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1 Introduction

Rational Double af ne Hecke algebras (RDAHA for short) have been intro-
duced by Etingof and Ginzburg in 2002. They are associative algebras
associated with a complex re ection groM@g and a parametar. Their rep-
resentation theory is similar to the representation theory of semi-simple Lie
algebras. In particular, they admit a categ@ywhich is analogous to the
BGG category O. This category is highest weight with the standard modules
labeled by irreducible representationsif Representations 1@ are in nite
dimensional in general, but they admit a character. An important question is
to determine the characters of simple modules.

One of the most important family of RDAHA's is the cyclotomic one
(CRDAHA for short), whereW = G(, 1,n) is the wreath product 0%,
andZ/ Z. One reason is that the representation theory of CRDAHAS is
closely related to the representation theory of Ariki—Koike algebras, and that
the latter are important in group theory. Another reason is that the category
O of CRDAHAs is closely related to the representation theory of af ne Kac—
Moody algebras, see e.d.1,43,46]. A third reason, is that this category has a
very rich structure called a categorical action of an af ne Kac—Moody algebra.
This action orO was constructed previously id]]. Such structures have been
introduced recently in representation theory and have already had remarkable
applications, see e.®,29,40].

The structure 0O depends heavily on the parameteFor generic values
of c the category is semi-simple. The most non semi-simple case (which is
also the most complicated one) occurs wheakes a particular form of ratio-
nal numbers, seé(2). For these parameters Rouquier made a conjecture to
determine the characters of simple module®if89]. Roughly speaking, this
conjecture says that the Jordan—Hélder multiplicities of the standard modules
in O are given by some parabolic Kazhdan—Lusztig polynomials. This conjec-
ture was known to be true in the particular case 1 [39]. Motivated by this
conjecture, Varagnolo—Vasserot introduced4f fa new category which is
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a subcategory of an af ne parabolic categ@yat a negative level and should
be viewed as an af ne and higher level analogue of the category of polynomial
representations @ L . They conjectured that there should be an equivalence
of highest weight categories betwe@randA.

In this paper we prove Varagnolo—Vasserot's conjecture (The6r&mnA
rst consequence is a proof of Rouquier’s conjecture (Theore3n A second
remarkable application is a proof that the cateddrng Koszul (Theoren?.4),
yielding a proof of a conjecture of Chuang—MiyacB],[because the af ne
parabolic categor® is Koszul by B2].

Our proof is based on an extension of Rouquier’s theory of highest weight
covers developed ir8P]. Basically, 39] says that two highest weight covers
of the same algebra are equivalent as highest weight categories if they satisfy
a so called 1-faithful condition and if the highest weight orders on both covers
are compatible. Here, given a situation where the highest weight covers are
not necessarily 1-faithful, we construct bigger functors to which we can apply
Rouquier’s theory (see Propositi@r20).

The categonp is a highest weight cover over the module catedbryf the
Ariki—Koike algebra via the KZ functor introduced i2%]. It is a O-faithful
cover and if the parameters of the RDAHA satisfy some technical condition,
then it is even 1-faithful. A similar functor : A H was introduced in
[46] using the Kazhdan—Lusztig fusion product on the af ne categ@t a
negative level. A previous work of Dunkl and Griffetthd] allows to show
without much dif culty that there is a highest weight order@rwhich re nes
the linkage order or\. A dif cult part of the proof consists of showing that
the functor is indeed a cover, meaning that it is an exact quotient functor,
and that it has the same faithfulness properties as the KZ functor. Once this is
done, the equivalence betwe@nandA follows directly from the unicity of
1-faithful covers if the technical condition on parameters mentioned above is
satis ed. To prove the equivalence without this condition, we need to replace
KZ and by some other covers, see the end of the introduction for more
details on this.

Akey ingredientin our proof is a deformation argument. More precisely, the
highest weight categorigs, O admit deformed versions over a regular local
ring R of dimension 2. Some technical results prove that the Kazhdan—Lusztig
tensor product can also be deformed properly, which allows us to de ne the
deformed version of . Next, a theorem of Fiebig asserts that the structure
of the categonO of a Kac—Moody algebra only depends on the associated
Coxeter system0]. In particular, the localization oA at a height one prime
idealp R can be described in simpler terms. Two cases appear, @ther
is subgeneric or generic. In the rst case, considered in $e¢t2 the cate-
gory A reduces to an analog subcategéyynside the parabolic categoy
of gly associated with a Levi subalgebragif; with 2 blocks. The latter is
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closely related to the higher level Schur—Weyl duality studied by Brundan and
Kleshchev in §]. In the second case, considered in S&ci.3 the category

A reduces to the corresponding category for 1, which is precisely the
Kazhdan—-Lusztig category associated with af ne Lie algebras at negative lev-
els. Finally, we show that to prove the desired properties of the functbis
enough to check them for the localization ofat each height one prime ideal

p and this proves the main result.

Now, let us say a few words concerning the organization of this paper.

Section2 contains some basic facts on highest weight categories and some
developments on the theory of highest weight cover8gj [

Section3 is a reminder on Hecke algebras, g-Schur algebras and categori-
cations.

Section4 contains basic facts on the parabolic categorgf gly and the
subcategonA O introduced in §]. The results inp] are not enough for us
since we need to consider a deformed categbwmyith integral deformation
parameters. The new material is gathered in SE¢t.

In Sect.5 we consider the af ne parabolic categddy(at a negative level).
The monoidal structure 0@ is de ned later in Sect8. Using this monoidal
structure we construct a categorical action®m Sect.5.4. Then, we de ne
the subcategornA O in Sect.5.5. The rest of the section is devoted to the
deformation argument and the proof thais a highest weight cover of the
module category of a cyclotomic Hecke algebra satisfying some faithfulness
conditions.

In Sect6we rstgive areminder on the catego®/ of CRDAHA's, follow-
ing [22,39]. Then, we prove our main theorems in Se6t8.2 6.3.3using the
results from Secb.8. This yields a proof of Varagnolo—\Vasserot's conjecture
[46]. For the clarity of the exposition we separate the cases of rational and
irrational levels, although both proofs are very similar.

In Sect.7 we give some applications of our main theorem, including proofs
for Rouquier’s conjecture and Chuang—Miyachi’s conjecture.

Sectior8is a reminder on the Kazhdan—-Lusztig tensor product on the af ne
categonO at a hegative level. We generalize their construction in order to geta
monoidal structure on arbitrary parabolic categories, deformed over an analytic
two-dimensional regular local ring. Several technical results concerning the
Kazhdan—-Lusztig tensor product are postponed to the appendix.

To nish, let us explain the relation of this work with other recent works.

The case ofirrational level (proved in Theorér 1) was conjectured ird6,
rem. 8.1@b)], as a degenerate analogue of the main conjectiecpnj. 8.8].
There, it was mentioned that it should follow fro) fhm. C]. In the dominant
case, this has been proved recen®l¥, fthm. 6.9.1].

While we were writing this paper |I. Losev made public several papers
with some overlaps with ours. 1181,32] he developed a general formalism
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of categorical actions on highest weight categories. Then, he used this for-
malism in B3] to prove that the categork is equipped with a categorical
action, induced by the categorical action ©@rintroduced in #6] (using the
Kazhdan—-Lusztig fusion product). The categorical actioAdagives an inde-
pendent proof of Theorem.37a), (b). Finally, he proposed a combinatorial
approach to prove tha is a 1-faithful highest weight cover of the cyclo-
tomic Hecke algebra under some technical condition on the parameters of the
CRDAHA.

A rst version of our paper was announced in July 2012 and has been
presented at several occasions since then. There, we proved this 1-faithfulness
for A (and the Varagnolo—Vasserot’s conjecture) under the same condition on
the parameters by a deformation argument similar, but weaker, to the one used
in the present paper.

The proof which we give in this article avoids this technical condition on the
parameters. It uses an idea introduced later38). [There, I. Losev replaces
the highest weight covek of the cyclotomic Hecke algebtd by a highest
weight cover, byA, of a bigger algebra thad, which has better properties.

After this paper was written, B. Webster sent us a copy of a preliminary
version of his recent preprind¥] proposing another proof of Rouquier’s con-
jecture which does not use the af ne parabolic catedory

Note that our construction does not use any categorical actién tironly
uses representation theoretic arguments. However, since Théd@gtelds
an equivalence betweégk andO, we can recover a categorical action An
from our theorem and the main result &fl]. This is explained in Sect.4.

2 Highest weight categories

Inthe paper the symb®& will always denote a noetherian commutative domain
(with 1). We denote b its fraction eld. WhenR is a local ring, we denote
by k its residue eld and byn its maximal ideal.

2.1 Rings and modules

For anyR-moduleM, let M = Homgr(M, R) denote the dual module. An
S-pointof R is a morphism : R S of commutative rings with 1. If
is a morphism of local rings, we say that it idacal S-point We write
SM= M() = M RrSIf isaR-module homomorphism, we abbreviate
alsoS = RS
LetP, M be the spectrum and the maximal spectrunRotetP; P
be the subset of height 1 prime ideals. For epch P, let R, denote the
localization ofR atp. The maximal ideal oR;, is mp = R, p and its residue
eldiskp = FraqR/p).
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A closedk-point of R is a quotientR R/m = k wherem M. To
unburden the notation we may write kM .

A Pnite projective Ralgebra is arR-algebra which is nitely generated and
projective as afR-module.

We will mainly be interested in the case whétés a local ring. In this case,
any projective module is free by Kaplansky’s theorem. Therefore, we’ll use
indifferently the words free or projective.

2.2 Categories

Given A a ring, we denote byA°P the opposite ring in which the order of
multiplication is reversed. GiveR is a category, leC°P be the opposite
category.

An R-categoryC is an additive category enriched over the tensor category
of R-modules. All the functor§ onC are assumed to R-linear. We denote
the identity element in the endomorphism ring ERJlagain byF. We denote
the identity functor or€ by 1¢c . We say tha€ is Hom-Pnitef the Hom spaces
are nitely generated oveR. If the categoryC is abelian or exact, le€o(C)
be the Grothendieck group and wrft€] = Ko(C) 2z C. If C is additive,
it is an exact category with split exact sequences [@idis the complexi-

ed split Grothendieck group. LefM] denote the class of an objebt of
C.

Assume now thaC is abelian and has enough projectives. We say that
an objectM  C is projective overR if Hom¢ (P, M) is a projectiveR-
module for all projective object® of C. The full subcategorlC R-proj
of objects ofC projective overR is an exact subcategory and the canonical
functorDP(C R-proj)  DP(C) is fully faithful. An objectX C which
is projective oveR is relatively Rinjectiveif Exté(Y, X) = 0 for all objects
Y of C that are projective oveR.

If C isthe categoryA-mod of nitely generated (left) modules over a nite
projectiveR-algebraA, then an objecK C is projective oveR if and only
if it is projective as anR-module. It is relativelyR-injective if in addition
the dualX = Homg(X, R) is a projective rightA-module. If there is no
risk of confusion we will say injective instead of relativeRrinjective. We
putC = A°-mod. The functor HomR(€, R) : C°®  C restricts to an

equivalence of exact categori€$? R-proj C  R-proj.

We denote by IfC) the sets of isomorphism classes of simple objects
of C. Let CP™@, C™M C be the full subcategories of projective and of
relatively R-injective objects. IIC = A-mod, we abbreviate I{A) = Irr(C),
A-proj= CP andA-inj = C'.

Given anS-point R SandC = A-mod, we can form thé&-category
SC = SAmod. Given anotheR-categoryC as above and an exa®linear)
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functorF : C  C ,thenF is represented by a projective objétt C.We
setSF= Homgc (SR, €): SC  SC.

Let A be aSerresubcategory ofC. The canonical embedding functor
h:A C has a left adjointh which takes an objecM in C to its
maximal quotient inC which belongs tdA . It admits also a right adjoirtt’
which takes an objed¥l in C to its maximal subobject i€ which belongs
to A . The functorh is right exact, whileh' is left exact. The functoh is
fully faithful. Hence the adjunction morphisnis h 1n and h'h
are isomorphisms. By de nition, the adjunction morphisms 1 hh and
hh'  1c are respectively an epimorphism and a monomorphism.

Here, and in the rest of the paper, we use the following notation: a composi-
tion of functorsk andF is written as F while a composition of morphisms
of functors and is written as

2.3 Highest weight categories over local rings

Let R be a commutative local ring. We recall and complete some basic facts
about highest weight categories ow(cf [39, §4.1] and 1], [15, §82]).

Let C be an abeliafiRr-category which is equivalent to the categ@ymod
of nitely generated modules over a nite projectiig-algebraA.

The categoryC is a highest weight Reategoryif it is equipped with a
poset of isomorphism classes of objgctsC), ) called thestandard objects
satisfying the following conditions:

€ the objects of( C) are projective oveR

€ givenM  C such that Hog(D, M) = OforallD ( C), we have
M=0

€ givenD ( C),thereisP CP and a surjectionf : P D such
that kerf has a ( nite) Itration whose successive quotients are objects
D withD > D

€ givenD , we have Eng(D) = R

€ given Dy, D2 with Hom¢ (D4, D2) =0, we haveD;  Do.

The partial order is called théhighestweight ordeof C. We write ( C) =
{() } ,for anindexing poset. Note thatif is an order coarser than
(i.e., K implies W), thenC is also a highest weight category relative
to the order .

An equivalence of highest weight categori@s S C is an equivalence
which induces a bijectio C) S ( C). A highest weight subcategory
a full Serre subcategol@  C that is a highest weight category with poset
( C)anideal of( C) (i.e.,if D (C),D (C)andD < D,then
b (C)).
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Highest weight categories come with associated projective, injective, tilting
and costandard objects, as described in the next proposition.

Proposition 2.1 LetC be ahighestweight R-category. Given , thereare
indecomposable objectg(lp CP@, () C™,T() Cand () C
(the projective injective tilting and costandard objects associated with
unique up to isomorphism such that

() Home((w), () u R andExtt((W), () = Oforall
o

(P) there is a surjection f P() () suchthaker f has a Pltration
whose successive quotients g8 Os with > |

(1) thereisaninjection f. () I () suchthatokerf hasabltration
whose successive quotients arg1) Os withu > |

(T) there is an injection f. () T() and asurjectiong T()

() such thatcoker f (resp.kerg) has a bltration whose successive
quotients are(u) Ogresp. (u) Opwithpu < .

We have the following properties of those objects.

€ (), (), P(), 1() and T() are projective over R.

€ Given a commutative local R-algebrg $hen S is a highest weight
S-category on the poset with standard objects §) and costandard
objects S () .If R Sis alocal S-pointthen the projectiveinjective
and tilting objects associated withare SK ), SI() and ST).

€ C is a highest weight R-category on the posewith standard objects

() = (O andwithP() =1() ,1 () =PO) ., (O =

() andT() =T() .

Proof Note that the statements of the proposition are classical ihiena
eld.

The existence of the objects() giving C°P the structure of a highest
weight category and satisfying the Hom and Ext conditions is giver8By [
Proposition 4.19]. The unicity follows from Lemn2a7 below. The description
of the projective, tilting and injective objects Gf is clear.

Itis shownin B9, Proposition 4.14] the®C is a highest weight category with
( SC) = S( C). We denote byPs() , Is() , etc. the projective, injective,
etc. of SC associated with.

The existence oP() is granted in the de nition of highest weight cate-
gories. We show by descending induction othat kP() Pc() . Thisis
clearif is maximal, fortherP() = () .WehavelP() = P() Q,
whereQ is adirectsumoPy(u) 'swithp > . Byinduction,Pc(1) = kP(u),
henceQ lifts to Q  CP™, and there are map$ : Q P() and
g: P() Q such that kgf) = idq. SinceR is local andQ is a nitely
generated projectivR-module, we deduce thagtf is an automorphism d®,
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henceQ is a direct summand oP(),soQ = 0 and KP() = PB() .
The unicity of P() is then clear, since giveM, N CP we have
kHomc (M, N)  Homgc (kM, kN).

GivenR Salocal point, the residue eld lof Sis a eld extension of k.
Since KA is a split k-algebra, it follows that giveR a projective indecompos-
able kA-module, then KP is a projective indecomposableAmodule. We
deducethaP, () k kkP() ,hencePs() SP() .

The statements abouf ) follow from those abouP() by duality.

The statements aboliit( ) are proven in the same way as those Rgr) ,
using Propositior2.4(b) below.

Note that (C, ( C)) is a highest weightR-category if and only if
(kC,k ( C)) is a highest weight k-category and the objects(ofC) are
projective ovelRr, see B9, thm. 4.15]. Note also thag) has a unique simple
quotientL() ,and Ir{C) ={L() }

LetC andC be the full subcategories @ consisting of the - Itered
and - ltered objects, i.e., objects having a nite Itration whose successive
guotients are standard, costandard respectively. These are exact subcategories
of C. Note that every object & has a nite projective resolution, where
the kernels of the differentials are @ . As a consequence, the canonical
functorD?(C )  DP(C) is fully faithful. Similarly, the canonical functor
DP(C ) DP(C)isfullyfaithful, asevery objectd hasa nite relatively
R-injective resolution.

Lemma 2.2 LetC, C be highest weight R-categories. An exact functor
C C which restricts to an equivalence : C C s an equivalence
of highest weight categorigd C .

Proof Since identi es the projective objects i€ andC , it induces an
equivalence of their bounded homotopy categories, hence an equivalence
DP(C)  DP(C). Since is exact, we are done.

LetClt = C  C be the full subcategory & consisting of theilting
objects i.e., the objects which are both- Itered and - Iltered.

Let T = T() . The Ringel dualof C is the categoryC =
End: (T)°P-mod. Itis a highest weight category on the pos@t. The functor
Hom(T,€) : C C restricts to an equivalende : C (C ) ,called
theRingel equivalenceMe haveR ( ()) = () ,R(T()) P () and
R(1()) T () for , see B9, Proposition 4.26]. The highest weight
categoryC is determined, up to equivalence, 6y and we pu{C ) = C.
There is an equivalence of highest weight categaiesC such that the
composition
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cProi (C )proj %gl (C )tilt %él cinj

is isomorphic to the Nakayama duality Ha€, A) . This provides also an

equivalence of highest weight categoriés C .
Now, forM C we set

lcdc(M) = min{i; p , Ext (M, T(n) =0}

. - (2.1)
rcdc (M) = min{i; p , Ext'(T(u), M) =0}.

Lemma 2.3 Assume Risabeld. Let .Then

minfi; wo, Bxt(L(), T()) =0}
minfi; wo, BXC(LO), (W) =0}
min{i; M C ,Ext(L(), M) =0}.

Proof Letcy, co andcs be the quantities de ned by the terms involving respec-
tively T(W)'s, (W) 'sandM C inthe rsttwo equalities. It is clear that
C1 Cp= Cs.

Take p minimal such that Exe(L(), (W) = 0. There is an exact
sequence 0 (W) T (W) M 0 whereM has a lItration with
subquotients() 's where < p . We deduce that ER(L(), T(u) =0,
hencec; c¢o.

Let us recall a few facts on base change for highest weight categories.

Proposition 2.4 LetC be a highest weight R-categorgnd let R S be a
local S-point. Forany MN  C the following holds

(a) if Sis R-Rat then Sxtd (M, N) = Extd.(SM, SN) foralld N,

(b) if either M CP@or(M C and N C ), then we have Somc
(M, N) = Homsc (SM, SN),

(c) if M is R-projective then M CP™ (resp. M Ctlt, ¢ | CM) if and
onlyifkM  kCP™ (resp.kM kCUt kC , kCM),

(d) if either(M CP and N is R-projectiveor (M C and N C )
thenHomc (M, N) is R-projective.

Proof Part (a) is [BourbakiAlgebre, ch. X, 86, prop. 7.c].

The statementsin (b), (d) are cleakffis afreeA-module, and are preserved
under taking direct summands, so they holdfbr CP™.

LetM C andN C .WehaveExt(M, N) = ExtL.(SM, SN) = 0.
Asaconsequence il isan extensiondfl;, M, C andthe statements (b),
(d) hold for M;, N, then they hold foM, N. We proceed now by descending
induction on to prove that the statement f = () . There is an exact
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sequence 0 M P() O 0, whereM is an extension of
( )swith > . The statements (b), (d) hold f&() and, by induction,
for M . Hence, they hold foM.

Part (c) is B9, prop. 4.30].

Proposition 2.5 The indecomposable projectipesp. relatively R-injective
tilting) objects ofC are the R) ( resp. I(), T()), for

Proof The statements are classical f@ kand Propositio2.4(b), (c) reduce
to that case.

Let us quote the following easy result for a later use.

Proposition 2.6 (a) Let Cq, Cz be highest weighk-categories. An equiva-
lence of abeliark-categories F: C1  C, which induces a morphism of
posetdrr(C1)  Irr(Cy) is an equivalence of highest weight categories.

(b) LetCq, Co be highest weight R-categories. An equivalence of abelian R-
categories F: C;1  C, which induces an equivalence of highest weight
k-categorieskF : kCy kCs is an equivalence of highest weight R-
categories.

Proof For part (a) we need to prove thiatmaps ( C1) to ( Cz). An equiv-
alence of abelian categorids takes indecomposable projective objects to
indecomposable projective objects. So it preserves the standard modules, as
() is the largest quotient oP() all of whose composition factors are

L(w) s with p< . Part (b) follows from Propositio.4(c).

Next, we state some basic facts orand - Itered modules. The situation
over a base ring that is not a eld is slightly more complicated.

Lemma 2.7 LetC be a highest weight category over R and let MC. The
following conditions are equivalent

(@) Exg((), ™M)= oforall

(b) there is a Pltration0 = Mg My - M; = M and there are
elements such that M/ Mjg1 (i) rHOomc(( i), M) with
i = jfori =jand j< jimpliesi< j
(c) there is a bltratiorD = Mg Mp - -- M, = M, there are elements

i and there are R-modules Quch that M/ M;g1 (i) RrU.
If the conditions above hold and M is projective overtRen M C .

Proof Assume (b). Let, u andU  R-mod. We have E%to((),
(W) = 0and Hong ( (), (W) R-proj. We deduce that

Ex2O((), (W rU)=H?°RHomc((), (W kU))
H*%(RHome((), () gU)=Ex2’%(), (W) rU=0O.

This showgb) (a).
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Now, assume (a). Let be minimal such that Hoe( (), M) =0.
Fix an elemenyu (no assumption o if Homc( (), M) = 0 for
all ). There is an exact sequence 0 (L) T(W M 0,

whereM is Itered by () ’'swith < . So, we have EX(M, M) = 0.
Hence the canonical map Hey(T (1), M) Homc ( (1), M) is sur-
jective. There is an exact sequence 0 M T(W (W 0,
whereM is ltered by ()’swith < p. Since Homg(M , M) = 0, the
canonical map Ho@( (u), M) Homc (T (i), M) is an isomorphism.

Consequently, the compositiofp) T(W) (W induces a surjective
map Hong( (W), M)  Homc( (W), M).
If u = , we have Horg( (1), M) = 0, hence Horg( (1), M) = 0.

This shows that the canonical map He(i (), M) Homc((), M)is
an isomorphism. Hence, we have canonical isomorphisms

Homc( (), M) Home(T(), M) Homc((), M).
Now, setU = Homc( (), M). We have

Homc( () rU,M) Homg(U,Homc( (), M))
Homgr(U, Homc( (), M))
Home ( () rU, M).

So, the canonical map) rU M factors throughamap: () Rr
U M.
If un = , we have Hora ( (W), ()) = 0. Further, we have an isomor-
phism
Homc((), f):Home((), ()) RrU Home((), M).
Consequently, the map = Homc (A, f) is injective. Hence, since
Ex2(W, () rU)=0
for all y, the long exact sequence gives a surjective map

Exte((W), M) Ex((), Cokelf)).

The left hand side is 0 by assumption, we deduce thatéE()pt),
Cokel(f)) = 0. We have

{u s Homc((W), Coke(f)) =0 { p; Homc((w), M) =0p\{ }.
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Therefore, by induction on the st ; Home (1), M) =0}, we get
that Coke( f) has a ltration as required. Since we have an exact sequence

0O () rRU M Coke(f) 0

we deduce tha# has also a lItration as required.

Assume nowM is projective overR and consider a lItration as in (b).
We show that Hom( (), M) is projective overR for all by induc-
tion onr. There is an exact sequence 0 L P(r) ( r) 0
wherelL is ltered by (1) ’'s with u > |, so we have Hofi( ), M)
Hom(P( ), M). We deduce that Ho(( ), M) is projective overR. By
induction, giveni  r S 1, then Hong( i), M;s1) Hom(( i), M) is
projective overR and the result follows.

2.4 Highest weight covers
2.4.1 Debnition and characterizations

LetC be a highest weighR-category and |eB be a nite projectiveR-algebra.
Consider a quotient functde : C B-mod in the general sense &3
sec. lILl],i.e., therei®® CP™ and there are isomorphisrBs End (P)°P
andF Homc (P, €). We denote by arightadjointofF andby :1 GF
the unit.

We say that is

€ ahighest weight covei it is fully faithful on CP™
€ d-faithful for somed Z & if Ext;(M, N) = OforallM  C with
F(M)=0,N C andi d+ 1.

As Lemma2.8 below shows, ifF is d-faithful for somed 0, thenitis a
highest weight cover.

We denote by{B-mod)F the full exact subcategory @-mod of objects
with a ltration whose successive quotients arefRif) . LetF : C
(B-mod)F  be the restriction of.

We provide some characterizationstbfaithfulness.

Lemma 2.8 Let F be a quotient functor. Letd Z pandletE = C ,E =
( C)orE = Clit, The following conditions are equivalent
() F is d-faithful
(i) givenM CwithF(M)= 0andN E,we haveExth+ 1(M, N)=0
(i) given N E, we have H9(condN S RGF(N))) = 0
(iv) given M C,N E and i d, then F induces an isomorphism
Ext-(M, N) Extg(FM, FN)
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(v) given M CPO N Eandi d, then F induces an isomorphism
Ext.(M, N) Exty(FM, FN).

If R is a beldthese conditions are equivalent to
(vi) given with FL() = 0, thenlcdc(L())> d+ 1.

Proof Note that (ii) in the cas& = C is the statement (i). It is clear that
(ii) for E = ( C) is equivalent to (ii) forE = C , and these imply (ii)
for E = CUt. Assume (i) holds in the case = CUt. LetM  C with
F(M) = 0. We prove by induction on that Ext:d+ Y™, () =o.

There is an exact sequence 0 () T() L 0, where
L has a ltration by (u) ’'s with p < . We have E>Q;d+ 1(M, T() =
0 and, by induction, we have E‘g&”(M, L) = 0. We deduce that
Ext.**(M, ()) = 0.So, (ii) holds folE = C .

Let X = condN S RGF(N)). We haveF(H' (X)) = 0 for alli. Given
Y DP(C) such thatF(Y) = 0, we have

Homps(c) (Y, RGF(N))  Homppg(F(Y), F(N)) = 0,

hence Homgypo oy (Y, X[i])  Hompoc)(Y, N[i + 1]) for alli.
Assume (ii). As usual, let , denote theanonical truncatiorwhich takes
a complexC = (C", d") to the subcomplex

m(C) ={-- cms1 Ker@d™ 0 ---}

TakingY = 4(X) above, we obtain Hogpbcy( d(X), X) = O, hence

d(X) = 0. So, (iii) holds. _ _

Note that the canonical map ExtM, N) Extg(FM, FN) is an iso-
morphism if and only if the canonical map I‘%)(ﬂ\/l, N) Hompo(c) (M,
RGF N[i]) is an isomorphism.

Assume (iii). Applying HontM, S) to the distinguished triangl&
RGFN) X ,we deduce that (iv) holds.

It is clear that (iv)  (v). Assume (V). It follows from Lemma.10that
the canonical map EXt}(M, N)  Ext&r1(F(M), F(N)) is injective for
alM C, and (ii) follows.

Assume nallyRis a eld. The assertion (i), in the cage= CUlt_ follows
from the caseM simple: that is assertion (vi).

Remark 2.9We leave it to the reader to check that the rst three equivalences
in Lemma2.8hold whend = S 1.

Lemma 2.10 Let F be an exact functotetd S l1andletN C.Assume
F induces
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€ an i;omorphisnExtiC(P, N) Extg(F(P), F(N)) for P CP and
i
€ aninjectionExtZ* Y(P, N)  Ext3rL(F(P), F(N)) for P CP™l,

Then F induces
€ an isomorphisnExt. (M, N)  Exty(F(M), F(N)) forM C andi

d
€ aninjectionExtZ* Y(M, N)  Ext§"}(F(M), F(N)) for M C.

Proof We prove by induction onthe rst statement of the lemma. Consider
an exact sequence 0 M P M 0 with P CP™. We have a
commutative diagram with exact horizontal sequences

Ext; (P, N) Exts (M, N) Exty {(M, N) Ext 1(P, N) Ext (M, N)

Exty(FP, FN) Exty(FM , FN) Exty 1(FM, FN) Exty 1(FP, FN) Exty 1(FM , FN)
where the fourth vertical map is an isomorphismiferl  d and is injective

fori = d. By induction, the second vertical map is an isomorphism, hence
the third vertical map is injective. So, we have shown that the canonical map
ExtyY(L,N)  Exty(F(L), F(N)) is injective for allL  C, in partic-
ularforL = M.Ifi+ 1 d, we deduce that the third vertical map is an

isomorphism.
Let us summarize some of the results above.

Corollary 2.11 LetF: C B-modbe a quotient functor.

€ F is (S1)-faithful if and only if F is faithful

€ F is a highest weight cover if and only f M) : M GF(M) is an
isomorphism for all M CP™

€ F is O-faithful if and only if F is fully faithful if and only if ( M) : M
GF(M) is an isomorphism forall M C

€ F is 1-faithful if and only if F is an equivalence.

The next two lemmas relate highest weight cover€ o€ andC .

Lemma 2.12 Consider a highest weight cover E Homc(P,€) : C
B-mod Then F = Homc (Homa(P, A), €) : C B°P-modis a highest
weight cover.

Letd 0. Then F is d-faithful if and only if F induces isomorphisms

Ext. (M,N) Extse(F M,F N)foralM,N (C) andi d.
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Proof There is a commutative diagram

Homg(€,R
(c ypp—ED (¢
F F
(B-mod)°P Rp“’jm B°%-mod RPr

since

Homaop(Homa(P, A), Homgr(£, R)) Homgr(Homa(P, A) A€, R)
Homgr(Homa(P, €), R).

The lemma follows, since (higher) extensions can be computed in the exact
subcategories appearing in the diagram.

