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Abstract

The minimum number of terms needed in a separable approximation for a Green’s func-
tion reveals the intrinsic complexity of the solution space of the underlying differential
equation. It also has implications for whether low rank structures exist in the linear sys-
tem after numerical discretization. The Green’s function for a coercive elliptic differential
operator in divergence form was shown to be highly separable [2] and efficient numerical
algorithms exploiting low rank structures of the discretized systems were developed. In
this work, a new approach to study the approximate separability of the Green’s function
of the Helmholtz equation in the high frequency limit is developed. We show (1) lower
bounds based on an explicit characterization of the correlation between two Green’s func-
tions and a tight dimension estimate for the best linear subspace to approximate a set of
decorrelated Green’s functions, (2) upper bounds based on constructing specific separable
approximations, (3) sharpness of these bounds for a few case studies of practical interest.
c© 2000 Wiley Periodicals, Inc.

1 Introduction

Given a linear differential operator, denoted by L, the Green’s function, denoted by
G(x,y), is defined as the fundamental solution in an open domain Ω ⊆ Rd to the partial
differential equation (PDE)

(1.1)

 LxG(x,y) = δ(x− y), x,y ∈ Ω ⊆ Rd

with boundary condition or condition at infinity,

where δ(x − y) is the Dirac delta function denoting a point source at y. Any solution to
the partial differential equation can be obtained by superpositions of the Green’s functions
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with certain source distribution in Ω (and/or boundary ∂Ω). G(x,y) depends on two
variables, the observation point x and the source point y. The approximate separability
of G(x,y) is defined as the following: given two sets X,Y ⊆ Ω ⊆ Rd and ε > 0, there is a
smallest N ε such that there are fl(x), gl(y),x ∈ X,y ∈ Y, l = 1, 2, . . . , N ε

(1.2)

∥∥∥∥∥G(x,y)−
Nε∑
l=1

fl(x)gl(y)

∥∥∥∥∥
X×Y

≤ ε, x ∈ X,y ∈ Y,

where ‖ · ‖X×Y is the norm of some function space to which G, fl, gl belong.

If L2 norm is used and G(x,y) is viewed as a bounded integral operator from L2(X)
to L2(Y ) (the role of x and y can be reversed). Let λ1 ≥ λ2 ≥ · · · ≥ λm ≥ · · · ≥ 0 be the
singular values for the operator singular value decomposition (SVD) of G(x,y), then N ε is
the smallest number such that

∑∞
m=Nε+1 λ

2
m ≤ ε2. An accurate estimate of N ε is of great

interest in both theory and practice.

If one views G(x,y) as a family of functions in some function space defined on X with
norm ‖ · ‖X and parameterized by y ∈ Y (the role of x and y can be reversed), this is
related to the Kolmogorov n-width 1 [20] for this family of functions in the function space.
Any linear subspace of the function space that approximates this family of functions to the
tolerance ε has a dimension of at least N ε and the space spanned by fl(x), l = 1, 2, . . . , N ε

is an optimal one. Since any solution to a linear PDE can be represented as a superposition
of the Green’s functions, N ε also manifests the intrinsic complexity of the PDE.

If X and Y are compact and disjoint domains in Rd and G(x,y) is continuous on
X × Y , one possible separable approximation is using polynomials by the Weierstrass
Theorem. In other words, the polynomial basis are used to approximate the family of
Green’s functions. One can also use Fourier basis to construct separable approximations
of the Green’s functions. Problem specific separable approximations can be constructed as
well. For example, if G(x,y) is Cm(X × Y ) for two disjoint compact domains X,Y ⊂ Rd,
it can be easily shown that a separable approximation of G(x,y) can be constructed using
interpolations of a set of properly sampled Green’s functions of the PDE, i.e., fl(x) =

G(x,yl),yl ∈ Y, l = 1, 2, . . . , O(ε−
d
m ). Similarly, the eigenfunctions of the differential

operator can be used to construct separable approximations (see Remark 3.6). As we
shall see these problem specific separable approximations can provide sharp upper bound
estimates for the approximate separability. However, a sharp lower bound estimate for the
approximate separability is much harder since it is valid for any basis and hence intrinsic
properties and structures independent of the choice of basis have to be used.

In the literature, the studies and results on the approximate separability of Green’s
functions were mainly aimed at upper bound estimates to show high separability, typical
of the form N ε ≤ O(| log ε|p) for some p > 0. Most of these upper bound estimates

1 Kolmogorov n-width of a set S in a normed space W is its worst-case distance to the best n dimensional
linear subspace Ln:

dn(S,W ) := inf
Ln

sup
f∈S

inf
g∈Ln

‖f − g‖W ,
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were obtained by constructing explicit separable approximations using polynomials and
asymptotic expansions for Green’s (or kernel) functions with analytical formulas [14, 15,
30, 31, 28, 10, 7]. A more general mathematical approach was developed in [2]. It was
shown that the Green’s function of a coercive elliptic PDE in divergence form with L∞
coefficient is highly separable with x,y belonging to two disjoint compact domains X,Y ⊂
Rd respectively. It was proved, using a key gradient estimate by the Caccioppoli inequality,
that Nε ≤ C| log ε|d+1 for some constant C > 0 that depends on the coefficients, the
separation distance between X and Y and the dimension d. Some interesting studies based
on the free space Green’s function of the Helmholtz equation in the engineering literature
[5, 6] showed that the scattered field is almost band limited and the degree of freedom is
close to the Nyquist number in terms of the effective (spatial) bandwidth of the scattered
field and to the extension of the observation domain.

In this work, we study the approximate separability of the Green’s function of the
Helmholtz equation

(1.3) ∆xG(x,y) + k2n2(x)G(x,y) = δ(x− y), x,y ∈ Rd,
as the wave number k →∞. Here n(x), 0 < c < n(x) < C <∞, is the index of refraction
and n(x) − 1 has a compact support. G(x,y) satisfies the standard far field radiation
condition. The method developed in [2] does not apply to the Helmholtz equation with
large k, which becomes a singularly perturbed problem. The gradient of the Green’s
functions of the Helmholtz equation becomes unbounded almost everywhere as k →∞ due
to fast oscillations. In our study we derive asymptotic estimates for the minimum number
of terms, N ε

k, needed for a separable approximation of the Green’s function (defined in
(1.2)), as k → ∞, where the added subindex emphasizes its dependence on k. We first
clarify a few settings and define a few notations and then summarize our main results.

• The two sets X,Y are compact manifolds embedded in Rd with dimensions dim(X)
and dim(Y ) respectively. For examples, either one of them can be a compact
domain, a compact two dimensional surface or a compact one dimensional curve in
R3. Without loss of generality, we assume dim(X) ≥ dim(Y ) = s.
• L2 norm, denoted by ‖ · ‖2, is used mainly in our study for the approximate sep-

arability defined in (1.2) in our analysis, which directly corresponds to the use of
2-norm for the singular value decomposition (SVD) of matrices in the discrete cases.
• We present our results and proofs for the free space Green’s function, denoted by
G0(x,y), of the Helmholtz equation (1.3) in a homogeneous medium (n(x) ≡ 1) in
two and three dimensions. X and Y can have an overlap if the Green’s function
belongs to L2(X) with y ∈ Y . Our results and proofs extend to the Green’s
functions of the Helmholtz equation in heterogeneous media if a geometric optics
Ansatz is valid. Our results and proofs also extend to the Green’s functions of the
Helmholtz equation in higher dimensions if X and Y are disjoint.
• The following relations are used to simplify notations: x & y means that there is a

constant ∞ > c > 0 such that x ≥ cy, x . y means that there is a constant ∞ >
C > 0 such that x ≤ Cy, and x ∼ y means there are two constants 0 < c ≤ C <∞
such that cy ≤ x ≤ Cy. For our asymptotic results, all constants are independent
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of the wave number k as k → ∞. Dependence of these constants on other factors
will be specified during the proofs.
• The Euclidean distance between two points y1,y2 ∈ Rd is denoted by |y1 − y2|.

Our main results are:

• A characterization of the correlation (or angle) between two Green’s functions of
the Helmholtz equation (1.3) in the high frequency limit: there is some α ≥ 0,

(‖G0(·,y1)‖2‖G0(·,y2)‖2)−1

∣∣∣∣∫
X
G0(x,y1)G0(x,y2)dx

∣∣∣∣ . (k|y1 − y2|)−α

as k|y1 − y2| → ∞, where α depends on dim(X) and the locations of y1,y2 with
respect to X (see Theorem 2.1 and Remark 2.4).
• Lower and upper bound estimates for the approximate separability for the Green’s

functions of the Helmholtz equation in the high frequency limit: for two fixed
compact manifolds X,Y with dim(X) ≥ dim(Y ) = s and α being the smallest
number (least decorrelation rate) for any pair y1,y2 ∈ Y as defined above, one has

N ε
k &


k2α, α < s

2 ,

ks−δ, α ≥ s
2 ,

and

N ε
k . k

s+δ,

as k →∞ for any δ > 0 (see Lemma 3.1 and Theorem 3.1 - 3.4). Both estimates are
sharp if α ≥ s

2 , which occurs in many practical situations, e.g., X,Y are boundaries
(dim(X) = dim(Y ) = s = 2) of scatterers in three dimensions.
• Explicit estimates for the approximate separability of the Green’s functions of the

Helmholtz equation and their sharpness for situations that are commonly used in
practice. These include cases with fixed X,Y , which are not highly separable, and
highly separable cases with k dependent X,Y , e.g., the setting for the butterfly
algorithm (see Section 4).

Approximate separability of Green’s functions has direct and important implications for
the development of efficient numerical algorithms. High separability implies the existence
of low rank approximations for (sub)matrices of the corresponding discrete systems. Low
rank structures can be exploited for matrix compression and design of efficient solvers.
For examples, low rank approximations of dense (sub)matrices are used for fast matrix
vector multiplication when solving boundary integral equations [10, 14, 15, 30, 31] and for
the evaluation of scattering operators and Fourier integral operators [7, 28, 29]. Efficient
numerical algorithms can also be developed for solving linear systems Ax = b resulted from
a discretization of a PDE by utilizing low rank approximations of off-diagonal submatrices
such as hierarchical matrix method and structured inverse method [2, 4, 8, 18, 27, 33, 35,
36]. Since columns of A−1 are numerical approximations of the Green’s functions of the
corresponding PDE, the existence of low rank approximation of off-diagonal submatrices of
A−1 is implied by high separability of the Green’s functions G(x,y) with x ∈ X,y ∈ Y for
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two disjoint sets X and Y . Often in practice low rank approximations need to be computed.
If a matrix is known to have a low rank approximation a priori, fast algorithms [17, 26] are
available to compute a low rank approximation. However, the computation cost increases
dramatically as the rank grows. So sharp estimates of both upper and lower bounds of the
approximate separability of Green’s functions is important in these applications.

It is well known that the Helmholtz equation with large wave number is notoriously
difficult to solve numerically. Our study here gives another mathematics perspective by
showing that the lower bound for the approximate separability of the Green’s functions of
the Helmholtz equation grows as some power of the wavenumber k as k → ∞. In other
words, the intrinsic degrees of freedom needed to approximate the solution space of the
Helmholtz equation to a given accuracy grows as some power of k.

As far as we know, our lower bound estimate for the approximate separability of Green’s
functions is the first in the literature. The lower bound estimate, which is sharp in many
practical setups, characterizes the intrinsic complexity for high frequency wave phenomena
mathematically. Although our main focus in this work is to show that the Green’s function
for the Helmholtz equation in the high frequency limit is not highly separable when the
two compact domains are fixed, we also include a discussion (Section 4.2) about possible
designs of two domains that are frequency (k) dependent, e.g., hierarchical pairing in the
butterfly algorithm, for which the Green’s function becomes highly separable. We hope
these studies and understandings can provide useful insights for developing fast numerical
algorithms.

2 Correlation between two Green’s functions of the Helmholtz equation
in the high frequency limit.

For completeness, we first provide the explicit formulas for the free space (n(x) ≡ 1)
Green’s functions, denoted by G0(x,y), of the Helmholtz equation (1.3) in any space
dimension d.

(2.1) G0(x,y) = cdk
pH

(1)
p (k|x− y|)
|x− y|p

, p =
d− 2

2
, cd =

1

4i(2π)p
, x,y ∈ Rd,x 6= y.

H
(1)
p (r) is the first kind Hankel function of order p which has the following asymptotic

behavior,

(2.2) H(1)
p (r) =

{
− i
πΓ(p)

(
2
r

)p
, p 6= 0

2i
π log r, p = 0

as r → 0,

where Γ(p) is the Gamma function, and

(2.3) H(1)
p (r) =

(
2

πr

) 1
2

ei(r−
pπ
2
−π

4
) +O(r−

3
2 ), p ≥ 0, as r →∞.

For d = 3, the Green’s function takes the simplest form

(2.4) G0(x,y) = − 1

4π

eik|x−y|

|x− y|
, x 6= y.
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For d = 2,

(2.5) G0(x,y) = − i
4
H

(1)
0 (k|x− y|) = − 1

2π

∫ ∞
0

eik|x−y| cosh θdθ, x 6= y,

and

(2.6) lim
r→0+

H
(1)
0 (r) =

2i

π
log r, lim

r→∞
H

(1)
0 (r) =

√
2

πr
ei(r−π/4) +O(r−3/2).

Denote Bd
τ (y) and Sdρ(y) to be a ball and a sphere in Rd centered at y with radius τ

and ρ respectively. We have∫
Bnτ (y)

|G0(x,y)|2dx = c2
dk

2p

∫ τ

0
dρ

∫
Sdρ

[H
(1)
p (kρ)]2

ρ2p
ds

= c2
dωdk

2p−2

∫ kτ

0
r[H(1)

p (r)]2dr,

(2.7)

where ωd = 2π
d
2

Γ( d
2

)
is the area of the unit sphere in Rd. From the asymptotic formula (2.2),

it is easy to see that G0 is square integrable at the singular source only for d = 2, 3 and

‖G0(·,y)‖2(Bnτ (y)) ∼ k
d−3
2 as k →∞ from the asymptotic formula (2.3).

From the above explicit expressions for the free space Green’s functions, it can be seen
that except for the case d = 3, there is a scaling factor of some powers of k for the
magnitude of the Green’s function. To characterize the angle or correlation between two
Green’s functions with different source locations, we use the normalized Green’s function
for a given source point y, denoted by Ĝ(x,y),

(2.8) Ĝ(x,y) =
G(x,y)

‖G(·,y)‖2
, x ∈ X

where ‖G(·,y)‖2 is the L2 norm of G(x,y) in x over X, i.e.,

(2.9) ‖G(·,y)‖22 =

∫
X
|G(x,y)|2dx,

if X is a domain in Rd or with respect to the corresponding volume measure dσx if X is a
manifold embedded in Rd. We note that:

• ‖G(·,y)‖2 is a smooth function of y since fast oscillations due to rapid change of
the phase function is not present.
• When d = 3, all results for the normalized Green’s function Ĝ(x,y) can be extended

to G(x,y) since there are constants 0 < c < C <∞ that are independent of k such
that c < ‖G(·,y)‖2 < C,∀y ∈ Y , where the constants depend on the sizes of the
two compact domains X,Y ⊂ R3 and the separation distance between them.
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2.1 Correlation between two Green’s functions in the high frequency limit
in a homogeneous medium

When viewing G(x,y) as a family of functions in L2(X) parameterized by y ∈ Y , the
separability condition (1.2) in L2(X×Y ) is equivalent to the existence of a linear subspace
SX ⊂ L2(X) with dimension N ε

k such that

(2.10)

√∫
Y
‖G(·,y)− PSXG(·,y)‖2L2(X)dy ≤ ε,

where PSXG(·,y) is the projection of G(·,y) to SX .

