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LineUp: Computing Chain-Based Physical Transformation
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In this article, we introduce a novel method that can generate a sequence

of physical transformations between 3D models with different shape and

topology. Feasible transformations are realized on a chain structure with

connected components that are 3D printed. Collision-free motions are

computed to transform between different configurations of the 3D printed

chain structure. To realize the transformation between different 3D mod-

els, we first voxelize these input models into a similar number of voxels.

The challenging part of our approach is to generate a simple path—as a

chain configuration to connect most voxels. A layer-based algorithm is de-

veloped with theoretical guarantee of the existence and the path length.

We find that collision-free motion sequence can always be generated when

using a straight line as the intermediate configuration of transformation.

The effectiveness of our method is demonstrated by both the simulation

and the experimental tests taken on 3D printed chains.
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1 INTRODUCTION

With the advancement of 3D printing technology, how to design

printed models with transformable shapes has caught more and

more attention in the computer graphics community (e.g., (Duncan

et al. 2016; Garg et al. 2016; Guseinov et al. 2017; Konaković et al.

2016; Li et al. 2015; Pérez et al. 2017)). Existing works can be mainly

classified into two groups depending on whether disassembly (and

re-assembly) is allowed. Objects that allow to disassemble, such

as Lego bricks (Luo et al. 2015), Mix-and-Match toys (Team 2010),
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interlocking puzzles (Xin et al. 2011), and free-form interchange-

able components (Duncan et al. 2016), are in general flexible to

construct a variety of shapes. This group of approaches has been

extensively studied.

Recently, effort has shifted to a more challenging problem—

transforming the configurations of a model by only shifting, fold-

ing, and twisting its components (e.g., see Zhou et al. (2014), Sun

and Zheng (2015), Li et al. (2015), Garg et al. (2016), and Song

et al. (2017b)). These approaches do not require disassembly, and all

components are connected. As a result, they allow users to trans-

form the shape of a model more easily. Yu et al. (2018) provide

a user study based on behavioral and EEG data analysis show-

ing that via transforming 3D shape without disassembly, tangible

interaction can significantly improve users’ performance related

to spatial ability. However, there is no existing approach that can

compute n-ary (n ≥ 3) physical transformation among general 3D

shapes. In this article, we propose a method that can generate such

transformation between example models with different shapes and

topology; e.g., as shown in Figures 1 and 15, five 3D models with

different geometries and topologies can be physically transformed

into each other via a common line configuration.

In our approach, models with different shapes are formed via

folding and twisting a 3D printed chain. Models are represented

by voxels in our computation and each component on a chain is

corresponding to two neighboring voxels. The problem is to real-

ize physical transformations by folding and twisting is converted

to compute a line configuration to link up most voxels inside a 3D

model and then convert the line configuration into a chain of pairs

of voxels. Two major challenges are (1) how to compute such a line-

based configuration inside the volume of each 3D model and (2)

how to generate the collision-free motions to physically transform

from one configuration into another. Several applications of the

proposed line-based physical transformations, such as spatial abil-

ity training, self-reconfigurable modular robots, and transforming

structures, are discussed in Section 8.

Given a 3D model represented by a set of voxels, we develop

a layer-based approximation algorithm to compute the sequence

of voxels on the line. First of all, a high-genus model will be de-

composed into regions with simple topology. Each planar layer of

voxels in a simple region can then be covered by a linear sequence

of connected voxels, and the neighboring layers are connected by a

pair of neighboring voxels. With the help of this layer-based strat-

egy, we prove that this algorithm can generally compute such a

line configuration of connected voxels for 3D models as long as a

model can provide enough bandwidth of voxels to connect differ-

ent layers. Collision-free motions are computed by stretching the

connected pairs of voxels on a chain into a straight line. As a result,

the straightened shape can be used as an intermediate configura-

tion to physically transform a 3D printed chain from one shape
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Fig. 1. Models with different shape and topology can be physically formed and transformed between each other by a 3D printed chain. Employing the

straight line as an intermediate configuration, our algorithm generates collision-free motion for folding based shape transformation. Here, all models consist

of 754 connected building-blocks, and each building-block is corresponding to two neighboring voxels. Colors are used in this figure to indicate the same

portion of a chain in different shapes. For visualization, unfolded models in each row are scaled down to fit the space. The procedural transformations can

be found in the supplementary video.

into another. Here, the inverse motion of stretching is employed

to fold a straight chain into a new shape.

Our technical contributions include:

—A layer-based algorithm to compute a line configuration that

connects most voxels inside a general 3D model while pre-

serving its appearance;1 and

—An algorithm for planning collision-free motions between a

folded line configuration and a straight configuration.

Experimental tests are conducted on a variety of 3D models

in different shapes and topology. Physical transformations are

demonstrated to realize the shape variation on 3D printed chains

(see Section 7 and also the supplementary video).

2 RELATED WORK

Special effects of computer animation such as warping and mor-

phing on images and 3D digital models have been widely stud-

ied. With the era of computational fabrication, researchers recently

start to pay more attention to physical transformation of 3D mod-

els. In this section, we only review the research approaches that

focus on physically forming the shapes of 3D models.

1To preserve the appearance of an input model, no surface voxel will be sacrificed.

2.1 Computational Fabrication

Generally speaking, design for physical transformation is a sub-

problem of computational fabrication, which has garnered much

attention in computer graphics recently (e.g., see Bickel et al.

(2018)). Many geometric modeling techniques have been proposed

to take fabrication into consideration simultaneously. Mechanical

strength was considered and improved in Stava et al. (2012). A

worst-case structural analysis was proposed in Zhou et al. (2013),

based on which possible structural instability (e.g., high stress or

large deformation) for 3D printed models can be identified. By fur-

ther considering loading conditions in the real world, a context-

aware design and fabrication technique with stochastic structural

analysis has been recently proposed in Langlois et al. (2016).

To increase the fabrication stability or satisfy other physical

properties such as spinnability or aerodynamics, the geometry of

an existing shape can be deformed or optimized for fabrication

(e.g., see Bächer et al. (2014), Hu et al. (2015), Musialski et al.

(2015), and Umetani et al. (2014)). Not only static but also artic-

ulated models are able to be fabricated by using the ability of

assembly-in-fabrication provided by 3D printing (Calì et al. 2012;

Bächer et al. 2012). To generate characters that can be fabricated,

mechanical friction joints that satisfy joint types, ranges, and

inter-joint non-penetration constraints are designed from skinned
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input meshes (Bächer et al. 2012). Joints that have internal fric-

tion to withstand gravity are considered in Calì et al. (2012) to ease

the fabrication of articulated models. However, the shape variation

that can be performed on an articulated model is limited.

Starting from the work of Bickel et al. (2010), effort has been

made to design the deformation behavior of 3D printed models

with specified target shapes under actuation (e.g., the approach

presented in Skouras et al. (2013) by multi-material printing and

Zhang et al. (2016) by changing the thickness of shells). The behav-

ior of deformation is also designed and optimized by using differ-

ent microstructures in Schumacher et al. (2015) and Panetta et al.

