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Constructing Intrinsic Delaunay Triangulations from the Dual
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Intrinsic Delaunay triangulation (IDT) naturally generalizes Delaunay trian-
gulation from R

2 to curved surfaces. Due to many favorable properties, the
IDT whose vertex set includes all mesh vertices is of particular interest in
polygonal mesh processing. To date, the only way for constructing such IDT
is the edge-flipping algorithm, which iteratively flips non-Delaunay edges
to become locally Delaunay. Although this algorithm is conceptually simple
and guarantees to terminate in finite steps, it has no known time complexity
and may also produce triangulations containing faces with only two edges.
This article develops a new method to obtain proper IDTs on manifold trian-
gle meshes. We first compute a geodesic Voronoi diagram (GVD) by taking
all mesh vertices as generators and then find its dual graph. The sufficient
condition for the dual graph to be a proper triangulation is that all Voronoi
cells satisfy the so-called closed ball property. To guarantee the closed ball
property everywhere, a certain sampling criterion is required. For Voronoi
cells that violate the closed ball property, we fix them by computing topologi-
cally safe regions, in which auxiliary sites can be added without changing the
topology of the Voronoi diagram beyond them. Given a mesh with n vertices,
we prove that by adding at most O(n) auxiliary sites, the computed GVD
satisfies the closed ball property, and hence its dual graph is a proper IDT.
Our method has a theoretical worst-case time complexity O(n2 + tn log n),
where t is the number of obtuse angles in the mesh. Computational results
show that it empirically runs in linear time on real-world models.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface, solid, and object
representations

This work was supported by the National Key Research and Develop-
ment Plan (2016YFB1001202), the Natural Science Foundation of China
(61432003, 61521002, 61661130156), and a Royal Society-Newton Ad-
vanced Fellowship.
Authors’ addresses: Y.-J. Liu, D. Fan, and C.-X. Xu, TNList, Department of
Computer Science and Technology, Tsinghua University, Beijing, China;
emails: liuyongjin@tsinghua.edu.cn, fand14@mails.tsinghua.edu.cn, xu-
cx12@mails.tsinghua.edu.cn; Y. He, School of Computer Engineering,
Nanyang Technological University, Singapore; email: yhe@ntu.edu.sg.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2017 ACM 0730-0301/2017/04-ART15 $15.00

DOI: http://dx.doi.org/10.1145/2999532

General Terms: Algorithms

Additional Key Words and Phrases: Intrinsic Delaunay triangulation,
geodesic Voronoi diagram, duality, the closed ball property

ACM Reference Format:

Yong-Jin Liu, Dian Fan, Chun-Xu Xu, and Ying He. 2017. Constructing in-
trinsic Delaunay triangulations from the dual of geodesic Voronoi diagrams.
ACM Trans. Graph. 36, 2, Article 15 (April 2017), 15 pages.
DOI: http://dx.doi.org/10.1145/2999532

1. INTRODUCTION

A Delaunay triangulation for a set P of points in R
2 is a triangulation

such that no point of P is inside the circumcircle of any triangle in
the triangulation. It is well known that Delaunay triangulations tend
to avoid skinny triangles, since they maximize the minimum angle
of all angles of the triangles in the triangulation. Although Delau-
nay triangulations in Euclidean spaces are well understood [Okabe
et al. 2000], intrinsic Delaunay triangulations (IDTs) on manifold
domains have received less attention. Using the closed ball prop-
erty, Edelsbrunner and Shah [1997] and Dyer et al. [2008] proposed
adaptive sampling criteria for constructing an intrinsic Voronoi di-
agram and its dual Delaunay triangulation on smooth 2-manifolds.
Recently, Boissonnat et al. [2013] proposed an algorithm for con-
structing IDT on smooth closed submanifolds of Euclidean spaces.
Both methods are based on convex neighborhood, which, in general,
is an extremely small region around a point on smooth manifolds.
As a result,despite their important theoretical values, they are not
practical for piecewise linear surfaces, which are dominant in digital
geometry processing.

In this article, we focus on a special type of IDT defined on
manifold triangle meshes, where the IDT’s vertex set includes all
mesh vertices. Such an IDT was first studied by Rivin [1994], who
defined IDT edges using geodesic paths and replaced circumcir-
cles with geodesic circumcircles. As pointed out by Bobenko and
Springborn [2007], this kind of IDT is highly desired over digi-
tal geometry processing, as the classic cotangent Laplace-Beltrami
operator (LBO) has nonnegative weights wij if and only if the un-
derlying triangulation is Delaunay.

To date, the only practical algorithm for computing the IDTs
mentioned previously is the edge-flipping algorithm [Bobenko and
Springborn 2007; Fisher et al. 2007; Indermitte et al. 2001], which
iteratively flips the non-Delaunay edge to become locally Delaunay.
Bobenko and Springborn [2007] proved that the edge-flipping algo-
rithm terminates in a finite number of steps, and therefore the intrin-
sic Delaunay tessellation exists. They also proved the uniqueness
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of the intrinsic Delaunay tessellation. The edge-flipping algorithm
is conceptually simple and easy to implement. However, it has no
known time complexity and may also produce self-loops, leading
to faces with only two edges.

This article presents a new method with bounded time complex-
ity that can guarantee the computed IDTs are free of self-loops. Our
idea is to construct IDT via the dual graph of geodesic Voronoi dia-
grams (GVDs). Dyer et al. [2007b] established the duality between
GVD and IDT on 2-manifold meshes and showed that if a GVD
satisfies the closed ball property [Edelsbrunner and Shah 1997],
then the dual graph is a proper1 IDT.

Our algorithm is the first of its kind to compute GVDs on meshes
that are guaranteed to satisfy the closed ball property. Given a mesh
with n vertices, our method first computes the GVD by taking all
vertices as sites. For each Voronoi cell that violates the closed ball
property, it computes a topologically safe region, in which auxiliary
sites can be added without changing the topology beyond that cell.
We prove that by adding at most O(n) auxiliary sites, the computed
GVD satisfies the closed ball property, and hereby it has a proper
dual IDT. Moreover, thanks to the bounded time complexity of
computing GVD [Liu et al. 2011; Liu and Tang 2013], our method
has a theoretical worst-case time complexity O(n2+tn log n), where
t is the number of obtuse angles in the mesh. We observe that many
real-world models are far from their Delaunay triangulations, and
thus it takes the edge-flipping algorithm many iterations to converge.
In contrast, the performance of our method is not sensitive to the
number of non-Delaunay edges and empirically runs in linear time
O(n) on these models.

In addition to our theoretical contributions, the proper IDTs pro-
duced by our method are favorable to practical applications. Take
the conformal parameterization [Fisher et al. 2007] as an example.
The IDTs produced by the edge-flipping algorithm may contain
degree-1 and/or -2 vertices. As a result, the injectivity of a discrete
conformal mapping is lost, leading to rendering artifacts in texture
mapping and also large local distortion. In contrast, our IDTs are
proper and can be represented by any simplicial complex-based
data structure, making them an ideal input to the existing digital
geometry processing pipeline.

The rest of the article is organized as follows. Section 2 reviews
the mathematical background and highlights the fundamental dif-
ferences between Delaunay triangulations in R

2 and IDTs. Section 3
introduces the key ideas of our method. Section 4 presents our al-
gorithm in detail, followed by the correctness proof and complexity
analysis in Section 5. Section 6 reports the experimental results
and compares IDTs to other Delaunay structures. Finally, Section 7
concludes the article. To ease reading, we list the main notations in
Table I and present the long proofs in the supplementary material.

2. PRELIMINARIES

2.1 Geodesic Paths, Geodesic Triangles,
and Geodesic Circles

Let M be a manifold triangle mesh, and let V , E, F be the set of
vertices, edges, and faces of M , respectively. Every interior point
of M has a neighborhood that is isometric to the neighborhood of
either a point on a Euclidean plane or the apex of a Euclidean cone.

Consider two points p, q ∈ M . A geodesic path between p and
q, denoted by γ (p, q), is the locally shortest path between them.
Mitchell et al. [1987] showed that the general form of a geodesic

1A triangulation is proper if it is a realization of a simplicial complex. See
Dyer et al. [2007b]. All Delaunay triangulations in R

2 are proper.