The next lemma is clear.

Lemma2.13Let T C and consider a Pnite projective R-algebra B with
a morphism of algebras : B End:(T)°P. Let F = Homc (T, €), P =
R(T)and F = Homc (P,€):C B-mod.

The functor F is a highest weight cover if and only if T is tilting is fully
faithful onCU and is an isomorphism.

The functor F is d-faithful if and only if T is tilting is an isomorphism
and F induces isomorphisrixt. (M, N)  Ext5(FM, FN) forall M, N
C andi d.

We say that arR-algebraB is self-injectivef B is relatively R-injective.

Lemma 2.14 Let F = Homc (P, €) : C B-modbe aO-faithful functor. If
B is self-injectivethen P is tilting.

Proof Let . By Lemma2.10 we have an injection

Extt((), P) Exty(F(), F(P)).

SinceF(P) = BisrelativelyR-injective andF () s projective ovelr, we
deduce that Ef(F (), F(P)) = 0, hence Ext((), P) = 0. Itfollows
from Lemma2.7that P is tilting.

Lemma 2.15 Let C be a highest weight categoryf  CUlt and B =
End: (T)°P. Assume the restriction éfomc (T, €) to C s fully faithful and
B is self-injective. Then T is projective.

Proof This follows from Lemma.14applied toC , cf Lemma2.13
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2.4.2 Base change

Let S be a local commutative aR-algebra. IfF is d-faithful, then SF is
d-faithful, and the converse holdsis faithfully at over R (for example, if
it is a local S-point).

Lemma 2.16 Let F be a quotient functor.

If KF is (S 1)-faithful, then F is(S 1)-faithful.

Assume R is a regular local ring. If JR is O-faithful (resp. is a highest
weight covey for all p P 1, then F isO-faithful (resp. is a highest weight
covel).

Proof The rst statement is obvious, since objects®f are projective over
R.
Assume nowF is (S 1)-faithful. LetM C . Consider the exact sequence

0 ME GFEM  coker(M) o

AssumeR, coker ( M) = Oforallp P 3. Then, the support of cokef M)
has codimension 2, hence Eﬁ(coker( M), M) = 0, sinceM is projective
over R. It follows that coker( M) is a direct summand of the torsion-free
moduleG F(M), hence coke{ M) = 0. The lemma follows.

The corollary below is immediate.

Corollary 2.17 Let C be a highest weight categorffr  Ct and B =
End: (T)®P. Let F = Homc (T, €). Assume R is a regular local ring. Then
the restriction of F taC s fully faithful if the restriction of BF to R,C is
fully faithful forallp P .

Proof LetP = R(T) andF = Hom¢ (P,€):C B-mod. The restric-
tion of F to C s fully faithful if and only if the restriction ofF to (C )

is fully faithful. Now, F is a quotient functor becau§eis tilting. Thus, by
Lemma2.16 if RyF is O-faithfulforallp P 1, thenF is O-faithful. Finally,

by Lemma2.13 R,F is O-faithful if the restriction ofR,F to Ry,C s fully

faithful.

The following key result generalize89, prop. 4.42].

Proposition 2.18 Assume R is regular. KF is d-faithful then F is d-faithful.
If in addition KF is(d + 1)-faithful, then F is(d + 1)-faithful.

Proof Assume I is d-faithful. Let M C with F(M) = 0 and let
N C .WehaveRHomgc(kM, kN) Kk bRHomc(M,N).LetC be a
bounded complex of nitely generated projectiRemodules quasi-isomorphic
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to RHomc (M, N) and withC<" = 0. We assume is maximal with this
property. Then, Exi. (kM, kN) H'(kC) = 0, hencer > d+ 1, so
Extcd+ 1(M, N) = 0. It follows thatF is d-faithful.

Assume novK F is (d + 1)-faithful. ThenH9*2(C) is a torsionR-module.
If it is non-zero, therC9*1 =0 a contradiction. SoH9*2(C) = 0 andF is
(d + 1)-faithful.

2.4.3 Uniqueness results

We assume in this section th&tis normal.

Let B be anR-algebra, nitely generated and projective owerand such
thatK B is split semi-simple.

Fix a poset structure on (KB ). GivenE Irr(KB), let(KB) g (resp.
(KB )<Eg) be the sum of the simplK B -submodules oK B isomorphic to
someF E (resp.F < E).

We say that a familyS(E)}e (k) Of B -modules, nitely generated and
projective overR, areSpecht modulefer B if

(B (KB) g)(B (KB)<g) SE)<E forE Irr(K B).

Note thatK S(E)  E and Eng (S(E)) = R. So, if{S(E)}e mr(kB) IS
another family of Specht modules, th&{E) S(E) for all E: the Specht
modules are unique, up to isomorphism (if they exist).

The same construction with the opposite order ofKiB ) leads to thelual
Specht modules &) B-mod withKS(E) E.

Assume that the&K-algebraK B is semi-simple and thaf is a highest
weight cover. Then th& -categoryK C is split semi-simple and we have an
equivalenceK F : KC K B-mod. So, the functoK F induces a bijection

Irr(KC) Irr(KB)andwepuS() xk = KF(()) Irr(K B). The highest
weight order on Ir(K C) yields a partial order on I(K B).

We will say thatF is ahighest weight cover of B for the order ém(K B)
coming from the one olr (K C).

The next lemma follows from39, Lemma 4.48].

Lemma 2.19 Let F be a highest weight cover and assume K B is semi-simple.
Then B has Specht module$)S = F(()) and dual Specht modules

SO =F(C ().
Proposition 2.20Let F : C B-modand F : C B-mod be highest

weight covers. Assume R is regyl8is self-injectiveand K B is semi-simple.
Assume that

€ the order onirr (K B) induced by(C, F) rePnesor is rePned bythe order
induced by(C , F)
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€ F is fully faithful onC and onC
€ F is fully faithfulonC and onC

€(@) F(P()) F(C ij) for all such thaticdyc (L()) 1 and
F(I()) F(C™)forall such thatcdgc (L()) 1or
(b) F(T())  F(C ) forall such thaticde (L ())  1or

rede (L () 1L

Then there is an equivalence of highest weight categoriesC C such
that F F.

Proof Lemma2.19shows there is a bijectiop : suchthat(())

F ( (p()) . Thus, both categories are highest weight for whichever of the
orders on Ir€K B) is coarser, and we may assume that the partial orders coin-
cide.

LetO = C andO = C .Lemma2.14shows thaP is tilting. So,R (P)

is tilting and projective and, identifying with C , we haveR S1(P)
R (P). SinceF is fully faithful on C , it follows from LemmaZ2.13 that
F = Homc (R(P), S) is O-faithful. Similarly, we deduce thd is fully
faithful on(C ) , sinceF is O-faithful. We prove in the same way that =
Homc (R (P), €) is fully faithfulon (C ) andon(C ) .

We haveF (P()) F (CP9)ifandonlyifF (T ()) F ((C ).
Similarly, we haveF(l()) F (C ™M) if and only if F (T ())

F ((C )tilt)_

SinceC C as highest weight categories, we deduce that the case
(a) of the proposition fofC, C , F, F ) is equivalent to the case (b) of the
proposition for(C ,C ,F ,F ). We assume from now on that we are in
case (a).

LetP = P leae (L()) 1 P() . letB = End: (P)°P and letF =
Homc(P,€) : C B-mod. This is a 1-faithful cover by Lemm2.8
and Propositior2.18 So the functorF restricts to an equivalencg

C  (B-modFf , with inverse Homy(F(A), €).
ConsiderP ~ C P/ sych thatF (P)  F(P). Fixing such an isomor-

phism, we obtain an isomorphisB1 End: (P )°P. Note thatP is a direct
summand oP ,sinceF (P) B F(P).LetF = Homc (P ,€):C
B-mod, a highestweight cover. Lemrad 9showsthafF ( ()) F((O))
for all

Leti be the idempotent oB such thatPi = P. The right action ofB

on P provides an isomorphisB i Bi. This equipsBi with a structure of
(B, B)-bimodule. LetF = Homg(Bi, €) : B-mod  B-mod.

We have an isomorphistA F  Homc(P 5 Bi, €), henceF F F.
Similarly, we have an isomorphiskh F  F . Consider the exact functor
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= Homc (P g F(A),€) Homg(F(A),€) F :(C) C

We have an isomorphisia F andthere is a commutative diagram
C C
F F
a F
- (B-mod) .
F
(B-mod)©

SinceF s fully faithful and F  is an equivalence, we deduce tlrat is
fully faithful. SinceF is fully faithful, we deduce thaF is fully faithful.
It follows that is fully faithful. Note that ( () () forall
SinceF(P)= Bi F (P),wehave( P) P.

De ne

= Homc(( A),€):C C
Since( A) C ,itfollowsthat isexactonC .We have
( P) Home(( A), ( P)) Homc(A,P) P.

Letus xanisomorphism( P) P .Letl be anideal. De néK P),| as
the sum of the simple submoduleskoP isomorphic toK () for somep
|.LetP, = P (KP),.Given , we haveP /P () " for some
n > 0, sinceP is tilting (Lemma2.14) andK P is a progenerator d C. We
haveK (( KP);) = (KP), for all idealsl ,hence( () ()
for all . We deduce that restricts to an exact functor : C Cc .
We have

(A) ¢ P Homc (P gF(A),P) Homg(F(A),F (P))
Homg(F(A), F(P)) Homc(A,P) P,

hence

F = Home (P ,Homc(( A), €)
Homc(( A) ¢ P,€ Homc(P,€) = F.

SinceF andF are fully faithful, we deduce that is fully faithful.
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We now apply what we have proven@® andC (cf Lemma2.12. We
obtain a full faithful exact functor : C C , hence a fully faithful
exactfunctor = (€) :C C suchthat(()) ( ) forall

. The composition s a fully faithful exact endofunctor & and
F F. It follows that xes isomorphism classes of objects, hence it
is an equivalence. Similarly, is an equivalence, henceis an equivalence
(C) C . The proposition follows from Lemma2.2

2.4.4 Covers of truncated polynomial rings in one variable

Let | be a non-empty nite poset addji}; | a family of elements oR. We
denote byg the image ofyi in k. We assume that givenj |, theng = q;
ifandonlyi jorj .

Let B = R[T]/ ; (T S q) . This is a freeR-algebra, with basis
(1, T,..., T9SY), Given j I, let § = R[TI(T S gj) and;
RITY (TS a).WeputY = Y, A= Endg(Y)®, G
Homg(Y, €) : B-mod A-mod, P = G(B) and F = Homa(P, €) :
A-mod B-mod. Let ( j) be the quotient of5(Yj) by the subspace of
mapsY Y;j that factor througly; for somej > j.

Proposition 2.21 (a) C = A-mod is a highest weight R-category on the
poset | with standard objects the j)Os. The functor F is(& 1)-faithful
highest cover of B and we have( F j)) S, F(P())) Y;j and
P(j) = G(Yj). Ifgi =qj fori = j, then F is aO-faithful cover of B.

(b) AssumeC is a highest weight R-category with poset | and:FC
B-modis a highest weight cover. If Risa beld or K j)) KS; for

all j, then there is an equivalence of highest weight categorie€ C
such that F F.

Proof Let | be the quotient of by the relation  j if g = gj. We have a
block decompositio 3 iRITI/  ; ;(TSq) ,andifthe proposition
holds for the individual blocks, then it holds f@&. As a consequence, it is

enough to prove the proposition whepn = q; for all i, j I. Choosing
[ I and replacingl by T S q;, we can assume further thgt = 0 for
alli 1. Since the poset structure ¢ris now a total order, we can assume

| ={0,...,dS 1} with the usual order, for some 1. .
Assume rstRis a eld with B = R[T]/ T9. Note thatY; = R[T]/ T9>]
and that{Yj}; | is a complete set of representatives of isomorphism classes
of indecomposabléB-modules. Denote byg; the idempotent ofA corre-
sponding to the projection ont¥;. Then, the projective indecomposable
A-modules are the?(j) = Aegj, | I. Note that EngP(d S 1)) = R.
LetL = Aegg1A. We havel?2 = L, L P(d S 1)d as left A-modules and
AL Endgryerasy o i g2 RITI(T9S1S1) P tfollows thatA-mod
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is a highest weight category on the pobgtvith ( j) = Aej/ Agj+1Agj, see
[10, lem. 3.4]. Let us state some propertie€othat can be easily checked. The
module ( j) is uniserial, with composition serigg(j), L(j S 1),..., L(0),
starting from the head. We hay®(j) : (i)] = 1ifi j,and[P(j) :
( i)]= Ootherwise. The module = P(0) is projective and injective, while
P(dS 1) = ( dS1).Note thatF is exact and its restriction t&-proj is fully
faithful. Since every( j) embeds inP, it follows that F is (S 1)-faithful.
Note thatF(( j)) R

Consider nowC and F as in the proposition. Sinc€ hasd non-
isomorphic  projective indecomposable modules, it follows that

{F(P(iN}Yj 1 =1{Yj}j 1. As a consequence, there is a permutatioaf
| and an equivalence : C-proj C -proj such that( P( ( j))) P(j)
andF F. Such an equivalence extendsto an equivalenc€ C ,and

F F. So,C is a highest weight category with the order giveniby j
if (i) (j).NotethatEn¢P(j)) = Rifandonlyifj = dS 1. It follows
thatd S 1 must be maximal for the order , and considering the quotient
algebraA/ L as above, one sees by induction that ,i.e., = 1, hence

is an equivalence of highest weight categories. This shows the proposition
whenRis a eld.

Assume nowR is a general local ring. Th&-modules( j) are free and
kA Endg(kY). We deduce that is a highest weight category arkdis
a (S1)-faithful highest weight cover. IK B is semi-simple, it follows from
Propositior2.18thatF is O-faithful (the regularity oR is not necessary here).

We consider nallyC andF as in the proposition. Since the canonical
map kHong(Yi, Yj) Homg(KYi, kYj) is an isomorphism for all, j,
we deduce thatk is a highest weight cover, hence equivalent to. lds a
consequencd; is O-faithfuland k= (P (j))  kY; forall j. We deduce that
[P(j): (D= i j,anditfollows thafKF (P (j))] = [KSj]+---+
[K&51] in Ko(K B-mod). There is a surjective morphism BEmodulesB
kF (P (j)). Itlifts to a surjective morphism oB-modulesB F(P()).
SinceF (P ())) is free overR, there is a subset of | of cardinality j with
F(P(j) Bl ;(TSq) .ltfollowsthatlKF (P (j)]= ,3;[KS]
henceF (P (j)) Yj,as{ai}i 3 ={ai}i j. The proposition follows.

Similarly,setZ; = R[T]/ ; j(Téqi).Then,wecan prove the following.

Corollary 2.22 Assume further thaC is a highest weight R-category with
poset | and F: C B-modis a O-faithful cover. If KF( (j)) KS
forall j, thenwe have KP (j)) Yjand F(T (j)) Z;.

Proof The isomorphisnk (P (j))  Yj has been proved above. Let us prove
that F (T (})) Zj. As above, we can assume tHat= {O0,...,d S 1}
with the usual order. LetC ) ! C be the highest weight subcategory
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associated with the ide@| i; j 1} 1. By[39, prop. 4.26], under the
embeddingC) ' C we haveT (j) = P (0) !. The restriction ofF
to (C) ! is O-faithful. Hence, the proof above implies tifat(P (0) ') =
RIT) j(TSqi)z Zj.

2.5 Complement on symmetric algebras

Let R be a commutative noetherian ring. LBtbe anR-algebra. We say
that B is symmetridf it is a nitely generated projectivdR-module andB is
isomorphic toB as a(B, B)-bimodule.

Proposition 2.23 Let B be a symmetric R-algebra. Assume R is a domain
with Peld of fractions K and K B is a split semi-simple algebra. Ldte an
R-algebra endomorphism of B.

If K isanautomorphism of K B thatinduces the identity map g(kB),
then is an automorphism.

Proof Lett Homg(B, R) be a symmetrizing form foB, the image of 1
through an isomorphism ¢B, B)-bimodulesB B . Note that([B, B]) =
0.

Since KB is split semi-simple, the character map is an isomorphism
K 7z Ko(KB) Homk (K B/ [K B, KB], K). We deduce that induces
the identity onK B/ [K B, K B], hencet = t.

Consider a maximal ideah of R, and let k= R/m. The k-algebra B is
symmetric, with symmetrizing formtkand(kt) (k) = kt. It follows that
kt(ker(k )) = 0, hence kglkk ) = 0, since the kernel of a symmetrizing
form contains no nonzero ideal. We deduce thati& an isomorphism.

We have shown thatR/m) is onto for every maximal ideah of R. It
followsthat isonto, henceitisanisomorphism, sirg&s a nitely generated
projectiveR-module.

3 Hecke algebras, g-Schur algebras and categoribcations

Let R be aC][q, qél]-algebra. Legr be the image of] in R. If no confusion
is possible, we may abbreviage= gR.

3.1 Quivers

Assume thagir = 1. For any subsdt R* we associate a quiver (q)
with set of vertices and with an arrow i gr Whenevei,igr | .We
may abbreviat¢é = | (qg) when there is no risk of confusion. Note that we

do not assumeé (q) to be connected dr to be nite. We will assume that
(@1 (@) g7 is nite.
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Let Qr1,..., QR | such thatl = p=1| p, Wherel , =
I qé QRr,p- We writei jif i g%j. Each equivalence class has a
representative (possibly more than one) in thg €a{ 1, Qr2,..., Qr }

If I (q) is stable under multiplication byé, andgr is not aroot of 1, then
eachl pisisomorphictothe quivehA .If 1 (q) is stable under multiplication
by qé, andgr is a primitivee-th of 1, then each  is isomorphic to the quiver

1
ALy _ o _

Forany subselt R we consider also the quivér with the set of vertices

| and with an arrow i+ 1 whenever,i+1 |.We may abbreviateé= I;.

3.2 KacbMoody algebras associated with a quiver

Let(aj) be the generalized Cartan matrix associated with the quivand let
sk be the (derived) Kac—Moody algebra o@associated witiajj ). The Lie
algebrasl is generated b¥;, F withi | , subject to the usual relations.
Fixasubset [ 1, ]suchthat isthe disjointunion = p | p-We
have a Lie algebra decompositish = D sl -

For eachi I ,let i, i be the simple root and coroot corresponding
to Ej and let j be thei-th fundamental weight. S = ;| Z  and
Q"= , Ni.SetP= ,, Z jandP"= ;| N j.

Let X be the free abelian group with bagis; i | }. The assignment

i i S iq yields additive map®, Q*  X.If | is bounded below then
we may identify j with the (nite) sum 4  jqsd. SO, we may consider
P, P as subsets oX.

WewillwrteP= R ,Q=Q ,Q* = Q,+ andX = X ifnecessary. For

Q* ofheightdwe writel = {i = (iy,...,iq) | 9 j+ -+ ,=

}. The setl s an orbit for the action of the symmetric grogg on| ¢
by permutation. EacB 4-orbitin| 9 is of this form.

For any subset R we consider also the quivei which yields in the
same way as above a Cartan datum and a Lie alggpra

3.3 Partitions

SetZz (n)={(1,..., ) Z,; 1+---+ =n}C, ={ Z ), p
0, p}, andC, ={ Z(n), p> 0, p} AnelementofC, is a
compositiorof ninto  parts. We will say that the compositioris dominant
if it satis es the inequalities 1 2 e , and that it isanti-dominant
if we have 1 2 - .
LetP , be the set opartitionsof n, i.e., the set of non-increasing sequences
of positive integers with sum. For P n, let] | = n be the weight of ,
let () be the number of parts in and let! be the transposed partition.
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We associate to the Young diagram Y) with ; boxes in thei-th row.
Let P , be the set of -partitions of n, i.e., the set of -tuples of partitions

=(ll"'1 )Wlth pl p|: n_LetP = npnandp = nPn.
Foreach C,andd [ 1,n]wesetP ={ P I(P) o} with
P4=P Py

Let A Y() be the box which lies in the-th row and j-th column
of the diagram of P. Consider the elemenp(A) = pin [1, ]. Given
Qr1, Qr2,-.., QR I ,we setq-resQ(A) = qu;aSI QR,p- For ,p P
we writeg-res?(u S ) = aif p is obtained by adding a box of residago
the Young diagram associated with

We may writeg-re$(A) = g-res?(A) and cont(A) = sp+ j Si, wheres,
is a formal symbol suchthaﬁp = QR,p- We callg-re$(A) theshifted residue
of Aand cont(A) its shifted contentWe may also abbrevia®p = QR p.

Let be the group of -th roots of 1 inC*. Let S4 be the symmetric
group ond letters and ¢ be the semi-direct produ&y 9, where 9is
the Cartesian product aof copies of . The group ¢ is a complex re ection
group. The setI(C ¢) isidenti ed withP , in such away that is associated
with the moduleX () cinduced fromthe | 4 x---x | |-module 1

2 e Sl Here »istheirreducibleCS, p-module associated
with the partition Pand P is the one dimensionall "l-module given by the
p-th power of the determinant.

Note that this labeling agrees witB9, sec. 6], #6, sec. 1.5] but it differs
from that of R4, sec. 2.3.4].

3.4 Hecke algebras
3.4.1 Cyclotomic Hecke algebras

WriteHro = R. Ford 1, theafPne Hecke algebrdr 4 is the R-algebra
generated bf, ..., Tus1, X%, ..., X5 subject to the relations

(Ti+ (TiSar) = 0,
TiTivaTi = TivaTiTien,
TiTj =TT if i Sj|> 1,
XiXj = XjXj,
X xSt = xS1x; = 1,
TiXiTi = grXi+1,
XiTj = Tj X ifiSj =01
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Thecyclotomic Hecke algebiia the quotienH S’d of HR ¢ by the two-sided
ideal generated by ,-;(X1S QR p).

If = 1,thentheR-algebraH g’d is generated by; withi [ 1, d). Itdoes
not depend on the choice of the u@k 1. In this case we writél +R’d =H S’d.

Givens = (s1,..., S ) as above, we WritdﬁSR,d = Hgyd. Foranyd < d,
the R-algebra embeddinglr ¢ Hrd given by T, Ti, X; X
fori [1,d), j [1d] induces an embedding} 4 Hf'{d . The R-
algebreH}, 4 isfree asaleftandas a rigﬁgyd-module. This yields a pair of
exact adjoint functorgind] , Regj ) betweerHs, ; -mod andH$, 4-mod. For
d d thereisalsoan algebraembeddlhhgd HSRd given byT; T; for
i [ 1,d). Ityields a pair of exact adjoint functo(iandg‘f, Re%’f) between
H% 4-mod andH,  -mod.

Now, assume th&R = K isa eld. Any nite dimensionaHy ;-moduleM
can be decomposed into (generalized) weight spdtes ;| ¢ Mj, with
Mi={v M; (X Si)=0,r [1,d],n 0}.Seep,sec.4.1]andthe
references there for details. Decomposing the regular module, we get a system
of orthogonal idempoten{d;; i K9} in Hf(,d such that iM = M,; for each
nite dimensional moduleM of Hf 4.

Given Q" of heightd, we set1 = ; ¢ 1. The nonzero 1's are
the primitive central idempotents iy 4, i.e., the algebrédy = 1 H is
either zero or a single block éfy 4 [4,30].

3.4.2 Degenerate cyclotomic Hecke algebras

In the same way we can consider tfegenerate Hecke algebragtd and the
degenerate cyclotomic Hecke algebréymintroduced in §]. We assume here

s R . The algebraHr ¢ is generated by elements . . ., tag1, X1, ..., Xd
subject to the relations

t2 =1,

Glivali = Geatitivg,
ity = tjti if liSj|> 1,
XiXj = XjX,

iXi+1= Xt + 1,
Xitj = tjx; ifi S j =0, 1.

The degenerate cyclotomic Hecke algelalr%’d is the quotient oHR g by the
two-sided ideal generated by the elemergz 1(X1 S sk p)-
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The representation theory &3 Rd IS very similar to that ofHj Rd- For
instance, iR = K isa eld then the primitive central |dempotentsh1‘ﬁ qare

again labeled by the elements Q* of heightd, which permits us to de ne
Hg =1 Hg 4asabove. Foranysubdet K we setH = o Hk,

Hﬁd = H Hﬁ,d- See e.g.§, sec. 3] for more details.
3.4.3 Representations

We will use the following properties dfig 4 andH#, 4

€ the R-algebradi} R.d andH3 R g are both symmetric by3], [5, app. A],
€ theK-algebraHy k g Is split semi-simple if and only if

d
(1+ g +--+ gt (9% Qk.uS Qky) =0. (3.1)

i=1 u<v Sd<r<d

Now, set = exp2 S1/) .Ifqx = 1andQk,p = PSL, thenHS
is the algebre&K ¢ of the group 4. Therefore, ifH} k d IS semi- S|mple then
the set Ir(H} ) is canonically identi ed with Ir(K 4) by Tits’ deformation

Theorem. For each P 4, one can de ne &pecht module(§ ;q of Hg
as in Sect2.4.3 using the dominance orderonP 4, cf Sect.3.5 below It
is free overR, and specializestd () casqr  1andQrp PS1 The

Specht module§( ) % of HE 4 with P 4 are de ned similarly.
Now, assume thaR is an analytlc deformatlon ring in the sense of SBct.

below. Set = IO=1qR % andl = p=1(Sp + Z). The multiplication by
gr and the shift by 1 equips the séts | with structures of quivers (q), I1
as explained in Secs.1

Proposition 3.1 Assume that R is a local ring.

(a) The blockHy of HR 4 (resp. the blocks B of Hg ;) are labeled by

theelements Q; (resp. Q) ofheightd. We ha\/eHS’ = H}.
andkH,ﬁy = Hksl for each.

(b) Assumethatthemaxp(S2 S1€/) yieldsanisomorphism of quivers
:11 1 (g). Given an element Q|+, let denote also its image in

Q[ . Then we have an R-algebra isomorphism : H; ~ HZ such
that r(S() %) () & foreach.
Proof Part (a) is obvious, because the primitive central idempotertiy gf
Hk q liftto HR 4 Hs R.d sinceR is henselian.

More precisely, given in QI orin QI , to lift the idempotent 1in Hk dr
Hp 4 into an idempotent i%, 4, HR 4, we rst consider the idempotent in
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H ¢» HR ¢ given by the sum of alliis, with i in | d=1 dorinld= 1§
such that the residue classidh k9 is a summand of . Note that, although
there may be an in nite number of such tuplethis sum contains only a nite
number of non zero terms. A standard computation in linear algebra implies
that it belongs indeed tid3 Rd H;,d’ yielding an idempotent which specializes
tol.

Now, we concentrate on part (b). Note thét §ec. 3.5, 4.5],40, §3.2.6]
yield a K-algebra isomorphismy : H HZ . We will prove that the
isomorphism g in [40] (which differs from the one indg]) restricts to an
isomorphism gr : H} H

We have the foIIowmg formulae

SH1) =1 wherej = (i),
ﬁl(xr 1) = (jr81xr S1+ ir)d,

5 Xr S Xr+1S |

S1 _ r r+19 Jr s

kOt + L) = (Tr + 1)xr§—qxr+111 ifiy = ireq,

S Xr S X

S1 N\ = r r+1 e o

R ((t+ D1) = (Tr + 1)—X g qu+1+ i L ifir = iper+ 1,

U+ D1)= (T + 1) 00 S e S 1 =7 X ? ngl 1 else
Xr S qXr+1 K (X)S g (%+1)

LetP H} Rg andpP Hp 4 be theR-subalgebras generated by tKg's
and thex,'s respectlvely We may assume thais in general position. Then,
the K-algebrasHy 4, Hg 4 are semi-simple, and the same is true FoP
and K P. Therefore, we have; 1 = i, 1; and Xy = k= (i)Y =
exp$2 31 $1(%))1. We deduce that3'(P) = P.

Now, we have

El(xr) S El(XI’+ 1) S1

Xr é qu+1 ; 3
= q51x51 1) S xS 1
“lexpS2 ST 2x)S Px+1)S /) S1
Xy S Xr+1

K0S Rl
expS2  SI( Sl(xoé >1(x+1))/ ) S1

Sl(Xr)S K (Xr+l)

= Ar+l

Therefore, both expressions are unit®inrHence g restricts to an isomor-
phism r:H%  HZ
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The isomorphism r(S() &) S() & follows from the unicity of Specht
modules.

3.5 Cyclotomicg-Schur algebras

For each P 4, we consider the elementy = w s Tw and
X = _?:pl(xi S Qr.p) Where_ap = |_1| +..-+| P31 andS
is the parabolic subgroup &y associated with . The R- aIgebraSS
Enohs W X H% 4 Is called thecyclotomic gSchuralgebra [L3].

The categor)‘s 4-mod is a highest weight category whose standard objects
are theweyl modules W) &7 labeled by multipartitions P 4. The highest
weight order is given by thdomlnance order onP . The aIgebreSR q1s
Ringel self-dual, se€d[7, prop. 4.3, cor. 7.3].

There is a double centrallzer property Bﬁg q andH3 R ¢ Which produces a
highest weight cover % 4 Sk 4-mod HRd—mod called thecyclotomic

g-Schur functof 36, sec. 5], B9]. The Specht modul&() ‘Eq is the image of
W() >9 under this functor. IfR = K is a eld, then theK - aIgebraSK q1s
semi- S|mple if and only if condition3(1) holds.

UsingH3 R g iNstead oH3 R d» We de ne thedegenerate cyclotomic q-Schur
algebra %d and the cyclotomicag-Schur functor §4 @ S 4-mod
HR 4-mod in a similar way. See2[5] for details. All the results ors;
recalled above have direct analogues&ﬁérd, see e.g.,44, sec. 6.6]. In par—
ticular, the Specht modul§( ) % is the image of the Weyl modul/() % by
theqg-Schur functor.

3.6 Categorical actions on abelian categories

Let C be an abeliariR-category.

Debnition 3.2 A pre-categoribcatior{or pre-categorical actiohon C is a

tuple(E, F, X, T) where €, F) is an adjoint pair of exact functos C

andX EndE),T EndE?) are endomorphisms of functors such that

€ for eachd N, there is anR-algebra homomorphismgd : Hrd
End(EY) given by Xy EUSkx EKSL T, EASISIT EIST for k
[1,d],1 [ 1,d),

€ the functorE is isomorphic to a right adjoint of.

Remark 3.3Given a pair of adjoint functor§E, F), the adjunction yields

a canonicalR-algebra isomorphism Ef&%) = End(EY)°P for eachd

N, see e.g.,9, sec. 4.1.2]. Under this isomorphism, the morphis)sT

yield morphismsX EndF), T  End(F2) which induces arR-algebra

homomorphism s : Hrq  End(F9)°P.
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Now, assumethd = Kisa eldandthaC isHom- nite.Letl =1 (q).