When 2-norm is used as the metric, one important geometric characterization of the
relation between two vectors is the angle or correlation between them. Here we study the
correlation between two Green’s functions, G(x,y1), G(x,y2), in term of the ratio of the
separation distance between the two source points with respect to the wave length, i.e.,
k|y1 − y2|.

Since the correlation between two Green’s functions of the Helmholtz equation in the
high frequency limit involves highly oscillatory integrals, the following stationary phase
lemma [19, 34], which gives an explicit estimate of the error of the stationary phase ap-
proximation in terms of the fast oscillations and regularity of the integrand, will be used.

Lemma 2.1. Let I(k) =
∫
eikφ(x)u(x)dx, where u ∈ C∞c (Rd) complex valued, with support

in a compact set K ⊂ Rd, φ ∈ C∞(Rd) real valued and k ≥ 1. If x0 is the only stationary
point of φ in K and not degenerate, i.e., |∇φ(x0)| = 0 and D2φ(x0) is invertible, then

(2.11)

|I(k)− (2π
k )d/2 eikφ(x0)

| det[D2φ(x0)]|1/2 e
iπ
4

sgn(D2φ(x0))∑
j<p k

−jLju(x0)|

≤ Ck−d/2−p|det[D2φ(x0)]|−1/2‖[D2φ(x0)]−1‖p
∑
|β|≤2p+q ‖Dβu‖L2 ,

where Lj are differential operators of order ≤ 2j, q > d/2 is an integer and C is an
universal constant independent of φ and u.

In the following study we only need the above result for p = 1. However, the standard
stationary phase results can not be applied directly due to the following complications in
our case: (1) the stationary points may not be isolated, (2) the integration is on a compact
domain X and the integrand u is not C∞0 (X), and (3) there may be singularities in the
integrand.

Theorem 2.1. Given a fixed compact domain X ⊂ Rd, dim(X) = d = 2, 3 with piecewise
smooth boundary, there is a α, d−1

2 ≤ α ≤
d+1

2 , such that

(2.12)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >X

∣∣∣ . (k|y1 − y2|)−α, as k|y1 − y2| → ∞,

where Ĝ0(x,y) is the normalized free space Green’s function of the Helmholtz equation.
The constant in . depends on X and the distances from y1,y2 to X.
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y
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case 1 case 2 case 3

Figure 2.1. Different positions of y1,y2 relative to X

Proof. Since X is a domain in Rd, dim(X) = d and its boundary dim(∂X) = d − 1. We
prove for d = 3 first. Define

(2.13)

k̃ = k|y1 − y2|, φ̃(x) = |y1 − y2|−1(|x− y1| − |x− y2|),

u(x) = 1
‖G0(·,y1)‖2‖G0(·,y2)‖2|x−y1||x−y2| ,

and the operator

(2.14) L =
1

|∇φ̃(x)|2

3∑
j=1

∂φ̃

∂xj

∂

∂xj
LT = −

3∑
j=1

∂

∂xj

1

|∇φ̃(x)|2
∂φ̃

∂xj
.

Then

(2.15)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ =

∣∣∣∣∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣
We have |φ̃(x)| ≤ 1 and

(2.16)

∇φ̃(x) = |y1 − y2|−1
(

x−y1

|x−y1| −
x−y2

|x−y2|

)
D2φ̃(x) = |y1 − y2|−1

[
I− (x−y1)
|x−y1|

⊗ (x−y1)
|x−y1|

|x−y1| −
I− (x−y2)
|x−y2|

⊗ (x−y2)
|x−y2|

|x−y2|

]
,

where ⊗ denotes the tensor product of two vectors.

Denote the line going through y1,y2 by ly2
y1 and the part of ly2

y1 outside the segment

between y1,y2 by l̃y2
y1 . The gradient of φ̃ only vanishes on l̃y2

y1 , where the maximum value 1

or the minimum value -1 of φ̃ is attained. The Hessian D2φ̃(x) is degenerate for x ∈ ly2
y1 in

the direction of y1−y2. At any x ∈ ly2
y1 , the Hessian restricted to the plane perpendicular to

the line ly2
y1 , denoted by D2

⊥φ(x), is a multiple of the identity matrix in the plane, denoted

by I⊥. In particular, for x ∈ l̃y2
y1 ,

(2.17) D2
⊥φ̃(x) =

±1

|x− y1||x− y2|
I⊥,

where the sign depends on whether the maximum or the minimum of φ̃ is attained at x.

Depending on the positions of y1,y2 relative to the domain X, we consider three generic
cases illustrated in Figure 2.1. All other cases can be deduced from these three cases.
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Case 1. l̃y2
y1 ∩ X = ∅, see Figure 2.1. Since there is no stationary point in X, i.e.,

|∇φ̃(x)| > c > 0,∀x ∈ X, and u(x) is smooth in X, from integration by parts we have
(2.18)∫

X e
ik̃φ̃(x)u(x)dx = 1

ik̃

∫
X(Leik̃φ̃(x))u(x)dx

= 1
ik̃

[∫
X e

ik̃φ̃(x)(LTu(x))dx +
∫
∂X |∇φ̃(x)|−2(

∑3
j=1 νj

∂φ̃
∂xj

)eik̃φ̃(x)u(x)dS(x)
]

=− 1
k̃2

[∫
X e

ik̃φ̃(x)((LT )2u(x))dx+
∫
∂X |∇φ̃(x)|−2(

∑3
j=1 νj

∂φ̃
∂xj

)eik̃φ̃(x)LTu(x)dS(x)
]

+ 1
ik̃

∫
∂X |∇φ̃(x)|−2(

∑3
j=1 νj

∂φ̃
∂xj

)eik̃φ̃(x)u(x)dS(x).

Integration by parts can be continued. However, we show that the last term, which is an
oscillatory integral on the boundary ∂X, is of the leading order. For a generic domain X,
the phase function φ̃(x) has isolated non-degenerate critical points on ∂X. The boundary

integral in the last term is . k̃−
d−1
2 by the standard stationary phase theory. Hence

(2.19)

∣∣∣∣∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣ . k̃− d+1
2 = k̃−2, as k̃ →∞,

when d = 3. The constant in . comes from the use of stationary phase lemma 2.1 for the

boundary integral. It depends on the values of |∇φ̃(x)|−2(
∑3

j=1 νj
∂φ̃
∂xj

)u(x) at the critical

points of φ̃ on ∂X, where φ̃ and u are defined in (2.13). Since both φ̃ and u depend on
the relative positions of y1,y2 to X and on X, e.g., the size and the boundary, so does the
constant.

In the special situation that a piece of the boundary ∂X coincides with a level set
of φ̃(x), see Figure 2.2, the phase function φ̃(x) is constant on that piece, the boundary
integral in the last term is . 1 and hence

(2.20)

∣∣∣∣∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣ . k̃−1, as k̃ →∞.

The constant in . depends on the boundary integral, especially on the piece of ∂X that

coincides with a level set of φ̃(x). Again the constant depends on the relative positions of
y1,y2 to X and on X.

There are other special situations for case 1, e.g., the boundary ∂X touches a level set
of φ̃(x) along a curve, the last term in (2.18) will be of order higher than k̃−1.

Case 2. y1,y2 are outside X but l̃y2
y1 ∩X 6= ∅, see Figure 2.1. Both φ̃(x) and u(x) are

smooth in X. In this situation, all points on the line segment l̃y2
y1 ∩X are non-degenerate

critical points with the same phase, φ̃(x) ≡ ±1,x ∈ l̃y2
y1 . Introduce a new coordinate system

(r, ξ, η), where the origin is at y1 and r-axis is in the direction y1 − y2, and (ξ, η) is an



10 B. ENGQUIST AND H. ZHAO

2

X

y
1

y
2

1
|x−y |−|x−y |=c

Figure 2.2. A piece of the boundary ∂X stays on a level set of φ̃(x)

orthogonal coordinate system perpendicular to r. We have

(2.21)

∫
X
eik̃φ̃(x)u(x)dx =

∫ r2

r1

∫
X(r)

eik̃φ̃(r,ξ,η)u(r, ξ, η)dξdηdr

where X(r) denotes the intersection of X with the plane (r, ξ, η) at a fixed r and define
r1 = min(r,ξ,η)∈X r, r2 = max(r,ξ,η)∈X r.

For a fixed r ∈ [r1, r2], if l̃y2
y1 ∩X(r) = (r, 0, 0), it is the only stationary point of φ̃ in the

plane (r, ξ, η) and

(2.22)

φ̃(r, 0, 0) = 1,

D2
ξηφ̃(r, 0, 0) = 1

r(|y1−y2|+r)I,

u1(r, 0, 0)|ψ=0 = 1
‖G0(·,y1)‖2‖G0(·,y2)‖2r(|y1−y2|+r) ,

where I is the 2× 2 identity matrix. If (r, 0, 0) is in the interior of X(r), let Bτ (0) ⊂ X(r)
be a small disc centered at (r, 0, 0) with radius τ > 0. Construct a partition of unity for
the domain X(r) in (ξ, η) plane: χ1(r, ξ, η) + χ2(r, ξ, η) ≡ 1, ∀(r, ξ, η) ∈ X(r) such that
0 ≤ χ1(r, ξ, η) ≤ 1 is smooth and is 1 in Bτ (0) and zero near the boundary of ∂X(r).
Denote ui = χiu, i = 1, 2, then
(2.23)∫

X(r)
eik̃φ̃(r,ξ,η)u(r, ξ, η)dξdη=

∫
X(r)
eik̃φ̃(r,ξ,η)u1(r, ξ, η)dξdη+

∫
X(r)
eik̃φ̃(r,ξ,η)u2(r, ξ, η)dξdη

Since there is no stationary point in the second integral, one can use integration by part

argument as in case 1 on the planar domain X(r) to show that it is . k̃−
d
2 generically or

at most . k̃−1 in special cases. For the first integral, (r, 0, 0) is the only stationary point.
Apply the standard stationary phase result and from (2.22) we get

(2.24)

∣∣∣∣∣
∫
X(r)

eik̃φ̃(r,ξ,η)u1(r, ξ, η)dξdη − 2πik̃−
d−1
2 eik̃

‖G0(·,y1)‖2‖G0(·,y2)‖2

∣∣∣∣∣ . k̃− d+1
2

It is important to note that the phase in the leading term after integration in (ξ, η) over
X(r) is independent of r, which means no fast oscillations when integrating in r. Combining
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the estimates for both terms on the righthand side of (2.23), we have

(2.25)

∣∣∣∣∣
∫
X(r)

eik̃φ̃(r,ξ,η)u(r, ξ, η)dξdη

∣∣∣∣∣ . k̃max{− d
2
,− d−1

2
} = k̃−

d−1
2 ,

generically or at most k̃−1.

In the special case that (r, 0, 0) ∈ ∂X(r), i.e., l̃y2
y1 touches X(r) at (r, 0, 0), again con-

struct a partition of unity for X(r) in (ξ, η) plane: χ1(r, ξ, η) + χ2(r, ξ, η) ≡ 1, ∀(r, ξ, η) ∈
X(r). Let Bτ (0) be a small disc centered at (r, 0, 0) with radius τ > 0. 0 ≤ χ1(r, ξ, η) ≤ 1
is smooth and χ1(r, ξ, η) ≡ 1,∀(r, ξ, η) ∈ Bτ (0) ∩X(r). χ1 goes to zero smoothly outside
a region that is a little larger than Bτ (0) ∩ X(r). One can use a similar argument as
above to break the integration in X into two parts except that integration in the region
containing the stationary point (r, 0, 0) is different. Instead of integration in a disc around
the stationary point, where the stationary lemma can be directly applied, the integration
region around the stationary point is Bτ (0) ∩ X(r). As k̃ → ∞ the contribution of the
stationary phase becomes more and more localized around the stationary point (r, 0, 0).

Since ∂X(r) is smooth and, moreover, both the phase function φ̃ and u are radial symmet-
ric with respect to (r, 0, 0) in (ξ, η) plane, the leading term of the integral is half of that of
the integral in a disc around the stationary point. In any case, estimate (2.25) is still valid
for this special case.

For a fixed r ∈ [r1, r2], if l̃y2
y1 ∩X(r) = ∅, there is no stationary point in X(r). Hence

it is reduced to a similar situation to Case 1, for which integration by part argument can

be used to show that
∫
X(r) e

ik̃φ̃(r,ξ,η)u2(r, ξ, η)dξdη . k̃−
d
2 generically or at most . k̃−1 (in

special cases).

Combing the all the above scenarios in the integration along r, we have

(2.26)

∣∣∣∣∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣ =

∣∣∣∣∣
∫ r2

r1

∫
X(r)

eik̃φ̃(r,ξ,η)u(r, ξ, η)dξdηdr

∣∣∣∣∣ . k̃−1.

In a generic situation, if l̃y2
y1 has line segment in X, the above estimate is . k̃−

d−1
2 . In

other words, the decorrelation rate is less than Case 1 due to the line of stationary phase
l̃y2
y1 ∩X.

The constant in . depends on: 1) the estimate for the first term on the righthand side of
(2.23), which only depends on ‖G0(·,y1)‖2‖G0(·,y2)‖2 due to the use of stationary phase
lemma in (2.24), and the estimate for the second term on the righthand side of (2.23),
which is similar to case 1, for each fixed r ∈ [r1, r2], and 2) the integration in r in the
interval [r1, r2]. Hence, the constant still depends on the relative positions of y1,y2 to X
and on X.

Case 3. y1 and (or) y2 are in the interior of X, see Figure 2.1. We show that the main

contribution still comes from the line of stationary points l̃y2
y1 ∩X. However, singularities of

u at y1 and y2 have to be taken care of. Take r0, 0 < r0 < |y1 − y2|/4, small enough such
that a ball with radius r0 centered at y1 or y2 is contained in X. Let χ0(x), χ1(x), χ2(x) be
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a partition of unity functions, each of which is smooth and non-negative and χ0(x)+χ1(x)+
χ2(x) = 1, ∀x ∈ X. Here χ1(x) ≡ 1, χ2(x) ≡ 1 in a ball centered at y1,y2 respectively
with radius r0/2 and are zeros outside the ball with radius r0. χ0(x) = 1− χ1(x)− χ2(x).
Denote

u(x) = u(x)[χ0(x) + χ1(x) + χ2(x)] = u0(x) + u1(x) + u2(x).

We break the integral in (2.15) into three parts:

(2.27)

∫
X
eik̃φ̃(x)u(x)dx =

∫
X
eik̃φ̃(x)(u0(x) + u1(x) + u2(x))dx = I+II+III.

