy, (Tra)*® =Endgy (Tr.a)™.
Composing Homyy (Tg,q, ®) with the pullback by ¢g.q We get a functor
dD‘}e’d : A;,T — Hf{d—mod.
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Remark 4.5 To avoid confusions we may write A”R’T(N) = R  TRa(N) =
Tr.a.

Remark 4.6 For each p € I3, the pre-categorification (e, f, X, T) on ﬁlvh
yields a pre-categorification on ﬁ%p’f and ﬁfép, . by base-change. It yields also
atuple (E, F, X, T) on A"var and Al‘épj as above. In particular, this yields
a module Tg, 4 in A%pl, an Rp-algebra homomorphism (p;ep’d : H;ep,d —
EndA;pJ(TRp,d)Op, and a functor CIJ;MI : A%p,r{d} — Hlsep’d—mod.

Now, assume that R = K is a field and recall the following.

Proposition 4.7 [5] Let 1k, — Tk ¢ Z> all u, v.

(a) Assume that v, > d for all p. Then, the map (p}‘g 4 s a K-algebra isomor-
phism Hy, ; — Endy (Tk,a)*

(b) Assume that v is ezther dominant or anti-dominant. Then, the category
Al . is a sum of blocks of Oy . the functors E, F are biadjoint, the
module Tk 4 is projective in A% k.. and a simple module of A" ko lsa
submodule of a parabolic Verma module if and only if it lies in the top of
Tk 4.

(c) Assume that Ttk , — tg,v # 0 for all u # v and that v, > d for all p.
Then, the category Ay _ is split semi-simple. Assume further that v is either
dominant or anti-dominant. Then &% , is an equivalence of K -categories
which maps A(AM)k ¢ to S(A) .

Proof For v dominant, part (a) is proved in [5, thm. 5.13, cor. 6.7]. For non-
dominant v, a proof is given in [4, lem. 5.5] using [5]. It can also be proved
using [40, lem. 5.4].

Part (b) is proved in [5]. For instance, the bi-adjointness of E, F is obvi-
ous because Ay k.c is a sum of blocks of O v _, and to prove the third claim
one checks first that Tk o is projective and then that the functor F preserves
projective modules. The last claim of (b) is proved in [5, thm. 4.8].

The first statement of (c) follows from the linkage principle. By [5, lem. 4.2],
the module Tk 4 is a projective generator in this case. Therefore, the functor
D k.4 1s an equivalence of K-categories. It maps A(A)g,r to § (M) by [5,
thm 6.12]. O

Remark 4.8 Assume that v, > d and t¢ , — Tk, ¢ Z* for each p,u,v.
Then, the tuple (E, F, X, T) define a pre-categorical action on Al[)(,l'

4.7 The category A with £ =2

If tg.y — Tk v € Z o for some u < v, then the category A”K . 1s well defined
but it may not be a sum of blocks of & _. In this section we generalize
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Proposition 4.7 in order to allow integral deformation parameters. To simplify,
we’ll assume that £ = 2. This is enough for our purpose. Similar results can
be obtain for arbitrary £. Note that, for £ = 2, the composition v is always
either dominant or anti-dominant.

The aim of this section is to prove the following.

Proposition 4.9 Assume that £ = 2,vi,vy > d and tx 1 — 1k 2 ¢ N*. Put
s = v + t. Then, the following hold

(@) ¢k 4 is an isomorphism Hy, , — Endyy (Tk.a),

(b) Tk q is projective in Ay _,

(c) a simple module of A"Kr is a submodule of a parabolic Verma module if
and only if it lies in the top of Tk 4.

In order to prove this, we first prove the following.

Proposition 4.10 Assume that £ = 2,vi,vy > d and tx1 — T2 € Z<o.
Set v = (vi,vy) and Ty = (T |, T o) withv' = v + (0, 1), 7 = % —
(0,1). Puts = v+t and s’ = V' + t'. Then, we have s = s’ and there
is an equivalence of highest weight categories Ay {d} >~ Ay _{d} which

. . . / ’
intertwines the morphisms ¢y ;, ¢, and the functors &y ;. i .

Proof The proof is rather long and consists of several steps.

Write g = glg y, ¢ = glg yy1 and eyq1 = diag(0,...,0, 1). Set also
n= @lNzl KeN_H’,' and u = @ZNZ—EI Ke,',N_H.

Fix » € K. Let g-Mod be the category of all g-modules. We define the
functors

R :¢g-Mod — g-Mod, M > Kerp(eni1 — %)
7 : g-Mod — g/—Mod, M +— U(g/) QU (p) (M ®k K,)

where p = pg y.1 is the standard parabolic of type (N, 1) and K, is the
obvious gl j-module. Let m = mg n 1 be the Levi subalgebra of p.

Let C>, C g’-Mod be the full subcategory of modules for which ey is
semi-simple with weights in » + N. The functor R restricts to an exact functor
C>x — g-Mod, and since U(g') = K[n] ® U (p), the functor Z takes values
in Cxy.

Lemma 4.11 The functor I : g-Mod — Cx, is exact, fully faithful, and is
left adjoint to R : C», — g-Mod.

Proof Let us first prove the adjointness. Given M € g-Mod, L € g'-Mod,
we have Homy (Z(M), L) ~ Homg(M, Homz(K,, L)). If L € Cs,, then
we have Homp(Ky, L) = Homge, ,(Ky, L). We deduce that there is an
isomorphism Homy (Z(M), L) >~ Homy(M, R(L)). So 7 is left adjoint to K.
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Now, let us prove the fully faithfulness of Z. We have U(g') Quw K =
K[n]®k U(g) as (m, g)-bimodules. The left m-action comes from the adjoint
action of Key1 on n and the diagonal adjoint action of g. The right g-action
is the opposite of the adjoint action of g on itself. We have Z(M) >~ K[n] ®k
(M ®k K, ) as an m-module. We deduce that the unit 1 — RZ is invertible.

O

Lemma 4.12 Let A, A’ be two abelian artinian categories, and Z : A — A’
a fully faithful functor with an exact right adjoint R. Then, the following hold

(a) the full subcategory Im(Z) of A’ is extension closed,
(b) if R induces an isomorphism [A] — [A’] then R, T are inverse equiva-
lences of categories.

Proof The functor 7 is a right exact, hence ZR is also right exact. Given an
exact sequence 0 - Z(M) — L — Z(M’') — 0in A’ with M, M’ € A, we
obtain a commutative diagram whose rows are exact sequences

0 (M) L (M)

.

IRIM) —=IR(L) —=IRI(M" —=0.

0

The vertical maps are given by the counit ZR — 1. Since Z is fully faithful,
the unit 1 — RZ is an isomorphism. Thus, the left and right vertical maps
are invertible. It follows that the two sequences are actually isomorphic, hence
Im(2) is extension-closed. This proves part (a).

To prove (b), since 1 >~ RZ, it is enough to check that the counit is an

isomorphism Z’R — 1. Since R is exact and since RIR—R by adjunction,

for each M € A the kernel and the cokernel of ZR (M ):>M are killed by R.
Hence their classes in the Grothendieck groups are 0. Hence they are both 0.
O

Corollary 4.13 The full subcategory Im(Z) of Cx, is extension-closed and
7T, R induce inverse equivalences g-Mod >~ Im(Z).

Let t, ¢ be the Cartan subalgebras of g, g'. Set Px = t*, P, = ({)*.
We abbreviate & = Ok (N) and &' = Ox(N + 1). Given A € Pk, let
M(A) = M(})k be the corresponding Verma module in &. For 1 € Py, we
define M (1)) € 0’ similarly.

We have Z(M (1)) >~ M()'), where ' = A + xeyy;1. Thus, we have
RM@O) ~ RI(M (L)) >~ M()). We deduce that Z, R are inverse equiva-
lences between the category of A-filtered g-modules in & and the category of
g’-modules which are extensions of objects M (1) with A" € Pg + xenq.
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Now, fix d, v, V', Tk, 75 as in Proposition 4.10. Put x = 7 ¢ + N. We
abbreviate 0¥ = 0% (N) and 0" = Oy (N + 1). Write also A = A% _(N)
and A’ = A”K,’I,(N + 1). Let @, @’ be the maps (4.1) associated with the
parabolic categories 0", 0" .Fork € Py, ) € P}é, let M(A),, M (1)), be the
parabolic Verma modules M (X)) g, M(X )k v in OV, o,

Consider the sets of weights £(d) = {@w(A); A € ,@g} and £'(d) =
{m'(V); A € @3} in P2, Pl‘é/ respectively. Since vy, v > d, we have an
isomorphism of posets £(d) — £'(d) such that A — A/ = A + xeny.

Let Q : & — 0" be the functor sending a module to its largest quotient
in 0". This is/the left adjoint to the inclusion functor ¥ — . We define
Q' : 0" — 0" in the same way.

Lemma 4.14 The functors Q'Z, R induce inverse equivalences of highest cat-
egories A{d} >~ A’{d}.

Proof Let & € Py and M = A + xey 1. Assume ) € PI‘é/. Let {a;; i € 1))}
be the set of simple roots in IT;". There is an exact sequence

P Msi o)) > M) — M),y — 0.

iGIW
We have s; @ A¢ Py fori € I, hence QM(s; ® 1) = 0. So, fori # n we have
QRM(S,’ ° )»/) ~ QRM(S,‘ ° )»—}—ZGN_H) ~ QRIM(S, [ )\.) >~ QM(S,‘ [] )\.):O

On the other hand, we have RM (sy eA’) = Obecause M (syoL’) € C-,. Since
QR is right exact, this yields an isomorphism QRM (1), >~ QRM (1'). Note
that R restricts to a functor " N Cx,, — V. We deduce that

RM\)y ~ QRM )y ~ QRM () =~ QM (L) >~ M()),.

Thus, R restricts to an exact functor A'{d}® — A{d}®. Since A’{d}* contains
a progenerator for A’{d}, R is right exact and A{d} is preserved under taking
quotients, we deduce that R restricts to an exact functor A’{d} — A{d}. For
a future use, note also that R yields an isomorphism [A'{d}] — [A{d}].

Let S be the endofunctor of &’ sending a module to the quotient by its largest
submodule on which ey doesn’t have the eigenvalue x. Let us consider the
functor S7 on & Itis right exact and takes values in C>,,. For N € &, the mod-
ule SZ(N) is the quotient of Z(N) by its largest submodule contained in C- ,,.
Since R is exact and vanishes on C-.,,, we deduce that 1 >~ R7Z >~ RSZ on 0.

Next, for A € £(d) the counit ZR — 1 yields amap ZM (1), — M),
which is obviously surjective. Let M be its kernel. Applying the exact functor
R to the exact sequence 0 —- M — IM (), — M(})),, — 0 yields the

@ Springer



Categorifications and cyclotomic rational double affine...

exact sequence 0 - R(M) — M), — M), — 0. We deduce that
R(M) = 0. Since M € C,, this implies that M € C-,. Thus, applying the
right exact functor S to the exact sequence above yields the isomorphism
SIM(\), >~ SM()),. Now, the constituents of M(A"),, have a highest
weight of the form ' for some u € t*, because M (1'),, € A’{d}. Hence, the
only submodule of M (1'),, contained in C~, is 0. So SM (X)), ~ M()\'),/,
hence STM (L), >~ M(\), .

Now, consider an exact sequence 0 — M; — M — M, — 0 in
A{d}®. Since ST is right exact, we have an exact sequence SZ(M;) —
SIT(M) — SI(M>) — 0.Byinduction on the length of a A-filtration, we have
ST(My),ST(M,) € A’{d}. Thus, the image of the map SZ(M;) — ST(M)
lies in A’{d}, hence ST(M) € A’{d}. We deduce that ST(A{d}*) C A’'{d)}.
Since A{d}® contains a progenerator for A{d}, SZ is right exact and A’{d}
is preserved under taking quotients, we deduce that SZ restricts to a functor
Ald} — A'ld)}.

Finally, let us consider the functor Q'Z. Since R takes & VA Cxy to OV,
the functor Q'T : 6 — 0V N C>y is left adjoint to R. So Q'7 is right exact
and we have an exact sequence

@M(s,- o)) > M) — M), — 0.

i€el,

Since s; o)JgéPI‘é, fori € I,, wehave Q'M (s; ') = 0, hence Q' ZTM (s; ®)) =~
O'M(s; ') = 0. We deduce that

QIMM), ~ QIMM) =~ QMM) =~ MO ),.

Therefore, since Q'7 is right exact and Q' ZM (1), >~ M(1'),/, the same argu-
ment as for SZ, see above, implies that Q7 restricts to a functor A{d} — A’{d}
which is left adjoint to R.

Next, we compare the functors Q'Z, ST on A{d}. For each N € A{d} we
write SZ(N) = Z(N)/L and Q"Z(N) = Z(N)/M. Sinced < v, = v + 1
and QZ(N) € A’{d}, the constituents of Q'Z(N) are in C>, \ C-,. Hence,
the constituents of 7 (N) which are in C- ,, are contained in M. Since L € C~,
we deduce that L C M. Thus we have an epimorphism SZ — Q'Z on A{d}.
Hence, since R is exact, the isomorphism 1 — RSZ and the unit 1 - RQ'T
yield a commutative triangle

| —=RST

N

ROT,
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from which we deduce that the unit is surjective. Now, by adjunction, com-
posing the unit and counit gives the identity R — RQ'ZR — R. Hence the
unit is injective, hence is an isomorphism, on Im(R). But, since 1 >~ RSZ, the
functor R : A’{d} — A{d}isessentially surjective. We deduce that 1 >~ RQ'T
on A{d}.

Therefore, the functor R : A’{d} — A{d} is exact and yields an isomor-
phism [A'{d}] — [A{d}], while QT : A{d} — A’{d} is a fully faithful left
adjoint. Hence, Lemma 4.12 shows that Q'Z, R are inverse equivalences of
categories. O

Recall the set I = {tk.1,..., Tk ¢} + Z.

Lemma 4.15 The functors Q'Z, R between A{d}, A’{d} commute with
E;, F;, X, T (whenever E;, F;,i € I, make sense).

Proof Since Q'Z, R are inverse equivalences, it is enough to consider the case
of R. Next, since (E, F) is an adjoint pair, by unicity of the left adjoint, it
is enough to consider the case of the functor F. Let Vy = EBIN: 1 Kv;. Let
M € g’-Mod.

If M € Cs,, then V41 ®x M € C», and the decomposition Vyy| =
VN @& Ken41 yields an isomorphism R(Vyy1 Qx M) = Vy Qg R(M),
because Kerys(ey+1 — % + 1) = 0. So, we have an isomorphism of functors
Ro f >~ foR:Csx — g-Mod. Since R takes A'{d} to A{d}, and since f
preserves the categories A, A’, this yields an isomorphism of functors Ro f =~
foR : A{d} — A{d + 1}. We deduce that the functors F;{d} : A'{d} —
A'{d + 1} and F;{d} : A{d} — A{d + 1} are intertwined by R whenever they
are defined (i.e.,ifi € I \ {x — N + 1}).

Leti: VN ® M — Vy41 ® M be the canonical inclusion and p : V41 ®
M — Vy ® M be the canonical projection. We have p o wyy10i = wy. It
follows that the action of X commutes with the isomorphism R o f = foR.
It is clear that the induced isomorphism R o f 25 f2 o R commutes with the
action of T'. O

This finishes the proof of Proposition 4.10. O
Now, we can prove Proposition 4.9.

Proof of Proposition 4.9 We may assume that tx 1 —tg 2 € Z<g. Set v; =1,
‘L';(’l = 1g,1, V5 = V2 + Tk 2 —Tk,1 and ‘L';(’z = ‘c}m.Recall thats = v+ and
s’ = v + t’. By Proposition 4%.10, there is an equivalence of highest weight
categories Y : A"K’ Ad} — A];(, .{d} which intertwines the morphisms <p§(’ 4
<p§(,’d and the functors stK’d, CIDSIé?d. In particular, we have Y (T 4) = Tk 4, see
the proof of Proposition 4.10. Now, we can apply Propositions 4.7 to A"K/’r/ {d},
because 7 | = 7y ,. This proves the proposition. |
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Remark 4.16 Under the hypothesis in Proposition 4.9, the tuple (E, F, X, T)
is a pre-categorical action on A‘;(’T.

4.8 The categories A and & of a Levi subalgebra

Fix a pair of distinct elements u, v € [1, £]. We will represent an (£ — 1)-
tuple a as a collection of elements a,, a, with p € [1,£]\ {u,v}. If a is
an {-tuple of elements of a ring we write a, = (ay, ay) and a, = a, + ay.

Finally, we consider the positive root system IT}, =~ = It NI, ,, with

My,uv = {owss pe = pror (pr, pr) = (u, ), (v, w)}.
We will be interested by two types of Levi subalgebras of gg:
o first, we have the Lie subalgebra mg , associated with IT,,,
e next, we have the Lie subalgebra mpg ,, , , associated with IT,, , ;.

Note that the Levi subalgebramg , , , may not be standard. To each of these
Lie algebras we associate a module category. To do so, fix a composition y),
of v, for each p.

First, for each tuple a = (a)) € N¢ we write P{a} = {A € P; (A, det)) =
ap, Vp}and P"{a} = P" N P{a}. Consider the categories of mp ,-modules
given by (the tensor product is over R)

12 ¢

Ok =Q) O, ), Ok a) = QY. vp)lay). 43)
p=1 p=1

Next, for each tuple a = (ao,a,) € N1 we set Pla) = {1 €

P; (X,dety) = d., (A,det,) = ap} and P'{a} = P N P{a}. Consider
the categories of mg , , ,-modules given by

Ok v, v) = OF, (v) @r Q) OF, (), (4.4)
p#uvv
Ok v uv)a) = O, w)la ®r Q) OF’, vp)lap). (4.5
p;éu,v

We will be mainly interested by the two extreme cases where y, = (v))
for each p, or where y, = (1"7) for each p. In the first case, we get the
categories ﬁ}’h(v), ﬁ’}’“(v, u, v), in the second one we get the categories
Or(v), O (v, u,v).

We will also use highest weight subcategories Akr(v) C ﬁ}’h(v) and
Akr(v, u,v) C 6"}3’1(1), u, v) which are defined as in Definition 4.3. They
decompose in a similar way as in (4.3)—(4.5). We will write A(A”R’ (V) =
{AM)R.r; A € £V} and A(A”R’r(v, u,v)) = {AA)p.r; A € &V}, hoping it
will not create any confusion.
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Using (4.3), (4.4) and the pre-categorification (e, f, X, T) on ﬁ}}e, , intro-
duced in Sect. 4.5, we define a pre-categorification (e, f, X, T) on ﬁ}}e, (V)
ﬁl‘é,r (v, u, v) such that, in both cases, the functors e, f are the direct sums of
the functors e, f of each of the factors.

Next, using the canonical embeddings we define tuples (£, F, X, T) on
A;,T(v) and A‘I’M(v, u, v) as in Sect. 4.6.

5 The category O

Fix integers £, N > 1 and fix acomposition v € ‘516’+. Recallthatgr = glr. .
Let R be adeformation ring. Thus, we have elementskg € R* and g , € R
for p € [1, £]. For each p, we define sg , € Rby sg ), = v, + g .
We may abbreviate k = kg, s, = Sg,p and T, = Tg ).

5.1 Analytic algebras

Fix an integer d > 1.

Fix a compact polydisc D € C¢. Here, we view C? as a Stein analytic space.
By an analytic algebra we’ll mean the localization R of the ring of germs of
holomorphic functions on D with respect to some multiplicative subset. See
[1,25] for more details on analytic algebras. The following properties hold

e R is a noetherian regular ring of dimension d,

e R is a UFD, hence every height 1 prime ideal is principal,

e for any maximal ideal m € 91, the localization R, of R is a henselian local
C-algebra.

Since R is an analytic algebra, for any entire function f = > _a,z"
on C and for any x € R, the series ), _ a,x" is convergent and defines an
element f(x) in R. In particular, we have a well-defined element exp(x) € R.
Analogously, for any analytic function f : [0,1] — M,(R) and for any
v € R", there is a unique analytic function v(¢) on [0, 1] with values in R"
such that v(0) = v and dv(z)/dt = f(t)v(2).

An analytic deformation ring is an analytic algebra R which is also a defor-
mation ring. Then, we may view kg, Tg,, as germs of holomorphic functions
on D. We will always assume that kg (D) C C \ Rxg. Thus, for any closed
point R — C the element k¢ belongs to C \ R>o.

Note that if R is an analytic algebra of dimension > 2, then we can always
choose some deformation parameters kg, Tg, , such that R is in general posi-
tion.

For an analytic deformation ring R we write gg = exp(—2mw+/—1/kg)
and Qg p, = q;" = exp(—2n«/—_lsR’p/KR). We may abbreviate ¢ = gr,
Qp = QR,p and k = KR.

@ Springer



Categorifications and cyclotomic rational double affine...

5.2 Affine Lie algebras
5.2.1 Notations

Let Lgg = g ® R[t, '] and let g’ be the Kac—Moody central extension of
Lggr by R. Let 1 be the canonical central element and let 9 be the derivation
of g, acting as 19, on Lgg and acting trivially on 1.

Putgg = RO @ g/R and tg = RO @ R1 @ tg. Let bg, Prv C 8R be the
preimages of bg and pg, , under the projection Rd @ R1® (g ® R[t]) — gr.
The element ¢ = kg — N of R is called the level. Consider the R-algebras
grx = U(gr)/(1 — ¢) and g’R’K = U(gk)/(1 —¢). For d € N we set
8R>d=00® r4R[1], g/R’Jr =R1®gr>oandgr+ =RID g’R’+.

For a g/R’ ,-module M of level ¢ we consider the induced module
Indpr(M) = g/RJ{ Bug ,) M. We can view a g g-module as a g/RnL—module of
level ¢ where gg > acts trivially. Write again #nd g (M) for the corresponding
induced module.

Ford > 1let Qrg C gr. be the R-submodule spanned by the prod-
ucts of d elements of g >1. Set Qr o = R. Given a g -module M, let
M(d), M(—d) C M be the annihilator of Qg4 and of Qg4 = *Qr.a
respectively. Set M (00) = |J oy M (d) and M (—00) = | oy M (—d). Note
that M(d) is a gg 4+-submodule of M and that M(co), M(—oc0) are gg-
submodules of M.

A ggr -module M is smooth if M = M (oco) and if M is flat over R. Let
7R« be the category of the smooth gg ,-modules.

For each & € gand r € Z, let €7 be the element £ ® ". For each s € Z,
the Sugawara operator £ is the formal sum

Z Z (=r) (r+S) Z Z (r+s) ( r)
€ 2/{

r> —s/21i,j=1 r<—s/2i,j=1

Itlies in a completion of gg , and it satisfies the relation [ £y, 5(’ ) = —r& (r+s)
The affine Casimir element is cas = 0 + £g.
If R = C we’ll drop the subscript R everywhere from the notation.

5.2.2 Affine root systems

The elements of t R and PR = t} are called affine cowezghts and affine weights
respectively. Let I be the set of roots of gr and let l'[Jr be the set of roots of
br. We will call an element of I an affine root. Let Hre be the system of real
roots. The set of simple roots in s {ao, a1, ...,0n—1}. Leta € tg be the
affine coroot associated with the real affine root «.
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Let(o: o) : ﬁR Xtg — R bethe canonical pairing. Let 8, A, p be the affine
weights givenby (§ : 0) = (Ag: 1) =1, (Ap: R86A9tR) = :tpPR1) =0
and p = p + NAg. We will use the identification Pg = R§ ® Pr @& RAg =
R x Pgp x R given by o; — (0, ;,0)ifi # 0, Ag — (0,0,1) and § +—
(1,0, 0). R

Let (e : @) : Pg X Pg — R be the non-degenerate symmetric bilinear form
given by (A : &;) = 2(h : o) /{; : ;) and (A : 1) = (A : ). It yie/lgs an
isomorphism v : tg — t%. Using it we identify & with an element of Py for
any o € .