DePnition 3.4[9,40] An sl, -categoribcatiorfor categorical actiopnonC is
the datum of a pre-categori catiofE, F, X, T) and a decompositio@ =

x C . Fori | letF;, Ej be the generalizedeigenspaces oX acting
on F, E respectively. We assume in addition that
€ wehaveF = , |, FFandE= ,, E,
€ the action ofEj, Fj,i | on[C] gives an integrable representation of

sl ,

€ wehaveEi(C) C.+ ,andFR(C) Csg ..

Remark 3.5The constructions above have a degenerate analogue. Given
R andsl, as above, the de nition of a pre-categori cation and of sip-
categori cation is the same, witH r 4 replaced byHgr ¢ andsl; by sl;. In
particular, foreacd NthereisarR-algebrahomomorphismgd : Hr g
EndEY) given by X,  EYSkXEKSL 1 EUSISITEIST

Example 3.6Let R = K be a eld which is an analytic algebra, see SécL

LetsbeasinSecB.3 and = °= ., q, LetH} ;= H
where runs over elements @@ of heightd.

The abelianK-categoryL () | = 4 NHY g-mod decomposes as
L) = QI+L()|,gwithL()|,g:Hf<’-mod.

The endofunctor& = 4 yReg"tandF =, yInd"tofL () |

are exact and biadjoint. The right multiplication bi} d+1 DY Xd+1 yields
an endomorphism of the functor Iﬁ’ﬂl, denoted again bYXg+1. The right
multiplication by Ty+ 1 yields an endomorphism of Iﬂaz. We de ne X
EndF) andT EndF?) by X= 4 yXd+r1andT = 4 yTa+1.

The tuple (E, F, X, T) and the decomposition above give a@h -
categori cation ofL() (the simplesi -module with highest weight ) on
L () | , called theminimals} -categoriPcatiorof highest weight .

In the degenerate case, the induction and restriction functors give an abelian
sli-categori cationofL() onL () 1= 4 u Hﬁd-mod, called again the
minimal sl; -categori cation of highest weight .

4 The categoryO

Fix integers, N 1and xacomposition Cy .

4.1 Deformation rings

A deformation ringis a regular commutative noetheri@ralgebraR with 1
equipped with &C-algebra homomorphis@[C* x C ] R.Let Rr, Rp
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be the images iR of the standard coordinatesz;, ..., z onC* andC . Set
R = ( Rly--+1 R, ) DenesRll,...,sR, RbysR,p = pt Rp- We
may abbreviats, = s p, = rand p= Rgp.ForanySpoint :R S
wewrite s= ( r)and sp= ( Rp)-
A local deformation rings a deformation rindR which is a local ring such
that the residue clasg,p of g, p is O for eachp. We will denote bySe the
residue classi of r. We will always assume that e is a positive integer

Remark 4.1Let R be a deformation ring. Then, for eaph P, the local ring
Ry is regarded as a deformation ring with deformation parametgrs g, . It
may not be a local deformation ring, since we may hayg / p.

We will say that the deformation ring is in general positiorif the elements
in{ ruS Rv+a r+b rScab Zc Q,u =v}are pairwise
coprime.

Example 4.2Given atuple = ( 1,..., )inC , we have the deformation
rngC[C*x C] R=C[,, SYsuchthat andz, S
in general position if is generic.

4.2 Lie algebras

Let R be a deformation ring.

Setgr = glr n. LetU(gr) be the enveloping algebra (ovR) of gr. Let
tr br gr be the diagonal torus and the Borel Lie subalgebra of upper
triangular matrices. Lgir, gr be the parabolic subalgebra spannethhy
and the Levi subalgebrar, = glg , --- glg .

Letg j gr be the(i, j)-matrix unit, and seg = g . Let( i) be the
basis oft; dual to(g). Itidenti es t with RN. In a similar way we identify
tr = RN

Let , * be the sets of roots @fr andbr. We say that is regular if
mgr, = tgr.Let  bethe setofrootsohr .Set * = *

The dot action of the Weyl grouly ont is givenbyw€ = w( + ) S
where = (0,S1,...,1S N). Two weights ardinked if they belong to the
same orbit of thét—action

Consider the partitiofd, N} = J; J, -~ J givenbyip =1+ 1+
-+ ps1, Jp = ipr1 S 1andd, = [ip, jp] Foreachk  J, we de ne
Pk = p.Setdep = 3 .anddet— p=10€tp.

Thewelghtsmthesubsé’t ZN of Pr = RN are calledntegral weights
Given a subseS8 R, we write S = { SN S 41 N, i o=
j1, j2,..., ] }-We callPg = R the set of the -dominantweights inPr.
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An -partition P can be viewed as an elementNn by adding zeroes
to the right of each partitionP such that( P) p, 1.€., we identify the -

partiion = (%, 2,..., )withtheN-tuple( 20:5'( D ... o SIC )y

Similarly, we can view the tupler R as a weight inPr by identifying
itwith g = b R IOdetIO To simplify we may abbreviate = R.

Set = ( 1, 181,...,1,..., , S1,. ,1). So,we have + =
(s,2151,..., r1+ 1,32,32§ 1,..., r2+ 1 R+ 1). We identify
the set of -partitionsP  with a subset oPy via the injective map

P P+ , + + S . (4.1)

The Casimir elements are = i'f'jzlaj gji and cas= i’?'jzlaj &ji -

We may write y = , cagy = cas to avoid confusions.

4.3 Debpnition of the categoryO

A tr-moduleM is called awveighttr-moduleif it is a direct sum of itaveight
submodules M={m M; xm= (x)m, x tgr}as runsoverPr. Let
Og be theR-category of nitely generatetl (gr)-modules which are weight
tr-modules and such that the actiondfpr, ) is locally nite over R.

For Pg, We consider theU(mR )-moduleV() r, = V( )c,

R g , where P issuchthat S s a character ohnr ,Rs ISR,
equipped with the representationmog  given by this character, and( )c,
is the nite-dimensional simplen -module with highest weight . We view
V() r asapr -module and de ne the parabolic Verma modié ) r =
U(Gr) ups ) V() R .If isregular, we abbreviatél() r = M() R, -

For P, letL() k be the unique simple quotient () , .

Let Oy be the full subcategory @y, consisting of the modules whose
weights belong td®+ . Note thatM() g, Og ifandonly if P+,
and thatO,  is the Serre subcategory Gf generated by all the simple
moduled () kwith P + .For P weset() r = M(()) R -

If R= Corif = 0we drop the subscripR or from the notation.

4.4 Debpnition of the categoryA

Let R be a deformation ring. Assume thitis either a eld or a local ring.
The categoryO is a highest weightR-category with ( Og ) =
{M(O) r ; P + }.If Ris a local ring with residue eld k, the spe-
cialization at k identi es the poset Or ) with ( Oy ).
The partial order is given by tH&GG-orderingon Pg, which is the smallest
partial order such that if [M( )k, : L()«k] =0.Itis equivalent to
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the linkage orderingon Py, which is the transitive and re exive closure of
the relation such that is smaller than if and only if there are C )

w W suchthat / and = ws € S N * modulom Pgr. We
will use the orderings interchangeably in the rest of the text.

DePnition-Proposition 4.3 Assume that S kv | N* foreach u<v.
There are unique highest weight R-subcategorigs A {d} of O with
(AR )={0O r; P land( Ag {dh={() r: Py}t

Proof Itis enough to assume thRt= K is a eld and to prove tha( A )
is an ideal of the posef Oy ). To do so, we must check thatif P ,

M P + and \' ,w W aresuchthapn = ws € () and
() Spu N *,thenwehavet (P ). Write = y; withk< |
andk = iy+ x jy,l =iyv+y jy.Foreacha,b K we writea> bif
andonlyifaS b N*.Then, we havel <v and

k+skuSx> | +scvSy, (4.2)
where is viewed as aN-tuple( 1, 2,..., n). We have

{M+ )aiv a ju={ atsxuS(@Siuw;iuv a jua=k
{I+5K,véy},

{m+)piiv b j}={ bt skyS(bBSiy;iv b ju, b =1}
{ k+skuSx}

To provethap (P ), we must check that

minf(L+ Jajiu @ jut  kutd

minf(L + ) oy iv b jv} kvt L
By (4.2) and the assumption in the lemma, we haye S k. N. Hence,
the rstinequality is true, because forany P ,iy, a ju, we have

at SK,ug(agiu) kut l,and |+ SK,vgy Kyt 1l kKut L
Now, to prove the second one, observe thathg)(we have

min{(u + )p;iv b jy} min{ p+ SK,vé(bSiv)J iv b v} kvtl

4.5 The categorical action orO
Let VR be the natural representationgy on RN. Let Vg = Homg(VRr, R)

be the dual representation. We have a pre-categorical a@join X, T) on
Og such that
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eM)=M RrVg, f(M)=M RrVg

Xm  End f(M)) is the left multiplication by the Casimir element and
Tv  End f2(M)) is the left multiplicationby 1 |, see e.g.§, sec. 3.4].

Now, assume thaR = K isa eld. Setl ={ k1,..., k, }+ Z.

Foreachu P + , we write wi(n) = L\'zl u+ , - We have w)
Xy ifand only if pu, " | for all k. Note that wfu) =, [ (mi(u) S
mi+1(W) i, wheremi(p) = {k [1L,N]; p+ ; "= i}

Foreach X, letOy, Ok bethe Serre subcategory generated by
the module (L) Ksuchthap P + andwiy) = .Thelinkage principle
yields the decompositio®, = x, Ok, . - This decomposition yields

ansl -categorical action oﬁ)
Let V| be the natural representatlon gif. It is a representation with the
basis{vi; i 1}. We have the following formulas, see, e.§, lem. 4.3].

Proposition 4.4 For , P we write | pif @+  is obtained from
+ by replacing an entry equal to i by 1.
(@) fi(M() k, ) has a -Pltration with sections of the form () k. , one

for eachu such that i H,
(b) e(M() k, ) has a -Ppltration with sections of the form () k, , one

for eachy such thatu b
(c) the element§L (1) k], [M(W) , ] in [O, ] are homogeneous of weight

Wt (p),
(d) as ansl;-module we haveO, ] = p=1 (VD).

4.6 Debnition of the functor

Recall thatR is a deformation ring which is either a eld or a local ring.

Leth: Ag Og, be the canonical embedding. Its left adjointis
Consider the endofunctofs, F of Agr givenbyE = h ehandF = h fh.
Since f preserves the subcategohy, , we haveF = f|A . SoF is exact
and(E, F) is an adjoint pair. Further, the endomorphlsmsT of f, f2yield
endomorphisms of, F2.

Next, consider the moduler ¢ = Ty {d} = fA(( #)Rr, )in Ay {d}.The
algebra homomorphismsq factors through amr-algebra homomorphlsnS{
lem. 3.4]

'%da i Hra Enda, (TRa)®= Endo, (Tra)™
Composing Hom,, (Tr,d, €) with the pullback by SR’d we get a functor

S . S
R,d . AR, HR,d‘mOd
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Remark 4.5To avoid confusions we may write, (N) = Ag , Tr.d(N) =
Trd-

Remark 4.6For eachp P, the pre-categori catior(e, f, X, T) on Oy
yields a pre-categori cation oﬁ)Rp' andOkp by base-change. Itylelds also

a tuple(E, F, X, T) on ARp, and Akp’ as above. In particular, this yields
. _ H S . S

a moduleTg, d Lr; Ag,, » anRp algebré homomorphlssr‘an,d : HR, .

EndARp' (Tr,,d)°", and a functor Ro.d - ARp’ {d} HRp’d-mod.

Now, assume thaR = K is a eld and recall the following.

Proposition 4.7 [5] Let x.uS kv / Z* allu,v.

(@) Assumethat, d forall p. Thenthe map k a Is @ K-algebra isomor-
phism H; ;  Enda, (Tk,qa).

(b) Assume that is elther dominant or anti-dominant. Thethe category
AK is a sum of blocks 00, , the functors EF are biadjoint the
module k.d is projective in A< and a simple module of ,A is a
submodule of a parabolic Verma module if and only if it lies in the top of
Tk.d-

(c) Assume thatk S kv =0forallu =vandthat , d forall p.
Then the category £  is splitsemi-simple. Assume further thas either
dominant or anti-dominant. ThenK .4 Isan equivalence of K-categories
which maps() «k, to ) &

Proof For dominant, part (a) is proved ifp]thm. 5.13, cor. 6.7]. For non-
dominant, a proof is given in4, lem. 5.5] using $]. It can also be proved
using |0, lem. 5.4].

Part (b) is proved ing]. For instance, the bi-adjointness Bf F is obvi-
ous becausé\, is a sum of blocks 0D, , and to prove the third claim
one checks rst thal'k o is projective and then that the functBrpreserves
projective modules. The last claim of (b) is provedsnthm. 4.8].

The rst statement of (c) follows from the linkage principle. By [em. 4.2],
the modul€eTk ¢ is a projective generator in this case. Therefore, the functor

k.4 Is an equivalence oK -categories. It mapg) «, to S() i by [5,
thm. 6.12].

Remark 4.8Assume that p dand k.u S kv | Z* for eachp,u,v.
Then, the tupl€E, F, X, T) de ne a pre-categorical action ofy

4.7 The categoryA with = 2

If ku S Kv Z<oforsomeu <v,then the categorYAK’ is well de ned
but it may not be a sum of blocks @, . In this section we generalize
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Propositior4.7in order to allowintegral deformation parameters. To simplify,
we’ll assume that = 2. This is enough for our purpose. Similar results can
be obtain for arbitrary . Note that, for = 2, the composition is always
either dominant or anti-dominant.

The aim of this section is to prove the following.

Proposition 4.9 Assume that = 2, 1, 2 dand K,lé k.2 [ N*.Put
s= + .Then the following hold

(@) ! qisanisomorphism § ;  Enda, (Tk,q)°P,

(b) Tk,q is projective in A, '

(c) a simple module of A is a submodule of a parabolic Verma module if
and only if it lies in the top of € 4.

In order to prove this, we rst prove the following.

Proposition 4.10 Assume that = 2, 1, » d and K,lé K2 Z<o.
Set = (4 and = (kg g2 Wth = +(01), (= kS
(0,1). Puts= + ands = + . Then we have s= s and there
is an equivalence of highest weight categorigs Ad} Ay {d} which

intertwines the morphismis 4, ! ¢ 4 and the functors § 4, & 4-

Proof The proof is rather long and consists of several steps.

Write g = glk N, 9 = 0lk n+1 @anden+1 = diago,..., 0, 1). Set also
n= N Kenssiandu= [T1Ke ner.

Fix " K. Let g-Mod be the category of alj-modules. We de ne the
functors

R:g-Mod g-Mod, M Kery(en+1S™")
| :g-Mod g-Mod, M U@) up (M kK-)

wherep = pk, n,1 is the standard parabolic of tygdN, 1) and K- is the
obviousglk 1-module. Letm = my n,1 be the Levi subalgebra qf

LetC » g-Mod be the full subcategory of modules for whiek+ 1 is
semi-simple with weights it + N. The functoR restricts to an exact functor
C- g-Mod, and sinc&J (g) = K[n] k U(p), the functon takes values
inC ».

Lemma 4.11 The functorl : g-Mod C » is exact fully faithful, and is
left adjoint toR : C ~ g-Mod.

Proof Let us rst prove the adjointness. Gived  g-Mod, L  g-Mod,
we have Horg (I (M), L) Homg(M, Homy(K-, L)). If L C -, then
we have Hom(K+, L) = Homke,,,(K", L). We deduce that there is an
isomorphism Horg (I (M), L) Homg(M, R(L)). Sol is left adjoint toR.

123



Categori cations and cyclotomic rational double af ne...

Now, let us prove the fully faithfulness of. We haveU(g) uw) K =
K[n] k U(g)as(m, g)-bimodules. The lefin-action comes from the adjoint
action ofKen+ 1 onn and the diagonal adjoint action gf The rightg-action
is the opposite of the adjoint action @bn itself. We have (M) K[n]
(M g K+) as am€m-module. We deduce that the unit 1 RI is invertible.

Lemma 4.12 LetA, A be two abelian artinian categoriegand! : A A
a fully faithful functor with an exact right adjoiR . Then the following hold

(a) the full subcategorym(l ) of A is extension closed
(b) if R induces an isomorphisf\] [ A ]thenR, | are inverse equiva-
lences of categories.

Proof The functorl is a right exact, hencilR is also right exact. Given an
exact sequence 0 | (M) L I(M) 0OinA withM,M A, we
obtain a commutative diagram whose rows are exact sequences

0 I (M) L I (M)

IRl (M) —— IR (L)—— IRl (M)——0.

0

The vertical maps are given by the coulri 1. Sincel is fully faithful,
theunitl  RI is an isomorphism. Thus, the left and right vertical maps
are invertible. It follows that the two sequences are actually isomorphic, hence
Im(1) is extension-closed. This proves part (a).

To prove (b), since 1 RI , it is enough to check that the counit is an
isomorphismR 1. SinceR is exact and sincRIR R by adjunction,

foreachM A the kernel and the cokernel iR (M) M are killed byR.
Hence their classes in the Grothendieck groups are 0. Hence they are both O.

Corollary 4.13 The full subcategorym(l ) of C - is extension-closed and
| , R induce inverse equivalencgsMod  Im(l).

Lett, t be the Cartan subalgebras @fg. SetPx = t, P, = (t) .
We abbreviateD = Ok (N) andO = Og(N + 1). Given Pk, let
M() = M() k be the corresponding Verma moduleCGn For Pk, we
dene M( ) O similarly.

We havel (M()) M( ), where =+ " pn+1. Thus, we have
RM( ) RI(M()) M(). We deduce that, R are inverse equiva-
lences between the category of Itered g-modules inO and the category of
g -modules which are extensions of objebt$ ) with Pc +" N+1.
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Now, x d,, , k, g asin Propositio.10 Put" = ,x + N. We
abbreviateD = O, (N) andO = Oy (N + 1). Write alsoA = A, (N)
andA = Ay (N+1). Let , be the maps4.1) associated with the

parabolic categorie® ,O . For Py, P letM() ,M( ) bethe

parabolic Verma modulesi() k, , M( )k, inO ,0 .

Consider the sets of weights(d) = { () ; P g} andE(d) =
{ (O; P g} in Py, Px respectively. Since;, »  d, we have an
isomorphism of posets(d)  E (d) such that = +" N+l

LetQ : O O be the functor sending a module to its largest quotient
in O . This is the left adjoint to the inclusion funct@ O. We de ne
Q:0 O inthe same way.

Lemma 4.14 The functor®) | , R induce inverse equivalences of highest cat-
egories Ad} A{d}.

Proof Let Pcand = +" n+1. Assume Pe.Let{ ;i I}
be the set of simple roots in* . There is an exact sequence

MS€ ) M() M() 0.
il

We haves € / P, fori | ,henceQM(s € ) = 0. So, fori =nwe have
QRM(s€ ) QRM(s€ +" n+1) QRIM(s€) QM(s€) =0

Onthe other hand, we haiReM (sy€ ) = Obecausd(sy€ ) G- . Since
QR isright exact, this yields anisomorphispiR M( ) QR M( ). Note
thatR restricts to a functo® C- O . We deduce that

RM( ) QRM( ) QRM( ) QM() M()

Thus,R restricts to an exact functéy {d} A{d} .SinceA{d} contains
a progenerator foA {d}, R is right exact andA{d} is preserved under taking
guotients, we deduce thRt restricts to an exact functek {d}  A{d}. For
a future use, note also thatyields an isomorphisrpA {d}] [ A{d}].

LetS be the endofunctor @ sending a module to the quotient by its largest
submodule on whicky+ 1 doesn’t have the eigenvaltie Let us consider the
functorS| onO. Itisright exact and takes valuesin- . ForN O, the mod-
uleSI (N) is the quotient of (N) by its largest submodule containedGy .
SinceR is exact and vanishes @- , we deduce that1 RI RSI onO.

Next, for E(d) the counitiR 1 yields a map M() M( )
which is obviously surjective. Le¥l be its kernel. Applying the exact functor
R to the exact sequence 0 M I M() M( ) 0 yields the

123



Categori cations and cyclotomic rational double af ne...

exact sequence 0 R(M) M() M() 0. We deduce that
R(M) = 0. SinceM C -, this implies thatM G- . Thus, applying the
right exact functorS to the exact sequence above yields the isomorphism
SI M() SM( ) . Now, the constituents oM( ) have a highest
weight of the formu for somep  t , becauseVi( ) A {d}. Hence, the
only submodule oM( ) contained inG+ is 0. SOSM( ) M( ),
henceSI| M() M( ) .

Now, consider an exact sequence 0 My M Mo 0in
A{d} . SinceSI is right exact, we have an exact sequeisg Mj)
SI(M) SI(My) 0.Byinductiononthelength ofa- Itration, we have
S1(M1), SI (M2) A{d}. Thus, the image of the meil (M1)  SI (M)
lies in A{d}, henceSI (M) A{d}. We deduce tha®l (A{d} ) A{d}.
Since A{d} contains a progenerator féx{d}, S| is right exact andA {d}
is preserved under taking quotients, we deduce $hatestricts to a functor
A{d} A{d}.

Finally, let us consider the funct® | . SinceR takesO C-toO,
the functorQ | : O @] C » isleft adjoint toR. SoQ | is right exact
and we have an exact sequence

Mis€) MO MO 0.
i

Sinces€ /P, fori | ,wehaveQ M(s€ )= 0,henc& | M(s€)
Q M(s € ) = 0. We deduce that

QIM(O)  QIM(O) QM() M() .

Therefore, sinc® | isright exactand) | M() M( ) ,the same argu-
mentasfol|, see above, impliesth@ | restrictstoafunctoA{d}  A{d}
which is left adjoint toR .

Next, we compare the functo@ | , SI on A{d}. For eachN  A{d} we
write SI (N) = I (N)/ L andQ I (N) = I (N)/ M. Sinced < ,= ,+1
andQ | (N) A{d}, the constituents o® | (N) are inC « \ G . Hence,
the constituents df(N) which are inG.+ are contained iM. SinceL G-,
we deduce that M. Thus we have an epimorphisgi Q| on A{d}.
Hence, sinc® is exact, the isomorphism 1 RSI andtheunitl RQ |
yield a commutative triangle

1—RSI

RQ I,
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from which we deduce that the unit is surjective. Now, by adjunction, com-
posing the unit and counit gives the identRy RQ IR R. Hence the
unitis injective, hence is an isomorphism, on(R). But, since 1 RSI , the
functorR : A{d}  A{d}isessentially surjective. We deduce that RQ |

on A{d}.

Therefore, the functoR : A {d} A{d} is exact and yields an isomor-
phism[A{d}] [ A{d}], whileQ I : A{d} A {d} is a fully faithful left
adjoint. Hence, Lemmad.12shows thaQ | , R are inverse equivalences of
categories.

Recalltheset ={ k1,..., k, }+ Z.

Lemma 4.15The functorsQ | ,R between Ad}, A{d} commute with
Ei, F, X, T (whenever E F,i |, make senge

Proof SinceQ | , R are inverse equivalences, it is enough to consider the case
of R. Next, since(E, F) is an adjoint pair, by unicity of the left adjoint, it
is enough to consider the case of the fundtorLet Vy = i'\il Kv;i. Let
M g-Mod.

If M C-,thenVn+1 k M C -+ and the decompositioln+1 =
VN  Ken+1 Yields an isomorphisnR (Vn+1 k M) = Wy k R(M),
because Kayi(en+1 S " + 1) = 0. So, we have an isomorphism of functors
R f f R:C-+ g-Mod. SinceR takesA {d} to A{d}, and sincef
preserves the categoriés A , this yields an isomorphism of functdrs  f
f R :A{d} A{d + 1}. We deduce that the functoFs{d} : A{d}
A{d+ 1} andF{d}: A{d}  A{d+ 1} are intertwined byR whenever they
aredened (i.e.,ii  I\{" S N+ 1}).

Leti:Vy M VN+1 M be the canonical inclusion amul: Vn+1
M VN M be the canonical projection. We hage n+1 1= N. It
follows that the action oK commutes with the isomorphis  f f R.
It is clear that the induced isomorphigtn  f2 2 R commutes with the
action of T.

This nishes the proof of Propositiof.10
Now, we can prove Propositich9.

Proof of Propositiord.9 Wevmay assumethag 1S k2 Z<o.Set 1= L
K1= K1, 2= 2% k2S k1and  ,= ;.Recallthas= + and

s= + . By Propositiord.10Q, there is an elquivalence of highest weight

categories : A {d} Ag. {d} which intertwines the morphism:ﬁ'd,

| X gandthefunctors § 4, ¥ 4-Inparticular, we have( Tk q) = Tk,d, See

the proof of Propositiod.10 Now, we can apply Propositiods7to Ag {d},

because ; =  ,. This proves the proposition.
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Remark 4.16Under the hypothesis in Propositidr®, the tuple(E, F, X, T)
is a pre-categorical action ofy .

4.8 The categoriesA and O of a Levi subalgebra

Fix a pair of distinct elements,v [ 1, ]. We will represent arf S 1)-
tuple a as a collection of elementg, ap with p [ 1, J\{u,v}. If ais
an -tuple of elements of a ring we write = (ay, ay) andag = a, + ay.
Finally, we consider the positive root systent ,, = uy With
uv =kl k= por(pe p) = (U V), (v, u) .
We will be interested by two types of Levi subalgebragef
€ rst, we have the Lie subalgebmar, associated with ,
€ next, we have the Lie subalgebra | 4y associated with .

Note that the Levi subalgebnag , v may not be standard. To each of these
Lie algebras we associate a module category. To do so, X a composition
of for eachp.

First, for each tuple = (ap) N we write P{a} = { P, , dety" =
ap, prandP {a} = P  P{a}. Consider the categories ofg, -modules
given by (the tensor product is ove)

O ()= OF (ph OF Of{at= OF (piagh (43)
p=1 p=1

Next, for each tuplea = (ag, ap) N S1 we set P{a} = {
P, , dek" = ag, , dety" = ap}andP {a} = P P{a}. Consider
the categories ahg, , yv-modules given by

Of (Luv)=0f (& r  OF (p) (4.4)
p=u,v
Of (,uvia= Of (ofac r  OF (piagh (4.5)
p =u,\v

We will be mainly interested by the two extreme cases whgre ( p)
for eachp, or where#, = (1 ») for eachp. In the rst case, we get the
categoriesOg (), Or (, u,v), in the second one we get the categories
OR. () 1OR, (l U,V).

We will also use highest weight subcategorigg () Or () and
Ar (, u,v)  Og (, u,v) which are de ned as in De nitior4.3. They
decompose in a similar way as i4.8)—(4.5). We will write ( Ag ()) =
{O) r; P tand( Ag (L uVv) ={() r: P}, hoping it
will not create any confusion.
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Using @.3), (4.4) and the pre-categori catio(e, f, X, T) onOg intro-
duced in Sect4.5 we de ne a pre-categori catioffe, f, X, T) onOg (),
Og (,, u,v) such that, in both cases, the functeysf are the direct sums of
the functorse, f of each of the factors.

Next, using the canonical embeddings we de ne tuglesF, X, T) on
Ar () andAg (, u,v)asinSectd.6.

5 The category O

Fixintegers, N land xacomposition  Cy ,.Recallthagr = glrn.
Let Rbe adeformationring. Thus, we have elemefts R* and rp R
forp [ 1, ]. Foreachp, wedenesgp RbysgRp= p+ Rp.
We may abbreviate = g,Sp= sgpand p= Rp.

5.1 Analytic algebras

Fixaninteged 1.

Fix acompactpolydis® CY.Here, we viewCd as a Stein analytic space.
By ananalytic algebrawe’ll mean the localizatiomR of the ring of germs of
holomorphic functions oD with respect to some multiplicative subset. See
[1,25] for more details on analytic algebras. The following properties hold

€ Ris a noetherian regular ring of dimensidn

€ Risa UFD, hence every height 1 prime ideal is principal,

€ forany maximalideain M, the localizatiorR,, of Ris a henselian local
C-algebra.

SinceR is an analytic algebra, for any entire functidn= , \ anz"
onC and for anyx R, the series | \ a.x" is convergent and de nes an
elementf (x) in R. In particular, we have a well-de ned element éxp R.
Analogously, for any analytic functiori : [0, 1] Mn(R) and for any
v R, there is a unique analytic functior{t) on [0, 1] with values inR"
such thaw(0) = v anddv(t)/ dt = f(t)v(t).

An analytic deformation rings an analytic algebr& which is also a defor-
mation ring. Then, we may viewr, R p as germs of holomorphic functions
on D. We will alwaysassume thatr(D) C\ R g. Thus, for any closed
pointR  Cthe element ¢ belongstaC\ R .

Note that ifR is an analytic algebra of dimension2, then we can always
choose some deformation parametags r p such thatRis in general posi-
tion.

For an analytic deformation rin@ we write qr = exgS2 ST R)
andQrp = g = expS2 Slsgp/ Rr). We may abbreviatg = g,
Qp= Qrpand = g
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5.2 Afbne Lie algebras
5.2.1 Notations

LetLgr = g RIt, t5] and letgy be the Kac-Moody central extension of
Lgr by R. Let 1 be the canonical central element andfidte the derivation
of g, acting ag% on Lgr and acting trivially on.

Putgr = R$ grandtr= R$ Rl tg.Letbg,pr, gr be the
preimages obr andpr  under the projectioR$ R1 (g R[t]) gr.
The element = RS N of Ris called thelevel Consider theR-algebras
gr, = U(GR)(1Sc)andgy = U(gr)(1Sc). Ford N we set

gr d=9 t9R[t], gz, = Rl gr oandgr+ = R$ g, .

For a gg ,-module M of level c we consider the induced module
I ndr(M) = g U(gR+)M.WecanviewagR-moduleang’Jr-moduleof
levelcwheregr 1 acts trivially. Write again ndgr(M) for the corresponding
induced module.

Ford 1letQrg Or be theR-submodule spanned by the prod-
ucts ofd elements ofgr, 1. SetQro = R. Given agr, -module M, let
M(d), M(Sd) M be the annihilator oQr 4 and of Qr3d = QRr.d
respectively. SeM( )= 4 yM(d)andM(S )= 4 \yM(Sd). Note
that M(d) is a gr +-submodule ofM and thatM( ), M(S ) aregr-
submodules oM.