(2015). Again, the deformations produced by these approaches

are also limited. Unlike our work presented in this article, they

cannot conduct physical transformations between models with

completely different shapes and topology (i.e., changing genus-

number).

2.2 Shaping by Assembly

Different shapes can be produced by assembling basic building-

blocks (e.g., the well-known Lego Bricks (Luo et al. 2015) and

Mix-and-Match toys (Team 2010)). Early research targets on fast

construction of new digital 3D models by finding and compositing

parts of interest searched from a database of 3D models, including

the methods of intelligent scissoring (Funkhouser et al. 2004),

automatic recommendation (Chaudhuri and Koltun 2010), and

probabilistic reasoning for semantic and stylistic compatibility

(Chaudhuri et al. 2011) and underlying causes of structural vari-

ability in the shape (Kalogerakis et al. 2012). Nevertheless, none

of these modeling tools considers the physical transformation

between different shapes.

Recently, an interesting work was presented in Duncan et al.

(2016) to realize the physical variation of shapes by hands-on dis-

assembly and re-assembly. A set of interchangeable components

can be fabricated and are capable of being assembled into several

possible shapes. In order to make physical transformation feasi-

ble, target models should be co-segmented into meaningful multi-

pieces. Early methods of shape co-segmentation (such as in Huang

et al. (2011) and Sidi et al. (2011)) cannot be directly applied here

as the constraint of exchangeable is hard to be incorporated. Dif-

ferently, Duncan et al. (2016) jointly deform and partition multiple

models together to guarantee that the segmented parts (called in-

terchangeable components) from different shapes can be smoothly

assembled into different new shapes. However, the possible shapes

obtained from interchange are limited.

2.3 Designing Foldable Structures

Different from the structures and shapes constructed by assem-

bly, a foldable structure can be transformed from a compact shape

into another complex shape without disassembly and re-assembly

in two ways. The first class of approaches (e.g., Guseinov et al.

(2017) and Pérez et al. (2017)) use pre-stretched/auxetic materials.

In particular, 3D complex shape can be fabricated on flat sheets,

which are pre-stretched. After fabrication, the restoring forces

drive the flat sheets back into designed 3D shapes. The second

class (e.g., Zhou et al. (2014), Li et al. (2015), Sun and Zheng (2015),

and Garg et al. (2016)) is mainly based on shifting, folding, and

twisting joints. 3D models with foldable structures are easier to

operate but much more difficult to be obtained. An interface is

developed in Garg et al. (2016) to interactively design a feasible

folding sequence without collision. Infeasible configurations are

resolved with the help of user interaction.

Foldable design has been well studied for some special man-

made objects, such as furniture (Li et al. 2015), umbrellas, and bikes

(Garg et al. 2016), which can be folded to save space. Another re-

cent work, Boxelization (Zhou et al. 2014), generates a foldable

structure that can transform a 3D printed shape into a box. The

method is based on segmenting a given 3D model into voxels at a

very coarse level and searching a tree structure of connected vox-

els for installing hinge joints. A folding sequence can be computed

at the same time.

As types of foldable structures, paper folding (a.k.a. Origami)

and pop-up design have been well studied in computational geom-

etry (O’Rourke 2011). Specifically, paper folding is to find a crease

pattern on a piece of paper, along with which the paper can be

folded into a 3D shape. Both straight line segments (McArthur

and Lang 2012) and curved folds (Kilian et al. 2008) are studied

in the crease pattern. In a pop-up design, a complex 3D shape can

be closed down to a flat surface. Both folding and cutting are al-

lowed in multi-style pop-up designs (Jr. et al. 2014; Li et al. 2011).

Again, a target shape that can be transformed into is fixed—i.e., a

planar layout.

2.4 Reconfigurable Structures

Foldable structures usually have two states: a folded (compact)

and an unfolded (non-compact) state. By contrast, reconfigurable

structures can transform between complex shapes and thus are

much more difficult to design. Reconfigurable assemblies were pro-

posed in Song et al. (2017a) such that a common set of parts can

be assembled into different forms of furniture. However, disassem-

bly and re-assembly are required in this method. A group-theoretic

approach was proposed in Sun and Zheng (2015) to effectively cre-

ate complex twisty joints in the shape and represent the shape by

a twisty puzzle that generalizes the mechanism of Rubik’s Cube.

The method can effectively obtain contorted poses of a complex

and free-form shape. To transform between two arbitrary shapes

only by rotating or translating their component parts, a morpho-

logical embedding method was proposed in Huang et al. (2016).

This method was further improved in an elegant computational

framework (Yuan et al. 2018), which includes a user-controllable

shape segmentation for allowing users to incorporate their per-

sonal preferences into the design process.

How to compute a feasibly physical transformation among mul-

tiple (i.e., more than two) models with any 3D shape is still an

open problem to be solved. We simply denote all the operations

on the joints (e.g., shifting, folding, and twisting) by transforming

and refer to configurations as a model’s shape in different trans-

formed statuses. In our approach, voxel representation is used to

reduce the difficulty of such computation. However, different from

the tree structure of voxels used in Zhou et al. (2014), we compute

a line configuration of connected voxels in the form of a chain

of 3D printed and connected components as our physical imple-

mentation (see Figure 15 for an illustration). Collision-free motions

between different configurations of a chain can also be generated
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Fig. 2. The building-block. (a) Each building block consists of two cylinders

with hemispherical end ω1 and ω2, connected by a hinge. Each cylinder

represents a voxel of the input solid. Both cylinders can rotate around the

axes x1 (coincident to x2), y1, z1, y2, and z2. (b) Two adjacent building-

blocks Bi and Bj are connected by fabricating Bi (ω2) and Bj (ω1) as a

whole piece. For any cylinder (e.g., Bi (ω2)) in a chain, both of the rel-

ative orientations between this cylinder and its two neighbors can be

changed. Specifically, one can change the orientation (Bi (ω2), Bi (ω1))
by rotating Bi (ω2) around the axes of Bi (ω1), and adjust the orientation

(Bi (ω2), Bj (ω1)) by rotating Bi (ω2) around its own axes.

by our approach; therefore, physical transformation between gen-

eral 3D shapes is realized.

3 OVERVIEW

We deal with void-free 3D solids, which are represented by voxels.

One can easily convert other formats such as polygonal meshes,

and implicit and parametric surfaces into voxels using the standard

voxelization methods (e.g., Yngve and Turk (2002) and Zhou et al.

(2014)). We assign an upright orientation to every input model so

that the voxels can be organized in a layered structure. Note that

each layer can be either simply or multiply connected.

Problem Statement: Given a set of 3D void-free solids ˜Θ =
{˜Si }mi=1 (m ≥ 2), compute another set of voxel-based solids Θ =
{Si }mi=1 such that

(1) ∀i ∈ [1,m], Si preserves the appearance of ˜Si ;

(2) All solids S ∈ Θ can be physically formed by the same num-

ber of building-blocks connected in a linear chain, where

each building-block (as shown in Figure 2) is corresponding

to two voxels; and

(3) For any two solids Si , Sj ∈ Θ (i � j), they can be phys-

ically folded into each other (without disassembly and

re-assembly).