Let W = W x ZII be the affine Weyl group and let s; = s, be the simple
affine reflections relatively to «;. The group W acts on Pg. For x € tg let
T, € End(Pg) be the operator given by

Te) = A+ (o D) w(x) — ((h,x) + (@) v(x) (h:1)/2) 8

The action of the reflection with respect to the affine real root a + rd, with
a € [Tand r € 7Z, is given by Sq4r5 = ¢ o T,5. The e-action of W is glven
by weu=w(u+p) —pforeach € Prand u € PR Two weights in P”
are linked if they belong to the same orbit of the e-action.

The set of integral affine weights is P = 7.8+ P +ZAy. Replacing P by PV
in the definitions above we get the corresponding sets of integral v-dominant
affine weights PV. We define the set PU C Py of v-dominant affine weights in
the obvious way. To A € Py we set z, = —(A : 2p + A)/2« and we associate
the affine weightl\ = (z), A, 0) € ﬁ;. For w € W, x € ZIT and A € Pgr we

have w e A = mand T, of:)m.

5.3 The category O
5.3.1 Definition

A tg-module M is called a weight tg-module if it is a direct sum of the weight
submodules My = {m € M; xm = A(x)m, x € tg} with A € Pg.

Let O”’K be the R-linear abelian category of finitely generated g ,-modules
M such that M is a weight tg-module, the pg ,-action on M is locally finite
over R, and the highest weight of any subquotient of M is of the form A with
A€ Pp.

For each n € ﬁ;, let M (1) r,» be the parabolic Verma module with the
highest weight 1. For A € Py we have M(/):)R,v = Ind(M(MR,y). Here 9, 1
act on M (X1)g,, by multiplication by z, ¢ respectively. If R = K is a field, let
L(,u)K denote the top of M(M)K v. For A € P" we abbreviate M(M) g, =
M@G)g,yand L)k = L()k.
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If v is regular, we write Og = Og" and M(A)g = M(M)g,,. If p, = g we
write O = O%* and M(X)g + = M(A) g If R = C we omit the subscript
C from the notation.

Let O;’K’f C OVR’K be the full subcategory consisting of the modules whose

weight spaces are free of finite rank over R. Let O;’K’A C OUR’K’f be the
full extension closed additive subcategory generated by the parabolic Verma

modules. The category O‘;?’K’A consists of the modules M e OvR’K’f such that

kM € OE’K’A for each k € 9.

Given T € Pg as in Sect. 4.2, let O;”KT C O" be the full subcategory
consisting of the modules M such that the highest weight of any subquotient
of M is of the form % + T with A € P”. We set O}gﬁA =0y N O';{,’K’A. If
R = C or t = 0 we drop the subscripts R or T from the notation.

Remark 5.1 The operator cas acts locally nilpotently on any module of QY.
Replacing this condition by cas is locally finite yields a bigger category which
decomposes as the direct sum €, ., O”*[a], where OV“[a] consists of the
modules such that cas — a is locally nilpotent.

More generally, for each d € Z, we may consider the category O [al{d}
which consists of the modules whose subquotients have highest weights of
the form (z)4+: + a, A + 7, ¢) with A € P"{d}. Here, we set P{d} = {A €
P; (1,det) =d}and P"{d} = P"N P{d}. Toinsist on the rank of gly we may
write Ok [(N) = OUR!j(T. We will use similar notation for all related categories,
e.g., we may write O;’fr (N)[al{d} = OF" [al{d}.

Remark 5.2 In [28] the authors set R = C and consider a category O’ of g’-
modules, rather than g,-modules as above. Forgetting the d-action gives an
equivalence O* — O'. A quasi-inverse takes a g’-module M to itself, with
the action of 9 equal to the semi-simplification of —£. See [44, prop. 8.1] for
details.

More generally, forgetting the d-action gives again an equivalence from
O%" to a category of gf-modules, and we may identify both categories. In
particular, for M € 0y we can view the g/R’ -module #nd g(M) as an object
of O".

We will use this identification without further comments whenever it is
necessary.

5.3.2 Basic properties
Let R be either a field or a local ring.
Let e = —xy, where i is the residue class of kg. We will always assume

that e is a positive integer.
For a gr -module M we set
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e “M = M with the ggr-action twisted by the automorphism f such that
EN s (=1t and 1~ —1,
e "M = M with the gg-action twisted by the automorphism * such that
£ > —1£M and 1+ 1,
e M* is the R-dual of M with the gg-action given by ("¢, m) =
~(p.§"m) and (1, m) = —(¢, 1m).
. We define the gg ,-modules DM, ZM by DM = (*M*)(c0) and ZM =
DM.

Lemma 5.3 The functor D is a duality on O;’f and 9 is a duality on OvR’K’f.
Both commute with base change.

Proof Forany M € O”R’K, the R-module DM consists of those linear forms in
M* which vanishon Qg _4M forsome d > 1. Hence, we have M = e,
where M® is the set of g, -finite elements of M*. Since the automorphism
takes the Borel subalgebra br C gr to its opposite, the functor & preserves
OUR’K’f . It is the usual BGG duality, which fixes the simple objects when R is
a field.

For any M € O}, the R-module DM consists of those linear forms in M*
which vanish on Qr _sM for some d > 1, we have DM = ‘M®, where M®
is the set of g-finite elements of M*. The functor D preserves O;’f . It is the
duality introduced in [28], which does not fix the simple objects when R is a
field.

For the second claim we must prove that for any S-point R — S we have
D(SM) = SD(M) and SZ(N) = Z(SN) for each M € O}/, N € 0%/,
The proof is the same as in lemma [28, lem. 8.16]. O

A generalized Weyl module is a module in O';e"(’f of the form Zndgr (M),
where M is a gg 4+-module with a finite filtration by gg 4-submodules such
that the subquotients are annihilated by Qg 1 and lie in &' as gg-modules.

Lemma 5.4 A gr -module which is free over R belongs to OvR’K’f if and only

if it is a quotient of a generalized Weyl module of OvR’K’f . 0O

Remark 5.5 The functors M — "M, *M, M* commute with each other and
we have a canonical isomorphism of gg-modules (M) (00) = H(M(—00)).

Remark 5.6 We define the involution  on gr-modules and the dualities Z on
0" and D on é”r in a similar way as above. We have a canonical g ,-module
isomorphism "Ind g (M) = Indr("M).

For each 8 ﬁ}e)’ the truncated category # 02"( is the Serre subcategory
of O;’K consisting of the modules whose simple subquotients have a highest
weight in g — NII*. The following hold, see e.g. [19,20], [44, sec. 3, 7] for
more details.
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Proposition 5.7 (a) O" is the direct limit of the subcategories PO",

(b) /3OUR’K is a highest weight R-category with A(ﬁOVR’K’A) = /3OUR5K N
A(O%"),

c) for B < y the obvious inclusion " C ;" preserves the tilting

(c) < y the obvious inclusion PO C Y OR" he tilti
modules and commutes with taking extensions. O

In particular, we’ll regard the tilting modules as objects of O’;gK A although
O%" is not a highest weight R-category.

Next, from Proposition 2.4 we deduce that the R-category O%" is Hom-
finite and that for any local S-point R — S the base change preserves the
tilting modules. Further, if M, N are tilting, then Homg, (M, N) is free over
R and the canonical map S Homg, (M, N) — Homg(SM, SN) is invertible.

We call OJIQ’K the Kazhdan—Lusztig category of gg, i.e., the affine parabolic
category O associated with the standard maximal parabolic in gg, see [28].

5.3.3 The linkage principle and the highest weight order on O

Assume that R is a local ring. Let us recall the partial order on ﬁ; given in
[46].

First, to each A = = (z, 4, ¢)in PR we associate its integral affine root system
which is glven by H(A) {a € H (A o)k € Z}. Since H(A) H(O ,C),
we may write H(A c) for H(A)

Now, given A € Pl‘é, we write A i WV if and only if there are ,3 € H(A ),
w € W, such that 8 ¢ IT, and A = wsg e} €N — It modulo m Pg.

Definition 5.8 (a) The linkage ordering is the partial order <, on F}é is the
transitive and reflexive closure of the relation . For A, A" € Pp we abbre-
viate A <¢ A/ if and only if N <y . So, we may view <, as a partial order
on Pp.

(b) The BGG ordering <y on Py, is the smallest partial order such that A<p2A’
if [M(A)k,» : L] # 0.

Remark 5.9 The definition of <, is motivated by the following remark: the
parabolic version of the Jantzen formula in [26] for the determinant of the
Shapovalov form of a parabolic Verma module in OE’K implies that <, refines
<p. The BGG order induces an highest weight order on # O}’Q’K for each g.
Hence <, induces also an highest weight order on # O%’K for each 8.

Remark 5.10 The partial orders <y, <t on Pl‘é can be viewed as partial orders
on £V under the inclusion . They depend on k. To avoid any confusion we
may say that these partial orders are relative to the field k.

Remark 5.11 If p,, = b, then <, coincides with <y, by [26].
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5.4 The categorical action on O

From now on, unless specified otherwise, we’ll assume that R is a regular
local analytic deformation ring of dimension <2.

First, let us briefly recall the main properties of the Kazhdan—Lusztig tensor
product ®g, see Sect. 8.3. Details will be given in Propositions 8.21, 8.29, 8.30
and 8.36.

Recall that Vg is the natural representation of gr, and that the modules
Vg, V3 € O};’K’A are given by Vg = Indg(Vg), Vi = Indg(Vy). We
have exact endofunctors e, f on O;’K’A given by e(M) = M®gV% and
f(M) = M®gVg. The functors e, f preserve the tilting modules. If R = K
is a field then e, f extend to biadjoint endofunctors of O%".

Since R is an analytic algebra, the element gg = exp(—2n =1 /kR)of Ris
well-defined and the operator exp (2 /—1£p) acts on any module M € OVR’K.
Let X be the endomorphism of the functor f which acts on f(M) by the
operator exp(—2m V—=1£0) (exp(Zn V—1£0)®r exp(2m \/—_120)), see (8.2),
(8.10). Let T be the endomorphism of f 2 defined in (8.10). By Remark 3.3
the endomorphisms X, T can be viewed as endomorphisms of e, 2.

Now, let R = K be a field. Let T € Pk be as in Sect. 4.2. Set I =
{tk 1, Tk 2, -, Tk 0} +Z+KkkZ. Writei ~ jifi—j € kxZ.Put s =1/~.
We will identify q% with the element i/ ~ in .#.

For each i € K let f;, e; be the generalized q}{—eigenspace and q[;(NJ”)—
eigenspace of X acting on f and e. The functors ¢;, f; are biadjoint, see [9,
rem. 7.22]. The action of ¢;, f; on parabolic Verma modules can be computed

explicitly. Recall that for A, u € Py we write A R w if 4+ p is obtained
from A + p by replacing an entry equal to i by i + 1.

Lemma 5.12 (a) For each ) € P}, the module f;(M(A\)k.,) has a filtration

with sections of the form M(u)k v, one for each p such that A EN u for
some j € K withi ~ j,

(b) foreach A € Py, the module e;(M(X)k ) has a filtration with sections of
the form M(w)k ., one for each p such that p EN A for some j € K with
i~j,

(c) e, f are exact endofunctors of O;ft,

(d) e=P;c eiand f =D, fi on O;ff.

Proof Propositions 8.21, 8.29 imply that f(M(X)g.,) has a filtration (not
necessarily unique) whose associated graded consists of the sum of the modules

M(u) g, such that A N u forsomei € K.
Next, the same proof as in [28, prop. 2.7], using the formula £y = cas/2« +

> a0 Z%Zl el.(j_r)ei.ri)//c, shows that the operator exp(27+/—1£p) acts on
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M(uw) kv by the scalar exp(—27+/—1z),) for any u € Py, where —z), = (1 :
2p + (N — l)det + u)/2«.
Using this, a direct computation shows that any subquotient of f(M(A)k )

which is isomorphic to M(u) k., for some affine weight p such that A N s
belongs to the generalized eigenspace of X(M(X)k,,) with eigenvalue g} .
This proves (a).

The discussion above implies that f = €D,k fi, as endofunctors of Oz A,
We deduce that f = @, g f; on O, because f is exact and any object in
O%" is a quotient of an object in O;K’A. We prove that e = @), g e; ina
similar way.

For A, u € Pg such that A N u for some i € K, we have A € PV + 1 if
and only if © € P" + t. By Lemma 5.12, we deduce that e, f restrict to exact
endofunctors on O* . Note that ¢;, f; act by zero on O*, wheneveri ¢ I.
This proves (d). |

Now, we define an sl -categorical action on O‘;(’f(r. Foreach A € P + t we
write m; (h) = #{k € [1, N]; g% = i} and wt() = X, (mi(h) —
Mmig (A)) A;.Forp € Xy let O;fr’ g C O‘;(’f(f be the Serre subcategory generated
by the modules L(A\) g with D", , m; (1) €; = B.

Claim 5.13 For &, u € P{d} + © we have
A, [t are linked <= m;(A) = m;(u) foralli € ¥ <= wt(L) = wt(w).

Hence, we have a decomposition Oy, = @gcx, Ok, 4 by the linkage
principle.

Proposition 5.14 The tuple (e, f, X, T), together with the decomposition of
O‘;fr above, is an sly-categorification on 02'2.

Proof ByLemma5.12 we have e; (O‘,}(’,Kr,ﬂ) C O‘[)(’/,(Tyﬂ‘Féi—Eqi andfi(O';(’frvﬁ) C
O‘;(’ rB—eitegi’ Further, a direct computation using Lemma 5.12 shows that
v,

the operators ¢;, f; withi € .# yield a representation of sl on [O K';] such
that [M(X)k ] is a weight vector of weight wt(1). The rest follows from
Lemma 5.12 and Proposition 8.36. O

5.5 The category A and the functor ¥

Let R be either a field or a local deformation ring. We have the following basic
fact.

Lemma 5.15 [46] The map w identifies &?” with an ideal in P" for the partial
orders <y or <y relative to k.
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Proof 1t is enough to consider the case of the ordering <, because it refines
<p. Since R is a local deformation ring with residue field k, we have 7y, = 0
and kx = —e. Then, the claim follows from [46, prop. A.6.1]. O

For each . € ", we abbreviate A(L)g.; = M(@ (A))g,, Where @ is
the application defined in (4.1). Following [5,46] we introduce the abelian
R-category A;f‘r C O;”KT which is the Serre R-linear subcategory generated
by {A(Mp,r; 2 € P}

Since 7 = 0, by Lemma 5.15, A;” = A’} is a highest weight k-category.
Using [39, thm. 4.15], this implies that A" is a highest weight R-category
such that A(A;fr) = {A(\)R.r; A € 22"}. The highest weight order on A;”Kr
is given by the partial order <; or <y, on &?" relative to k.

We will write L(1), P(A) g -, T(X) g . respectively for the simple, projective,
tilting objects associated with A (1) g ;. Let A;f{r’A = (AVR”'(T)A be the full exact
subcategory of A-filtered objects. Foreachd € N, let Ap" {d} C A%", be the
highest weight subcategory generated by A(AUR’K {d}) ={AM)pr,; A€ 2}

Now, assume that R is analytic of dimensign < 2. By Lemma 5.12 the
endofunctor f of O;""A maps (A%’ {dhH2 to (AR Ad + 1)2. We define
inductively an object T}" {d} in A" {d} by setting T {0} = A(#)r . and
TR Ad) = (TR {d — 1}). We will abbreviate Tg 4 = T}, {d} to unburden
the notation. To avoid any confusion we may write T;’f‘f(N d) = TVR”KT {d}

and Tg ¢(N) = Tr.4.

Lemma 5.16 (a) We have kTr 4 = Tk 4.
(b) The module Tg 4 is tilting in AUR’,KT.

Proof Part (a) follows from Lemma 8.34. To prove (b), note first that Tr o
is tilting by Proposition 2.4, because kT o = Tk o is A-filtered and simple.
Since the functor f preserves the tilting modules of O;”"T by Lemma 8.33, we
deduce that Tg 4 is tilting. O

By Proposition 8.36, we have an R-algebra homomorphism
s . s VK op
Via Hp g — Endyre (Tr.q) (5.1
and a functor

Vra= Homy v« (Tg.a, ) : A% {d}) — H} 4-mod .

The main result of the section is Theorem 5.37. To prove it, we will study in
the subsequent subsections some properties of ¥3, , and W}, , when localized
to codimension one.
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Remark 5.17 Since Tg 4 is tilting, it is uniquely determined by its special-
ization kTg 4 = Tk 4. If R is a regular local ring of dimension >2, then we
may define T 4 as the unique module in A" {d} (up to isomorphism) which
specializes to Ty 4. We do not know how to define either wj'?’ 4 or \IJ;, g if
dim R > 2.

Remark 5.18 For each p € [1, €], let A, € ,@f be the ¢-partition with (1) on
the p-th component and ¢ elsewhere. The proof of Lemma 5.12 implies that
the module Tk 1 has a A-filtration with sections of the form A(A)g  with
A€ z@f, and that the operator X € End(Tg 1) has the eigenvalue q;{” on

A()\p)K,t-

5.6 The affine Lie algebra of a Levi subalgebra

Consider the root system ﬁv ={a+ré acll,reZU{rd; r e Z*}.
Let mg , be the Lie subalgebra of gg spanned by tz and the root subspaces
associated with IT,. We may view mp , as the affine Kac-Moody algebra
associated with the Levi subalgebra mp , of gg. We define the associative
R-algebrampg, , . in the same way as we defined g . in Sect. 5.2.1.

The Weyl group of M, is the subgroup W, of W generated by the affine
reflections sg with B € ﬁ Thus, we have Wv ={wTy; we W, x € ZI1,}.

Setbg , = mg ,Nbg. The category O %= (V) consists of the finitely generated
mpg , -modules which are weight tg- modules with a locally finite action of
br., (over R), and such that the highest weight of any constituent is of the

form A with A € Pr. The decomposition mg,, = EBK 1 9lR, vy yields an
equivalence O (v) = ® p=1 O'% (vp), here the tensor product is over R.

Given a tuple y = (y,) of compositions of the v;’s, let O%K(v) c O%(v)
be the subcategory which is identified under the equlvalence O (v)

® pel O’ (v),) with the category ® Ozp (vp). Given a deformation para-
meter 7 and a tuple a € N, we also consider the categories O;”Kr(v) =
®jp1 0% (1) and OF'W){a) = @, O+ (vp){ap). Setting y, =
(vp) for each p, we get the Kazhdan—Lusztig category O;’K(v) =0z (v)
of the Lie algebra mg ,,. Let O;’K(v){a} C O;’K(v) be the full subcategory
defined in the similar way.

To avoid confusions, we may set AR (N) = A" if g = gly.
Then, we define AJr K(v) C O (v) to be the subcategory isomorphic to
®g vp K (Vp)

As above we drop the subscripts R, Tif R=Cort =0.
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5.7 Reductions to codimension one

5.7.1 Preliminaries

Foreachz € Zand u, v € [1, £] we write f, , ; (TR, KR) = TR.u — TR,v — ZKR
and fu,v(TR) = fu,v,O(TR, KR).

Definition 5.19 We will say that the deformation ring R is generic if
Sfuv.z(TR, kr) # b for any tuple (u, v, z, b) withu < v and z, b € Z, and that
itissubgenericifkg ¢ Qand f, , ;(tr, kg) = b foraunique tuple (u, v, z, b)
as above (with u < v).

Remark 5.20 1f R is a local deformation ring, i.e., if 7x , = 0 and kx = —e
with e € N*, then for each p € P such that fu,u,z(fkp, Kkp) = b we have also
b=rze.

Now, assume that R is a local deformation ring. Then, the category A;;j‘r
is a highest weight R-category by Sect. 5.5, either for the partial order <, or
<y, relative to k by Lemma 5.15. In other words, the highest weight order on
A", is induced from the highest weight order on A;”* via base change, which
yields a canonical bijection A(AR") — A(A").

By base change again, these highest weight orders on A}’Q”KT induce highest
weight orders on AZ’;:’ . and A]‘;K’ ; foreach p € B. Note that Ry, is a local ring,
but may not be a local deformation ring because i, , may be # 0. So, we
have the posets isomorphisms

®R ®k
A(Al‘éyk) & A(AUR,Kt) *'; A(AUR’;(,‘[) *P> A(AE;JK;I) .

We will reduce the study of A", to the study of Al‘ip'( . forp € P1. We will
say that p is generic if k, is generic and that p is subgeneric if k;, is subgeneric.

Remark 5.21 Let R, .# be as in Sect. 5.4. If R is subgeneric then each com-
ponent .#, is a quiver of type Ao, while if R is generic then Q = [1, £] (i.e.,
the quiver .# has exactly £ components).

In order to use the Kazhdan—Lusztig tensor product, we’ll be mainly inter-
ested by the case where R is either a field or a regular local deformation ring
of dimension <2. Note that if R has dimension 2, then we can always choose
it in such a way that it is in general position.

The following basic fact is important for the rest of the paper.

Proposition 5.22 Assume that R is a local deformation ring in general
position.
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(a) Ifp € Py then p is either generic or subgeneric.

(b) The K -category A‘I)(’fcf is split semi-simple.

(¢) If R is analytic, then the condition (3.1) holds in the fraction field K.

(d) If v, = d for all p, then the map ‘p;{,d : Héf(,d — EndA;(,KI (Tk.a)® in
(5.1) is an isomorphism of K -algebras. The functor \IJ‘;(’ 418 an equivalence
of categories and it maps A(A)k 1 to S(k)‘;&q.

Proof Since R is a UFD and p has height 1, we have p = Rg for some
irreducible element g € R. Now, if fu,v,z(fkp, Kkp) = b and Kk, = ¢ for
some u # v, z,b € Z and ¢ € Q then g must be a unit of R because R is in
general position. This is a contradiction. For the same reason, we may have
fu,vyz(rkp, Kkp) = b for at most one tuple (u, v, z, b). Therefore, if p is not
generic, then we have Kky ¢ Q. Part (a) is proved.

Part (b) follows from the linkage principle. More precisely, recall that for
k € J; we set pi = p. Then, since R is in general position, we have

M(tk, kx) = (B € TI; ((0, &, kk) : B) € 7},
={ax,; +28; forpa(Tk, kKk) € Z},
=TII,.

Thus, the linkage classes are reduced to points, because two v-dominant
weights which are W,-conjugate under the e-action are equal. Hence A;fr
is split semi-simple.

Part (c) is obvious, because gx = exp(—27r\/—_l//<K), Ok,p =
exp(—2m+/—1s,/kk), kk ¢ Q and (sk.u — Sk.» + kxZ) N Z = ¢ for each
u # v.

Let us prove part (d). As a finite dimensional split semi-simple K -algebra,
the center of H}( 4 1s spanned by the primitive central idempotents. These
idempotents are of the form 1o = > ;. s« 1j Where o € O™ has height d, see
Sect. 3.4. For each nonzero 1,, there is a unique £-partition A of d such that
ZieK ni(A)a; = a. From Lemma 5.12 we deduce that, if v, > d for all p,
then for each i € .#“ we have

Ji(Tk0) = AWk - (5.2)

Since w;(’ 4(le) 1s the projection from Tk 4 onto its direct summand
@ie s« fi(Tk o), the latter is nonzero whenever 1, is nonzero. So, the map
w;{’ 4 18 injective. To prove that it is an isomorphism, we are reduced to check
the following.