A gr, -moduleM is smoothif M = M( ) andifM is at over R. Let
S R, be the category of the smoogiz, -modules.

Foreact® gandr Z,let%) be the elemerfv t'. Foreachs Z,
the Sugawara operatot g is the formal sum

1 " (Sr) (r+s) 1 " (r+s) (Sr)

_ r r+s r+s r

Ls= > &€, * 5 & €
r Ss/2i,j=1 r<Ss/2i,j=1

ltliesinacompletionofr  and it satis esthe relatiofLs, %] = S roA *+9).
The af ne Casimir elementisas= $+ Lg.
If R= C we’ll drop the subscripR everywhere from the notation.

5.2.2 Afbne root systems

The elements dfr andPr = ty are callecafPne coweightandafPne weights
respectively. Let be the set of roots ajr and let * be the set of roots of
br. We will call an element of anafpne rootLet e be the system akal
roots The set of simple rootsin* is{ o, 1,..., N&1}.Let tr be the
af ne coroot associated with the real af ne root
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Let(€: € : Prxtr Rbe the canonical pairing.Lef o, betheaf ne
weightsgivenby :$)=( 0:1)=21( 0:R$ tr)=( :tr R1)=0

and = + N (. We will use the identi cationPr = R PR R o=
Rx Prx Rgiven by 0, i,00ifi =0, ¢ (0,0,1) and
(1,0,0).

Let €:€": Prx Pr R be the non-degenerate symmetric bilinear form
givenby( : j)=2 = " j: {"and( :1) = : " Ityields an

isomorphism :tgr  tg. Using it we identify with an element oPr for
any re-

LetW= W Z bethe afne Weyl group and leg = s, be the simple
af ne re ections relatively to ;. The groupW acts onPr. Forx tg let
Tx  End(PRr) be the operator given by

() = + 1"(x)S , x"+((x):(x) :1v2

The action of the re ection with respect to the af ne real root r , with
andr Z,isgivenbys +; = s T, . The€-actionof W is given

byw€p=w(u+ ) S foreach Pranduy Pr. Two weights inPg

arelinked if they belong to the same orbit of tieaction.

The set ofntegral afbne weighis P = Z + P+ Z (. ReplacingP by P

in the de nitions above we get the corresponding sets of integddminant

af ne weightsP . We de nethe seP, Prof -dominantaf ne weights in

the obviousway. To Pprwesetz =S :2 + "/2 andwe associate

the afne weight = (z,, ¢) Pg.Forw W,x Z and Pr we

havew€ = w€ andTx€ = + X

5.3 The category O
5.3.1 Debpnition

A tr-moduleM is called aveighttr-moduleif it is a direct sum of theveight
submodules M={m M; xm= (x)m, x tr} with Pr.

LetOg betheR-linear abelian category of nitely generatggd, -modules
M such thatM is a weighttr-module, thepr -action onM is locally nite
over R, and the highest weight of any subquotient\fis of the form with

Px-
For eachu  Pg, let M(u) r, be the parabolic Verma module with the
highest weightt. For Pgrwe haveM() r, = | nd(M() R, ). Here$,1

actonM() r by multiplication byz, c respectively. IfR= K is a eld, let
L(u) k denote the top oM () k, . For Pgr we abbreviatM () r, =

M() r andL() k = L() k-
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If isregular, we writdOgr = O andM() r= M() R, .Ifp = gwe
writeOE’ = Og andM() r+ = M() R, .If R= Cwe omitthe subscript
C from the notation.

LetOg’ f Og be the full subcategory consisting of the modules whose

weight spaces are free of nite rank ov&. Let Oy’ Og’ " be the
full extension closed additive subcategory generated by the parabolic Verma

modules. The categol®'  consists of the moduled Oy’ " such that

kM Oy’ foreachk M.

Given Pr as in Sect4.2, let Og Og be the full subcategory
consisting of the module®! such that the highest weight of any subquotient
of M is of the form +  with P.WesetOy =0gj Oy .If
R= Cor = 0we drop the subscrip® or from the notation.

Remark 5.1The operatocasacts locally nilpotently on any module &f .
Replacing this condition bgasis locally Pniteyields a bigger category which
decomposes as the direct sum, , O [a], whereO" [a] consists of the
modules such thatasS a is locally nilpotent.

More generally, for eacd  Z, we may consider the categoBp, [a]{d}
which consists of the modules whose subquotients have highest weights of
the form(z + + a, + , ¢) with P {d}. Here, we sef{d} = {
P; , det'= d}andP {d}= P P{d}. Toinsistonthe rank ajly we may
write Og (N) = Og . We will use similar notation for all related categories,
e.g., we may writ®©p (N)[a]{d} = Op [a]{d}.

Remark 5.2In [28] the authors seR = C and consider a categofy of g -
modules, rather thag -modules as above. Forgetting tfieaction gives an
equivalenceD*: O . A quasi-inverse takes@-moduleM to itself, with
the action ofs equal to the semi-simpli cation o6 L o. See #4, prop. 8.1] for
details.

More generally, forgetting th&-action gives again an equivalence from
Op to a category ofjz-modules, and we may identify both categories. In
particular, forM  Og we can view thgp -modulel ndr(M) as an object
of Of .

We will use this identi cation without further comments whenever it is
necessary.

5.3.2 Basic properties
Let R be either a eld or a local ring.
Lete=S g, where g is the residue class ofr. We will always assume

that e is a positive integer
For agr, -moduleM we set
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€ M = M with the gr-action twisted by the automorphismsuch that
)  (SD'%Dandl S 1,

€ ™ = M with the gr-action twisted by the automorphism 1 such that
W) S tof)andl 1,

€ M is the R-dual of M with the gr-action given by(%"!, m)
S(1,%m) and(1!, m) =S (1, 1m).

) We de ne thegr, -modulesDM,DM by DM = ( M )( )andDM

DM.

Lemma 5.3 The functor D is a duality 0@’ " andD is a duality onOg’ "
Both commute with base change.

Proof ForanyM Oy , the R-moduleD M consists of those linear forms in
M which vanishorQr sq4M forsomed 1. Hence, we hav® M = ™™
whereM is the set of - nite elements ofM . Since the automorphism t
takes the Borel subalgebbey  gr to its opposite, the functdd preserves
Oy’ " Itis the usual BGG duality, which xes the simple objects whris
a eld.

ForanyM Ofp, the R-moduleDM consists of those linear forms M
which vanish orQgr §¢M for somed 1, we haveDM = M , whereM
is the set ofy- nite elements ofM . The functorD preserve@%’ " ltis the
duality introduced in 28], which does not x the simple objects wheRis a
eld.

For the second claim we must prove that for &goint R~ Swe have
D(SM) = SD(M) andSD(N) = D(SN) foreachM OF ', N 0Oy .
The proof is the same as in lemn28[ lem. 8.16].

A generalized Weyl moduls a module inO g’ " of the form ndr(M),
whereM is agg +-module with a nite lItration by gr + -submodules such
that the subquotients are annihilated®y,1 and lie inO asgr-modules.

Lemma 5.4 Aggr, -module whichis free over R belongsdg,’ "itand only
if it is a quotient of a generalized Weyl module®§’ "

Remark 5.5The functorsM ™, M, M commute with eachvother and
we have a canonical isomorphismg-modules M)( ) = (M(S )).

Remark 5.6We de ne the involution T ogr-modules and the dualitid on
O andD onOT ina similar way as above. We have a canonigal -module
isomorphismil ndr(M) = | ndgr("M).

For each Pr. thetruncated category O is the Serre subcategory
of O consisting of the modules whose simple subquotients have a highest
weightin S N *. The following hold, see e.g1p,20], [44, sec. 3, 7] for
more details.
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Proposition 5.7 (a) O, is the direct limit of the subcategorie©p, ,

(b) Og is a highest weight R-category witli Oy ) = Og
( Og )

(c) for # the obvious inclusion Oy #0p preserves the tilting
modules and commutes with taking extensions.

In particular, we'll regard the tilting modules as object$pf' , although
Og is not a highest weighR-category.

Next, from Propositior2.4 we deduce that th&-categoryOy is Hom-
nite and that for any localS-point R S the base change preserves the
titing modules. Further, iM, N are tilting, then Horg;(M, N) is free over
R and the canonical mapHomg,(M, N)  Homgg(SM, SN) is invertible.

We caIIOE' theKazhdanbLusztig categonfgr, i.€., the af ne parabolic
category O associated with the standard maximal parabofjg,isee R8].

5.3.3 The linkage principle and the highest weight ordeQon
Assume thaR is a local ring. Let us recall the partial order &g given in

[46].
First,toeach = (z, , c)in PR, we associate itsitegral afPne root system

whichis givenby( ) ={ ;" Z}.Since( ) = (0,, c),
we may write (, c)for ( ).

Now, given , Pr.wewrite $ ifandonlyifthereare (),
w W suchthat / and = ws € S * modulom Pg.

Depnition 5.8 (a) Thelinkage orderingis the partial order on Py is the

transitive and re exive closure of the relatién For , Pr we abbre-
viate if and only if . S0, we may view as a partial order
on Pg,.

R

(b) TheBGG ordering p on Py is the smallest partial order such thaty,
ifIM(C )k, :L() k] =0.

Remark 5.9The de nition of  is motivated by the following remark: the
parabolic version of the Jantzen formula Bf] for the determinant of the
Shapovalov form of a parabolic Verma modulédp impliesthat re nes

b. The BGG order induces an highest weight order @y, for each .
Hence induces also an highest weight order dd, for each .

Remark 5.10The partial orders , pon P, can be viewed as partial orders
onP under the inclusion . They depend on k. To avoid any confusion we
may say that these partial orders egkative to the peldk.

Remark 5.11f p = b, then  coincides with | by [26].
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5.4 The categorical action on O

From now on, unless specibed otherwise, weOll assume that R is a regular
local analytic deformation ring of dimension2.

First, let us brie y recall the main properties of the Kazhdan—Lusztig tensor
product %, see SecB.3. Details will be given in Propositior&21, 8.29 8.30
and8.36

Recall thatVg is the natural representation gk, and that the modules
Vr, Vg Of" aregiven byWg = | ndr(VR), Vg = | ndgr(Vg). We
have exact endofunctoes f on Oy given bye(M) = M %V and
f(M) = M %VRr. The functors, f preserve the tilting modules. R = K
is a eld thene, f extend to biadjoint endofunctors Of; .

SinceRis an analytic algebra, the elememrt= exp(S2 S1/ g)ofRis

well-de ned and the operator ek  S1L) acts on any modul®/ Og -
Let X be the endomorphism of the functdr which acts onf (M) by the
operatorex(S2 S1lLg) exp2 SiLg) Yexp2 Silg) ,see8.?),
(8.10. Let T be the endomorphism of? de ned in (8.10. By Remark3.3
the endomorphism¥, T can be viewed as endomorphismsepé?.

Now, let R = K be a eld. Let Pk be as in Sect4.2 Setl =
{ k1 k2--+, K, }+ Z+ kZ.Writei jifiéj kZ.Putl =1/

We will identify qi with the element/ inl . )

Foreach K let fj, g be the generalizeq{(-eigenspace anqlﬁ(N“)-
eigenspace oK acting onf ande. The functorsg, f; are biadjoint, see9
rem. 7.22]. The action af, f; on parabolic Verma modules can be computed

explicitly. Recall that for, p P we write ' pif u+ is obtained
from + Dby replacing an entry equal tdoyi + 1.

Lemma 5.12 (a) For each Py, the module if{M () k, ) has a Pltration

with sections of the forriv (1) k. , one for eachu such that . u for
some j Kwithi ],

(b) for each Py, the module €M () k, ) has a pltration with sections of
the formM () k, , one for eachu such thaiu P for some j K with
i,

(c) e, f are exact endofunctors @y

(de= ;,agandf= ;| fionOy .

Proof Propositions8.21, 8.29 imply that f(M() k, ) has a lItration (not
necessarily unique) V\_/hose associated graded consists of the sum of the modules

M(U) k. suchthat ' pforsomei K.
Next, the same proof as i@§, prop. 2.7], using the formulag = cag2 +

N gr)e(J.P/ . shows that the operator e S1Lg) acts on

(
>0 i,j=15
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MW k, bythescalarex@2 Siz,)foranyu Py, whereSz, = p:
2 + (NS ldet+ p"/2 .

Using this, a direct computation shows that any subquotieh{f( )_ K, )
which is isomorphic toM (1) k, , for some af ne weightt such that ' H,

belongs to the generalized eigenspacexgM () k, ) with eigenvalueqk.
This proves (a).

The discussion above impliesthlat= ;  fj, asendofunctors @,
We deduce thaf = ;  fi onOy , becausef is exact and any object in
Ok is a quotient of an object i@y’ . We prove thae = ; (g ina
similar way.

For ,u Py such that ! u for somei K, we have P + f
andonlyifu P + . ByLemma5.12 we deduce thag, f restrict to exact
endofunctors onDK . Note thatg, f; act by zero orOk‘ wheneveii / |.
This proves (d).

Now, we de ne ars} -categorical action o@, .Foreach P+ we

write mi() = #k [ 1, NJ; qK+’ K= ilandw() = ;, mi() S
miq() i.For X letOy Oy bethe Serre subcategory generated
by the modules. () k with ;| mi() =
Claim5.13 For ,p P{d}+ we have
,parelinked&  m() = mi(p) foralli 1 &  wi() = wi(y).
Hence, we have a decompositiy = x Ok, by the linkage
principle.

Proposition 5.14 The tuple(e, f, X, T), together with the decomposition of
Oky above is ans| -categoribcation °'®F<, .

Proof ByLemmab.12wehaves (O ) Op S g andfi(Oyg )
Ok,, &+ g Further, a direct computation using Lemr&ad.2 shows that

the operatorsy, fi withi | yield a representation & on[Oy ] such
that[M() k, ] is a weight vector of weight Wt . The rest follows from
Lemmab.12and Propositior8.36

5.5 The category A and the functor

Let Rbe either a eld or alocal deformation ring. We have the following basic
fact.

Lemma 5.15[46] Themap identibe® withanidealin P forthe partial
orders or relative tok.
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Proof It is enough to consider the case of the ordering because it re nes
b- SinceR is a local deformation ring with residue eld k, we have= 0
and x = S e. Then, the claim follows from46, prop. A.6.1].

For each P , we abbreviate() r = M(()) r where is
the application de ned in4.1). Following [5,46] we introduce the abelian
R-categoryAg Ok which is the SerreR-linear subcategory generated
by{() r: P}

Since = 0, by Lemmeb.15 A = A, s a highest weight k-category.
Using [39, thm. 4.15], this implies tha  is a highest weighR-category
suchthat( Ag )={ () Rr ; P }. The highest weight order ok,
is given by the partial order or ponP relative to k.

WewillwriteL() ,P() r, ,T() r respectively forthe simple, projective,

tilting objects associated with) r, .LetAg = (Ap ) bethefullexact
subcategory of - ltered objects. Foreacd N, letAg {d} Ag bethe
highest weight subcategory generatedby g {d}) ={ () r ; P4}

Now, assume thaR is analytic of dimension 2. By Lemmab5.12the
endofunctorf of O  maps(Ap {d}) to (Ag {d+ 1}) . We dene
inductively an objec {d} in Ay {d} by settingTz {0} = ( #)r and
Tg {d}= f(Tg {d S 1}). We will abbreviateT g ¢ = Tg {d}tounburden
the notation. To avoid any confusion we may writg (N){d} = Tg {d}
andTrd(N) = Trg.

Lemma 5.16 (a) We havkTrd = Tk d-
(b) The modulel'r g is tilting in A, .

Proof Part (a) follows from Lemma.34 To prove (b), note rst thallr o
is tilting by Proposition2.4, because Kro = Tkolis - ltered and simple.
Since the functorf preserves the tilting modules 6f; by Lemma8.33 we
deduce thal r g is tilting.

By Proposition8.36 we have arR-algebra homomorphism
Ra:HRa Endy, Tra op (5.1)
and a functor
,S:z‘d = HomAF,{ (Trd, €) 1 Ag {d} HSR‘d—mod.
The main result of the section is Theor@&n37. To prove it, we will study in

the subsequent subsections some propertieggfand 3 4 when localized
to codimension one.
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Remark 5.17SinceTR,d is tilting, it is uniquely determined by its special-
ization KTrq = Tkq. If Ris aregular local ring of dimension2, then we
may de neTRr,q as the unique module i {d} (up to |somorph|sm) which
specializes tdl,q. We do not know how to de ne either Rd OF &g if
dmR> 2.

Remark 5.18Foreachp [ 1, ], let , P ; be the -partition with(1) on
the p-th component and elsewhere. The proof of Lemntal2implies that
the moduleTk 1 has a - Itration with sections of the form() k, with

P ;, and that the operatoX  End(Tk 1) has the eigenvalue};p on

( pk,

5.6 The afbne Lie algebra of a Levi subalgebra

Consider the root system ={ +r ; rzZy {r;r Z*}
Letmgr be the Lie subalgebra g@jr spanned byr and the root subspaces
associated with . We may viewmg as the af ne Kac—-Moody algebra
associated with the Levi subalgebma of gr. We de ne the associative
R-algebramg, ~ in the same way as we de negk in Sect.5.2.1
The Weyl group of is the subgroupVV of W generated by the af ne
re ectionss with . Thus, we havéV ={wTy; w W,x Z L
Setbr, = mg, bgr.ThecategorD () consistsofthe nitely generated
mg, . -modules which are weighi-modules with a locally nite action of
br (overR), and such that the highest weight of any constituent is of the

form  with Pr. The decompositiomg = -10Ir, , Yields an
equivalence,() = lOR( p), here the tensor product is ovier
Given a tuple# = (#p) of compositions of the p’s, IetOR () Og()

be the subcategory which is identi ed under the equivalegg() =
p=1OR( p) with the category p_10R ( p)- Given a deformation para-

meter and atuplea N, we also conS|der the categon% () =
p—lOR ( p) andOR () {a} = 0=10R o p( pfap}. Setting#p =

( p) for eachp, we get theKazhdanDLusztlg categofy;’ () = 0g ()

of the Lie algebrang, . LetOg () {a} Og () be the full subcategory
de ned in the similar way.

To avoid confusions, we may séty (N) = Ag if g = gly.
Then, we deneAy ()  Of () to be the subcategory isomorphic to
p:lARp”p( p)

As above, we drop the subscrig®gs if R= Cor = 0.
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5.7 Reductions to codimension one

5.7.1 Preliminaries

Foreaclz Zandu,v [1, Jwewritefyyz( R, R)= RuS RvSZ R
and fyyv( r) = fuv,o( R, R)-

DePnition 5.19We will say that the deformation rindR is generic if
fuv,z( R, R) =bforanytuple(u,v, z, b) withu <v andz,b Z, and that
itissubgeneriecf r/ Qandf,y z( r, RrR) = bforaunique tupléu,v, z, b)
as above (withu < v).

Remark 5.20f Ris a local deformation ring, i.e., ifk p = O and k = Se
withe N*,thenforeaclp P such thatf,y, 2( Kp kp) = bwe have also
b=1ze

Now, assume thaR is a local deformation ring. Then, the categéry
is a highest weighR-category by Secb.5, either for the partial order or

p relative to k by Lemma.15 In other words, the highest weight order on
A isinduced from the highest weight order@&p via base change, which

yields a canonical bijectiorf Ag, ) ( Ag ).
By base change again, these highest weight ordefsgpninduce highest
weight orders om,‘qp’ andAk'p’ foreachp P.Note thatR; is alocal ring,

but may not be a local deformation ring becauggp, may be = 0. So, we
have the posets isomorphisms

(A ) — (AR ) —= (A )

We will reduce the study oA to the study oﬂk’p, forp P1. We will
say thapis generic if k is generic and thatis subgeneridf k , is subgeneric.

Remark 5.21Let R, | be as in Sect.4. If Ris subgeneric then each com-
ponentl is a quiver of typeA , while if Ris genericthen =[1, ] (i.e.,
the quiverl has exactly components).

In order to use the Kazhdan—Lusztig tensor product, we’ll be mainly inter-
ested by the case whekRis either a eld or a regular local deformation ring
of dimension 2. Note that ifR has dimension 2, then we can always choose
it in such a way that it is in general position.

The following basic fact is important for the rest of the paper.

Proposition 5.22 Assume that R is a local deformation ring in general
position.
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(@) If p P qthenpis either generic or subgeneric.

(b) The K-categoryAy is split semi-simple.

(c) If R is analytic then the conditior§3.1) holds in the fraction Peld K.

(d)If p dforall p, then the map g 4 : Hi 4 EndAk' (Tk,a)in
(5.1)) isanisomorphism of K -algebras. The functoi‘d isan equivalence
of categories and it mapg) «, to ) 3%

Proof Since R is a UFD andp has height 1, we havp = Rg for some
irreducible element R. Now, if fy v, z( Kp» kp) = b and ko = c for
someu =v,z b Zandc Q theng mustbe a unit oR becauseRis in
general position. This is a contradiction. For the same reason, we may have
fuv,z( kp» kp) = b for at most one tupl¢u, v, z, b). Therefore, ifp is not
generic, then we have, / Q. Part (a) is proved.

Part (b) follows from the linkage principle. More precisely, recall that for
k J, we setpc = p. Then, sinceR is in general position, we have

( k, k)={ ; (0, k, k) " Z},
={ kit z; fp,pal k. k) Zh

Thus, the linkage classes are reduced to points, because-tleminant
weights which are/V -conjugate under thé-action are equal. Henc
is split semi-simple.

Part (c) is obvious, becausgx = expS2 SU k), Qk,p =
expS2  Slsy/ k), k / Qand(skuS skv+ kZ) Z=# foreach
u=v.

Let us prove part (d). As a nite dimensional split semi-simplealgebra,
the center oﬂ-|f'<,GI is spanned by the primitive central idempotents. These
idempotents are of theform &= ;| 1jwhere Q" has heightl, see
Sect.3.4. For each nonzero 1 there is a unique-partition of d such that

i kni() i= .FromLemmab.12we deduce that, if, d forall p,
thenforeach | we have

fi(Tko0)= () «, - (5.2)

Since ﬁ,d(l) is the projection fromTk g onto its direct summand

i1 fi(Tk,o0), the latter is nonzero whenever Is nonzero. So, the map

K g IS injective. To prove that it is an isomorphism, we are reduced to check
the following.

Claim 5.23 Hy andEnd,, (Tk,q)° have the same dimension over K.
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To prove the claim, by Propositidh29, it is enough to check that th¢-
algebrasHg 4 and Endy (Tk, d)°P have the same dimension. This follows
from Proposmom 7.

Next, since theK-algebraAy is split semi-simple by part (b), the
standard moduleq) . , W|th P 4, form a complete set of inde-
composable projective modules i, . So, formula §.2) implies that
Tkd = i1 dfi(Tk,0) is a prOJectlve generator iA; . So ﬁ d is an
equivalence. Since the unigue simple and prOJectlve module in the block
HS’ is the Specht modul&() Kq, where is as in 6.2), we deduce that

ka(() k) =380 g

5.7.2 The reduction to the bnite type with 2

For each tupl@ N S1, Jet Og fa} Og be the full subcategory con-
sisting of the modules whose simple subquotients have a highest weight of
the form +  with P {a}. SetAp {a} = Og {a} Aj .Wedene
Oy {a} andA; {a}in the obvious way. 3

Let p p° be the permutation dfl, ] such thatp® = + 1S p. Let
k k° be the unique permutation §f, N] which is blockwise increasing
and which takes the block, to Jpg. Applying this permutation to the entries

o]

ofaweight  Pgyields aweight © Pg'.

Assume thatR is a local ring with a subgeneric residue eld. Lit=
(u, v, 2) be the unique triple such that< v and fyv,2( k, k) = ze Givena
tuple” = "r R ,let"x k beitsresidue class. Assume that, (" k) =
ze We will identify " g with the weight o "Rrpdety Pr.

If z 0, we abbreviateOg ,{a} = Og.(, u,v){a}. If z > 0, we
write Og {a} = OR0 o( 9,vO u®){a®}. See Sect4.8 for the notation. We
de ne AR w{a} in the same manner. For eadh N, we write Arp{d} =

Arn{a}, wherea runs over the set of al( S 1)-compositions of
d. Dependlng on the sign aof, we write M() rp for M( + ") g oOr

M( °+"%g ,and() rnfor () r"or ( ©Rgro.

Proposition 5.24 (a) We haveD a n$10g {a}, Og a N 51
Oy {a}.
(b) There are equivalences of highest weight R-categ@igs Oy {a}
Og n{a} and of highest weight-categoriesQi : O, {a} Oy nia},
such thakQr(M) = Qi (kM) foreach M Og {a} andQr(M( +
R)R, ) = M() rn foreach P .
(c) The equivalences itb) restrict to equivalences of highest weight cate-

goriesQr : Ag {a} Arpfal and Qi @ Ay {a} A pfat. In
particular Qr(() r )= () rnforall
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Proof Fork  J, we setpc = p. Since k is subgeneric, the integral root
system( , k) is given by

( k k={ (R R4
={ «! Sr; fpk,p|,r( k,» k) Z},
= # (k1S2z); pk=u, p= v}

Therefore, the linkage principle yields a decomposit@n = a NSt
Oy {a}. This decomposition holds ovéR by Proposition2.4. This proves
part (a).

The set ( k, k) is a Coxeter system whose set of positive roots is

( v "= ( x K *, see P7, sec. 2.2]. The set ,y =

{£ ki Pk = u, p = v} is also a Coxeter system with positive roots
+ — +
,uv — VAT

Ifz Othen( « K" = * { Vk,|§z; Pk = U, p = v}. Fix an
integral coweight such that () =S zif px=u, p=vand k() =

Szif pc = p. The conjugation by yields a bijectiod : ( «, &) uv
suchthat +r forall , r. It maps positive roots to positive ones.
If z> Othen( «, )" = * {S kIl+Z;pc=u, p = v} The

permutatiork  k°of[1, N]inducesabijection v 0.v0, 40, °,
The bijection! : ( k, k) oyo o such that +r O identi es the
subsets of positive roots in both sides.
In both cases the mdpis an isomorphism of Coxeter systems. Now, for
eachweight P + we consider the sets of root + k, k] ={
; (0 + ko KW "=0and  uy[ + "kl ={ uve Tk
"= 0}. Since k is subgeneric, we have

[ + k& K={ kiSr; fopr(k =S = "}
={ ;0 "=0
£ (kiSz)im=up=v, : k"=Szdg,
[1{ (kS2z); x=u p=v, +"x: I"=0}
[ +"%] {£ (kiSZ);pk=u p=V, k"
TRV I |

Ifz Othen [ + g, k]) = ,uv[ *+"k]. Therefore, by20, thm.11],
there is an equivalence of k-categor@s : O, {a} Ok~ (, u,v){a}
such thatL (1 + )k L(n + "k)k for eachp P{a}. The proof of
loc. cit. is given by constructing an analogue of Soergel’'s functor which
identi es, block by block, the endomorphism rings of projective generators of
Or {a}andOr- (, u,v){a} with the endomorphism ring of the same sheaf

123



R. Rouquier et al.

over a moment graph (modulo a base change of deformation rings, from a
localization of the functions ring of the Cartan subalgebragafdm( , u, v)
to R). This construction yields indeed an equivalence of abdRarategories
Qr: Og {a} Or (, u,v){a} such that Qr(M) = Qk(kM) for any
M  Og {a}.

Ifz Othen! [ + , k])= TV T VT "l
ForS xi+z ( « k)", wealsohave

O+ "2 (S i+ z)'= °+"Q:

k0’|0"

: Kut kvt Zk
O + x KW:SKki+tz"

Thus, by RO, thm. 11] and the discussion above, we have equivalences of
categories

Qr:Og {a} Or-( °%Vvo%u%{a%, Qk:O¢ {a} Ok~ ( °v° u°){a%

such that Qr(M) = Qk(kM) andL(u + k)« L(u°+ "2k for each
u  P{a%.

Now, we can prove part (b). To simplify, we assume 0. The case > 0
is proved in a similar way.

First, note thatQy restricts to an equivalence of abelian categories
Ok {a} Oy~ (, u,v){a}. We denote it again bQ. SinceOp, {a} and

re (U, v){a} are the full subcategories @f; {a} andOgr- (, 'u, v){a},

respectlvely, consisting of the modules whose simple subquotients have a high-
est weight of the form + ¢ and + " respectively, with P, we
deduce tha@ r restricts to an equivalence of abeliRrcategorie©;  {a}
O~ (, u,v){a}.

Next, sinceQg(L(M+ Kk)k, ) = L(u+"k)k, foreachu P ,the functor
QR is an equivalence of highest weigRtcategories such th&@ r(M (1 +

RIR )= M(u + "Rr)r, foreachu P by Propositior2.6.
Parts (b) and (c) are proved.

Remark 5.25We do not know how to choose the equivalence of categories
QR in such a way that it intertwines the endofuncterd of O andO. We
will not need this.

In the rest of this section, to unburden the notation, assume thd. The
casez > 0 is completely similar.

Fixa( S 1)-compositiora = (ae, ap) of the positive integed. Then, we
have the tilting moduléira.( €) Agr- ( €) and, for eachp =u,v, the
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tilting moduleTra,( p) AZ( p).Recallthat = (y, v)," = ("u"v
and ¢= ¢+ v.Note that, sincefyy(") = ze 0, the categonAg. ( €)
(with = 2) satis esthe assumptions in Proposit8. LetTrha  Ag ,{d}
be the tilting module which is identi ed, under the equivalende), with the
direct sum of the module3g a( €) b =uv Tra,( p), wWhere the sum
runs over the set of all S 1)-compositionsa of d. We also writeT n.q =
KTrhd  Agpld}

Now, letR be either a eld or a regular local deformation ring of dimension
2. Assume further thaR is analytic and in general position.