Table I. Main Notations
M Manifold triangle mesh
V,E, F Sets of vertices, edges, and faces of M

n(= |V |) Number of vertices
v, vi , vj , . . . Mesh vertices
e, eij = {vi , vj } Mesh edges
f, fijk = {vi , vj , vk} Triangular faces
p, q, pi , qi , . . . Points on M

γ (p, q) Geodesic path between p and q

d(p, q) Geodesic distance between p and q

D(p, r) Geodesic disk of radius r centered at p

GVD(P ) Geodesic Voronoi diagram of a set P of
sites

�(BP , CP ) Topological representation of GVD(P )
BP Set of symbolic Voronoi edges
CP Set of symbolic Voronoi cells
β(p, q) Bisector of sites p and q

b(p, q) Symbolic representation of a Voronoi edge
b̃(p, q) Geometric realization of b(p, q)
C(pi ) Symbolic representation of a Voronoi cell
C̃(pi ) Geometric realization of C(pi )
pb(p) Symbolic representation of a

pseudobisector
p̃b(p) Geometric realization of pb(p)

δmax(C̃(p)) Maximal value of δ so that the δ-offset
�(C̃(p), δ) does not contain any site in P

and any Voronoi vertex that is not in C̃(p)
δmax(GVD(P )) Minimal δmax for all Voronoi cells
ε(δ) Radius of the ε-neighborhood D(p, ε) for

any 0 < δ ≤ δmax(GVD(P ))
δ̂max(GVD(P )) Value for a strong δ-offset defined in

Equation (S6) in the supplementary
material

Single-order neighbor Two sites whose Voronoi cells share exactly
one Voronoi edge

Multiple-order Two sites whose Voronoi cells share at least
neighbor two Voronoi edges
IDT(M) Intrinsic Delaunay triangulation of M

� Set of g-edges
� Set of geodesic triangles
ξ ∈ � g-Edges
τ, τi , τj ∈ � Geodesic triangles

path γ is an alternating sequence of vertices (possibly empty) and
edge sequences such that the unfolded image of the path γ along
any edge sequence is a straight line segment and the angle of the
path at a vertex is greater than or equal to π . The vertices with
cone angles more than 2π are called saddle vertices, which play
a critical role in geodesic computation [Ying et al. 2013; Xu et al.
2015]. We denote by d(p, q) the geodesic distance between p and
q, and β(p, q) the bisector of p and q.

In a smooth, simply connected surface S with negative Gaussian
curvature everywhere, the geodesic path γ (p, q) is unique for any
pair of points p, q ∈ S. However, in general, geodesics are not
unique for regions with positive Gaussian curvature and/or nontriv-
ial topology (Figure 1(a) through (c)). It is worth noting that discrete
geodesic paths have similar properties, as the Gauss-Bonnet theo-
rem also holds on piecewise linear surfaces. A geodesic γ joining
two points p and q is minimal if its length is smaller than or equal
to the length of any curve joining p and q.

Definition 1 (Geodesic Triangle). A geodesic triangle τ ⊂ M is
a simply connected domain whose boundary ∂τ has three geodesic
paths. Each geodesic path is called a g-edge and the endpoints of a
g-edge are called g-vertices.

ACM Transactions on Graphics, Vol. 36, No. 2, Article 15, Publication date: April 2017.



Constructing Intrinsic Delaunay Triangulations from the Dual of Geodesic Voronoi Diagrams • 15:3

Fig. 1. Geodesic paths and geodesic triangles. (a) Domain D1 is simply connected and has nonpositive Gaussian curvature everywhere. There is a unique
geodesic path between any pair of distinct points in D1. (b) Although domain D2 is also simply connected, it has a part with positive Gaussian curvatures. As a
result, the geodesic paths in D2 are not unique. (c) Domain D3 has negative Gaussian curvature everywhere. However, as its fundamental group is nontrivial,
the geodesic paths in D3 are not unique either. (d) The red region τ = (p1, p2, p3) is a geodesic triangle on the torus M . However, the complement M \ τ ,
although having three geodesic sides, is not a geodesic triangle, since it is not simply connected. (e) Three geodesic paths γ (p4, p5), γ (p5, p6) and γ (p6, p4)
wrap the cylinder. Although each colored region has three geodesic sides, they are not geodesic triangles, as it does not bound a simply connected region.

Fig. 2. Geodesic circumcircles. (a) Geodesic triangle �p1p2p3 has no geodesic circumcircle, since the bisector β(p1, p2) (shown in blue) does not meet the
other bisector β(p2, p3). (b) Since β(p4, p5) (blue) and β(p5, p6) (red) intersect twice, there are two geodesic circles passing through three points p4, p5, and
p6; only one of them is the geodesic circumcircle of the geodesic triangle �p4p5p6.

On R
2, any three intersecting lines form a triangle. However, not

all three intersecting geodesics on a mesh form a geodesic triangle
(see Figure 1(d) through (e)).

Definition 2 (Geodesic Disk and Geodesic Circle). A geodesic
disk of radius r centered at a point p ∈ M , denoted by D(p, r),
consists of all points whose geodesic distances to p does not exceed
r (i.e., D(p, r) = {q ∈ M : d(p, q) ≤ r}). If a geodesic disk
D(p, r) is simply connected, its boundary ∂D(p, r) is called a
geodesic circle. A geodesic circle ∂D that circumscribes a geodesic
triangle τ , τ ⊂ D, is called a geodesic circumcircle.

In R
2, three distinct points not lying on a line define a nondegen-

erate triangle that has a unique circumcircle. However, on a curved
surface, not every geodesic triangle has a geodesic circumcircle. For
the case that the geodesic circumcircle exists, there may be multiple
geodesic circles passing through the tree vertices of the geodesic
triangle (Figure 2).

2.2 IDTs on Meshes

The definition of IDT on 2-manifold meshes is due to Rivin [1994],
who generalized the planar Delaunay condition (i.e., a circle circum-
scribing any Delaunay triangle does not contain any input points in
its interior), by requiring the empty geodesic circumcircle property.

Definition 3 (Intrinsic Delaunay Triangulation). The intrin-
sic Delaunay triangulation (IDT) on M , denoted by IDT(M) =
(V,�, �), is a tessellation of M such that

—the vertex set of IDT(M) equals V ;
—every edge ξ in � is a geodesic path on M (i.e., a g-edge); and
—each face τ ∈ � is a geodesic triangle, which has a geodesic

circumcircle containing no mesh vertices in its interior.

Then Dyer et al. [2007b] defined proper IDT as follows.

Definition 4 (Proper IDT). An IDT on M is proper if it is the
realization of a simplicial complex.

Bobenko and Springborn [2007] showed that the edge-flipping
algorithm terminates in finite steps, implying the existence of
IDTs. They also proved the uniqueness of Delaunay tessellation
(whose faces are general but not always triangular). The Delau-
nay triangulation can be obtained by triangulating the nontriangular
faces.

2.3 Geodesic Voronoi Diagrams

Definition 5 (Geodesic Voronoi Diagram). Let P = {p1,
p2, . . . , pm} be a set of points on M . For a site pi , the Voronoi
cell C̃(pi) consists of all points whose geodesic distances to
pi are less than or equal to their distances to any other site
(i.e., C̃(pi) = {q ∈ M : d(pi, q) ≤ d(pj , q),∀i �= j}). The
geodesic Voronoi diagram (GVD) of P is the set {C̃(p1), C̃(p2), . . . ,
C̃(pm)}.

In Sections 3 through 5, we assume that the points of P are in
general positions—that is, no four or more points are on the same
geodesic circumcircle, and hereby the intersection of four or more
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Fig. 3. Bisectors and Voronoi cells on a 2-manifold mesh are significantly
different from their Euclidean counterparts. Row 1: There is a saddle vertex
(yellow) on the geodesic path γ (p, q) (cyan). As a result, the bisector
β(p, q) (blue) consists of both line segments and hyperbolic segments. Row
2: C(p3) (green) is of genus-1, and C(p1) (red) and C(p2) (yellow) are
of genus-0 but with multiple boundaries. Row 3: A GVD with eight sites
pi , i = 1, . . . , 8 on the two-hole torus model. Note that each of C(p5),
C(p6), C(p7) and C(p8) has multiple boundaries. C(p1) and C(p2) share
two common Voronoi edges, and so do the other pairs of Voronoi cells
(C(p2), C(p3)), (C(p3), C(p4)), (C(p1), C(p4)) and (C(p2), C(p4)).

Voronoi cells is an empty set. In the supplementary material, we
extend the proof of main results in this article to include degen-
erate cases. In Section 6.3, the implementation issue of handling
degenerate cases is discussed.

It is well known that Voronoi cells in R
2 are convex and sim-

ply connected. However, this property does not hold for GVDs
[Liu et al. 2011; Xu et al. 2014; Liu 2015]. Although a geodesic
Voronoi cell is still connected, it may contain multiple boundaries
and/or handles (Figure 3 (rows 2 and 3)). Moreover, bisectors on
triangle meshes generally consist of line segments and hyperbolic
segments [Liu et al. 2011] (see Figure 3 (row 1)). For a special case
that P includes all mesh vertices, all Voronoi edges of GVD(P ) are
line segments [Dyer et al. 2007b; Liu et al. 2011].