The first term can be reduced to Case 2. Now let’s look at the second term in (2.27).
We change the integration to the polar coordinates (r, θ, ψ) centered at y1 with θ ∈ [0, 2π]
being the azimuthal angle, ψ ∈ [0, π] being the polar angle and y1 − y2 being the polar
axis. Then

(2.28)

∫
X
eik̃φ̃(x)u1(x)dx =

∫ r0

0

∫
∂Br(y1)

eik̃φ̃(x)u1(x)dsdr

It can be seen from (2.16) that ∇φ̃(x; y1,y2) is never aligned with the normal at x of the
sphere centered at y1 except at the intersections of ly2

y1 with the sphere. So on any sphere

∂Br(y1), φ̃ has exactly two stationary points at ψ = 0 and ψ = π which are non-degenerate.
At the two points,

(2.29)

φ̃(r, θ, 0) = 1

D2
⊥φ̃(r, θ, 0) = −1

r(r+|y1−y2|)I⊥

u1(r, θ, 0) = χ1(r,θ,0)
‖G0(·,y1)‖2‖G0(·,y2)‖2r(|y1−y2|+r)

φ̃(r, θ, π) = |y1 − y2|−1(2r − |y1 − y2|)

D2
⊥φ̃(r, θ, π) = |y1−y2|−2r

r(|y1−y2|−r)|y1−y2|I⊥

u1(r, θ, π) = χ1(r,θ,π)
‖G0(·,y1)‖2‖G0(·,y2)‖2r(|y1−y2|−r)

where ⊥ denotes restriction to the tangent plane. Note that modulo a scaling factor
r−1, u1 and its derivatives, and D2

⊥φ̃ as functions on ∂Br(y1) are all smooth and uniformly

bounded, i.e., |Dβ
⊥u1| = O(r−1), |β| = 0, 1, . . . and ‖D2

⊥φ̃‖ = O(r−1). After scaling ∂Br(y1)
to the unit sphere and apply the stationary phase result (2.11) to the two stationary phase
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points, one gets

(2.30)

∣∣∣∫∂Br(y1)e
ik̃φ̃(x)u1(x)ds

− 2πir2k̃−
d−1
2

‖G0(·,y1)‖2‖G0(·,y2)‖2

[
−eik̃χ1(r, θ, 0)+ eik̃|y1−y2|

−1(2r−|y1−y2|)|y1−y2|χ1(r,θ,π)
|y1−y2|−2r

]∣∣∣∣
. k̃−

d+1
2 r3.

The righthand side in the above expression comes from an estimate of the righthand side
term of the stationary phase formula (2.11) and the constant in . is uniformly bounded
when r → 0. The first term in the square bracket is the leading term from the stationary
phase at ψ = 0 on the sphere ∂Br(y1) and the phase is constant in r. The second term in
the square bracket is the leading term from the stationary phase at ψ = π on the sphere
∂Br(y1). However, it has a phase dependent on r which results in a higher order term
after integration in r. Since all terms are integrable as r → 0, we have

(2.31)

∣∣∣∣∫
X
eik̃φ̃(x)u1(x)dx

∣∣∣∣ =

∣∣∣∣∣
∫ r0

0

∫
∂Br(y1)

eik̃φ̃(x)u1(x)dsdr

∣∣∣∣∣ . k̃− d−1
2 .

The third term in (2.27) can be shown in the same way.

In the special case that a source point locates on the boundary, e.g., y1 ∈ ∂X, one can
easily modify the above argument to get the same estimate. The only difference is that
integration is restricted to part of the sphere ∂Br(y1) for each fixed r in (2.31) in the polar
coordinate decomposition. No matter which one of the two critical points, ψ = 0 or ψ = π,
is the point of stationary phase in ∂Br(y1) ∩X, using one of the terms in (2.30), one gets
the same estimate as in (2.31).

The constant in . for this case comes from those estimates of the three terms on
the righthand side of (2.27). The estimate of the first term is similar to case 2. The
estimates for the last two terms come from the use of stationary phase lemma on the
sphere ∂Br(y1) in (2.30). At the stationary points on each sphere, the value of u1 only
depends on ‖G0(·,y1)‖2‖G0(·,y2)‖2. Again this means the constant only depends on the
relative positions of y1,y2 to X as well as on X.

From the above analysis, we see that the leading contribution to the correlation between
two Green’s functions, | < Ĝ0(·,y1), Ĝ0(·,y2) >X |, comes from the stationary line l̃y2

y1 ∩X
or the boundary integral on ∂X after integration by part. All other cases can be reduced
to the above three cases.

In 2D, the free space Green’s function is of the form in (2.5) with the asymptotic for-
mulas (2.6). For Case 1 and 2, the asymptotic formula (2.6) for r → ∞ can be used as
k → ∞. For Case 3, the source singularity of the 2D Green’s function is also integrable.
So we have the following analogous results in 2D:

Case 1. Since the boundary ∂X is a one dimensional curve, there is some α, 1 ≤ α ≤
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d+1
2 = 3

2 , such that

(2.32)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−α, as k|y1 − y2| → ∞

Case 2. The leading contribution is due to the line of stationary phase l̃y2
y1 ∩X except that

the dimension orthogonal to the line is one, we have d−1
2 = 1

2 and

(2.33)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−
1
2 , as k|y1 − y2| → ∞

Case 3. The singularity at the source point is integrable and

(2.34)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−
1
2 , as k|y1 − y2| → ∞

�

Here we give a few remarks related to the theorem above.

Remark 2.1. Generically, for a compact domain X ⊂ Rd, dim(X) = d, α = dim(X)+1
2 if l̃y2

y1

(the part of the line going through y1,y2 but outside the segment between y1,y2) does

not intersect X, and α = dim(X)−1
2 otherwise.

Remark 2.2. For d = 3, these results also hold for two unnormalized Green’s functions,

i.e., |< G0(·,y1), G0(·,y2) >X | ∼
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >X

∣∣∣, since there are two positive

constants, c, C such that 0 < c < ‖G0(·,y)‖2(X) < C < ∞ for a compact domain X as
k → ∞. However, this is not true for d = 2. If y1,y2 /∈ X, |< G0(·,y1), G0(·,y2) >X | ∼
k−

1
2

∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >X

∣∣∣ as k →∞ due to the asymptotic formula (2.6).

Remark 2.3. One can also incorporate scaling factors into these estimates for the correlation
between two Green’s functions in Theorem 2.1. For example, the length scale of domain
X ∈ Rd, denoted by L, can be easily scaled to O(1) with a rescaled wave number Lk
in the Helmholtz equation (1.3). A more interesting scaling factor is the ratio of the
distance from the two sources yi, i = 1, 2 to X and the separation distance between the
two sources, |y1 − y2|, when the ratio is large, see Figure 2.3. Geometrically, this means
that the difference between two distance functions, |x−y1| − |x−y2|, changes slowly with
respect to x ∈ X. Hence fast oscillations due to the rapid change of the phase function,
ik(|x− y1| − |x− y2|), is discounted and the decorrelation rate of two Green’s functions is
reduced.

Assume that the size of X is O(1) and |y1−y2|
dist(y1,X) ∼

|y1−y2|
dist(y2,X) ∼ ρ � 1, which falls

into either Case 1 or Case 2 in Theorem 2.1. From (2.16), it is not hard to see that ∇φ̃
is scaled by ρ, D2φ̃ and det[D2φ̃] are scaled by ρ and ρd respectively when they are not

degenerate, i.e., for a point x ∈ X \ l̃y2
y1 . The scaling for u(x) is canceled due to the

normalization according to the definition (2.13). For Case 1, the leading contribution for∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >
∣∣∣ comes from the last term in (2.18). Since X ∩ l̃y2

y1 = ∅, both ∇φ̃
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X
y

y1

2

|y1 −y2 |
distance(y,X)

2

|y1 −y2 |

distance(y, X)
X

y y1

case 1 case 2

Figure 2.3. |y1 − y2| small compared to their distances to X

and D2φ̃ are not degenerate on ∂X. A extra scaling factor of ρ−1 coming from ∇φ̃ in the
integrand scales the factor k̃−1 in front of the boundary integral to (ρk̃)−1. In a generic
case in which ∇φ vanishes tangential to the boundary on ∂X at isolated stationary points,

the scaling factor of ρ−
d−1
2 from |det[D2

⊥φ̃]|−
1
2 scales k̃ to ρk̃ when applying the stationary

phase Lemma to the integration on ∂X at stationary points. In other words, k̃ is rescaled
to ρk̃ for Case 1. For Case 2 in Theorem 2.1, in which X∩ l̃y2

y1 6= ∅, the leading contribution

for
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ comes from the line of stationary phase in a generic situation

(see (2.23)). In this case, Dφ̃ and D2φ̃ are degenerate on the line of stationary phase, along

which D2
⊥φ̃ and det[D2

⊥φ̃] are scaled by ρ2 and ρ2(d−1) respectively from (2.17). Applying
the stationary phase result, Lemma 2.1, in the plane perpendicular to the line of stationary
phase, k̃ is rescaled to ρ2k̃, which is the parabolic scaling. For both cases we see that k̃ is
at least rescaled to ρk̃ in the estimate of the correlation between two Green’s functions of
the Helmholtz equation in the high frequency limit.

Remark 2.4. One can extend the arguments and results in Theorem 2.1 to more general
situations. For example, X can be a compact manifold embedded in Rd with dim(X) =
s < d, such as a surface (s = 2) in R3 or a curve (s = 1) in Rd, d = 2, 3. If X is a compact
manifold without boundary, e.g., a closed surface or curve, for two points y1,y2 /∈ X, there
is some α, 0 ≤ α ≤ s

2

(2.35)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−α, as k|y1 − y2| → ∞.

The two extreme cases are: (1) α = 0 happens when a piece of X stays on a level set of

the phase function φ̃(x) = |y1 − y2|−1(|x − y1| − |x − y2|); (2) α = s
2 happens when the

phase function φ̃(x) has isolated non-degenerate stationary points on X, e.g., X ∩ l̃y2
y1 6= ∅.

If X is a compact manifold with boundary, there is some α, 0 ≤ α ≤ s+1
2 such that

(2.36)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−α, as k|y1 − y2| → ∞.

The two extreme cases are: (1) α = 0 happens when a piece of X stays on a level set of

the phase function φ̃(x); (2) α = s+1
2 happens if the phase function φ̃(x) has no stationary

point in the interior of X and has non-degenerate isolated stationary points on ∂X. If
there are isolated non-degenerate stationary points in the interior of X, e.g., X ∩ l̃y2

y1 6= ∅,
α = s

2 .
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Figure 2.4 shows typical scenarios for α = s
2 . The ray going through y1,y2 intersects

X transversally at a finite number of isolated points. Those intersections are isolated
non-degenerate stationary points in X.

ray

X y
1

y
2

2

ray

X y
1

y

(a) (b)

Figure 2.4. X is an embedded manifold

Remark 2.5. According to the Hessian estimate (2.17), there are two axi-symmetric k

dependent domains around the stationary line l̃y2
y1 on each side of y1 and y2, denoted by R1

and R2 respectively (see Figure 2.5), in which the phase function k̃φ̃ does not change rapidly

due to the smallness of |∇φ̃| which is . k̃−1 in these k dependent domains. For example,

take a point x ∈ l̃y2
y1 on the side of y2 and denote r = ±|x−y2|. Again we use the coordinate

system x=(r, ξ, η) as shown in Figure 2.5. Since φ̃(r, 0, 0)=1, |∇φ̃(r, 0, 0)|=0, r > 0, for a

point (r, ξ, η) with r > 0,
√
ξ2 + η2 . r(r+|y1−y2|)

k|y1−y2| , from (2.17) we have

(2.37) k̃|∇φ̃(r, ξ, η)| . k|y1 − y2|
√
ξ2 + η2

r(r + |y1 − y2|)
. 1.

Hence < Ĝ0(·,y1), Ĝ0(·,y2) > is not an oscillatory integral in R1 or R2 and the two Green’s
functions do not decorrelate fast in these two domains. This ”parabolic scaling” has been
used to design efficient algorithms for high-frequency wave equations [9]. We will provide
more special k dependent setups of domains X,Y such that G(x,y1) and G(x,y2) do not
decorrelate fast in X for two sources y1,y2 ∈ Y in Section 4.2.

η

y
1

y
2 r

ξ

R2

Figure 2.5. A domain where two Green’s functions do not decorrelate fast.
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Remark 2.6. The correlation between two Green’s functions is of importance in the res-
olution study of imaging systems. The resolution of an imaging system is defined as the
minimal separation distance between two point scatterers that the system can distinguish.
Hence the imaging resolution can be characterized by the decorrelation length between
two Green’s functions. The faster the decorrelation, the finer the resolution is. Sup-
pose X is a compact planar region in R3 where the wave field is measured, i.e., a mirror
made of transducers. The wave field observed on X corresponding to a point source (or
a point scatterer) can be approximated by the Green’s function. If two point sources,
y1,y2, are separated in the range direction, i.e., the line connecting y1 and y2 inter-

sects X orthogonally, |< G0(·,y1), G0(·,y2) >| ∼ O((k|y1 − y2|)−
1
2 ), since the intersection

point is a point of stationary phase. While if two point sources, y1,y2, are separated in
the cross range direction, i.e., the line connecting y1 and y2 is parallel to X, we have

|< G0(·,y1), G0(·,y2) >| ∼ O((k|y1 − y2|)−
3
2 ), since there is no point of stationary phase.

Hence it shows the well-known fact that cross range resolution is higher than range reso-
lution for a typical imaging system.

2.2 Correlation between two Green’s functions in the high frequency limit
in heterogeneous media.

In a heterogeneous medium, the correlation between two Green’s functions is similar to
that in a homogeneous medium in the high frequency limit. We provide the arguments for
the results in Theorem 2.1 in a heterogeneous medium based on the validity of geometric
optics Ansatz [23, 3]. A geometric optics Ansatz for the Green’s functions of the Helmholtz
equation takes the form

(2.38) G(x,y) = eikφ(x,y)
M∑
m=0

am(x,y)k−m +O(k−M−1), as k →∞,

where φ(x,y) is the phase function and am(x,y) are the amplitude functions, and satisfies
the following conditions at the source point y:

(2.39) lim
x→y

(
φ(x,y)

|x− y|
− n(y)

)
= 0, lim

x→y
a0(x,y)4π|x− y| = 1.

The phase function can be prescribed by a Hamiltonian system with the Hamiltonian
H(x,p) = |p|−n(x) and p = ∇φ. The bicharacteristics (x(t),p(t)) and the phase function
satisfy the following ordinary differential equations (ODE) in the phase space.

(2.40)

dx(t,x0,p0)

dt
= ∇pH(x,p) =

p

n(x)
, x(0) = x0,

dp(t,x0,p0)

dt
= −∇xH(x,p) = ∇n(x), p(0) = p0 = ∇φ(x0)

dφ(x(t,x0,p0))

dt
= ∇φ · dx

dt
= n(x), φ(0) = φ(x0)
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The projection of the bicharacteristics in the physical space, i.e., x(t,y0,p0), are called
rays. Each ray is a geodesic in the physical space with the index of refraction n(x) = 1

c(x)

as the metric, where c(x) is the wave speed. |φ(x(t2,x0,p0)) − φ(x(t1,x0,p0))| is the
shortest travel time or geodesic distance between points x(t1,x0,p0) and x(t2,x0,p0).

For the Green’s function with a point source at y0, rays x(t,y0, θ̂) are emanating from
the source y0 in all directions and can be parameterized by the initial directions, i.e., the
take-off angles θ̂ ∈ Sd−1 on a unit sphere. The ODEs for the rays (2.40) have initial condi-

tions x(0,y0, θ̂) = y0,p(0,y0, θ̂) = n(y0)θ̂, φ(0,y0, θ̂) = 0, with a0(0, θ̂) evenly distributed

in all θ̂. If there is no crossing of rays in the physical space, every point x has a unique
ray passing through it, i.e., ∀x,∃!t(x), θ̂(x) such that x(t(x),y0, θ̂(x)) = x. Moreover, the
ray connecting y0 and x is the geodesic and the phase function φ(x,y0) is the geodesic
distance or the shortest travel time between these two points.

Theorem 2.2. If two Green’s functions with source points y1,y2 can be approximated by
the following geometric optics Ansatz

(2.41)
∣∣∣G(x,yj)− eikφ(x,yj)Aj(x)

∣∣∣ . k−(M+1), j = 1, 2,

for some integer M > 0 and functions φ,Aj that satisfy (2.39) and are smooth away from
the sources, then the estimates in Theorem 2.1 holds.