Claim 5.23 Hy , and End ave (T k,d)% have the same dimension over K.
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To prove the claim, by Proposition 8.29, it is enough to check that the K-
algebras H ;( 4 and End Ay, (Tk 4)°? have the same dimension. This follows
from Proposition 4.7.

Next, since the K-algebra A K.c 1s split semi-simple by part (b), the
standard modules A(A)g r, with A€ @" form a complete set of inde-
composable projective modules in A”K So, formula (5.2) implies that
Tka = @le ga fi(Tg o) is a prOJectwe generator in Av X .So \IIK 4 18 an
equivalence. Since the unique 51mple and projective module in the block
H K.o is the Specht module S )% x> where A is as in (5.2), we deduce that

Wi J(AO)Kk) = SR O
5.7.2 The reduction to the finite type with £ = 2

For each tuple a € N¢~!, et OURK {a} C O%", be the full subcategory con-
sisting of the modules Whose simple subquotlents have a highest weight of
the form A + 7 with A € PV{a). Set AR ay = O {a} N A", We define
0,";{a} and Ak "{a} in the obvious way.

Let p — p° be the permutation of [1, £] such that p® = £ 4+ 1 — p. Let
k — k° be the unique permutation of [1, N] which is blockwise increasing
and which takes the block J I‘,’ to J [‘)’Z . Applying this permutation to the entries

of a weight A € Pp, yields a weight A? € P%o.

Assume that R is a local ring with a subgeneric residue field. Let 7 =
(u, v, z) be the unique triple such thatu < v and f}, , ;(7k, kx) = ze. Given a
tuple »x = xg € RY, let x¢ € k¢ be its residue class. Assume that Sun (o) =
ze. We will identify xr with the weight Zp XR,pdet, € Pg.

If z < 0, we abbreviate ﬁ,"evh{a} = ﬁ,‘é’x(v,u,v){a}. If z > 0, we
write Op alay = ﬁ””xo(v v?, u°){a’}. See Sect. 4.8 for the notation. We
define Aye pla} in the same manner. For each d € N, we write A} h{d } =
D, A"’h{a} where a runs over the set of all ({ — 1)-compositions of
d. Depending on the sign of z, we write M(A)g, for M(A 4 x)g,, or
MO + x°)R.v, and A(A)g.p for AL R, or AXP)R xo.

Proposition 5.24 (a) We have Og", ~ @, ne-1 O {a}, 07 = P, cpye-
Oy 2{al-

(b) There are equivalences of highest weight R-categories 2p - O” - Aa} —
ﬁl‘é,h{a} and of highest weight k-categories 2y OE:f{a} — ﬁ wnlal,
such that kK Qr (M) = 2y (kM) for each M € OVR”KT{a} and 2r(M(A +
TR)R.v) = M (M) R p for each X € P".

(c) The equivalences in (b) restrict to equivalences of highest weight cate-
gories Qg : A" {a} — A} rpla}y and 2y Al‘ii{a} — A} pla}. In
particular 2g (A (A)R ) = A(A)R n for all A.
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Proof For k € J, Y we set pr = p. Since k is subgeneric, the integral root
system l'[(rk, Kk) is given by

M (t, k) = {B € TT; (0, 7, k) = B) € 7},
={ar,; —r8; fpe.p.r(tk, k) € Z},
= I1, U{x(ax; — 28); px = u, pi = v}.

Therefore, the linkage principle yields a decomposition 07 = @, cye-1
Ol‘;”';{a}. This decomposition holds over R by Proposition 2.4. This proves

part (a).
The set Il(z, ki) is a Coxeter system whose set of positive roots is
(i, k)T = Ttk k) NI, see [27, sec. 2.2]. The set I,,,., = I1, U

{fok; pk = u, pp = v} is also a Coxeter system with positive roots
Hju v = HW,U N 1'I+.

If z < 0 then M (7, k)™ = I U {axs — 28; px = u, p = v}. Fix an
integral coweight x such that oy ;(x) = —z if px = u, py = v and o ;(x) =
—zif px = p;. The conjugation by x yields a bijection ¢ : ﬁ(rk, Kk):) Iy 00
such that o + 7§ — « for all «, . It maps positive roots to positive ones.

If z > 0 then T(ty, k)t = M U {—ags +28; px = u, pr = v}. The
permutationk — k° of [1, N]induces abijection Hv,u,v:) IMyo yoyo, 0 = a.
The bijection ¢ : ﬁ(‘L’k, /ck); [Tyo yo 4o such that o + r§ +— o identifies the
subsets of positive roots in both sides.

In both cases the map ¢ is an isomorphism of Coxeter systems. Now, for
ggch weight A € P¥ + p we consider the sets of roots ﬁ[)» + 1, kk] = {B €
IT; ((0, A + 7, kk) : B) = 0} and Iy u oA + 2] = {a € Iy 0y (A 4k -
a) = 0}. Since k is subgeneric, we have

T+ 7, k] = (@t — 785 Fopprr (T k1) = —(A 2 g ),
={xelly; (A :a)=0}

U{t(akr — 20); px = u, pr = v, (A @ ar1) = —ze},
=I1L,[A] U {=(ak1 — 28); pk=u, pr=v, (A+xk : ox1)=0},
=TI, [A + oo ] U {E(ak s — 28); pr =u, pr =v, ag;)

€ Iy yv[r + 21}

Ifz < 0theng0(1'[[k+rk, kk]) = I1y 4 v[A+2]. Therefore, by [20, thm. 11],
there is an equivalence of k-categories Zy : O'ﬁ,r{a} — Okx(v,u,v){a}
such that L(u 4+ t)x — L(u + xx)x for each u € P{a}. The proof of
loc. cit. is given by constructing an analogue of Soergel’s functor which
identifies, block by block, the endomorphism rings of projective generators of
O';“{a} and Og (v, u, v){a} with the endomorphism ring of the same sheaf
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over a moment graph (modulo a base change of deformation rings, from a
localization of the functions ring of the Cartan subalgebras of g and m(v, u, v)
to R). This construction yields indeed an equivalence of abelian R-categories
g - O’I‘h{a} — ORr (v, u,v){a} such that kK2 (M) = 2x (kM) for any
M € O% {a}.

If z > 0 then ¢ (TI[A + e, k1) = (o o[2 + 2k1)” = Moo po uo A%+ 21,
For —ay; + 28 € M (7, kx)t, we also have

(A + )t h(—ag) +28)) = (A% + x) + —ago o)
=—(A, ak1) —ze,
= —(Aagg) — Tku T Tkv T 2Kk
= ((0, A 4 w, kk) : —ag, + 29).

Thus, by [20, thm. 11] and the discussion above, we have equivalences of
categories

DR O fa} > O (0%, uNa®), 2 : Of {a) = Oi (v, 0%, u){a’)

such that k2gr (M) = Zx(kM) and L(u + 7o)k = L(u’ + )k for each
uw € P{a°}.

Now, we can prove part (b). To simplify, we assume z < 0. The case z > 0
is proved in a similar way.

First, note that 2y restricts to an equivalence of abelian categories
O a} — 6}, (v, u, v){a}. We denote it again by Zx. Since 0" {a} and
ﬁfe!x(v, u, v){a} are the full subcategories of O’;“{a} and Op (v, u, v){a},
respectively, consisting of the modules whose simple subquotients have a high-
est weight of the form m{ and A + g respectively, with A € P, we
deduce that 2, restricts to an equivalence of abelian R-categories OVR”KI {a} —
ﬁl‘é’%(v, u, v){a}.

Next, since Zx (L(u+ti)k.v) = L(p+2xx)k, foreach u € PV, the functor
2p is an equivalence of highest weight R-categories such that 2r M (u +
TR)R,v) = M (0 + xg) R, for each u € P" by Proposition 2.6.

Parts (b) and (c) are proved. O

Remark 5.25 We do not know how to choose the equivalence of categories
g in such a way that it intertwines the endofunctors e, f of O and . We
will not need this.

In the rest of this section, to unburden the notation, assume that z < 0. The
case z > 0 is completely similar.

Fix a (¢ — 1)-composition a = (a,, ap) of the positive integer d. Then, we
have the tilting module Ty 4, (ve) € A';e‘” o (ve) and, for each p # u, v, the
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tilting module TR.a, (vp) € A;” (vp). Recall that v, = (vy, Vy), %o = Oty 2y)
and v, = v, + v,,. Note that, since f;, , (%) = ze < 0, the category AVR"’ J{D(v.)
(with £ = 2) satisfies the assumptions in Proposition4.9. Let Tg , 4 € AVR, pld}
be the tilting module which is identified, under the equivalence (4.4), with the
direct sum of the modules T 4, (ve) ® ®p#u’v TR.q,(vp), where the sum
runs over the set of all (¢ — 1)-compositions a of d. We also write Tk .4 =
kTR p.a € Alt,h{d}'

Now, let R be either a field or a regular local deformation ring of dimension
2. Assume further that R is analytic and in general position.

The category A", is split semi-simple. We have defined the module Tg 4 €
AUR”KT, the R-algebra homomorphism 1//‘1;7‘1 : Hie,d — EndA;f‘T (Tr.4)°P, and
the functor W , : A% {d} — H} ;-mod. By base-change, we get Tg, 4,
erp,d and lIJj'?p’d for each p € P, see Remark 4.6.

Lemma 5.26 Assume that p € P is subgeneric. Then, we have an isomor-
phism 2g, (T, ) = TRy h.d-

Proof The module QRP (T Rp,d) is tilting, because QR;: is an equivalence of
highest weight categories. Since T Rp.0 and TRp,h,o are parabolic Verma mod-
ules, we have QRP (Tk.0) = TRy 1.0

Next, the functor Z, induces an isomorphism of the (complexified)
Grothendieck groups [O]‘:;fr{a}] — [ﬁf()p, pla}] such that 2y ([L(A +
rkp)kp]) =[LA+ Xy )kp]- Since it also preserves the classes of the standard
modules, the explicit formulae in Lemma 5.12 imply that 2y, : [ﬁl‘(’p nlatl —
[OE;: .la}] commutes with the action of the operators e, f on both sides.

Since Ty, a = f¥(Tx,.0) and Tiyna = f¥(Ti,.n.0), we deduce that
[a@kp (Tx,.a)] = [Tk,.h.al in [ﬁﬁp,h]. Therefore, we have Qkp (Tx,.a) =
Tk, h,a because two tilting modules are isomorphic if they have the same class
in the Grothendieck group. Since ,@RP (Try.q) is tilting and kp2 Ry (TR, .d) =
Qkp (Tkp,d), by Proposition 2.4(b) the isomorphism over k, can be lift to an
isomorphism .,@Rp (Try.a) = TRy.hd- O

Proposition 5.27 Let p € Py be subgeneric. Assume that v, = d for all p.
Then,

(a) TRp,d is projective in A})Q’;(’r,

(b) W}p’d is an isomorphism H}p’d — EndA%J(TRp,d)OP,

() W, g is fully faithful on (Agjt{d})A and (A%’;‘J{d})v.

Proof Since k; is subgeneric, we may fix u, v,z as above. So, we have

fu,vyz(tkp, Kkp) = ze. Hence, by Proposition 5.24 and Lemma 5.26, there is
an equivalence of highest weight Ry,-categories Zg,, : A;’:’ Ad}y — A;p’ Wd}

@ Springer



R. Rouquier et al.

taking A()»)Rp,, to A()L)Rp,;f and TRp,d to TRp,h,d. By base change, it spe-
cializes to an equivalence of highest weight ky-categories Z,, : Al‘:: Ad} —
Aﬁp’ Rld}.

Recall that v, = (v,, vy) and v = v, + v,. To unburden the notation, we
may identify the highest weight Ry,-categories A%p o {d} and AVR"p " (ve){d} via
the equivalence (4.4). The later is a particular case of the categories which have
been studied in Sect. 4.7. Note that we have Hip,u — Xkp,v = Z€ ¢ N*. Thus,
Proposition 4.9(c) implies that T, x4 is projective. Hence, part (a) follows
from Proposition 2.4 and Lemma 5.26.

To prove (b) we use Proposition 2.23. Let us check the assumptions. First,
the fraction field of R, is K. Since R is in general position, the K-algebra
Hj , is split semi-simple. Next, by [13, thm. 3.30], the decomposition map
KO(H%’d) — Ko(Hf(p’d) is surjective.

Now, let us construct an endomorphism GRp of Hi?p, 4- By Remark 4.6,
we have a pre-categorification (E, F, X, T) on Ava, 5 Let (p%p, 4 H }‘?p’ i
Endyy h(TRp,h,d)OP be the corresponding Ry-algebra homomorphism. It is

P
an isomorphism by Proposition 4.9 and the Nakayama’s lemma. Next, by
Proposition 3.1, we have an Rp-algebra isomorphism ag,, : Hiep,d — H;p’d.
Since 2 Rp (T Rp,d) = TRp, h.d» by functoriality, we have an isomorphism S Rp

Endaye (Tkya)® — Endyy , (Tk, pa)- We set O, = g 0 @k, )" o
Br, © W;ep,d and we write 0 = K0g,.

To prove (b), we must check that 6, is invertible. By Proposition 2.23, this
follows from the following.

Claim 5.28 The endomorphism 0k of H*K 4 18 an automorphism and it yields
the identity on the Grothendieck group.

Now, we prove the claim. Since R is in general position, by Proposition 5.22,
the K -algebra morphisms ‘/’?v(,d : Hj{,d — EndAl;(,rfr (Tk . 4)°P is an isomor-
phism. Hence 6k is an automorphism.

Consider the equivalences of .categories lIle d- A'I)gf(t {d} — H‘}( 4-mod E}nd
YR A‘;(,h{d.} — H,ind—mod 1nduceq by ¥k 4, and 9‘&,4- The correspond{ng
maps between isomorphism classes of simple modules fit into the commutative
square

\I‘S
Irr (AR {d}) —5 T (H )

¢X
Irr (A} {d}) —=%Trr(Hy, ).
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because we have W ,(AMk.) = S, Ok (AWK, = SOk
by Propositions 5.22(d), 4.7(d), and we have ax(S(V)%) = SM)Z7,
Pk (AN k.r)=AM)k ». Thisimplies that O is identity on the Grothendieck
group. The claim is proved.

Finally, let us prove part (c). Let <pfep’ 4» Br, and ag, be as above. Then,

we can view go%p,d as an isomorphism Hiep,d — EndA;;J (Tprd)oP_ We
don’t know whether g//‘;?p’ q= w}p, 4- However, since they are both invertible,
they differ obviously by an automorphism of H}p’ 4- Thus, the equivalence
2p,, intertwines the functors lIJ;ep’ 4 and CD%p’ 4> Up to a twist by an automor-
phism of H;p’ 4- Therefore, it is enough to prove that d>§ep’ 4 1s fully faithful
on (A‘;?mh{d})A and (A}p’h{d})v.

By Proposition 4.9, a simple module of Aﬁp 1.4 1sasubmodule of a parabolic
Verma module if and only if it lies in the top of Tk)O h.d- Thus, the functor CDf;p d
is faithful on (A]‘ip’h{a’})A. By [7, cor. 4.18], the category A]‘ip,h{d} is Ringel
self-dual, i.e., we have an equivalence Aﬁp’ pld} > (Aﬁp’ Rld }¢. Therefore, by
Lemma 2.13, the functor d>‘f(p7 4 18 also faithful on (Aﬁp, Rld V. Note that [7]

considers the category A” without any shift », but our situation reduces to this
one by Proposition 4.10. Now, part (c) follows from Proposition 2.18. O

Remark 5.29 If v, — v, ¢ Z e for all u # v, then \I’}vep,d is a 1-faithful highest
weight cover.

5.7.3 The reductionto £ = 1

Assume that the deformation ring R is a local ring with a generic residue field
k. We have the following lemma.

Lemma5.30 For A, 2’ € P", if A +1c <¢ N+t then h +t € Wy o
N+ 1.

Proof By an easy induction we may assume that there are elements f €
ﬁ(rk, k) \ IT, and w € W, with A + ¢ = wsg e A’ + 7. We have

(i, k) C T,y <= (0, %, k) : B) ¢ Z, VB e\,
— (x:a)+rk ¢Z, VaeIl\Il,, VrelZ,
<= Kk s generic.

Thus 8 € ﬁ,,, hence wsg € W,). |
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For a € N let 0%" {a} C OF", be the full subcategory of the modules

whose simple subquotients have a highest weight of the form )»/-i'\fk with
A € P"{a}.

Proposition 5.31 (a) We have Op', = @, Oy {a} and O =

Diene O 7 {al

(b) There are equivalences of highest weight R-categories 2y : OUR’:(T {a} —
O;’K(U){a} and of highest weight k-categories 2y O]‘::';{a} —
O, (v){a} such that KQr(M) = (kM) and Qr(M(k + T)g.,) =
M@)R,+-

(c) The equivalences in (b) restricts to equivalences of highest weight cate-
gories Qg : A;KT — AJr “v) and 2y : AE: — AJr “(v). In particular,
we have QR(A(A)R ) = AR forall i.

Proof Since k is generic, the linkage principle and Lemma 5.30 imply thatif a
parabolic Verma module in O” has a highest weight of the form A+ T T} with
A € P"{a}, then any constltuent has also a highest weight of the same form. So
we have a decomposition Ok7 =Bt Ok’T {a}. The decomposition over R
follows from Proposition 2.4. Part (a) is proved.

For the same reason as above, we have O% . = D, ene O% . {a}, where
0’1‘?’ cla} is the full subcategory of the modules whose simple subquotients

have a highest weight of the form )»/-i'\fk with A € P{a}.

Further, by [20, thm. 11] there is an equivalence of highest weight k-
categories Zx : Oﬁ’r{a} — O (v){a} such that L(A + 7o)k +— L(A)k. For
the same reason as explained in the proof of Proposition 5.24, the proof of
[20, thm. 11] yields an equivalence 2y : O’I‘e {a} — O%(v){a} such that
k2r(M) = Qx (kM) for any M € 0’1‘{ {a}.

Since A + i is v-dominant if and only if A is v-dominant, this equivalence
restricts to an equivalence of abelian categories O, {a} — 0, (v){a}. We

denote it again by Zy. Since O Rt {a} and O+ *“(v){a} are full subcategories of
O’jm{a} and O’ (v){a} con51st1ng of the rnodules whose simple subquotients

have a highest weight of the form * + 7 and A, respectively, with A € P"{a},
we deduce that 2 restricts to an equivalence of abelian R-categories g :
OV o« a} — OJr “(){a}. Since Zy (L(A+1)k) = L(A\)k forall A € P {a},by
Proposmon 2. 6 we deduce that 2y and 2 are indeed equivalences of highest
weight categories and that 2r (M(A 4 7)g,,) = M(A)g +. This proves parts
(b), (c). ]

Now, let R be either a field or a regular local deformation ring of dimension
2. Assume further that R is analytic and in general position.
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Consider the Kazhdan—Lusztig category O;’K (vp) of g[R’vp. The equiv-
alence of categories O%(v) = ®f,:1 O% (vp) yields an equivalence of
categories O;’K(v) = ®f,:1 O;’K(vp).

Let V(v),) € O;’K(v ») be the module induced from the natural represen-
tation of Q[R,v,,- The endofunctor f, = e ®RV(vp) of O;’K(vp) extends to
an endoﬁunctor of O;’K (v) in the obvious way. We denote it again by f,. Let
f = @p:l fp'

WesetTg o(v) = ®é:1 Tr,0(vp). Foreachd € N, we consider the tilting
module Tg 4(v) = fd(TR’O(v)) in O;’K (v). We have introduced a module
T R.,d in OVR”KI .

By base change, for each p € ‘B, we get the modules Tg, 4 € O}}Q’;r and
T Ry.d(V) € O;;JK (v). The same proof as in Lemma 5.26 yields the following.

Lemma 5.32 Assume that p € P is generic. Then, we have an isomorphism
2R, (TRry.a) = TRy ,a(v).
¢ ¢

On the other hand, for each a € N, we set HR’a = ®p:1 H;’ap. By base
change, it yields the Ry-algebra erpﬂ.
Lemma 5.33 Let p € By be generic. Then, we have an Ry-algebra isomor-
phism

H;ep,d = @ MatGd/Ga (H%’p,a) : (53)
ae%f

Proof Let I = {TRp,I, TRy, 2 - - s TRp’g} +7Z+ KRpZ and .¥ = pr =1/~
Let %, be the image of .# in the residue field k. Since p is generic, the quiver
Fx, has exactly £ components given by Yk, p = (tk,,p + Z + kk,Z)/ ~
with p € [I,¢]. Hence, the quiver pr has also ¢ components .¥; =

pr,l, LI = ﬂRp,g which specialize to fkpyl, e ﬂkp,g respectively.
For each tuple p = (p1, p2, ..., pg) in[1, 2], we consider the idempotent
in Hf(p,d given by 1, = > Li, where i = (i1, 2, ..., i4) runs over the set

Hepp = Hle Fp.p, and 1j is as in Sect. 3.4. Note that, although there may
be an infinite number of such tuples i, this sum contains only a finite number of
non zero terms. Next, for each a € ‘5{;, we define a central idempotent 1) in
Hf(p’d by L) = Zpe(a) 1y, where a is identified with the tuple (191292 - - . £9¢)
]d

and (a) is the set of all permutations of @ in [1, £]¢. Then, we write Hip @ =

Lo Hy, 4-
It is well-known that there are kp-algebra isomorphisms Hf()g d
¢ _ : _ 4
Bucet By, (0 Hiy o = L By ylaand Hy () = Mate, /e, (Hkp’a), where
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Gy = G4 x --- x By, see [12]. We must prove that the isomorphism
Daert Mate, /s, (Hﬁp’a) — Hy_, lifts toanisomorphism of Ry-algebras. To
do that, by the Nakayama’s lemma, it is enough to prove that this isomorphism
lifts to an Rp-algebra homomorphism &P, %! Matg, /s, (erp’ a) — H%p’ d
First, by Proposition 3.1, for each tuple i € (., )¢, the sum 1; = >l
over all elements i’ € .#? whose residue class is equal to i, is an idempotent in
the Ry-subalgebra H‘}Qp, 4 of Hj ;. Therefore, for each tuple p € [1, 019,
the idempotent 1, € Hj , given by 1p = > 1y, where i’ runs over
the set %), = Hle #p,, belongs also to the Ry-subalgebra H}p’ 4 and it
specializes to the idempotent 1, € Hip 4 given above. In particular, for
each a € ¢, the idempotent in Hjy , given by 1) = Zpe(a) 1p belongs
indeed to H?ep, 4 and it specializes to the idempotent 1,y € Hf(p’ 4 given
above. Further, setting Hje,,,(a) = l(a)H}p’ 4> We get Rp-algebra isomorphisms

s _ s 4 _ s
Hp,a= Gaae%f Hy, @ andHp =1l Hp ;la.
Now, we construct an Rp-algebra homomorphism P act! Matg, /s,

(laH%py dla) — Hiep, 4 Which lifts the isomorphism over the residue field
k, mentioned above.

To do that, it is convenient to use the formalism of quiver Hecke algebras.
Let R;<, 4 be the cyclotomic quiver Hecke algebra of rank d associated with s.
It is the K-algebra generated by elements 1, xj «, 7i; withi € 4 k el,d]
and [ € [1, d), subject to the relations in [40, sec. 3.2.1] associated with the
quiver .# and to the cyclotomic relations given by (xj 1)*#: 7’=i} = 0 for
all i’s. Note that the K-algebra R‘k’ 4 1s finite dimensional, and that we have
1; = 0 except for a finite number of i’s.