2.4 The Closed Ball Property and Dual Proper IDT

In Euclidean domains, the dual graph of the Voronoi diagram of
a point set P is a proper Delaunay triangulation; therefore, one
can adopt the algorithms for constructing a Voronoi diagram to
obtain Delaunay triangulation and vice versa. However, in general
manifold domains, the dual proper IDT exists only if the GVD
satisfies the closed ball property [Edelsbrunner and Shah 1997].

The closed ball property consists of three conditions:

(1) Disk condition: Each Voronoi cell is homeomorphic to a planar
disk.

(2) Two-cell intersection condition: The intersection of any two
Voronoi cells is either empty or a single Voronoi edge.

(3) Three-cell intersection condition: The intersection of any three
Voronoi cells is either empty or a single Voronoi vertex.

Throughout this article, we assume that the point set P includes
all mesh vertices in M and the points of P satisfy the general
position condition. Dyer et al. [2007b] showed that if there are
at least four distinct sites in GVD(P ) and both the disk condition
and 2-cell intersection conditions are satisfied, then the 3-cell
intersection condition is redundant.

THEOREM 6 (DYER ET AL. [2007B]). The IDT is proper if and only
if the dual GVD satisfies the closed ball property.

By Theorem 6, the key to obtain a proper IDT is to con-
struct a GVD satisfying the closed ball property. However, Dyer
et al. [2007b] did not provide any algorithm. Our work fills the gap
by developing a practical algorithm to compute such GVDs.

Note that Edelsbrunner and Shah [1997] introduced the closed
ball property for triangulating abstract topological spaces. Recently,
Dyer et al. [2015] studied a natural intrinsic definition of geometric
simplices in Riemannian manifolds of arbitrary finite dimension
and exploited these simplices to obtain criteria for triangulating
compact Riemannian manifolds.

3. KEY IDEAS

3.1 Motivation

Flipping edges and computing the dual graph of Voronoi diagrams
are two commonly used techniques for constructing Delaunay trian-
gulations in R

2. For IDTs, the edge-flipping algorithm [Indermitte
et al. 2001; Fisher et al. 2007] is the only known algorithm so far. It
is conceptually simple and easy to implement; however, it does not
have a known time complexity and the computed IDT may not be
proper, due to faces with only two edges. Motivated by Theorem 6,
we take the other direction to construct IDT—that is, computing the
dual of GVDs satisfying the closed ball property.

We consider only the disk condition and the 2-cell intersection
condition in our algorithm, as all models we are dealing with have
more than four vertices. Observe that the closed ball property often
fails in regions with low sampling density. Thus, our idea is to add
auxiliary sites to those Voronoi cells that violate the disk condition
and 2-cell intersection condition. However, one has to be careful
when adding an auxiliary site to a Voronoi diagram. Let V (q) be a
Voronoi cell violating the closed ball property. Adding a misplaced
auxiliary site s to V (q), although fixing the original Voronoi cell
V (q), may cause problems to the new Voronoi cell V (s). Two such
examples are presented in Figures 4 and 5.

To avoid the endless loop for adding auxiliary sites and also ease
analysis, we introduce a novel concept, called a topologically safe
site, where adding such a site to a GVD does not change the topology
beyond the Voronoi cell containing the site. In the following, we
introduce the topological representation of GVD and then prove the
existence of topologically safe sites.

3.2 Topological Representation

Before defining a topologically safe site, we introduce the topo-
logical representation of Voronoi cells. Note that a Voronoi cell in
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Fig. 4. Illustration of our strategy to ensure the disk condition. Row 1: Voronoi cell C(p1) violates the closed ball property due to two boundaries and one
pseudobisector (green, to be defined in Section 4.3). Row 2: Although adding an auxiliary site q on the pseudobisector makes C(p1) a topological disk, the
new cell C(q) is not simply connected, and it also contains one pseudobisector. Row 3: Adding two topologically safe sites q1 and q2 (see Section 4.3 for
details), our method fixes C(p1) and guarantees that the disk condition holds for C(q1) and C(q2). Moreover, the topologies of C(p2), C(p3), and C(p4) remain
unchanged.

Fig. 5. Illustration of our strategy to ensure the 2-cell intersection condi-
tion. (a) All cells are topologically equivalent to a disk. However, C(p1) and
C(p4) share two common Voronoi edges (pink), violating the 2-cell inter-
section condition. (b) Although adding an auxiliary site q (cyan) at one of
the shared edges can separate C(p1) and C(p4), the new Voronoi cell C(q)
is not simply connected and contains a pseudobisector (green), violating the
disk condition. (c) For each common Voronoi edge, our method adds two
auxiliary sites in the topologically safe region (see Section 4.4 for details).
As a result, it not only separates the problematic cells C(p1) and C(p4) but
also guarantees that all new cells C(qi ), 1 ≤ i ≤ 4, are topological disks
and satisfy the 2-cell intersection condition.

the GVD can be topologically nontrivial due to multiple bound-
aries. As Figure 8(b) later shows, there are three boundaries in
the Voronoi cell of the “crotch” vertex in the Pant model. For
a site s, we represent the Voronoi cell C(s) using its disjoined
boundaries (i.e., C(s) = {l1, l2, . . . , lh}). Each boundary is a loop
li = (bi1 , bi2 , . . . , bil ), which is an ordered list of Voronoi edges so
that the interior of C(s) is always on the left side when walking from
bij to bij+1 (bil+1 = bi1 ). Figure 6 provides an illustration. Since each
Voronoi edge is a trimmed bisector of two sites, we represent the
Voronoi edge b(p, q) by an ordered pair2 of the indices of sites p
and q. A Voronoi cell is called simple if it has only one boundary
(i.e., its cardinality |C(s)| = 1); otherwise, it is called nonsimple.

Given a set of sites P = {pi |pi ∈ M}m
i=1, we represent

the GVD of P by a 2-tuple, GVD(P ) = (P,�(BP ,CP ))),
where the topological representation �(BP ,CP ) consists of the
sets of symbolic Voronoi edges BP and Voronoi cells CP . With
the topological representation of a GVD, its geometry is read-
ily available from the positions of sites P , using the algorithm
genus_r_Voronoi_diagram(M, P ) in Liu et al. [2011].

2Since there may be more than one shared Voronoi edge between two sites,
we allow multiple occurrences of an ordered pair.

Fig. 6. Topological representation of a Voronoi cell C(s) with three
disjoined boundaries, C(s) = {l1, l2, l3}. Each boundary is an ordered
list of Voronoi edges, l1 = (b11, b12, b13, b14), l2 = (b21, b22, b23), and
l3 = (b31, b32, b33).

Throughout the article, we use the ∼ symbol to distinguish an
entity in its topological representation and geometric realization.
For example, the topological representation b(p, q) is an ordered
pair of the indices of p and q, whereas the geometric representation
b̃(p, q) is a polyline on the mesh. Similarly, l̃i and C̃(s) are geomet-
ric realizations of boundary li and Voronoi cell C(s), respectively.

3.3 Topologically Safe Sites

Definition 7 (Topologically Safe Site). Let P be a set of sites on
M including all mesh vertices, and let GVD(P ) the corresponding
geodesic Voronoi diagram. For a subset Q ⊆ P , let BQ(P ) �
{b(r, s) : b(r, s) ∈ BP and r, s ∈ Q} be the set of Voronoi edges that
are elements of BP and are generated by sites in Q. Consider a new
site q /∈ P , which is inside a Voronoi cell, say q ∈ C(p). We say that
q is topologically safe to GVD(P ) if BP \{p}(P ∪ {q}) = BP \{p}(P ).

Intuitively speaking, the new site q is topologically safe to
GVD(P ) if adding q to the Voronoi diagram does not destroy
any existing Voronoi edges (in terms of topological representation)
other than the edges of the Voronoi cell C(p) that contains q (i.e.,
q ∈ C(p)). Figure 7 presents examples of topologically safe and
unsafe sites.
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Fig. 7. Topologically safe and unsafe sites. Given four sites P = {p1, p2,

p3, p4} in two different positions, the corresponding GVDs have the same
topological representation (i.e., BP = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}).
Row 1: The site p5 is topologically safe to GVD(P ), since BP \{p4}(P ∪
{p5}) = BP \{p4}(P ) = {(1, 2), (1, 3), (2, 3)}; in other words, adding p5

does not destroy any existing Voronoi edge b(pi, pj ) for i �= 4, j �= 4. Row
2: The site p6 is not topologically safe to GVD(P ), since BP \{p4}(P∪{p6}) =
{(1, 2), (1, 3)} and BP \{p4}(P ) = {(1, 2), (1, 3), (2, 3)}. Visually, adding p6

to the Voronoi diagram destroys an existing Voronoi edge b(p2, p3), which
does not belong to C(p4). The new Voronoi edges are colored in red, and
the existing Voronoi edges are colored in black.

To quantitatively characterize the topologically safe region and
find topologically safe sites, we define the δ-offset for a Voronoi
cell.

