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Abstract

Geodesic based Voronoi diagrams play an important role in many applications of computer graphics. Constructing such Voronoi
diagrams usually resorts to exact geodesics. However, exact geodesic computation always consumes lots of time and memory,
which has become the bottleneck of constructing geodesic based Voronoi diagrams. In this paper, we propose the window-VTP
algorithm, which can effectively reduce redundant computation and save memory. As a result, constructing Voronoi diagrams
using the proposed window-VTP algorithm runs 3-8 times faster than Liu et al.’s method [LCT11], 1.2 times faster than its
FWP-MMP variant and more importantly uses 10-70 times less memory than both of them.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction

Computing geodesic-metric-based Voronoi diagrams on triangle
meshes works as a foundation for various applications in com-
puter graphics, including remeshing [PC06,LCT11], surface recon-
struction [PM15] and point pattern analysis [LCT11], etc. In these
applications, geodesics are used as the distance metric because
they reflect the intrinsic properties of surfaces and are invariant to
isometric deformations. To construct accurate Voronoi diagrams,
Liu et al. [LCT11] employed the MMP algorithm [SSK∗05] to it.
Compared to other exact geodesic algorithms (e.g. ICH [XW09],
VTP [QHY∗16]), the MMP algorithm has a unique feature: all the
propagated windows are stored and trimmed on edges. The distinct
advantage is to bring necessary geodesic information to edges for
Voronoi diagram construction. However, as the MMP algorithm al-
ways consumes lots of time and memory, it has become the bottle-
neck of constructing geodesic based Voronoi diagrams. Recently,
Xu et al. [XWL∗15] proposed the FWP-MMP algorithm as an ac-
celerated version of the MMP algorithm. But it still occupies too
much memory to be applied to large scale models.

The main deficiency of the MMP algorithm is to propagate all
windows to edges, which results in lots of computation on redun-
dant windows, and even invalid ones. To speed up geodesic compu-
tation and save memory, we propose to use the Vertex-sorted Trian-
gle Propagation (VTP) exact geodesic algorithm [QHY∗16], which
can identify and remove the maximum invalid windows. Moreover
for the Voronoi diagram over a mesh, the boundaries of Voronoi
cells only occupy a small number of triangles on it (Fig. 1). Thus,

most of the windows are redundant in constructing Voronoi dia-
grams.
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Figure 1: Our algorithm outperforms Liu et al.’s method [LCT11]
in both running time and peak memory. The upper figure shows the
Voronoi diagram on the Rocker Arm model (25K faces). The lower
charts compare the performance of Liu et al.’s method and ours on
two Rocker Arm models (25K and 482K faces).

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13248



Y. Qin, H. Yu, J. Zhang / Fast and Memory-Efficient Voronoi Diagram Construction on Triangle Meshes

This paper aims to reduce redundant computation so as to save
time and memory as shown in Fig. 1. To this end, the Redundant
Window Removal (RWR) process is proposed to remove redun-
dant windows during the construction of a Voronoi diagram, and
is involved in our window-VTP algorithm by selectively retaining
windows on edges. The key point is to detect and remove redundant
windows simultaneously with the geodesic wavefront propagation.

In summary, the contributions of this paper are:

• A novel Redundant Window Removal (RWR) method to remove
redundant windows during the Voronoi diagram construction.

• The high efficiency of Voronoi diagram construction. Our
method runs 3-8 times faster than Liu et al.’s method [LCT11],
1.2 times faster than its FWP-MMP variant and more impor-
tantly uses 10-70 times less memory than both of them, which
is ideal for large scale models.

2. Related Work

Discrete Geodesic Computation. Mitchell et al. first formu-
lated the computation of geodesic distances on triangle meshes as
the Discrete Geodesic Problem (DGP) [MMP87]. To solve DGP
quickly, PDE-based approximation algorithms have been proposed
[KS98, CWW13]. However, these algorithms are sensitive to mesh
quality and may produce potentially large errors [LCT11]. Thus,
we prefer the exact geodesic algorithms as used in this paper.

The window propagation framework is employed by all the state-
of-the-art exact geodesic algorithms [SSK∗05, XW09, XWL∗15,
QHY∗16]. In this framework, geodesics are encoded in a geomet-
ric data structure called window and propagated from the source
over the mesh surface. To improve its performance, windows are
sorted by a priority queue and propagated according to their dis-
tances in a continuous-Dijkstra style. During propagation, effec-
tive rules are applied to remove the redundant windows that can-
not define geodesics, e.g. the window pruning rule [QHY∗16].
Among these algorithms, the ICH algorithm [XW09], the FWP-
CH algorithm [XWL∗15] and the VTP algorithm [QHY∗16] aim
to compute geodesic distances of vertices. Thus, propagated win-
dows are not stored on edges in these algorithms. On the other
hand, the MMP algorithm [SSK∗05] and the FWP-MMP algo-
rithm [XWL∗15] retain all propagated windows on edges and trim
them into non-overlapping ones. Hence, the geodesic distance of a
point within one triangle can be computed.

Voronoi Diagram Construction. The construction of Voronoi di-
agrams is studied in various metric spaces like Euclidean space
[CM07, HR08] and Non-Euclidean spaces, e.g. spheres [NLC02],
hyperbolic spaces [OT95], and Riemannian manifolds [OI03]. Re-
fer to [Aur91] for a detailed survey.

In computer graphics, geodesic-metric-based Voronoi diagrams
usually lie on top of triangular meshes. Kimmel and Sethian pro-
posed the fast marching method [KS98] to compute such Voronoi
diagrams [KS99]. However, since it is based on PDE, potentially
large errors may occur on bad triangulated meshes. To compute
Voronoi diagrams accurately, Liu et al. [LCT11] used the MMP al-
gorithm for exact geodesic distance computation. Their method is
extended by [XLS∗14] to compute polyline-sourced Voronoi dia-
grams.