By [6,40] we have a K -algebra isomorphism R} ; = Hi , which identifies
the idempotents 1, i € .#¢, from both sides. In particular, for each integer / €
[1, d) and each d-tuple p such that p; # p;y1, the element 7 ; = Ziefp Til
in R}, can be viewed as an element of Hj, , which belongs to Hiep, 4 and
which satisfies the relations t,p),; Tp; = 1p and tp 1 Ty, (p),1 = Ls;p)-

Next, let w € &,4. Assume that w is of minimal length in its right &,-
coset. Fix a reduced decomposition w = s,,, - - - S5, . Consider the elements
Tw.q and T 4 ofH}p’d givenby 1, , = TopSr_5ry @ *** Tspy ey (@) Ty and
Taw = Tsry ey Srmw(@) =" Tsp oSppw(@) Tspy  w(a)- We have fa,w Tw,a = 1, and
Tw,a 'Ea,u) = 1w(a)-

The expected map Gaae‘tff Matg, /e, (laH;p’dla) — Hiep,d takes the
square matrix (Xy(a),w(a))v,w in Matg, /s, (laH%p’dla) with Xy@a),w@) €

laH%p’dla and v,w € S, as above to the sum Zv’w Tw,a Xv(a),w(a) Tv,a-
O
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NOW’ givenp = (plva’ vpd) in [17E]dv Weerte fp = fplpr fpd
andTgp(v) = fp(TR,O(v)).WehaveanisomorphismTR,d(v)=Q§p Trp().

Recall that we identify a composition a = (ay,...,ap) in ‘Kf with the
£-tuple (191292 ...¢%). Then, we have an isomorphism Tg ,(v) = ®f,=1
TR,ap (Vp)~

Next, consider the action of the symmetric group G4 on [1, £]¢ by permuta-
tion. Each orbit contains a unique element given by a composition a € ‘Kf. Let

(a) denote this orbit. We have a bijection S4/G,, = {a} given by w — w(a),
where G, is the stabilizer of a. We write Tg (4)(v) = @pe{a} TrpWw).

For each p € (a) we have a canonical isomorphism Tg p(v) = Tg (V).
Therefore, we have Tg (o) (V) = ®W€6d/6a Tr.4(v). We deduce that

End AL () (TR, (v)) = Matg, e, (End NG (U)(TR,a(v))).

Next, recall that O™ () = @y et O™ (1)(@) and that Trp(v) € Op"
(v){a} if and only if p € (a). Therefore, we have

Endytx () (Tra () = €D Endy s, (TR (1)

224
acsy;

= P Matg, /e, (Endy+x(,) (Tra (1)) (5.4)

)e
agty

For each p € [1, £], the gR,Up—module Tr.a,(vp) € A;’K(vp) gives rise
to an R-algebra homomorphism H;,a,, — End A;,K(Up)(T R.a, (v))°P given
by (5.1). Taking the tensor product , we get an R-algebra homomorphism
Hp , — Endysc,) (Tra()P.

Now, assume that p € B is generic. Combining the R-algebra homomor-
phism above with base change, (5.3) and (5.4), we get an R,-algebra homomor-
: + . H s
phism ‘/pr,d(V) : H;ep,d — EndA;;(v)(TRp,d(v))Op.Further, the composition

with w;{p’d(v) yields a functor \Iligp’d(v) = HomA;’,:(v) (TRp’d(v), o)

A;;f(u){d} — Hy ,-mod.

Lemma 5.34 Let p € Py be generic. The following holds

(@) Tr,.a(v) is projective in A;;f(v){d},

(b) w;;p’d(v) is an isomorphism Hi?p,d — Endme (TRp,d(v))Op,
() Wi 4(v) is fully faithful on (AR (M{d)™ and (AR (M{d)Y.
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Proof We have an equivalence of highest weight categories O]:;K(v) =
®sz 1 Oljp"‘ (vp) and each factor Olfp"‘ (vp) is a copy of the Kazhdan—Lusztig
category. Therefore O]:LP’K (v) is equivalent to a category of modules over a

quantum group by [28]. Hence Al':p"‘ (v){d} is equivalent to the module cate-
gory of a g-Schur algebra (with £ = 1) as a highest weight category, and this
equivalence takes \IJ;; d (v) to the g-Schur functor.

Hence, some standard facts on g-Schur algebras imply that Tk, 4(v) is
projective in A]jp"{ (v){d}, proving part (a), and that the k,-algebra homomor-
phism Hiip, i Endmkp_v (Tk,.a(v))°? is an isomorphism, proving part (b) by
Nakayama’s lemma and (5.4), (5.3), see e.g. [39].

Now, we concentrate on part (c). A standard argument due to Donkin implies
that the q-Schur functor Eip, 4 1s faithful on (Sim d—mod)V for £ = 1. More

precisely, recall that Ef(p, 4= Homsf;p’d (Sf(p’ 4 € ®) for some idempotent e €
Sf(p’ 4 Recall also that the Sf(p’ 4-module Sf(p’ 4 € 1s faithful and that any Weyl
module embeds in SlS(p, 4 € seee.g., [35, p. 188]. Thus, the claim follows from
[35, thm. 4.5.5]. So, from the equivalence above, we deduce that \IJI:; a is
faithful on (A]J:p’"(v){d V. Since the g-Schur algebra is Ringel self-dual, we

deduce that \IJIQLP ¢ (v) 1s also faithful on (Af:p"c (v){d})”. Therefore, the part (c)
of the lemma follows from Proposition 2.18. O

We can now prove the main result of this section. Recall that we have intro-
duced a module Tg 4 in A”R’ft, an R-algebra homomorphism ¥y, , : Hy ; —
EndA;!Kr (Tr.4)°, and a functor W, , A;”Kr{d} — HY, ;-mod.

By base-change, we get Tg, 4, Wlsep,d and \yfep,d for each p € ‘P, see
Remark 4.6. Recall also that, since R is in general position, the K-category
A", is split semi-simple and condition (3.1) holds in K .

Proposition 5.35 Let p € Py be generic. Assume that v, > d for all p. Then

(a) TRp,d is projective in A‘;Q’s .
s : : : s op
(b) 1//vad is an isomorphism HRp,d — EndAIIg;I(TRp,d) ,

() W, g is fully faithful on (A;’;t{d})A and (A%’;‘J{d})v.

Proof Assuming part (b), the Proposition 5.31 and Lemma 5.34 imply parts
(a) and (c). Let us prove (b).

The proof is similar to the proof of Proposition 5.27. It is based on Propo-
sition 2.23. Recall that Hy , is a split semi-simple K-algebra, and by [13,
thm. 3.30], that the decomposition map KO(H‘}C P Ko(Hf(p’ 4) 18 surjec-
tive. We construct an endomorphism 6g,, of H}p ¢ asfollows. By Lemma 5.34,
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we have an isomorphism ‘l’;p,d(‘)) : Hiep,d — Endme_v(TRp,d(v))(’p. Next,
by Proposition 5.31 and Lemma 5.32, we have an equivalence of cate-
gories Zg, : O;’:’T{a} — O;;"(v){a} which maps Tg,.a to Tg,.a(v).
By functoriality, it induces an isomorphism g, : EndA;g,r(TRp,d)OP —

EndA;,K(U) (Tr,.a(1)P. We set Og, = (gojep’d)_l o Br, © ‘ﬁfep,d- The same
P

proof as in Proposition 5.27 implies that the map 6x = K0, induces the
identity on the Grothendieck group. So 6g, is an automorphism by Proposi-
tion 2.23. This implies that wlsap, 4 18 an isomorphism. O

Remark 5.36 1f qx, # 1 then \Pfep’ 4 18 a 1-faithful highest weight cover.

5.8 The category A as a highest weight cover

Let R be a local analytic deformation ring of dimension 2 in general position.
Letkx = —e and sg = v+ 1g. Recall the module Tg 4 € A", and the functor

Wy, 4t AR, = Hy -mod.
The first main result of this paper is the following theorem.
Theorem 5.37 Assume that v, > d for all p.
(a) The map WR’d :H R’d — EndAm (TR,d) P is an R-algebra isomorphism.
(b) The module Tg 4 is projective in All)Q’,Kt'
(c) The functor wfe,d is fully faithful on AvR’fCT’A and A}j?’,'cf’v.

Proof First, by Proposition 5.22, the category A;{"fr is split semi-simple and
condition (3.1) holds in the fraction field K.

To prove part (a), observe that since Tg 4 is tilting, the R-module
End AL (T Rr.d) is projective. Since H, .a 18 also projective over R, we have

wa= [ RoH} - Endyys (Tra) = () RyEndsy, (Tra),
pePi peP

see [Bourbaki, Algebre commutative, ch. VII, §4, n°2]. Next, we have
RPH%,d = Hh}?p,d and Ry EndA;ﬁ (Tra) = EndA;;’r (TRp,d) for each p € ‘B.
Thus, it is enough to prove that the map W;ep ¢ isinvertible foreachp € P;. By
Proposition 5.22, the prime p is generic or subgeneric. Thus part (a) follows
from Proposition 5.27 and Proposition 5.35.

Now, let us prove that Wy , is fully faithful on Av “V_ Since T R.4 18 tilt-
ing, by Corollary 2.17 it is enough to check that lI/S od is fully faithful on
(AVR":J{d DY for p € Py. This has already been proved in Propositions 5.27
and 5.35.
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As a consequence, the tilting module Tr 4 is projective by Lemma 2.15,
because the algebra End ALS (Tg,a) being isomorphic to Hy, ; is symmetric.
Part (b) is proved. ’

We deduce that Wy , is quotient functor. Therefore by Lemma 2.16 it is
fully faithful over AUR”KT’A if llffep’ , is fully faithful on (AUR’:J {d)2 forp € P.
Again, this has been proved in Propositions 5.27 and 5.35. The theorem is
proved. |

The following corollary is a straightforward consequence of the theorem by
specializing to the residue field, see also [33].

Corollary 5.38 Assume that v, > d for all p.

VoIV op . ) . .
(@) The map ¥,/ , - Hy ;, — End Al (Tk,d) is a k-algebra isomorphism.
(b) The module Ty 4 is projective in AE’_e.

Remark 5.39 The module Ty 4 may not be projective in O*.

Remark 5.40 Let R be any local deformation ring. Assume that v, > d for
each p. From Theorem 5.37(b), Proposition 2.4 and Remark 5.17 we deduce
that Tg 4 is well-defined and is projective in A",

5.9 The functor F and induction

In Sect. 4.6 we defined a pre-categorical action (E, F, X, T) on A';e’f‘t. Now,
we define a tuple (E, F, X, T) on A11)3’,KI in the following way. Let & : A;”"r —
O}’f‘r be the canonical embedding. Consider the endofunctors E, F of A;’fr
givenby E = h*eh, F = h* fh. Since f preserves the subcategory A" , we
have F = h' fh = f| A% In particular, the functor F is exact, (E, F) is an

adjoint pair and we have E(A;’,KT {d+ 1% c (A;f‘r{d})A. Then, we define
X € End(F) = End(f)and T € End(F?) = End(f?) as in Proposition 5.14.

Let d, k be positive integers such that d + k < v, for all p. In this sec-
tion we compare the functors F¥ : A';Q”Kt{d} — Al;éj(r {d + k} and Ind§+k =
Hie,d+k ®H‘§e,d °: H‘ﬁe’d—mod — Hﬁe’d+k—m0d.

By definition F ke R.d) = TR.4+k and we have a commutative diagram

ws
H}, , Rd Endyye (Tg,a)*
|
HS Vi End v« (FFKTg 4)°P
R.d+k = AR R.d) -
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Therefore, we have a morphism of functors on A" {d}

d+k k
O Indg W, > Homy v (Tr,d+k. F*Tr.a)
®End, v« (Tgg)r Hompve (TR g, @)
R,T )T
~ k
>~ Homypve (TR d+k> TR.d)
®End, v« (Tgg)» Hompve (TR g, @)
R,T ,T
— Homy v (EFTR g1k, @)
T
k
~ HomAv,K (Tr.g+k, F"o)
k
= Vel
where the map in the third line is given by composition.

Lemma 5.41 Assume that d + k < v, for all p. Then ¥y : IndZ”Lk llffe’d —
\Il‘l‘e’d%Fk is an isomorphism.

Proof 1t is enough to prove that ¥ is an isomorphism of functors on
(AR* {d})®. We must prove that the map

Homy v« (E*TR.avk. Tr.a) ®End, v (T ) Homyvx (Tg.a, M)
— Homyve (E¥Tg a4k, M)
given by composition is an isomorphism for each M € (A" {d Ha.

Since \I";e,a' is O-faithful, E(AV * {d—i—l}A) C (A {d})A and \p;g,d(TR,d) ~
er’ 4 as (er, & Hie, d)—bimodules the left hand 51de is isomorphic to

Hompg, , (Vg 4(E*Tra+1), Hy ;) ®m, , Homp  (Hy 4, W (M)

and the right hand side is isomorphic to HomHs (lIJ d(E TRr.d+k), \IJR d
(M)). Hence, we are reduced to prove that the natural map

Homp (W 4(E T 441), Hy o) ©n, , Homp,  (H 4, Wy 4 (M)
— Homp, , (W 4(E“TR.a+1), Wk 4(M))

given by composition is an isomorphism. We claim that W d(E Tr.a+1) =
H} ;. as Hy ;-modules. Thus it is a projective Hj, —module and the iso-
morphism follows.
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To prove the claim, note that since \Il‘;e’ 4 = Hom ALK (Tr 4, o) is fully faith-
ful on (AVR”KT {d})V, using the duality Z on AR" A} and the fact that D(TR.q) =~
Tr. 4, we deduce that the contravariant functor Hom N (o, Tr.a): A;;f(r {d} —

(Hj ;)*P-mod is fully faithful on (A;”"T{d})A. Therefore, we have isomor-
phisms

Wk a(E“Tr k) = Homyvs (Tg g, E“Tr.ak)
~ HOm(de)op (HOIIIAVR,KT (EkTR,d_H(, Tr.a), Hj?d)
>~ Hom(de)op (HOl'IlAVRKT (TR,d-i-k, FkTR,d)v H?Q,d)

~ 5 &)
~ Hom(de)op (HR,d+k’ HR,d)‘

. . s . T . . . 5

Finally, since Hy ,,, is self-injective, there is an isomorphism of Hj ;-
s ~ ) s s LI

modules Hy, ;. =~ Hom g, yor (HR7d+k, HR7d). The claim is proved. ]

Remark 5.42 Recall that X acts on IndZJrl = H;e, d+1 Oms, , @ by right multi-

plication by X411 on H} , |, and the action of X on E is the transposition of
its action on F under the adjunction, see Remark 3.3. Hence, it follows from
the definition of ¥ that it intertwines the action of X on IndﬁJrl andon F,i.e.,
we have

Do (Vg g1 X) = (XWg ) 0 V1.
Similarly we have
B o (Vg g1oT) = (TWg 4) o Vo,

for the action of 7 on IndzJr2 and on F2.

6 The category A and CRDAHA’s
6.1 Reminder on rational DAHA’s
6.1.1 Definition of the category O

Let R be a local ring with residue field C. Let W be a complex reflection
group, let h be the reflection representation of W over R and let S be the set of
pseudo-reflections in W. Let A be the set of reflection hyperplanes in f). We
write hreg = H\ Upea H-

Letc : S — R be a map that is constant on the W-conjugacy classes. The
RDAHA (=rational double affine Hecke algebra) attached to W with parameter
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c is the quotient H.(W, h) g of the smash product of RW and the tensor algebra
of h @ h* by the relations

[x, x1=0, [y,y1=0, [y,x]=(x,y) = D eslas, y){x, &)s,

ses

for all x, x" € b*, y,y’ € h. Here (e, o) is the canonical pairing between h*
and b, the element «; is a generator of Im(s|p+ — 1) and ¢ is the generator of
Im(s|y — 1) such that (e, a5) = 2.

Let R[h], R[h*] be the subalgebras of H.(W, h)g generated by h* and
b respectively. The category O of H.(W, b)g is the full subcategory of the
category of H.(W, §)g-modules consisting of objects that are finitely gen-
erated as R[H]-modules and h-locally nilpotent, see [22, § 3]. We denote it
by O.(W, bh)g. It is a highest weight R-category. The standard modules are
labeled by the set Irr(CW) of isomorphism classes of irreducible W-modules.
The standard module associated with £ € Irr(CW) is the induced module
A(E)gr = Indfv(gg[’;*](RE). Here RE is regarded as a W x R[h*]-module
such that h C R[h*] acts by zero. Let L(E) be the unique simple quotient of
A(E)g, and let P(E)g be the projective cover of A(E)g.

By [22, § 4.2.1] there is a functor

()7 : Oc(W,h)g = O (W, h*)y,

which is an equivalence over the subcategories of modules in O.(W, h)r,
O~ (W, b*)%p that are free over R. Here ¢V : § — R is defined by
cV(s) = c¢(s7 ). For any E € Irr(CW) we write EY = Hompg(E, R). We
have A(E)}, ~ V(EY)g and V(E)Y, ~ A(EY).

6.1.2 The KZ-functor
Let R be an analytic regular local ring. There is a quotient functor
KZg : Oc(W, h)r — H(W, h) g-mod

defined in [22, § 5.3], where H(W, h) g is the Hecke algebra associated with W
and a parameter which depends on c. Note that loc. cit. uses regular complete
local rings, but the same construction can be done for analytic ones.

Proposition 6.1 The functor KZp is O-faithful.

Proof By Proposition 2.18 it is enough to prove that over the residue field
C the functor KZ is (—1)-faithful. In other words, we must prove that KZ is
faithful on O (W, h)A.
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Write O = O (W, h)¢, let O, C O be the full subcategory consisting
of the objects M such that M ®cpy) Clhreg] = 0. By [22, thm. 5.14], the
functor KZ is isomorphic to the quotient functor O — O/Oy,-. A A-filtered
object M is free over C[h] by [22, prop. 2.21], so it has no torsion submodules.
Therefore, the map Homp (M, N) — Homp (KZ(M), KZ(N)) is injective for
each M, N € O*. We are done. O

6.1.3 Induction and restriction functors

A parabolic subgroup W' C W is the stabilizer of some point b € b. It is
a complex reflection group with the set of reflections S’ = S N W and with
reflection representation b/ hW/, where hW/ is the subspace of points fixed by
W’. Bezrukavnikov and Etingof [3] defined parabolic induction and restriction
functors

%nd}}, : Oc(W', 5/ ) g — O(W, b,
DResyy, 0 O (W, h) g — O (W, h/6" ).

Here we view ¢ as a parameter for W’ by identifying it with its restriction to
S’. In loc. cit. the authors work over a field. The definition is the same over
aring R. The functor “IndY, is left adjoint to ORes&/,,, and both functors are
exact. In particular “Ind", maps projective objects to projective objects.

Let R be an analytic regular local ring. By [41, thm. 2.1] we have isomor-

phisms of functors
KZg oResy, =~ HResll, o KZg, KZg o%Ind}y, =~ HindlV, o KZg, (6.1)

where ORes% and HInd%, refer to the restriction and induction functors for
Hecke algebras H(W’, h/bW/)R — H(W, h)r, see loc. cit. for more details.
Again, in loc. cit. we work over a field, but the same proof works over R.

We will be mainly interested in the case where W/ = Wy is the pointwise
stabilizer of a hyperplane H. We will abbreviate O(Wg)gr = O.(Wg, h/H)R
and “Indy = OInde.

6.1.4 Support of modules
Let R be a local ring with residue field k. We abbreviate Op = O (W, h)r. If
R = K is afield, let Ch(M) denote the characteristic variety of M as defined

in [22, § 4.3.4]. It is a closed subvariety of h & h*. Recall the notation lcdp
and rcdp from (2.1).
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Lemma 6.2 Assume R = K is a field. For any M € Ok we have
ledpy (M) =rcdoy (M) = dim b — dim Ch(M).

Proof The equality dimCh(M) = dimbh — rcdp(M) is proved in [22,
cor. 4.14]. Further, the proof of [22, lem. 5.2] yields dim Ch(M) =
dim Ch(M"). This implies that redp(M) = rcdp(MY). On the other hand,
by [22, prop. 4.7], if T is a tilting generator of Ok then TV is a tilting
generator of Oy and Ext’bK (T,M) =~ Extg% (MY, TY). We deduce that

ledp, (M) = redo, (MY) = redp, (M). |

Lemma 6.3 For E € Irr(CW) we have rcdo, (L(E)) < 1 if and only if there

exist H € Aand P € (’)(WH)];roj such that P(E) is a direct summand of
OIndy (P).

Proof By [21, thm. 6.8] we have Ch(L(E)) = h" @{0} c b b* for
some parabolic subgroup W C W. So rcdp, (L(E)) < 1 is equivalent, by
Lemma 6.2, to the fact that f)W/ has codimension < 1 in h, which is equivalent
to W C Wy for some hyperplane H in A. By [43, prop. 2.2], the latter is true
if and only if ORCSVV;H (L(E)) # 0, which is equivalent to

Homo,, (“Indjy (P), L(E)) = Homogw,), (P, Resyy, (L(E))) # 0,

for some P € O(WH)II);Oj. Hence rcdp, (L(E)) < 1 is equivalent to P(E)

being a direct summand of o[nd%ﬂ (P) for some He Aand P € O(WH)II);Oj.
O

6.2 The category O of cyclotomic rational DAHA’s
Let R be a local ring. Fix kg € R* and s = (Sg.1,...,SR.¢) € Rt
6.2.1 Definition

Recall that I" is the group of ¢-th roots of unity in C* and that Iy is the semi-
direct product G, x I'?, where I'? is the Cartesian product of d copies of T.
For y € I' let y; € I'? be the element with y at the i-th place and with 1 at the
other ones. Let s;; € G4 be the transposition (i, j). Write siyj = SijVi yj_l for
yelandi # j.

Fix a basis (x, y) of R. Let x;, y; denote the elements x, y respectively
in the i-th summand of (R?)®¢. There is a unique action of the group I'y on
(R?)®4 such that for distinct i, j, k we have y; (xj) = y“SiJ'Xj, vi(yj) = y‘sifyj
and s;; (x;) = xj, 8;j(xx) = X, 8ij(yi) = y; and 535 (yk) = Y.
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Fix k € R and ¢, € R for each y € T'. Note that I'y is a com-
plex reflection group with reflection representation h = R®? and § =
{sfj}lfi#jfd,yer [I{yi}1i<i<q-Letc : S — R be the map given by c(sl?;) =k,
c(yi) = ¢y /2. We consider the algebra H.(W, h)g for W = I'y. We will
call H.(I'g, h) g the CRDAHA(=cyclotomic RDAHA). It is the quotient of the
smash product of RI'; and the tensor algebra of (R?)®d by the relations

[)’i,xi]=1—kzzsi);_ Z CyVis
Jj#i yer yel\{1}
i xjl=k D ys]; ifi # .
yel
[xi, x;] = [yi, y;]1 = 0.

We will use a presentation of H.(I'y, h)g where the parameters are
h,ho, hy, ..., he—1 with (setting h_; = hy_1)

-1

k=—h, —c,=> y P(hy—hy,) fory #1.
p=0

The notation s = hg,h, = hg phereisthe same asin [39, sec. 6.1.2]. Finally,
we choose the elements hg, hg, , in the following way:

hr=—1/kgr, hrp=—Srp+1/kr —p/t, p=0,1,...,0—1. (6.2)

In the rest of this section we assume that the residue field is k = C and that
Sk,p € Z for all p.

Write k = ki and s, = sk, p. We abbreviate O3 {d} = O.(T'g, h)g. If
¢ = 1, then ¢ only depends on «, we abbreviate O (&) = O (&4, h)g.
The category O {d} is a highest weight R-category such that A(O3" {d}) =
AT 2 e 25} and AW = A(Z (M) r. We write L(A)*<, P(L)3,
T(W)%", 1(L)3" for the corresponding simple, projective, tilting, injective
object in 03" {d}.