The categonpy  is split semi-simple. We have de ned the modiilg q
Ag . the R-algebra homomorphismg 4 : Hg 4 EndAF,{ (Tra)°P, and
the functor 2, : Ag {d} H% 4-mod. By base-change, we gEg, d,

Rp.d @nd & o foreachp P, see Remark.6

Lemma 5.26 Assume thap P 1 is subgeneric. Therwe have an isomor-
phismQ Rp(TRp,d) = Try,h,d-

Proof The moduleQ r, (T r,,a) is tilting, becaus& r, is an equivalence of
highest weight categories. Sin€g, o andTr, nh,0 are parabolic Verma mod-

ules, we hav&) Rp(TK,O) = TRp,h,O-
Next, the functorQy, induces an isomorphism of the (complexied)

Grothendieck groups{Ok'p’ {a}] [ Okp’h{a}] such thatQ,([L( +
ko)kpl) =[L( + "k,)kp]- Since it also preserves the classes of the standard
modules, the explicit formulae in Lemnsal 2imply thatQy,, : [Okp,h{a}]
[Ok'p, {a}] commutes with the action of the operateysf on both sides.
SinceTiy,d = f9(Tky,0) and Tiyha = F9(Tiy,h,0), We deduce that
[Qup(Tkp.a)]l = [Tip,nal in [Oy 1. Therefore, we hav®y,(Tk,.d) =
Tkp,h,d because two tilting modules are isomorphic if they have the same class
in the Grothendieck group. Sin€&r, (TR, ,d) is tilting and kQ r, (T R,,d) =
Qkp(Tky,d), by Propositior2.4(b) the isomorphism overgkcan be lift to an
isomorphismQ g, (Try,d) = Try,h,d-
Proposition 5.27 Letp P 3 be subgeneric. Assume thgf d for all p.
Then

(@) TRry,d is projective i”AF'zp, :

(b) ?ep,d is an isomorphisnh-lf?p‘OI EndAép' (TRy,a)°,

(© ?ep,d is fully faithful on(A,’Qp’ {d} and(A,’Qp’ {d}) .

Proof Since k is subgeneric, we may »u,v, z as above. So, we have

fuv,z( Kp» kp) = z e Hence, by Propositiob.24and Lemmab.26 there is
an equivalence of highest weigRg-categorieQ g, : A,’Qp’ {d} ARp'h{d}
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taking () R, to () R, andTRg,dto Tr, hd. By base change, it spe-
cializes to an equivalence of highest weighpidategorieQ, : Ak’p, {d}
Akp’h{d}.

Recallthat = (4, v)and ¢= y+ . To unburden the notation, we
may identify the highestweigmp-categoriesARp’h{d} andARp'.. ( ¢){d}via
the equivalenced(4). The later is a particular case of the categories which have
been studied in Sedct.7. Note that we hav(ékp,u S Kp.v = ze/ N*. Thus,
Proposition4.9(c) implies thatT, h,d is projective. Hence, part (a) follows
from Propositior2.4and Lemmab.26

To prove (b) we use Propositidh23 Let us check the assumptions. First,
the fraction eld of R, is K. SinceR is in general position, th& -algebra
Hf< q Is split semi-simple. Next, byl3, thm. 3.30], the decomposition map
Ko(HK q) KO(Hkp,d) is surjective.

Now, let us construct an endomorphisig, of HSRp’d. By Remark4.6,
we have a pre-categori catiofE, F, X, T) on ARp,h- Let! Squd ; ng‘d
EndAprh(TRp,h,d)OID be the corresponding,-algebra homomorphism. It is
an isomorphism by Propositiof.9 and the Nakayama’s lemma. Next, by
Proposition3.1, we have arRy-algebra isomorphismg, : HSRp ;p q-
SinceQRr,(TRry,d) = Try,h,d, Py functoriality, we have an |somorph|sr’rpgp
EndARp' (TRp.)°P EndARp'h(TRplh’d)Op We setdg, = g: (| s )Sl

Ro ;p,d and we write§ = Ké&g,.

To prove (b), we must check thé&g, is invertible. By Propositioi2.23 this

follows from the following.

Claim 5.28 The endomorphisi& of Hy 4 is an automorphism and it yields
the identity on the Grothendieck group.

Now, we prove the claim. Sindeis in general position, by Propositi&22,
the K -algebra morphisms ¢ 4 : H 4 EndAI,(’ (Tk,q4)°P is an isomor-
phism. Hence is an automorphism.

ConS|derthe equivalences of categorlqzsd A {d} H% 4-mod and

K. Acnpldd  HZ g-modinducedby g 4 and! % d- The correspondlng
maps between isomorphism classes of simple modules tinto the commutative
square

Irr(Ag {d}) K jrr(H, )

Qk K
Irr (A p{dh) —<L I (Hg o),
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because we have § (() «k, ) = SO %a(O) k+) = SOk
by Propositions5.22d), 4.7(d), and we have x(S() %) = S() 3%
Qk(() k,)= () kr.Thisimpliesthag isidentity onthe Grothendieck
group. The claim is proved.

Finally, let us prove part (c). Letﬁqp’d, R, and R, be as above. Then,

we can view! SRp’d as an isomorphisnh-l%p,d EndAF,{p’ (TRy,a)°P. We
don’t know whether ;p’d =1 SRp,d- However, since they are both invertible,
they differ obviously by an automorphism bISRWd. Thus, the equivalence
Qr, intertwines the functors g ;and % 4, up to a twist by an automor-
phism ofH%p'd. Therefore, it is enough to prove tha@p’d is fully faithful
on(ARp,h{d}) and(ARp‘h{d}) :

By Propositiord.9, asimple module o& |, 4 is a submodule of a parabolic
Verma module if and only ifit lies in the top dtp,h,d. Thus, the functor ﬁp‘d
is faithful on(Akpih{d}) . By [7, cor. 4.18], the categor)}\kp‘h{d} is Ringel
self-dual, i.e., we have an equivalenkl%’h{d} (Akp'h{d}) . Therefore, by
Lemma2.13 the functor ﬁp’d is also faithful on(Akplh{d}) . Note that [1]

considers the categody without any shift' , but our situation reduces to this
one by Propositiod4.10 Now, part (c) follows from PropositioR.18

Remark 5.29f S  / Zeforallu =v, then SRp,d is a 1-faithful highest
weight cover.

5.7.3 Thereductionto= 1

Assume that the deformation rirfigjis a local ring with a generic residue eld
k. We have the following lemma.

Lemma 5.30 For P,if + g + g then + W €
+ k.

Proof By an easy induction we may assume that there are elements
( k K\ andw W with + =ws € + . We have

( k K & 0,k W: "/IZ, v,
& k. "+r [ Z, \ , r Z,
& k is generic

Thus ,hencews W.
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Fora N letOg {a} Og be the full subcategory of the modules

whose simple subquotients have a highest weight of the fosm , with
P {a}.

Proposition 5.31 (a) We haveOg = an Op {a} and Oy
an O {ah
(b) There are equivalences of highest weight R-categ@igs Oy {a}
OE’ () {a} and of highest weighk-categoriesQyx : O, {a}

Oy’ () {a} such thatkQr(M) = Q(kM) andQRr(M( + )R, )
M() r+-

(c) The equivalences |(b) restricts to equivalences of highest weight cate-
goriesQr : Ag. AR () andQy : A; Ag’ (). In particular,
we haveQ r( () R )= () rforall .

Proof Since Kk is generic, the linkage principle and Lembrz0imply that if a

parabolic Verma module i®, has a highest weight of the form+  with
P {a}, then any constituent has also a highest weight of the same form. So

we have a decompositidd, =, y O {a}. The decomposition oveR
follows from Propositior2.4. Part (a) is proved.
For the same reason as above, we h@ye = ,  Og {a}, where

Og, {a} is the full subcategory of the modules whose simple subquotients

have a highest weight of the form+ | with P{a}.

Further, by RO, thm. 11] there is an equivalence of highest weight k-
categorieQy : O, {a} O () {a} such that.( + k)« L() k. For
the same reason as explained in the proof of Proposkigd the proof of
[20, thm. 11] yields an equivalend@r : Og {a} Og() {a} such that
kQRr(M) = Qk(kM) foranyM  Og {a}.

Since + yis -dominantifand only if is -dominant, thls equivalence
restricts to an equivalence of abelian categofgs {a} () {a}. We

denote itagain b@ k. SinceOp, {a} andO,;’ () {a} arefull subcategories of
Or {a}andOg() {a} consisting of the modules whose simple subquotients

have a highest weight of the form+  and , respectively, with P {a},
we deduce tha@ r restricts to an equivalence of abeliicategorieQ R :
Og {a}  Of (){a}.SinceQu(L( + i) = L() «forall P {a},by
Propositior2.6we deduce tha k andQ r are indeed equivalences of highest
weight categories and th@g(M( + )R ) = M() r+. This proves parts

(b), (c).

Now, letR be either a eld or a regular local deformation ring of dimension
2. Assume further thaR is analytic and in general position.
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Consider the Kazhdan—-Lusztig categ@g’ ( p) of gl o The equiv-
alence of categorie®©g() = pzloR( p) Yields an equivalence of
categorie©r () =  ,=;0g ( p).

LetV( p) OJ,;' ( p) be the module induced from the natural represen-
tation ofglg. o The endofunctorf, = € %RV( p) of OE' ( p) extends to
an endofunctor ODE’ () inthe obvious way. We denote it again by. Let
f= p1fp

WesefTro() = pleR,o( p). Foreacld N, we consider the tilting
moduleTrd() = f9(Tro()) in Of (). We have introduced a module
TR,d in OI’?’ .

By base change, for eagh P, we get the module$ g, 4 OF'zp, and
TRy.d() OF{,; (). The same proof as in Lemn®a26yields the following.

Lemma 5.32 Assume thgd P 1 is generic. Thenwe have an isomorphism
QRry(TRyd) = TRy,d( )

On the other hand, foreaeh N ,wesetHp, = - H;’ap. By base

change, it yields th&,-algebraH Roa-

Lemma5.33Letp P be generic. Thernwe have an Ralgebra isomor-
phism

Hf?p,d = Matsd/sa HRp,a . (53)

a Cy

Proof Let | ={ Ro,1s Rp,2i-++1 Ry, 1+ 2+ sz andl =1 Ry = 1/

Letl i, betheimage of inthe residue eldk. Sincepis generic, the quiver

| k, has exactly components given by «,.p = (kp,p+ Z+ k,2)/

with p  [1, ]. Hence, the quivet r, has also components ; =

I Ry, dseeen I = 1Ry, which specialize td Kp, Lo+ | kp, respectively.
For each tupl@ = (p1, p2, ..., pd) in[1, 19, we consider the idempotent

in Hﬁp'd given by b = i 1i, wherei = (ig,i2,...,1d) runs over the set

| kpp = ?zll Kp. pr and } is as in Sect3.4. Note that, although there may
be an in nite number of such tuplésthis sum contains only a nite number of
non zero terms. Next, for eaeh C;, we de ne a central idempotenta} in
Hip.d DY L@ = p (a) 1p, Whereaisidenti ed with the tuple(1%12% - .- @)
and(a) is the set of all permutations afin [1, ]9. Then, we writeHﬁp,(a) =
LayHR, q-

It is well-known that there are jkalgebra isomorphismdp , =

ps

a Cy Hﬁpv(a)' Hkp,a = 1aH§p,dlaandHﬁp:(a) = Mats /s, Hkp,a  Where
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Sa = Sg X x Sga, see 2. We must prove that the isomorphism

a ¢, Malsy/s, Hya Hﬁp’d lifts to an isomorphism oR,-algebras. To
do that, by the Nakayama’s lemma, it is enough to prove that this isomorphism
lifts to an Ry-algebra homomorphism ,  Matsy/s, Hg, a H%p’d.

First, by Propositior8.1, for each tuplé (I kp)d, thesumil= ;1
overallelements | 9whose residue class is equal tés an idempotent in
the Ry- subalgebrd—lRp g of H¥ k.q- Therefore, for each tuplp [ 1, 19,
the idempotent & HY 4 given by 1, = ; 1, wherei runs over

the setl , = f'zll p» belongs also to th@p-subalgebraﬁ%‘d and it
specializes to the idempoteny 1 H{ o.d given above. In particular, for
eacha Cg, the idempotent irHy K d glven by ka) = b (a )1p belongs
indeed ton?'0 q and it specializes to the |dempoter{5}1 Hk 4 given
above. Further, settlrigR (@ = 1(a)HRp|d,we getRy-algebra |somorph|sms
Rp’d ac, HRp,(a) andHRp’a = 1aHSRp'd1a.
Now, we construct anR,-algebra homomorphism c, Mats /s,

laHR, gla H, 4 Which lifts the isomorphism over the residue eld
kp mentioned above.

To do that, it is convenient to use the formalismgoiver Hecke algebras
Let Rf<,d be thecyclotomic quiver Hecke algebd rankd associated witls.
Itis the K -algebra generated by elemenisx «, i withi | d k [ 1,d]
andl [ 1,d), subject to the relations i, sec. 3.2.1] assouated with the
quiver! and to the cyclotomic relations given Iy; 1) {P:9*=i1} = 0 for
all i's. Note that theK -algebraR§, 4 is nite dimensional, and that we have
1; = 0 except for a nite number ofs.

By [6,40] we have & -algebraisomorphisiRy 4 = Hi 4 whichidenti es
the idempotentsjli | d from both sides. In particular, for each integer
[1,d) and eachd-tuplep such thatp, = pj+1, the elementp; = o il
in R} 4 can be viewed as an elementldfk g Which belongs tHy_ 4 "and
which satis es the relationsy (p),1 p, = 1pand p; sp), = 1s(p)-

Next, letw  Sq4. Assume thawv is of minimal length in its rightS 5-
coset. Fix a reduced decomposit@r= s, - - - S,5,. Consider the elements
wa and 5 of H%p'd givenby wa = s,.s. ;5,0 *5,8,08) sp8 and

aw = 5,5, SmW@) T Spey SmW(@) spw(a)- Wehave aw wa = laand
waa aw = lw(a)- . .

The expected map c, Mats /s, 1aHRp,d1a HRp’d takes the
square matrix(Xy(a)w(a))v,w in Mats /s, 1aHpr’dla With Xy(a)w(a)
1aH§p,d1a andv,w  Sq as above to the sum ,,, w,aXv(a)w(a) v.a-
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Now, givenp = (p1, P2, ..., Pd) in[1, 19, we write fo= fp fp - fpg
andTrp() = fp(Tro()) . Wehaveanisomorphisirra() = , Trp() -

Recall that we identify a compositioa = (a,...,a ) in Cy with the
-tuple (1%2% ... @) Then, we have an isomorphisingr a() =
TR,ap( p)-

Next, consider the action of the symmetric gr@&pon[1, ]9 by permuta-
tion. Each orbit contains a unique element given by a compositiorC, . Let

(a) denote this orbit. We have a bijecti®y/Sa { a}givenbyw  w(a),
wheresS , is the stabilizer ob. We write Tra)() = 0 { a}TR,p() .

For eachp  (a) we have a canonical isomorphishk p() = Tra() -
Therefore, we havéra)() =  sys, I Ra() - We deduce that

p=1

Endy+. () (TrR(@()) = Matsys, Endye. () (Tra()) -

Next, recall thatOx' () = c, Of ()(a) and thatTrp() OF
(){a}ifandonly ifp (a). Therefore, we have

EndA;v 0 (Tra()) EndA‘;{v O (Tra)())

a Cy
= Mats /s, End =) (Tra()) . (5.4)
a Cy

Foreachp [1, ], thegr, ,-moduleTgra,( p) AE' ( p) gives rise
to an R-algebra homomorphismI*Rap EndA;, ( p)(TR,ap( ) °P given
by (5.2). Taking the tensor product , we get &algebra homomorphism
H Ra End 0 (Tra()) °P

Now, assume thag Pqis generic. Combining th&-algebra homomor-
phism above with base chang®.3) and 6.4), we get arR,-algebra homomor-
phism ;p’d() ; HSRp,d End,« )(TRp a()) °P. Further, the composition

with g 4() vyields afunctor Epld() = HomARp() TRyd(), €
AEF')(){d} HSF‘{pid-mod.

Lemmab.34 Letp P 1 be generic. The following holds

(a) TRp 4() is projective inAJ,;F') () {d},
(b) Rp 4() isan |somorph|snh-lRp g Endng, (Trya()) *P,
(© Rp|d() is fully faithful on(ARp () {d}) and(AE{'} (){dp .
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Proof We have an equivalence of highest weight catego@?g*’? () =
=10;p’ ( p) and each facto@ip’ ( p) is a copy of the Kazhdan-Lusztig
category. Thereforé);é () is equivalent to a category of modules over a

guantum group byZ8]. HenceA;p' () {d} is equivalent to the module cate-
gory of ag-Schur algebra (with = 1) as a highest weight category, and this
equivalence takes ;p‘d( ) to the g-Schur functor.

Hence, some standard facts qrSchur algebras imply thak, q() is
projective inA;p' (') {d}, proving part (a), and that thg4algebra homomor-
phlsmHkp q Endnkp, (Tkp,d()) °Pis anisomorphism, proving part (b) by
Nakayama’s lemma an&d), (5.3, see e.g.39].

Now, we concentrate on part (c). A standard argument due to Donkin implies
that the g-Schur functorﬁ 4 1s faithful on(sip,d-mod) for = 1. More

precisely, recall that 3 kp.d = Homsip d(Sip,d e, €) for some idempoterd
Skp,d- Recall alsq that th@p’d—modulesﬁmd e s faithful and. that any Weyl
module embeds |S§p’d e, see e.g.,35, p. 188]. Thus, the claim follows from
[35, thm. 4.5.5]. So, from the equivalence above, we deduce t[jpa}g( ) is
faithful on (A;p‘ () {d}) . Since the g-Schur algebra is Ringel self-dual, we

deduce that l:'p'd() is also faithfulor(A;p' () {d}) .Therefore, the part (c)
of the lemma follows from Propositio2 18

We can now prove the main result of this section. Recall that we have intro-
duced amodul&rq in Ay , an R-algebra homomorphismg 4 : H 4

EndA (Tra)®P, and afunctor 4 :Ag {d}  Hj4-mod.

By base -change, we gétg, d, ;p,d and SRp,d for eachp P, see
Remark4.6. Recall also that, sincR is in general position, th& -category
Ay s split semi-simple and conditio3(1) holds inK.

Proposition 5.35 Letp P be generic. Assume thay d forall p. Then
(a) TRp d is projective inAF'Qp :

(b) Rp qisan |somorph|snh-lRp d EndAép' (TR, )%,

(c) Rp’d is fully faithful on(ARp’ {d}) and(A,’Qp’ {d}) .

Proof Assuming part (b), the Propositidh31and Lemmab.34imply parts
(a) and (c). Let us prove (b).

The proof is similar to the proof of Propositi@n27. It is based on Propo-
sition 2.23 Recall thatH} k g Is a split semi-simpleK -algebra, and by13,
thm. 3.30], that the decomposition mip(H o) Ko(H p7d) is surjec-

tive. We construct an endomorphisig, of Hf?p’d as follows. By Lemm&.34
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we have an |somorph|sm qa0) Rp7d Enanp’ (TRrya()) °P. Next,
by Proposition5.31 and Lemma5 32 we have an equivalence of cate-
goriesQg, : Og  {a} OE{: () {a} which mapsTry,a to Trya().

By functoriality, |t induces an isomorphismg, : EndA (TRp d)°P

End, ()(TRp da()) °P. We seté&g, = (| H )Sl Ro Rp7d The same

proof as in Propositiors.27 implies that the magk = Ké&gr, induces the
identity on the Grothendieck group. 8g, is an automorphism by Proposi-
tion 2.23 This implies that ;p'd is an isomorphism.

Remark 5.361f g, =1then ?zp,d is a 1-faithful highest weight cover.

5.8 The category A as a highest weight cover

Let R be a local analytic deformation ring of dimension 2 in general position.
Let x =S eandsg = + R.Recallthe modul@r g AF'{' and the functor
The rst main result of this paper is the following theorem.

Theorem 5.37 Assume thatp,  d for all p.

Pis an R-algebra isomorphism.

(@) Themap 3 4:Hgk4 EndAh’ Trd
(b) The modulel'r 4 is projective inAg .

(c) The functor %d is fully faithful onAg’ andAg’

Proof First, by Propositiors.22, the categonAy is split semi-simple and
condition @.1) holds in the fraction eldK.

To prove part (a), observe that sindérq is tilting, the R-module
EndA (Tr,a) is projective. Sincél, 4 is also projective oveR, we have

H&q = RoHR g Endy, (Tra) = RoEnda, (TRa),
p P1 p Py

see [Bourbaki,Algebre commutative ch. VII, 84, n2]. Next, we have
RpHSEQ’OI = Hst,d andRpEndAF,{' (Trd) = EndAép‘ (Try,a) foreachp P.
Thus, itis enough to prove that the maép’d isinvertible foreaclp P 1.By

Proposition5.22, the primep is generic or subgeneric. Thus part (a) follows
from Propositiorb.27and Propositiorb.35

Now, let us prove that 3 R g Is fully faithful on Ay . SinceTgrg is tilt-
ing, by Corollary2.171it is enough to check that o.d is fully faithful on

(A Ro. {d}) forp P1. This has already been proved in Propositiér7
and5.35
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As a consequence, the tilting modulg ¢ is projective by Lemm&.15
because the algebra E,@d (Tr,d) being isomorphic tdH%, R d IS symmetric.

Part (b) is proved.
We deduce that 3 4 is quotient functor. Therefore by Lemn2al6it is

fully faithful over A’ if SRp’d is fully faithful on(AF’Zp’ {d}) forp P1.
Again, this has been proved in Propositidn27 and5.35 The theorem is
proved.

The following corollary is a straightforward consequence of the theorem by
specializing to the residue eld, see al<2f].

Corollary 5.38 Assume that, d forall p.
(@ Themap 4 :H, 4 EndAk,ée Tk.d Pis ak-algebra isomorphism.
(b) The moduleTy 4 is projective inA, >°

Remark 5.39The modul€T ¢ may not be projective i©, .

Remark 5.40Let R be any local deformation ring. Assume that d for
eachp. From Theorenb.37b), Propositior2.4and Remarls.17we deduce
thatTR ¢ is well-de ned and is projective im\,'{

5.9 The functor F and induction

In Sect.4.6we de ned a pre-categorical actidi, F, X, T) on Ay . Now,
we de ne atuplgE, F, X, T) onAg inthe following way. Leth : Ay
Ok be the canonical embeddlng Consider the endofundors of A
givenbyE = h eh, F = h fh. Sincef preserves the subcategdky, , We
haveF = h'fh = fla, - In particular, the functoF is exact,(E, F) is an
adjoint pair and we ha\’/E(AR {d+ 1} ) (Ag {d}) .Then, we dene
X EndF) = End f)andT EndF?) = End f?) asin Propositios.14
Let d, k be positive integers such thdt+ k p for all p. In this sec-
tion we compare the functos® : Ag {d} ~ Ag {d+ k}and Ind"* =
HRd+k Hgy €1 HRg-mod H% d+k-mod.
By de nltlon Fk(T Rd) = TRrd+k and we have a commutative diagram

S

Hgg—  Endy, (Tra)®P

=1

S
Hx ek ————Endy, (FTra)®.
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Therefore, we have a morphism of functorsAg {d}

"kooInd§t* Ry Homa, (Tra+k F¥TRa)
EndAh: (Tra)» HOM . (TR, €)
Hom,, (E*TRd+k TR)
EndAF,{’
Homy (E*TRd+k, €)
Homy, (Trd+k, F¥€)

(Tr,a)P HomA,'q (Trd, €)

- k
= RakFo
where the map in the third line is given by composition.

Lemma 5.41 Assume that & k p forall p. Then' i : Indd+" g,d
% g+ K F ¥ is an isomorphism.

Proof It is enough to prove thatg is an isomorphism of functors on
(Ag {d}) .We must prove that the map

Hom, (E*TRd+k, TR) Endy, (Tra)*? HOMa, (TR, M)
Homys. (E¥TRa+k, M)

given by composition is an isomorphism for eddh (Ag {d}) .

Since ;d isO-faithful, E(A {d+1} ) (A {d}) and 3 4(Tra)
H% g as(Hy ¢» HR ¢)-bimodules, the left hand side is |somorph|c to

Homye, ( 2 d(E¥TRa+k), HE o) He, o Homus (HR g Ra(M))

and the right hand side is isomorphic to Hag,( Rd(E TRd+k): R
(M)). Hence, we are reduced to prove that the natural map

Homus, ( Ra(E¥TRa+k) HRa)  hg, HOMug (HR g, &a(M))
HomHSR,d( SR’d(EkTR,on), st(M))

given by composition is an isomorphism. We claim th%d(E TrRd+1)
HR 4+ @SHE g-modules. Thus it is a projectivd -module and the iso-
morphism follows.
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To prove the claim, note thatsince;’OI = Hom, (TRr,d, €) is fully faith-

fulon(Ag {d}) ,usingtheduality onAg {d}andthefactthad (Tr )
TRr.d, we deducethatthe contravariantfunctorI—}pRm(€, Trd) : A,'{ {d}

(Hf{d)"p-mod is fully faithful on(Ag {d}) . Therefore, we have isomor-
phisms

2 d(E*TRa+k) Homy. (TR EXTRd+k)
Hom(H}S:eyd)op HomAF,{ (EkTR’d+ ks TRd), H%,d
Hom(HEd)op HomAF,{ (T R,d+ ks FkTR,d)y HSR,d

S S
Hom(HSévd)op HR,d+k’HR,d .

Finally, sinceH} 4, is self-injective, there is an isomorphism B 4-
S S S i i
modulesH, 4, HOMs, yoo HR g4 HR ¢ - The claimis proved.

Remark 5.42Recall thatX acts on Ind** = HRa+1 Hg, €Dy right multi-

plication by Xg+1 onH% 4, 5, and the action oK on E is the transposition of
its action onF under the adjunction, see Rem&8. Hence, it follows from
the de nition of' 1 that it intertwines the action of on Inog+ Land onF,i.e.,
we have

"1 ( SR,d+1x) = (X Ee,d) "1
Similarly we have
"2 %,d+2T) = (T %d) "2,

for the action ofT on Ind*? and onF?2.

6 The category A and CRDAHAOs
6.1 Reminder on rational DAHAOs
6.1.1 DebPnition of the catego€y

Let R be a local ring with residue eldC. Let W be a complex re ection
group, leth be the re ection representation @ over R and letSbe the set of
pseudo-re ections inV. Let A be the set of re ection hyperplanes Im We
write hreg = h\ ;5 H.

Letc: S Rbeamap thatis constant on thé&conjugacy classes. The
RDAHA(=rational double afbne Hecke algebttached t&V with parameter
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cisthe quotient (W, h)r of the smash product & Wand the tensor algebra
ofh h Dby the relations

[X,x]=0, [y,y]1=0, [y,x]= X,¥'S ¢ sVY'X s
s S

forallx,x h,y,y h. Here€, €"is the canonical pairing betweén
andh, the element g is a generator of Ifs|, S 1) and s is the generator of
Im(s|p S 1) suchthat 5, §"= 2.

Let R[h], R[h ] be the subalgebras di;(W, h)r generated byn and
h respectively. The categoi® of Hc(W, h)r is the full subcategory of the
category ofH¢(W, h)g-modules consisting of objects that are nitely gen-
erated asR[h]-modules and-locally nilpotent, seed2, § 3]. We denote it
by O¢(W, h)gr. It is a highest weighR-category. The standard modules are
labeled by the set I(CW) of isomorphism classes of irreducillé-modules.
The standard module associated with Irr(CW) is the induced module
( BE)r = Ind\t\',(v\QFf1 ](RE). Here RE is regarded as &  R[h ]-module
suchthah  R[h | acts by zero. LeL (E) be the unique simple quotient of
( E)r, and letP(E)R be the projective cover of E)g.

By [22, § 4.2.1] there is a functor

(€) :0c(W,h)g  O¢ (W, h)P,

which is an equivalence over the subcategories of modul&3(\WV, h)g,
O¢ (W, h )‘;f that are free oveR. Herec : S R is de ned by
c (s) = c(s°1). For anyE  Irr(CW) we write E' = Homg(E, R). We
have( E);  (E )rand (E)g ( E)r.

6.1.2 TheKZ-functor
Let R be an analytic regular local ring. There is a quotient functor
KZg: OC(W, h)R H(W, h) r-mod

de nedin[22, §85.3], wherdd (W, h)r is the Hecke algebra associated with
and a parameter which dependsoomote that loc. cit. uses regular complete
local rings, but the same construction can be done for analytic ones.

Proposition 6.1 The functorKZ  is O-faithful.

Proof By Proposition2.18it is enough to prove that over the residue eld
C the functor KZ is(S 1)-faithful. In other words, we must prove that KZ is
faithful onO¢(W, h)...
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Write O = O¢(W, h)c, letOior O be the full subcategory consisting
of the objectsM such thatM ¢ C[hreg] = 0. By [22, thm. 5.14], the
functor KZ is isomorphic to the quotient functer O/ Otor. A - ltered
objectM is free ovelC[h] by [22, prop. 2.21], so it has no torsion submodules.
Therefore, the map Hog(M, N)  Homgp (KZ(M), KZ(N)) is injective for
eachM, N O .We are done.

6.1.3 Induction and restriction functors

A parabolic subgroup W W is the stabilizer of some poiflt  h. It is

a complex re ection group with the set of re ectior® = S W and with
re ection representatioh/ hW , wherehW is the subspace of points xed by
W . Bezrukavnikov and Etingofj] de ned parabolic induction and restriction
functors

OIndlY : Oc(W,hhW)r  Oc(W, h)g,
ORegy : Oc(W,h)r  O¢(W , W hW)g.

Here we viewc as a parameter foV by identifying it with its restriction to
S. Inloc. cit. the authors work over a eld. The de nition is the same over
aringR. The functorolndw is left adjoint toOReQ’,(,’ , and both functors are
exact. In particuIaPIndW maps projective objects to projective objects.

Let R be an analytic regular local ring. B¢1, thm. 2.1] we have isomor-
phisms of functors

KZr °Regy "Resy KZgr, KZg 9ndy Mindly KzZg, (6.1)

WhereORe% and HIndw refer to the restriction and induction functors for
Hecke algebrabl(W , h/ hW)g H(W, h)r, see loc. cit. for more details.
Again, in loc. cit. we work over a eld, but the same proof works oRer

We will be mainly interested in the case whéke = Wy is the pointwise
stabilizer of a hyperpland . We will abbreviate®O (WH)r = Oc(WH, W/ H)Rr
and®Indy = OIndWH.

6.1.4 Support of modules
Let R be a local ring with residue eld k. We abbreviddy = O¢(W, h)g. If
R= Kisa eld, let Ch(M) denotethe characteristic varietgpf M as de ned

in [22, § 4.3.4]. Itis a closed subvariety bf h . Recall the notation lcsl
and rcg from (2.1).
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Lemma 6.2 Assume R= K is a beld. Forany M Ok we have
lcdo, (M) = rcdo, (M) = dimh S dim Ch(M).