3. Redundant Window Removal (RWR)

Since the boundaries of Voronoi cells only cross a minority of the
meshes’ triangles, most of the windows stored on edges are redun-
dant. Thus, this section aims to remove such windows which oc-
cupy a large amount of memory during the Voronoi diagram con-
struction.

3.1. Preliminaries

For a triangular mesh M, its Voronoi diagram is a set of Voronoi
cells partitioning M. As Fig. 2 shows, the boundaries separating
Voronoi cells are closed curves spread over a small number of tri-
angles. The definitions of Voronoi cells and their boundaries are
presented as follows:

Figure 2: Voronoi diagram on the Buste model (3K faces). Left:
Voronoi diagram on the rendered model. Right: Voronoi diagram on
the wireframe model. The green points are sources. The red curves
are the boundaries of Voronoi cells.

Voronoi Cell Definition [LCT11]. For a given set of source points
s0,s1, ...,sn on mesh M, let Dsi(p) be the geodesic distance from
source si to point p on M. Consequently, the Voronoi cell (VC) of
each source point is defined as:

VC(si) = {p|Dsi(p)≤ Ds j (p), i 6= j, p ∈M}

Voronoi Boundary Definition. With the Voronoi cell definition
above, the boundaries of Voronoi cells are formed by the collec-
tion of points q satisfying:

∃i, j and ∀k such that Dsi(q) = Ds j (q)≤ Dsk (q), i 6= j 6= k (3.1)

In this paper, geodesics on edges are encoded in “windows”,
which are used as the primitives for wavefront propagation in
the state-of-the-art exact geodesic algorithms [SSK∗05, XW09,
XWL∗15, QHY∗16]. The definition of a window is presented as
follows:

Window Definition. As Fig. 3 shows, a window w is located on
edge AB, all the geodesic paths in w are from the same source si or
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Figure 3: Illustration of the window structure.

pseudo-source p and share the same triangle strip. Therefore, w is
defined as w = (∆ABC,a0,a1, p,d0,d1,σ,si), where ∆ABC stands
for the triangle it enters and AB is the edge where w resides. Two
scalar parameters, a0 and a1, mark the two endpoints of w, which
lies on the edge AB. Every window w is created by the source ver-
tex si or a pseudo source, which must be a saddle vertex. Here, p
represents the projection of the pseudo source on the plane deter-
mined by ∆ABC, and d0,d1 are the distances from a0,a1 to p re-
spectively. σ denotes the geodesic distance from the pseudo source
to the source vertex si.

Redundant Window Definition. As Fig. 4 shows, suppose q is the
intersection point of an edge and a Voronoi boundary. Then, q must
satisfy the condition Eq.3.1 and is shared by two adjacent windows
originating from two different sources respectively. The triangles
occupied by the Voronoi boundaries always contain such intersec-
tion points. That is, a valid triangle contains windows propagated
from different sources. Otherwise, this triangle is invalid. In terms
of windows, the redundant primitives on a mesh are defined as be-
low.

𝑠𝑖 𝑠𝑗

𝑞

𝑠𝑖

𝑠𝑗

𝑞

Figure 4: Illustration of intersections between mesh edges and
Voronoi cell boundaries. The left Voronoi cell (in blue) is from
source si and the right one (in green) is from source s j. The red
curve denotes the boundary between them. Point q is the inter-
section shared by two windows from si and s j respectively that
Dsi(q) = Ds j (q). The two figures show two configurations of the
source positions.

Definition 3.1 Given a mesh M with computed geodesics, the re-
dundant primitives on M are (Fig. 5):

• Redundant triangle. A triangle is redundant if all the windows
on its three edges are from the same source.

• Redundant edge. An edge is redundant if both adjacent trian-
gles are redundant triangles.

• Redundant window. A window is redundant if it resides on a
redundant edge.

𝑠𝑖 𝑠𝑗

Figure 5: Illustration of redundant primitives, including redundant
triangles (yellow) and redundant edges (green).

3.2. Redundant Windows Removal (RWR)

Definition 3.1 can be directly used to identify redundant windows
after the termination of geodesic computation on a mesh. However,
too much memory have been consumed. To avoid it, the redundant
windows must be identified and removed as early as possible dur-
ing the geodesic computation. To this end, we define the inactive
region as follows:

Definition 3.2 An inactive region is a region behind the geodesic
wavefront, in which all the windows will be no longer updated.

In other words, the geodesic distances of points in some inactive
region have already determined. To depict the inactive region, it
is necessary to first briefly address the monotonicity of window
propagations.

𝐴

𝐵

𝐶

𝑝

𝑤
𝑞

𝑠

𝜎

𝑤′
𝑟

Figure 6: Illustration of the monotonicity for window propaga-
tions. Point r (blue) resides in the window w′ propagated from w,
segment pr intersects edge AB at point q (purple).

Monotonicity. Mitchell et al. [MMP87] proposed the “continuous
Dijkstra” technique to organize geodesic wavefront propagation
from near to far monotonically. Herein, the wavefront consists of
all the windows to be propagated and these windows are managed
by a priority queue. In the priority queue, the priority of a window
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w is defined as −dmin(w), i.e. the negative minimum distance of a
window. As Fig. 6 shows, if w′ is a child window propagated from
w, we have:

dmin(w
′) = min(σ+‖pr‖)≥min(σ+‖pq‖)≥ dmin(w)

That is, the minimum distances of windows popped from the prior-
ity queue are monotonously increasing.