6.2.2 Comparison of partial orders

The partial order on the set A(O%“{d}) ~ 2 is defined as follows. Let A, B
be boxes of £-partitions. We say A > B if we have cont’(A) < cont®(B) or
if cont’(A) = cont®(B) and p(A) > p(B). We define a partial order > , on
95 by setting A >, w if and only if there are orderings Y (1) = {A,} and
Y(u) = {B,} such that A,, >=; B, for all n.

Lemma 6.4 Assume k < 0. Then > , is a highest weight order on O“;ék{d}.
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Proof By the proof of [16, thm. 4.1], if [A(A);™ : L(u)y "1 # O then there
exist orderings Y (A) = {A,} and Y (u) = {B,} and non negative integers D,,
such that

Dy = p(An) — p(By) + £ (cont*(A,) — cont’ (By)) /k,

for all n and (cont®(A,) — cont®(B,,))/k € Z. Our notation matches those of
loc. cit. in the following way: r = £, co = P d, = —th,.Now,sincex < 0
and p(A,), p(B,) € [1, £], we have D, > 0 if and only if A, =5 B,,. O

Set s* = (—sy, —S¢—1,...,—s1). For each A € @f} we write A* =
(A%, ... 1A%, 'A1). We have the following lemma which is similar to [33,
lem. 2.2].

Lemma 6.5 Assume that k < 0 and that s, = v, > d for all p. Then the
order >4+  refines the order >y, i.e., forany A, . € 3”5 such that . >¢ A we
have u* >¢ o A*.

Proof First, for any A € &) and A € Y()), we have the transposed box
A* € Y(1*) such that cont®” (A*) = —cont®(A) and p(A*) = £ + 1 — p(A).
Therefore, we have A <; B if and only if A* > B*.

Let A, u € 2 be such that 1 >¢ A. Assume that w € W,, B € I are

such that (m +p : B)>0and wsg e g(,u\) = c?()?) We must prove that
W = A%, which is equivalent to ;& <s A.

Write 8 = o ;+réand A = sp (1 +py) +erar;—py. Setn = (u+py :
a1y —er > 0. Wehave w(X' 4 p,) = A+ p, and (X 4+ o)k = (L + pv)i —n,
A+ po) = (4 py) +n.

Fork € [I,N]letk' = k —vi — vy — -+ — vp,_1 Where py is such
thatk € J I‘jk. Then the diagram Y (') is obtained from the diagram Y (i) by
removing n boxes from the right end of the k’-th row of the p-th partition of
w and adding n boxes the right end of the /’-th row of the p;-th partition of 1.

We number the removed boxes by By, Ba, ..., B, ordered from left to right,
and the added boxes by Ay, Az, ..., A, ordered from left to right. We claim
that B < Ajfor1 < j <n.

To prove this, note first that B; < A; if and only if B, < A, because we
have cont’(B;) — cont®(A;) = cont’(B,) — cont®(A,), p(B;) = p(B,) and
P(Aj) = p(Ap).

Now let us compare B, and A,,. Observe that

cont’(B,)=(u+p)x — 1, cont’(A,)=A"+py)i—1=(u+py) +n—1.

Recall that 8 = oy + 76 is a positive root. Therefore, we have either r > 0,
and then
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cont’(B,) —cont’(A,) = (u+py : k) —n=-er >0,

or we have r = 0 and k£ < [, and then cont®(B,)) = cont®(A,) and p(B,) =
Pk < pi = p(A,). Wededuce that B, < A,. Hence we have shown o <, 1.
Next, recall that w € W, is such that the tuple A + p, is v-dominant.

Thus, we can write w = sg,,5g,,_, - - - g, such that g; = ay; for some k < [
with py = pi, that y; = sg_,Sg_, 55 X + py) — py € NV and that
n = —(y; + pv, Bi) > 0. We set yyp = A’. Repeating the argument of the

last paragraph with § = g; yields that Y (y;41) is obtained from Y (y;) by
removing n boxes in the /’-th row of yl.p " and adding them to the k’-th row. Order
the removed boxes by By, Bz, ..., B, and the added one by A1, A>, ..., A,
in the same way as above. Then the same computation as above yields that
cont’(A;) = cont*(Bj)and p(A;) = p(Bj)forall j = 1,2, ..., n. Therefore
we have y; 1 = y; for the order < ,. We deduce that A = Y1 = Vg1 = 2.
Therefore u <y, A. The lemma is proved. |

6.2.3 The KZ-functor

Now, let R be alocal analytic deformationring and set gg =exp(—2mw+/—1/kR)
€ R*. Consider the KZ-functor KZj, , : O3"{d} — Hy ;,-mod.

Lemma 6.6 Assume that (3.1) holds in K. Then Tr(H} ;) = {S(L)%; 4 €
P50, Tir(Od)) = (AWK & € P8} and the bijection Irr((?}("({d}):) Irr
(va(’ ) induced by KZ}‘Q 4 takes A(k)slé'{ toS (A)iéq.

Proof The first statement follows from the semi-simplicity of H}< 4 and from
[22, thm. 2.19]. The second one follows from Tits’ deformation Theorem,
because the modules KZ‘}C d(A(k);") and S (A);;q are both the generic point
of a flat family of modules whose fiber at the special point is the CI"g-module
Z (M), see [41, lem. 3.1] for details. O

6.2.4 Ringel duality

By [22, prop. 4.10], there is an equivalence of categories % : O;f’K{d}A;
(O%K{d}A)Op that restricts to an equivalence Ofg"{{d}““;(O%K{d}pmj)()p.
Hence, it induces an equivalence O% “{d}*— O} {d}°P. We have Z(A
(A*)ig”() ~ A(L)3". Consider the isomorphism of R-algebras

c:Hy = Hy )P, T —qrT, X0 X
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It induces an equivalence
P = 1*(e”) : H}f’d—mod NR-proj ;(H}’d—mod)"p N R-proj,

where ¢ is the dual as an R-module.
By [22, §5.4.2], there is a commutative diagram

O ) = (O3 1))
KZA;"’l lKZ}M (6.3)
H§; ,-mod NR-proj giH (Hy 4-mod)°P N R-proj .

In particular, if R = K is a field satisfying the condition (3.1), then Lemma 6.6
yields KZu (S5 ) ~ Sy
We will also consider the R-algebra isomorphisms

M : Hy —Hy ;o T —qrT7', X0 X7
and
o:(Hy )P>Hy, . T T, X;e X

Note that the composition IM* ,@ﬁl is given by o *(e").

6.3 Proof of Varagnolo—Vasserot’s conjecture

Let R be a local analytic deformation ring of dimension 2 in general position
with residue field k = C. Fix e, £, N € N*. Fix kg € R* such that xx = —e
and v € %”16’4_. We set sg., = vp + TR p, gr = exp(—2m+/—1/kg) and
OR.p = exp(—2m~/—1sg, p/Kkr). We may abbreviate k = kg, Sp = Sk, p-

6.3.1 Small rank cases

As a preparation for the proof, we start by comparing the highest weight covers
KZ% 4 Og{d} — H}, ;-mod and W}, , : AR {d} — H}, ,-mod ford =1,
2.

T

First, assume thatd = 1. Then I'; = T"is a cyclic group. The Hecke algebra
associated with T is H, | = R[Xl]/(Hf):1(X1 — ORr.p))-

Proposition 6.7 We have KZ, | (P(L)3) =~ W}, | (T(Mr o) forany A € 2.
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Proof For each p € [1,£] let &, € 9{3 be the ¢-partition with 1 on the
p-th component and @ elsewhere. By Remark 5.18, Proposition 5.22(d) and
Lemma 6.6, we have

KZj 1(AGp) ") = KIX11/(X1 = Qk.p) = Wk 1 (AGp)k 7).

By Theorem 5.37 and Proposition 6.1 the functors KZ§e | and Wy, .1 are 0-
faithful cover of H; ,-mod with opposite orders. Therefore, Corollary 2.22

shows that KZj, [(POOS) ~ Wi (T(M)R,o) forany A € 2. u!

Now, assume that d = 2. Recall the Hecke algebra H;,z = R[T1]/(T1 +
1)(T1 — gr) associated with the group G;. Write A1 = (2) and A_ = (1%) in
2} . The category O% (&,) is a special case of O {1} with £ = 2. The proof
of Proposition 6.7 yields

KZ3 ,(PO)R) = Vi ,(TO)ro), £=+, —. (6.4)

Consider the induction functor Ind%’i : H; ,-mod — er ,-mod.

Proposition 6.8 Assume v, > 2 forall p. For f = +, —, there exists a tilting
object Ty € A%* {2} such that W} ,(Ty) = Ind3”* (W} ,(T(Ae)k o).

Proof By Theorem 5.37(a), the module Wy, ,(Tg 2) is the regular representa-

. . 22
‘rron of Hie,z- erte T;,z = V% . We have \IJ;,z(T}C’Z) ~ H;,z- Thus, there
is an isomorphism of H}, ,-modules

Wy 5(Tr2) =~ Ind3™, (WE (T ). 6.5)

If e > 2 then xx # —2, hence Hlf , 1s semi-simple and T+ o~
T )r: P TO-)R ;- Since \Ilfe , 18 O-faithful, it maps mdecomposable fac-
tors of Tg 2 to indecomposable H ,-modules. So, the proposition follows
from (6.5) and the Krull-Schmidt theorem

Now, assume thate = 2,thengx = —1. The indecomposable tilting modules
in A;”; {2}are T(A4)g = T;’z and T(A_)p = A(A_)g. We need to prove the
proposition for T(A_)g. We have W;’Z(T()\_)R) >~ R[T1]/(T1 4+ 1). Consider
the action of H;,z on T;,z‘ Then T(A_)g is the image of 71 — gg acting on
T;Z. Since the functor TR’0®R e is exact, we deduce that TR’O®RT()\._)R Iy
the image of 71 —gg acting on Tg 2. By consequence, lIffm (TR,()@RT(A_)R)
is the image of the right multiplication by 77 — gg on lllfm(TR,z) = H;’z.
Therefore, we have

W4 5 (Tro ®RT(G)R) = Ind3”, (Wh H(T(A2)R)). (6.6)
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We claim that Tg o®grT(A-) is tilting in A" {2}. Indeed, by Propo-
sition 8.30, the specialization map EndA;,KT (TR,Z) — End Aﬁf(Tk’Z) takes
Ti — qg to Ty — gx. Since Tg o®@gT(A_)g is free over R by Lemma 8.27
and since it is the image of the operator 71 — gr : Tro2 — Tro2,
the image of 77 — gk : Tk,2 — Tk72 is k(TR70®RT()u_)R). The same
argument as above implies that Tk,0®kT()\_)k is also the image of the oper-
ator 71 — gx : Tx2 — Tk2. We deduce that there is an isomorphism
k(TR’0®RT()x_)R) ~ Tk70®kT()»_)k. Since Tk70®kT(k_)k is tilting by
Proposition 8.11, the claim follows from Proposition 2.4(c). The proposition
is proved. O

6.3.2 Proof of the main theorem
We can now prove conjecture [46, conj. 8.8].

Theorem 6.9 Assume that v, > d for each p. Then, we have an equiva-
lence of highest weight categories TV LAY _“{d}:) OV"~¢{d} such that
T (AM) =~ AWMV ¢ and W) ~ IM*KZY T} ~°.

Proof Let R be a local analytic deformation ring of dimension 2 in general
position with residue fieldk = C. Assume thatky = —e. Setsg, , = vp+1g ).

Let% = O;;’K{d }and ¢ = A}",{d}. We consider the highest weight cov-
ers F = IM* KZ?e ¢ ¢ — Hy modand F' = W , : ¢ — HY ;-mod.
We claim that they satisfy the conditions in Proposmon 2.20, so the theorem
holds. Let us check these conditions.

First, H“}a 4 1s symmetric. Since R is in general position, the condition (3.1)
holds in K, hence H“}< 4 18 semi-simple.

We have KF(A(A*)K ) = S(A)K by Lemma 6.6 and Sect. 6.2.4, and
we have and K F'(A(Mk.z) = S(A)s[gq by Proposition 5.22. So the order
on Irr(Hj ;) induced by (¢, F) refines the order induced by (¢, F') by
Lemma 6.5.

Since IM* is an equivalence, by Proposition 6.1 the functor F is fully faith-
ful on 2. Hence it is also fully faithful on A by (6.3) and [22, §4.2.1].
Theorem 5.37(c) gives the fully faithfulness of F" on ¢” Aand €Y.

It remains to check that F(T(k)g"‘) e F'(C''" for all A € 24 such
that Icdggo (LC(A)) < 1 or redggo(L°(L)) < 1. Recall from Sect. 6.2.4 that
¢° ~ €% ~ OF“{d}°P and L°()) corresponds to L(1*)**. By Lemma 6.2,
we have

erQaﬂO (LQ()\.)) :lcdolb{»’({d} (L ()\.*)S’K) == I‘Cdoz‘,f({d} (L ()\.*)S’K) = lcd‘{O (LO()\,))
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We have
F(T(x)j,f“) ~ IM* Kzg,d(l%’_l(P()\)j;K)) ~ 0" (KZ% 4(P(LD)E)Y).

By Lemma 6.3 and the Krull-Schmidt theorem, it is enough to prove that

for any reflection hyperplane H of I'y and any P € O(Wg)%™, we have

0" (KZy 4(CIndy, (P)Y) € F'(&"™).

Since o *(e”) commutes with induction functors and fixes isomorphism classes
of R-free H} ;-modules and H; ,-modules, we deduce from (6.1) that

o*(KZ} 4(PIndy (P)Y) 2 KZ, 4(PIndy (P)).

There are two possibilities for H:

e cither H is conjugate to ker(y; —1) forsomei € [1, d]. Then Wy >~ I". We
identify O(Wp)g ~ O*{1} and “Indy =~ ®Indp.’. By Proposition 6.7,
for any projective P € Op"{1}, there exists T € A}}Q”KT{I}tilt such that
KZj |(P) ~ W% | (T). By (6.1), we have KZ ;, FIndy! ~ Ind{ KZ5, ,.
Using Lemma 5.41, this yields KZ‘;’d(OIndl‘;fH (P)) ~ Indﬁl(lll;vm (T)) ~
Wi (F7I(T)). The module.Fd ~1(T) is tilting by Proposition 8.29(a), so
KZ% ,(CIndy! (P)) € F'(C"™);

e or H is conjugate to ker(sl?/j — 1) forsome y € I'andi # j. Then Wy =~
&, and O(Wr)g ~ 0%(&2). By (6.1), we have KZj ,(CIndy (P)) ~
Indi’i (KZ(P)). By (6.4) and Proposition 6.8 there exists T € AVR”';{Z}tilt
such that \IJ‘I‘M(T) ~ Ind%:i(KZ(P)). Using Lemma 5.41, this yields

Ind§’S (KZ(P)) = Indd (W, ,(T)) = W} ,(F4=2(T)).

Since F¢~2(T) is tilting, we have KZ%?d(OIndl;I;’H (P)) € F'(¢''""Y.

We have checked that (¢, F), (¢, F’) satisfy all the conditions in Proposi-
tion 2.20, the theorem is proved. O

Remark 6.10 In [46, (8.2)] the parameters of the CRDAHA are chosen in
a different way. More precisely, the symbol 4, in [46] corresponds to our
parameter h, — h,_1. Further, the parameters (h, h,) are specialized to
(=1/e,spy1/e — p/€) in [46] instead of (1/e, s, 1/e — p/€) as above.
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6.3.3 Proof of the main theorem for irrational levels

Let « € C\ Q. We will prove the following result, which was conjectured in
[46, rem. 8.10(b)], as a degenerate analogue of [46, conj. 8.8]. If v is dominant,
a proof was given in [24, thm. 6.9.1].

Theorem 6.11 Assume that k € C\ Q and that v, > d for each p. Then,
we have an equivalence of highest weight categories T;’K D AV{d} S OV {d)
such that T (A(L) =~ AWV and @) ~ IM* KZ(;* T~

Let R be the completion at («, 0, .. ., 0) of the ring of polynomials on C**+1.
It is a local deformation ring such that kg, tg 1, ..., Tr¢ are the standard
coordinates. The residue field is k = C and we have kx = «, 7, = 0.
Further, for each u, v and each p € 3, we have Tkp,u — Tkp,v ¢ 7. We set
SR,p = Vp+1TR,p. Now, we consider the functor <I>'§e’d : A‘;e’r{d} — H,S{d-mod
given in Sect. 4.6.

Lemma 6.12 The functor CD;’d is a highest weight cover. It is fully faithful on
(A% (d)® and (A} {dD)".

The proof is by reduction to codimension one, and is very similar to the
proof of Theorem 5.37. We will be sketchy.

We say that a prime ideal p € *B is generic if tx, , 7 Tk,,» for each u # v,
and that it is subgeneric if there is a unique pair u 7 v such that 7, , = Tk, -

Claim 6.13 For each p € P the following hold.

(a) p is either generic or subgeneric,

(b) if p is generic, then there is an equivalence of highest weight categories
P, 1 O Aat — ﬁgj(v){a},

(¢) if p is subgeneric with T, y = Tx,,v and u # v, then there is an equiva-
lence of highest weight categories Z,, ﬁl‘(’p,r{a} — ﬁl‘(’p (v, u, v){a}.

Proof Part (a) is easy. Parts (b), (c) are proved as in Propositions 5.24, 5.31,
using [20, thm. 11]. The details are left to the reader. O

Proof of Lemma 6.12 Now, the module Qkp (Tkp,d) can be identified explic-
itly, using the same argument as in the proof of Lemmas 5.26, 5.32. Indeed,
it is enough to check that 2y, takes a parabolic Verma module to a parabolic
Verma module with the same highest weight and that the induced linear map
[ﬁfép, = [ﬁ’ﬁp (v, u, v)] commutes with the linear operators induced by the
categorification functors e, f.

Using the same argument as in the proof of Theorem 5.37, we only need to
prove the lemma for QDf;p’ 4 and p € P;. Hence, by Claim 6.13, we are reduced
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to the case £ = 1 or 2. If £ = 1 everything is obvious, because the category
O (v) is semi-simple. If £ = 2, we may assume Tk, = 0, the result follows
from Proposition 4.7 and the last paragraph of the proof of Proposition 5.27.

Proof of Theorem 6.11 Consider the highest weight cover IM* KZ}'; d
(’);f Ny — H} ,-mod. Since the R-algebras H} , and Hy, , are isomorphic
by Proposition 3.1, we can regard IM* KZj, ;, and ®% , as highest weight
covers of the category Hj ,-mod. We claim that they satisfy the conditions
in Proposition 2.20, so the theorern follows. Let us check the conditions.
First, H, d is Frobenius, and HY, d is semi-simple because (3.1) holds obvi-
ously in K The compatibilities of orders is again given by Lemma 6.5.
Since IM* is an equivalence, IM* KZ§e 4 is fully faithful on A- and V-
ﬁltered objects by Proposition 6.1 and (6. 3). The corresponding property for
R’ ;4 follows from Lemma 6.12.
It remains to check that IM* KZj; ,(T(L)%) € @5 ,((A% {d)™) forall
12 o o
A € & such that ICdkO;;’K{d}Q (L°(AV) < 1lor erkO%*”({d}o (L°(A)) < 1. The

proof is the same as in Theorem 6.9. Details are left to the reader. O

7 Consequences of the main theorem
7.1 Reminder on the Fock space

LetR,qr, ¥ = #(q)and Qgr.1, OR.2, ..., Or.¢ beasin Sect. 3.1. Consider
the dominant weight in P = P, given by A9 = Zézl Ag,. Note that
AC =3 cohp WithAp =3, 5 _o Ag, Lets = (s1,....s) beasin
Sect. 3.3. Then, we may write A® = A€,

The Fock space of multi-charge s is the vector space F(A*) = @, . 5¢ C
A, 5). We will abbreviate A = A*. We will call {|A, s); A € P} the standard
monomial basis of F(A).

There is an integrable representation of sl on F(A) given by

Fnsh= D ws), E(hsD= D lus). (7.1)

q-res® (u—Ai)=i g-res* (A—p)=i

Let n; (1) be the number of boxes of residue i in A. To avoid any confusion we
may write nj (L) = nl.Q (A) = n;(A). Each basis vector |A, s) is a weight vector
of weight wt(|A,s)) = A — > ;. ,ni(M) ;.

The A-weight space of F(A) has dimension one and is spanned by the ele-
ment |@, s). The sly-submodule L(A) C F(A) generated by |{, s) is the
simple module of highest weight A. It decomposes as the tensor product
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L(A) = ®p69 L(A ), where L(A)p) is the simple s, -module of highest
weight A .

Remark 7.1 Assume thatthe quiver . (¢) is the disjoint union of £ components

of type Aso. Then, we have F(A) = L(A) = ®§:1 L(A)p).

Remark 7.2 The weight wt()X) associated with the element & € P¥ + t should
not be confused with the weight wt(|A, s)) above, which is associated with the
-partition A € 2. The former has the level 0 while the latter has the level £.
We have wt(w (1)) = wt(|%.5)) — >0 _ A;, mod Z3.

Indeed, the equation above holds for A = . Thus, it is proved by induction
using the following equivalences for A, u € &", see Sect. 7.1,

T > (1) & qi-res’(u— A) = gl
= wt(ww (1)) — wt( (1)) = wt(|A, s)) — wt(Ju, 5)) = a;.

7.2 Rouquier’s conjecture

Let K = C. Fix integers ¢, ¢ > 1 and fix s = (S],.../,\Sg) e 7t Set
A = A% Set] = Z and {: 1/eZ. So, we have sl sy = sl, and the Fock
space F(A) is an integrable sl,-module. Consider the Uglov’s canonical bases
(GE (R, 5); A € 2% of F(A) introduced in [45, sec. 4.4].

Set 0% ~¢ =P deN O%">~¢{d}. We identify the complexified Grothendieck
group [O%"-—¢] with F(A) via the linear map 6 : [0 —¢]F(A) such that
[AA)S 7€) — |A, s).

Since the category %"~ is preserved under the substitution s > (1 +
s1, 1 +52,..., 1+ s¢) we may assume that s, = v, > d for each p. Set
A" = Dy AV Ld).

The following result has been conjectured by Rouquier [39, sec. 6.5].

Theorem 7.3 We have 0([T (0*)*"~¢]) = Gt (A, s) and O([L(*)*""¢]) =
G (A, s).
Proof Let cit’ﬂ(s) € Z be such that G (A, 5) = ZM cl\i’u(s) I, s).

Let F(A){d} C F(A) be the subspace spanned by the set {|A, s); A € 395}.
Assume that v, > d for each p. We identify the complexified Grothendieck
group [A" ~¢{d}] with F(A){d} via the linear map such that [A(X)] — |A, s).

Let L(A) be the top of A(A) in A¥"~¢{d}. By [46, prop. 8.2], we have
[LV)] = Zu c;’ﬂ(s) [A(w)] in [AY"~¢{d}]. Therefore, the isomorphism
[A™~¢{d}]>F(A){d} maps [L(M)] to G~ (%, s).

Since the equivalence of categories A" ~¢{d }:> O%"-~¢{d} in Theorem 6.9
maps L(1) to L(2*)*"¢ and since the isomorphism [O*"~¢{d}]>F(A){d} is
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the composition of the map [O°~¢{d 1=>[AY~¢{d}] induced by the inverse
of the equivalence with the isomorphism [A”’_e{d}];F(A){d } above, we
deduce that the map [O*"~¢{d}]—F(A){d} takes [L(A*)*"~¢] to G~ (A, 5).

Next, let P()) be the projective cover of A(X) in AV ~¢{d}. By the Brauer
reciprocity we have (P(A) : A(n)) = [A(n) : L(A)]. Therefore we have
[P(M)] =3, d; , ()[AG)] in [A™~{d}], where the matrix (d;u(s)) is the
transpose of the inverse matrix of (c; u(s)).