To solve the problem ofn-ary transformation between shapes in Θ,

a 3D-printed chain consisting of connected building-blocks is used

(see Figure 2). Then, the problem is converted to how to use such

a chain to form different voxel-based solids. The key idea of our

method is to find a simple path ˜Pi that links as-many-as-possible

voxels in each input shape ˜Si ∈ ˜Θ. The simple path traverses the

voxels in a layer-by-layer manner (detailed in Section 4). We call

the resulting path a layered path. Then, we trim all the paths

{˜Pi }mi=1 into {Pi }mi=1 so that all the paths have the same number

of voxels (see Section 5). By this way, we can represent each solid

Si ∈ Θ by a sequence of voxels lying on the layered path Pi .

Thanks to the layered path {Pi }mi=1, all the solids in Θ can be un-

folded into a common line configuration, implying that all shapes

in Θ can be physically transformed into each other by folding (see

ALGORITHM 1: LineUp algorithm

input: A set of m (≥2) solids represented by closed 3D surfaces

output: A chain model consisting of nonseparable building-blocks that

can be fabricated by 3D printing

1: Voxelize each surface with similar number of voxels using Zhou et al.

(2014)

2: Store m voxelized solids into a set ˜Θ = {˜Si }mi=1

3: for each solid ˜Si ∈ ˜Θ do

4: Choose an upright orientation and compute the Reeb graph G
(Section 4)

5: Compute a traversing path p (G) from G (Section 4)

6: Find a layered path ˜Pi from (˜Si , p (G)) using Algorithm 3

7: end for

8: Trim the paths {˜Pi }mi=1 into {Pi }mi=1 so that all paths have the same

number of voxels (Section 5)

9: for each path Pi do

10: Compute the collision-free motion to unfold Pi into a line

configuration and the inverse motion for folding (Section 6)

11: end for

12: return

Section 6 for more details). As all shapes can be physically formed

by a 3D-printed chain for a line configuration, we name this al-

gorithm as LineUp. The overall process is illustrated in Figure 3

and the corresponding pseudo-code is given in Algorithm 1. Main

notations are summarized in Table 1.

4 GENERATING LAYERED PATHS

Let ˜S ∈ ˜Θ be a void-free solid consisting of n voxels. We denote

the connectivity graph by Gc (˜S ) = (Vc ,Ec ) of ˜S , where each node

in Vc corresponds to a voxel in ˜S and each edge in Ec links two

neighboring voxels.

Our algorithm aims at finding the longest path in Gc (˜S ). Note

that (1) the Hamiltonian path problem—determining whether

there exists a path that visits each vertex exactly once—is NP-

complete (Korte and Vygen 2006), and (2) the longest path

problem—finding a simple path of maximum length in a given

graph—is NP-hard (Korte and Vygen 2006). Karger et al. (1997)

showed that for an arbitrary graph of n nodes, unless P = NP , the

problem of finding a path of length n − nε , ∀ε < 1, is NP-hard.

In this section, we propose a novel heuristic method with poly-

nomial time complexity to solve the longest path problem for

the connectivity graph Gc (S̃ ). Under mild assumptions, our algo-

rithm can find a path of length at least 5
6n + 2. Furthermore, the

generated path is guaranteed to be physically unfoldable, i.e., it

can be unfolded into a straight line configuration without self-

intersection.

The algorithm consists of the following steps, which are also

illustrated in Figure 4:

—First, given a shape ˜S with upright orientation, we build a

Reeb graph G (Fomenko and Kunii 1997) to encode the topol-

ogy of ˜S as follows: a node in G represents a horizontal layer

and two nodes are connected by an edge if their correspond-

ing layers are adjacent vertically (Figure 4(b)).
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Fig. 3. An overview of the proposed method, where the corresponding steps of the pseudo-code given in Algorithm 1 are also indicated.

Table 1. Main Notations

{˜Si }mi=1 Input solids

{Si }mi=1 3D printed objects

Gi Reeb graph of ˜Si

p (Gi ) a traversing path of Gi

˜Pi a layered path in all voxels of ˜Si

{Pi }mi=1 trimmed paths with the same number of voxels

oi a horizonal layer of voxels in S

Ωi a set of connected voxels in a layer oi

∂Ω the boundary of Ω

Ω◦ the interior of Ω

p (o) a long planar path in the layer o

vs (o) the starting voxel of layer o

ve (o) the ending voxel of layer o

Ci a maximal sub-cycle in p (G)

(a,b) directed edge from a to b

—Second, by applying depth-first search to G, we find a span-

ning tree of the Reeb graph that provides a pathp (G) travers-

ing all the nodes (Figure 4 (c) right).

—Third, for each node oi inG, we build an approximate longest

path called long planar path p (oi ) in the corresponding layer

of connected voxels (Section 4.1).

—Finally, we merge the long planar paths between adjacent

nodes in G according to the number of visits in the traversal

(Section 4.2).

4.1 Computing Approximate Longest Path

for Each Layer

Each node o in the Reeb graph G corresponds to a set of voxels

Ω that are connected at a horizontal layer. Whenever there is no

ALGORITHM 2: Computing a long planar path in Ω

input: A set of connected voxels Ω in a horizontal layer (corresponding

to a node o in the Reeb graph G), a starting voxel vs , and an ending

voxel ve in Ω◦

output: A long planar path p (o) in Ω connecting vs and ve

1: Find boundary voxels ∂Ω and remove all dangling voxels.

2: Generate a cycle Cbndy passing through all voxels in ∂Ω by a linear

marching scheme (Figure 7(b)).

3: Use vs and ve as starting and ending nodes, respectively, to generate

an approximate longest path pinter in Ω◦ (Zhang and Liu 2011) (Figure

7(c)).

4: Merge Cbndy and pinter into a long planar path p (o) (Figure 7(d)).

5: return p (o)

risk of confusion, we denote the corresponding horizontal layer

also by o. We compute an approximate longest path in Ω that links

most of the voxels, meanwhile preserving its shape.

We can simply view Ω as a 2D domain. Borrowing the termi-

nology of image processing, we define that the 4-connected (resp.,

8-connected) voxels are the neighbors in the same layer to every

voxel that touches one of their faces (resp., one of their faces or cor-

ners). To ease the presentation of our method, below, we assume2

that there are no holes in Ω.

A voxel v ∈ Ω is called boundary voxel if at least one of its 8-

connected neighbors is not in Ω (see Figure 5). We denote the set

of boundary voxels by ∂Ω. A boundary voxelv ∈ ∂Ω is dangling if

it has only one 4-connected neighbor in ∂Ω. Algorithm 2 aims at

finding a path passing through all the boundary voxels in ∂Ω. After

removing all the dangling voxels, one can adopt a linear marching

scheme to generate a simple cycle passing all remaining voxels in

∂Ω. We denote by Ω◦ � Ω \ ∂Ω the interior of Ω.