Proof The equality dimCtM) = dimh S rcdo(M) is proved in P2,
cor. 4.14]. Further, the proof of2p, lem. 5.2] yields dimCfM) =
dim Ch(M" ). This implies that rcg(M) = rcdo(M' ). On the other hand,
by [22, prop. 4.7], if T is a tilting generator o0k then T is a tilting
generator of0, and Ext, (T, M) Ext'O-K(M' ,T'). We deduce that

lcdo, (M) = rcdoy (M) = redoy (M),

Lemma 6.3 For E  Irr(CW) we havercdo, (L(E))  1if and only if there
existH A and P O(Wy)R such that RE) is a direct summand of
Olndy (P).

Proof By [21, thm. 6.8] we have CHL(E)) = hW {0} h h for
some parabolic subgroy W. So reh, (L(E)) 1 is equivalent, by
Lemmas.2, to the fact thah"’ has codimension 1 inh, which is equivalent
toW Wy for some hyperplankl in A. By [43, prop. 2.2], the latter is true
if and only if OReﬂ%"’,\,H (L(E)) =0, which is equivalent to

Homo, CIndy, (P), L(E) = Homow,)z P.Resy, (L(E)) =0,

for someP  O(Wi)2®. Hence rcé, (L(E)) 1 is equivalent toP(E)
being a direct summand 8fnd\y (P) for someH A andP  O(Wh)R™.

6.2 The categoryO of cyclotomic rational DAHAOs
Let Rbe alocalring. Fix g R* ands= (srR1,...,Sr ) R.
6.2.1 DebPnition

Recall that is the group of -th roots of unity inC* and that 4 is the semi-
direct products g4 d where 9 is the Cartesian product df copies of .
For# let # d be the element with at thei-th place and with 1 at the
other ones. Les; Sq be the transpositio(i, j). Write s1J = s,#. L for
# andi =j.

Fix a basis(x, y) of R%. Let x;, y; denote the elements, y respectively
in thei-th summand ofR2) 9. There is a unique action of the groug on
(R?) 9suchthatfordistingt, j, kwe havet (xj) = #° iixj, #(y;) = # iy
andsjj(xi) = Xj, 5j(Xk) = X, Sj(¥i) = yj andsj(¥k) = Yk
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Fix k R and cy R for each# . Note that d is a com-
pIex re ection group with re ection representatloh R d and S =
{g o= odp {#i}1 | q.Letc: S Rbethemapglvenb@r(s1 ) = Kk,
c(#.) = ¢4/ 2. We consider the algebid(W, h)g for W = 4. We will
call He( g, h)r the CRDAHA=cyclotomic RDAHA It is the quotient of the
smash product oR ¢ and the tensor algebra pR?) 9 by the relations

[vi,xi]= 1Sk %ﬁé Cuthi,
j=i# # (1
[vi.xj]=k #s ifi =],
#
[Xi, i1 =[¥i,yjl = 0.

We will use a presentation oH¢( ¢, h)r where the parameters are
h, hg, h1,..., h g1 with (settinghgs = h §1)

S1
k=Sh, Sci=  #°P(hpShpsy) for# =1,
p=0
The notatiorh = hr, hp = hr p hereisthe same as i89, sec. 6.1.2]. Finally,
we choose the elemerttg, hr  in the following way:

hr= Sy R, hR,pzésR,pﬂ/ RS p/, p= 01,..., S1 (6.2)

In the rest of this section we assume that the residue bkld i€ and that
,p Zforall p.

Write = g andsp = s p. We abbreviated {d} = O¢( 4, h)r. If

= 1, thenc only depends on, we abbrewateo r(Sd) = Oc(Sq, h)r.
The categor;@R {d} |sah|ghest weighR-category such thaf OS {d}) =
{0 &:  Pgand() % = (X ()c)rWewiteL() > ,P() & ,
T() 2 R ()3 r for the correspondlng simple, projective, tlltlng, injective
object inO% {d}.

6.2.2 Comparison of partial orders

The partial order on the st OE {d}) P 4isde nedas follows. LetA, B
be boxes of -partitions. We saA ( s B if we have cont(A) < conf(B) or
if contS(A) = conf(B) andp(A) > p(B). We de ne a partial order s, on
P 4 bysetting s W ifand only if there are orderingg() = { An} and
Y(W) ={Bn}suchthatA, s B,foralln.

Lemma 6.4 Assume < 0. Then g is a highest weight order o@% {d}.
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Proof By the proof of L6, thm. 4.1], if[() » : L(k) ] = O then there
exist orderingsr() ={ An} andY(u) ={ Bn} and non negative integeb3,
such that

Dn = p(An) S p(Bn) + conf(Aq) S conf(By) /,

for all n and(conf(A,) S conf(B,))/  Z.Our notation matches those of
loc. cit. inthe followingwayr = ,co= S1,dp =S hp. Now,since < 0
andp(An), p(Bn) [ 1, ],wehaveD, OifandonlyifA, s Bp.

Sets” = (Ss,Sss1,...,Ss1). For each P4 we write * =
¢ ,...,t 2t 1. We have the following lemma which is similar t83,
lem. 2.2].

Lemma 6.5 Assume that < Oandthatg = p d forall p. Then the
order ¢, rebnestheorder ,i.e, forany ,p P 4 suchthap we
havey” ¢

Proof First, for any P4andA Y(), we have the transposed box
A" Y( ") such that corit(A") = S conf(A) andp(A") = + 1S p(A).
Therefore, we havé\ ) s Bifand only if A" ( ¢ B’.

Let ,u P 4 be such thau . Assume thav W , * are

suchthat (W) + : "> Oandws € (W) = (). We mustprove that
U ¢ 7, whichisequivalenttp s .
Write = y;+r and = s+ )+er S .Setn= p+
k|"Ser>0.Wehavew( + )= + and( + )k=(u+ )kShn,
(+ =@+ n+n.

Fork [1,N]letk = kS 1S 2S---S p&1 wherepy is such
thatk  J,, . Then the diagrany( ) is obtained from the diagraim(u) by
removingn boxes from the right end of the-th row of the pi-th partition of
p and addingn boxes the right end of the-th row of thep,-th partition ofp.

We number the removed boxesBy, By, ..., B, ordered from left to right,
and the added boxes 4, A, ..., A, ordered from left to right. We claim
thatB; Ajforl | n.

To prove this, note rst thaB; Ajifandonlyif B,  A,, because we
have cont(Bj) S conf(Aj) = conf(Bn) S conf(An), p(Bj) = p(Bn) and
p(A}) = P(An).

Now let us compard®, and A,. Observe that

conf(Bn)= (u+ IS 1, conf(A)=( + )S1=(u+ ) +nS1

Recallthat = |+ r is a positive root. Therefore, we have eithe¥ 0O,
and then
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conf(Bp) S conf(Ay) = p+ : k|"Sn=er>0,

or we have = 0 andk [, and then corf(By) = conf(A,) and p(By) =
Pk P = p(An). Wededucetha®, A,.Hencewehaveshown s
Next, recall thatw W is such that the tuple + is -dominant.

Thus, we can writev = s 'S «,---S,suchthat; = , for somek < |
with pc = p, that# = s &S & 'S,( + )S NN and that
n=S #+ , "> 0.Wesety = . Repeating the argument of the
last paragraph with = ; yields thatY(#i+1) is obtained fromY (#) by

removingn boxes in the -th row of#" and adding them to the-th row. Order

the removed boxes b1, By, ..., By and the added one by, Ao, ..., An

in the same way as above. Then the same computation as above yields that
conf(A;j) = conf(Bj)andp(A;j) = p(Bj)forallj = 1,2,..., n. Therefore

we haveti+ 1 = # fortheorder s . Wededucethat= #n+1 = #m+1 =
Thereforeu s . The lemmais proved.

6.2.3 TheKZ-functor

Now, letRbe alocal analytic deformationringandggt exf(S2 S1/ R)
R*. Consider the KZ-functor Kg ; : O {d}  H{ 4-mod.

Lemma 6.6 Assume tha(3.1) holds in K. Thenlrr(Hg o) = {S() k%

PyhimrOR {dp={() }; P 4tand the bijectionrr(Oﬁ {dh) Irr
(Hk .¢) induced byKZ % g takes () K’ to S()

Proof The rst statement follows from the semi-simplicity lsullf< 4 and from
[22, thm. 2.19]. The second one follows from Tits’ deformation Theorem,
because the modules IﬁZd( @) K ) andS() 9 are both the generic point
of a at family of modules whose ber at the special point is t@e g-module

X () c, see 81, lem. 3.1] for details.

6.2.4 Ringel duality

By [22, prop 4.10], there is an equivalence of categoRes O ' {d}
0% {d} P that restricts to an equwalen@s {dyit o3 {d}proJ P,
Hence, it mduces an equwalen@zs {d}  OR {d}°P. We haveR (
( )R ) () R . Consider the isomorphism @&-algebras

+Hxg (Hpa)® T S arThL X5 XL
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It induces an equivalence
Ry=+(€): Hg'd—mod R-proj (H% 4-mod®  R-proj,

where€ is the dual as afR-module.
By [22, 85.4.2], there is a commutative diagram

oY {d} R o {d}
KZ$, 4 KZ% ¢ (6.3)
Hsé,d-mod R-proj ___Rm (HlsQ’d—mOCDOIO R-proj.

In particular, ifR = K isa eld satisfying the condition3.1), then Lemm&.6

yieldsKRu(S( g™ S0 §°
We will also consider th&-algebra isomorphisms

IM:HRy Hiag T S arTSL X X3t
and
t(HRa)® Hia T T X X
Note that the composition II\/RE1 is givenby (€).

6.3 Proof of VaragnolobVasserotOs conjecture
Let R be a local analytic deformation ring of dimension 2 in general position

with residue eld k= C.Fixe, ,N N*.Fix g R*suchthaty=Se
and Cn+-WesetsrRp = p+ Rp QR = exp(S2 ST R) and

Qrp= expS2 Slsgp/ Rr). We may abbreviate = , Sp = S p.
6.3.1 Small rank cases

As a preparation for the proof, we start by comparing the highest weight covers
gZSR'd 10k {d} Hjg-modand 34:Ag {d} HE4-modford = 1,

First,assumethat= 1. Then g = isacyclic group. The Hecke algebra
associated with isH% ; = R[X1]/ 2 1(X1S Qrip) -

Proposition 6.7 We have&KZ %,  (P() 5) r1(T() g, )forany P .
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Proof For eachp [ 1, ]let , P, be the -partition with 1 on the
p-th component and¢ elsewhere. By Remark.18 Proposition5.22d) and
Lemma6.6, we have

Zi (O k) KIXAX1S Qk,p)  ®al( pk, )

By Theorem5.37 and Propositior6.1 the functors K% , and &, are 0-
faithful cover of H 1-mod with opposite orders. Therefore Corolléhzz

shows thatKZ ,(P() )  R(T() wr )forany P .

Now, assume thal = 2. Recall the Hecke algebt-eh; , = RIT1)/(T1+

1)(T1 S gr) associated with the group,. Write + = (2) and g = (12) in
P 1. The categorD (S >) is a special case @p {1} with = 2. The proof
of Proposition6.7 yields

KZho(P( Jr)  roTC )R ). =+.S. (6.4)

Consider the induction functor 184 : H ,-mod  H$, ,-mod.

Proposition 6.8 Assume , 2forall p. For =+ , S, there exists a tilting
objectT Ay {2}suchthat §,(T) Ind33( £o(T( Ir ).

Proof By Theoremb5.37a), the module 3 R, 2(TR 2) is the regular representa-

%
tion of HY, ,. Write T, 2= Vg We have f,(Tr,) Hg,. Thus, there
is an isomorphism of R -modules

r2(TR2) |nd§:i( r2(TR2)- (6.5)

If e > 2 then x = S2, henceH, , is semi-simple andT, ,

T( +)r T( §)r -Since ;2 is O-faithful, it maps mdecomposablefac—
tors of Tr 2 to mdecomposabIH R 2-Modules. So, the proposition follows
from (6.5 and the Krull-Schmidt theorem.

Now, assumethat= 2,thergx = S 1. Theindecomposable tilting modules
iNAR {2tareT( +)r= Tg,andT( §)r= ( &)r.Weneedto prove the
proposition forT( g)r. We have ;,2(T( §)r) R[T1)/(T1+ 1). Consider
the action oHy , on TR ,. ThenT( 5)r is the image off; S gr acting on
TE ». Since the functof g o %k €is exact, we deduce thItR 0 %RT( §)Ris
the image off; S gr acting onTr2. By consequence, R2 Tro %&RT( §)R
is the image of the right multiplication by, S gr on R, Ro(Tr2) = HR 5
Therefore, we have

22 TRO YRT( 8)r  Ind3S  Ro(T( 8)R) - (6.6)
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We claim thatTr o %&T( §)r is tilting in Ag {2}. Indeed, by Propo-
sition 8.3Q the specialization map E;ad (Tr2) EndA (Tk,2) takes
T8 gr to T1 S Ok- SlnceTRo"/tpT( s)R is free overR by Lemma8.27
and since it is the image of the operatdr S qr : Tr2 Tro2,
the image ofT S Ok - Tk2 Tk2 is k(Tro Y%T( §)r). The same
argument as above implies thRt o R T( §)« is also the image of the oper-
ator Ty S o : T2 Tk 2. We deduce that there is an isomorphism
K(TrRo%RT( 8)R)  Tk0RT( &)k SinceTko RT( &)k is tilting by
Proposition8.11, the claim follows from Propositiod.4(c). The proposition
is proved.

6.3.2 Proof of the main theorem
We can now prove conjecturd§, conj. 8.8].

Theorem 6.9 Assume that d for each p Then we have an equiva-
lence of highest Welght categories Se. a Se{d} 0 "S¢{d} such that
dSC) () Sfand ¢ M KZg §°°

Proof Let R be a local analytic deformation ring of dimension 2 in general
positionwithresidue eldk= C. Assume thaty = SeSetsgp= p* Rp-

LetC = O‘; {d} andC = Ay {d}. We consider the highest weight cov-
erskF = IM KZS :C  HjgmodandF = Z,:C  Hjy-mod.
We claim that they satisfy the conditions in Proposita0, so the theorem
holds. Let us check these conditions.

First, H‘E q Is symmetric. Sincé is in general position, the conditioB.q)
holds inK, hencer< 4 Is semi-simple.

We haveK F( ( )K ) = () ¥? by Lemma6.6 and Sect6.2.4 and
we have andKF (() «, ) = () g* by Proposition5.22 So the order
on Irr(Hild) induced by(C, F) re nes the order induced b{C , F ) by
Lemma6.5.

Since IM is an equivalence, by Propositiéril the functorF is fully faith-
ful on C . Hence it is also fully faithful orC , by (6.3) and P2, §4.2.1].
Theoremb.37(c) gives the fully faithfulness oF onC  andC

It remains to check thaE(T() %)  F (C™) for all P, such
that lcde (L () lorrcde (L () 1. Recall from Sect6.2.4that
C C O% {d}°PandL () corresponds te( *)S . By Lemma6.2
we have

rede (L () =ledos ay(L( %)= redos. (L )% ) = lede (L ().
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We have
FTOS ) M KZE4RSYPO L) (KZ%a(PO2) ).

By Lemma6.3 and the Krull-Schmidt theorem, it is enough to prove that
for any re ection hyperplanéd of 4andanyP O(Wx)%”, we have

(KZ%,4Cindyi (P)')  F(C ™).

Since (€ ) commutes with induction functors and xes isomorphism classes
of R-freeH%, ;-modules andH}, ,-modules, we deduce fron6 () that

(KZ% 4(%Indyg (P)) ) KZ% 4(%Indyy, (P)).

There are two possibilities fdf :

€ eitherH is conjugate to ké#; S 1) forsomd [ 1, d]. ThenWy . We
identify O(Wi)r ~ Op {1} and®Ind,yi, ~ ©Ind ¢. By Proposition6.7,
for any projectiveP O} {1}, there existsT ~ Ap {1} such that
KZ%1(P)  &.(T).By(6.1), we have KZ 4 9Ind,y  Ind] KZ3, ;.
Using Lemmab.41], this yields K@,d(olndv\‘,’H(P)) Ind‘{( r1(T)

2 g(FISX(T)). The module=95%(T) is tilting by Propositior8.29a), so

KZ$ 4(CIndyd (P)) F(#cf"t);

€ or H is conjugate to ke(:qj S 1) for some# andi =j. ThenWy
Sz2andO(WH)r  Og(S2). By (6.1, we have K2, 4(°Indy;. (P))
Indg:f (KZ(P)). By (6.4) and Propositior6.8there existsl ~ A {2}
suchthat §,(T) Ind3$ (KZ(P)). Using Lemméb.41, this yields

Indgs (KZ(P))  Indd( %,(T)  q(FIS2(T)).

SinceF952(T) is tilting, we have K2 4(°Indyd (P))  F (C™).

We have checked th&€C, F), (C , F ) satisfy all the conditions in Proposi-
tion 2.2Q, the theorem is proved.

Remark 6.10In [46, (8.2)] the parameters of the CRDAHA are chosen in
a different way. More precisely, the symbioj, in [46] corresponds to our
parameterh, S hpgi. Further, the parametei$, hp) are specialized to
(SVe spr1/eS pl) in[46]instead of( L/ e, sp+1/€S p/) as above.
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6.3.3 Proof of the main theorem for irrational levels

Let C\ Q. We will prove the following result, which was conjectured in
[46, rem. 8.1Qb)], as a degenerate analogue4s,conj. 8.8]. If is dominant,
a proof was given in34, thm. 6.9.1].

Theorem 6.11 Assume that C\ Q and that , d for each p Then
we have an equivalence of highest weight categorjgs : A {d} O - {d}
suchthat 4 (()) () and 4 IM KZ, 4

Let Rbe the completion 4t, O, ..., 0) of the ring of polynomials o€ *1.
It is a local deformation ring such thak, r1,..., R, are the standard
coordinates. The residue eld is k C and we ha\{e k= , kp = 0.
Further, for eaclu, v and eactp P, we have Koo S Kpv | Z*. We set
SRp= p* Rp-Now,weconsiderthefunctorg 4: Az {d}  HZ4-mod
given in Sect4.6.

Lemma 6.12 The functor SF'{’d is a highest weight cover. It is fully faithful on
(Ag {d}) and(Ag {d}) .

The proof is by reduction to codimension one, and is very similar to the
proof of Theoren.37. We will be sketchy.

We say that a prime ideal P isgenericif y,u = k,v foreachu =v,
and that it issubgeneridf there is a unique pain = v such that Kp,u = kpv-

Claim 6.13 For eachp P 1 the following hold.

(a) pis either generic or subgenetic

(b) if p is generi¢ then there is an equivalence of highest weight categories
Qk, 1 O, fa} O () {a},

(c) if pis subgeneric withx, u = k,v and u =v, then there is an equiva-
lence of highest weight categori€, :Okp‘ {a} Okp(, u,v){a}.

Proof Part (a) is easy. Parts (b), (c) are proved as in Proposifidi#s5.31,
using 0, thm. 11]. The details are left to the reader.

Proof of Lemma.12 Now, the moduleQ, (Tk,,d) can be identi ed explic-
itly, using the same argument as in the proof of Lem®H&€ 5.32 Indeed,
itis enough to check th&y, takes a parabolic Verma module to a parabolic
Verma module with the same highest weight and that the induced linear map
[Okp, 1 [ Okp( , U,Vv)] commutes with the linear operators induced by the
categori cation functors, f.

Using the same argument as in the proof of Theose3, we only need to
prove the lemma for ﬁp’d andp P 1. Hence, by Clain6.13 we are reduced
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tothe case = 1lor2.If = 1 everything is obvious, because the category
O™ () is semi-simple. If = 2, we may assume, = 0, the result follows
from PropositioM.7 and the last paragraph of the proof of Propositoir.

Proof of Theoren®.11 Consider the highest weight cover II\JKZSF;d
O3 {d} H% q-mod. Since ther- algebrast—|S R q andHg 4 are isomorphic

by Proposition3.1, we can regard IMKZ} 4 and  § 4 as highest weight
covers of the categori}, ,-mod. We claim that they satisfy the conditions
in Proposition2.20 so the theorem follows. Let us check the conditions.
First,H} 4 is Frobenius, anti}, 4 is semi-simple becaus8.() holds obvi-
ously inK. The compatibilities of orders is again given by Leména
Since IM is an equivalence, IMKZ 4 is fully faithful on - and -
Itered objects by Propositio.1and 6.3). The corresponding property for
&g follows from Lemma6.12

It remains to checkthatIMKZ,SQd(T() R ) Ra((Ag {dht)forall
P. such that IchR, @ (L () tor rcq@g, ) (L () 1. The
proof is the same as in Theored®. Details are left to the reader.

7 Consequences of the main theorem

7.1 Reminder on the Fock space

LetR,gr,I =1 (q)andQr1, Qrz2,..., Qr, beasin SecB.1 Consider
the dominant weight irP = P, given by @ = p=1 Qp- Note that
Q= 0 poWith p= o, g, Q.Lets=(sy...,s)beasin
Sect.3.3 Then, we may write S= Q.
The Fock space of multi-chargeis the vector spacg( S) = p C
|, s".Wewillabbreviate = S.Wewillcall{], s" P }thestandard

monomial basi®f F() .
There is an integrable representatiorspbf on () given by

Fl, s"= Iu, s", Ei(l, )= Iu, s" (7.1)
g-re$(usS) =i g-re$( Sp=i

Letnj() bethe number of boxes of residuim . To avoid any confusion we
may writen?() = niQ() = ni() . Each basis vectdr, s"is aweight vector
of weightwt(|, s")= S |, ni() .

The -weight space oF() has dimension one and is spanned by the ele-
ment [#, s". The s} -submoduleL () F() generated by#, s" is the
simple module of highest weight. It decomposes as the tensor product
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L() = 5 L(C p). whereL( p) is the simplesl, -module of highest

weight .
Remark 7.1Assume that the quivér (q) is the disjoint union of components
oftypeA .Then,wehavé&() =L() = ,1L( p).

Remark 7.2The weight w{ ) associated with the element P + should
not be confused with the weight (| , s") above, which is associated with the
-partition P . The former has the level 0 while the latter has the level

We have wt ()) = wt(|, s)S ,-; ,modZ .
Indeed, the equation above holds for #. Thus, it is proved by induction
using the following equivalences fogqu P, see Secft/.],

O ' W * grresu$) = ql,
wi( () Swi( (W) = wi(l, s)Swi(j, s) = .

7.2 RouquierOs conjecture

Let K = C. Fix integerse, land xs = (sg,...,S) Z . Set
= S, Setl = Zandl = I/eZ. So, we havesl, = sle and the Fock
spaceF() is an integrablsle-module. Consider theglovOs canonicabses
{G(, s) P }of F()_ introduced in §5, sec. 4.4].
SetOs S OS Se{d} We identify the compIeX| ed Grothendieck

group[OS Se] Wlth F() via the linear mag& : [0S 5€] F() such that
[( )5 | s

Since the categorSDs Se jg preserved under the substitutien (1 +
s;,1+ ,...,1+ s) we may assume thap, = |  d for eachp. Set
A Se — A Se{d}

The foIIowmg result has been conjectured by Rouqusé& fec. 6.5].

Theorem 7.3 We have& (T( )S5€]) = G*(, s) and&(L( *)s'59) =
G3(, 9).
Proof Letc®, (s) ZbesuchthaG*(, s)= ,c, ()i s

LetF() {d} F() bethe subspace spanned by thesets"; P 4k
Assume that ,  d for eachp. We identify the complexi ed Grothendieck
group[A - Se{d}] with F() {d} viathe linear map suchthpt) ] | , s"

Let L() be the top of() in A: Se{d} By [46, prop. 8.2], we have
[LO] = S (s)[(u) ]in [A: Se{d}] Therefore, the isomorphism

[A - Se{d}] I:() {d} maps[L() ] 0 G®(, s).
Since the equwalence of categornesse{d} os" Se{d} in Theorem6.9
mapsL () toL( ") S€and since the isomorphisi®s -Se{d)] F() {d}is
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the composition of the ma[rDS*'ée{d}] [ A ée{d}] induced by the inverse
of the equivalence with the isomorphigA ée{d}] F() {d} above, we
deduce that the mg®s :Se{d}] F() {d} takes[L( ")s 'S¢ to G5(, s).

Next, letP() be the projective cover of) in A S®d}. By the Brauer
reciprocity we havedP() MW =[@w@w :LOI Therefore we have
[PO) 1= dS ) (W ] in[A: Se{d}] Where the matrlxd (s) is the
transpose of the inverse matrix ads (s) .

By [45, thm. 5.15], we havaaiS (s) =ch (s*). Using the equivalence
of categories Se{d} os" Se{d} we get[P( *ys'Se) = u € (S

(n )S Se] in [OS Se{d}] By removing* everywhere, we get the following
equality in[OSS&{d}]

[PO %= ¢ (9l 9. (7.2)
]

Next, by Sect.2.4we have the equivalende : OS Se. (g osSe
{d}°P such that( ") Se ( 58 andT( )s:S¢  P()SSe The
inverse ofR yields an isomorphism of Grothendieck groqmsse{d}]

[0 Se{d}] such that[() 5%¢ [ ( )5 and [P() 55¢]
[T( )59, Thelmage ofthe equalrtW(Z) under this isomorphism gives the
identity [T( *)S5¢] = w1 *)5.5€] in [0S :S€{d}]. We deduce

that the isomorphisfiOS Se{d}] F() {d} maps the elemeriT( ") S€]
to cfu (s)|u, s"= G (, s). We are done.

7.3 The categoryO of CRDAHAOQSs is Koszul

Recall thatl [ 0,e) and that ;, ; are the fundamental weights and
the simple roots ofle. Fort = (t,...,t) Z®letOf  OSS® be the
Serre subcategory generated by the modles $-5€ such that the following
condition holds
eS1 eS1
5SS (PO SN3() i=  (tiSts1) i+ ( +tSt) o (7.3)
i=1 i=1

Set|s| = s1+---+ s and|t| = tg +---+ te. From (7.3) we get that
[t| = | s| moduloZ e. Hence, up to translating ttigs simultaneously by the
same integer, we may assume thatZ¢(|s|). Note that the left hand side of
(7.3 is equal towt(] , s") modulozZ .

Since the categor®; is preserved under the substitutians (1+ s, 1+
$,..., 1+ s) andt (1+t,1+ tp,...,1+ t), we may assume that
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s= ", t=p’ for some compositions Cy,u Cg suchthapi, , d
for eachi, p.

The following result has been conjectured by Chuang and Miyaghi [
con;. 6].

Theorem 7.4 The categonpy is (standard Koszul and its Koszul dual coin-
cides with the Ringel dual @..

Proof Recall thats = " andt = p". Theorem6.9 yields an equivalence

 A-Se osSegychthat +Se(()) is isomorphic to( *)SSe
LetO, Se- 0:5¢ g .Seyith = (Wi . Itis the Serre subcategory
generated by the simple modules with highest weigbich tham; () = W
foralli Z/ez, see Sect.4 LetA, = A5 O °¢.

Lemma 7.5 The functor - S¢ gives an equivalencd,  Of.

Proof By (7.3 we have( “)$S¢  Ofif and only if

eS1 eS1

S (P )SNE( ) i=  (tiSti+1) i+( +teSt) o (7.4)
i=1 i=1

Next, observe than>() = ngl( “Yforalli Z/eZ. Indeed, letb =

(X, y, p) be aboxinrowk, columny of the Young diagram of the partitiory,.
Then, we have a bijection form the set of bowes ohto the set of boxes of
suchthab = (x,y, p) mapstd” = (y,x, S p+ 1). Thus the claim follows
from the relation coff(b) = ySx+sp =S (xSy)Ss Spr1= =S conf (b").

It follows that ( *)Se  OSif and only if

eS1 . . eS1
°S (g () Sny()) i= (tiSt+1) i+t ( +tSt) o
i=1 i=1
X eS1 . . eS1
& S (ng;() Snj () si= (tiSt+1) si+( +tSt) o,
i=1 i=1
eS1 eS1
& S (n()Sny()) i= (t5iStsi+1) i+ ( +teSty) o,
i=1 i=1
eS1
& wt(], = (tsiStsi+1) i+ ( +tSt) o modZ.

i=1

Sincet” = (Ste, ..., Sto, Sty), we deduce tha; S tgi+1 =t St , for
alli. Hence, we havg  ")>S®  Of if and only if
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eS1
wt(|, ") = (ti*éti*+1) i+ ( +t;ét;) o modZ.
i=1

Recallthatwf ()) = wt(|], ")S omoduloZ , see Remark.2 Since
t* = u, we deduce tha{ ")$S® Of if and only if

e

wit(()) =  (MiSHi+1) i modZ.
i=1

Since A, = A Se Oljse and () = M(()) , we deduce that
( s de Ofifandonlyif ()  A,.
To conclude, note that, by, thm. B.4], the highest weight categohy, is

(standard) Koszul, and its Koszul dual is equivalent to the Ringel duat of
The theorem follows.

7.4 Categorical actions on A

Recallthat = Z/eZ. By [41, thm. 5.1, cor. 4.5], there is &y -categorical
action(E, F, X, T)onOSSewithE = | NOReg+1 F= 4 5OIndd*?,
and such that the functor KZ = 4 nKZg is a morphism ofs} -
categori cationsOSS¢€ L ( S); . In this section we construct a similar
sl -categori cation for the categom.

Let R = C, = 0, and let Cy + - Assume thad p for
all p. Recall the tuple(E, F, X, T) on A V8o from Sect.5.9. Let 4 =

Se - A-Serd} O Se{d} be the equivalence in Theores®. We have the
foIIowmg

Lemma 7.6 Assume that d- 1 p for all p. Then the functors F:
A-Setdy A-Se{d+ 1} and E : A Sefd+ 1}  A-S¢[d} are biad-
joint. Further, there are isomorphisms of functd?lindo'+1 d d+1 F and
OReg‘fl d+ 1 4 E, which intertwines X g with  g+1IM(X), and T ¢
with g+ 2 IM(T).

Proof We abbreviate Kg = KZ,, KZy = sz, a= 4 A= ASE
O = 0:5¢andO = O Se By Theorem6.9we have ¢ IM KZy d
onA{d}.

Recall from Propositior8.29thate, f are biadjoint functors o®. Let
F= giF $':0{d} O{d+1}.Weclaimthatthereisanisomorphism
of functorsF  ©IndJ*!. Let us prove it.
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Since g+1 F Indg+1 d by Lemmab.41, and since IM commutes
with the induction functor, we have K& 1 F Indg+1 KZ4. By (6.1), we

also have KZ+1OInd3+1 Indg+l KZ4. Hence, we get an isomorphism of
functors

&:KZge1F  KZge19Indd" L.