Inactive Region Formation. To compute geodesics, windows are
organized as the wavefront and propagated from near to far. Let wn
be the nearest window on the wavefront. It can be inferred with the
monotonicity that the geodesic distance of a point p is determined
if it is shorter than dmin(wn). To apply this to forming the inac-
tive region, the upper bound of points’ distances within a triangle
is estimated as dmin( f )+ ‖emax‖, where dmin( f ) is the minimum
distance of face f , emax is f ’s longest edge. Then, all the triangles
f satisfying dmin( f )+‖emax‖ ≤ dmin(wn) form the inactive region
(see Fig. 7). This process is summarized as Proposition 3.1 and its
proof is shown in the Appendix.

𝑆3

𝑤𝑛

𝑓
𝑒max

Inactive RegionInactive Region

Wavefront

Figure 7: Illustration of an inactive region. Left: the segments in
red denote the propagation wavefront w f and the green shadowed
area is the Inactive Region. Right: dmin( f ) is the length of the or-
ange path, emax is the longest edge of face f , dmin(wn) is the length
of the blue path.

Proposition 3.1 The inactive region is formed by all triangles sat-
isfying dmin( f )+ ‖emax‖ ≤ dmin(wn) and none of the windows in
it can be updated by later window propagations.

Proof See Appendix B.

Redundant Windows Removal (RWR) Redundant windows al-
ways appear within inactive regions. Thus, RWR works on inactive
regions. Let f be a redundant triangle for removal, d = dmin(wn) be
the distance of the nearest window on the propagation wavefront.
Then, RWR is performed in two steps:

Step 1. Judge if f is in the inactive region with Proposition 3.1. If
so, continue to Step 2; else, finish.
Step 2. Check f ’s redundancy with Definition 3.1. If f is redundant,
also check if its edges are redundant and remove all windows on the
redundant edges.

This process is summarized in Procedure 1.

3.3. Performance Verification

To verify that the proposed RWR procedure effectively reduces
memory cost, this section compares memory costs against near-
est distance dmin(wn) of the wavefront between two scenarios of

Procedure 1 Redundant Windows Removal (RWR)
Input: f - Face;

d - Distance of the nearest window on the wavefront;
Output: f ′ - The face after redundancy removal;
1: procedure RWR( f , d)
2: Let emax be the longest edge of f ;
3: if dmin( f )+‖emax‖ ≤ d then
4: Check f ’s redundancy;
5: if f is redundant then
6: for each edge ei ∈ f do
7: Let fi be the face sharing edge ei with f ;
8: if fi is redundant then
9: Empty the windows on ei;

10: end if
11: end for
12: end if
13: end if
14: end procedure

Voronoi diagram construction: with and without RWR. The tests
are performed on ten models selected from the model set.

Fig. 8 shows the results on two models (Armadillo and Asian
Dragon) and the rest of the results have been included in the sup-
plementary materials. It can be seen that applying RWR dramat-
ically reduces the memory cost of Voronoi diagram construction.
Specifically, methods without RWR ( e.g. [LCT11]) store all prop-
agated windows on edges of the mesh and their memory costs are
cumulative. On the contrary, RWR removes redundant windows in
time with geodesic wavefront propagations. Thus, the memory cost
is effectively reduced.
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Figure 8: Performance verification on RWR. The x-axis represents
the distance of the nearest window on the wavefront during propa-
gation, i.e. dmin(wn). The y-axis represents real-time memory cost
during propagation.

4. Applying RWR in Geodesic Computation

To construct geodesic-metric-based Voronoi diagrams, we propose
the window-VTP algorithm by revising the original VTP algorithm
[QHY∗16]. The overall workflow is shown in Fig. 9. Our algorithm
is essentially a multi-source geodesic algorithm and takes triangles
as the primitive for distance propagation. For each source, all vis-
ited triangles form its own traversed area. We define the boundary
of the traversed area as the propagation wavefront.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

96



Y. Qin, H. Yu, J. Zhang / Fast and Memory-Efficient Voronoi Diagram Construction on Triangle Meshes
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Propagate geodesic wavefront

(Expanding traversed area R)
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No

Yes
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Figure 9: window-VTP algorithm workflow.

For simplicity, consider the one source scenario here. Our algo-
rithm expands its traversed area R and inactive region I at the same
time (Fig. 10). Note that the inactive region I is a proper subset of
the traversed area R, i.e. I ⊂ R, and the windows in I will not be
updated. Both R and I are expanded in continuous Dijkstra style,
and gradually involving unvisited triangles abutting the wavefront.
First, the proposed algorithm creates the initial windows of each
source within its 1-ring neighbourhood and pushes all the adjacent
vertices of each source into a priority queue Q. Note that we only
define one priority queue Q for all traversed areas since every ver-
tex is involved in Q in terms of the propagation distance of the
wavefront. When a vertex is popped from the priority queue Q, the

(𝑎) (𝑏)

𝑅

∆𝑅

𝐼

∆𝐼
𝑅𝑣

Figure 10: Illustration of the triangle-oriented region expansion
scheme. (a) Expansion of the traversed area R. (b) Expansion of
the inactive region I.

proposed window-VTP algorithm performs the following:

• Expanding traversed area R. As Fig 10 (a) shows, let ∆R be

the unvisited triangles in v’s 1-ring neighbourhood. Then, R is
expanded by involving ∆R into R, and the wavefront is also up-
dated accordingly. Then, the windows on the previous wavefront
(e.g. vE and vB in Fig. 11) are propagated through ∆R and R ei-
ther till they reach the wavefront, or are eliminated during prop-
agation. To manage windows on the wavefront for the Voronoi
diagram construction, the propagated windows are trimmed on
edges using the windows trimming and binary insertion methods
proposed by the MMP algorithm [SSK∗05].
• Expanding Inactive region I. As Fig. 10 (b) shows, the expan-

sion of I is limited inside R. In the region between I and R, let ∆I
be the triangles satisfying Proposition 3.1. Then, I is expanded
by involving ∆I in I. When a triangle is added into I, the win-
dows on it are removed by performing procedure RWR().