Given two disjoint cycles c1 and c2 in the same layer o, we say c1

and c2 are mergeable if there exist two adjacent voxelsv1
i andv1

i+1
in c1 and two adjacent voxels v2

j and v2
j+1 in c2, such that v2

j is a

2Actually, our method can be easily adapted to handle holes in Ω, by simply replacing
the boundary voxels by the voxels of outmost boundary.
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Fig. 4. Overview of the layer-based approximation algorithm for the longest path problem. Given an input 3D solid ˜S represented by voxels (a), we take each

connected component of a horizontal layer as a node and construct a Reeb graph G, which encodes the topological structure of ˜S (b). Applying depth-first

search to G, we obtain a spanning tree, which is a traversing path p (G) (c). Then we compute a long planar path p (o) for each layer o. Finally, we merge

the planar paths into a single 3D path by considering two cases (MSP or MSC), depending on whether a node is visited once or twice during the spanning

tree traversal (see (d)).

Fig. 5. Voxel types. Left: Ω is a set of connected voxels (shown in yellow)

in a horizontal layer o. Right: the set of boundary voxels in Ω (shown in

blue) is denoted by ∂Ω. A dangling voxel is a boundary voxel with only

one 4-connected neighbor.

Fig. 6. The merge operation connects two mergeable adjacent cycles c1

and c2 (left) into one big cycle (right).

4-connectivity neighbor of v1
i and v2

j+1 is a 4-connectivity neigh-

bor of v1
i+1 (Figure 6, left).

We define the merge operation to join adjacent cycles c1 and c2

into one big cycle as illustrated in Figure 6, right. Note that if one

of the two cycles is a path, a merge operation will join a cycle and

a mergeable path into a longer path. We assume Ω◦ is connected.3

Then the graph defined by 4-connectivity on voxels is also con-

nected. We apply the algorithm in (Zhang and Liu 2011) to find an

3All mild assumptions that 3D models need to be satisfied are summarized in
Section 4.4.

Fig. 7. Given a horizonal layer o (a), Algorithm 2 finds a long planar path

(d) by connecting the boundary cycle ∂Ω (b) and an approximate longest

path in Ω◦ (c). See the text for details.

approximate longest path in voxels Ω◦. Then we merge the inte-

rior path and the boundary cycle into a single path, which is called

a long planar path p (o), where o is the layer in which Ω lies. We

show a toy example in Figure 7 and present the pseudo-code in

Algorithm 2.

After voxelizing the shape, we remove all dangling voxels so

that all boundary voxels have two 4-connected neighbors. Denote

the number of voxels in Ω and Ω◦ by nΩ and nΩ◦ , respectively. We

adopt Zhang and Liu’s algorithm (2011), which is able to find a path

of length at least 5
6nΩ◦ + 2 in O (n2

Ω◦ ) time. Since all the boundary

voxels lie on the boundary cycle, we have

Lemma 4.1. Algorithm 2 takes O (n2
Ω) time to find a path p (o) of

length at least 5
6nΩ + 2.

Algorithm 2 takes a starting voxel and an ending voxel in Ω◦ as

input, which are used to control the merging of paths in adjacent

layers; see Section 4.3 for details.

4.2 Merging Paths between Layers

After determining a long planar path at each node oi ∈ G, we

merge paths between adjacent nodes according to directed edge

(oa ,ob ) in the traversing path p (G) of the Reeb graph G. We con-

sider two cases (see Figure 4(d)):
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ALGORITHM 3: Generating layered path

input: A void-free 3D solid ˜S , a Reeb graph G, and a traversing path

p (G)

output: A layer-based long path ˜P , which links as many as possible

voxels in ˜S

1: Decompose p (G) into a set of MSCs {Ci }Ki=1 and an MSP.

2: for each node oi in the MSP do

3: Find vs (oi ) and ve (oi ) using the method in Section 4.3.1;

4: Build a long planar path p (oi ) with two endpoints vs (oi ) and

ve (oi ) using Algorithm 2

5: end for

6: Merge all p (oi ), oi ∈ MSP, into a long path ˜P

7: for each MSC in {Ci }Ki=1 do

8: for each node oj in Ci do

9: Find vs (oj ) and ve (oj ) using the method in Section 4.3.2;

10: Build a long planar path p (oj ) with two endpoints vs (oj ) and

ve (oj ) using Algorithm 2

11: end for

12: Update ˜P by merging all p (oj ), oj ∈ Ci , and merge them with ˜P

13: end for

14: return ˜P

—Case 1: there is only one directed edge (oi ,oj ) between nodes

oi and oj in p (G);
—Case 2: there are two directed edges (op ,oq ) and (oq ,op ) in

p (G).

We denote by vs (o) and ve (o) the starting and ending voxels of

a long planar path p (o) at a node o. The position of each voxel is

represented by its center’s integer coordinate (x ,y, z). We adopt

two strategies to merge the paths for the two different cases.

For Case 1, we require thatve (oi ) andvs (oj ) have the same hori-

zonal coordinate (x ,y) (Figure 4(d1)). Then, we simply add a link

(ve (oi ),vs (oj )) to connect paths p (oi ) and p (oj ).
For Case 2, we require that (i) vs (oq ) and ve (oq ) are face-

adjacent; (ii) each ofvs (oq ) andve (oq ) has a face-adjacent voxel in

the layer op , denoted byv1 andv2 respectively; and (iii) there is an

edge linkingv1 andv2 in the pathp (op ). Without loss of generality,

we assume the linking direction is (v1,v2). We merge paths p (op )
and p (oq ) by removing the link (v1,v2) from p (op ) and adding two

directed edges (v1,vs (oq )) and (ve (oq ),v2) (Figure 4(d2)).

Pseudo-code is summarized in Algorithm 3. Note that the above

merging strategies put some constraints on the position of start-

ing and ending voxels in the path at each layer. In Section 4.3, we

present a solution that satisfies these constraints.

4.3 Feasible Starting and Ending Voxels

We decompose the traversing path p (G) of the Reeb graph G into

maximal sub-cycles and a maximal sub-path, such that feasible

starting and ending voxels at the nodes of each maximal sub-cycle

or sub-path can be found separately.

A maximal sub-cycle (MSC), denoted by C , is a closed walk

(along directed edges) of p (G) consisting of a maximal sequence

of nodes starting and ending at the same node o(C ), with the con-

straint that o(C ) is visited exactly twice inC . Figures 8 and 9 show

two examples of MSC.

Fig. 8. (a) A traversing path p (G) = (o1, o2, o3, o4, o5, o4, o3, o2, o6,

o7, o8, o9, o10, o11, o12, o13, o12, o11, o10, o14, o15, o16, o17, o18). (b) De-

compose p (G) into two MSCs C1 and C2, and one MSP l1. C1 =

(o2, o3, o4, o5, o4, o3, o2 ), C2 = (o10, o11, o12, o13, o12, o11, o10 ), and l1 =

(o1, o2, o6, o7, o8, o9, o10, o14, o15, o16, o17, o18).

Fig. 9. The cycle (o2, o3, o4, o5, o4, o3, o2, o6, o7, o8, o7, o6, o2 ) in p (G) is

not a maximal sub-cycle, because o2 is visited more than twice. The proper

decomposition of p (G) contains two MSCs C1 and C2, and one MSP l1.