Definition 8 (δ-Offset). Consider a geometric realization of
Voronoi cell C̃(p) with boundaries C̃(p) = (̃l1, l̃2, . . . , l̃h). Let
�(C̃(p), δ) = {x : d(x, y) < δ, y ∈ b̃i , b̃i ⊂ l̃1 ∪ l̃2 ∪ · · · ∪ l̃h}
be the offset of the boundary of C̃(p). δmax(C̃(p)) is the maximal
value of δ so that �(C̃(p), δ) does not contain any site in P and any
Voronoi vertex that is not in C̃(p). For a GVD(P ), define

δmax(GVD(P )) � min
p∈P

δmax(C̃(p)), (1)

the minimal δmax for all Voronoi cells.

The following proposition shows that each Voronoi cell has an
ε-neighborhood, in which any point is topologically safe to the
GVD. This allows us to add auxiliary sites to a Voronoi cell without
changing the topology of its neighbors.

PROPOSITION 1 (EXISTENCE OF ε-NEIGHBORHOOD). For any 0 <
δ ≤ δmax(GVD(P )), there always exists an ε > 0 such that in each
Voronoi cell C(p), D(p, ε) = {x : x ∈ M and d(p, x) ≤ ε} is
simply connected and any point x in D(p, ε) is topologically safe
to GVD(P ). D(p, ε) is referred to as the ε-neighborhood of p.

The value of ε depends on δ. See Equation (S1) in the supple-
mentary material. Figure 8(c) shows an example of the δ-offset and
ε-neighborhood on the Pant model.

Fig. 8. Pseudobisectors occur in cylinder-shaped regions. There is one
pseudobisector in C(p) (a) two in C(q) (b). The bisectors and pseudobisec-
tors are colored in blue and green, respectively. (c) Outward δ-offset (green)
of a Voronoi cell and its corresponding ε-neighborhood (orange).

ALGORITHM 1: Constructing Proper IDT from the Dual of GVD
Input: M = (V,E, F ), a 2-manifold triangle mesh
Output: IDT(M), a proper IDT defined on M , whose vertex set

contains all vertices in V

1: GVD(V ) = compute gvd(M) (Procedure 2 in Section 4.2)
2: GVD(P ) = ensure disk condition(GVD(V )), where V ⊆ P

(Procedure 3 in Section 4.3)
3: GVD(P ′) = ensure 2-cell intersection condition(GVD(P )),

where P ⊆ P ′ (Procedure 4 in Section 4.4)
4: IDT(M) = compute dual graph(GVD(P ′)) (Procedure 5 in

Section 4.5)

4. ALGORITHM

4.1 Overview

To facilitate the presentation, we assume that the input 2-manifold
mesh M is closed. In the supplementary material, we extend our
algorithm to handle meshes with boundaries. Our algorithm (Al-
gorithm 1) consists of four steps. First, taking all mesh vertices as
sites, it computes the geodesic Voronoi diagram GVD(V ). Then, it
checks the disk condition for all Voronoi cells. If a Voronoi cell, say
C(vi), is not homeomorphic to a disk, the algorithm adds auxiliary
sites in the ε-neighborhood of vi to fix C(vi). Next, it checks the
2-cell intersection condition for all pairs of adjacent Voronoi cells.
If two cells, say C(vi) and C(vj ), share two or more Voronoi edges,
the algorithm again adds auxiliary sites to reduce the number of
common edges to one. Finally, since the updated GVD satisfies the
closed ball property, it computes the dual graph, which is a proper
IDT. Intuitively speaking, our method adaptively increases the sam-
pling density for the regions where the closed ball property fails.
Figure 9 illustrates the algorithmic pipeline using a toy cylinder
model.

4.2 Computing GVD

Liu et al. [2011] presented a generic algorithm to construct GVD
on manifold triangle meshes. For m(≤ n) arbitrary sites placed
on an n-vertex mesh M , the algorithm runs in O(n2 log n) time.
One, of course, can apply Liu et al.’s algorithm directly to our
application. However, our scenario is slightly different in that we
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Fig. 9. Algorithmic pipeline. (a) The cylinder mesh has 17 vertices (red). Taking all mesh vertices as sites, we compute the geodesic Voronoi diagram GVD(V ).
However, GVD(V ) does not have a dual proper Delaunay triangulation, as Voronoi cell C(v1) is not simply connected and it also contains a pseudobisector
(green). (b) After adding an auxiliary site q1 (cyan) in the ε-neighborhood of site v1, both C(v1) and C(q1) become topological disks. However, they share
two common Voronoi edges (purple). (c) To ensure the 2-cell intersection condition, we add another auxiliary site q2 in the ε-neighborhood of v1. (d) Now the
geodesic Voronoi diagram GVD(P ′) satisfies the closed ball property, and thus its dual graph is a proper IDT.

take all mesh vertices as sites. For better performance, we adapt Liu
et al’s algorithm as follows.

We assign all mesh vertices a distance value 0, as they are the
source points. Then we apply the MMP algorithm to compute the
geodesic distances for the points on mesh edges. After termina-
tion, the MMP algorithm partitions each mesh edge into disjoint
intervals, called windows, where each window encodes the shortest
paths coming from the same face sequence. Note that the original
MMP algorithm must solve a quadratic equation to trim overlapped
windows due to the existence of hyperbolic bisectors. Fortunately,
all mesh vertices are the sources in our case, and hence we solve
only a linear equation for window trimming.

We are interested in the mesh edges that contain windows corre-
sponding to different sources, as they are crossed by some Voronoi
edges. Observe that a Voronoi vertex corresponds to three Voronoi
edges. Therefore, we can locate Voronoi vertices by finding those
triangles where three or more Voronoi edges meet. In lines 6 through
16 of Procedure 2, we compute the Voronoi edges with distinct end-
points. Then in lines 17 through 22, we compute the Voronoi edges
that are self-loops.

For simplicity, the pseudocode in Procedure 2 does not handle the
case that a triangular face contains two or more Voronoi vertices.
We refer readers to Algorithm 13 in Xu et al. [2014] for details.

4.3 Ensuring the Disk Condition

In R
2, the term bisector refers to the set of points that are equidistant

to two distinct sites. In contrast to the 2D counterpart, there are two
types of bisectors on polyhedral surfaces: one is the conventional
bisector of two distinct sites, and the other corresponds to a single
site, hereby called the pseudobisector.

3Its implementation details are available at http://cg.cs.tsinghua.edu.cn/
people/∼Yongjin/PGVD-pg2014-supplement.pdf.

Definition 9 (Pseudobisector). The pseudobisector of a site p
consists of points q ∈ C̃(p) such that there are two geodesic paths
realizing the minimum distance between p and q.

Pseudobisectors occur in cylinder-shaped regions (see Figure 8(a)
and (b)). Although a Voronoi cell may have multiple pseudobisec-
tors, the total number of pseudobisectors in GVD(V ) is bounded by
the number of vertices in a mesh.

PROPOSITION 2 (COMPLEXITY OF PSEUDOBISECTORS). The number
of pseudobisectors in GVD(V ) is O(n), where n = |V | is the number
of vertices in M .

Observe that pseudobisectors are due to low sampling density.
For a Voronoi cell C(vi), vi ∈ V with pseudobisectors, we add
auxiliary sites in the ε-neighborhood of vi to destroy all all pseudo-
bisectors in C(vi). Since those auxiliary sites are topologically safe
to GVD(V ), the topologies of the Voronoi cells adjacent to C(vi)
remain unchanged. As a result, we only need to ensure that the
Voronoi cells of these auxiliary sites are topological disks.

We first compute the δmax-offset for GVD(P ) using Equation (1)
such that the corresponding ε(δmax)-neighborhood contains topolog-
ically safe sites. Then we compute a strong δ-offset δ̂(GVD(P )) ≤
δmax(GVD(P )) using Equation (S6) in the supplementary mate-
rial such that pseudobisectors cannot appear in the Voronoi cells
of newly added topologically safe sites in the ε(δ̂)-neighborhood,
which are sampled in the following way.

Figure 10 illustrates our strategy for eliminating pseudobisectors.
The Voronoi cell C(p) has multiple boundaries and has two pseu-
dobisectors. For each pseudobisector p̃bi(p), let xi ∈ p̃bi be the
point that minimizes the geodesic distance from p to p̃bi . Since
xi ∈ p̃bi , there are two minimal geodesics γ (p, xi) and γ ′(p, xi)
from p to xi in C̃(p). To eliminate a pseudobisector pbi(p), we
add two auxiliary sites ai ∈ γ (p, xi) and bi ∈ γ ′(p, xi) such that
d(p, ai) = d(p, bi) = ε(δ̂).
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Fig. 10. Voronoi cell C̃(p) has two pseudobisectors. To destroy the pseudo-
bisector pbi (p), we add two auxiliary sites ai and bi in the ε-neighborhood
of p. See the main text for details.