By [45, thm. 5.15], we have d):u(s) = C;;YM* (s*). Using the equivalence
of categories A"’_e{d}; O ~¢(d}, we get [POV)" €] = ZM czr*’w (sMH[A

() =€) in [O°~¢{d}]. By removing * everywhere, we get the following
equality in [O%~¢{d}]

[P 1 =D e (A . (7.2)

n

Next, by Sect. 6.2.4 we have the equivalence Z : 0% ~¢2{d}> O —¢A
{d}°P such that A(A*)* ¢ > A 7¢) and T(W*)*" "¢ > P(A)* . The
inverse of % yields an isomorphism of Grothendieck groups [O% ~¢{d H—
[O5"~¢{d}] such that [A(V)*¢] +— [AMG)*"¢] and [P(M)""¢]
[T (A*)*"-~¢]. The image of the equality (7.2) under this isomorphism gives the
identity [T (A*) 7] =3, ¢ LOIA@H™ ¢ in [O5"-—¢{d}]. We deduce

that the isomorphism [O°"~¢{d}]—F(A){d} maps the element [T (A*)*"~¢]
o>, c{u(s)l,u,s) = GT (), s). We are done. |

7.3 The category O of CRDAHA'’s is Koszul

Recall that .4 ~ [Ql e) and that A;, o; are the fundamental weights and
the simple roots of sl,. For t = (¢1,...,t) € Z° let O] C O°~¢ be the
Serre subcategory generated by the modules A (1)* ~¢ such that the following
condition holds

e—1 e—1

A =D =y e = (i — tiy DA + L+ 1 — 1) Ao, (7.3)
i=1 i=1

Set |s| = s+ ---+s¢and |t| = t; + --- + t,. From (7.3) we get that
|t| = |s| modulo Z e. Hence, up to translating the ¢;’s simultaneously by the
same integer, we may assume that ¢ € Z¢(|s|). Note that the left hand side of
(7.3) is equal to wt(|A, s)) modulo Z§.

Since the category O; is preserved under the substitutions s +— (1 +s1, 14
§2,...,1+sp)and t — (1 +1,1+1,...,1+ ), we may assume that
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s = v*, t = p* for some compositions v € ¢t w € €y such that w;, v, > d
for each i, p.

The following result has been conjectured by Chuang and Miyachi [8,
conj. 6].

Theorem 7.4 The category O; is (standard) Koszul and its Koszul dual coin-
cides with the Ringel dual of OL.

Proof Recall that s = v* and t+ = p*. Theorem 6.9 yields an equivalence
TV o AV ¢S O57¢ such that YV ¢(A(L)) is isomorphic to A(A*)% ¢,
Let O, 7¢ = OE’_e C OV ~¢with B = >, i €. It is the Serre subcategory
generated by the simple modules with highest weight A such that m; (1) = p;
foralli € Z/eZ, see Sect. 5.4. Let A) = A"»"“NO,; ™.

Lemma 7.5 The functor Y" ¢ gives an equivalence A — Oy

Proof By (7.3) we have A(A*)*>~¢ € O7 if and only if

e—1 e—l
A =D 0N =y =D (6 — tig DA+ (L + 1o — ) Ao, (74)

i=1 i=1

Next, observe that nj(A) = ns_* ;W) for all i € Z/eZ. Indeed, let b =
(x,y, p) beaboxinrow x, column y of the Young diagram of the partition A .
Then, we have a bijection form the set of bowes of A onto the set of boxes of A*
suchthatb = (x, y, p) mapsto b* = (y, x, £ — p+1). Thus, the claim follows
from the relation cont*(b) = y —x+s, = —(x —y) — SZ—p+1 = —cont®” (b*).

It follows that A(A*)*~¢ € O; if and only if

e—1 e—1

A= D000 —n WD) ai = D (1 — tiy D Ai + (€ + 1o — 1) Ao,
i=1 i=1

e—1 e—1
= AT @ —n) W) asi= > (ti—tir)A_i+E+te—11) Ao,
i=l1 i=1
e—1 e—1
= A= (G —ng)) ai= D (i — i) Ai+ (41 — 1) Ao,
i=1 i=1
e—1
= wt(]h, ) =D (i — iy DA + L+ 1, —t1)Ag  mod Z6.
i=1

Since t* = (—t, ..., —tp, —t1), we deduce that t_; — 1| =t} — tl.*+1 for
all i. Hence, we have A(A*)*7¢ € O7 if and only if
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e—1

wt([h, v) = D (tF =, DA + (L + 1) —)Ag  mod Z6.
i=1

Recall that wt(zw (1)) = wt(|A, v)) — £Ao modulo Z §, see Remark 7.2. Since
t* = pu, we deduce that A(A*)*> ¢ € O7 if and only if

wt(@m (1)) = Z(Mz‘ — pi+1)A; mod Zs.
i=1

Since A;’L = A»7°nN OZ’_e and A(A) = M(w (1)), we deduce that
A(A*)*>7¢ € O if and only if A(L) € A;i. O

To conclude, note that, by [42, thm. B.4], the highest weight category A, is

(standard) Koszul, and its Koszul dual is equivalent to the Ringel dual of A
The theorem follows. O

7.4 Categorical actions on A

Recall that .# = Z/eZ. By [41, thm. 5.1, cor. 4.5], there is an sl,-categorical
action (E, F, X, T)onO* ~*with E = @,y OResgﬂ, F =0,y O[ndj“,
and such that the functor KZ* = &, yKZ) is a morphism of sl,-
categorifications O* ¢ — Z(A") ». In this section we construct a similar
sls-categorification for the category A.

Let R = C, 7 = 0, and let v € ‘KfH_. Assume that d < v, for
all p. Recall the tuple (E, F, X, T) on A”~¢ from Sect. 5.9. Let Y; =
T;’fe : A”*_e{d};O”**_e{d} be the equivalence in Theorem 6.9. We have the
following.

Lemma 7.6 Assume that d + 1 < v, for all p. Then, the functors F :
AV d} — AV ¢{d+ 1} and E : AV¢{d + 1} — A"V"¢{d} are biad-
joint. Further, there are isomorphisms of functors OIndillH Yy >~ Y441 F and
Res?™ Yyq1 = Yy E, which intertwines X g with Y11 IM(X), and T,
with Vg4 IM(T).

Proof We abbreviate KZ; = KZ, KZ} = KZY, Wy = W), A = A",
0=0"%and 0 = O""~¢, By Theorem 6.9 we have W; ~ IM*KZ% Yy
on A{d}.

Recall from Proposition 8.29 that e, f are biadjoint functors on O. Let
F' =Yg F Td_l : O{d} — O{d+1}. We claim that there is an isomorphism
of functors F’ ~ O[ndﬁ“. Let us prove it.
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Since Wy F >~ IndZJrl W, by Lemma 5.41, and since IM* commutes
with the induction functor, we have KZ;,| F' ~ Indffrl KZ;. By (6.1), we

also have KZ ;.| OIndZJrl ~ IndZJrl KZ,. Hence, we get an isomorphism of
functors

0 :KZ441 F'S KZ441 Olnderl.

The functor OIndZJrl maps projectives to projectives. Let G4 be the right
adjoint to KZ;. Since KZ; is a highest weight cover, the unit n : 1 —
G4 KZ; is invertible on projective modules. Hence, the isomorphism 6
yields an isomorphism of functors on projective modules G441 KZ;41 F' ~
Ga+1 KZg4q OIndZJrl ~ OIndZH. Composing it with 7, we get a morphism
0 :F — OIndZH on the projectives, such that KZ ;16" = 6. Since KZ;1
is (—1)-faithful, it follows from Lemma 2.8 and Remark 2.9 that 6’ is injec-
tive, hence invertible because both terms coincide in the Grothendieck group
by Lemma 5.12 and [41, prop. 4.4(3)]. Thus, 6" is an isomorphism on the
projective modules.

Now, since Yz41, Y4 are equivalences, both F’ and o[ndj“

are exact on
O{d}. Thus, 0’ extends to an isomorphism of functors 6’ : F’ S OIndZJrl on
O{d} such that KZ ;11 6’ = 6 by [41, lem. 1.2]. The claim is proved.

Let E' : A{d + 1} — A{d} be the right adjoint of F. The uniqueness of
right adjoints implies that Y, E’ Tdil ~ ORest. Now, since OResZ+1 is
also left adjoint to OIndZJrl by [41, prop. 2.9] and since Yy is an equivalence,
we deduce that E’ is left adjoint to F, hence E >~ E" on A{d + 1}.

Now, let Xy € End(Ind4*™!) and Ty € End(Ind9™?) be as in Exam-
ple 3.6. The isomorphism Ind?’1 KZ; ~KZ411 OIndZH in (6.1) intertwines
Xﬁl KZ; with KZ441 X ~1. The isomorphism IndgJrl V; >~ Wy F in
Lemma 5.41 intertwines XgWy with W, 1 X by Remark 5.42. Hence, 6 inter-
twines KZg441 Yg11X Td_l with KZ;11 X —1 We deduce that 6’ intertwines

Yar1 XY, U'with X~1. The proof for 7 is similar. The lemma is proved. 0O
Foreacha e N, setv+a = (vi +a,vy+a,...,v +a).

Lemma 7.7 For any d € N and any a < a € N such that d <
vy, + a for all p, there is an equivalence of highest weight categories
Y = nad . Avta—e(qy S A v ey which maps A(L) to A(N), inter-
twines (E, F, X, T) on both sides and such that \IJ;JF“ ~ \IJC‘J’JF" nad,

Proof The CRDAHA’s associated with (v + a)* and (v + a’)* are the
same. Hence, we have Ot@"—¢(q} = OW+a)".~¢(4} We define T4 =

(T;Jra/’*e)_' T;Jra’*e. By Lemma 7.6, the functor X intertwines (E, F) on
both sides. O
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For each d, we define the category A" ~¢{d} as the limit of the inductive
system of categories (A"T%~¢{d}, E“’“/)a,areN. We have an equivalence of
highest weight categories f;’_g CAVTd} SO0 "¢(d} and a highest weight
cover \IJC‘; : K”’_e{d } = H}-mod. In particular, the blocks of K”’_e{d } are in
bijection with the blocks of H);-mod via \fJL‘j. For u = AV — «, let KZ’_e be
the block correspondlng to Hy, —mod

Now, let AV~ EBdeN AV ~¢{d}. The category AV~ carries a pre-
categorical action (E F, X, T) given by Lemma 7.7. The following is now
obvious.

Proposition 7.8 The tuple (E, F, X, T) and the decomposztzon AV

—e V,—
D cx, A~ define an sly-categorical action on AV

Proof We have E = @, , E; and F = @, , F;, where E;, F; are defined
as in Sect. 5.4. By Theorem 6.9, the equivalence Y ~¢ = Buen Y, Tl
AV—e SOV e yields a linear isomorphism [A”’_e];[O” ¢ Wthh maps
[A(M)] to [A(A*)"*’*e]. Hence by Lemma 5.12 and [41, prop. 4.4], it inter-
twines the operators E;, F; on the left hand side with the operators the operators
E_;, F_; on the right hand side. Thus, the operators E;, F; withi € . yield
a representation of sl on [A"’_e]. |

7.5 The category A and the cyclotomic q-Schur algebra

Let k be a field containing C. Fix a positive integer d and a composition
v. We will say that v is d-dominant if we have v, — v,y > d for each
p=1,..., £ —1and that it is anti-dominant if we have v, — v, < d for
each p as above. The following propositions generalize some of the results in
[5]. They are proved as Theorem 6.9 using Proposition 2.20.

Proposition 7.9 Let v, > d and v, — 1,y ¢ N* forall p =1--- £ and all
u < v.Sets = v+ 1. Assume that v is either d-dominant or d-anti-dominant.
Then, there is an equivalence of highest weight k-categories

G 40 A} Ad})> Sy -mod

which intertwines the functors
oy 4 Af L {d} — H{ ;-mod,

IM* Ef(td : Sﬁjd—mod — H{ ;-mod.
Furthermore, we have 4. ;,(A(M)k 1) =~ W()L*)f: for all \’s.
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Proof If 1y ,, — kv ¢ Z* forall u, v, then the proposition is proved in [5]. The
general case, i.e., the case where 7y , — 7k, ¢ N*, is proved as Proposition 7.10
below. O

Proposition 7.10 Let v, > d for all p = 1, ..., L. Assume that v is either
d-dominant or d-anti-dominant. Set s = v. Then, there is an equivalence of
highest weight k-categories

Ga: AE’K{d};Sf;d—mod
which intertwines the functors

;4 A {d} — H} ;-mod,

* st QST s
IM™ &y ; : S y-mod — H} ,-mod.

Furthermore, we have 4 ;(A(L)x) =~ W()\*)‘f:’q for all A’s.

Proof We can assume k = C. Let R be a local analytic deformation ring of
dimension 2 in general position with residue field k. Assume that kx = —e. Set
SR.p = Vp + TR p. Let € = Oy {d} and ¢’ = S} ;-mod. Since the highest

K
,T

weight categories Og “{d} and A}
enough to compare ¢, €.

Consider the highest weight covers

{d} are equivalent by Theorem 6.9, it is

F=KZ3 ,:¢ — Hy 4-mod,

F'=E8% ,:¢ — Hy ;-mod.

We claim that they satisfy the conditions in Proposition 2.20, so the theorem
holds. Let us check these conditions.

We’ll assume that v is d-dominant. Then, there is a partial order which
refines both highest weight orders 5 , < on % and < on %, see [39, prop. 6.4].

The functor F is fully faithful on € and €V, by the proof of Theorem 6.9.

By [37, prop. 3.1, 3.5, cor. 6.11, thm. 6.18] and Proposition 4.9, that any
tilting module in ¢ is isomorphic to the image of an object of H}’ 4-mod by the
right adjoint to the Schur functor F’. Note that [37, thm. 6.18] is proved over a
field, but it remains true over the ring R by Proposition 2.4. We deduce that F’
is fully faithful on (¢”)2, by [39, prop. 4.40]. Next, by [37, prop. 4.3, cor. 7.2],
the R-category ¢ is Ringel self-dual, i.e., we have an equivalence 4" =~ (¢”)°.
Therefore, by Lemma 2.13, the functor F’ is also fully faithful on (¢”)V.

Finally, we prove that F(T (X)) € F/(¢") for all » € 22} such that
ledggo (L (M) < 1 or redggo (L°(X)) < 1 as in Theorem 6.9, using some
analogues (for the Schur algebra) of Propositions 6.7, 6.8.

Note that Proposition 7.10 gives a proof of Yvonne’s conjecture in [48]. O
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8 The Kazhdan-Lusztig category

Fix integers £, N > 1 and fix a composition v € %]f, - Let R be a deformation
ring. We may abbreviate x = «g. If R = C we may also drop the subscript R
from the notation.

8.1 Coinvariants

Fix a finite totally ordered set A. Set RA = b aca R((12)), where 1, is a formal
variable. Let gé be the central extension of g ® R4 by R associated with the
cocycle (§ ® f.£ ® g) > (£ 1 0) 3 4cq Resy—0(gdf).

Write 1 for the canonical central element of gg, andlet U (gg) — gé’ . bethe
quotient of the enveloping algebra (over R) by the two-sided ideal generated
by 1 — ¢. By the symbol ) r.o We'll mean the (ordered) tensor product of
R-modules with respect to the ordering of A. Given a module M, € .7g
for each a € A, the Lie algebra g‘g, . acts naturally on the tensor product
@ r.« Ma, where a runs over the set A.

Let C be a connected projective curve isomorphic to P'. By a chart on C
centered at x we mean an automorphism y of P! such that y (x) = 0. We will
say that y = {y,; a € A} is an admissible system of charts if the conditions
(a), (b) in [28, sec. 13.1] hold. Let n, = ya_l denote the automorphism
which is the inverse of y, and let x, be the center of y,. The x,’s are distinct
points of C. We write C,, = C \ {x4;a € A}, Dgp = Dg, = R[C,] and
F'r=Tgy =9® Dg.

For any f € Dg, let “f € R((t;)) be the power series expansion at 0 of
the rational function f o 5, on P'. Taking f to the A-tuple Af = (%f) gives
a R-algebra homomorphism Dz — R* and a R-Lie algebra homomorphism
'gp — g;‘} by the residue theorem.

We can now define the sets of coinvariants.

Definition 8.1 Let A = [1, n]. Given N, € U(ggr)-mod and M, € ./ for
eacha € A, we set

<N11 RN Nn)R:HO(gR9 ®R,aNll)7 «Ml’ RN Mn»R:HO(FR: ®R,LZML1)-

By [28, sec. 13.3] the R-module (M1, ..., M,))r does not depend on the
choice of the admissible system of charts, up to a canonical isomorphism.
Further, it only depends on the cyclic ordering of A, so that we have a canonical
isomorphism

«Mls ---,Mn»R = «Mz’ . "sM}’lv Ml»R‘

Let 1 = 1 denote the parabolic Verma module M(0)g .
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Lemma 8.2 (a) Taking coinvariants is a right exact functor. It commutes with
base change. More precisely, if A = [1, n], then for any morphism of
deformation rings R — S the obvious map Qp Mo — Qs ,SMa
induces an S-module isomorphism

S(My,....,My)p=(SMy,...,SM,;)s.

(b) Assume that for each a € A there is an integer d, > 1 such that
M,(d,) generates M, as a gr -module. Then, the obvious inclusion
X R.aMa(dy) — X r.aMa induces a surjective R-module homomor-
phism

(Mi(d), ..., My(dn))r = (M1, ..., Myp))g-

In particular, if A = [—m,n] and My € Og, M, € O;’K for each
a € A\ {0}, then the R-module (M_,,, ..., My)) g is finitely generated.
(¢) Assume that M, = Indgr(N,) is a generalized Weyl module for each
a € A. Then, the obvious inclusion Qg ,Na — Qg .M, induces an
isomorphism of R-modules (N1, ..., Ny)r — (M1, ..., My)r.
(d) If M| = 1, then the canonical inclusion ®R,Q#Ma — ®R,aMa induces
an R-module isomorphism (M2, ..., My)p — (M1, Ma, ..., My)p.

Proof Part (a) is obvious. See, e.g., [28, sec. 9.13]. For part (b) note that the
ggr-action on M, preserves the R-submodule M, (d,) for each a € A. Then,
the first claim follows from [28, prop. 9.12]. The proof in loc. cit. is done under
the hypothesis that ¥k € C. It extends easily to the case of any x = kg € R.
The second claim follows from Lemma 5.4(b), the first claim, part (a) and
from the fact that O’k is Hom finite (over R) and that the tensor product maps
Or X ﬁ; into 0. Part (c) is proved in [28, prop. 9.15]. The proof in loc. cit. is
done under some restrictive conditions on the gg-modules N, and under the
hypothesis that k € C, but it extends to our setting. Part (d) is proved in [28,
prop. 9.18]. The loc. cit. the proof is given for R = C, but it generalizes to our
case. O

Remark 8.3 Assume that R = K is a field and that k¢ ¢ Q0. Then, we have
1 =L@0)g, seee.g. [28, prop. 2.12].

8.2 The monoidal structure on O over a field

Let R = K be a field which is an analytic algebra. Fix an element kg in
K\Qx.Letl e O;;’K be as in Sect. 8.1. In [28], Kazdhan and Lusztig have

defined a braided monoidal structure (02, ® k, ak, ¢x) with unit 1 on O;’K )
In this section we’ll define a bimodule category (O%", ®k, a, ¢) over it. This

means that Q%" is a left and right module category over O, see [38] for
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details, and that the functors ag, cx satisfy an analogue of the hexagon axiom
that expresses the commutativity of the left and right actions.

8.2.1 Definition of the bimodule category

First, we define a tuple (O%", ®x, a, ¢) such that the following hold:

o Ri : Oz"‘ x O — OF" and @ : OF" x Oz"‘ — O are bilinear
functors such that V®x e and e @ V are exact for each V € O;’K ,
e there are functorial (left and right) unit isomorphisms for each M € O;K

1QxkM — M, M®xl—> M,

e there are functorial associativity isomorphisms foreach Vi, V» € OJIQ’K and
M € O%"

ay, v, m : ViQk V))@xk M — Vi®k (VaQg M),
ay, m.v, - ViRk M)®@k Vo — Vi®g (MR Va),
apmv,.v, s MRk V)®k Vs = MRk (Vikk Va),

e there are functorial commutativity isomorphisms for each V ¢ OJIQ’K and
M € O%"

Cy.M: VQxM — MRkKV,

e 1,asatisfy the triangle axioms (left and right) for V € O and M € O}*,

(VorD®xM Veor(1®x M)

T

VerM

e a satisfies the pentagon axiom (left and right) for each Vi, V, V3 € O
and M € O¥*

Vikk (Va®k V3)®k M) Viok (Va®k (V3®k M))

T T

(Vi®k (Va®k V3)Q@k M

/ (V1@ V2)®k (V3&k M)

(Vi®g V2)®k V3)®k M,

plus the diagrams obtained by cyclic permutation of M, Vi, V2, V3,
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e ag, cx satisfy the hexagon axiom for eachVy, V; € OJIQ’K and M € O;K

ViQk (MQg Vo) ——= (M&Qk V2)Qk V)

" T

Vi®k M)®k V2 Mg (Va®k V1)

\ /

(Mg V1)Qk Vs —> M®x (Vi®k V2),
plus the diagrams obtained by cyclic permutation of M, Vi, V,.

Remark 8.4 The notion of bimodule functors, and, in particular, of equivalence
of bimodule categories is defined in the obvious way. Generally one impose
the functor ® to be biexact. Our choice simplifies the exposition in the rest of
the paper.

Now, let us define the functor ® x. The bifunctor ® ¢ on 041;"( is defined
in [28]. By [49], the same definition yields functors OZ’K x OFF — O%"
and Og" x O}”‘ — OF". Note that [28,49] deal only with the field K = C
and k € C\ Q0. The same definition works equally well over any field K
containing C and for any k € K \ Qxo.

More precisely, let ® = [—m, n], A = [—m, n 4 1] and fix an admissible
system of charts y . Given a smooth g,-module M, foreacha € #®, we consider
the functor M + (M_,,, ..., My, DM))%.

Proposition 8.5 Assume that My € O} and that M, € O for a # 0.

(a) There is a module ®KﬂMa € 02'( such that, for each M € Sk ,, we
have

Homg, (Q g o Ma, M) = (M_y,., ..., My, DM)y.
(b) We have a functorial isomorphism
(Rk.aMa. DM) g = (M_yn. ... My, DM).

Proof 1t is easy to prove that O%" is the category of the finitely generated
smooth gx -modules M such that M (d) belongs to &y for all d > 1. Thus,
part (a) follows from [49, def. 1.2, thm. 1.6]. Part (b) is proved as in [28,
sec. 7.10, 13.4]. O

Remark 8.6 The gk ,-module ® K. M. does not depend on the choice of the
admissible system of charts, up to a canonical isomorphism.
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Now, we set A = [—1, 0] and we consider the charts y_1, yo, y1 centered
at 1, oo, 0 respectively, given in [28, sec. 13.5]. Then, Proposition 8.5 yields
modules V®x M and M®gV in Og" foreach V. € O™ and M € O%".