𝑆𝑖

𝐷
𝐸

𝑣 𝐵

𝐶

Figure 11: Vertex-sorted Triangle Propagation [QHY∗16].

The outline of our algorithm is shown in Algorithm 2.

Two challenges are rising as below.

1. How to deal with the collision of the wavefronts? Note that it
may be a self-intersection of one wavefront or meeting of two
wavefronts.

2. How to define the priorities for triangles and vertices in Qi and
Q properly (in Step 4, 5)?

4.1. Wavefront Collision

Proposition 4.1 The proposed window-VTP algorithm automati-
cally handles the wavefront collisions and requires no extra opera-
tions.

As Fig. 12 shows, the propagation wavefront consists of differ-
ent parts corresponding to different sources. When different parts
of the wavefront collide with each other, we simply let the win-
dows propagate through the wavefront and enter the interior of the
traversed areas. The propagations of these windows will stop when
they reach the updated wavefront or be eliminated by the retained
windows on edges in the traversed areas using the windows trim-
ming rule [SSK∗05]. Thus, no extra operation is required. For ex-
ample in Fig. 12, the wavefront collides when ∆ABC is added to
the traversed areas. Then, the windows on edges AB, AC, BC are
propagated into the interior of R1, R2 and R3 (the dashed arrows in
Fig. 12). These propagations will stop upon reaching the updated
wavefront (the bold red, green, blue line segments in Fig. 12) or be
eliminated on the interior edges (the grey line segments in Fig. 12).
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Algorithm 2 window-VTP algorithm
Input: M - Mesh;

S - Source set;
Output: M′ - Mesh with sufficient geodesic information for

Voronoi diagram constructions;
1: procedure window-VTP(M, S)
2: Step 0. Perform Initialization.

• For each source Si, create a single window for every op-
posite edge of Si in its 1-ring neighborhood (bold blue lines
around Si in Fig. 11).
• Push all adjacent vertices of Si into a priority queue Q.
• Define a priority queue Qi, which is used to organize the
expansion of the inactive regions;

3: while !Q.empty() do
4: Step 1. Pop a vertex v from Q;
5: Step 2. Update the wavefront and traversed areas;
6: Step 3. Expanding the traversed areas.

• Push the windows on edges of the wavefront incident
to v into FIFO queue W ;

7: while !W.empty() do
8: • Pop a window w from W ;

• Propagate w across a triangle;
• Retain and trim the propagated windows;
• Push the propagate windows into W if they sur-
vives the trimming and haven’t reached the wave-
front;

9: end while
10: Step 4. Expanding the inactive regions.
11: while !Qi.empty() do
12: • Let f be Qi. f ront();

• Perform RWR() on f to check if f is in the inac-
tive regions; If so, remove the redundant windows
on it; else, break the loop;

13: end while
14: Step 5. Update vertices’ and triangles’ priorities;
15: Step 6. Push the faces newly added to the traversed ar-

eas into Qi;
16: end while
17: end procedure

4.2. Priorities Definition

The key point of performing the procedure RWR() during wave-
front propagation is to form the inactive region, which resort
to two priorities: the face’s priority and the vertex’s. Recall that
the inequality of dmin( f )+ ‖emax‖ ≤ dmin(wn) is used to identify
whether a face f is in the inactive region (Proposition 3.1). In our
algorithm, the priorities are defined as follows:

Face’s Priority. A face f ’s priority in the priority queue Qi is de-
fined as −(dmin( f )+‖emax‖).

Vertex’s Priority. A vertex v’s priority in the priority queue Q is
defined as the negative minimum of the current shortest distances
to v’s incident edges on the wavefront. For example in Fig. 13,
−dmin(A) = −min{dmin(AB),dmin(AC)}. In addition, if wn is on
AB or AC, −dmin(A) =−dmin(wn).

Note that the two defined priorities are just the left and right sides

𝑆1

𝑆2 𝑆3𝐴

𝐵
𝐶

𝑅3

𝑅1

𝑅2

Figure 12: The collision of the propagation wavefront. The wave-
front consists of three parts from three different sources, S1, S2 and
S3 (red, blue and green line segments).

𝑆

𝑤𝑛 𝐴𝐵

𝐶

Figure 13: Illustration of the vertex’s priority definition. The prop-
agation wavefront are the black and red line segments. wn is the
nearest window on the wavefront.

of inequality dmin( f )+ ‖emax‖ ≤ dmin(wn) (Proposition 3.1), and
thus they can be directly used when performing procedure RWR().

5. Complexity Analysis

This section focuses on the complexity of geodesic computation
since it is the dominant part of the Voronoi diagram construction
[LCT11].

Let n be the number of vertices on a mesh. It is easy to verify that
the proposed window-VTP algorithm is an improved version of the
original MMP algorithm [MMP87]. In the worst case, the number
of windows generated in the geodesic computation part is O(n2)
and the time complexity of geodesic computation is O(n2 logn).
For the redundant windows removal (RWR) part, the checking and
deletion processes are performed on each window and thus ac-
counts for O(n2) time. In addition, the expansion of the inactive
region is triangle-oriented and thus costs O(n logn) time for O(n)
triangles.

In summary, the time complexity of window-VTP is bounded by
O(n2 logn+ n2 + n logn) = O(n2 logn). Since the redundant win-
dows removal process does not consume extra memory, the space
complexity of the proposed algorithms is bounded by O(n2).
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Figure 14: Examples of Voronoi diagrams on meshes. The faces of
the models are: Bunny (5K faces), Cow (10K faces), Dancingchil-
dren (20K faces).

6. Experimental Results

To evaluate the performance of the proposed algorithm, experi-
ments have been conducted on a variety of models. Specifically, the
test models are selected from the model set proposed in [QHY∗16],
including sculptures, animals and manmade objects. The resolution
of these models (number of faces) ranges from 10K to 14M. All the
algorithms are tested using a HP Z420 Workstation with an Intel
Xeon E5-1650 3.20GHz CPU and 32GB memory. Unless speci-
fied, the experiments randomly select 30 vertices as the sources
on meshes, as shown in [LCT11]. Fig. 14 shows the constructed
Voronoi diagrams on some example meshes.