We denote the set of all nodes in an MSCCi byO (Ci ) and define
˜O (Ci ) = O (Ci ) \ {o(Ci )}. Let {Ci }mi=1 be all MSCs in p (G). Remov-

ing all the nodes in {˜O (Ci )}mi=1 and related edges from p (G), we

call the remaining path the maximal sub-path (MSP) in p (G). See

Figures 8 and 9 for examples.

Our key observation is that finding feasible starting and ending

voxels at each node can be realized in two steps (Algorithm 3):

—Step 1. Finding feasible starting and ending voxels at all nodes

in the MSP (step 3 in Algorithm 3);

—Step 2. Finding feasible starting and ending voxels at all nodes

in each MSC one by one (step 9 in Algorithm 3).

To describe Steps 1 and 2 in Sections 4.3.1 and 4.3.2, we define

an orthogonal projection of a voxel’s position v = (x ,y, z) onto a

layer oi (i.e., a horizonal plane z = zi ) as π (v, zi ) = (x ,y, zi ). For

each layer, we assign a color to each voxel by mapping a two-color

checkerboard based on voxels’ contacted relations (Figure 10, left).

4.3.1 Handling MSP. We re-index all nodes in the MSP and sort

them along the path as {oj }nMSP

j=1 . There is only one directed edge
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Fig. 10. Left: the 2-color checkerboard. Right: any boundary cycle (blue

lines) has an even number of voxels (red dots), since any two adjacent

boundary voxels are 4-connected neighbors and thus must be assigned to

different colors.

{oi ,oi+1} between two sequential nodes oi and oi+1 in the MSP. As

mentioned in Section 4.2, we require thatve (oi ) andvs (oi+1) have

the same horizonal coordinates (x ,y); see also Figure 4(d1).

Starting from the first node o1, we sequentially determine the

starting and ending voxels at each node in the following way. For

each layer oi , i = 1, 2, . . . ,nMSP , we determine its starting voxel

by the ending voxel at oi−1, i.e., π (vs (oi ), zi−1) = ve (oi−1) = (xi−1,

yi−1, zi−1). For i = 1, we randomly pick up a voxel in Ω◦ (o1) as the

starting voxel. We denote the set of voxels at the node o as Ω(o).
Let Ii = π (Ω◦ (oi+1), zi )

⋂
Ω◦ (oi ) be the overlap between the pro-

jected interior π (Ω◦ (oi+1), zi ) and the interior Ω◦ (oi ). We assume

Ii \ {vs (oi )} � ∅ for all i . Then we randomly pick up a voxel in

Ii \ {vs (oi )} with a different color as vs (oi ) as the ending voxel.

Since two voxels form a building block for 3D printing (Figure 2),

there must be an even number of voxels for each path.

Theorem 4.2 (Even Number of Voxels in MSP). For each node

in the MSP, the long planar path generated with the above specified

starting and ending voxels has an even number of voxels.

Proof. Since the adjacent voxels in the boundary cycle are 4-

connected neighbors, the boundary cycle has an even number of

voxels (thanks to the property of the 2-color checkerboard; see

Figure 10). Also note that the starting and ending voxels have dif-

ferent colors, therefore, any path connecting them has an even

number of voxels. �

4.3.2 Handling MSCs. We can determine the starting and end-

ing voxels in layers for each MSC C separately. Starting from

the node o(C ), we traverse the cycle C and re-index the nodes in
˜O (C ) \ {o(C )} into {oj }nMSC

j=1 . As mentioned in Section 4.2, for each

pair of nodes oj and oj+1 inC , which are connected by two directed

edges, we require that (1)vs (oj+1) andve (oj+1) are contacted, and

(2) each of vs (oj+1) and ve (oj+1) has a face-adjacent voxel in the

layer oj , which we denote as c1 and c2, and there is an edge linking

c1 and c2 in the path p (oj ); see also Figure 4(d2).

For each layer oi , i = 1, 2, . . . ,nMSC , we sequentially project

two adjacent planar paths p (oi−1) and p (oi ) into a common plane

and find the starting and ending voxels at oi−1 inside the over-

lapped segments of the two paths. In more details:

—π (p (oi−1), zi ) projects the long planar path p (oi−1) at the

node oi−1 onto the layer oi . When i = 1, we set o0 = o(C ). Let
˜Ii = (π (p (oi−1), zi )

⋂
Ω◦ (oi )) \ {π (vs (oi−1), zi ),π (ve (oi−1),

zi )}. We assume ˜Ii � ∅ for all i . Then we randomly pick up

two neighboring voxels in ˜Ii , which has a directed edge in

π (p (oi−1), zi ) as the starting and ending voxels.

Theorem 4.3 (Even number of voxels in each MSC). For each

node in the MSC, the long planar path generated with the above-

specified starting and ending voxels has an even number of voxels.

Observe that the starting and ending voxels are 4-connected and

they are of different colors. So the proof is almost identical to that

of Theorem 4.2.

4.4 Theoretical Guarantees & Complexity Analysis

Algorithm 3 works under a few mild assumptions stated as follows:

—in each node o of the Reeb graph, the set of interior voxels

Ω◦ are connected (Section 4.1);

—the dangling voxels have been removed (Section 4.1);

— Ii \ {vs (oi )} � ∅ for all i (Section 4.3.1); and

—˜Ii � ∅ for all i (Section 4.3.2).

In practice, all the assumptions are easily met if the input ˜S is a

high resolution solid.

Theorem 4.4. For a void-free solid ˜S with nS voxels satisfying the

above assumptions, Algorithm 3 finds a long path ˜P of length l (˜P ) ≥
5
6nS + 2 in O (n2

S
) time. Moreover, the path ˜P has an even number of

voxels.

Proof. The approximation ratio and the even number of voxels

are the direct consequences of Lemma 4.1, and Theorems 4.2 and

4.3.

To analyze the time complexity, we note that building the Reeb

graph takes O (nS ) time and depth-first search takes O (nS ) time

to find the traversing path. It also takes O (nS ) time to decompose

the Reeb graph into MSCs and MSP. By Lemma 4.1, finding the

starting and ending voxels and merging the paths into a layered

path take O (n2
S

) time. Putting it all together, Algorithm 3 runs in

O (n2
S

) time. �

5 PATH TRIMMING

To transform shape ˜S1 to ˜S2 and vice versa, we trim their corre-

sponding layered paths ˜P1 and ˜P2 into the same number of voxels.

Let n
˜P1

and n
˜P2

be the number of voxels in ˜P1 and ˜P2, respectively.

Without loss of generality, assume n
˜P1
> n

˜P2
. Our strategy is to

shorten the longer path by removing “unnecessary” voxels. Here,

the meaning of “unnecessary” is of course application-dependent.

As our application aims at preserving appearance, removing inte-

rior voxels is acceptable.

To reduce the number of voxels in ˜P , we define contraction pair

of voxels in ˜P , which satisfy the following conditions (see also the

illustration in Figure 11(a)):

—the two voxels lie in the same layer o and are 4-connected;

and

—the segment of the path inside o between them consists of all

unnecessary voxels.

We define the index of a contraction pair as the number of

voxels in the segment of the path inside o between the two voxels.
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Fig. 11. Path contraction. (a) A contraction pair of index 2. (b) The con-

tracted path with the path length reduced by 2.