Proof. Since

(2.42)

∣∣∣∣< Ĝ(·,y1), Ĝ(·,y2) > −
∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣ . k−(M+1),

where

k̃ = kφ(y1,y2), φ̃(x) = φ−1(y1,y2)(φ(x,y1)−φ(x,y2)), u(x) =
A1(x)A2(x)

‖G(·,y1)‖2‖G(·,y2)‖2
,

one only needs to estimate |
∫
X e

ik̃φ̃(x)u(x)dx|. Let Γy2
y1 be the unique ray that passes

through y1 and y2 as illustrated in Figure 2.6 (a). If n(x) is smooth and 0 < c ≤ n(x) ≤
C <∞, one has (see Figure 2.6(b))

(2.43) c|y1 − y2| ≤ φ(y1,y2) ≤ C|y1 − y2|, |φ(x,y1)− φ(x,y2)| ≤ φ(y2,y1).

So the phase function φ̃(x) attains the global maximum or minimum ±1 on the part of

the ray Γy2
y1 which is outside the interval between y1 and y2, denoted by Γ̃y2

y1 . Moreover,

∇xφ(x,y1) − ∇xφ(x,y2) 6= 0, ∀x /∈ Γ̃y2
y1 because the two different and unique geodesics

connecting x,y1 and x,y2 respectively can not be tangent to each other at x . So Γ̃y2
y1 is

a stationary curve in the heterogeneous medium and plays the same role as the stationary
line l̃y2

y1 in a homogeneous medium. For those various cases proved in Theorem 2.1, M+1 ≥
2 ≥ α, we get the same results as those in Theorem 2.1 since kφ(y1,y2) ∼ k|y1 − y2| from
(2.43). This is true when y1 and/or y2 are in X as well since the amplitude satisfying
(2.39) has the same type of source singularity as that in the free space Green’s function
G0(x,y).
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�

Remark 2.7. More general scenarios as discussed in Remark 2.4, i.e., X is a manifold
embedded in Rd, can also be extended to heterogeneous media as long as the geometric
optics Ansatz holds.

There are possible complications for geometric optics Ansatz in heterogeneous medium
due to crossing of rays or formation of caustics. In those situations the phase and the
amplitude can no longer be defined as global smooth functions in physical space. However,
bicharacteristics in phase space are still well defined and smooth. In the case that there is
a finite number of rays connecting y1,y2 and there is a partition of unity in the angular
domain for the takeoff angles θ̂ on Sd−1 such that there is a small angular cone around
each ray such that the rays in each cone do no cross each other in X, one can apply the
above arguments to the wave field corresponding to each cone and superpose the partition
of unity in angular space to get those same results.

ray

y
1 y

2

X

y
1

Γ
y

2

)y
1 y

2

X

xφ(x,y
1

)

φ(y φ(x,y
2

)1
,y

2

(a) (b)

Figure 2.6. Rays in inhomogeneous medium

3 Approximate Separability Estimates for the Green’s Functions of the
Helmholtz equation in the High Frequency Limit

In this section we present the estimates for both lower and upper bounds for the ap-
proximate separability for the Green’s functions of the Helmholtz equation in the high
frequency limit. First we introduce some background and a few definitions for the approx-
imation of a set of vectors by the best linear subspace with a given dimension in 2-norm,
which are extended later to the approximation of a family of functions by a linear subspace
in a function space equipped with L2 norm.

3.1 Approximating a set of almost orthogonal vectors by a linear space

Let vm ∈ Rd,m = 1, 2, . . . , N be a set of vectors. Define matrix V = [v1,v2, . . . ,vN ]
and matrix A = [amn]N×N = V TV . Let λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0 be the eigenvalues of

A, then tr(A) =
∑N

m=1 λm =
∑N

m ‖vm‖22.
√
λ1 ≥

√
λ2 ≥ . . . ≥

√
λN ≥ 0 are also called

the singular values of V . The best linear subspace, denoted by Sl, of all linear subspaces



20 B. ENGQUIST AND H. ZHAO

of dimension l, denoted by Sl, that approximates the set of vectors {vm}Nm=1 in the least
squares sense is the space spanned by the first l left singular vectors of V and satisfies

(3.1)
N∑
m

‖vm − PSlvm‖
2
2 = min

Sl,dim(S)=l

N∑
m

‖vm − PSlvm‖
2
2 =

N∑
m=l+1

λm,

where PSlv denotes the projection of v in Sl. In other words,

(3.2) λl = max
ê∈Rd,‖ê‖2=1,ê⊥Sl−1

N∑
j

|vj · ê|2,

is the maximum reduction of approximation error in the least squares sense for the set of
vectors {vm}Nm=1 when adding one more dimension to the previous optimal l−1 dimensional
linear subspace. Given a set of vectors vm ∈ Rd,m = 1, 2, . . . , N and the above definitions
for V,A, we introduce the following two definitions:

Definition 3.1. Given ε > 0, N
ε

= max1≤m≤N m, s.t.
√
λm ≥ ε.

In other words, N
ε

denotes the largest m such that
√
λm ≥ ε, which is the standard

ε-rank of V ([13]).

Definition 3.2. Given 1 ≥ ε > 0, N ε = minM, s.t.
∑N

m=M+1 λm ≤ ε2
∑N

m=1 λm.

Definition 3.2 defines the least dimension of a linear subspace that can approximate the
set of vectors vm ∈ Rd,m = 1, 2, . . . , N with a relative error less than ε in 2-norm. In other
words, if a linear subspace Sε satisfies

(3.3)

∑N
m=1 ‖vm − PSεvm‖22∑N

m=1 ‖vm‖22
≤ ε2

then dim(Sε) ≥ N ε. Assuming 0 < c ≤ ‖vm‖2 ≤ C < ∞,m = 1, 2, . . . , N , if a linear
subspace Sε satisfies √∑N

m=1 ‖vm − PSεvm‖22
N

≤ cε,

which implies ∑N
m ‖vm − PSεvm‖22∑N

m=1 ‖vm‖22
≤ ε2,

then we can conclude dim(Sε) ≥ N ε. In other words, the least dimension of a linear
subspace that has an cε-r.m.s. (root mean square) approximation of a set of vectors
vm,m = 1, 2, . . . , N is at least N ε. The root mean square approximation will lead to
the lower bound estimate of L2 approximate separability for the Green’s function in the
continuous case.

In the previous section, we proved a fast decorrelation between two Green’s functions
of the Helmholtz equation in the high frequency limit:

| < Ĝ(·,y1), Ĝ(·,y1) > | . (k|y1 − y2|)−α
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for some α ≥ 0 (α = 0 only for very special cases, see Remark 2.4) as k|y1 − y2| → ∞.
Geometrically it means that two Green’s functions with sources separated a little more than
one wavelength, e.g., |y1 − y2| = k−1+δ for any small δ > 0, become almost orthogonal
to each other as k → ∞. Intuitively, for two domains X,Y ⊂ Rd, if one views G(x,y)
as a family of functions in L2(X) parameterized by y ∈ Y and lays down a grid yj ∈ Y
with a grid size h = k−1+δ for any small δ > 0, G(x,yj) is a set of almost orthogonal
vectors in L2(X). This leads naturally to a question in linear algebra: what is the least
dimension of a linear space that can contain a set of almost orthogonal vectors. This
question was studied in [1] for a set of almost orthogonal unit vectors, vm ∈ Rd, m =
1, 2, . . . , N, |vTmvn| ≤ ε, m 6= n. Denote V = [v1,v2, . . . ,vN ]. A rank estimate for the
matrix V TV , which is a small perturbation of an identity matrix in the off-diagonals, was
proved. In particular, the asymptotic estimate for 1√

N
< ε ≤ 1

2 is optimal and was used

to show the sharpness of Johnson-Lindenstraus Lemma [22]. However, this result can not
address our problem adequately for the following two reasons. First, the pairwise almost
orthogonality assumption in [1] is the same for any pair of vectors. In our problem, a family
of Green’s functions parameterized by their source locations have spatial structures, i.e.,
the angle between two Green’s functions depends on the separation distance of the two
sources. The spatial structure has to be taken into account to get the right scaling to get a
sharp estimate. Second, a family of Green’s functions G(x,y) ∈ L2(X) parameterized by
the sources y ∈ Y can not be contained in a finite dimensional linear subspace in L2(X) if
Y is a compact domain with positive measure. The approximate separability means that
one needs to estimate the least dimension of a linear subspace that can approximate a set
of vectors to a certain tolerance. In Lemma 3.1, we first develop a sharp rank estimate for
a discrete set of Green’s functions of the Helmholtz equation in the high frequency limit
by taking into account both the spatial distribution of the sources and the approximation
tolerance. Based on the lemma we will prove lower bound estimates for the approximate
separability of the Green’s functions for Helmholtz equation in the high frequency limit.

Let G0(x,y),x ∈ X,y ∈ Y be the free space Green’s function of the Helmholtz equa-

tion (1.3) and Ĝ0(·,y) be its normalized version in L2(X). Our results are based on
the fast decorrelation of the Green’s functions of the Helmholtz equation in the high fre-
quency limit. X,Y are two compact smooth manifolds embedded in Rd, i.e., either of
them may be a compact domain in Rd, d = 2, 3, or a compact surface embedded in R3

or a compact curve embedded in Rd, d = 2 or 3. Without loss of generality, we assume
d ≥ dim(X) ≥ dim(Y ) = s. For a smooth compact manifold Y with dim(Y ) = s = 1, 2, 3,
there exists a piece of O(1) size which is diffeomorphic to a one dimensional unit interval,
a two dimensional unit square or a three dimensional unit cube respectively. Moreover,
the diffeomorphism has a bounded metric distortion. So in the following proofs we only
consider Y to be a unit interval, a unit square or a unit cube for simplicity. The following
Lemma 3.1 shows the lower bound estimates for the dimension of a linear subspace in
L2(X) that approximates a set of Green’s function Ĝ0(·,ym) with ε-r.m.s error with ym
properly sampled in Y .
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Lemma 3.1. Let X,Y be two compact manifolds embedded in Rd, d = 2 or 3 and d ≥
dim(X) ≥ dim(Y ) = s. If there is a α > 0 such that for any two points y1,y2 ∈ Y ,

(3.4) | < Ĝ0(·,y1), Ĝ0(·,y2) >X | . (k|y1 − y2|)−α as k|y1 − y2| → ∞,
then for any δ > 0 arbitrarily close to 0, there are points ym ∈ Y,m = 1, 2, . . . , N s

δ ∼ ks−δ,
such that the matrix A = [amn]Ns

δ×N
s
δ
, amn =< Ĝ0(·,ym), Ĝ0(·,yn) >X satisfies

(3.5) N ε
k &


(1− ε2)2k2α, α < s

2 ,

(1− ε2)2ks−δ, α ≥ s
2 ,

and

(3.6) N
ε
k .

 ε−4k2(s−α−δ), α < s
2 ,

ε−4ks−δ, α ≥ s
2 ,

for k large enough, where N
ε
k and N ε

k are defined in Definition 3.1 and 3.2 respectively.
The constants in . and & depend on X,Y and the distance in-between.

Proof. We prove the statement for X,Y ⊂ R3 and dim(Y ) = s = 1, 2, 3 respectively.
Without loss of generality, we consider Y to be a unit interval, a unit square or a unit cube
respectively. The case for X,Y ⊂ R2 can be proved in exactly the same way.

Case 1: s = 1, Y is a line segment of unit length in R3. Let ym be the grid points
of a uniform grid in Y (Figure 3.1(a)) with grid size h = kδ−1, 0 < δ < 1 such that
|ym − yn| = |m− n|h, m, n = 1, 2, . . . , nhk = k1−δ. The matrix

(3.7) A = (amn)nhk×n
h
k
, amn =< Ĝ0(·,ym), Ĝ0(·,yn) >X ,

has the following properties

(3.8) amm = 1, |amn| . |m− n|−αk−αδ, m, n = 1, 2, . . . , nhk .

Let λ1 ≥ λ2 ≥ . . . ≥ λnhk
≥ 0 be the eigenvalues of A. Then

∑nhk
m=1 λm = nhk . Since N

ε
k =

max1≤m≤nhk
m, s.t.

√
λm ≥ ε and N ε

k = minM, s.t.
∑nhk

m=M+1 λm ≤ ε2
∑nhk

m=1 λm = ε2nhk ,

we have
Nε
k∑

m=1

λm ≥ (1− ε2)

nhk∑
m=1

λm = (1− ε2)nhk

and

(3.9)

nhk∑
m=1

λ2
m >

Nε
k∑

m=1

λ2
m ≥ N ε

k

[
(1− ε2)nhk

N ε
k

]2

=
[(1− ε2)nhk ]2

N ε
k

,

and

(3.10)

nhk∑
m=1

λ2
m >

N
ε
k∑

m=1

λ2
m ≥ N

ε
kε

4.
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At the same time, for a fixed α > 0 and take 0 < δ < 1 arbitrarily close to 0,

(3.11)

∑nhk
m=1 λ

2
m = tr(ATA) =

∑nhk
m=1

∑nhk
n=1 a

2
mn

=
∑nhk

m=1 a
2
mm + 2

∑nhk−1
n=1

∑nhk
m=n+1 a

2
m,m−n

. nhk + 2
∑nhk−1

n=1 (nhk − n)n−2αk−2αδ

.


k1−δ + k2(1−δ−α) . k2(1−δ−α), α < 1

2 , 2α < 1− δ < 1

k1−δ + k1−2δ ln k . k1−δ, α = 1
2 , 0 < δ < 1

k1−δ + k1−δ−2αδ . k1−δ, α > 1
2 , 0 < δ < 1

Hence for a fixed α > 0 and any 0 < δ < 1 arbitrarily close to 0, combining (3.9) and
(3.11) we have

(3.12) N ε
k &

 (1− ε2)2k2α, α < 1
2

(1− ε2)2k1−δ, α ≥ 1
2

,

and combining (3.10) and (3.11) we have

(3.13) N
ε
k .

 ε−4k2(1−α−δ), α < 1
2

ε−4k1−δ, α ≥ 1
2

.

Case 2: s = 2, Y is a unit square in R3. Let ym,m = 1, 2, . . . , nhk = k2(1−δ) be the

grid points of an uniform grid in Y with a grid size h = kδ−1, 0 < δ < 1 (see Figure
3.1(b)). Define matrix A as in (3.7). Let λ1 ≥ λ2 ≥ . . . ≥ λnhk ≥ 0 be its eigenvalues, then∑nhk

m=1 λm = nhk and we have (3.9), (3.10). At the same time

(3.14)

nhk∑
m=1

λ2
m = tr(ATA) =

nhk∑
m=1

nhk∑
n=1

a2
mn.

We look at the sum of each row. Assume ym is the center of the square. We divide all
other points into groups of 1st square neighbors, 2nd square neighbors, . . ., j-th square
neighbors, denoted by Sj , j = 1, 2, . . . , J ∼ h−1 = k1−δ. See Figure 3.1(b). Sj contains
those 4(2j + 1) − 4 = 8j grid points that are on the 4 sides of the square centered at ym
with each side of length 2jh. We have jh ≤ |ynj − ym| ≤

√
2jh,ynj ∈ Sj , and hence

am,nj . (kjh)−α = j−αk−αδ. For a fixed α > 0 and take 0 < δ < 1 arbitrary close to 0, we
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get

(3.15)

∑nhk
n=1 a

2
mn = 1 +

∑J
j=1

∑
nj∈Sj a

2
m,nj . 1 +

∑J
j=1 j

−2α+1k−2αδ

.