The endomorphisms of functors ag, cx are defined in [28, sec. 14, 18].
There, they are only defined for O, but for O one can proceed in the same
way. More precisely, since the spaces of coinvariants are finite dimensional by
Lemma 8.2 and since K is an analytic algebra, the proof of [28, thm. 17.29]
works equally well in our case. Hence, standard facts about linear ordinary
differential equations yield a canonical isomorphism

(ViQg M1, VaQk DM ) x = (Vi, My, Vo, DMa) g

forall M1, M> € O  andall Vi, V; € OJIQ’K. Then, we define ay, p, .y, using
this isomorphism and Proposition 8.5 as in [28, sec. 18.2]. The other associa-
tivity constraints are constructed in the same way using the cyclic invariance
of coinvariants. The braiding cx is also defined as in [28], since any module
from O?C admits an action of the Sugawara operators. For more details, see
the proof of Proposition 8.30 below, where some analogues ag, cg of ag, cg
are constructed over a ring R.

8.2.2 Proof of the axioms

Now, we must check that ax and ck satisfy the axioms of a bimodule category
over K. The proof is essentially the same as in [28]. We will give a few details
for the comfort of the reader. We must prove the following.

Proposition 8.7 The functors Qg : OJIQ’K x O — O%" and ®k : OF" x

O;’K — O;K givea bimodbfle category (02'{, ®K,aK, CK) over the braided
monoidal category (O+’K, ®K,ag, cx). The unit of (OJIQ’K, ®K,akg,Cx) Is
the module 1. O

By [28, sec. 31, 32], the braided monoidal category (O+’K, ®K,ax, Cg) is
rigid with the duality functor D. This means that D is exact and that for any
module M € OJIQ’K there are functorial morphisms

iy:1—> MRkDM, ey :DMkM — 1

such that the functor DM ® e is left adjoint to M@ e . Equivalently, the
functor e ® x M is left adjoint to the functor e ® x D M. Since D is an involution,
the functors above are indeed biadjoint.

Lemma 8.8 For each M € O';é'(, there are functorial isomorphisms
19k M — M and M@k 1 — M which satisfy the triangle axioms.
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Proof We define the unit isomorphism £y, : 1®xk M — M to represent the
isomorphism of functors given, for each M, M> € O¢", by

Homg, (M1, M>) > (M, DM>))k
~ (1, My, DMo)k
~ HomgK (1®KM1, Mz).
In the chain of isomorphisms above, the second one is given in Lemma 8.2(b),
the other ones are as in Proposition 8.5. A similar construction yields the
isomorphismry; : M@kg1 — M.
Now, it is enough to check the triangle axiom for V =1 € O}’K and

M e O‘I}(’K (then, the general version follows using the pentagon axiom for the
quadruple V, 1,1, M). So we must check that the composition

. . . . 1Rkl .
1@k DOM — L 18 A0k M) X 1005 M

is given by the unitry : 1® 1 — 1. This follows from Proposition 8.5(b) and
the invariance of coinvariants under cyclic permutation as in [28, sec. 18.2].
This allows us to identify the morphism

(ARxk DKM, N) g — (19x A1®k M), N) ¢ — (19 M, N)g
induced by £y, a3 1,y with the morphism
(A®xk DOk M, N)x — (10xk M, N) g
induced by ry. m|

Next, let us quote the following technical lemma.

Lemma 8.9 For M € OZ’K the functors e gk M and e @ x DM on O;K are
exact and biadjoint to each other. The same holds for the functors M® e and
DM®k e.

Proof TfO%* = O the lemma follows from the rigidity of (01, ®, ak,
cx ). The general case is proved in the same way, using the rigidity of M, DM
in O}’K and Lemma 8.8 instead of the unit axiom of (O;’K, ®k,ag,cx). O

We can now prove Proposition 8.7.

Proof of Proposition 8.7 We must check that the isomorphisms ag, cx satisfy
the pentagon and the hexagon axioms. This is proved as in proposition [28,
prop. 31.2], using an auxiliary module category called the Drinfeld category.
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Set Roo = K[[w]] and Koo = K((w)). Put kg, = kg, = —1/w.
Consider the elements v = exp(\/—_ln w)and g = v~2 in Rs. Whenever
this makes sense we write v° = > @’ (v/—1mz) /1.

The category O of deformation representations of g consists of the rep-
resentations of gr., on topologically free Ry-modules M such that M is a
weight tg.-module and the weights of M belong to a union of finitely many
cones A — QT and the weight subspaces are free of finite type over Rxo.

Following Drinfeld and [18,28] we put on 0 a structure of a braided
monoidal category (Oso, @R, ac0, Coo) Where @ is the tensor product of
Rso-modules and a, is the Knizhnik—Zamolodchikov associator, i.e.,

Ao = {ap Mo, My 0 (M1 Qry, M2) Qry, M3 — My Qr,, (M2 Qr,, M3)}

is defined in [28, sec. 19.10]. Note that we do not impose M to be of finite
rank over R,. However, since the weight subspaces of M are free of finite
type over R, by standard facts about linear ordinary differential equations,
the series obtained by restricting a, to a weight subspace in the tensor product
of three objects of 0, is well-defined. The braiding is given by the following
formula, see [28, sec. 19.12],

Co = {Cyy M, = V%0 : M| ®p, Mo — M> ®pr,, M}

where o flips the factors and o is the Casimir element. Recall that

e the functor ® ., is Rxo-bilinear and biexact,

e thereis a unit object 1, which is simple (equal to R, with the trivial action),
with functorial unit isomorphisms 1 ® g, M — M, M Qr, 1 — M,

e the unit 1 and the functor a, satisfy the triangle axiom,

o the functor a,, satisfies the pentagon axiom,

e the functors ay, and ¢, satisfy the hexagon axiom.

Restricting the braided monoidal structure on O, to some parabolic sub-
categories, we define in the obvious way

e abraided monoidal category (6’;2, ®Ry» Ao Coo) called the Drinfeld cat-
egory, which consists of the modules which are free of finite rank over
Roo,

e a bimodule category (0, @R, oo, Coo) OVEr (ﬁ;ro, QRoo» Aco, €Coo)-

Now, we may assume that there is a local analytic deformationring R C R
of dimension 1 with residue field K such that the inclusion R C R is given by
the expansion at & = oco. Assume also that kg = kg, = —1/w is the germ
of an holomorphic function over some polydisc such that the specialization
map R — K takes kg to kg. Since R is flat over R, the base change yields
an exact functor O'I(e’A — O';gcj.
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Lemma 8.10 (a) There is a faithful braided functor and a faithful bimodule
functor

+.0, A +.0,A 0 2
(OR ?®R93vaR) - (OROO ’®Roo’aRoo’cRoo)’

(OX’K’A, g, ag, Cg) — (O‘I)Q’:O’A, ®Rey» ARoy» CR,)-
(b) There is a braided equivalence and a bimodule equivalence

+.0,A A
(ORoo ’ ®Roo’ aRoo’ cRoo) - (ﬁ;—o ’ ®Roo’ aOOv COO)’

JOA A
(007, @Ry ARs CRY) > (037, Ry Ao, Coo)-
(c) The specialization gives a braided functor and a bimodule functor

+.0,A & +.0,A 2
(ORK 7®RaavaR)_> (OKK ’®K7aK’cK)v

A e A e
(03", ®r.ag, cgr) = (07, ®k, ag, ck).

Proof Since R is a regular local ring of dimension 1, we define the functor ® g
and the morphisms of functors ag, cg as in [28, sec. 29, 31]. We may as well
define them as in Sect. 8.3 below. Part (a) follows from Lemma 8.22. Part (b)
is proved as in [28, sec. 31]. Part (c) is proved as in [28, thm. 29.1]. O

We can now finish the proof of Proposition 8.7. Composing the functors in
(a), (b), we get faithful functors (O;’K’A, ®g, AR, Cr) — (OL2, ®R.,» Ao,
coo) and (042, @, ag, cg) — (0%, @R, Aco, Coo). This implies that
ag, cg satisfy the pentagon and the hexagon axioms. Hence, from (c), we

deduce that ag, cx also satisfy the pentagon and the hexagon axioms. The
details are left to the reader.

8.2.3 Properties of the functor Qg

We have ﬁ;’A = ﬁ;, because the category ﬁ’;{” is semi-simple. The tensor
product equips the C-vector space [ﬁ’;;’ 2] with acommutative C-algebra struc-
ture and the C-vector space [ﬁlv{’A] with a bimodule structure over [ﬁ;’A].
We’ll need the following properties of the functor Q.

Proposition 8.11 (a) The functor @ preserves the A-filtered modules.

(b) The functor @ preserves the tilting modules.

(c) The functor Qg is biexact on O;’K’A X O;K’A and on O;K’A X O;’K’A.
It equips [O;’K’A] with a commutative C-algebra structure and [O;K’A]
with a bimodule structure over [OJIQ’K’A].

(d) The functor Ind gives a C-algebra isomorphism [ﬁIJg’A] — [O;’K’A]
and a module isomorphism [ﬁ;{’A] — [OkK’A].
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Proof First, we prove part (a). Fix M| € O}""A and M, € O';é"’A. The
module M ® g M belongs to the category O%" by Proposition 8.5. We must
prove that it lies in Q%%

Fix B such that M, and M| ®x M> belong to the Serre subcategory PO'“
of O . Since POL" is a highest weight category with a duality functor
9, it is enough to check that for M3 € A(POY") we have the equality
Ext) . (M1®k M2, IM3) = 0.

Fixlém exact sequence 0 - Q — P — M3 — 0 with P a projective mod-
ulein#O%“. Since P, M3 have A-filtrations, the module Q is again a A-filtered
objectof PO} Since P is projective, we have EXt}*O}“ (M\®@kx M, 2P) =0.

Therefore, since Z is exact and contravariant, the long exact sequence of the
Ext-group and Proposition 8.5 yield a vector space exact sequence

0 — (M1, Ma, "M3)y — (M1, Ma, " PY% — (M1, My, Q)%
— Exth o« (M1 @k Ma, ZM3) — 0.
K

Thus, we get the equality of dimensions

dimExt};O;K (M\®@x M>, IM3) = dim (M, M>, TP)
—dim (M, Ma, T Q) g
—dim (M1, Ma, TM3) k.

The right hand side is zero by the following lemma.

Lemma 8.12 For M, M5 € O;K’A and M € OZ’K’A we have

dim (M1, Ma, "M3) g = D" (M1 : MO) 1) (M2 : M(22),)
X (M3 : M(A3)y) (L(A1) @ M(A2), : M(X3)y),

where the sum is over all .| € PIJ(r and ly, A3 € Pl‘é.

Proof Let d(My, M», " M3) denote the right hand side in the equality of the
lemma.

First, assume that M3 = M(A3),, My = M(A2), and M| = M(11)4+. We
have "M3 = Znd("M(}3),). Thus " M3 is again a generalized Weyl module
and Lemma 8.2(a) yields

(M, Ma, "M3) g = (L(k1), M(32)v, "M(A3)u)k,
= Homg, (L(A1) ®k M(A2)v, ZM (33),)*.
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Since L(A)®@x M (X)), € @’,”(’A,by [14,prop. A.2.2(ii)] we getdim (M, M5,
TM3) g = (L(h1) ®k M(A2)y : M(X3),).

The same argument implies that dim (M, M>, TM3))K = d(My, M>, "M3)
if My, M>, M3 are generalized Weyl modules.

Now, we concentrate on the general case. First, observe that using the
third construction of ®g in [28, sec. 6] it is easy to check that Rk is
right biexact. Further, by Proposition 8.5, we have (M, M, TM3))7( =
Homg, (M 1®k My, PM3). Thus the left hand side is left exact in each of

its variables. So, given exact sequences MLEZ) — ML(ll) — Mf) — 0 of
A-filtered modules with a = 1, 2, 3, we have

. 1 1 1 .
dim (M7, M3V M) e < D dim (i, M3 T e 8.0
a,B,y=2,3

Using the first part of the proof (i.e., the case of generalized Weyl modules)
and (8.1), we get that for any M,, M3 € O;K’A and M, € OJIQ’K’A we have

dim (M1, My, "M3) g < d(My, My, " M3).

To prove the equality, for each a we fix an exact sequence 0 — Ma(z) —
Mél) — Mf) — 0 of A-filtered modules such that Mél) is a generalized

Weyl module and M,g3) = M,. Clearly, such exact sequences always exist.
Then, we have

. 1 1 1 1 1 1
dim (M}, M50, Mgy g = dmD, My M),
dim (M}, My M) g <dM® P M), Ve By

Thus the equality follows from (8.1). |
Next, we prove part (b). Assume that M; € O3 and M, € O} are tilting.

We must check that M|®x M is still tilting. For N e O;K’A we must prove
that Ext})},(, «(N, Mi®k M>) = 0. Since the functors e ® x M» and e @ x DM>

are exact and biadjoint by Lemma 8.9, we have

Ext{ue (N, Mi®k M2) = Extgu.« (N©kx DM, My).
K K

Since DM, is A-filtered, part (a) yields Extz)u,,( (N®xDM>, My) = 0.
K

Finally, we prove parts (c), (d). The functor ® is right biexact. The same
argument as above using Proposition 8.5 and Lemma 8.12 implies that it is
biexact on A-filtered modules. More precisely, for each M € O;K’A the

functor Homg, (e @ ®, ZM) on OJIQ’K’A X O;K’A is exact and e @k e takes
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values in O‘;QK’A. Thus, if 0 - N; — No» — N3 — 0 is exact in O;’K’A
and if N € O%®, then we have an exact sequence Nj®@x N — Na@x N —
N3®gN — 0and (Ma®N : M3) = (NiQkN : M3) + (N3®k N : M3)
if M3 is a parabolic Verma module. Thus, also we have an exact sequence
0— N®kxkN — M@k N — N3®xN — 0.

Since it is exact, the tensor product ® ¢ factors to the Grothendieck groups
[OZ’K’ A] and [01;("(’ A]. The exact functor .#nd (e) gives C-linear isomorphisms
[ﬁIJg’A] — [O}’K’A] and [ﬁl‘é’A] — [0%" *A], because the parabolic Verma
modules form bases of the Grothendieck groups of A-filtered objects. The
compatibility with the monoidal structures follows from Proposition 8.5 and
Lemma 8.12. O

Remark 8.13 By [28, prop. 31.2] the braided monoidal category (O;’K , ®k, a,
¢) admits a balancing. More precisely, we have

¢? = exp(—27v/—1£0) (exp2r v/~ 1L0)®k exp(2mv/—1L0)). (8.2)

The proof in loc. cit. implies that (8.2) holds also for tensor products of
modules from O} and O}

8.3 The monoidal structure on O over a ring

Let R be either a field or a regular local ring of dimension < 2 with residue
field k. Assume that xx = —e where e is a positive integer. In this section
we’ll construct a version ® g of the functor ® ¢ above, which is defined over
the ring R.

8.3.1 Definition of the functor Qg

Let ® = [—m, n]. Fix a module M, € O”R’K’A and a module M, € OJIE’K’A
for each a # 0. The goal of this section is to construct a module Q) , M, in
O}’Q’K’A, where a runs over ®, which is functorial in the M,’s. The construc-

tion of the gg ,-module ® R.aMa is essentially the same as in [28, sec. 29].
However, our setting differs from that of [28] from several aspects

e the category O%" is defined over a regular local ring R of dimension < 2,

e the modules M, do not all belong to the category O;’K ,
e the modules M, may not have integral weights,
e we work with gg-modules, rather than g/,-modules.

The last point is easy to deal with: we’ll switch from gg-modules to g-
modules as in Remark 5.2 without mentioning it explicitly.
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First, assume first that R = K is a field and M, € .  for each a. Then,
the module ) k.aMa is defined in Proposition 8.5. More precisely, if K = C,
then the smooth g,/( -module ® K. oM. 1s constructed in [28]. It is proved there

that, if M, belongs to O for each a, then @) , M, belongs also to O*.
Next, it is proved in [49] that, if M, € O™ “ fora #0 and if My € O™, then
@ k.o Ma belongs to OV If K # C, then we define Qg , M, as in the case
K =C.

Now, let R be any commutative noetherian C-algebra with 1. Set A =
[-m,n + 1] and O = {n + 1}. To simplify the notation we’ll also write
Q© = n + 1. Recall that y, is a chart on C centered at x, for eacha € A, and
that Dp = R[C\{x4; a € A}]. LetFR be the central extensionof ' = g® Dg
by R associated with the cocycle (§1 ® f1, &2 ® f2) = Res,,—o(f2df1). Set
k = ¢+ N and k' = —c + N. The quotient by the ideal (1 — ¢) yields an
algebra homomorphism U (fR) — IRk

Lemma 8.14 (a) There is an R-algebra homomorphism I'g .+ — gz’ . such

that € @ f > & @ *f.
(b) There is an R-algebra homomorphism g/R o —> DRy such that § ®

f(t) = & ® f(yo), and an R-algebra homomorphism I'g .+ — gzk/
suchthat € @ f — & ® °F.

. . . Q
(c) Composing the maps in (b) we get an R-algebra embedding g/R’ W 7 BR.
such that € @ f(t) — & ® f(1o).

Proof Part (a) is standard. To prove (b), observe that the chart y can be
regarded as an element in the subalgebra { f € Dg; f(xo) = 0}. Thus, we
have an R-algebra homomorphism R[¢, t~—11 — Dp such that @)~ f(yo)
and an R-algebra homomorphism Dy — R((tv)) such that f +— Q7f . |

Now, for each a € # we fix a smooth module M, € .& , which is a weight
tg-module. Set Wg = @ R.a caMg. Since the M,;’s are smooth, the R-module

Wg has a natural structure of gz’ -module. We view Wg as a I'g ,»-module
via the map in Lemma 8.14(a). Note that Wg is a weight tg-module.

Ford > 1let Gg 4 be the R-submodule of I'g .+ spanned by the products
of d elements in g ® D% with Dy = {f € Dg; f(xo) = 0}. Note that Gg 4
is a weight tg-module for the adjoint action. We have the following natural
decreasing filtration of weight tg-modules Wg D Gr1Wgr D Gr2Wgr D ---
Consider the weight tg-module Wg 4 given by Wg 4 = Wr/Ggr 4Wg. Let

Wra = @ WR.d.x
)\.ePR

be the decomposition of Wg 4 into the sum of its weight R-submodules.
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The modules Wg 4 with d > 1 form a projective system. The limit Wr =
lim Wg 4 in the category of weight tg-modules decomposes as the direct sum
<~

of weight R-submodules WR = @AE Pr WR, 1, Where WR, » 18 the projective
limit of R-modules lim Wg 4 3.
<«

For each A € Pr and each d > 1, we define the R-module

Zrdaxr= Wgra)"

The R-modules Zg 4, withd > 1 form an inductive system of R-submodules
Zr1a C Zgra2an C --- Consider the weight tg-module Zg o, given by
ZR,00 = Dicpy ZR,00,1, Where ZR o5 = im Zg,4,.-

From now on, we’ll assume that R is a regular ring of dimension < 2 and
that the modules My, M, belong to OVR’K’f , O;’K’f respectively, foreacha € ®
with a # 0.

Lemma 8.15 (a) The R-module Wg 4., is finitely generated.
(b) The R-module ZR 4., is finitely generated and projective.

Proof Since M, belongs to O, there is an integer d, > 0 such that M,
is generated by the R-submodule M,(d,) as a ggr -module. Then, the same
proof as in [28, prop. 7.4] implies that

Wr=XgaWi +GraWr, Wi = Qg Malda), (8.3)

where Xg 4 is the R-submodule of I'g ,» spanned by the product of < d
elements in g ® yo. The right hand side of the first equality in (8.3) is defined
using the I'g ,/-module structure on Wg.

Now, since M, € O’I‘e and R is noetherian, the weight tg-submodules of
the tg-submodule M,(d,) C M, are finitely generated over R. Indeed, the
weight tg-submodules of M, are finitely generated because M, € Of, and
each weight tg-submodule of M, (d,) is contained in the sum of a finite number
of weight tg-submodules of M, (because M, is flat over R and the result is
well-known over the fraction field K of R). Therefore, part (a) of the lemma
is an easy consequence of (8.3).

Since R is a regular ring of dimension < 2, any finitely generated reflexive
R-module is projective. Since it is the dual of a finitely generated R-module,
the R-module Zr 4., is finitely generated and reflexive. Hence it is projective
as an R-module for each d, A. m]

Under the previous hypothesis, we can now prove the following.

Lemma 8.16 (a) There is a natural representation of g/R’ o on Wg.
(b) There is a natural smooth representation of g . on Z .

@ Springer



Categorifications and cyclotomic rational double affine...

Proof The proof is adapted from [28]. We will be sketchy. Recall that Wk, is
a I'g ,--module. The I'g ,/-action does not induce a I'g ,/-action on Wg in a
natural way. However, under the second map in Lemma 8.14(b), it descends
to a representation of gg’,{, on W as in [28, sec. 4.9]. More precisely, given
f(to) in t&” R[[to]] for some n € N, we fix a sequence of elements g1, g2, . ..
in Dy such that Qjgd — f(to) € téR[[t@]] for each d, and we define the action
of £ ® f(tv) on the element (wy) € WR, with wy € Wggandd > 1, by
setting § ® f(to) - (wq) = (§ ® ga * Wntd)-

Twisting this representation by tEe map g’R’K/ — ggk/ in Lemma 8.14(c),
we get a representation of g’R,K/ on Wg. Taking its dual, we get a representation
of g/RJ( on Zg 0. See [28, sec. 6.3] for details.

The R-module Zg  is flat, because the direct summand Zg  j is the limit
of the inductive system of flat submodules (Zg 4., ). To prove that it is smooth,
it is enough to check that Zg oo = Zg, o0(00). This is obvious, because we
have Zp ¢ C ZR o(d), where Zg g = @, Zr.a.x- O

Now, we consider the behavior of Zg , under flat base changes.

Lemma 8.17 Let S be a commutative noetherian R-algebra with 1 which is
flat as an R-module. Then, we have a canonical g ,-module isomorphism
SZR’oo = ZS’oo.

Proof Since taking tensor products is right exact, we have a canonical S-
module isomorphism SWg 4, = Wgs 4.,. Since S is flat over R, for any
R-modules X, Y such that X is finitely presented over R, the canonical
homomorphism S Homg (X, Y) — Homg(SX, SY) is an isomorphism. By
Lemma8.15, the R-module W 4., is finitely generated. Therefore, since direct
limits commute with tensor products, we have

SZr.co = P lim S Homp(Wg.4.1, R) =P lim Homs(Ws.a,5. ) = Zs.c.
A A

]
We can now prove the following

Lemma 8.18 Assume that R = K is a field.

(a) The g’K’K-module Zk .00 belongs to O;K.

(b) The Sugawara operator £y preserves the finite dimensional K -subspace
Zk a2 of Zk oo foreach d, .

(c) The characteristic polynomial of £o on Zk 4.5 is a product of linear factors
with coefficients in R.
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Proof For any smooth modules M, € .k ,, a construction of the g/ -module
® x.oMa 18 given in [28, sec. 4]. It is called there the first construction. The
smooth g.-module DZg  is precisely the one given by the third construc-
tion in [28, sec. 6]. If M, belongs to OJIQ’K for all a, then the first and third
constructions coincide by [28, thm. 7.9]. If My € OZ" and M, € OZ’K for
each a # 0, then both constructions coincide by [49, prop. 5.8], and the first
construction yields a module in Og* by [49, thm. 1.6]. This proves part (a).

Part (b) is a standard computation using the relation [£o, & "] = —ré ) for
each& egandr € Z.

Since Zg o € O;K, part (c) follows from elementary properties of the
action of the Sugawara operator on objects of OEK. O

Now, we come back to the case where R is a regular local ring of dimension
<2

Lemma 8.19 There is a natural smooth representation of gr « 0n Zg .

Proof Since the g}, , -module Zg « is smooth, it is equipped with a canonical
action of the Sugawara operator £q. For each r € R we set

"ZRoo ={V € ZR,00; (Lo —1)"v =0, n> 0}.