Procedure 2: Compute gvd(M)
1: Taking all mesh vertices V as sources, apply the MMP algo-

rithm to compute geodesic distances.
2: Put the triangles containing windows from exactly two different

sources into a list BT .
3: Put the triangles containing windows from three or more dif-

ferent sources into a list T T .
4: Create a Voronoi vertex list  from T T , in which each Voronoi

vertex ωi with sources (vi1 , vi2 , vi3 ) corresponds to a triangle fi

in TT.
5: Initialize a Voronoi edge list BV = ∅.
6: // Compute Voronoi edges ended at distinct Voronoi vertices
7: for every wi ∈  do
8: Get the corresponding fi from 

9: for m = 1 to 3 do
10: if the Voronoi edge b(vim , vi(m+1)%3 ) /∈ BV then
11: Starting from face fi , compute the Voronoi edge

b̃(vim , vi(m+1)%3 ) until reaching another face fj contain-
ing a Voronoi vertex.

12: Remove those triangles crossed by b̃(vim , vi(m+1)%3 ) from
BT .

13: Add b(vim , vi(m+1)%3 ) into BV .
14: end if
15: end for
16: end for
17: // Compute Voronoi edges that are self-loops
18: while BT is not empty do
19: Take the first face f from BT . // f is crossed by only one

Voronoi edge.
20: Starting from f , compute the Voronoi edge b̃′ until getting

back to f .
21: Remove those triangles crossed by b̃′ from BT .
22: end while
23: Extract the Voronoi cells CV from the set of Voronoi edges BV .
24: return (BV ,CV ), the topological representation of GVD(V ).

Observe that for any point y ∈ p̃bi(p), the geodesic distance
d(y, p) > max{d(y, ai), d(y, bi)}. Therefore, adding ai and bi to
the Voronoi diagram destroys the pseudobisector p̃bi(p). Moreover,
both ai and bi are topologically safe sites, as they are within the
ε-neighborhood of site p.

In fact, adding one auxiliary site ai is sufficient to destroy the
pseudobisector p̃bi . We need the other auxiliary site bi to ensure that
there are no new pseudobisectors in C̃(ai) and C̃(bi). In general, for a
Voronoi cell C(p) with k pseudobisectors, the following proposition
shows that adding 2k auxiliary sites are sufficient to eliminate all

Procedure 3: Ensure Disk Condition(GVD(V ))
1: P = V

2: Compute ε(δ̂(GVD(V ))) using Equations (S1), (S6), and (S7)
in the supplementary material.

3: for every v ∈ V do
4: if C(v) has two or more boundaries then
5: Initialize sets of auxiliary sites A = ∅ and B = ∅.
6: for each pseudobisector p̃bi ⊂ C̃(v) do
7: Find xi ∈ p̃bi that minimizes the distance from v to

p̃bi .
8: Compute two minimal geodesics γ (v, xi) and γ ′(v, xi).
9: Find ai ∈ γ and bi ∈ γ ′ such that d(v, ai) = d(v, bi) =

ε(δ̂).
10: A = A ∪ {ai} and B = B ∪ {bi}.
11: end for
12: P = V

⋃
A.

13: Locally update GVD(P ), δ̂(GVD(P )) and ε(δ̂).
14: for each auxiliary site ai ∈ A do
15: if C(ai) has two or more disjoint boundaries then
16: P = P ∪ {bi}.
17: Locally update GVD(P ), δ̂(GVD(P )) and ε(δ̂).
18: end if
19: end for
20: end if
21: end for
22: return GVD(P ), in which all Voronoi cells are topological

disks.

existing pseudobisectors. At the same time, no new pseudobisectors
will be introduced.

PROPOSITION 3 (ELIMINATING PSEUDOBISECTORS). Let C̃(p) be
a Voronoi cell with k pseudobisectors in GVD(P ), V ⊆ P . After
adding 2k auxiliary sites {ai, bi}k

i=1 to C̃(p), the updated cells C̃(p)
and {C̃(ai), C̃(bi)}k

i=1 are all topological disks. The topology of all
other cells remains unchanged.

Theoretically, 2k auxiliary sites are required to eliminate all pseu-
dobisectors in C(p). In practice, we adopt an incremental strategy
in Procedure 3. We add the auxiliary site ai first and then update
the topological representations of C(p) and C(ai). We add the other
site bi only when C(ai) has two or more boundaries.

Since there are O(n) pseudobisectors in a mesh, Procedure 3 adds
O(n) auxiliary sites so that all Voronoi cells in GVD(P ), V ⊆ P ,
are topological disks.

4.4 Ensuring the 2-Cell Intersection Condition

After eliminating pseudobisectors, all Voronoi cells in GVD(P )
are topological disks. Now we check the 2-cell intersection con-
dition for all pairs of adjacent Voronoi cells. Let BP be the set
of symbolic Voronoi edges in GVD(P ). Recall that in topologi-
cal representation, the Voronoi edge b(pi, pj ) is an ordered pair
(min{I (pi), I (pj )}, max{I (pi), I (pj )}), where I (p) is the index of
site p. We sort the Voronoi edges in BP in ascending order by their
first elements. If two ordered pairs have the same first element, the
second element is used to break a tie. If a Voronoi edge b(pi, pj )
appears more than once in BP , the corresponding Voronoi cells
C(pi) and C(pj ) violate the 2-cell intersection condition. Figure 11
provides an example.
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Fig. 11. Since each Voronoi cell C(pi ), i = 1, 2, has two shared Voronoi
edges bi1 and bi2 with C(p), pi is a multiple-order neighbor of p.

Fig. 12. Both p1 and p2 are multiple-order neighbors of p. For each
Voronoi edge b̃i shared by p1 (or p2) and p, i = 1, 2, 3, 4, we add three
auxiliary sites {ci , di1, di2}ki=1 in the ε(δ̂)-neighborhood of p. Then the
updated Voronoi cells C̃(p), {C̃(ci ), C̃(di1), C̃(di2)}2

i=1 are all topological
disks and satisfy the 2-cell intersection condition. See the main text for
details.

Definition 10 (Neighboring Site). p and q are neighboring sites
if C(p) and C(q) share at least one Voronoi edge. If there is exactly
one shared Voronoi edge, we say q (respectively p) is a single-
order neighbor to p (respectively q). Otherwise, q (respectively p)
is referred to as a multiple-order neighbor of p (respectively q).

Similar to pseudobisectors, multiple-order neighbors are also due
to low sampling density. To separate two multiple-order neighbors,
we add auxiliary sites in between them. We adopt the following two-
step strategy to ensure that the Voronoi cell of each newly added
auxiliary site satisfies the closed ball property, where referring to
Figure 12, both p1 and p2 are multiple-order neighbors to p:

—Step 1. For each Voronoi edge b̃i shared by p1 (or p2) and p,
i = 1, 2, 3, 4, we find a point xi ∈ b̃i that minimizes the distance
from p to b̃i . Then we compute ci ∈ γ (p, xi) such that d(p, ci) =
ε(δ̂).

—Step 2. Each Voronoi edge b̃i has two Voronoi vertices ωi1 and
ωi2. At each ωij , j = 1, 2, we place a geodesic circle ∂D(ωij , δ̂).
There is a geodesic to p that is tangential to ∂D(ωij , δ̂) and not
intersecting b̃i . Denote this geodesic as γ (ωij ). Let dij be the
point on γ (ωij ) satisfying d(p, dij ) = ε(δ̂).

In summary, in the Voronoi cell C̃(p), for each Voronoi edge shared
by p and a multiple-order neighbor p1 (or p2), we add three aux-
iliary sites ci , di1, and di2 to separate p1 (or p2) and p. In general,

if Voronoi cell C(p) shares k Voronoi edges with multiple-order
neighbors, we add 3k auxiliary sites to separate them.

PROPOSITION 4 (SEPARATING MULTIPLE-ORDER NEIGHBORS). Let
GVD(P ), V ⊆ P , be a GVD in which each Voronoi cell is a topo-
logical disk. Let C̃(p) be a Voronoi cell that shares k Voronoi
edges with multiple-order neighbors. Adding 3k auxiliary sites
{ci, di1, di2}k

i=1 in the ε(δ̂)-neighborhood of p is topologically safe
to GVD(P ), and is sufficient to make the updated Voronoi cells
C̃(p), {C̃(ci), C̃(di1), C̃(di2)}k

i=1 all topological disks and satisfying
the 2-cell intersection condition.

Procedure 4: Ensure 2-Cell Intersection Condition(GVD(P ))
1: Let P ′ = P .
2: Sort all Voronoi edges in ascending order.
3: for any two Voronoi edges bk = bl = {pi, pj } with the same

ordered pair do
4: Place pj into the multiple-order neighbor list of pi

5: Place pi into the multiple-order neighbor list of pj .
6: end for
7: for each Voronoi cell C̃(p) with multiple-order neighbor(s) do
8: for each shared Voronoi edge b̃i with a multiple-order neigh-

bor do
9: Find xi ∈ b̃i that minimizes the distance from p to b̃i .