1 + k2(1−δ−α) . k2(1−δ−α), α < 1, α < 1− δ < 1

1 + k−2δ ln k . 1, α = 1, 0 < δ < 1

1 + k−2αδ . 1, α > 1, 0 < δ < 1

As a matter of fact, for any grid point ym, each j-th square neighbors of ym has at least
8j/4 = 2j points for j = 1, 2, . . . , J ∼ k1−δ, e.g., if ym is a corner point of the unit square.
Hence the above asymptotic formula is still true. For a fixed α > 0 and any 0 < δ < 1
arbitrarily close to 0, we have

(3.16)

nεk∑
m=1

λ2
m ≤

nhk∑
m=1

nhk∑
n=1

a2
mn .

 k2(2(1−δ)−α), α < 1

k2(1−δ), α ≥ 1

Combining (3.16) with (3.9), one gets

(3.17) N ε
k &


(1− ε2)2k2α, α < 1

(1− ε2)2k2(1−δ), α ≥ 1.
.

Combining (3.16) with (3.10), one gets

(3.18) N
ε
k .

 ε−4k2(2(1−δ)−α), α < 1

ε−4k2(1−δ), α ≥ 1

.

m

Y

y
1

y
2

y

Y

y
m

S1

S2

(a) (b)

Figure 3.1. Green’s functions with sources on a uniform grid.
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Case 3: s = 3, Y is a unit cube in R3. Let ym,m = 1, 2, . . . , nhk = k3(1−δ) be the grid

points of a uniform grid in Y with a grid size h = kδ−1, 0 < δ < 1 and define matrix A as

in (3.7). Let λ1 ≥ λ2 ≥ . . . ≥ λnhk ≥ 0 be its eigenvalues, then
∑nhk

m=1 λm = nhk and we have

(3.9), (3.10). Similar to 2D case, assume ym is the center of the cube. We divide all other
points into groups of 1st cube neighbors, 2nd cube neighbors, . . ., j-th cube neighbors,
denoted by Cj , j = 1, 2, . . . , J ∼ h−1 = k1−δ. Cj contains those 6(2j+1)2−12(2j+1)+8=
24j2 +2 grid points ynj that are on the faces of the j-th cube centered at ym with each

face a square whose side is of length 2jh. We have jh ≤ |ynj −ym| ≤
√

3jh,ynj ∈ Cj , and

am,nj . (kjh)−α = j−αk−αδ. For 0 < δ < 1 arbitrarily close to 0, one has the row sum
estimate

(3.19)

∑nhk
n=1 a

2
mn = 1 +

∑J
j=1

∑
nj∈Cj a

2
m,nj . 1 +

∑J
j=1(24j2 + 2)j−2αk−2αδ

.


1 + k3(1−δ)−2α . k3(1−δ)−2α, α < 3

2 ,
2
3α < 1− δ < 1

1 + k−3δ ln k . 1, α = 3
2 , 0 < δ < 1

1 + k−2αδ . 1, α > 3
2 , 0 < δ < 1.

Also this is true for any point ym which has at least 1/8 of 24j2 + 2 points in its j-th cube
neighbors Cj for j = 1, 2, . . . , J ∼ k1−δ, e.g., if ym is a corner point of the unit cube. Hence
for a fixed α > 0 and any 0 < δ < 1 arbitrarily close to 0,

(3.20)

nεk∑
m=1

λ2
m ≤

nhk∑
m=1

nhk∑
n=1

a2
mn .

 k2(3(1−δ)−α), α < 3
2

k3(1−δ), α ≥ 3
2

Combining (3.20) with (3.9), one gets

(3.21) N ε
k &


(1− ε2)2k2α, α < 3

2

(1− ε2)2k3(1−δ), α ≥ 3
2

.

Combine (3.20) with (3.10), one gets

(3.22) N
ε
k .

 ε−4k2(3(1−δ)−α), α < 3
2

ε−4k3(1−δ), α ≥ 3
2

.

Replace sδ by δ in each of the above cases, we complete the proof.

In the above estimates for all cases, the constant in . involves the constant in the
correlation of two Green’s functions (3.4), which depends on X,Y and the distance in-
between (see estimates in the previous section), and universal constants in the estimate of
the row sum of matrix A. �

Remark 3.1. When d = 3, if either dim(X) = dim(Y ) = 3 or X and Y are separated, there
are 0 < c < c <∞ independent of k such that c ≤ ‖G0(·,y)‖2 ≤ c,∀y ∈ Y . For the same
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set of Green’s functions G0(x,yj) as in the above proof and A =< G0(·,ym), G0(·,yn) >,
we have

(3.23) c2nhk ≤
nhk∑
m=1

λm ≤ c2nhk ⇒
Nε
k∑

m=1

λm ≥ (1− ε2)

nhk∑
m=1

λm ≥ (1− ε2)c2nhk .

Hence inequalities (3.9) is replaced by the following:

(3.24)

nhk∑
m=1

λ2
m >

Nε
k∑

m=1

λ2
m ≥ N ε

k

[
(1− ε2)c2nhk

N ε
k

]2

=
[(1− ε2)c2nhk ]2

N ε
k

,

and (3.10) is the same. The previous estimates of
∑nεk

m=1 λ
2
m ≤

∑nhk
m=1

∑nhk
n=1 a

2
mn is amplified

by c4 at most. So the same results are true by adding a factor of c4c−4.

When d = 2, except for a scaling factor k−
1
2 for the Green’s function, everything else is

similar to the case d = 3. By the Definition 3.2, N ε
k is independent of a constant scaling of

the whole set of vectors. So the results for N ε
k also holds for A =< G0(·,ym), G0(·,yn) >.

Remark 3.2. The size of Y can be scaled into the result of Lemma 3.1, e.g., if Y is scaled
to aY then k is scaled to ak. If α ≥ s

2 , trace estimates (3.11), (3.16), and (3.20) gives∑nhk
m=1 λ

2
m . nhk . It can be seen easily from (3.9) and (3.10) that if Y is scaled to aY , it

is equivalent to scaling k to ak in nhk and in those estimates (3.5), (3.6) for N ε
k and N

ε
k

respectively. The only factor that can not be scaled with nhk in the trace estimates is k−2αδ

in (3.11), (3.15) and (3.19). Hence, in addition to scaling k to ak, there is an extra factor
of a2αδ for the result of Lemma 3.1. However, this factor goes to 1 as δ → 0 for a fixed
a > 0.

Remark 3.3. The key estimates in the proof of Lemma 3.1 are (3.9) (or (3.24)), (3.10),

and the one for
∑nhk

m=1 λ
2
m = tr(ATA). Although the estimate of tr(ATA) can be improved

by a more careful estimate of each row sum
∑nhk

n=1 a
2
mn by taking into account different

decorrelation rate according to Theorem 2.1. For example, by dividing those points in
each j-th square (cube) neighbors of ym (see Figure 3.1) into directional cone sections
according to whether the line connecting ym and its neighbors intersecting X or not,
one gets different decorrelation rates of two Green’s functions, i.e., different power α in
am,nj . (kjh)−α for points in different cones. However, as long as there is a solid angle
cone such that lines connecting those neighbors in that cone and ym intersect X, the order
of the estimate can not be improved. On the other hand, whether (3.9) and (3.10) are
sharp or not is an interesting but difficult question. The answer depends on the variation
of leading eigenvalues of the matrix A with elements amn =< Ĝ0(·,ym), Ĝ0(·,yn) >, which
depends on the geometric setup of X and Y , and ε.



SEPARABILITY OF THE GREEN’S FUNCTION OF THE HELMHOLTZ EQUATION 27

3.2 Lower bound and upper bound estimates for the approximate sepa-
rability of the Green’s functions of the Helmholtz equation in the high
frequency limit.

We first use Lemma 3.1 to prove the following lower bound estimate for the approximate
separability (2.10) of the Green’s functions of the Helmholtz equation (1.3) in the high
frequency limit.

Theorem 3.1. Let X,Y be two compact manifolds embedded in Rd, d = 2, 3, and d ≥
dim(X) ≥ dim(Y ) = s. If there is a α > 0 such that for any two points y1,y2 ∈ Y ,

| < Ĝ0(·,y1), Ĝ0(·,y2) >X | . (k|y1 − y2|)−α as k|y1 − y2| → ∞

and there are fl(x) ∈ L2(X), gl(y) ∈ L2(Y ), l = 1, 2, . . . , N ε
k such that

(3.25)

∥∥∥∥∥∥Ĝ0(x,y)−
Nε
k∑

l=1

fl(x)gl(y)

∥∥∥∥∥∥
L2(X×Y )

≤ ε,

then

(3.26) N ε
k ≥


cεk

2α, α < s
2 ,

cεk
s−δ, α ≥ s

2 ,

for any δ > 0 and k large enough, where cε ≥ c(1 − (Cε)2)2 for some positive constants c
and C that depend on X,Y and the distance in-between.

Proof. Our proof is based on a two-level grid argument. The finer grid is for a Riemann
approximation to integrals over the coarse grid cells, using a piecewise constant function
to reduce the problem in a continuous setting to a discrete setting, whereas the coarse grid
is needed to satisfy the condition in Lemma 3.1.

Without loss of generality, we assume that Y is a unit interval, a unit square or a unit

cube for s = 1, 2, 3 respectively. First, divide Y into uniform cells, Ym,m = 1, 2, . . . Nh
k =

ks(1−δ), with a cell size h = kδ−1, for any δ > 0 arbitrarily close to 0. Then divide each cell

Y h
m further into uniform finer cells of size h < k−1, Y

h
m,n, n = 1, 2, . . . , N

h
k = (h/h)s. See

Figure 3.2. h needs to be small enough such that a piecewise constant approximation of the
Green’s function on the fine grid is accurate enough for the integral on each coarse cell. For

a fixed n, Y
h
m,n is in the same relative location in each coarse cell Y h

m. The center and volume

of each cell Y
h
m,n is ym,n and hs respectively. Define Ĝ

h
0(x,y) = Ĝ0(x,ym,n),y ∈ Y h

m,n to
be a piecewise constant function in y.

If X,Y are disjoint, we have |∇yĜ0(x,y)| . k uniformly in x ∈ X and y ∈ Y . For any
ε > 0, one can pick h < k−1 small enough such that

|Ĝ0(x,y)− Ĝ0(x,ym,n)| ≤ ε, ∀x ∈ X,y ∈ Y h
m,n, m = 1, 2, . . . , Nh

k , n = 1, 2, . . . , N
h
k .
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Hence

(3.27)

∫
Y
dy

∫
X
|Ĝ0(x,y)−Ĝh0(x,y)|2dx=

Nh
k∑

m=1

N
h
k∑

n=1

∫
Y
h
m,n

dy

∫
X
|Ĝ0(x,y)−Ĝ0(x,ym,n)|2dx . ε2

m,n

Ω

Ω
Y

mΩ
Y

Y
m,n

y

Figure 3.2. Two grids decomposition of the source domain.

If X,Y are not disjoint and y ∈ X ∩ Y , since G0(·,y) ∈ L2(X) for d = 2, 3, we show
that there is still h < k−1 small enough such that

(3.28)

∫
X
|Ĝ0(x,y)− Ĝ0(x,ym,n)|2dx . ε2, if y ∈ Y h

m,n,

which implies (3.27). From (2.7) and the asymptotic formulas (2.2), (2.3), we have

(3.29)

∫
Bτ (y)

|Ĝ0(x,y)|2dx . τ

with the constant independent of k, where Bτ (y) denotes the ball with radius τ centered
at y. Hence there are balls Bτ(ε)(y) and Bτ(ε)(ym,n) with radius τ(ε) ∼ ε2 such that

(3.30)

∫
X∩Bτ(ε)(y)

|Ĝ0(x,y)|2dx ≤ ε2,
∫
X∩Bτ(ε)(ym,n)

|Ĝ0(x,ym,n)|2dx ≤ ε2

for a given ε > 0. Denote Xε = X ∩ (Bτ(ε)(y) ∪ Bτ(ε)(ym,n)) and XC
ε = X \ Xε. For

y ∈ Y h
m,n we have∫
X |Ĝ0(x,y)− Ĝ0(x,ym,n)|2dx

=
∫
XC
ε
|Ĝ0(x,y)− Ĝ0(x,ym,n)|2dx +

∫
Xε
|Ĝ0(x,y)− Ĝ0(x,ym,n)|2dx = I + II

Since |∇yĜ0(x,y)| . max(kτ−1(ε), τ−2(ε)), ∀x ∈ XC
ε , by choosing h < k−1 small enough

we get I . ε2. From (3.30) we get II . ε2. Hence we prove (3.28).

Define the linear subspace SX = span{fl(x)}N
ε
k

l=1 ⊂ L2(X), then∫
Y
‖Ĝ0(x,y)− PSX Ĝ0(x,y)‖2L2(X)dy ≤ ε

2,
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where PSX denotes the projection to SX in L2(X). From (3.27), we have∫
Y
‖(I − PSX )[Ĝ0(x,y)− Ĝh0(x,y)]‖2L2(X)dy . ε

2,

where I is the identity map. From the above two inequalities we have

(3.31)

ε2 &
∫
Y ‖(I − PSX )Ĝ

h
0(x,y)]‖2L2(X)dy

=
∑Nh

k
m=1

∑N
h
k

n=1

∫
Y
h
m,n
‖(I − PSX )Ĝ0(x,ym,n)‖2L2(X)dy

= hs
∑Nh

k
m=1

∑N
h
k

n=1 ‖Ĝ0(x,ym,n)− PSX Ĝ0(x,ym,n)‖2L2(X)

= (h/h)sh
s∑Nh

k
m=1

∑N
h
k

n=1 ‖Ĝ0(x,ym,n)− PSX Ĝ0(x,ym,n)‖2L2(X)

& 1

N
h
k

∑N
h
k

n=1
1

Nh
k

∑Nh
k

m=1 ‖Ĝ0(x,ym,n)− PSX Ĝ0(x,ym,n)‖2L2(X)

Assume C > 0 is the constant in the above & and

Nh
k∑

m=1

‖Ĝ0(x,ym,n)− PSX Ĝ0(x,ym,n)‖2L2(X)

= min
n

Nh
k∑

m=1

‖Ĝ0(x,ym,n)− PSX Ĝ0(x,ym,n)‖2L2(X).

(3.32)

Since the minimum is no greater than the average, one has

(3.33)
1

Nh
k

Nh
k∑

m=1

‖Ĝ0(x,ym,n)− PSX Ĝ0(x,ym,n)‖2L2(X) ≤ C
2ε2.

Since ym,n ∈ Y,m = 1, 2, . . . Nh
k = ks(1−δ) forms a uniform grid with the grid size h = kδ−1,

we apply Lemma 3.1 to get

dim(SX) ≥


c(1− (Cε)2)2k2α α < s

2

c(1− (Cε)2)2ks−δ α ≥ s
2

for any δ > 0 and arbitrarily close to 0 as k →∞, where C > 0, c > 0 are some constants
that depend only on X,Y and the distance in-between.

�

Remark 3.4. In three dimensions, the same lower bound estimates for the approximate
separability hold for the unnormalized Green’s functions of the Helmholtz equation in the
high frequency limit as well. Theorem 3.1 reveals the intrinsic complexity for numerical
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computations of the Helmholtz equation with a large wave number k in three dimensions.
In other words, the degrees of freedom have to grow with certain powers of k no matter what
bases are used to approximate general solutions to the PDE due to the rapid decorrelation
of the Green’s functions. The result also implies that low rank approximations do not exist
for off-diagonal submatrices of the inverse matrix of the linear system corresponding to a
discretization with mesh size h that satisfies hk ∼constant.