Due to the property of two-color checkerboard, all indices are

even numbers.

Given a contraction pair, we can contract the path by directly

linking the voxels in pair and removing the segment of path be-

tween the pair (Figure 11(b)). After contraction, the length of the

path is reduced by the index of the contraction pair.

Applying a linear scan on the paths, we find all possible contrac-

tion pairs in ˜P1 and ˜P2, and put their indices into two sets I1 and

I2, respectively. In most cases, there are enough contraction pairs

of index 2 in ˜P1 (whose sum equals to n
˜P1
− n

˜P2
). Therefore, we

simply trim ˜P1 into P1 such that nP1
= n

˜P2
. If this simple trimming

scheme fails in rare cases, we find minimum subsets I ′1 ⊂ I1 and

I ′2 ⊂ I2, such that
∑

i ∈I ′1
i −∑j ∈I ′2

j = n
˜P1
− n

˜P2
. As a variant of the

subset sum problem, it can be solved in pseudo-polynomial time

by dynamic programming (Martello and Toth 1990).

6 COLLISION-FREE MOTION PLANNING

After trimming, all layered paths {Pi }mi=1 have the same number

of building blocks. Now we compute the collision-free unfold-

ing sequence for each shape so that all paths can be straightened

into a common line configuration. Since the unfolding sequence is

collision-free and reversible, it allows us to transform one layered

path into the other and vice versa.

Thanks to its layered structure, the output of Algorithm 3 can be

mapped to a planar linkage of rigid bars connected at flexible joints

(O’Rourke 2011). It is known that any tangled but non-crossing

planar polygonal linkages (i.e., polygonal chains) can be straight-

ened under a sequence of non-colliding motions (Connelly et al.

2003; Streinu 2000). Therefore, to lineup the layered path, we need

to map it to a planar domain. We present such a simple yet novel

mapping below.

Recall that each layer in the path P is horizontal, i.e., its z co-

ordinates are a constant. We refer to Figure 12. For each voxel

v = (x ,y, z) in P , we project it onto the xz plane to obtain a square

(x , z). We obtain a projected 2D path, denoted as Pxz = Π(x,z ) (P ),
by mapping the square centers as flexible joints and placing a rigid

bar between any two contiguous joints along the path P . The 2D

path Pxz of joints and bars corresponds to a planar polygonal link-

age of rigid bars. We call a joint of Pxz composite if it corresponds

to two or more voxels in P . Due to composite joints, some rigid

bars may overlap but they do not cross.

ALGORITHM 4: Collision-free motion planning

input: A shape S with a layered path P , in which the z coordinates of

each layer are a constant

output: A collision-free motion sequence that unfolds S into a line

configuration

1: Project the path P into a 2D path Px z = Π(x,z ) (P )
2: Apply the energy-driven approach (Cantarella et al. 2004) to unfold

Px z into a line configuration lx z ; denote the obtained motion

sequence as ϒx z

3: Apply the rigid body transformation to make lx z parallel to z-axis in

the xz plane

4: Compute the projected 2D path Pyz = Π(y,z ) (Π−1
(x,z )

(lxz ))

5: Apply the approach (Biedl et al. 2001) to unfold Pyz into a line

configuration; denote the obtained motion sequence as ϒyz

6: return ϒx z ∪ ϒyz

We apply the simple yet effective energy-driven approach

(Cantarella et al. 2004) to straighten planar polygonal linkages.

The method is based on the gradient flow of a repulsive energy

function and its output motion is free from self-intersection. Note

that in the original definition of linkage, rigid bars do not have a

width, so they can rotate with each other in any angle. However,

the width of the unit square requires that the angle between two

joined bars must be in [ π
2 ,π ] for avoiding self-intersection. Fortu-

nately, given a valid initial configuration of Pxz , the energy-driven

approach (Cantarella et al. 2004) never increases the angle between

joined bars and thus can apply to our case.

It is worthy of pointing out that the energy-driven approach

starts with a valid polygonal linkage, i.e., a planar open chain with-

out self-intersection. Our projected 2D path Pxz = Π(x,z ) (P ) can

be regarded as a degenerate open chain, in which some rigid bars

overlap due to composite joints. To remove degeneracy, we can ap-

ply infinitesimal perturbations on the joints of Pxz (Edelsbrunner

and Mücke 1990). If there exists such a perturbation to make Pxz

a general (i.e., non-degenerate) valid polygonal linkage (e.g., Fig-

ure 12(b)), the energy-driven approach will successfully output an

unfolding motion free from self-intersection. However, in many

cases, such a self-intersection-free perturbation does not exist; an

example is shown in Figure 13. Fortunately, the energy-driven ap-

proach still works in our situation due to the following key ob-

servation. For each joint in Pxz , we assign to it a depth attribute,

which is the y coordinate value of that joint in P . According to

different attributes, we can decompose Pxz into a set of subpaths:

all joints in each subpath have the same attribute. See Figure 14

for an example. A subpath may have several disjoint components,

but they must be free of self-intersection. Then the same proof

in Cantarella et al. (2004) can be easily adapted to each subpath

and show that the output straightening motion is free of self-

intersection.

After straightening Pxz , up to rigid body motion, we can assume

it is a line parallel to the z-axis in the xz plane. Then the mapping

Pyz = Π(y,z ) (Π−1
(x,z )

(Pxz )) is again a planar polygonal linkage on

the yz plane (Figure 12(d)). Applying the approach of Cantarella

et al. (2004) again on Pyz , we can finally unfold the 3D path P into a

straight line configuration. In the non-colliding motion generated

by Cantarella et al. (2004), each step takes O (n2
P

) time, and the
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Fig. 12. Unfolding a layered path to a straight line. Projecting the 3D layered path P (a) to the xz plane, we obtain a 2D path Px z = Π(x,z ) (P ), in which

each voxel v = (x, y, z ) becomes a unit square (x, z ) (b). Due to composite squares (colored in red in (b) and (c), and circled in (d)), some rigid bars (inside

the dashed circles) are overlapping. We apply the energy-driven approach (Cantarella et al. 2004) to straighten the 2D path Px z in the xz plane (c). The 3D

path by inversely mapping Π−1
(x,z )

(Pxz ) is shown in (d), which again is a planar polygonal linkage on the yz plane. All transformations are rigid motions

and they are physically feasible. In (c) and (d), we scale down the linkages in order to fit the space.

Fig. 13. Self-intersection of a projected 2D path. (a) A 3D path P consist-

ing of three layers. (b) The projected 2D path Pxz = Π(x,z ) (P ), which can

be regarded as a degenerate open chain with some overlapping rigid bars

due to composite joints (shown in red square). By applying infinitesimal

perturbations on the joints of Pxz , the degeneracy can be removed; and in

this case, a self-intersection occurs inevitably in the projection plane.

number of steps is a polynomial of nP , where nP is the number of

blocks in P . The pseudo-code is presented in Algorithm 4. In fact,

we can use a much faster method (Biedl et al. 2001) to straighten

Pyz (Step 5 in Algorithm 4), which takesO (nP ) rotations inO (nP )
time. Note that the method (Biedl et al. 2001) requires that the 3D

path P has a simple orthogonal projection on a plane, e.g., Pyz on

the yz plane, which is only satisfied on Pyz but not Pxz (before

applying the method (Cantarella et al. 2004)).