6.1. Comparison with [LCT11]

Overall Performance According to [LCT11], constructing the
geodesic-metric-based Voronoi diagram consists of two stages,

• Stage 1. Compute geodesic distance fields on edges of mesh M.
• Stage 2. Extract the valid triangles which contain Voronoi cells’

boundaries. March them to track and reconstruct the boundaries
of Voronoi cells’ by linking the intersections between them and
edges of M.

The overall performance of the proposed algorithm is evaluated
by two measures on the two stages: running time and peak mem-
ory usage respectively. As Table 1 shows, the geodesic computa-
tion part consumes the majority of time and memory in both Liu
et al.’s ( [LCT11]) method and ours. However, when replacing the
MMP algorithm used in [LCT11] by the proposed window-VTP al-
gorithm for geodesic computation, the Voronoi diagram construc-
tion runs 3-8 times faster and uses 10-70 times less memory.

Model Performance Liu et al. (2011) Ours Ratio 

Horse 

(F: 96K) 

Time(s) 1.966 + 0.015 0.66 + 0.015 2.93 

Peak memory(MB) 109.40 + 0.035 9.98 + 0.035 10.93 

Bunny 

(F: 144K) 

Time(s) 3.637 + 0.028 1.07 + 0.028 3.34 

Peak memory(MB) 187.00 + 0.046 14.86 + 0.046 12.55 

Igea 

(F: 268K) 

Time(s) 10.916 + 0.048 3.019 + 0.048 3.57 

Peak memory(MB) 478.06 + 0.065 26.50 + 0.065 18.00 

Armadillo 

(F: 345K) 

Time(s) 9.863 + 0.046 2.982 + 0.046 3.27 

Peak memory(MB) 440.33 + 0.066 21.09 + 0.066 20.81 

Pulley 

(F: 392K) 

Time(s) 23.917 + 0.115 5.345 + 0.115 4.40 

Peak memory(MB) 792.08 + 0.086 39.69 + 0.086 19.91 

Rocker arm 

(F: 482K) 

Time(s) 32.012 + 0.091 6.985 + 0.091 4.54 

Peak memory(MB) 1013.34 + 0.099 41.50 + 0.099 24.36 

Asian dragon 

(F: 1,400K) 

Time(s) 110.083 + 0.255 20.281 + 0.255 5.37 

Peak memory(MB) 2770.81 + 0.143 76.75 + 0.144 36.04 

IsidoreHorse 

(F: 2,209K) 

Time(s) 89.538 + 0.211 21.229 + 0.211 4.17 

Peak memory(MB) 2574.06 + 0.189 46.79 + 0.189 54.79 

Happy buddha 

(F: 2,583K) 

Time(s) 482.715 + 1.291 58.946 + 1.291 8.04 

Peak memory(MB) 8218.60 + 0.406 161.98 + 0.406 50.61 

Neptune 

(F: 4,008K) 

Time(s) 832.83 + 0.784 96.843 + 0.784 8.54 

Peak memory(MB) 13070.70 + 0.262 176.30 + 0.262 74.03 

Table 1: Performance comparison with [LCT11]. The results are
shown in an addition manner as: “geodesic computation” +
“Voronoi diagram construction”.

Since the geodesic computation part is the bottleneck of Voronoi
diagram construction, a more comprehensive comparison on it is
performed as follows.

Performance Comparison on Geodesic Computation To evalu-
ate the performance of the geodesic part, three measures are used:
running time, total number of windows stored after propagation
and peak memory usage. Algorithms in this comparison have been
tested on all 55 models in the model set. For better reading experi-
ence, some of the testing results are shown here and the others are
given in the supplementary materials.

MMP vs. window-VTP FWP-MMP vs. window-VTP

Time 3.98/1.55 1.21/0.18

# windows stored 48.96/38.98 48.96/38.99

Peak Memory 21.24/15.16 21.24/15.16

Table 2: The mean and standard deviation of the performance ra-
tios between other algorithms and the proposed window-VTP al-
gorithm on running time, the number of windows stored and peak
memory usage. The table value is shown in "mean / standard devi-
ation" format.

The mean and standard deviation of performance ratios are cal-
culated between MMP, FWP-MMP (the latest implementation of
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the MMP algorithm [XWL∗15]) and the proposed window-VTP
algorithm. The details are shown in Table 2. It can be seen that
window-VTP on average runs 4 times as fast as MMP and com-
parable to FWP-MMP (1.2 times faster). The window-VTP algo-
rithm on average uses 95.29% less memory than MMP and FWP-
MMP. Furthermore, the window-VTP algorithm stores 97.96% less
windows than MMP and FWP-MMP algorithms after propagation,
which shows that it removes redundant windows effectively. Note
that the proposed window-VTP algorithm is impressive since it re-
solves the memory bottleneck of Voronoi diagram oriented compu-
tation of geodesics, whilst not sacrificing the speed. For example,
it uses 95.29% less memory than FWP-MMP while still being 1.2
times as fast. Detailed results on 5 representative testing models are
shown in Table 3.