Next we give an upper bound estimate for the approximate separability of the Green’s
functions of the Helmholtz equation in the high frequency limit. The intuition is that
two Green’s functions with sources located within a wavelength are correlated. So the
linear subspace spanned by the Green’s functions sampled in the source domain with a
separation distance smaller than a wavelength should approximate the whole family of
Green’s functions well enough.

Theorem 3.2. Let X,Y be two compact manifolds embedded in Rd, d = 2, 3 and d ≥
dim(X) ≥ dim(Y ) = s. For any ε > 0 and δ > 0, there are fl(x) ∈ L2(X), gl(y) ∈
L2(Y ), l = 1, 2, . . . , N ε

k . k
s+δ such that

(3.34)

∥∥∥∥∥∥Ĝ0(x,y)−
Nε
k∑

l=1

fl(x)gl(y)

∥∥∥∥∥∥
L2(X×Y )

≤ ε

for k large enough, where the constant in . depends on X,Y and the distance in-between.

Proof. Without loss of generality, assume Y is a unit interval, a unit square or a unit
cube for s = 1, 2, 3 respectively. Let ym,m = 1, 2, . . . , Nh

k = ks(1+δ/2) be the grid points

of a uniform grid in Y with a grid size h = k−1−δ/2. Denote the linear subspace SX =

span{Ĝ0(x,ym)}N
h
k

m=1 ⊂ L2(X). We show that

(3.35) ‖Ĝ0(x,y)− PSX Ĝ0(x,y)‖L2(X) ≤ ε
for k large enough, where PSX denotes the projection to SX in L2(X).

If X and Y are disjoint, we have |∇yĜ0(x,y)| . k, ‖D2
yĜ0(x,y)‖ . k2, where the

bound is uniform in x,y and the constants in . depend on the distance between X and

Y . Given a non-grid point y ∈ Y , Ĝ0(x,y) can be approximated by a linear interpolation,
which is a convex combination of the Green’s functions at its neighboring grid points. To
be precise, suppose y ∈ Y lies in the s dimensional simplex with vertices ym1 , . . . ,yms+1 .

Let r1
y, . . . , r

s+1
y be the barycentric coordinates for y, i.e.,

y =

s+1∑
j=1

rjyymj , 1 ≥ rjy ≥ 0,

s+1∑
j=1

rjy = 1.

Then we have the following linear interpolation

(3.36) |Ĝ0(x,y)−
s+1∑
j=1

rjyĜ0(x,ymj )| . ‖D2
yĜ0(x,y)‖h2 . k−δ,
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and hence (3.35) is true when k is large enough.

If X and Y are not disjoint and y ∈ X ∩ Y , one has Ĝ0(·,y) ∈ L2(X) for d = 2, 3. For
a given ε > 0, there are balls Bτ(ε)(y) and Bτ(ε)(ymj ) with radius 0 < τ(ε) ∼ ε2 centered
at y and ymj , j = 1, 2, . . . , d+ 1 such that

(3.37)

∫
Bτ(ε)(y)

|Ĝ0(x,y)|2dx ≤ ε2

8(d+ 2)
,

∫
Bτ(ε)(ymj )

|Ĝ0(x,ymj )|2dx ≤
ε2

8(d+ 2)
.

For any x ∈ X \Bτ(ε)(y) ∪ (∪d+1
j=1Bτ(ε)(ymj )), we have

|∇yĜ0(x,y)| . max(kτ−1(ε), τ−2(ε)), ‖D2
yĜ0(x,y)‖ . max(k2τ−1(ε), kτ−2(ε), τ−3(ε)),

and hence

|Ĝ0(x,y)−
s+1∑
j=1

rjyĜ0(x,ymj )| . ‖D2
yĜ0(x,y)‖h2

.max(k−δτ−1(ε), k−1−δτ−2(ε), k−2−δτ−3(ε)).

(3.38)

By decomposing the integration on X into two parts, one on Xε = X ∩ (Bτ(ε)(y) ∪
(∪d+1

j=1Bτ(ε)(ymj ))) and the other on XC
ε = X \ (Bτ(ε)(y) ∪ (∪d+1

j=1Bτ(ε)(ymj ))), we have

(3.39)

∫
Xε
|Ĝ0(x,y)−

∑d+1
j=1 r

j
yĜ0(x,ymj )|2dx

≤ 2
∫
Xε
|Ĝ0(x,y)|2 +

∑d+1
j=1 r

j
y|Ĝ0(x,ymj )|2dx

≤ 2
∫
Bτ(ε)(y)∪(∪d+1

j=1Bτ(ε)(ymj )) |Ĝ0(x,y)|2 +
∑d+1

j=1 r
j
y|Ĝ0(x,ymj )|2dx

≤ ε2

2
,

and from (3.38)

(3.40)

∫
XC
ε

|Ĝ0(x,y)−
d+1∑
j=1

rjyĜ0(x,ymj )|2dx ≤
ε2

2

when k is large enough. Combining the above two parts we get (3.35) when k is large
enough, which implies

(3.41)

√∫
Y
‖Ĝ0(x,y)− PSX Ĝ0(x,y)‖2L2(X)dy ≤ ε.

�

Remark 3.5. The above upper bound holds for unnormalized Green’s function when d = 3.
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If dim(X) = dim(Y ) = d = 2, 3, since the Green’s function belongs to L2(X × Y ), our
approximate separability estimates in L2 norm is valid for general compact domains X and
Y , disjoint or not. However, if X and Y are disjoint, our results in L2 norm can be easily
extended to L∞(X × Y ). Since L∞ norm is stronger than L2 norm in a compact domain,
the lower bound estimates in Theorem 3.1 immediately extend to L∞ norm. Also, the first
part of the proof in Theorem 3.2 directly extends to L∞ norm and hence the upper bound
estimates. We summarize these two results below.

Theorem 3.3. Let X,Y be two disjoint compact manifolds embedded in Rd, d = 2, 3, and
d ≥ dim(X) ≥ dim(Y ) = s. If there is a α > 0 such that for any two points y1,y2 ∈ Y ,

| < Ĝ0(·,y1), Ĝ0(·,y2) >X | . (k|y1 − y2|)−α as k|y1 − y2| → ∞

and there are fl(x) ∈ L∞(X), gl(y) ∈ L∞(Y ), l = 1, 2, . . . , N ε
k such that

(3.42)

∣∣∣∣∣∣Ĝ0(x,y)−
Nε
k∑

l=1

fl(x)gl(y)

∣∣∣∣∣∣ ≤ ε, ∀x ∈ X,∀y ∈ Y,

then

(3.43) N ε
k ≥


cεk

2α, α < s
2 ,

cεk
d−δ, α ≥ s

2 ,

for any δ > 0 and k large enough, where cε ≥ c(1 − (Cε)2)2 for some positive constants c
and C that depend on X, Y and the distance in-between.

Theorem 3.4. Let X,Y be two disjoint compact manifolds embedded in Rd, d = 2, 3, and
d ≥ dim(X) ≥ dim(Y ) = s. For any ε > 0 and δ > 0, there are fl(x) ∈ L∞(X), gl(y) ∈
L∞(Y ), l = 1, 2, . . . , N ε

k ≤ Ckd+δ such that

(3.44)

∣∣∣∣∣∣Ĝ0(x,y)−
Nε
k∑

l=1

fl(x)gl(y)

∣∣∣∣∣∣ ≤ ε, ∀x ∈ X,∀y ∈ Y,

for k large enough, where C > 0 is some constant that depends on X, Y and the distance
in-between.

Remark 3.6. In Theorem 3.2, the upper bound estimate for the approximate separability
of the Green’s functions of the Helmholtz equation in the high frequency limit in L2 norm
is derived based on a separable approximation using linear combinations (interpolation)
of a set of Green’s functions with sources properly sampled. In practice, a set of prop-
erly sampled Green’s functions can also be viewed as a set of learned basis to represent
general solutions to the underlying PDE effectively. One can also construct separable ap-
proximations for the Green’s functions using the eigenfunctions of the differential operator,
which can be viewed as the spectrum basis for the representation of general solutions to
the underlying PDE. Below we show that, based on a separable approximation using the
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eigenfunctions of the Laplace operator and Weyl’s asymptotic formula [32] for the eigenval-
ues, we can obtain exactly the same upper bound estimate in the L2 norm as in Theorem
3.2 for the approximate separability of the Green’s functions of the Helmholtz equation in
the high frequency limit in a bounded domain.

Suppose G(x,y) is the Green’s function in a bounded domain Ω ⊂ Rd satisfying

(3.45)

{
∆xG(x,y) + k2G(x,y) = δ(x− y), x,y ∈ Ω,
G(x,y) = 0, x ∈ ∂Ω.

Let um(x), ‖um‖L2(Ω) = 1,m = 1, 2, . . . be the normalized eigenfunctions for the Laplace
operator

(3.46)

{
∆um(x) = λum(x), x ∈ Ω,
um(x) = 0, x ∈ ∂Ω

with eigenvalues 0 > λ1 ≥ λ2 ≥ . . .. Hence um(x),m = 1, 2, . . . are also the normalized
eigenfunctions for the homogeneous Helmholtz operator with eigenvalues λm + k2,m =
1, 2, . . .. Here we assume the domain Ω is not resonant, i.e., λm + k2 6= 0, ∀m. Since
um(x) forms an orthonormal basis for L2(Ω) and G(x,y) ∈ L2(Ω) for d = 2, 3, one has the
following expansion

(3.47) G(x,y) =

∞∑
m=1

(λm + k2)−1um(y)um(x).

The Weyl’s asymptotic formula gives

(3.48) |λm| ∼
4π2m2/d

(Cd|Ω|)2/d

for large m, where |Ω| denotes the volume of Ω. Choose a large enough integer M &

kd+δ, δ > 0, then for m > M , |λm + k2|−1 . |λm|−1 . m−
2
d . For any ε > 0, we have

(3.49)

∫
Ω

∫
Ω
|G(x,y)−

M∑
m=1

(λm + k2)−1um(y)um(x)|2dxdy .
∞∑

m=M+1

m−
4
d .M1− 4

d ≤ ε2

when k is large enough for d = 2, 3. In particular for any two subdomains X,Y of Ω, (3.49)
implies

(3.50)

∥∥∥G(x,y)−
∑M

m=1(λm + k2)−1um(y)um(x)
∥∥∥
L2(X×Y )

≤
∥∥∥G(x,y)−

∑M
m=1(λm + k2)−1um(y)um(x)

∥∥∥
L2(Ω×Ω)

≤ ε

which shows that N ε
k . k

d+δ for any δ > 0 in the high frequency limit.

One can include the volume of Ω explicitly in the above argument by requiring M
|Ω| &

kd+δ, which implies N ε
k . |Ω|kd+δ. Instead of using Fourier series to show that the scattered

field as a superposition of free space Green’s functions is almost band limited and the
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degrees of freedom is close to the Nyquist number in term of the domain size in [5, 6], we
generalize the result using the eigenfunctions of the Laplace operator.

Remark 3.7. It can be seen from Theorem 3.1 and 3.2 as well as Remark 3.6 that if two
Green’s functions decorrelate fast,

∣∣∣< Ĝ(·,y1), Ĝ(·,y2) >
∣∣∣ . (k|y1−y2|)−α with α ≥ s

2 , s =

dim(Y ) ≤ dim(X), the upper and lower bound estimates of the approximate separability
of the Green’s functions of the Helmholtz equation in the high frequency limit is sharp. In
this scenario, a set of Green’s functions with sources properly sampled or a set of leading
eigenfunctions for the Laplace operator form an effective basis to represent any Green’s
function or solution of the PDE. However, the representation is not further compressible.

Remark 3.8. Lemma 3.1 and Theorem 3.1 provide a necessary condition for high separa-
bility of the Green’s functions: no fast decorrelation between two Green’s functions. For
example, the Green’s functions of the following coercive elliptic operator in divergence form
satisfy the necessary condition in Rd, d ≥ 3,

(3.51) L = −
d∑

i,j=1

∂

∂xj
(aij(x)

∂

∂xj
), λ|ξ|2 ≤

d∑
i,j=1

aij(x)ξiξj ≤ µ|ξ|2,

where aij(x) are bounded measurable functions and 0 < λ ≤ µ <∞ are two constants. The

unique Green’s function G(x,y) for the above differential operator in Rd, d ≥ 3 satisfies
[24, 16]

(3.52) c(d, λ, µ)|x− y|2−d ≤ G(x,y) ≤ C(d, λ, µ)|x− y|2−d,

where 0 < c(d, λ, µ) < C(d, λ, µ) < ∞ are two constants depending on d, λ, µ. Given a
compact domain X ⊂ Rd and two points y1,y2 /∈ X, define

ρ = min[min
x∈X
|x− y1|,min

x∈X
|x− y2|], K =

C(d, λ, µ)

c(d, λ, µ)

[
1 +
|y1 − y2|

ρ

]d−2

.

Then we have

G(x,y2)

G(x,y1)
≤ C(d, λ, µ)

c(d, λ, µ)

[
|x− y1|
|x− y2|

]d−2

≤ C(d, λ, µ)

c(d, λ, µ)

[
|x− y2|+ |y1 − y2|

|x− y2|

]d−2

≤ K,

and vice versa. Given two disjoint compact domains X,Y ⊂ Rd, d ≥ 3, with ρ being the
distance between the two domains and r being the diameter of Y , the correlation between
two Green’s functions with sources at y1,y2 ∈ Y has the following property

(3.53) 1 ≥< Ĝ(·,y1), Ĝ(·,y2) >X≥ K−2 ≥ K̃−2, K̃ =
C(d, λ, µ)

c(d, λ, µ)

[
1 +

r

ρ

]d−2

.

Furthermore, the Caccioppoli inequality gives a bound of the L2 norm of the gradient of
the Green’s function away from the source singularity. This fact was used in [2] to show
that the Green’s functions of the above elliptic operator is highly separable.
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4 Examples

In this section we study the approximate separability for the Green’s function of the
Helmholtz equation in the high frequency limit for concrete examples for disjoint X,Y in
3D in two scenarios:

(1) For two fixed compact manifolds X,Y embedded in R3, we provide explicit lower
and upper bound estimates in Section 4.1 based on our previous analysis.

(2) For special k dependent X,Y setups, we show the possibility of high separability
in Section 4.2.

For the first scenario, the Green’s functions of the Helmholtz equation are not highly
separable in the high frequency limit since N ε

k grows as some power of k. In particular, for
two fixed compact manifolds X,Y embedded in R3 and 3 ≥ dim(X) ≥ dim(Y ) = s, if the
decorrelation of two Green’s functions is fast enough,∣∣∣< Ĝ(·,y1), Ĝ(·,y2) >X

∣∣∣ . (k|y1 − y2|)−α, α ≥ s

2
,

both the lower bound and the upper bound for the approximate separability of the Green’s
function of the Helmholtz equations in the high frequency limit are sharp. For example, as
discussed in the proof of Theorem 2.1, Remark 2.4 and Section 2.2, if a ray going through
two points, y1,y2 ∈ Y , does not intersect X or intersect X at isolated points, then α ≥ s

2
and hence both lower bound and upper bound are sharp.

However, there is a trivial case, i.e., two co-linear line segments (case 1 in Section 4.2),
and there are special setups for k dependent X and Y , for which the Green’s function of
the Helmholtz equation can be highly separable. High separability in these special setups,
which implies the availability of low rank approximations in the corresponding discretized
systems, can be utilized to develop fast algorithms.

In the following case studies, we give lower bound and upper bound estimates for N ε
k

with fixed ε > 0 as k → ∞. All constants in these estimates are independent of k. The
dependence of the constants on X,Y as well as on ε (such as those in Theorem 3.1) are
suppressed.