7 EXPERIMENTS AND DISCUSSION

We implemented the LineUp algorithm in C++ and evaluated it on

a workstation with 2 Intel Xeon E5-2698V3 CPUs and 128GB RAM

running Windows. The line configuration output from our method

can be directly used for 3D printing. Diverse 3D shapes with vari-

ous geometric features and topological complexity are tested.

Physical prototype. Figure 1 shows three example models (i.e.,

Bunny, Cannon, and Decocube) generated by Algorithm 1, all of

which have 754 blocks (corresponding to 1,508 voxels) and can

be transformed into each other continuously. We fabricate the

common line configuration of these shapes on an iSLA-650 Pro

Stereolithography 3D Printer, as shown in Figure 15. To fix the

Fig. 14. Straightening of 2D path Px z shown in Figure 13 and their sub-

paths at different depth values y by the approach of Cantarella at el. (2004).

positions of building-blocks during physical shape transforma-

tion, the surface of building-blocks are covered by thermosol and

strong velcros—this is motivated by the work of a reconfigurable

robot called YaMoR (Moeckel et al. 2006). The computer animation

of collision-free motion sequence for unfolding the shapes into

the common line configuration can be found in the supplementary

video.

In any folded 3D model, the physical strength of the structure

depends on the maximal stresses that can be supported by all build-

ing blocks. There are three different types of maximal stresses in

our application:
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Fig. 15. Experimental tests to form the shapes of five models by a chain-structure, where models can be physically transformed into each other. See

supplementary video for transformation process of physical folding.

Fig. 16. For each hemispherical-end in a building block, four slots are used

to facilitate the end to rotate with respect to different orientations of the

hinge. The two sides of each slot are arcs with a large radius, such that the

narrowest width between two sides is slightly smaller than the diameter of

the circular arcs at the end of the slot. Therefore, a certain force is needed

to drive the hinge to go through the slot by making elastic deformation of

the slot’s sides.

—The normal compressive stress: it depends on the 3D printing

material. We use photopolymer resin UV9400 whose com-

pressive strength is 38–56MPa.

—The normal tensile stress: it depends on the strength of ther-

mosol and strong velcros between the two building blocks.

—Critical buckling stress: when the building block with the

orientation as shown in Figure 17 (see critical buckling stress

test) is subjected to compressive stress, buckling may occur.

This is characterized by a sudden sideways deflection of

the hinge connecting two cylinders with hemispherical-end

(Figure 2(a)). As shown in Figure 16, we design the slot’s

width to be slightly smaller than the diameter of the circular

arcs at the end of the slot, so that a certain force is needed to

drive the hinge to go through the slot. This force, together

with the thermosol, devotes to the critical buckling load.

To evaluate the normal tensile stress σmax and the critical buck-

ling force Fc , we test the fabricated build blocks on a Zwick/Roell

Z020 universal testing system (Figure 17, left) with the results

σmax = 206.7KPa and Fc = 2042N . We also evaluate the maxi-

mal stress in each of the five folded 3D models designed by our

method. The finite element analysis software Abaqus (version 6.12)

is used. The evaluation results as shown in Figure 17 indicate that

the folded models generated by our method have enough physical

strength.

Physical transformation. Thanks to the layered path, the mo-

tion planing algorithm can guarantee the existence of a collision-

free motion sequence, which can be computed in polynomial time.

In practice, one can further improve the performance by a simple

heuristic. For each path Pi representing a fabricated shape Si , we

set the starting and ending blocks of Pi at the top layer. Then the

shape Si can be straightened into a straight line configuration by

pulling the blocks upward, and the pulled blocks are propagated

progressively from the starting and ending blocks to the remain-

ing blocks along the path Pi . Due to the internal support provided

by the hinges in each block (xy directions) and strong velcros (z di-

rection), this unfolding process is physically invertible, such that

each physical shape can be folded from a line configuration—see

the supplementary video for details.

We observe it is challenging for novice users, especially

children, to unfold a line configuration into a desired 3D shape.

To assist them, we provide an operation manual for each 3D

model. The user manual documents the sequential indices of the

building blocks in the physical chain, (B0,B1, . . . ,Bi , . . . ,B754),
and shows the global coordinate system to the first cylinder with

hemispherical-end B1 (ω1) (Figure 2(b)). We iteratively show the

global orientation of Bi+1 (ω1) in the manual, i = 1, 2, . . . , 754,

which is determined by the relative orientation of Bi (ω2) and

Bi+1 (ω1) (they are printed as a whole) with resect to Bi (ω1) . It

is worthy to note that this unfolding process calls up childrens’

and teenagers’ distinct cognitive processes to analyze a spatial

representation to make a particular structure by structured block

building. This practice can improve their spatial cognition that is
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Fig. 17. Physical strength test on building blocks and maximal stress estimation by finite element analysis. Left: Zwick/Roell Z020 universal testing system

was used in our tests. For building blocks, the maximal normal tensile stress is 206.7KPa and the critical buckling load is 2042N. Right: Abaqus 6.12 software

was used to analyze the stress distribution in five models, i.e., Bunny (σmax = 4.333KPa), Cannon (σmax = 9.888KPa), Decocube (σmax = 1.219KPa),

Duck (σmax = 3.314KPa), and 2-holed torus (σmax = 0.247KPa), with σmax denoting the maximal stress. All the stresses and force loads applied to each

building block in all five models are less than the affordable maximal normal tensile stress and the critical buckling load.

Fig. 18. The physical world consisting of 3D models that can be transformed by folding a common line configuration, including Armadillo, Dinosaur,

Aircraft, Elephant, and Deer, and some of their folded versions during the transformation process. See supplementary video for detailed transformation

processes.

associated with creative design processes (Stiles and Stern 2001;

Yu et al. 2018).

Incremental design. Algorithm 1 can be easily adapted to incre-

mental design. For example, for the line configuration L shown in

Figure 1, which can be folded into three shapes, we can incremen-

tally design the fourth and fifth shapes such that L can be folded

into them (see Figure 15). In this example, we incrementally add

the 2-holed torus and Duck models into the shape pool by the

following steps:

(1) Voxelize each model into the shape with nnew voxels; nnew

is slightly larger than 1,508;

(2) Generate a path ˜Pnew that preserves the appearance of ˜Snew

and go through as many interior voxels as possible;

(3) Trim the path ˜Pnew into the path Pnew, which passes through

exactly 1,508 voxels;

(4) Plan a collision-free motion that unfolds Pnew into L.