10: Compute the geodesic γ (p, xi).
11: Find ci ∈ γ (p, xi) such that d(p, ci) = ε(δ̂).
12: P ′ = P ′ ∪ {ci}.
13: end for
14: Locally update GVD(P ′), δ̂ and ε(δ̂).
15: Remove p from the multiple-order neighbor list of each site

in p’s multiple-order neighbor list.
16: while there is a new Voronoi cell C̃(ci) whose multiple-order

neighbor list is not empty do
17: Find two Voronoi vertices ωi1 and ωi2 of the Voronoi edge

b̃i .
18: Compute the geodesics γi1 and γi2 to p tangent to

∂D(ωi1 , δ̂) and ∂D(ωi2 , δ̂), respectively, that do not
intersect b̃i .

19: Find di1 ∈ γi1 and di2 ∈ γi2 such that d(p, di1 ) =
d(p, di2 ) = ε(δ̂).

20: P ′ = P ′ ∪ {di1 , di2}.
21: Locally update GVD(P ′), δ̂ and ε(δ̂).
22: end while
23: end for
24: return GVD(P ′), which satisfies the closed ball property.

As shown in the supplementary material, adding k auxiliary
sites {ci}k

i=1 is sufficient to remove all k multiple-order neigh-
bors from C̃(p). Moreover, we need an additional 2k auxiliary
sites {di1, di2}k

i=1 to ensure that the Voronoi cells {C̃(ci), C̃(di1),
C̃(di2)}k

i=1 are free of new pseudobisectors and multiple-order
neighbors. In Procedure 4, we use an incremental sampling scheme
that adds k auxiliary sites {ci}k

i=1 first. We add the additional sites
di1 and di2 only if a Voronoi cell C̃(ci) has new multiple-order
neighbors.

4.5 Computing the Dual Graph

Since the closed ball property holds everywhere for GVD(P ′), its
dual Delaunay triangulation is proper. Furthermore, each Voronoi
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Fig. 13. Consider the window w associated to the edge opposite to vertex
v. (a, b) When the angle of f at v is acute, the window can only stay inside
f —that is, it cannot cross f . (c) When the angle of f at v is obtuse, the
window propagates across f . The red dashed lines are the bisectors of two
vertices. The region swept by window w is shaded.

edge has a unique dual Delaunay edge by the empty geodesic
circumcircle property [Dyer et al. 2007b]. Given a Voronoi edge
b̃(p, q) in GVD(P ′), we denote by Fp (respectively Fq ) the set
of faces containing the geodesic paths from p (respectively q) to
any point on b(p, q). Then we compute the unique Delaunay edge
γ (p, q) by unfolding the faces Fp ∪ Fq to R

2 (Procedure 5).

Procedure 5: Compute Dual Graph(GVD(P ′))

1: for each Voronoi edge b̃(p, q) in GVD(P ′) do
2: Using the windows stored at the two sides of b̃(p, q), com-

pute the face sets Fp and Fq , respectively.
3: Compute γ (p, q) by unfolding the triangles in Fp

⋃
Fq .

4: end for
5: for any three Voronoi cells that meet at a Voronoi vertex do
6: Create a geodesic triangle with the three corresponding g-

edges.
7: end for
8: return IDT(M), a proper IDT.

5. CORRECTNESS AND COMPLEXITY ANALYSIS

THEOREM 11. Let M be an arbitrary 2-manifold triangle mesh
with n vertices. Algorithm 1 converts M into a proper IDT with O(n)
auxiliary sites. The algorithm has a worst-case O(n2+tn log n) time
complexity, where t is the number of obtuse angles in the mesh.

PROOF. First, we show that the Procedure 2 compute_gvd takes
O(n2 + tn log n) time. The MMP algorithm [Mitchell et al. 1987]
partitions each mesh edge into a set of intervals, called windows,
which locally encode the geodesic information. For each vertex v,
the MMP algorithm initializes a window w for every edge opposite
to v. Such a window can be characterized by the angle associated
with v that is opposite to the edge containing w. Then the MMP
algorithm propagates windows across mesh faces to simulate the
wavefront propagation. A window stops propagating if it hits the
boundary or another window.

Our analysis is based on two key observations (Figure 13):

—If the angle of f at v is acute, the window w stays inside f —that
is, it does not propagate beyond f .

—If the angle of f at v is obtuse, the window is propagated across
f . In the worst case, a window can cross O(n) faces (Figure 14).

Since there are at most O(n) obtuse angles in M , the MMP algo-
rithm produces O(tn) windows and hereby runs in O(tn log n) time.
Figure 14 shows such a worst case with t = O(n), implying that

Fig. 14. Complexity of Voronoi edges. (a) Each mesh vertex vi , i =
1, 2, . . . , n, has two obtuse angles, and each obtuse angle initializes a win-
dow that can cross O(n) triangles. Therefore, the triangles on the side of the
cylinder are global, as each of these triangles contains O(n) Voronoi edges.
As a result, computing GVD(V ) takes O(n2 log n) time. (b) In general, if
the majority of mesh faces are local (i.e., each edge intersects only a few
Voronoi edges (see the close-up view)), the GVD can be computed in O(n)
time.

the bound O(tn log n) is tight. For this case, the time complexity
becomes O(n2 log n), which is a well-known result of the original
MMP algorithm [Mitchell et al. 1987].

Then we show that Procedures 3, 4, and 5 all take O(n2) time.
Computing ε(δ̂) takes O(n2) time. For each pseudobisector p̃bi con-
tained in a Voronoi cell C̃(v), finding xi ∈ p̃bi that minimizes the
distance from v to p̃bi and computing the geodesic paths γ (v, xi)
and γ ′(v, xi) take O(n) time. Finding ai on γ and bi on γ ′ satisfy-
ing d(v, ai) = d(v, bi) = ε(δ̂) takes O(1) time. Locally updating
GVD(P ) takes O(n) time. By Proposition 2, there are totally O(n)
pseudobisectors in GVD(V ). Thus, Procedure 3 takes O(n2) time.

Similarly, Procedure 4 adds at most O(n) auxiliary sites. Since
updating Voronoi cell for each new site takes O(n) time, it takes
O(n2) time.

In Procedure 5, computing a Delaunay edge γ (p, q) takes O(n)
time, as there are at most O(n) faces in the set Fp

⋃
Fq . Also note

that there are O(n) Voronoi vertices and O(n) Voronoi edges in
GVD(P ′), and hereby Procedure 5 takes O(n2) time.

Putting it all together, our algorithm has a worst-case time com-
plexity O(n2 + tn log n).

6. EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Performance

We implemented our algorithm in C++ and tested it on 20 synthetic
and real-world models with diverse geometric and topological fea-
tures. To quantitatively investigate the relation between mesh qual-
ity and runtime performance, we adopted the popular anisotropy
measure [Zhong et al. 2013] σ (t) = ph

2
√

3S
for quality of a triangle

t , where p is the half-perimeter, h is the length of its longest edge,
and S is the triangle area. It is easy to see that σ (t) ≥ 1, and the
equality holds when t is equilateral. We measure the triangulation
quality by the mean σmean, maximum σmax , and standard deviation
σstd of σ for all triangles of M . Usually, a larger σ means the higher
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Table II. Mesh Complexity and Running Time Statistics

Model
Original Mesh Edge Flipping IDT Delaunay Mesh

|E| Anisotropy σ Time (sec) # ef Time (sec) # as Anisotropy σ Time (sec) # sp Anisotropy σ

Pant 38 (3.04, 4.48 0.19) 0.000 14 0.000 4 (2.33, 3.34, 0.16) 0.003 12 (2.69, 4.47, 0.15)
Horse 300 (1.82, 5.30, 0.05) 0.000 58 0.000 2 (1.47, 4.15, 0.03) 0.003 107 (1.97, 18.25, 0.07)
Bunny 300 (1.71, 8.56, 0.07) 0.000 35 0.000 2 (1.47, 2.91, 0.03) 0.002 73 (1.83, 15.48, 0.07)
Kitten 300 (1.66, 16.21, 0.09) 0.000 35 0.000 2 (1.48, 5.26, 0.04) 0.002 58 (2.02, 19.61, 0.10)
CSG 357 (4.74,33.02,2.13) 0.006 120 0.004 2 (1.94, 4.93, 0.06) 0.009 407 (5.41, 64.13, 0.84)
Bear 400 (2.47, 40.57, 2.21) 0.003 88 0.002 2 (1.50, 3.30, 0.25) 0.004 217 (4.00, 64.80, 1.02)