Replacing R by K everywhere in the construction above, we get the g’K’ "
module Zg ~. Since the g/R’K—module ZR.c 1s smooth, it is flat over R.
Thus, we have an obvious inclusion Zr oo C KZp oo = Zk .- Hence, by
Lemma 8.18, we have a direct sum decomposition Zg oo = P, "Zg,co-

Therefore, we can consider the R-linear operator d on Zg « which acts by
multiplication with (—r) on the R-submodule "Zg . It equips Zg oo with the
structure of a smooth gg ,-module. O

Definition 8.20 Assume that R is a regular local ring of dimension < 2. Let
® = [—m, n]. Assume that My € OVR’K’f and M, € O;’K’f for a € @& with
a # 0. Then, we define the gr ,-module ® R. +Ma, where a runs over the set
®, to be equal to DZg . It is a smooth module by Lemma 8.19 and by the
definition of D.

8.3.2 Properties of the functor @ g

Set ® = [—m, n]. Our next goal is to prove the following.

Proposition 8.21 (a) Assume that My € OVR’K’A and M, € O;’K’A for each
a € @ witha # 0. Then, there is a module Qg ,M, in OURJK’A which
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is functorial in the M,’s and such that for each M € OUR’K’f we have a
functorial isomorphism

Homg, (Q g oMa: M) = (M. ... My, DM).
(b) The functor @ g commutes with flat base change (of the ring R). O

First, assume that My € OUR’K’f and M, € O;’K’f for each a € ® with

a #=0.

Lemma 8.22 Let S be a commutative noetherian R-algebra with 1 which is
regular of dimension < 2 and which is flat as an R-module. We have canonical
gs.«-module isomorphism S(Q g Ma) = Qs ,SMa.

Proof By Lemma 8.17 we have SZg oo = Zg 0. Thus, the lemma follows
from the proof of Lemma 5.3, which insures that D commutes with base
change. O

Next, we prove the following.

Lemma 8.23 We have ®R,aMa € O‘;Q’K’f. The functor ®R’u on O;’K’f and
O;’K’f is right exact.

Proof The g’R’K,—action on Wp yields a representation of g/R’ . on “Wg. Con-
sider the R-submodule Wlle C Wk introduced in (8.3). We claim that ﬁWlle is
a gy ,-submodule of “Wr. Indeed, the element £ ® f(¢) in gr . acts on TWr
by the operator D>, o & ® “f(—1/yo). Further, for each a € @ the function
1/yo is regular at x, and, thus, since the system of charts is defined over C, the
expansion ¢(1/yo) is a well-defined Laurent formal series in C[[7,]]. There-
fore we have “f(—1/y0) € R[[t,]] for each f € R[t]. We deduce that there
is a gl .-homomorphism

Ind(*Wy) — *Wkg. (8.4)

Next, recall that the first map in Lemma 8.14(b) yields a g/, /-action on
Wg and that g/, . acts on Wk by Lemma 8.16. By definition of the actions,

the canonical R-module homomorphism Wr — WR isa g’R K,—module homo-
morphism. Taking the dual of Wg in the category of weight tg-modules, we
get the g -module Zg given by

Zr =B Zrs Zro=(Wri)*. (8.5)
)»EPR
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Twisting (8.4) by #f and taking its transpose, we get a g’Ry ~homomorphism
Zr — LIfnd(ﬁW}e)*. Since Zg oo C Zg(00), this map restricts to a g/KK—
homomorphism

ZRoo = DINd(PWp). (8.6)
Using (8.3) it is easy to see that the map (8.6) is an inclusion.

Claim 8.24 Let N € O})Q’K’f and let M C N be a submodule which is flat as
an R-module. Then, we have M € O‘;gK’f .

To prove the claim, observe first that, since N is a weight tg-module with
finitely generated weight subspaces over R, so is also M. Thus, since M is
flat and since any flat finitely generated R-module is free (because R is a
noetherian local ring), the R-module M is indeed free. It is easy to check that
M satisfies the other axioms of the category OVR’K’f , except the fact that it
is finitely generated. For this last property, recall that for each j the category
p OUR’K is a highest weight category over R. Since it is equivalent to the category
of finitely generated modules over a finitely generated projective R-algebra, it
is noetherian. Therefore M is finitely generated. The claim is proved.

Now, recall that Z R.co 18 flat over R and that .#nd (¢ W}e) is a generalized
Weyl module of O};’K’f . Thus, the claim implies that 7Zz o, € O}}Q’K’f . Hence
DZpr. € O;K’f. This proves the first part of the lemma.

To prove the second part, it is enough to observe that the functor (M,) —
TZ R o is left exact, because it is the composition of a tensor product over R
of free R-modules, of a dual over R of free R-modules, and of the functor of
taking smooth vectors (which is left exact), and that & is an exact endofunctor
of OvR’K’f . O

Now, we consider the functor represented by the module ® R.aMa. The

lemma below gives a functorial isomorphism for each module M in OVR’K’f

Homg, (Qg o Ma. M) = (M, ... My, DM)%. 8.7)

Lemma 8.25 Foreach M, N € O;’K’f -, we have functorial R-module isomor-
phisms

Homg, (N, M)={(N, DM )%, «®R,aMd’ DMW)p=(M_p, ..., My, DM)%.
Proof Thereis anatural R-module inclusion Homg, (N, M) — Homg, (N®pr

DM, R), because M, N are weight tg-modules whose weight subspaces are
free R-modules of finite type. We must prove that this inclusion is indeed
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an isomorphism. The proof is the same as in [46, prop. A.2.6], see also [28,
prop. 2.31].

Next, by definition of coinvariants, we also have a canonical R-module
isomorphism Homg, (N ® g DM, R) — (N, DM)%. This proves the first
isomorphism in the lemma.

Now, we concentrate on the second one. Consider the I'g ,-module Zg.
By construction, we have Homr(DM, Zg) = Homgr(Wg ®r DM, R).
Thus, we have also Homr, (DM,Zg) = Homr,(Wg ®g DM, R).
Thus, since DM is smooth and Zr oo = Zpg(00), the canonical inclusion
Homr, (DM, Zgr ) C Homr, (DM, Zg) is indeed an isomorphism. So
we get an isomorphism Homg, (DM, Zg o) = (M—p, ..., My, DM)%.

Finally, since 'z R.co belongs to O‘;Q’K’f , we have
Homg, (Qr ,Ma, M) = Homg, (DZR o0, M) = Homg, (DM, ZR ).

O

Next, we consider the behavior of the tensor product ® on A-filtered
modules. Assume that M € O‘;éK’A and M, € OZ’K’A for a # 0. First, note
the following.

Lemma 8.26 For each M € O%’K’A the R-module (M_,,, ..., M,, M) g is
free of finite type.

Proof Since this R-module is finitely generated by Lemma 8.2, it is enough
to check that its rank is the same at the special point and at the generic point
of Spec(R). By Lemma 8.2 we must check that

dimg (KM_,,, ..., kM,, kMY, =dimg (KM_,,,..., KM,, ' KM)g.

For each M € O%**, N € A(O%"), we have (KM : KN) = (kM : kN).
Therefore, the claim follows from Lemma 8.12. O

Now, we can prove the following.
Lemma 8.27 We have ®R,aMa € OUR’K’A.

Proof Taking B large enough we can assume that all modules belong
to the category ﬁOvRJK’f . Since *‘}OVR"C is a highest weight category over
R, to prove that Q) R’aM,, has a A-filtration, it suffices to check that
Ext};O;K(®RﬂMQ, M) = 0 for each M ¢ V(ﬂ02K), see [39, lem. 4.21].
Since the category ﬂOvR’K is preserved by taking extensions in OVRJK, we must
check that Extéy (Qr.aMa, ZM) = 0 for each M € A(OR"). To simplify
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the notation, we assume that [—m, n] = [1, 2]. By (8.7), it is enough to check
that, given an exact sequence

0->Q0—>P—>M-—>0

with P projective, the following left exact sequence of R-modules is indeed
exact

0 — (My, My, 'MY%, — (My, Ma, "PY)% — (M1, Ma, Q)i — 0.

Note that My, M>, M3, Q, P, M are A-filtered. To prove the claim we may
consider the right exact sequence of free R-modules of finite type

0 — (M, M2, Q) g — (M1, M2, "PY g — (M, Ma, M) g — 0.

We must prove that it is exact. To do so, it is enough to prove that it is exact
after specialization at the special point and at the generic point of Spec(R).
Now, the sequences

0 — (kM1, kM, "kQ)y — (KM, kMy, 'k P) — (kM;, kM, TkM)) — 0,
0— (KM, KMy, 'K Q) x — (KMy, KMa, 'K P) x — (KM, KM, ' KM)) x —0

are both exact by Lemma 8.12. Thus, the lemma follows from Lemma 8.2. O

We can now prove Proposition 8.21: it is a direct consequence of Lem-
mas 8.22, 8.25 and 8.27.

8.3.3 The functors e and f
We consider the modules Vg, V7 in O;;’K given by
Vir =M(e)r+, Vi =M(—€yn)g +.

The following hold.

Lemma 8.28 (a) If R = K is a field then Vi, V} are simple.
(b) The modules Vg, Vy, are tilting.
(c) We have DVg = Vg = V%, Vg = Ind(Vg) and Vi = Snd(V}).

Proof If R = K is a field, then Vg, V% are simple, proving part (a). To
prove (b), note that under base change we get Vi = kV¢ and Vi = kV7,.
The modules Vi and V{ are simple and standard. Thus, they are both tilting.
Therefore Vg, V7, are also tilting modules by Proposition 2.4. Part (c) is clear,
because (b) implies that ZVg = Vg and IV} = V. O
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Next, we define the endofunctors e, f of O‘IJQ’K’A and ﬁ;’A respectively by

e=0QrVy, [ =eQrVg,
€:0®RV;$, f=e Qr Vg.

The goal of this section is to prove the following.

Proposition 8.29 (a) The'endofunctors e, fof OUR’K’A are exact and preserve
the subcategory O}’Q’K’“h.

(b) We have functorial isomorphismske(M) =~ e(kKM) andk f (M) =~ f(kM)
for each module M in OZ’K’U“.

(¢) If R = K is a field then e, f extend to exact biadjoint endofunctors of

VK

Oy .

(d) The functor Indpg gives a C-vector space isomorphism [ﬁE’A] —
[OUR’K’A] which commutes with the C-linear maps e, f. O

Proposition 8.30 Assume that R is a local analytic algebra.

(a) There is a braided monoidal category (O;’K’A, ®R, AR, CR).

(b) There is a bimodule category (O‘EK’A, ®R, AR, CR) over (OE’K’A, ®R, AR,

C R)- )

(c) For each module M € O‘;?’K’“h and each integer d > 1, we have
a k-algebra isomorphism k Endg, (fd(M)) — Endg, (fd (kM)) which
commutes with the associativity and the commutativity constraints ag, Cg.

O

To prove these propositions, we need more material. First, we define the
associativity and the commutativity constraints ag, cg for ®g. From now on
we’ll assume that R is a local analytic algebra.

Lemma 8.31 Assume that Vi, V> € O;’K’f and M € OUR’K’f. Then, there are
Sfunctorial isomorphisms ay, p,v, 1 (V1 QRMYRQrV2 — VIQr(M®gV>).

Proof We apply the same construction as in the case R = Cin[28, sec. 17, 18].
We will be very brief. We allow the system of charts y to vary in the set of
C-points of an affine scheme #". Taking the coinvariants, we construct a bundle
of R-modules of finite rank over #". This bundle is equipped with an integrable
R-linear connection. Since R is an analytic algebra, it admits a flat section.
This section gives R-linear isomorphisms, see [28, thm. 17.29],

(Vi®rM, VaQrDN) g = (Vi, M, V2, DN ))g,
(DN®RrVi, MRrV2)) g = (DN, Vi, M, Vo) p

foreach M, N € O;’K’f and Vi, Vp € O;’K.
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Using these isomorphisms and the invariance of coinvariants under cyclic
permutation, we get functorial isomorphisms [28, sec. 18.2]

(VIQRM, VaQgrDN) p == ((ViQrM) @ Va2, DN)),

(DN®rVI, MRrVa) g == (VI®r(M ®g V2), DN))g.

Hence, from (8.7) we deduce a functorial isomorphism
Homyg, (Vi®rM)®g V2, DN) = Homg, (ViQr(M&®gV2), DN),

which yields a module isomorphism ay, p.v, (VIQrRM)Q®grV, —
VIQrR(M®gV2). O

The isomorphisms ay v, v, and ay v, v, are constructed in a similar way.
The details are left to the reader.
Now, we consider the commutativity constraint. To do so, for each mod-

ules V € O;’K’f and M € O‘;Q’K’f we consider the morphism of functors
(V,M,DN)pr — (M, V, DN))g induced by the R-linear map

VRQrM QK DN > M QRV Qr DN, xQ@yRQRzH—> 1TyQ1Xx Q12

Here, we set T = exp(+/— 17 £p) exp(£1) and T = exp(—+/— 17 £o) exp(L1).

Lemma 8.32 Assume that V € O;’K’f and M € O‘;Q’K’f. Then, there is a
functorial isomorphism ¢y y : VOrRM — M®RgV which represents the
morphism of functors {(V, M, DN)p — (M, V,DN))p.

Proof The isomorphism ¢y ps is defined as in [28, sec. 14]. More precisely,
setting A = [0, 1], My = V and M| = M, we consider the I'g ,-module
Zg in (8.5). Switching V and M we define Z;e in a similar way. Since the
Sugawara operators £y, £1 acton V, M and since R is an analytic algebra, we
can define the R-module isomorphism P : Z}, — Zp which is the transpose
of the R-linearmap V @ g M — M ®p V suchthatx ® y — 7y ® 7x. Now,
recall that Z;?,oo = Zp(00) and Zg oo = Zr(00). One check as in loc. cit. that
P induces a g’R’ -isomorphism Z }Q, s > ZR.,0- We define the isomorphism
cy,m to be the map DZp oo — DZ;e,oo which is the transpose of P. The
second part of the lemma is proved as in [28, sec. 14.6]. O

Next, we consider the behavior of the functors e, f on tilting modules.

Lemma 8.33 The functors e, f on OVR’K’A are exact. They preserve the sub-

category OUR’K’UM.
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Proof Let S C R be the C-subalgebra of R generated by x. The modules
Vg, Vi are defined over S, i.e., we have Vg = RVg and Vi = RV} with
Vs = Inds(Vs), Vi = Inds(Vy).

Now, the second claim is proved as Proposition 8.11(b). Since Vg, V} are
tilting by Lemma 8.28, it is enough to check that e, f are biadjoint on OUR’K’A
(hence exact) proving the first claim on the way. To do so, since R is a regular
ring, we may assume that R is flat over S. Then, since e, f commute with flat
base change by Lemma 8.22, we may assume that R = § is a regular local
ring of dimension 1. So, we are in the same setting as in [28, sec. 31].

Next, proving the lemma is equivalent to proving that Vg and V7 are rigid,
see the appendix to part IV of [28] for details. This is proved in the proof
of [28, prop. 31.3], modulo a technical assumption which is checked in [28,
lem. 31.6]. O

Finally, we consider the behavior of the tensor product ® g under the spe-
cialization of R to the residue field k.

Lemma 8.34 For each module M € OVR’K’tﬂt, we have functorial isomor-
phisms ke(M) = e(kM) and kf(M) = f(kM).

Proof By (8.7), for N € O /" we have functorial isomorphisms

Homg, (R o Ma, N) = (M_yy, ..., My, DN)x,
Homg, (®y kMa, kN) = (kKM_,., ..., kM,, DkN);.

If M,, N are tilting, then (M_,,, ..., M,, DN))p is free of finite type over R
by Lemma 8.26. Therefore, by Lemma 8.2 we have a functorial isomorphism
k Homg, (® g Ma. N) = Homg, (® kM, kN). So, for M, N € O™
we have functorial isomorphisms k Homg z(e(M), N) = Homg, (e(kM), kN )
and similar isomorphisms for f.

On the other hand, by Lemma 8.33 the modules e(M), f(M) are tilting.
Thus, we have functorial isomorphisms

Homg, (ke(M),kN) = Homg, (e(kM),kN),

HOmgk (kf(M),kN) = HOmgk (f(kM), kN). (8.8)

This proves the lemma. O

Remark 8.35 In Lemma 8.10 we considered the specialization functor in [28,
thm. 29.1], from a regular local ring of dimension 1 to its residue field. In
Lemma 8.34, we consider a specialization functor from a regular local ring of
dimension 2 to its residue field.

We can now finish the proof of Propositions 8.29 and 8.30.
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Proof of Proposition 8.29 Parts (a), (b), (c) follow from Lemmas 8.22,
8.33, 8.34 and 8.9. Part (d) is proved as Proposition 8.11(b). O

Proof of Proposition 8.30 The isomorphisms of functors ap, cg are con-
structed in Lemmas 8.31, 8.32. For parts (a), (b) we must prove that ag, cg
satisfy the hexagon and the pentagon axioms. The tensor product ®g com-
mutes with a flat base change of the ring R by Lemma 8.22. The isomorphisms
of functors ag, cg commute also with a flat base change. Therefore, embed-
ding R in its fraction field K, we are reduced to prove that ag, cx satisfy the
hexagon and the pentagon axioms. This is proved in Proposition 8.7.

Now, let M € O;’K’ﬁh and N € O”R’K’tﬂt. By (8.8) and Propositions 2.4, 8.29,
the specialization at k gives functorial isomorphisms

k Homg, (Vx®rM, N) = Homg, (Vi®x(kM),kN),
k Homg, (M®gVy, N) = Homg, (kM)®kVy, kN).

They are induced by the base-change homomorphisms

k{(Vz. M. DN)g = (Vi kM, D(KN))y,
k(M, Vi, DN) g — (Vi, kM, D(kN))y. (8.9)

We must check that they intertwine the isomorphisms

eve i VRORM — M®gVy,  evrim : Vi®k(kM) — (kM)®k V.
To doso, recall that ey ) represents the transpose of the morphism of functors
Pr:{(Vi,M,DN)r — (M, Vi, DN)p, x®@yQzr>Ty®1Xx ®72.
So the claim follows from the commutativity of the following square

K(V%, M, DNY g —% k(M. V%, DN)

i(8.9) i(8.9)

(VE, kKM, D(KN)Y)y —> (kM, VE, D(KN))y.

The commutation of the specialization with the associativity constraint is
proved in a similar way. O

8.4 From O to the cyclotomic Hecke algebra

Let R be a local analytic deformation ring of dimension < 2. Set v = vg =
exp(—+/—1m/kr)andg = gr = v%e. The endomorphisms X, 7" of the functors
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f, f2 are given by X = cgpocgand T = vg - a;l o (1®gcR) o ag. More
precisely, for each M € O5" we have

XM =Cvg M 0CM Vg,

_1 .
Ty = vpg - Ay v Vi © (1M ®RrCYVL,VE) ©AM Vi V- (8.10)

Next, fix an integer d > 1 and consider the endomorphisms of f 4 given by
X;=19"7x1= and T; = 197=1T71=V with j € [1,d],i € [1,d). We can
now prove the following.

Proposition 8.36 (a) X, T; yield an R-algebra homomorphism

Vr.a: Hrg — End(f9).
(b) Yr.q gives an R-algebra homomorphism
V. Hg 4 — Endg, (Tg.a).

Proof Thebraidrelations T; T; 11 T; = T; 11 Ti Ti 1 and T; T = T, T; if |i — j| >
1 are well-known formal consequences of the axioms of a braided monoidal
category.

Next, consider the relation 7; X; T; = U%X i+1- The hexagon axiom yields
the following relations

av, M,Vg © (€, vy ®rlvy) o Ty = VR - Crim) Vi,
. “1
Ty o (evp, M®RrIve) 08y, 4y v, = VR - €V f (1)

Therefore we have Ty o (XM®R1VR) oTy = U%e - X r(m). We deduce that
(THm o (X)m o (T m = vy - (Xit1)m-

Now, let us prove the relations X; X; = X;X; and X;T; = T;X; fori #
j, j+1.Wearereduced to check therelations (X 1) po(Xi))y = (Xi)pmo(X1)m
and (T7)py o (X)m = (X1)y o (T;)y for i # 1. They follow from the
functoriality of ¢ and a. Let us check the first one in details fori = 1, j = 2.
The diagram

FOD®RVR L (&R Vi

Cr(M), Vg i i?f(M),VR
. 10X .
VrQrf(M) —= Vr®g f (M)
CV,«f(M)i icVR,ﬂM)

FODSRVE ML ()&
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is commutative because X, is an endomorphism of f (M) and cg is a mor-
phism of functors. Now the composition of both vertical maps is equal to
X r(my = (X2)um, while the upper and the lower horizontal maps are both
equal to (X 1) . We are done.

To prove the Hecke relation (7; + 1)(T; — gg) = 0, observe that the action
of w on Vx ®pg Vg is a diagonalizable operator with eigenvalues 1 and —1.
Thus, from (8.10) we get that (7; — v%)(7; + 1) = 0.

Finally, let us check the cyclotomic relation. By (8.2), (8.10), the endomor-
phism (X 1)1y, of Tg 4 is identified with the endomorphism f~! (X, , v)
offd_l(TRﬁl),where XTg .V isanoperatoron Tg | = TR,0®RVR.Wemust
prove that this operator satisfies the equation ny:l (XTg o, Vg — qj{ ) =0.We
may assume that R = K is a field. Then, the claim follows from Remark 5.18.

O

Index of notation

2: R, K,k, m.

2.1:  M*, SM, S¢, B, M, P1, Ry, my, ky. o

22: A%, EP 1y, Ko(%), [€], IM], A-mod, €*, Irr(€), €7, €™M,
Irr(A), A-proj, A-inj, S€, SF, h, h*, h'.

23 AD), <, A, PO, IV, TV, VA, A*(X), P*(L), T*(L), T*(),
V*(1), L), €8, €V, €N, €°, #, A°(L), P°(L), T°(L), €°,
ledy (M), redye (M).

24.1: F:%¢ — B-mod, G, (B-mod)"2, FA, F*, F°.

24.3: (KB')<g, S(A), S'(L).

3. q: qR-

3.1: f,ﬂ(q), QR,pajpall-

320 sly, Qo 8, Al Q = Oy, QF = Q). P = Py, PT = P/,
X=Xy, ¢, I%sl;.

3.3 Z'n),CLCL o P ML), MY (W), P, P, 28, 27, DY, p(A),
g-res?, g-res’®, cont’, q;{ =0Rr.p>»0p=0Rrp-I,64, Ty, (M.

341 Hpg T Xi H§ , HY  Hy ;. Ind? Res?, IndY ¥, Res ", M, 1;,
1o, Hy .

3.4.2: HR,d7 HISQ,a" ti, Xi, HIs(,a’ H}, Hls,d'

34.3: ¢, SR D, S5,

350w, X, 6, Sk g WORT B 4o Sk WDR.

36: (E,F.X,T), ¢pa, A = A, HY, ;, L(N)y, L(N)sn—ar L(A),

ZL(N)g.
4: £, N, v.
4.1: KR =K, TR,p = Tp, TR, SR,p = Sp, KS, TS, p, €.
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4.2:

4.3:
4.4:

4.5:
4.6:

4.7:

5.1:

5.2.1:

5.2.2:

5.3.1:

5.3.2:
5.3.3:

54:
5.5:

5.6:

5.7.1:
5.7.2:

5.7.3:

5.9:

6.1.1:

6.1.2:
6.1.3:
6.1.4:
6.2.1:

gr, U(GR), tr, bR, PRv, MRy, €, €, €, th, I1, 1T, T, IT, W,
w e A 0,ip, jp. Iy, P, detp, det, P, Pg, S, Pp, py, T = TR, @,
w = wy, cas = casy.
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