Model Performance
Algorithms

MMP FWP-MMP window-VTP

Bunny

(F:144K)

Time(s) 3.637 1.27 1.07

# windows stored 2,451,104 2,451,105 85,959

Peak Memory(MB) 187.00 187.00 14.86 

Rocker Arm

(F:482K)

Time(s) 32.012 9.088 6.985

# windows stored 13,282,080 13,282,139 271,040

Peak Memory(MB) 1013.34 1013.35 41.50 

Asian 

Dragon

(F:1,400K)

Time(s) 110.083 28.247 20.281

# windows stored 36,317,620 36,317,847 346,142

Peak Memory(MB) 2770.81 2770.83 76.75 

Neptune

(F:4,008K)

Time(s) 832.83 173.055 96.843

# windows stored 171,319,703 171,374,203 857,068

Peak Memory(MB) 13070.70 13074.80 176.30 

Lucy

(F:14,464K)

Time(s)

Out of memory Out of memory

806.118

# windows stored 12,071,796

Peak Memory(MB) 921.005 

Table 3: Performance comparison between MMP, FWP-MMP and
ours on five representative models.

Number of Sources This section studies how the proposed algo-
rithm performs with varying number of sources. First, three test
models (Maxplanck, Angel, RedCircularBox) are chosen. For each
model, eleven sets of sources are chosen randomly whose sizes
range from 1 to 1000. Then, the ratios between the running time,
peak memory of FWP-MMP based Voronoi diagram construction
algorithm and that of ours on all source sets are calculated. The ex-
periments are designed to show how the ratios change with chang-
ing number of sources.
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Figure 15: Performance comparison between FWP-MMP based
Voronoi diagram construction algorithm and ours on the number of
sources. The x-axis represents the number of sources in logarithmic
scale, and the y-axis represents the performance (time, memory)
ratio.

As illustrated in Figure 15, the time ratios increase within the
range of source number at [1,100] and drop within the range at
(100,1000]. This inconsistency is caused by RWR and the VTP
wavefront propagation. When the number of sources increases,

• RWR is invoked less times. This is because the more triangles the
Voronoi boundary occupies, the fewer the redundant windows.

• The performance of VTP wavefront propagation depends on the
scale of the models, i.e. VTP performs better than the others on
large scale meshes [QHY∗16]. Herein, the size of Voronoi cells
becomes smaller when the number of sources increases. VTP
has to work within each cell, that is, the models’ size becomes
smaller for VTP.

The time ratio in Fig. 15 shows that in the range of [1,100], re-
ducing RWR dominantly causes the time ratio increasing. In the
range of (100,1000], the size of Voronoi cells becomes smaller,
which leads to the performance of VTP decreasing. The low perfor-
mance of VTP dominantly causes the time ratio decreasing at that
time.

However, the memory ratio in Fig. 15 shows that the memory
cost is close to that of FWP-MMP with an increasing number of
sources. Nevertheless, the proposed algorithm still runs faster than
the FWP-MMP based Voronoi diagram construction algorithm and
uses more than 3 times less memory for 1000 sources.

Performance Profiling This section profiles the running time of
different components in the Voronoi diagram construction, show-
ing how it is accelerated. As proposed in [LCT11], the Voronoi di-
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Figure 16: Comparison of running times of four common compo-
nents in Voronoi diagram construction on two models. The compar-
ison is performed on three versions of the solution: (1) the origi-
nal method in [LCT11]; (2) the FWP-MMP version which replaces
the MMP algorithm used in [LCT11] with the FWP-MMP algo-
rithm [XWL∗15]; (3) Our version which replaces the MMP algo-
rithm used in [LCT11] with the proposed window-VTP algorithm.

agram construction contains two components: the computation of
geodesics and the construction of a Voronoi diagram. In addition,
the geodesic computation component can be further subdivided into
three components [QHY∗16]:

• Window propagation This component performs window prop-
agations across the faces of a mesh.

• Window redundancy reduction This component identifies the
redundant windows and removes them during propagation, in-
cluding the window trimming and RWR processes.
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• Window management This component manages the window
propagations in order, which makes the window redundancy re-
duction component more effective. In the proposed algorithm,
the VTP framework [QHY∗16] is employed to propagate the
window lists and remove the redundant ones (RWR) accord-
ing to their distances, which is implemented by sorting vertices
and faces in priority queues. Compared to the MMP and FWP-
MMP [SSK∗05, XWL∗15] algorithms, the proposed algorithm
achieves low window management overhead by sorting O(n)
vertices/faces instead of O(n2) windows in the priority queue,
where n is the number of vertices on the mesh.

The running times of these four individual components in all par-
ticipating algorithms are profiled on ten models selected from the
model set.

Fig. 16 shows the results on two models, Armadillo and Asian
Dragon (the rest of the results have been included in the supple-
mentary materials). Compared to the geodesic computation compo-
nents, the time cost of Voronoi diagram construction is extremely
small and can be neglected. For geodesic computation components,
it can be seen that the VTP framework effectively reduces the win-
dow management cost of the Voronoi diagram construction by sort-
ing vertices or faces in the priority queue rather than windows. Fur-
thermore, although an extra RWR process is added in our method,
the running time of the window redundancy reduction component
is not dramatically increased as its time cost is small compared to
other computations (e.g. binary insertion and windows trimming).

Scalability First, three test models (Cow, Shark and Knot) are cho-
sen. Let each of them have six different resolutions through subdi-
vision. The number of faces ranges from 0.1M to 2M in these subdi-
vided models. For each model, its ratios between the running time,
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Figure 17: Comparison of scalability against FWP-MMP based
Voronoi diagram construction algorithm. The x-axis represents the
mesh resolution, and the y-axis represents running time ratio or
memory cost ratio.

peak memory of FWP-MMP based Voronoi diagram construction
algorithm and that of ours on all six resolutions is calculated. The
experiments are designed to show how the ratios change with the
changing resolution. As illustrated in Fig. 17, both the timing ratios
and memory cost ratios increase with an increasing resolution. As
shown, the rate of increase in performance for the proposed algo-
rithm is proportional to the size of the models.