Fandisk 1,081 (44.22, 177.54, 9.49) 0.015 382 0.011 0 (3.21, 0.34, 0.11) 0.125 9,530 (5.82, 92.49, 7.17)
Headst 1,714 (90.00, 330.64, 47.52) 0.060 1,693 0.001 0 (3.50, 21.03, 2.32) 0.905 93,730 (2.96, 379.12, 0.45)
Eight 3,033 (1.67, 11.80, 0.88) 0.031 717 0.016 0 (1.45, 4.81, 0.01) 0.102 8,688 (2.02, 30.59, 0.02)

Sphere 5,994 (1.67, 59.60, 2.14) 0.019 5 0.006 0 (1.67, 59.60, 2.13) 0.036 138 (1.70, 59.60, 2.12)
Lamp 12,780 (78.02, 754.60, 14.70) 0.095 3,223 0.003 0 (19.73, 5.33, 0.61) 16.679 814,943 (15.88, 102.15, 6.33)
Teapot 17,493 (1.69, 20.74, 1.66) 0.171 4,136 0.125 0 (1.03, 7.32, 0.40) 0.564 75,828 (1.95, 57.42, 2.48)

Decocube 24,000 (1.56, 13.43, 0.65) 0.188 4,227 0.140 0 (1.42, 4.02, 0.22) 0.311 45,967 (1.94, 12.23, 1.25)
Sword 29,568 (11.12, 1353.23, 3.42) 0.298 11,345 0.060 0 (9.50, 1309.48, 3.13) 1.923 224,240 (6.48, 7632.53, 2.60)

Fertility 36,920 (2.34, 17.20, 1.11) 0.609 17,127 0.561 0 (1.82, 2.76, 0.10) 1.044 112,437 (3.50, 22.37, 0.13)
Crank 60,000 (17.52,279.54,14.16) 1.539 66,235 1.350 0 (3.60, 3.02, 0.04) 2.210 413,768 (7.63, 12.51, 4.33)
Bunny 216,054 (1.23, 11.83, 0.19) 0.780 3,025 0.156 0 (1.15, 4.39, 0.01) 1.041 73,874 (1.29, 43.48, 0.01)

Armadillo 518,916 (1.31, 95.29, 2.39) 2.324 23,831 0.983 0 (1.30, 83.86, 2.13) 2.520 265,651 (1.52, 76.29, 1.90)
Lucy 788,721 (1.45, 34.24, 1.38) 5.179 97,418 3.960 0 (1.41, 1.22, 0.36) 7.026 924,703 (1.86, 11.17, 0.38)

Buddha 1,195,719 (1.47, 29.16, 5.22) 8.502 149,728 5.379 0 (1.26, 0.79, 1.28) 9.430 964,417 (2.24, 18.13, 1.99)
Note: |E| represents the number of edges in M , # ef represents the number of edge flips by the edge-flipping algorithm, # as represents the number of auxiliary sites added by our
algorithm, and # sp represents the number of splitting points added by the Delaunay mesh algorithm. The 3-tuple (σmean, σmax , σstd ) shows the mean, max, and standard deviation
of the anisotropy measure σ . The running time was measured in seconds on an Intel Core i7-2600 CPU (3.40GHz).

Fig. 15. Results. The original mesh edges and the Delaunay edges are
colored in black and red, respectively. The figures are of high resolution,
allowing close-up examination.

degree of anisotropy and the farther away the mesh is from its IDT.
As Table II shows, most meshes are far from their Delaunay trian-
gulations. Take the fertility model as an example (Figure 15). Since
46.3% edges are non-Delaunay edges, it takes the edge-flipping al-
gorithm 17,127 iterations to fix them. Our algorithm, in contrast,

Fig. 16. Our algorithm empirically runs in linear time on real-world
meshes. The horizontal axis shows the mesh complexity, and the vertical
axis is the execution time (in seconds).

computes the IDT in a noniterative manner, and its performance is
not sensitive to the number of non-Delaunay edges.

We also observe that the theoretical worst-case time complexity
O(n2 log n) is very pessimistic, as it happens only when each trian-
gle contains O(n) bisectors. Figure 14(a) presents a model with the
worst-case time complexity. We call a triangle with O(n) Voronoi
edges global, as it indeed spans a global region on the model. We
observe that on many real-world models, the majority of the trian-
gles are not global, even though the mesh triangulation is poor (i.e.,
far from its Delaunay triangulation). Computational results show
that on average, a mesh edge on a real-world model has only O(1)
Voronoi edges (see Figure 14(b)). As a result, all of the four steps in
our algorithm run in O(n) time. Computational results confirm that
our algorithm has an empirical linear time complexity (Figure 16),
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Fig. 17. Illustration of the edge-flipping algorithm. Consider a prism with seven vertices. Among the four edges opposite to v1, v2v3, and v5v6 are locally
Delaunay and the other two edges v2v5 and v3v6 are not. The edge-flipping algorithm iteratively flips the non-Delaunay edges until all edges become locally
Delaunay. However, the resulting Delaunay triangulation is not proper due to the self-loop (red) connecting v1 and itself. Our method adds two auxiliary sites
q and r in the topologically safe region of v1 and produce a proper IDT. The bottom row shows the 2D flattening of the region.

Fig. 18. Comparison with the edge-flipping algorithm. Due to low sampling density on the thin handles, the IDTs produced by the edge-flipping algorithm
contain self-loops (red arrows). Our method generates proper IDTs by adding auxiliary sites on the handles (green arrows).

and it consistently outperforms the edge-flipping algorithm in terms
of execution time.

6.2 Results

As mentioned previously, the edge-flipping algorithm may produce
IDT with self-loops. In contrast, our method guarantees the proper
IDT by adding auxiliary sites at the poorly sampled region (Fig-
ures 17 and 18). Theoretically, our algorithm adds O(n) auxiliary
sites to obtain a proper IDT. In practice, we observe that only a very
small number of auxiliary sites are required for real-world models.
This is not a surprise, since the auxiliary sites are only added on
the sparsely sampled regions that are not homeomorphic to a disk
(e.g., the cylinder-like geometry in Figures 9 and 18). As Table II
shows, although most test models are far from their Delaunay trian-
gulations, they have a fairly good sampling density. Consequently,

Fig. 19. Angle histograms show that IDT improves triangulation quality.

the resultant GVD(V ) automatically satisfies the closed ball den-
sity, and our algorithm does not add any new site at all. For these
models, both our method and the edge-flipping algorithm produce
exactly the same results. Table II and Figure 19 also show that IDTs
significantly improve triangulation quality.
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ALGORITHM 6: Constructing Proper IDT with Uniform Samples
Input: M = (V,E, F ), a 2-manifold triangle mesh
Output: IDT(M), a proper IDT defined on M , whose vertex set

contains all vertices in V

1: GVD(V ) = compute gvd(M) (Procedure 2)
2: GVD(P ) = ensure disk condition 2(GVD(V )), where V ⊆ P

(Procedure 7)
3: GVD(P ′) = ensure 2-cell intersection condition 2(GVD(P)),

where P ⊆ P ′ (Procedure 8)
4: IDT(M) = compute dual graph(GVD(P ′)) (Procedure 5)

Procedure 7: ensure disk condition 2(GVD(V ))
1: P = V

2: Compute ε(δ̂(GVD(V ))) using Equations (S1), (S6), and (S7)
in the supplementary material.

3: for every v ∈ V do
4: if C(v) has two or more boundaries then
5: for each pseudobisector p̃bi ⊂ C̃(v) do
6: Find xi ∈ p̃bi that minimizes the distance from v to

p̃bi .
7: Compute the Voronoi cell C̃(xi) in GVD(V ∪ {xi}).
8: if C̃(xi) has only one connected boundary then
9: P = V

⋃{xi}.
10: Locally update GVD(P ), δ̂(GVD(P )) and ε(δ̂).
11: else
12: Compute two minimal geodesics γ (v, xi) and

γ ′(v, xi).
13: Find ai ∈ γ and bi ∈ γ ′ such that d(v, ai) =

d(v, bi) = ε(δ̂).
14: P = V

⋃{ai}.
15: Locally update GVD(P ) and ε(δ̂(GVD(P ))).
16: if C(ai) has two or more disjoint boundaries then
17: P = P ∪ {bi}.
18: Locally update GVD(P ), δ̂(GVD(P )) and ε(δ̂).
19: end if
20: end if
21: end for
22: end if
23: end for
24: return GVD(P ), in which all Voronoi cells are topological

disks.

6.3 An Improved Algorithm

Algorithm 1 adds new auxiliary sites near the existing sites to elim-
inate pseudobisectors and separate multiple-order neighbors. How-
ever, in practice, to obtain a fairly regular Voronoi diagram, it is
often desired to add new sites away from the existing sites. In this
section, we propose two effective strategies for eliminating pseudo-
bisectors and separate multiple-order neighbors. Combining them
with Procedures 3 and 4, the improved algorithm (Algorithm 6) can
output more uniform samples than those of Algorithm 1 and can also
guarantee that the resulting IDTs are proper. The time complexity
remains unchanged as stated in Theorem 11.