The functorolndg+1 maps projectives to projectives. L& be the right
adjoint to KZy. Since K% is a highest weight cover, the unit : 1
Gg KZ4 is invertible on projective modules. Hence, the isomorphi&m
yields an isomorphism of functors on projective moduleg 1 KZg4+1 F
Ga+1 KZg+19Ind§* Y ©Ind$**. Composing it with , we get a morphism
& F C’Indd"l on the projectives, such that §Z1 & = & Since KZ+1
is (S1)- falthful it follows from Lemma2.8 and Remark.9that& is injec-
tive, hence invertible because both terms coincide in the Grothendieck group
by Lemmab.12 and @1, prop. 4.4(3)]. Thus& is an isomorphism on the
projective modules.

Now, since 4+1, 4 are equivalences, both andolndg+1 are exact on

O{d}. Thus,& extends to an isomorphism of functas: F °IndJ** on
O{d} such that K4+ 1 & = &by [41, lem. 1.2]. The claim is proved.

LetE : A{d+ 1} A{d} be the right adjoint of~. The unigqueness of
right adjoints implies that  E 3},  °Re§"™. Now, since®Reg** i
also left adjoint toolndg+ L by [41, prop. 2.9] and since g is an equivalence,
we deduce thaE is left adjoint toF, henceE E onA{d + 1}.

Now, let Xy End(Ind§*!) and Ty~ End(Ind]*?) be as in Exam-
ple3.6. The isomorphism Ingi*1 KZg KZge19Ind*tin (6.2) intertwines
XSl KZg with KZgs1 XS, The isomorphism Ir@f q g+1F in
Lemma5 4lintertwinesXy ¢ with ¢+ 1X by Remarks.42 Hence &inter-
twines KZg+1 d+1X dS with KZ 441 X5, We deduce tha& intertwines

d+1X gl with X5, The proof forT is similar. The lemma is proved.

Foreacha N,set +a=(1+a, 2+a,..., +a).
Lemma 7.7 For any d N and any a a N such that d

p + a for all p, there is an equivalence of highest weight categories
- = -aa . A tasSerqy A *a.Sefql which maps() to (), inter-
twines(E, F, X, T) on both sides and such that,"? g & el

Proof The CRDAHAs associated witl{ + a) and ( + a)" are the
same. Hence, we ha@( *@Sefg} = o( +a)".Sefq. We de ne- @2 =

(4% Seys1 d+a5e_ By Lemma7.6, the functor- intertwines(E, F) on
both sides.
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For eachd, we de ne the categorA - Se{d} as the limit of the inductive
system of categorieGA +ase{d} a8)1a N- We have an equivalence of
highest weight categories; Se. p.Serqy O Seqq) and a highest weight
cover :A S} H4-mod. In particular, the blocks @ - Se(d} are in

bijectlon with the blocks oH ;-mod via . Forp = S | letA; Se pe
the block corresponding td mod
Now, let A-S¢ =, (A S¢d}. The categoryA - S¢ carries a pre-

categorical actiofE, F, X, T) given by Lemma7.7. The following is now
obvious.

Proposition 7.8 The tuple(E, F, X, T) and the decompositiod 'S¢ =
LoX A“'Se debne ars} -categorical action orA * S€,

Proof We haveE = ;| EjandF = ;| F, WhgreEi, Fi are de ned
as in Sect5.4. By Theorems.9, the equivalence Se= Ly 40

A-Se o Se yields a linear isomorphisifA - Sej[ O "S€] which maps
[() Jto[( ¥) 'S€. Hence by Lemm&.12and |1, prop. 4.4], it inter-
twines the operatois;, F onthe left hand side with the operators the operators
Esi, Fs; on the right hand side. Thus, the operatgrsF; withi | vyield
arepresentation &y on[A - S€].

7.5 The category A and the cyclotomic g-Schur algebra

Let k be a eld containingC. Fix a positive integed and a composition

. We will say that is d-dominantif we have p S p.1  d for each
p=1..., S1andthatitisanti-dominantf we have p+1S p dfor
eachp as above. The following propositions generalize some of the results in
[5]. They are proved as TheorefB using Propositior2.20

Proposition 7.9 Let , dand g, S kv / N*forallp=1.--- andall
u<v.Sets= + .Assume thatis either d-dominant or d-anti-dominant.
Then there is an equivalence of highest weightategories

GSq: A {d} S 4-mod
which intertwines the functors

Rd: Ak {d}  Hgg4-mod,
LV S“jmod Hy 4-mod.

Furthermore we haveGe 4(() « ) W( *)f forall Os.
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Proof If «uS kv / Z* forall u, v, then the proposition is proved ig][ The
general case, i.e.,the case whergS kv / N*,isproved as Propositiogh10
below.

Proposition 7.10Let , dforall p= 1,..., . Assume that is either
d-dominant or d-anti-dominant. Setss . Then there is an equivalence of
highest weighk-categories

GSq: AL {d} S 4-mod
which intertwines the functors

ka 1A {d} H g-mod
M §q:Sgg-mod HE 4-mod.

Furthermore we haveGS,(() «)  W( *)f’q forall Os.

Proof We can assume k C. Let R be a local analytic deformation ring of
dimension 2 in general position with residue eld k. Assumethat S e. Set
SRp= p* Rp LetC = Of {d}andC = S} ,-mod. Since the highest
weight categorie@,s?' {d} andA {d} are equivalent by Theoref9, it is

enough to compar€, C .
Consider the highest weight covers

F=KZgy:C  Hyg-mod,
F = SRd :C Hlsqyd—mod.

We claim that they satisfy the conditions in PropositibR0, so the theorem
holds. Let us check these conditions.

We’'ll assume that is d-dominant. Then, there is a partial order which
re nes both highest weightordegs onC and onC , see B9, prop. 6.4].

The functorF is fully faithfulonC andC , by the proof of Theorer.9.

By [37, prop. 3.1, 3.5, cor. 6.11, thm. 6.18] and Proposi#o® that any
tilting module inC isisomorphic to the image of an objecthbi?vd-mod by the
right adjoint to the Schur functdf . Note that B7, thm. 6.18] is proved over a
eld, but it remains true over the ring by Propositior2.4. We deduce thaE
is fully faithfulon (C ) , by [39, prop. 4.40]. Next, by37, prop. 4.3, cor. 7.2],
theR-categoryC is Ringel self-dual, i.e., we have an equivale@ice (C) .
Therefore, by Lemma.13 the functorF is also fully faithful on(C ) .

Finally, we prove that=(T()) F (C ) for all P 4 such that
lcdke (L () 1orrcdc (L ()) 1 as in Theoren®.9, using some
analogues (for the Schur algebra) of Propositié:7s6.8.

Note that Propositioid.10gives a proof of Yvonne’s conjecture idg.
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8 The KazhdanbLusztig category

Fixintegers, N land xacomposition C, ,.LetRbe adeformation
ring. We may abbreviate = Rr.If R= Cwe may also drop the subscriBt
from the notation.

8.1 Coinvariants

Fix a nite totally ordered sef. SetR” = a A R((ta)), wherety is aformal
variable. Letgé be the central extension gf R” by R associated with the
cocycle(% f, 0) %: " L aRes,=o(gdf).

Write 1for the canonical centralelemenlgﬁ andIeU(gR) gé bethe
quotlent of the enveloping algebra (ov&) by the two-sided ideal generated
by 1S c. By the symbol R a We'll mean the (ordered) tensor product of
R-modules with respect to the ordering Af Given a moduleM; SR,
for eacha A the Lie algebragé’ acts naturally on the tensor product

R.a Ma, Wherea runs over the seh.

Let C be a connected projective curve isomorphi®fo By achart on C
centered ak we mean an automorphisthof P! such that# (x) = 0. We will
say that# = {#,; a A} is anadmissible system of charfshe conditions
(@), (b) in [28, sec. 13.1] hold. Let, = #2>! denote the automorphism
which is the inverse off; and letx, be the center oft;. Thexg's are distinct
points of C. We writeCs = C\{xg;a A}, Dr = Dr# = R[Cx] and

R= R#=0 Dr

Foranyf Dg, let3f R((ta)) be the power series expansion at 0 of
the rational functionf 5 onP. Taking f to the A-tuple Af = (3f) gives
a R-algebra homomorphisdr ~ R” and aR-Lie algebra homomorphism

R OR by the residue theorem.
We can now de ne the sets abinvariants

DebPnition 8.1 Let A=[1,n]. GivenNy U(gr)-mod andM; S, for
eacha A, we set

Nl! O} Nn"Rz HO(gR! R,aNa)! M11 L} MnmRz HO( R R’aMa)'

By [28, sec. 13.3] theR-module My, ..., My"r does not depend on the
choice of the admissible system of charts, up to a canonical isomorphism.
Further, itonly depends on the cyclic orderingfgfso that we have a canonical
isomorphism

M1,..., Mp"r= Ma,..., My, M1"R.

Let1 = 1g denote the parabolic Verma modWgO)R + .
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Lemma 8.2 (a) Taking coinvariants is a right exact functor. It commutes with
base change. More preciselfy A = [ 1, n], then for any morphism of
deformation rings R~ S the obvious map g ,Ma saSMa
induces an S-module isomorphism

S My,..., My"r= SM,..., SM"s.

(b) Assume that for each a A there is an integer g 1 such that
Ma(da) generates M as agr, -module. Thenthe obvious inclusion
Ma(da) raMa induces a surjective R-module homomor-
phism

M1(d1), ..., Mna(dn)"R M1, ..., Mp™g.

In particular, if A = [Sm,n] and My Or, Ma OJ,;' for each
a A\{0}, thenthe R-moduleMgy, ..., My™R is Pnitely generated.
(c) Assume that M = | ndr(Ny) is a generalized Weyl module for each
a  A. Then the obvious inclusion g ,Na Rr.aMa induces an
isomorphism of R-moduledy, ..., Np"R M1,..., Mp™R.
(d) If M1 = 1, thenthe canonicalinclusion  , ;Ma R .aMainduces
an R-module isomorphismMa, ..., My"'r M1, Mo, ..., My"R.

Proof Part (a) is obvious. See, e.g2g sec. 9.13]. For part (b) note that the
gr-action onM, preserves th&-submoduleM;(dy) for eacha  A. Then,
the rstclaim follows from [28, prop. 9.12]. The proofin loc. cit. is done under
the hypothesis that C. It extends easily to the case ofany= r R
The second claim follows from Lemnt&a4(b), the rst claim, part (a) and
from the fact thaDR is Hom nite (over R) and that the tensor product maps
ORrx O; into Og. Part (c) is proved ing8, prop. 9.15]. The proofinloc. cit. is
done under some restrictive conditions on gigemodulesN; and under the
hypothesis that  C, but it extends to our setting. Part (d) is proved28,|
prop. 9.18]. The loc. cit. the proof is given f&= C, but it generalizes to our
case.

Remark 8.3Assume thaR = K isa eldandthat x / Q . Then, we have
1= L(0)k, see e.g.28, prop. 2.12].

8.2 The monoidal structure on O over a beld

Let R = K be a eld which is an analytic algebra. Fix an elemegt in
K\ Q o.Letl O+K' be as in SecB.1 In [28], Kazdhan and Lusztig have

de ned a braided monoidal structuf®;’ , %, ax, ck ) with unitlonOy’
In this section we’ll de ne ebimodule categoryOy , %, a, c) over it. This

means thaO is a left and rightmodule categoryoverol;’ , see B for
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details, and that the functoag , ck satisfy an analogue of the hexagon axiom
that expresses the commutativity of the left and right actions.

8.2.1 Debpnition of the bimodule category

First, we de ne a tuplgOy, , %, a, ¢) such that the following hold:

€ % :0p xOp Oy and% : Oy x Oy Oy are bilinear
functors such tha¥ % € and€ %V are exact foreack Oy’ ,
€ there are functorial (left and right) unitisomorphisms for edth O

1% M M, M%1 M,

€ there are functorial associativity isomorphisms for edghvo O+K' and
M Ok

av, vom - (V1 % Vo) %M vy % (V2 Y M),
av, MV, - (Vi % M) % VoV % (M % Vo),
am v vo - (M % V1) % Vo M % (V1 % Vo),

€ there are functorial commutativity isomorphisms for e&th OE' and
M Oy
K

cvm V%M M% YV,

€ 1, asatisfy the triangle axioms (left and right) fgr O+K’ andM Oy ,

(V%1) %M V % (1% M)

V %M

€ asatis es the pentagon axiom (left and right) for eath Vo, V3 O™
andM O

Vi Y (V2 % V3) % M) Vy Y (V2 % (V3 Yk M)

(V1 % (V2 % V3)) Y% M (V1 % Vo) % (V3 % M)

(V1 % V2) % V3) % M,

plus the diagrams obtained by cyclic permutatiomafVy, Vo, V3,
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€ ag, ck satisfy the hexagon axiom for ea¢h Vo O:'(' andM Oy

Vi % (M % V2) (M % Vo) % V1

(V1 % M) % V2 M % (V2 % Vi)

(M % V1) % Vo M % (V1 % Vo),

plus the diagrams obtained by cyclic permutatiorivafVy, Va.

Remark 8.4The notion obimodule functorsand, in particular, of equivalence

of bimodule categories is de ned in the obvious way. Generally one impose
the functor %to be biexact. Our choice simpli es the exposition in the rest of
the paper.

Now, let us de ne the functo” . The bifunctor % on O+K' is de ned
in [28]. By [49], the same de nition yields functor®y’ x O Oy
andOy x Oy’ Ok . Note that P8,49] deal only with the eldK = C
and C\ Q o. The same de nition works equally well over any eld
containingC and forany K\ Q o.

More precisely, let =[S m,n], A=[S m,n+ 1] and x an admissible
system of chartg. Given a smootly -moduleM, foreacha , ,we consider
the functorM Mgm, ..., My, DM™.

Proposition 8.5 Assume that iyl Oy and that M O+K' fora =0.

(a) Thereis a module%KyaMa O suchthatforeach M Sk, , we
have

HorngK( %K’aMa! M)= Mém,..., Mn, DMI"K_
(b) We have a functorial isomorphism
%K’aMa, DMmK = Mém,---, Mn1 DM“IK.

Proof It is easy to prove thaD is the category of the nitely generated
smoothgk, -modulesM such thatM(d) belongs taO, foralld 1. Thus,
part (a) follows from #9, def. 1.2, thm. 1.6]. Part (b) is proved as 28]
sec. 7.10, 13.4].

Remark 8.6Thegk, -module %K,aMa does not depend on the choice of the
admissible system of charts, up to a canonical isomorphism.
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Now, we setA = [S 1, 0] and we consider the chawg 1, #o, #1 centered
at1, , Orespectively, given inZ8, sec. 13.5]. Then, Propositi@b5 yields
modulesV % M andM %V in O, foreachv O*@ andM Oy .

The endomorphisms of functoex, ck are de ned in B8, sec. 14, 18].
There, they are only de ned f@*- , butforO; one can proceed in the same
way. More precisely, since the spaces of coinvariants are nite dimensional by
Lemma8.2 and sinceK is an analytic algebra, the proof &§, thm. 17.29]
works equally well in our case. Hence, standard facts about linear ordinary
differential equations yield a canonical isomorphism

Vi % M1, Vo % DM2" = V1, M1, Vo, DM2"¢

forall M, M2 Oy andallvy, V2 O+K' . Then, we de neay,;, m,,v, USING

this isomorphism and Propositi@&b5as in 28, sec. 18.2]. The other associa-
tivity constraints are constructed in the same way using the cyclic invariance
of coinvariants. The braidingk is also de ned as in28], since any module
from O, admits an action of the Sugawara operators. For more details, see
the proof of Propositio®.30below, where some analoguas, cr of ax, ck

are constructed over a ririg.

8.2.2 Proof of the axioms

Now, we must check thalk andck satisfy the axioms of a bimodule category
overK. The proof is essentially the same as28][ We will give a few details
for the comfort of the reader. We must prove the following.

Proposition 8.7 The functors% : Oy’ x Oy Oy and % : Oy x
O};’ Ok give a bimodule categorfO, , %, ak, cx ) over the braided
monoidal categorfOy’ , %, ak, ck). The unit of(Oy’ , %, ax, ck) is
the modulel.

By [28, sec. 31, 32], the braided monoidal categ([bf('(’ , Y%, ax, ck)is
rigid with the duality functorD. This means thabD is exact and that for any
moduleM Oy’ there are functorial morphisms

im:1  M%DM, ey:DM%M 1

such that the functobM % € is left adjoint toM % €. Equivalently, the
functor€ % M is left adjoint to the functo€ % D M. SinceD is aninvolution,
the functors above are indeed biadjoint.

Lemma 8.8 For each M Ok , there are functorial isomorphisms
1%M  Mand M%1 M which satisfy the triangle axioms.

123



Categori cations and cyclotomic rational double af ne...

Proof We de ne the unit isomorphismy : 1% M M to represent the
isomorphism of functors given, for eadt;, M, Oy , by

HomgK(Ml, |V|2) |\/|;|_, DMme
11 Ml’ DMZ'"K
HomgK (1 O/q’( Mz, MZ)-

In the chain of isomorphisms above, the second one is given in LeBr2fis,
the other ones are as in Propositi8rb. A similar construction yields the
isomorphisnty : M %1 M.

Now, it is enough to check the triangle axiom fgr = 1 O+K’ and
M Oy (then, the general version follows using the pentagon axiom for the
quadrupleV, 1, 1, M). So we must check that the composition

(1% 1) WM 22 1 94 (1% M) XM

1% M

isgivenby theunit; : 1% 1 1. This follows from PropositioB.5(b) and
the invariance of coinvariants under cyclic permutation a28) $ec. 18.2].
This allows us to identify the morphism

(1%1) %M, N"™g 1% (1% M), N"g 1% M, N"g
induced by v, a1,1,m with the morphism
(1%1) %M, N"¢  1%M, N"g
induced byr ;.

Next, let us quote the following technical lemma.

Lemma8.9 For M Oy’ the functors€ % M and€ % DM onOy, are
exact and biadjoint to each other. The same holds for the functo¥& Mand
DM % €.

Proof If Oy = OE' the lemma follows from the rigidity c(fO+K , %, ax,
Ck ). The general case is proved in the same way, using the rigidiy, @ M
in OE' and LemmaB.8instead of the unit axiom c(fO+K’ , %%, ak, ck).

We can now prove Propositich?.

Proof of PropositiorB.7 We must check that the isomorphises, ck satisfy
the pentagon and the hexagon axioms. This is proved as in propog8on [
prop. 31.2], using an auxiliary module category called@mnimfeld category
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SetR = K[[ JJandK = K(()) .Put r = k =SV
Consider the elements = exp( S1 ) andqg = v®2in R . Whenever
this makes sensewewri@ = .  "( S1 2)'/rl

The categoryO of deformation representations g consists of the rep-
resentations oflr  on topologically freeR -modulesM such thatM is a
weighttgr -module and the weights &l belong to a union of nitely many
cones S Q' and the weight subspaces are free of nite type dRer.

Following Drinfeld and 18,28] we put onO a structure of a braided
monoidal categoryO , r ,a ,Cc )where Rr isthe tensor product of
R -modules ané@ is the Knizhnik—Zamolodchikov associator, i.e.,

a ={av,mym;: (M1 R M2) R Mz M; r (M2 r Ma)}

is de ned in [28, sec. 19.10]. Note that we do not imposeto be of nite
rank overR . However, since the weight subspacedwfare free of nite
type overR , by standard facts about linear ordinary differential equations,
the series obtained by restricting to a weight subspace in the tensor product
of three objects 00 is well-de ned. The braiding is given by the following
formula, seel8, sec. 19.12],

c ={cuym,=Vv M1 r M2 M2 r My}

where ips the factors and is the Casimir element. Recall that

€ the functor r is R -bilinear and biexact,

€ thereis aunitobjedt, which is simple (equal t& with the trivial action),
with functorial unitisomorphism& r M MM r 1 M,

€ the unitl and the functoa satisfy the triangle axiom,

€ the functora satis es the pentagon axiom,

€ the functora andc satisfy the hexagon axiom.

Restricting the braided monoidal structure©n to some parabolic sub-
categories, we de ne in the obvious way

€ abraided monoidal catego(@*, r ,a ,c ) calledtheDrinfeld cat-
egory,which consists of the modules which are free of nite rank over
R,

€ a bimodule categorfO , r ,a ,c )over(O*, ,a ,c ).

Now, we may assume thatthere is alocal analytic deformatiorRingR
ofdimension 1 withresidue el& suchthattheinclusioR R isgivenby
the expansionat = .Assumealsothatr= g =S 1/ isthe germ
of an holomorphic function over some polydisc such that the specialization
mapR K takes rto k. SinceR is atover R, the base change yields
an exact functoO Og -
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Lemma 8.10 (a) There is a faithful braided functor and a faithful bimodule
functor

(OE” , %, aR, Cr) (OJ,;” , % ,ar ,Cr ),
(Og » & ar,cr) (O , % ,ar ,CrR ).

(b) There is a braided equivalence and a bimodule equivalence

Of" . % .ar ,cr) (0", r.a ,C)
Og % ,ar ,crR) (O, r,a ,c).

(c) The specialization gives a braided functor and a bimodule functor

(Or" , %,ar,cr) (OF" , %, ax, ck),
(Og . %&.ar,cr) (O, %, ak,ck).

Proof SinceRis a regular local ring of dimension 1, we de ne the functs
and the morphisms of functoes, cr as in P8, sec. 29, 31]. We may as well
de ne them as in SecB.3below. Part (a) follows from Lemm&.22 Part (b)
is proved as in28, sec. 31]. Part (c) is proved as i2g, thm. 29.1].
We can now nish the proof of Propositidh 7. Composing the functors in
(a), (b), we get faithful functor€Or’* , %, ar,cr) (0", r ,a ,
c )and(Og %, ar, Cr) (O, R ,a ,c ). This implies that
aR, Cr satisfy the pentagon and the hexagon axioms. Hence, from (c), we

deduce thatg, ck also satisfy the pentagon and the hexagon axioms. The
details are left to the reader.

8.2.3 Properties of the functd¥k

We haveOy' = Oy, because the catego® is semi-simple. The tensor
productequipsth@-vectorspac{ao,z' ] witha commutative-algebra struc-
ture and theC-vector spacg¢Oy | with a bimodule structure ove{r:);' ].
We'll need the following properties of the functdf .
Proposition 8.11 (a) The functor% preserves the -bltered modules.
(b) The functor% preserves the tilting modules.
(c) The functor% is biexactorOy’*  x Oy’ andonOy’ x Oy’
It equips[O;;' * ] with a commutativ&-algebra structure andiOy* ]
with a bimodule structure ove{O+K' .
(d) The functorl nd gives aC-algebra isomorphisniOg* ] [ Oy’ |
and a module isomorphisfpo; | [ Oy’ 1.
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Proof First, we prove part (a). FisM1 O+K" andMz Oy’ . The
moduleM; % M belongs to the catego®, by PropositiorB.5. We must
prove that it lies irOy’

Fix such thatM, and My % M> belong to the Serre subcategor®
of Oy . Since Oy is a highest weight category with a duality functor
D, it is enough to check that foMs ( Ok ) we have the equality
Extlo, (M1 % My, D M3) = 0.

Fix%n exactsequence0 Q P M3 0 with P a projective mod-
ulein Oy .SinceP, Mzhave - Itrations, the moduleQisagaina - Itered
objectof Oy .SinceP is projective, we have EJ%I,( (M1 % M5, DP) = 0.

Therefore, sinc® is exact and contravariant, the long exact sequence of the
Ext-group and PropositioB.5yield a vector space exact sequence

0 Mgy My, "M Mg, Mz, TP My, My, TQ™g
Ext'y. (M1 %Mz, DMs) 0.
K

Thus, we get the equality of dimensions

dim Ext'y, (M1 %Mz, DMs) = dim Mg, M, TP™¢
K
Sdim M1, Mo, TQ™¢
é dim Mg, Mo, TM3"'K.

The right hand side is zero by the following lemma.

Lemma8.12For Mz, M3 Oy’ and My Oy’ we have

dim Mg, Mo, TM3™c = (M1 :M( 1)+)(M2:M( 2) )
X(M3:M( 3) )(L( 1) M(2 :M(3)),

where the sumisoveralh Pg and 2, 3 Py.

Proof Let d(M1, M2, TM3) denote the right hand side in the equality of the
lemma.

First, assume tha?l3 = M( 3) , M2 = M( 2) andM; = M( 1)+. We
have™™M3 = | nd("M( 3) ). Thus"M3z is again a generalized Weyl module
and LemmaB.2(a) yields

L( 1), M( 2) , T™M( 3) "k,
Homg, (L( 1) k M( 2) ,.DM( 3)) .

M1, Mz, TMz" ¢
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SinceL( 1) kM( 2) Og ,by[14 prop.A.2.Zii)Jwegetdim My, My,
™3" = (L( 1) kM(2) :M(3)).

The same argumentimplies that dirvl{, Mo, TM3™ = d(M1, Mo, TM3)
if M1, M2, M3 are generalized Weyl modules.

Now, we concentrate on the general case. First, observe that using the
third construction of % in [28, sec. 6] it is easy to check thdtk is
right biexact. Further, by Propositio.5 we have My, MZ,TM3"'K =
Homg, (M1 % My, D M3). Thus the left hand side is left exact in each of

its variables. So, given exact sequend&ﬂzg) Mél) M§3) 0 of
- Itered modules witha = 1, 2, 3, we have

dim MY, M®P, TmP dim MO, MY TmEm o (8.1)
,H =23

Using the rst part of the proof (i.e., the case of generalized Weyl modules)
and @.1), we get that for anMz, Mz Oy’ andM; O;;' * we have

dim Ml, |V|2, TM3"'K d(Ml, |\/|2, TM3).

To prove the equality, for eachhwe x an exact sequence 0 Méz)
Mél) M§3) 0 of - Itered modules such thaMél) is a generalized

Weyl module and\/lés) = Ma,. Clearly, such exact sequences always exist.
Then, we have

dim M:(Ll)’ Mél), TMél)“lK - d(l\/l(l) M(l) TM(l))
dim MO, MmE T aml My Ty, s
Thus the equality follows from8(1).

Next, we prove part (b). Assume thet O+K' andMz Oy aretilting.
We must check thaltl; % M is still tilting. For N Ok’ we must prove
that Exﬂ), (N, M1 % My) = 0. Since the functor§ % M, and€ % DM,

K
are exact and biadjoint by Lemn&a9, we have

Exték (N, M1 % My) = Extg)k (N % DMy, My).

SinceDMzis - Itered, part (2) yields Ext, (N % DMz, M1) = 0.
K

Finally, we prove parts (c), (d). The functdf is right biexact. The same
argument as above using Proposits and Lemma8.12implies that it is
biexact on - Itered modules. More precisely, for eachl Oy’ the

functor Homy, (€ ® ,DM) on Oy’ x Oy’ is exact ancE %€ takes
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values inOy’ . Thus, if 0 N1 NP N3 0 is exact inO+K"

andifN Oy’ ,thenwe have an exact sequem¢ek N N2 % N

N3%)(N Oand(N2°/tN . |V|3) = (N]_O/(P(N : |\/|3)+ (N30/<P(N : |V|3)

if M3 is a parabolic Verma module. Thus, also we have an exact sequence
0 N1 o/(kN N> O/(P(N N3 (y(k N 0.

Since it is exact, the tensor produ¥k factors to the Grothendieck groups
[O;;’ ' Jand[Oy’ ].Theexactfunctdr nd(€) givesC-linearisomorphisms
[Og' 1 [ Og> land[Og ] [ Og' 1, because the parabolic Verma
modules form bases of the Grothendieck groups eftered objects. The
compatibility with the monoidal structures follows from Proposit&s and
Lemma8.12

Remark 8.13By [28, prop. 31.2] the braided monoidal categ(mf;' , %, a,
¢) admits abalancing More precisely, we have

= exp(S2 Sillg) exp2 SilLg) % exp2 Silg) . (8.2)

The proof in loc. cit. implies that8.2) holds also for tensor products of
modules fromO;; andOy’

8.3 The monoidal structure on O over a ring

Let R be either a eld or a regular local ring of dimension2 with residue
eld k. Assume that x« = S e wheree is a positive integer. In this section
we'll construct a versior& of the functor % above, which is de ned over
the ringR.

8.3.1 Debnition of the functo¥g

Let, =[S m,n]. FixamoduleMy Op and a moduleM, Of’"
for eacha = 0. The goal of this section is to construct a modL?f%aMa in
Og' . wherea runs over, , which is functorial in theMa’s. The construc-

tion of thegr, -module /OR aMa is essentially the same as 2§ sec. 29].
However, our setting differs from that a2 from several aspects

€ the categoryOy, is de ned over a regular local ring of dimension 2,

€ the modulesM, do not all belong to the categoEyE’ :
€ the modulesMy may not have integral weights,
€ we work withgr-modules, rather thag,-modules.

The last point is easy to deal with: we’'ll switch frogr-modules togg-
modules as in Remark 2 without mentioning it explicitly.
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First, assume rstthaR = K isa eldandMy Sk, foreacha. Then,
the module %K,aMa is de ned in Propositior8.5. More precisely, itk = C,

then the smootly -module /° aMa is constructed inZ§]. It is proved there

that, if M, belongs toO*: for eacha then / 'aMa belongs also t@™
Next, it is proved in 49 that, if My O™ for a =0andifMg O ,then
%, .Ma belongstd- . If K =C, then we de ne % M, as in the case
K=C.

Now, let R be any commutative noetherig@ralgebra with 1. SelA =
[Sm,n+ 1] and- = { n+ 1}. To simplify the notation we’ll also write
-= n+ 1. Recall thatt; is a chart orC centered ak, for eacha A, and
thatDr = R[C\{ xa;a A}].Let rbethecentralextensionok = g Dgr
by R associated with the cocycée  f1,% f2)  Res =o(f2df1). Set

= c+ Nand = Sc+ N.The quotient by the idedllL S c) yields an

algebra homomorphistd ( R) R, -

Lemma 8.14 (a) There is an R-algebra homomorphisrm, gg, such
that%e f % - f.

(b) There is an R-algebra homomorphlsgﬂ R such that%
f(t) % f(# ), and an R-algebra homomorphisng, 9r

such thate f % - f.
(c) Composing the maps {b) we getan R-algebra embeddlgg 9r
suchthate f(t) % f(t).

Proof Part (a) is standard. To prove (b), observe that the chartan be
regarded as an element in the subalggldra Dg; f(x.) = 0}. Thus, we
have arR-algebra homomorphism[t, t51]  Drsuchthatf(t)  f(#. )
and anR-algebra homomorphisir R((t- )) such thatf - f.