4.1 Approximate separability of the Green’s functions for fixed X,Y .

1) X and Y are two disjoint compact domains in R3, dim(X) = dim(Y ) = s = 3. For two
points y1,y2 ∈ Y , one can only claim α = 1 in general. This is because, for any point
y ∈ Y , there is a solid cone with y as the vertex such that a segment of the ray (a straight
line in homogeneous medium) connecting y and a point in the cone gives a 1D curve of
stationary phase in X (see Theorem 2.1). Hence α = 1 < s

2 , Theorem 3.1, 3.3 give the

lower bound N ε
k & k

2 while Theorem 3.2, 3.4 give the upper bound N ε
k . k

3+δ for any δ > 0.

2) X and Y are two disjoint compact surfaces in 3D, dim(X) = dim(Y ) = s = 2. This is a
typical scenario for boundary integral methods in which X and Y are two patches of the
scattering boundaries. Generically, the ray going through two points y1,y2 ∈ Y intersects
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X at most finite number of times, i.e., there are only isolated stationary points for the
oscillatory surface integral < Ĝ(·,y1), Ĝ(·,y2) >X . If there are isolated stationary points
in the interior of X, α = s

2 , or if there are only isolated stationary points on the boundary

∂X, α = s+1
2 (see Remark 2.4). For both cases, we have α ≥ s

2 and the following sharp
estimates for k large enough from Theorem 3.1- 3.4

k2−δ . N ε
k . k

2+δ, ∀δ > 0.

There are a few special setups belonging to this case when people compute the direct
inverse of discretized linear systems for PDEs using the multi-frontal method in 3D. The
full linear systems are reduced to smaller but dense linear systems corresponding to un-
knowns staying on planar subdomain boundaries, such as those depicted in Figure 4.1,
after elimination of interior nodes in each subdomain. Further sparsifying these smaller
but dense linear systems utilizing low rank approximations of off-diagonal submatrices is
crucial for desiginning fast solvers. We use our approximate separability estimates for
these typical setups to show why it is not doable for the Helmholtz equation in the high
frequency limit, which has been observed widely in numerical computations. For s = 2,
the upper bound is N ε

k . k2+δ for any δ > 0. For the lower bound, we first look at three
typical configurations in homogeneous medium where rays are straight lines: (a) If X,Y
are two disjoint coplanar regions as shown in Figure 4.1(a). For any point y ∈ Y there is
a solid cone with y as the vertex such that a segment of the ray connecting y and a point
in the cone stays in X. In this case we have α = 1

2 and N ε
k & k for k large enough; (b)

If X,Y are two disjoint planar regions that are not coplanar nor parallel to each other,
e.g. perpendicular to each other as shown in Figure 4.1(b), we have α = 1 since the ray
going through any two points y1,y2 ∈ Y intersects X at most finite times (0 or 1). So one
has N ε

k & k2−δ,∀δ > 0 for k large enough; (c) If X,Y are two planar regions in parallel

as shown in Figure 4.1(c), generically one has α = 3
2 since the ray going through any two

points y1,y2 ∈ Y does not intersect X (see Remark 2.4). So one has N ε
k & k2−δ, ∀δ > 0

for k large enough. If the medium is heterogeneous, a ray going through two points y1,y2

intersects a planar region X at most a finite number of times generically. So we have α ≥ 1
and the sharp low bound N ε

k & k
2−δ,∀δ > 0 in general no matter how they are positioned

relatively. For a discretization with a fixed ratio between the grid size and the wavelength,
the sharp lower bound means that low rank approximation of the off-diagonal sub-matrices
after elimination of the interior nodes does not exist in the high frequency limit.

X Y

X
Y X Y

(a) (b) (c)

Figure 4.1. Two planar surfaces in 3D.
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3) X ∈ R3 is a compact domain (dim(X) = 3), Y is a compact smooth curve (dim(Y ) =
s = 1) or surface (dim(Y ) = s = 2) and X,Y are disjoint. Generically, given two points
y1,y2 ∈ Y , depending on whether or not X contains a portion of the ray that goes through
the two points, one has α = 1 or α = 2 respectively (see Theorem 2.1). Since α ≥ s

2 , from
Theorem 3.1- 3.4 one has the following sharp estimates for k large enough,

ks−δ . N ε
k . k

s+δ, ∀δ > 0.

4) X is a 2D surface or 1D curve and Y is a 1D curve. Generically, a ray connection two
points y1,y2 ∈ Y intersects X at most finite number of time. Hence, we have α ≥ 1 if X
is a surface and α ≥ 1

2 if X is a curve using standard stationary phase theory. So for both
cases we have sharp bounds for k large enough

k1−δ . N ε
k . k

1+δ ∀δ > 0, k →∞.

4.2 A few special highly separable setups

So far in this study we have shown that the lower bound for the number of terms, N ε
k, in

a separable approximation (1.2) of the Green’s function G(x,y) of the Helmholtz equation
in the high frequency limit grows at least with certain power of k (Theorem 3.1, 3.3) for
two fixed X and Y . However, there is a trivial case, i.e., two co-linear line segments (case
1 below), and there are specially designed setups for k dependent X and Y , for which
the Green’s function of the Helmholtz equation can be highly separable. In these setups,
N ε
k does not depend on k and depends on ε logarithmically. These special setups can be

exploited to develop fast algorithms in practice by utilizing low rank approximations.

Assume that the geometric optics Ansatz G(x,y) = A(x,y)eikφ(x,y) is valid, where
A(x,y) and φ(x,y) are the smooth amplitude and phase functions respectively. To achieve
high separability in these special k dependent setups, one has to avoid rapid change in the
phase function which causes the fast decorrelation between two Green’s functions. A typical
strategy is to find φ1(x) and φ2(y) such that k(φ(x,y)−φ1(x)−φ2(y)) is uniformly bounded
with respect to x ∈ X,y ∈ Y and k since the amplitude function A(x,y) is independent

of k. Then a high separable approximation is possible for eik(φ(x,y)−φ1(x)−φ2(y)) due to the
fast convergence of Taylor expansion for eiz for |z| ≤ C <∞. The phase difference between
two Green’s functions at different sources y1,y2 can be written as

k(φ(x,y1)− φ(x,y2))

=k(φ2(y1)− φ2(y2)) + k[(φ(x,y1)− φ1(x)− φ2(y1))− (φ(x,y2)− φ1(x)− φ2(y2))],

which is a constant phase shift k(φ2(y1)− φ2(y2)) plus a term that is bounded uniformly
with respect to x ∈ X,y ∈ Y and k . Hence no fast oscillation is present to decorrelate two
Green’s functions. For simplicity the 3D free space Green’s function (2.4) of the Helmholtz
equation is used for illustration in the following examples.
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1) A trivial case where X,Y are two line segments that are collinear as shown in Fig-
ure 4.2(a) in a homogeneous medium

(4.1) < Ĝ0(·,y1), Ĝ0(·,y2) >=
1

‖G0(·,y1)‖2‖G0(·,y2)‖2
eik(y2−y1)

∫
X

1

|x− y1||x− y2|
dx.

Denote the axis going through these two line segments as r, we have

(4.2) G0(x,y) =
1

4π

e−ik(rx−ry)

ry − rx
=

1

4π
e−ikrxeikryr−1

y

∞∑
m=0

(
rx
ry

)m.

In this trivial case, φ(x,y) = φ1(x) + φ2(y), where φ1(x) = −rx, φ2(y) = ry. It is easy

to see that the geometric series can be truncated at [(log lX
lX+ρ)−1 log(4πρε)] + 1 to get a

separable approximation for any ε > 0 independent of k, where lX is the length of X and
ρ is the distance between X and Y . So we have

N ε
k ≤ [max{(log

lX
lX + ρ

)−1, (log
lY

lY + ρ
)−1} log(4πρε)] + 1.

The same argument can be applied to two disjoint curve segments X and Y that lie on the
same ray in a heterogeneous medium. In this case

(4.3) < Ĝ(·,y1), Ĝ(·,y2) >=
1

‖G(·,y1)‖2‖G(·,y2)‖2
eikφ(y1,y2)

∫
X
A(x,y1)A(x,y2)dx,

where φ(y1,y2) is the travel time between y1 and y2 and A(x,y1), A(x,y2) are the corre-
sponding amplitudes in a geometric optics Ansatz discussed in Section 2.2.

2

X Y

o rx y
1

y
o rρ

η ξ
τX Y

(a) (b)

Figure 4.2. Two special setups of X and Y that allow highly separability of the
Green’s function.

2) X and Y are two disjoint thin cylinders around a line in a homogeneous medium as
shown in Figure 4.2(b). The lengths of the two cylinders can be of O(1). The separation
distance between the two cylinders can be at the scale of wavelength O(k−1). However, the
radius of the two cylinders have to be smaller than the separation distance. This 3D setup
is analogous to the 2D setup in [25]. Numerical verification will be presented in Section 5.

Let the longitudinal axis be r and the other two orthogonal coordinates in the plane
perpendicular to r be ξ, η. Let x = (rx, ξx, ηx) ∈ X and y = (ry, ξy, ηy) ∈ Y . Denote

ρ = infx∈X,y∈Y (rx−ry) and τ = supx∈X,y∈Y
√
ξ2 + η2. Assume kτ < 1

2 , µ = τ
ρ <

1
2 . Again

in this case φ1(x) = −rx, φ2(y) = ry as in the previous case. One has

k|φ(x,y)− φ1(x)− φ2(y)| = k(|x− y| − (ry − rx)) < 2kτ = 1
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Next, we give an explicit separable approximation using asymptotic expansions.
(4.4)

k|x− y| = k
√

(rx − ry)2 + (ξx − ξy)2 + (ηx − ηy)2

= k(ry − rx) + k
√

(ξx − ξy)2 + (ηx − ηy)2

∞∑
m=1

(−1)m(2m)!

(1− 2m)(m!)24m
((ξx − ξy)2 + (ηx − ηy)2)m−1/2

(ry − rx)2m−1
.

Note that k
√

(ξx − ξy)2 + (ηx − ηy)2 ≤ 2kτ < 1 and (−1)m(2m)!
(1−2m)(m!)24m

< 1
2m . The second term

in the above expression can be bounded by a geometric series
∑∞

m=1(2τ
ρ )2m−1. So we have

(4.5) < Ĝ0(·,y1), Ĝ0(·,y2) >=
1

‖G0(·,y1)‖2‖G0(·,y2)‖2
eik(ry1−ry2 )

∫
X

eiφ̃(x)

|x− y1||x− y2|
dx,

where φ̃(x) = k[(|x − y1| − (ry1 − rx)) − (|x − y2| − (ry2 − rx))] and |φ̃(x)| = O(1),∀x ∈
X,∀y1,y2 ∈ Y . Again no fast oscillation due to rapid change of phase is present in the
integral. We show an explicit separable approximation based on the expansion (4.4).

For any tolerance ε > 0, take q such that (2τ
ρ )2q+1(1 − 2τ

ρ )−1 < ε. So only the first

q = O(| log ε|) terms are needed in the summation in (4.4). Denote Q(x,y) to be the first
q term expansion,

Q(x,y) = k
√

(ξx − ξy)2 + (ηx − ηy)2

q∑
m=1

(−1)m(2m)!

(1− 2m)(m!)24m
((ξx − ξy)2 + (ηx − ηy)2)m−1/2

(ry − rx)2m−1
.

Q(x,y) is bounded independent of k and so

eik|x−y| = eik(ry−rx)ei(Q(x,y)+ε) = eik(ry−rx)eiQ(x,y) +O(ε).

Since ex has a p = O(| log ε|) term polynomial expansion for any tolerance ε for a bounded
x, we have

eiQ(x,y) =

p∑
l=0

[iQ(x,y)]l

l!
+O(ε).

Each term in the expansion of [Q(x,y)]l is like[
k
√

(ξx − ξy)2 + (ηx − ηy)2

]l (√(ξx − ξy)2 + (ηx − ηy)2
)m

(ry − rx)m

where the integer m ranges from l to (2q−1)l and m+l is even. One only needs to keep those

m ≤ 2q terms in the expansion because (2τ
ρ )2q+1 =O(ε) and k

√
(ξx − ξy)2 + (ηx − ηy)2<1.

So altogether we have O(pq) = O(| log ε|2) terms of the form

(4.6)
((ξx − ξy)2 + (ηx − ηy)2)m

(ry − rx)l
,

where 0 < l ≤ m . | log ε| are integers. Each term

((ξx − ξy)2 + (ηx − ηy)2)m = [(ξ2
x + η2

x)− 2ξxξy − 2ηxηy + (ξ2
y + η2

y)]
m
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can be expanded into (m+3)!
m!3! =O(| log ε|3) separable terms. Further more, since rx>ry≥0,

O(| log ε|) leading terms are needed in the following expansion to have an ε approximation,

(4.7) (ry − rx)−l = r−lx

[
1−

∞∑
m=1

(
ry
rx

)m]l
.

Hence a separable ε-approximation of eik|x−y| requires O(| log ε|6) terms. The last term we
need to make a separable approximation is 1

|x−y| .

1

|x− y|
= (ry − rx)−1

[
1 +

(ξx − ξy)2 + (ηx − ηy)2

(rx − ry)2

]− 1
2

= r−lx

[
1−

∞∑
m=1

(
ry
rx

)m]l [
1 +

∞∑
m=1

(−1)m(2(m+ 1))!

2(2m+ 1)((m+ 1)!)24m
((ξx − ξy)2 + (ηx − ηy)2)m

(ry − rx)2m

]
Both summations in the above the formula can be truncated at O(| log ε|) terms with ε
error. Each term in the summation in the second bracket is similar to the term in (4.6)
which can be approximated by at most O(| log ε|4) separable terms. So 1

|x−y| can also be

approximated by O(| log ε|6) separable terms. Combine all these terms together we have
N ε
k ≤ O(| log ε|12) for this setup.

3) Here we study two k dependent setups of X and Y that have been proposed and used
for developing fast algorithms.

(a) In [28, 7, 21] fast butterfly algorithms for computing highly oscillatory Fourier
integral operators and boundary integrals for the Helmholtz equation were developed. The
key idea is a dyadic decomposition of two domains A,B into tree structures TA, TB, from
root to leaf, and a recursive paring of X ∈ TA and Y ∈ TB such that the phase function
or the kernel function for the boundary integrals, i.e., the free space Green’s function,
restricted on X × Y has high separability or low rank approximation in discrete setting.
The condition for pairing X and Y is that the product of the diameters of X and Y is less
than or equal to 1

k . For this setup, the key observation is that one can construct a simple
separable phase function, φ(x0,y) +φ(x,y0)−φ(x0,y0) that can approximate the original
phase function uniformly well, i.e., k|φ(x,y)−φ(x0,y)−φ(x,y0) +φ(x0,y0)| is uniformly
bounded for all k, x ∈ X,y ∈ Y , where x0,y0 are the centers of X,Y respectively. Under
an analytic function assumption for φ(x,y), k(φ(x,y) − φ(x0,y) − φ(x,y0) + φ(x0,y0))
can be approximated by a Taylor expansion with O(| log ε|) terms (see the proof in [7]).

(b) In [10] fast directional multilevel algorithms for integrals were developed based on
directional low rank approximations of the free space Green’s functions of the Helmholtz
equation on two domains Xr and Yr that satisfy a directional parabolic separation con-
dition: Yr is a ball of radius r centered at a point c and Xr is a domain containing
points that are at a distance r2 or greater from c and belong to a cone centered at c
with spanning angle 1

r . Here r is a length scale in the unit of wavelength λ = 2π
k . For
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this setup, the phase function |x − y| = k
2π |λx − λy| can be uniformly approximated by

x̂ · (x − y) = |x| − x̂ · y = |x| − (x̂ − l̂) · y − l̂ · y which can be further approximated by

|x| − l̂ · y uniformly, where x̂ = x
|x| and l̂ is the direction the cone centered at. In other

words, let φ(x,y) = |x− y| and φ1(x) = |x|, φ2(y) = −l̂ · y, then |φ(x,y)− φ1(x)− φ2(y)|
is uniformly bounded and has an O(log |ε|) term separable approximation with error ε > 0 .