Robustness This section further validates that the proposed
algorithm is robust to mesh triangulation quality. As in FWP
[XWL∗15], a sequence of meshes (eight) with different degrees

of anisotropy but a fixed resolution on two testing models (Fertility
with 800K faces and Hand with 200K faces) are created respec-

tively. Here, g(M) =
Σ f∈F g′( f )
|F| is also used to measure the degree

of anisotropy of a mesh M, where g′( f ) = PH
2
√

3S
and P, H, S are the

half-perimeter, longest edge length and area of f respectively. All
these meshes with varied degrees of anisotropy are generated using
the method in [ZGW∗13].
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The curves in Fig. 18 and Fig. 19 show how the running times
and peak memories change with increasing anisotropy (g) re-
spectively. Note that the peak memories of Liu et al.’s method
( [LCT11]) and its FWP-MMP based version are almost the same
since both of them store all propagated windows on edges. The pro-
posed window-VTP algorithm is the most robust among all algo-
rithms since its running time and peak memory does not obviously
increase when the input mesh has a much larger anisotropy.

6.2. Comparison with [XLS∗14]

As Xu et al. have used the MMP algorithm to compute geodesics
[XLS∗14], its performance has already been compared in the pre-
ceding section and thus not discussed here.

Xu et al. proposed another method to reduce the memory cost
of Voronoi diagram construction rather than the proposed RWR
technique [XLS∗14]. The main deficiency in their method is the
inefficiency of the redundancy check. In their method, the redun-
dancy check is performed on all unlabelled triangles rather than
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Model Performance 
window-VTP + Xu et al. (2014) 

(𝐜 = 𝟏) 
Ours 

Horse 

(F: 96K) 

Time(s) 1.16 0.68 

Peak memory(MB) 13.38 10.01 

Bunny 

(F: 144K) 

Time(s) 1.93 1.10 

Peak memory(MB) 19.95 14.90 

Igea 

(F: 268K) 

Time(s) 5.42 3.07 

Peak memory(MB) 35.97 26.56 

Armadillo 

(F: 345K) 

Time(s) 5.04 3.03 

Peak memory(MB) 33.75 21.16 

Pulley 

(F: 392K) 

Time(s) 12.60 5.46 

Peak memory(MB) 58.17 39.78 

Rocker arm 

(F: 482K) 

Time(s) 12.41 7.08 

Peak memory(MB) 63.53 41.60 

Asian dragon 

(F: 1,400K) 

Time(s) 42.17 20.54 

Peak memory(MB) 132.99 76.90 

IsidoreHorse 

(F: 2,209K) 

Time(s) 29.73 21.51 

Peak memory(MB) 128.62 46.98 

Happy buddha 

(F: 2,583K) 

Time(s) 160.47 60.24 

Peak memory(MB) 493.70 162.39 

Neptune 

(F: 4,008K) 

Time(s) 195.45 97.63 

Peak memory(MB) 514.98 176.56 

Table 4: Performance comparison with [XLS∗14].

just the ones in the inactive region (Proposition 3.1). Thus, win-
dows on many triangles are repeatedly checked since they are not
inactive and will be updated by later propagated windows. In addi-
tion, since the cost of their redundancy check is large, performing it
frequently is time-consuming. Thus, their method suffers from the
trade-off between running time and memory-cost. In more details,
they perform one redundancy check with every cn window prop-
agations, where n is the face number of the mesh and c is a user-
defined parameter to balance the performance. A smaller c means
that the redundancy check is performed more frequently, reducing
memory cost but sacrificing the running time.

On the contrary, the proposed RWR technique performs the re-
dundancy check efficiently in the inactive region every time a ver-
tex is popped from the priority queue. To make a fair comparison,
we compare our algorithm with an improved version of [XLS∗14]
which uses the proposed window-VTP for geodesic computation
but still employs their redundancy reduction method rather than our
RWR (Table 4). In the experiments, we set the parameter c as 1 for
a balanced performance. It can be seen that our algorithm outper-
forms [XLS∗14] in both running time and peak memory.

6.3. Comparison with [QHY∗16]

The original VTP algorithm does not retain windows, while the
revised version keeps partial windows. Compared to the original
VTP, this experiment shows how the change influences the perfor-
mance.

As [QHY∗16], in this experiment, we compare the performance
using the proposed window-VTP with the original VTP to solve
the single-source discrete geodesic problem, with the first vertex
set as the source on the mesh. As Table 5 shows, our method runs
approximately two times slower than VTP. The main reason is that
the window-VTP has to strictly sort windows on edges by binary
insertion. However, Voronoi diagrams are usually more sparse than
meshes and there is no distinct decline in performance.

Model Performance VTP Ours 

Horse 

(F: 96K) 

Time(s) 0.64 1.13 

Peak memory(MB) 1.25 5.67 

Bunny 

(F: 144K) 

Time(s) 0.88 1.50 

Peak memory(MB) 1.08 4.56 

Igea 

(F: 268K) 

Time(s) 2.04 4.11 

Peak memory(MB) 2.00 9.10 

Armadillo 

(F: 345K) 

Time(s) 1.68 2.68 

Peak memory(MB) 1.31 5.62 

Pulley 

(F: 392K) 

Time(s) 3.97 8.71 

Peak memory(MB) 4.53 18.58 

Rocker arm 

(F: 482K) 

Time(s) 4.26 9.32 

Peak memory(MB) 3.26 14.32 

Asian dragon 

(F: 1,400K) 

Time(s) 9.74 20.95 

Peak memory(MB) 3.72 16.77 

IsidoreHorse 

(F: 2,209K) 

Time(s) 10.41 17.72 

Peak memory(MB) 2.76 12.19 

Happy buddha 

(F: 2,583K) 

Time(s) 31.44 68.75 

Peak memory(MB) 8.44 40.46 

Neptune 

(F: 4,008K) 

Time(s) 51.62 91.14 

Peak memory(MB) 14.42 37.26 

Table 5: Performance comparison with VTP [QHY∗16].