Now, foreaclta , we xasmoothmoduléM; S gr whichisaweight
tr-module. SeWr = Ra, Ma. Since theMy’s are smooth, th&-module
Wr has a natural structure g1,‘Q -module. We viewVr as a g -module
via the map in Lemma&.14(a). Note thatVg is a weighttg- module.

Ford 1letGgr,g be theR-submodule of g spanned by the products
ofdelementsig Diwith DL={f Dg; f(x.)= 0}. Note thatGgr g
is a weighttr-module for the adjoint action. We have the following natural
decreasing ltration of weightr-modulesVg . Gr1Wr. Gr2WR. --:
Consider the weightr-moduleWg 4 given byWr 4 = WRr/ Gr qWr. Let

WR,d = WR.d,
Pr

be the decomposition &/r 4 into the sum of its weighR-submodules.
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The modulesNr g withd 1 form a projective system. The limiv/g =
Ii/m WR .4 in the category of weigliz-modules decomposes as the direct sum

of weight R-submoduledVr = ps WR, | whereWr is the projective
limit of R—modules/limWR,d, .

For each Prand eacld 1, we de ne theR-module

Zrd, = (WRryd, ) -

TheR-modulesZr 4, withd 1 form an inductive system d&?-submodules
ZRr1, ZR2, --- Consider the weightg-module Zr ~ given by
ZR, = Pr ZR, , ,whereZR, .= lim ZR,d, .

From now on, we'll assume th& is a regular ring of dimension 2 and

that the moduleg, M4 belong taO &’ f,O+R” f respectively, foreach ,
witha =0.

Lemma 8.15 (a) The R-module W4, is Pnitely generated.
(b) The R-module g4 is Pnitely generated and projective.

Proof Since M, belongs toOg, there is an integed, 0 such thatMg
is generated by th&®-submoduleMa(d;) as agr, -module. Then, the same
proof as in R8, prop. 7.4] implies that

Wg = XrdWg+ GrdWr, Wg= g.Ma(da), (8.3)

where Xr g4 is the R-submodule of g spanned by the product &f d
elementsirg # . The right hand side of the rst equality i8(3) is de ned
using the g -module structure ollVg.

Now, sinceMa Oy and R is noetherian, the weigh-submodules of
the tr-submoduleMg(dy) M, are nitely generated oveR. Indeed, the
weighttr-submodules oM, are nitely generated becaudd, Og, and
each weightr-submodule oMj(dy) is contained in the sum of a nite number
of weighttr-submodules oM, (becauseM, is at over R and the result is
well-known over the fraction eldK of R). Therefore, part (a) of the lemma
is an easy consequence &t3).

SinceR s a regular ring of dimension 2, any nitely generated re exive
R-module is projective. Since it is the dual of a nitely generaianodule,
the R-moduleZr 4, is nitely generated and re exive. Hence it is projective
as anR-module for each,

Under the previous hypothesis, we can now prove the following.

Lemma 8.16 (a) There is a natural representation gf, onWkr.
(b) There is a natural smooth representatiorgef on Zg,

123



Categori cations and cyclotomic rational double af ne...

Proof The proof is adapted fron2B]. We will be sketchy. Recall that/r is

a R, -module. The r -action does notinduce ar -action onWg in a
natural way. However, under the second map in Len8mi4d(b), it descends
to a representation QfR’ onWR as in 8, sec. 4.9]. More precisely, given
f(t)in t_S”R[[t- ]] forsomen N, we xasequence of elemends, 0o, ...

in Drsuchthatgy S f(t.) t9R[[t. ]] for eachd, and we de ne the action
of % f(t. ) onthe elemenfwyq) WR, withwy Wgrgqandd 1, by
setting% f(t. ) -(wg) = (% Qg Wn+d).

Twisting this representation by the meR 9r in Lemma8.14(c),
we get arepresentation g);z' onWRr. Taking its dual, we get a representation
ofgg onZgr . See P8, sec. 6.3] for details.

TheR-moduleZr, is at, because the direct summadg , isthe limit
of the inductive system of at submoduléZr 4, ). To prove thatitis smooth,
it is enough to check thaZr = Zgr, (). This is obvious, because we
haveZrqy Zr (d), whereZrq = ZRrd, -

Now, we consider the behavior @r, under at base changes.

Lemma 8.17 Let S be a commutative noetherian R-algebra Withihich is
Bat as an R-module. Thewe have a canonicajg -module isomorphism

SZr = Zs

Proof Since taking tensor products is right exact, we have a canoBical
module isomorphisnBWe g = Wsq, . SinceSis at over R, for any
R-modules X, Y such thatX is nitely presented overR, the canonical
homomorphismSHomg(X, Y) Homs(S X SY) is an isomorphism. By
Lemma8.15 theR-moduleWr 4, is nitely generated. Therefore, since direct
limits commute with tensor products, we have

SZg, = lim SHomr(WR,g¢, , R)= lim Homs(Wsg, ,S) = Zsg,

We can now prove the following

Lemma 8.18 Assume that R K is a beld.

(@) Thegy, -module %, belongstaOy .

(b) The Sugawara operatdrg preserves the Pnite dimensional K-subspace
Zk 4, of Zx, foreachd .

(c) The characteristic polynomial &fpon Zx ¢, isaproduct of linear factors
with coefbcients in R
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Proof For any smooth module®l; S k, , a construction of thg -module
%KﬂMa is given in R8, sec. 4]. It is called there therst constructionThe
smoothg -moduleDZk, is precisely the one given by thlird construc-
tion in [28, sec. 6]. M4 belongs toOT(' for all a, then the rst and third
constructions coincide by2B, thm. 7.9]. If My Oy andMa, O:;’ for
eacha =0, then both constructions coincide b49 prop. 5.8], and the rst
construction yields a module @, by [49, thm. 1.6]. This proves part (a).

Part (b) is a standard computation using the reldtian’] = S ro4") for
each% gandr Z.

Since Zg. Ok , part (c) follows from elementary properties of the
action of the Sugawara operator on objectOgf .

Now, we come back to the case whé& s a regular local ring of dimension
2.

Lemma 8.19 There is a natural smooth representatiorggf on Zg,

Proof Since theggy -moduleZg, is smooth, itis equipped with a canonical
action of the Sugawara operatog. For each R we set

Zr, ={v Zgr ;(LoSr)v=0,n 0}

ReplacingR by K everywhere in the construction above, we getgpe -
module Zx, . Since thegy -module Zg, is smooth, it is at overR.
Thus, we have an obvious inclusiatr, KZr = Zk, .Hence, by
Lemma8.18 we have a direct sum decompositide, = ,'Zgr .

Therefore, we can consider tiielinear operato on Zg, ~ which acts by
multiplication with(Sr) on theR-submoduléZr . ItequipsZgr ~ with the
structure of a smoothr, -module.

Debnition 8.20 Assume thaR is a regular local ring of dimension 2. Let
=[S m,n]. Assume thaMg (OFy " and Ma O+ " fora , Wwith

a =0. Then, we de ne thgr, -module /OR aMa, Wherea runs over the set
, ,to be equal tddZg, . Itis a smooth module by Lemntl9and by the
de nition of D.

8.3.2 Properties of the functo¥k

Set, =[S m, n]. Our next goal is to prove the following.

Proposition 8.21 (a) Assume that M Oy and M, OE" for each
a , witha =0.Then thereis a module%RaMa in O which
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is functorial in the MOs and such that for each MO’ " we have a
functorial isomorphism

Hong( RaMa' M) - Mém.--., Mn, DM"'R.
(b) The functor%& commutes with Rat base chan@é the ring R.

First, assume thatlp, Oy’ " and M, oy’ " for eacha , with
a =0.

Lemma 8.22 Let S be a commutative noetherian R-algebra Withihich is
regular of dimension 2and whichis Ratas an R-module. We have canonical
gs -module isomorphism(S"%; ;Ma) = %85, SM.

Proof By Lemma8.17we haveSZr, = Zg . Thus, the lemma follows
from the proof of Lemméb.3, which insures thaD commutes with base
change.

Next, we prove the following.

Lemma 8.23 We have %z ,Ma  Op' '. The functor % , onOy' " and

or " ' is right exact.

Proof The IR -action onWR yields a representation g on Wr. Con-
sider theR-submoduléNVt  Wr introduced in 8.3). We claim that W} is
agg . -submodule ofWR Indeed, the elemefit  f(t) ingg actson WR
by the operator , % af (S1#. ). Further, for eacla , the function
V# . isregular aky and, thus, since the system of charts is de ned @ghe
expansiorf(1/#. ) is a well-de ned Laurent formal series @[[ta]]. There-
fore we havéf (S1#.) R[[ta]] for eachf R[t]. We deduce that there
is agr -homomorphism

I nd( WE) Wk (8.4)

Next, recall that the rst map in Lemm@.14b) yields ag,, -action on
Wg and thatg, acts onWr by Lemma8.16 By de nition of the actions,

the canonicaR-module homomorphissr ~ WRis agp -module homo-
morphism. Taking the dual 8iVr in the category of weightr-modules, we
get thegy -moduleZg given by

Zr = Zr, , Zr, = (WRr ) . (8.5)
Pr
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Twisting (8.4) by and taking its transpose, we geg@ -homomorphism

ZR I nd( Wé) . SinceZgr, Zg( ), this map restricts to gg -
homomorphism

Zr DI nd( W3). (8.6)
Using 8.3 it is easy to see that the ma.€) is an inclusion.

Claim8.24 LetN Oy’ "andletM N be a submodule which is Rat as
an R-module. Then, we have MOy’ "

To prove the claim, observe rst that, sinéeis a weighttgr-module with
nitely generated weight subspaces oMy so is alsoM. Thus, sinceM is
at and since any at nitely generatedr-module is free (becausR is a
noetherian local ring), thR-moduleM is indeed free. It is easy to check that
M satis es the other axioms of the categddgy’ " except the fact that it
is nitely generated. For this last property, recall that for eactime category

Og isahighestweight category ovBr Since itis equivalent to the category

of nitely generated modules over a nitely generated projectr@lgebra, it
is noetherian. Thereforl is nitely generated. The claim is proved.

Now, recall thatTZR, is at over R and thatl nd( Wé) is a generalized

Weyl module ofO %’ " Thus, the claim implies thdZg, OFY " Hence

DZRg, OFN " This proves the rst part of the lemma.

To prove the second part, it is enough to observe that the fufietgr
TZR, is left exact, because it is the composition of a tensor product Rver
of free R-modules, of a dual oveR of free R-modules, and of the functor of
taking smooth vectors (which is left exact), and that an exact endofunctor

oo f
of O .

Now, we consider the functor represented by the mod%rQ’aMa. The
lemma below gives a functorial isomorphism for each moddlan O’ f

Homg( %% aMa, M) = Ms&m, ..., Mn, DM"g. (8.7)

Lemma 8.25 ForeachM N Og’ f,we have functorial R-module isomor-
phisms

Homgg(N, M)= N,DM"g, % Ma, DM"g= Mspm,..., Mp, DM"p.
Proof Thereis anaturdR-module inclusion Horg,(N, M)  Homg (N Rr

DM, R), becauseM, N are weighttg-modules whose weight subspaces are
free R-modules of nite type. We must prove that this inclusion is indeed
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an isomorphism. The proof is the same as46, [prop. A.2.6], see als®pB,
prop. 2.31].

Next, by de nition of coinvariants, we also have a canoni€amodule
isomorphism Horg,(N  r DM, R) N, DM™g. This proves the rst
isomorphism in the lemma.

Now, we concentrate on the second one. Consider #he-module Zg.
By construction, we have Hog{DM, Zr) = Homr(Wr r DM, R).
Thus, we have also Hom (DM, Zr) = Hom .(Wr r DM,R).
Thus, sinceDM is smooth andZgr, = Zgr( ), the canonical inclusion
Hom , (DM, Zgr ) Hom , (DM, ZR) is indeed an isomorphism. So
we get an isomorphism Hagn (DM, Zgr, ) = Mgm,..., My, DM".

Finally, since'Zg ~ belongs [(COFY f, we have

Homg, ( %%z 4Ma, M) = Homg,, (DZg, , M) = Homg, (DM, Zg ).

Next, we consider the behavior of the tensor prodfgt on - Itered
modules. Assume thatly O andM, Op' fora = 0. First, note
the following.

Lemma 8.26 Foreach M Of' the R-module Mg, ..., Mn, TM‘"R is
free of bnite type.

Proof Since thisR-module is nitely generated by Lemm2, it is enough
to check that its rank is the same at the special point and at the generic point
of Spe¢R). By Lemma8.2we must check that

dimg kMg, ..., kMp, TkM™, = dimx  KMsgm, ..., KMy, TKM™.

ForeachM Og N ( Oy ), wehave(KM : KN) = (kM : kN).
Therefore, the claim follows from Lemn&al2

Now, we can prove the following.
0 1
Lemma 8.27 We have %% .\Ma O

Proof Taking  large enough we can assume that all modules belong
to the category O’ . Since Op is a highest weight category over
R, to prove that ()/C’R‘,ﬂMa has a - ltration, it sufces to check that
Extloé ( % 2Ma, M) = 0 for eachM ( Og ), see B9, lem. 4.21].
Since the categoryOy is preserved by taking extensions@yg , we must
check that E%é ( %R,aMa' DM) = 0foreachM ( Og ). To simplify
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the notation, we assume tH&m, n] = [ 1, 2]. By (8.7), it is enough to check
that, given an exact sequence

O Q P M O

with P projective, the following left exact sequence®fmodules is indeed
exact

0 M11 MZ! TM"IR M11 M21 TPI"R Mll MZ! TQ"'R 0

Note thatM1, M2, M3, Q, P, M are - Itered. To prove the claim we may
consider the right exact sequence of fiRenodules of nite type

0 My, M, TQ"s My, My, TP My, My, ™M™z 0.

We must prove that it is exact. To do so, it is enough to prove that it is exact
after specialization at the special point and at the generic point of( Bpec
Now, the sequences

0 kMg, kM, TkQ™ kMg, kMy, TkP™,  kMy, kMy, TkM™, 0,
0 KMy, KMy, 'KQ"x KMy, KMy, 'KP"c KMy, KMo, 'TKM™¢ 0

are both exact by Lemm&12 Thus, the lemma follows from Lemn@&2

We can now prove PropositioB.21 it is a direct consequence of Lem-
mas8.22, 8.25and8.27.

8.3.3 The functors e and f

We consider the moduléég, V5 in Oy’ given by
VR=M( 1R+, Vr=M(S N)R+-

The following hold.

Lemma 8.28 (a) If R = K is a Peld theVk, V. are simple.
(b) The module¥ R, V are tilting.
(c) We have Wr = "Vr = Vg, VR = | nd(VR) andVy = | nd(Vg).

Proof If R = K is a eld, thenV, V are simple, proving part (a). To
prove (b), note that under base change we\get= kVgr andV, = kVp.
The modules/k andV, are simple and standard. Thus, they are both tilting.
ThereforeVg, Vg are also tilting modules by Propositi@. Part (c) is clear,
because (b) implies th&tVg = VR andDVg = V..
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Next, we de ne the endofunctoes f of Oy andOp respectively by

e:€ O/(RVRa f =€ O/%VRv
e=€ RrVg f=€ RrVRr

The goal of this section is to prove the following.

Proposition 8.29 (a) The endofunctors,ef of O’ are exact and preserve
the subcategorp ' .

(b) We have functorialisomorphisthe(M) e(kM)andk f(M)  f(kM)
for each module M i .

(c) If R = K is a beld then gf extend to exact biadjoint endofunctors of
Ok .

(d) The functorl ndr gives aC-vector space isomorphisfOg |
[Og' ] which commutes with th@-linear maps ¢ f.

Proposition 8.30 Assume that R is a local analytic algebra.

(a) There is a braided monoidal catego@bE’ ©, %, aR, CR).
(b) Thereis abimodule catego(@y , %, ar, cr) over(Oy ", %, ar,
CR).

(c) For each module M O " and each integer d 1, we have
a k-algebra isomorphisnk Endy,(f9(M)) End,, (f9(kM)) which
commutes with the associativity and the commutativity constragtsg.

To prove these propositions, we need more material. First, we de ne the
associativity and the commutativity constraiatg cr for %&. From now on
we’ll assume thaR is a local analytic algebra.

Lemma 8.31 Assume that¥/ V,  OF"’ "and M (OFY " Then there are
functorial isomorphismay, m.v, : (Vi %&M) %&Vo Vi %&(M %R \Vy).

Proof We apply the same construction asinthe dase Cin[28, sec. 17, 18].
We will be very brief. We allow the system of chattsto vary in the set of
C-points of an af ne schem¥ . Taking the coinvariants, we construct a bundle
of R-modules of nite rank ove¥ . This bundle is equipped with an integrable
R-linear connection. Sinc® is an analytic algebra, it admits a at section.
This section giveRR-linear isomorphisms, se@8, thm. 17.29],

Vi Y%xM, Vo O/fpgDN"'R = Vi1, M, Vo, DN"R,
DN %:Vi, M %Vo"g = DN, Vi, M, Vo"g

foreachM, N Oy’ T andvy, Vo o -
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Using these isomorphisms and the invariance of coinvariants under cyclic
permutation, we get functorial isomorphisn28[sec. 18.2]

Vi %M, Vo DN g == (V1 %&&M) R V2, DN"p,

DN %V1, M %&Vo" g == Vi %&(M R Vo), DN"R.

Hence, from 8.7) we deduce a functorial isomorphism
Homgs (V1 Y&M) %&V2, DN) = Homg, (V1 YR(M %&V2), DN),

which yields a module isomorphisray, m,v, : (Vi %&M) %RV,
V1 %R(M %R Vo).

The isomorphismaw v, v, andam, v, v, are constructed in a similar way.
The details are left to the reader.
Now, we consider the commutativity constraint. To do so, for each mod-
uesV  Of" " andM Oy’ " we consider the morphism of functors
V, M, DN"r M, V, DN"r induced by theR-linear map

V rRM RrDN M rV rDN, x vy z y X Z.
Here,weset = exp( S1 Lg)explLi)and = exp(S S1 Lo)expLy).

Lemma 8.32 Assume that V. Op"’ " and M Oy’ ", Then there is a
functorial isomorphisncy m @ V %&M M %V which represents the
morphism of functorsV, M, DN™r M,V, DN"Rg.

Proof The isomorphisnty v is de ned as in P8, sec. 14]. More precisely,
settingA = [0, 1], Mg = V andM; = M, we consider the g, -module
ZR in (8.5). SwitchingV and M we de ne Z in a similar way. Since the
Sugawara operatots, L1 act onV, M and sinceR is an analytic algebra, we
can de ne theR-module isomorphisni : Z,  Zg which is the transpose
of the R-linearmapy rM M RV suchthak vy y  X.Now,

recallthatZ, = Zp( )andZgr, = Zg( ).Onecheckasinloc.cit. that
P induces g -isomorphismZp Zr, . We de ne the isomorphism
Cv,m to be the mapDZg DZg which is the transpose d?. The

second part of the lemma is proved asa8,[sec. 14.6].
Next, we consider the behavior of the functersf on tilting modules.

Lemma 8.33 The functors ef onOp'  are exact. They preserve the sub-
categoryOp' ™.
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Proof Let S R be theC-subalgebra oR generated by. The modules
VR, Vg are de ned overS, i.e., we haveVg = RVsandVy = RV g with
Vs=1 I’Ids(Vs),VSZ I I’lds(VS).

Now, the second claim is proved as Proposi@hl(b). SinceVg, V are
tilting by Lemmas.2§ it is enough to check th& f are biadjoint orOy’
(hence exact) proving the rst claim on the way. To do so, siRde a regular
ring, we may assume th&tis atover S. Then, sincee, f commute with at
base change by Lemn&22 we may assume th& = Sis a regular local
ring of dimension 1. So, we are in the same setting a8#ngec. 31].

Next, proving the lemma is equivalent to proving that andV  arerigid,
see the appendix to part IV o28] for details. This is proved in the proof
of [28, prop. 31.3], modulo a technical assumption which is checke@8n |
lem. 31.6].

Finally, we consider the behavior of the tensor prod¥%gtunder the spe-
cialization of R to the residue eld k.

Lemma 8.34 For each module M Op'’ Mt we have functorial isomor-
phismske(M) = (kM) andk f (M) = f(kM).

Proof By (8.7), for N O’ " we have functorial isomorphisms

Homge( ®z sMa, N) = Mg, ..., Mn, DN,
Homg,( 8 .kMa, kN) = KkMsm, ..., KMy, DKN".

If Ma, N are tilting, then Mg, ..., My, DN™R s free of nite type overR
by Lemma8.26 Therefore, by Lemma&.2we have a functorial isomorphism
k Homge( %5 ;Ma, N) = Homg, ( %8 ,kMa, kN). So, forM, N O ™
we have functorial isomorphisms k Hgg(e(M), N) = Homg, (e(kM), kN)
and similar isomorphisms fof.

On the other hand, by Lemn&a33the modules(M), f(M) are tilting.
Thus, we have functorial isomorphisms

Homg, (ke(M), kN) = Homg, (e(kM), kN),

8.8
Homg, (k f (M), kN) = Homg, (f(kM), kN). (8.8)
This proves the lemma.

Remark 8.35In Lemma8.10we considered the specialization functor 28]
thm. 29.1], from a regular local ring of dimension 1 to its residue eld. In
Lemma8.34, we consider a specialization functor from a regular local ring of
dimension 2 to its residue eld.

We can now nish the proof of Propositior&29and8.30
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Proof of Propositior8.29 Parts (a), (b), (c) follow from Lemmas$.22
8.33 8.34and8.9. Part (d) is proved as Propositi@nl1(b).

Proof of Propositior8.30 The isomorphisms of functorar, cr are con-
structed in Lemmas8.31, 8.32 For parts (a), (b) we must prove thas, cr
satisfy the hexagon and the pentagon axioms. The tensor pré@ucbom-
mutes with a at base change of the ripy LemmaB.22 The isomorphisms
of functorsag, cr commute also with a at base change. Therefore, embed-
ding Rin its fraction eld K, we are reduced to prove that, ck satisfy the
hexagon and the pentagon axioms. This is proved in Propo$itibn

Now,letM Og "andN O ™. By (8.8 and Propositiong.4,8.29
the specialization at k gives functorial isomorphisms

k Homgs (Vg Y&M, N) = Homg, (V| %&(kM), kN),
k Homgg (M %RV g, N) = Homg, (kM) %RV, kN).

They are induced by the base-change homomorphisms

kK Vg, M,DN"g V., kM, D(KN)",
k M,Vg, DN"g V., kM, D(KN)". (8.9)

We must check that they intertwine the isomorphisms
cvom:VR&M M %RVg, cy, km Vi %R(KM) (kM) RV
Todoso, recall thaIVR, M represents the transpose of the morphism of functors

Pr: Vg, M,DN"g M,Vg, DN"g, x vy z y x z

So the claim follows from the commutativity of the following square

K Vq M, DN"g —P® K M, V., DN"5
(8.9 (8.9
Vi kM, D(KN)" —2— kM, V,, D(kN)".

The commutation of the specialization with the associativity constraint is
proved in a similar way.

8.4 From O to the cyclotomic Hecke algebra

Let R be a local analytic deformation ring of dimension2. Setv = vr =
exdS S1/ gr)andg= gr = v&.Theendomorphisms, T of the functors
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f, f2are given byX = ck crandT = vg- aéRl (1%kcr) ag. More
precisely, foreactM Op we have

XM = Cvg,M  CM,Vg»
Tm = vR-a;\Q’,,%VR’VR (Im Y&kovg,vr)  aMm, Vg Vr- (8.10)

Next, x anintegerd 1 and consider the endomorphismsfsf given by
Xj = 1951 X111 andT; = 1951517218 with j [ 4,d],i [ 4,d). We can
now prove the following.

Proposition 8.36 (a) X, T yield an R-algebra homomorphism

Rd:HRrd  End f9)°P.
(b) R, gives an R-algebra homomorphism

Rd - Hra  Endge(Tra).

Proof The braid relation$j Ti+ 1 Ti = Ti+1Ti Ti+1andTiTj = T T if [i Sij|>
1 are well-known formal consequences of the axioms of a braided monoidal
category.

Next, consider the relatiof X; T; = v%XHl. The hexagon axiom yields
the following relations

avp,M Ve (CMvg %&R1vg) Tm = VR Cf(M), Vg
Tm  (Cvg,m O/q'?lVR) a\S/;,M,VR = VR Cvg, f(M)-

Therefore we hav@y  (Xm %&1vg) Twm = V& - Xt(w). We deduce that
(TIm (Xdm (Ti)m = V& (XisD)m-

Now, let us prove the relations; X; = XjXj andXjT; = TjX; fori =
j, j+ 1. Wearereducedto checktherelatig®s)m (Xi)m = (Xi)m (X1)m

and (Ti)m (Xo)m = (X9)m  (Ti)m fori = 1. They follow from the
functoriality of c anda. Let us check the rst one in details for= 1, j = 2.
The diagram
g
f(M) %Vr 2 (M) %V
Cr(M).VR Cr(m).VR
VR % f(M)
CvR, f(M) VR, f(M)
F(M) %V 7 (M) %V
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is commutative becausgy, is an endomorphism of (M) andcg is a mor-
phism of functors. Now the composition of both vertical maps is equal to
Xty = (X2)m, while the upper and the lower horizontal maps are both
equal to( X1)m. We are done.

To prove the Hecke relatiofT; + 1)(Ti S gr) = 0, observe that the action
of onVR R VRis a diagonalizable operator with eigenvalues 1 &rd
Thus, from 8.10 we get tha(T; S v&)(T + 1) = 0.

Finally, let us check the cyclotomic relation. B§.9), (8.10, the endomor-
phism(X1)1g, Of Trd is identi ed with the endomorphisni CISl(XTRO,\/R)
of f95Y(TR 1), whereXty o vgisanoperatorofig 1 = Tr o %RV r. We must
prove that this operator satis es the equation_ 1 (X1, v S q‘;’f) = 0.We
may assume th& = K is a eld. Then, the claim follows from Rematk 18

Index of notation

2: R, K, k, m.

2L M ,SMS ,P,M,P1, Ry, mpy Kp. -

2.2 A% CO 1., Ko(C), [C], [M], A-mod, C , Irr(C), CPra C',
Irr (A), A-proj, A-inj, SC, SF, h,h , h'.

23 (C) , v POLIO.TO., O, O.PO.1O.TO,

0.LO.c,c,c™,c,R, (),P().T(O.C,

Icdc (M), rede (M).

241 F:C B-mod,G,(B-mod* ,F ,F ,F .

243 (KB) g, Y),S().

3 g, gr-

3.1 (. (C]),QR,pJ p,|1.

32 st, , i, i, »Q=Q,Q"=Q",P=R,P" =R,
X=X, il ,sl.

33  Z().Cp.Cos P nil LIO) . Y() PP ,P P P, p(A),
g-re?, g-res, conf, q;" = Qrp Qp=Qrp +Sd & X ()c.

3.4 Hra T, Xi,Hy g Hr g Hy oo Indd, Red, Indj 2, Re§ 5, M, 1;,
1,HS .

3.4.2 HR,d,KHa,d,ti,xi, HE L HE HE .

343 ,S0) 3L S0 %

35 w,x,S S WO R, Ra Sha WO &

(

36 (E,FXT), g, = S HP 4L L), s, LO)
L() -

4: , N, .

4.1 R= , Rp= p RSRp=Sp, S Sp &
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4.2

4.3
4.4

4.5
4.6

4.7

5.1
5.2.1

52.2

53.1

5.3.2
5.3.3
5.4
5.5

5.6

571
5.7.2

5.7.3
5.9

6.1.1
6.1.2
6.1.3

6.1.4
6.2.1

Or U(OR), tR, bR, PR, . MR, , &), 8, it » 7 . LW,
wE€ ,ip,jp,Jp, Pk, detp, det,P, Pr, S, Pz, , = R ,
= N, Cas= cay.

M,Or V()R ,M() R ,LO) k.0 , () R -

Ag ., Ag {d}.

VR, Vg, & f, 1, wt(u), mi(u), 0 , Vi, ! .

hE.F,TrRa= Tg {d}L! &g Ra Ar (N)= Ag , Tra(N) =

Trd-

ag, ap, a , ,u,v# TU,V'LT]R: y MR, l.#Vv P{a}, P {3}- det, , e
uvs uwOr (),0g (){a},Og (, u,v),0g (, u,v){a},

Ar (), Ag (L uv).

gr= exp$2 SV Rr),Qrp=0qy = exp$2 Sisrp/ R).

LR, Or: 1. $, ORr, trR, bR, PR, » € OR, , Or + OR, d\ DR+ OR+,

I ndR(M)! QR,d! M(d)v M(éd)! M( )! I\/I(é )’ S R, v%r)v LS;

cas

PR, » ©, e, ,(€:9,, 0, , €:€,W,5,Tx,WEW,P, P,

Pr: . Z.

Og » MR , LWk, M) R, L() k, Or, M() r, O , M

() r+.Ox ',Og ,Og ,Og O [a],P{d},P {d},Ox (N),

Og (N)[al{d}, O.

M,™,M ,DM,DM, O .

(). ..o $ ., , »p

%%, VR, Vg, & £, X, T, 10,1 &, fi,m(),wt(),Of .

() R AR LO PO R . TOR A {d}, T {d} Tra,

Trd(N), Rg Rd-

Mg, , Mg, , W, br , Og(), OF (), Og (), Of ()f{a}

Or (), Og () fah AR ().

fu,v,z( R R)-

Og {a}, Ag {a}, p°% ©° h," = "g, Og{a}, Agpfal, M() rh,

() rRh QR Tra €), TRhd-

V( p)’ fp1TR,d() ’HR‘ai fp,TR,p() ’TR,(a)() ’ %xj() ) Ep,d() :

E, F.

W, h, S A, hreg, €, HC(W’ h')R, s s, R[h], R[h ], Oc¢(W, h)r,

( BE)r, L(E), P(E)Rr, (€) .cC .

KZR.

W, S, hW, OInd , OResy , Wi, O(WH)R, CIndy.

Ch(M).

#, 5 %, Vi, K G, hR, NRp, OF {d}, O(Sa), () &, LO) S,

POR - TOR 105
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6.22 (s s ,S,

6.23 KZ% .

6.2.4 Ry.

6.3.1 +, S.

7.1 QR 9,1, smi() =) =n0) ,wi(|, s).
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