The first strategy is to add an auxiliary site on each pseudobi-
sector. Let p̃bi be a pseudobisector in a Voronoi cell C̃(v), and let
xi ∈ p̃bi be the position that minimizes the distance from v to p̃bi .
It is readily seen that adding an auxiliary site at xi will remove pseu-

Procedure 8: ensure 2-cell intersection condition 2(GVD(P ))
1: Let P ′ = P .
2: Sort all Voronoi edges in ascending order.
3: for any two Voronoi edges bk = bl = {pi, pj } with the same

ordered pair do
4: Place pj into the multiple-order neighbor list of pi

5: Place pi into the multiple-order neighbor list of pj .
6: end for
7: for each Voronoi cell C̃(p) with a nonempty list of multiple-

order neighbors do
8: for each shared Voronoi edge b̃i with a multiple-order neigh-

bor do
9: Find xi ∈ b̃i that minimizes the distance from p to b̃i .

10: Compute the Voronoi cell C̃(xi) in GVD(V ∪ {xi}).
11: if C̃(xi) has only one connected boundary and has no

multiple-order neighbor then
12: P ′ = P ′ ⋃{xi}.
13: Locally update GVD(P ′), δ̂ and ε(δ̂).
14: else
15: Compute the geodesic γ (p, xi).
16: Find ci ∈ γ (p, xi) such that d(p, ci) = ε(δ̂).
17: P ′ = P ′ ∪ {ci}.
18: Locally update GVD(P ′), δ̂ and ε(δ̂).
19: if C̃(ci) have multiple-order neighbor sites then
20: Find two Voronoi vertices ωi1 and ωi2 of the Voronoi

edge b̃i .
21: Compute the geodesics γi1 and γi2 to the p tangent

to ∂D(ωi1 , δ̂) and ∂D(ωi2 , δ̂), respectively, that do not
intersect b̃i .

22: Find di1 ∈ γi1 and di2 ∈ γi2 such that d(p, di1 ) =
d(p, di2 ) = ε(δ̂).

23: P ′ = P ′ ∪ {di1 , di2}.
24: Locally update GVD(P ′), δ̂ and ε(δ̂).
25: end if
26: end if
27: end for
28: end for
29: return GVD(P ′), which satisfies the closed ball property.

dobisector pbi from C̃(v) in the updated GVD(V ∪ {xi}). However,
the new Voronoi cell C̃(xi) cannot be guaranteed to be free of pseu-
dobisectors; see a counterexample in Figure 4. In practice, we find
that this strategy works well and that the extremely pathological
cases like the one in Figure 4 are rare. Procedure 7 combines this
strategy (lines 7 through 10) with Procedure 3. Since locally com-
puting C̃(xi) and examining the existence of any pseudobisector in
C̃(xi) take O(n) time, Procedure 7 has the same time complexity as
Procedure 3.

Let C̃(p) be a Voronoi cell that shares k Voronoi edges with
multiple-order neighbors. The second strategy is to add an auxiliary
site on each of these k Voronoi edges {̃bi}k

i=1. Let xi ∈ b̃i be the
position that minimizes the distance from p to b̃i . It is readily seen
that adding an auxiliary site at xi will remove the bisector b̃i from
C̃(p) in the updated GVD(P ∪ {xi}). However, the new Voronoi
cell C̃(xi) cannot be guaranteed to be free of pseudobisectors and
multiple-order neighbors; see a counterexample in Figure 5. Akin
to the first strategy, in practice we find that the second strategy also
works well and that the extremely pathological cases like the one in
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Fig. 20. Comparison with Delaunay meshes. Since the original meshes are highly anisotropic, Delaunay meshes require a large number of splitting points to
ensure the local Delaunay condition. In contrast, IDT does not require any auxiliary site at all, as the sampling density on the cylinder-shaped regions is high
enough.

Figure 5 are rare. Procedure 8 combines the second strategy (lines 10
through 13) with Procedure 4. Again, since locally computing C̃(xi)
and examining the existence of any pseudobisector and multiple-
order neighbors in C̃(xi) takes O(n) time, Procedure 8 has the same
time complexity as Procedure 4.

See the supplementary material for the results of Algorithm 6.

Handling degenerate cases. For constructing GVD and its dual
IDT, a critical degenerate case is that more than three sites are on the
same geodesic circumcircle, resulting in a nonempty intersection of
more than three Voronoi cells. A common technique [Edelsbrunner
and Mücke 1990] is to make a conceptual perturbation on these
sites to eliminate all degeneracies. Consider four sites lying on a
circumcircle: any arbitrarily small perturbation will result in two
distinct circumcircles, each of which passes through three sites.
However, the centers of these two circumcircles are arbitrarily close,
leading to an arbitrarily small δmax(GVD(P )) in Equation (1). We
handle this case by storing a local adaptive δmax(p) for each Voronoi
cell C̃(p) instead of using a global δmax(GVD(P )). We found that
together with two improved strategies in Procedures 7 and 8, this
adaption works quite well in our practice. Elaborate techniques for
handling all kinds of degenerate cases deserve further study in their
own right and will be reported in future work.

6.4 Comparison with Delaunay Meshes

Delaunay meshes M [Dyer et al. 2007a] are manifold triangle
meshes that form an IDT of its vertices with respect to the piece-

wise flat metric of its polyhedral surface. In other words, the proper
IDT associated to a Delaunay mesh is just the mesh itself. Liu
et al. [2015] showed that for an arbitrary manifold triangle mesh
M with n vertices, there exists a Delaunay mesh with O(Kn) ver-
tices, where K is a model-dependent constant. They also developed
an efficient algorithm to construct Delaunay mesh in O(nK log K)
time.

Both proper IDT and Delaunay mesh have exactly the same
geometry of M and satisfy the Delaunay condition everywhere.
However, they differ in representation, space complexity, and time
complexity.

Representation. An IDT edge is a geodesic path that may go
through many triangles. Hence, it is tedious to explicitly represent
IDT edges. Usually, one often takes the IDT as an abstract surface
representation—that is, ignoring the geometry of geodesic paths
and storing only their lengths. To apply IDT to the subsequent
geometry processing algorithms, one has to adapt their interfaces
for the abstract representation. In contrast, Delaunay meshes are just
normal triangle meshes that can be represented by any mesh data
structures, such as half edges and triangle soup. Consequently, the
existing geometry processing algorithms can benefit the favorable
properties of Delaunay meshes without changing any code.

Space complexity. The price to pay for the flexible representation
of Delaunay meshes is its high space complexity. As shown in Liu
et al. [2015], a Delaunay mesh has O(Kn) vertices, where the
constant K depends on the triangulation quality. We observe that
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for anisotropic meshes (especially the ones made by artists), K can
be very large (even comparable with n). In contrast, we prove that
a proper IDT has O(n) vertices—that is, its space complexity is
independent of the mesh quality. Take the Lamp model (Figure 20)
as an example. The Delaunay mesh has almost 200 times more
vertices than the original mesh, whereas the IDT does not require
any auxiliary sites.

Time complexity. The algorithms for constructing IDTs and De-
launay meshes are also different. To construct a proper IDT, we need
to compute the GVD, which takes O(n2 + tn log n) time. The De-
launay mesh construction algorithm simply flips the flippable NLD
edges and splits the nonflippable NLD edges until all edges are
local. The Delaunay mesh construction algorithm is fairly efficient
for meshes with good triangulation quality due to its O(nK log K)
time complexity. However, for anisotropic meshes such as Sword
and Lamp (see Figure 20), where a large number of splitting points
were added, constructing Delaunay mesh is highly expensive. In
contrast, the performance of our method is not sensitive to the mesh
quality.

In summary, both proper IDT and Delaunay mesh have their mer-
its and limitations. Delaunay mesh is effective for triangle meshes
with fairly good quality, whereas proper IDT is advantageous for
anisotropic meshes.

7. CONCLUSIONS

This article presents a new method for constructing proper IDT
on 2-manifold triangle meshes. Unlike the existing edge-flipping
algorithm, our method is based on the dual graph of GVD. The
key idea is to add auxiliary sites to the poorly sampled regions so
that the closed ball property holds everywhere, and hereby the dual
graph is a proper triangulation. We prove that our method produces
a proper IDT by adding at most O(n) sites for an n-vertex mesh.
Moreover, thanks to the bounded time complexity of computing
GVDs, our method has a theoretical worst-case time complexity
O(n2 + tn log n), where t is the number of obtuse angles in the
mesh. Computational results show that it empirically runs in linear
time O(n) on real-world models.
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