4) Here we present a scaling argument to show a k dependent asymptotic setup for two
disjoint domains, X and Y , for which high separability of the Green’s function of the
Helmholtz equation in the high frequency limit exists. Then we use this scaling argument
to show that the condition for the setup of butterfly algorithm is tight.

Let rX , rY denote the diameters of X,Y respectively. Denote the distance between
X and Y to be dist(X,Y ). Without loss of generality, let rY ≤ rX and rX = O(1).
Actually the size of X is not restricted since it can always be scaled to O(1) by scaling x
to x

rX
and k to rXk for the Helmholtz equation (1.3). Assume rY � dist(X,Y ). From

the scaling argument in Remark 2.3, the rate of decorrelation of two Green’s functions

is rescaled to
∣∣∣< Ĝ(·,y1), Ĝ(·,y2) >

∣∣∣ . ( |y1−y2|2k
dist(X,Y )

)−α
, ∀y1,y2 ∈ Y for some α > 0. So if

rY .
√

dist(X,Y )
k , there is no fast decorrelation of two Green’s functions. On the other hand,

if rY &
√

dist(X,Y )
k1−δ

, ∀δ > 0, one can put a grid with a grid size a little larger than

√
dist(X,Y )

k

in Y so that they become more and more decorrelated as k → ∞. At the same time, the
number of grid points in Y becomes larger and larger as k → ∞. Use a similar argument
as in Lemma 3.1 one can show a lower bound estimate for the approximate separability
which grows with some power of k. The above discussion can include dist(X,Y ) as well.
For example, if dist(X,Y ) = O(k), rY can be O(1).

In a typical setup for the butterfly algorithm [28, 7, 21], there are two domains A,B
whose sizes are of O(1) and dist(A,B) = O(1). For example, A,B may be disjoint patches
on the boundaries of scatterers in boundary integral methods. Dyadic decomposition of
A,B gives tree structures TA, TB with L = O(log k) levels, where the roots are A,B and
the leaf nodes at level L are of sizes comparable to the wavelength λ = O(k−1). Then the
interaction between A and B through a highly oscillatory kernel function, e.g., the Green’s
function of the Helmholtz equation or a Fourier integral operator, is computed based on
a recursive pairing of nodes X, A ⊇ X ∈ TA, and Y , B ⊇ Y ∈ TB, such that the level
of X, l(X), and the level of Y , l(Y ), satisfy l(X) + l(Y ) = L. The key observation is
that the interaction between X and Y has a low rank approximation. It was shown in
[7] that the low rank approximation is guaranteed if rXrY = O(k−1) which is implied by
the condition l(X) + l(Y ) = L (plus some analyticity condition on the phase function).
It can be easily seen that high separability for the setup for the butterfly algorithm falls
into the asymptotic regime discussed above. The requirement of analyticity of the phase
function is guaranteed by the condition dist(X,Y ) ≥ dist(A,B) = O(1). The condition

rXrY = O(k−1) implies that the smaller domain Y (or X) satisfies rY (or rX)≤ O(k−
1
2 ). In

particular, this condition is tightly satisfied when rX ∼ rY or l(X) = l(Y ). If rArB = O(kδ)
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for any δ > 0 or dist(A,B) → 0 as k → ∞, then the condition is violated. Then high
separability (or low rank approximation for discrete system) is not valid as discussed above.

4.3 Approximate separability of the Green’s functions of the Helmholtz
equation with boundary conditions

So far we have shown approximate separability estimates for the Green’s function of
the Helmholtz equation in the high frequency limit in the whole space. Here we study
an example in which boundary reflections are present. First we study the approximate
separability for the Green’s function of the Helmholtz equation in half space with a homo-
geneous Dirichlet boundary condition as illustrated in Figure 4.3(a). The Green’s function
for the upper space, denoted by G1(x,y), can be explicitly constructed from the free space
Green’s function, denoted by G0(x,y),

G1(x,y) = G0(x,y)−G0(x,y),

where y is the mirror image of y with respect to the boundary. Decorrelation of G1

can be deduced from that of G0. Given two disjoint compact domains X and Y in the
upper half space and two points y1,y2 ∈ Y , if the line connecting these two points, de-

noted by ly2
y1 , intersects with X, or none of the the lines l

y2
y1 , ly2

y1
, l

y2
y1

intersects with X,

< G0(·,y1), G0(·,y2) > is the dominant term in the following and we have
(4.8)
|< G1(·,y1), G(·,y2) >|

=|<G0(x,y1),G0(x,y2)>−<G0(x,y1),G0(x,y2)>−<G0(x,y1),G0(x,y2)>+<G0(x,y1),G0(x,y2)>|

∼ |< G0(·,y1), G0(·,y2) >| ,

since |y1−y2| ≤ min(|y1−y2|, |y1−y2|, |y1−y2|) and dist(yj , X) < dist(yj , X), j = 1, 2.
Otherwise, decorrelation of G1(x,y1) and G1(x,y2) may be slower than that of G0(x,y1)
and G0(x,y2). In general, for two disjoint compact domains X and Y , there is a solid cone
at each point y ∈ Y with y as the vertex such that a line connecting y and any other point
in the cone intersects X. The correlation between two Green’s functions with one source at
y and the other source in the cone with or without the boundary is of the same order from
(4.8). Due to the presence of line of stationary points, these stronger correlations are the
leading terms in the estimate of tr(ATA) as discussed in Remark 3.3. Hence the proof and
results in Lemma 3.1 and those lower bound estimates in Theorem 3.1 and Theorem 3.3 for
the approximate separability of the free space Green’s function of the Helmholtz equation
in the high frequency limit hold for the case with a reflection boundary too. It is also easy
to see that a separable approximation of the Green’s function G1(x,y) for x ∈ X,y ∈ Y
can be obtained by combining separable approximations of G0(x,y) for x ∈ X,y ∈ Y and
that of G0(x,y) for x ∈ X,y ∈ Y , where Y is the mirror image of Y with respect to the
boundary. So the upper bound estimates in Theorem 3.2 and Theorem 3.4 also hold.

Although the asymptotic estimates for the lower bound and upper bound for the ap-
proximate separability of the Green’s functions of the Helmholtz equation in the case with
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a boundary are of the same order to those in free space, the least number of terms, N ε
k,

needed for a separable approximation for the Green’s function for a fixed ε > 0 may increase
due to the reflections at the boundary in general. Because the Green’s function G1(x,y)
viewed as a family function in X parameterized by y ∈ Y is composed of a family of free
space Green’s function G0(x,y) with y in a larger domain, y ∈ Y ∪ Y . Geometrically,
there are multiple rays instead of one ray connecting any two points x ∈ X and y ∈ Y
with the presence of a reflection boundary. The phase function becomes more complicated
and needs more terms in a separable approximation. In general, one can expect that the
presence of multiple scatterings can cause faster decorrelation of the Green’s functions and
hence the increase of N ε

k. As the distance from the boundary to X and Y becomes larger
and larger, the effect from the boundary becomes less and less.

reflection boundary

X Y
y1 y2

y2

Y

X Y

x y

reflection boundary

y

(a) (b)

Figure 4.3. Half space setups with a reflection boundary.

Here, we apply the above study of boundary effects to a particular setup as depicted
in Figure 4.3(b). Here X and Y are two disjoint collinear line segments parallel to the
boundary. In free space, G0(x,y),x ∈ X,y ∈ Y is highly separable as discussed in the first
special case in Section 4.2. Now suppose there is a reflection boundary whose distance to
X,Y is less than a wavelength and than the separation distance between X and Y . Since
the Green’s function with the boundary is composed of two free space Green’s functions,
G1(x,y) = G0(x,y) − G0(x,y), where y is the mirror image of y with respect to the
boundary, it follows from the case study for two thin cylinders in Section 4.2 or study in
[25, 11] that G1(x,y),x ∈ X,y ∈ Y is highly separable for this setup. This is the key
observation for the low rank approximation used in the sweeping preconditioner for the
Helmholtz equation in 2D in [11]. However, this highly separable property does not hold if
the boundary is of fixed distance to X,Y as k →∞. Neither does high separability hold in
an analogous setup in 3D where X,Y are planar regions. As discussed in case 2) in Section
4.1, even for two fixed disjoint compact co-planar 2D regions without the boundary, N ε

k is

at least of O(k) for a homogeneous medium and is of O(k2−δ),∀δ > 0, in general as k →∞.

5 Numerical tests

Here we present a few numerical examples to corroborate our analysis in previous sec-
tions. In all our numerical examples the free space Green’s functions in 2D and 3D are
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used. Our computational grid size h resolves the wavelength λ = 2π/k, h = λ/15 in 2D
and h = λ/11 in 3D.

Example 1. We show the correlation between two normalized free space Green’s

functions,
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >X

∣∣∣, in 2D and 3D, where X is a compact domain. In

this test, we show results for k starting from 50 with an increment of 5.

Figure 5.1 shows the correlation between two free space Green’s functions in 2D. Here
the domain X is a disc centered at (0, 0) with radius 0.4. For the results shown in Figure
5.1(a) the two points y1,y2 lie on x-axis outside X. The line going through y1,y2 intersects

X and the segment of intersection is a line of stationary points for < Ĝ0(·,y1), Ĝ0(·,y2) >X .
For the results shown in Figure 5.1(b), the line going through y1,y2 is parallel to y-axis

and does not intersect X. Hence there is no stationary point for < Ĝ0(·,y1), Ĝ0(·,y2) >X .
As shown in the proof of Theorem 2.1, two Green’s functions in this case decorrelate much
faster than the aforementioned case as k →∞. All results show that two Green’s functions
decorrelate faster when |y1 − y2| becomes larger as shown by Theorem 2.1. It can also be
seen that as y1,y2 are further away from X, two Green’s functions become more correlated
due to the scaling of the gradient and the Hessian of the phase function in term of the
distance from y1,y2 to X as explained in Remark 2.3.
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Figure 5.1. Correlation between two normalized free space Green’s functions in 2D.

Figure 5.2 shows the boundary effect with a homogeneous Dirichlet boundary condition.
The boundary is an infinite line that is parallel to x-axis located at y = −d. For the results
shown in Figure 5.2(a), X is again a disc as before. One can see that the boundary con-
dition does affect the correlation between two Green’s functions. However, the asymptotic
behavior is similar to the one without boundary condition as k →∞. For results in Figure
5.2(b), X is a line segment on x-axis between [−0.5, 0.5], which is co-linear with the two
points y1,y2. Without the boundary, the two Green’s functions have a constant difference
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in their phases and hence are highly correlated. When the boundary is present but not
too close or too far from y1,y2 and X, we do see less correlation due to the boundary
effect. When the boundary is either very close or the boundary is very far, the two Green’s
functions become highly correlated as explained in Section 4.3.
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Figure 5.2. Correlation between two normalized Green’s functions in 2D with
boundary effect.

Figure 5.3 shows corresponding tests in 3D. The behavior in 3D is similar to those in
2D. The domain X is a ball centered at the origin with radius 0.4. For the results shown
in Figure 5.3(a), the two points y1,y2 lie on x-axis outside X. The line going through
y1,y2 intersects X and the two Green’s functions decorrelate relatively slowly. For the
same setup, Figure 5.3(b) shows the effect of a Dirichlet boundary condition.
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Figure 5.3. Correlation between two normalized Green’s functions in 3D.
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Example 2 Here we present the pattern of singular values for the matrix G(xi,yj),
where xi and yj are uniformly distributed grid points in X and Y respectively with a grid
size that resolves the wavelength. The 3D free space Green’s function (unnormalized) is
used in the tests. In these tests, we show results for k ranging from 10 to 160 with an
increment of 5. In the following figures, we plot N ε

k, defined in Definition 3.2, vs k. In all
tests we use three threshold values ε = 10−2, 10−4, 10−6.

Figure 5.4(a) shows the result for two line segments that are perpendicular to each other:
X = {(x, y, z)|x ∈ [−1, 1], y = 0, z = 0} and Y = {(x, y, z)|x = 0, y = 0.2, z ∈ [−1, 1]}.
Figure 5.4(b) shows the result for X, a sphere centered at origin with radius 0.5, and a
line segment Y = {(x, y, z)|x ∈ [0.6, 1.6], y = 0.6, z = 0}. As studied in Section 4.1 case 4),
a linear growth of N ε

k in k is observed with fitted lines.
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Figure 5.4. Leading singular values vs. wave number for dim(Y ) = 1.

Figure 5.5 shows the result for two planar squares X,Y of length 0.5 for each side. The
relative positions of X and Y corresponds to the three setups as discussed in Section 4.1
case 2) and demonstrated in Figure 4.1. Figure 5.5(a) shows the results for X,Y that are
side by side and coplanar with a distance 0.1 between them. Figure 5.5(b) shows the results
for X,Y that are side by side and orthogonal to each other with a distance 0.1 between
them. Figure 5.5(c) shows the results for X,Y that are side by side in parallel with a
distance 0.1 between them. As studied in Section 4.1, setup (a) has the slowest rate of
decorrelation between two free space Green’s functions and hence also the slowest growth
of N ε

k while case (c) has the fastest rate of decorrelation between two Green’s functions
and hence also the fastest growth of N ε

k among the three setups as k →∞. At least linear
growth is observed in setup (a). In both setups (b) and (c) a quadratic growth, as predicted
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by the sharp lower bound and upper bound estimates analyzed in Section 4.1 case 2), is
observed. It is important to note that if the medium is heterogeneous, linear growth of N ε

k
in setup (a) may not be observed since the ray going through two points y1,y2 ∈ Y does
not have a segment staying in X (a curve of stationary points) in general as discussed in
Section 4.1 case 2).
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Figure 5.5. Leading singular values vs. wave number for two planar squares in
3D. (a) co-planar, (b) perpendicular, (c) parallel.

Figure 5.6(a) shows an example of two spheres of radius 0.2 with a separation distance
of 0.1 between them. At the maximum wave number k = 160, 12,000 points are randomly
distributed on the surface of each sphere. For smaller wave numbers, the number of points
are proportionally reduced. Again one sees that the number of leading singular values grows
quadratically as predicted by the study in Section 4.1 for case 2). Figure 5.6(b) shows an
example of two thin cylinders as illustrated in Figure 4.2(b). The radius of each cylinder
is half wavelength and the length of each cylinder is 0.5. The separation distance between
the two cylinders is one wavelength. The pattern for the number of leading singular values
agrees with our high separability result shown in Section 4.2.

6 Conclusion

In this work, the approximate separability of the Green’s function of the Helmholtz
equations in the high frequency limit is studied. The results have direct implications
for low rank approximations for the corresponding discretized linear system in numerical
computations. By characterizing the fast decorrelation between two Green’s functions
due to fast oscillations in various situations and showing a tight dimension estimate for the
approximation of a set of almost orthogonal vectors, we prove explicit and sharp asymptotic
estimates for the lower bounds and upper bounds for the number of terms needed for a
separable approximation of the Green’s function of the Helmholtz equation in the high
frequency limit. Applications to setups that are commonly used in practice are presented.
Numerical tests show agreements with the analysis.
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Figure 5.6. SVD pattern for two spheres and two thin cylinders.
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