6.4. Application to Remeshing

Due to that the Delaunay triangulation of a point set S is the dual
of its Voronoi diagram, the proposed algorithm can be applied to
remesh the dense models reconstructed from range data. In this
context, the number of sources is usually fairly large and reaches
the order of hundreds. Fig. 20 shows the remeshing result of the
Neptune model with 4K randomly selected sources.

Figure 20: Illustration of remeshing with the proposed algorithm.

To show the performance of our method, we compare it with the
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FWP-MMP version of [LCT11] on six dense models selected from
the dataset of [QHY∗16], whose numbers of faces range from 1.4M
to 6.4M. For each model, we randomly select 2K sources if its num-
ber of faces is less than 2M; otherwise, 4K sources are selected. As
Table 6 shows, our method runs faster and uses much less memory
than the FWP-MMP version of [LCT11] in the remeshing problem.

# Samples: 2000 

Model Performance FWP-MMP version Ours 

Asian dragon 

(F: 1,400K) 

Time(s) 14.07 11.18 

Peak memory(MB) 863.93 170.65 

Pensatore 

(F: 1,996K) 

Time(s) 25.02 17.24 

Peak memory(MB) 1503.96 251.48 

Seahorse 

(F: 2,014K) 

Time(s) 23.24 17.26 

Peak memory(MB) 1455.77 230.63 

# Samples: 4000 

Model Performance FWP-MMP version Ours 

Happy buddha 

(F: 2,583K) 

Time(s) 28.21 23.48 

Peak memory(MB) 1690.61 310.59 

Neptune 

(F: 4,008K) 

Time(s) 52.26 39.07 

Peak memory(MB) 2925.16 422.98 

Vase lion 

(F: 6,370K) 

Time(s) 111.381 72.22 

Peak memory(MB) 5567.37 673.80 

Table 6: Performance comparison with the FWP-MMP version of
[LCT11] on remeshing.

7. Conclusion

In this paper, the RWR procedure is presented to reduce the mem-
ory cost of constructing the geodesic-metric-based Voronoi dia-
grams, in which windows on edges are grouped within the inac-
tive regions so that they can be removed together in time. The pro-
posed window-VTP algorithm incorporates the RWR procedure in
the vertex-oriented wavefront propagation framework. As a result,
the window-VTP algorithm effectively resolves the memory bottle-
neck of the Voronoi diagram construction while not sacrificing the
speed. In terms of experiments, our algorithm runs 3-8 times faster
than Liu et al.’s method [LCT11], 1.2 times faster than its FWP-
MMP variant and more importantly uses 10-70 times less memory
than both of them.

In addition, the proposed method may be extended to compute
other distances (e.g. anisotropic geodesic distances) on surfaces.
All the Dijkstra-like approaches depend on the monotonicity of
distance propagation. Thus, if the monotonicity is required, our
method can work well.
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Appendix A: Lemma A.1

Lemma A.1 Given a triangle whose three edges’ lengths are a,
b and c respectively. Let l be the length of a line segment in the
triangle. Then, l ≤max(a,b,c).

Proof As Fig. 21 shows, let pq be a line segment in ∆DEF that
‖pq‖ = l. If either of p and q is not on the edges of ∆DEF , ex-
tend pq as GH so that both its endpoints are on the edges and
‖pq‖≤ ‖GH‖. Fix one endpoint of GH, e.g. G. It is known that the
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Figure 21: Illustration of Lemma A.1.

distance function over a line segment from G reaches extrema at the
endpoints of the triangle edges, i.e. triangle vertices. Put H at any of
such endpoints (e.g. F in Fig. 21) as H′ and thus ‖GH‖ ≤ ‖GH′‖.
Let I be a point on DE and FI⊥DE. Consider vertex D ∈ {D,E}
that D and G are on the same side of FI. It can be derived from the
Pythagoras’s theorem that ‖GH′‖ ≤ ‖DF‖:

‖GH′‖2 = ‖GI‖2 +‖FI‖2 ≤ ‖DI‖2 +‖FI‖2 = ‖DF‖2 (A.1)

Summarizing the above inequalities, we have l = ‖pq‖ ≤ ‖GH‖ ≤
‖GH′‖ ≤ ‖DF‖ that ‖DF‖ is an edge of the triangle. Thus, pq
cannot be longer than the largest edge of ∆DEF .

Appendix B: Proof of Proposition 3.1
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Figure 22: Illustration of Proposition 3.1.

Proof Let f be a face satisfying dmin( f )+‖emax‖ ≤ dmin(wn) and
q is the point determining dmin( f ), i.e. dmin( f ) = δ+‖pq‖= d(q)
(Fig. 22).
Let r be an arbitrary point in any window on the edges of f , con-
struct a path to r by linking q and r with a line segment. Then, the
geodesic distance d(r) of r must not be larger than the length of the
constructed path, i.e. d(r)≤ dmin( f )+‖qr‖. Since ‖qr‖ ≤ ‖emax‖
(Lemma A.1),

d(r)≤ dmin( f )+‖qr‖
≤ dmin( f )+‖emax‖

Knowing that f satisfies dmin( f )+‖emax‖ ≤ dmin(wn), then

d(r)≤ dmin(wn).

Thus, d(r) cannot be updated by wn since wn cannot provide a
shorter distance to r.
Let wo be any other window on the propagation wavefront that
dmin(wn)≤ dmin(wo). Then, according to the monotonicity of win-
dow propagations,

dmin(wn)≤ dmin(w
′
n)

dmin(wo)≤ dmin(w
′
o)

where w′n and w′o are child windows propagated from wn and wo
respectively. Then, it can be derived that,

d(r)≤ dmin(wn)≤ dmin(w
′
n)

d(r)≤ dmin(wn)≤ dmin(wo)≤ dmin(w
′
o)

Thus, d(r) cannot be updated by all later window propagations.
Since r is arbitrarily selected, all windows on f ’s edges will not be
updated.
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