Complex examples. Our method is automatic and efficient. More

complex transformable shapes can be easily generated. Figure 18
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Table 2. Statistic Data of Generating Two Sets of Physically Achievable

Transformations {Bunny, Decocube, Cannon, 2-holed

torus, Duck} and {Armadillo, Dinosaur, Aircraft, Elephant, Elk}

Model

name

Voxelization Build ˜P Build P Motion planning

#voxels time #voxels time #voxels time time/step #steps

Bunny 1643 0.19s 1536 1.40s 0.03s 0.72s 240K

Decocube 1868 0.43s 1504 0.68s 0.03s 0.12s 240K

Cannon 2105 0.59s 1508 0.74s 1,508 0.04s 0.15s 240K

2-hole torus 1520 0.42s 1512 0.38s 0.06s 0.09s 80K

Duck 1586 0.40s 1484 0.70s 0.02s 0.36s 240K

Armadillo 6,280 0.48s 5,898 11.86s 0.12s 1.80s 70K

Dinosaur 6,522 0.34s 5,966 11.50s 0.14s 1.10s 150K

Aircraft 7,088 0.99s 6,482 27.47s 5,890 0.19s 0.90s 180K

Elephant 6,478 0.55s 5,892 11.94s 0.01s 1.32s 180K

Elk 6,425 0.42s 5890 20.42s 0.13s 2.04s 180K

We report the numbers of voxels (#voxels), the number of steps (#steps), time

(seconds) for voxelization, the layer-based path ˜P generation (Build ˜P ), the
trimmed path P generation (Build P ), and non-collision motion planning for path
straightening.

shows the transformations generated for the other five models (i.e.,

Armadillo, Dinosaur, Aircraft, Elephant, and Elk), each of which

have 2,945 connected components—corresponding to 5,890 voxels.

They all can be transformed into each other by folding. The details

of collision-free motion planning of these shapes for unfolding

into a line are shown in the supplementary video. The examples

shown in Figures 1, 15, and 18 demonstrate that when the number

of voxels increases, the appearance of models that can be trans-

formed into each other are more and more realistic. The statis-

tic data of generating these two sets of shapes are summarized in

Table 2.

Comparison with Boxelization. Boxelization (Zhou et al. 2014)

is the state-of-the-art method that can physically fold 3D shapes

of complex geometry into a box. Compared to Boxelization, our

method has three unique advantages:

—Our method can transform one shape into multiple targets,

rather than a single box.

—Our method outperforms Boxlization in terms of running

time. Note that Boxelization represents a shape by a tree

structure of voxels and takes an exhaustive search on a graph

for finding a tree structure that fits two shapes. Since the

search is carried out by simulated annealing, which takes

theoretically exponential time with lower bound Ω(4 

n
16 � )

(Sasaki 1987), Boxelization is time consuming. For solids with

48 to 125 voxels, it takes up to a thousand hours to find a fea-

sible solution using a cloud computing service. In contrast,

our method represents shapes by a path, and with mild as-

sumptions. Our method is guaranteed to terminate in O (n2)
time. Therefore, we can efficiently handle shapes with higher

resolution.

—The interactive folding strategy with user interference in

Boxelization cannot guarantee to be always feasible, while,

thanks to the layered path, our method is guaranteed to al-

ways have a collision-free motion planning for straightening.

Fig. 19. An SRMR module design for realizing the rotation mechanism in

a building-block. Following SuperBot (Salemi et al. 2006), a central rotation

part is used, which uses a motor ➀ to carry out the rotation around the x -

axis. Following EasySRRobot (Yu et al. 2017), two motors ➁ and ➂ are used

to carry out the rotation around the y1- and y2-axes, respectively, and the

other two motors ➃ and ➄ are used to carry out the rotation around the

z1- and z2-axes, respectively. Following M-TRAN II (Kurokawa et al. 2003),

the electromagnetic connector is used. Overall, we can use the method

of Yu et al. (2017) to design an optimal structure for assembling all these

components.

We would like to also point out that the reason that LineUp is

much more computationally efficient than Boxlization is due to the

use of building blocks that have full rotational degrees of freedom.

8 APPLICATIONS

This section discusses a few applications of LineUp.

Spatial ability training: Spatial ability (a.k.a. visuo-spatial abil-

ity) is a category of human reasoning skills that plays an impor-

tant role in affecting a child’s or teenager’s development in science,

technology, engineering, and mathematics (Wai et al. 2009). Man-

ually transforming a 3D physical model from one shape into the

other by using the 3D printed chain is a task related to mental rota-

tion and mental folding, which are widely used to evaluate spatial

ability (Harris et al. 2013). LineUp provides a tangible interaction,

through which users can improve their spatial ability by perform-

ing the reconfiguration task (Yu et al. 2018).

Self-reconfigurable modular robots (SRMRs): Our method

sheds light upon the reconfiguration planning of SRMRs (Stoy et al.

2010). An SRMR is usually constructed by modules and a widely

studied type is double-cube modules (e.g., M-TRAN III (Kurokawa

et al. 2008), SuperBot (Salemi et al. 2006), iMobot (Ryland and

Cheng 2010), and EasySRRobot (Yu et al. 2017)). Each module is

equipped with actuators, sensors, inter-module communication/

power-transmission devices, and microprocessors. As a result, the

rotation of a module can be controlled by computer programs and

any two modules can be connected via electronic/magnetic con-

nectors or strong velcros. In particular, we can use a combination

of the mechanical structure of SuperBot, the electromagnetic con-

nector of M-TRAN II (Kurokawa et al. 2003), and the optimal de-

sign methodology in EasySRRobot to design a new SRMR module

to realize all rotation functions in a building-block (see Figure 19).

The details of mechano-electronics will be implemented in our fu-

ture work. By replacing the building-blocks of a 3D printed chain
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Fig. 20. Micro-robotic surgery using transforming structure generated by LineUp. A folded endoscopic device was placed into the mouth of a patient.

One can unfold the device into a line configuration and then deliver it through the esophagus. After reaching the stomach, it can be folded into another

endoscopic structure and is ready for operation. See also the accompanying video.

with the new SRMR modules, the connected modules can automat-

ically transforms the robot’s shape into any other one in the shape

pool, behaving akin to the robots in the featured movies such as

Transformers. The current bottleneck of autonomous transforma-

tion taken on these SRMRs is the small power-to-weight ratio on

actuators. Nevertheless, this problem does not exist in the envi-

ronment with small or even no gravity such as underwater or in

outer space.

Transforming structures: Transforming structures (a.k.a. re-

configurable or folding structures) have received considerable

attention in computational geometry (Demaine et al. 2002), com-

puter graphics (summarized in Section 2.3), and robotics field

(Rubenstein et al. 2014; You 2014). Common configurations in-

clude chains (i.e., tree structures), lattices, and hybrid (Stoy et al.

2010). We develop an algorithm that allows physical transforma-

tion among 3D models with different geometry and topology by

using lines as the intermediate configuration. Such a line configu-

ration has two unique advantages that are not available on other

configurations in robotic applications: (1) A line configuration can

be easily driven by a single actuator placed at the head as a snake,

and (2) it can pass through narrow holes/channels for applications

with limited spaces. We list three application scenarios that can

benefit from such transforming structures as follows.

—Micro-robotic surgery (e.g., endoscopy): Tools in the configu-

rations and motion computed by LineUp can be used in the

surgery with the help of an endoscopic-type device. For ex-

ample, through the channel placed in the patient’s mouth

and esophagus, the chain can be folded into a new struc-

ture/shape for operations in the stomach. An example has

been illustrated in Figure 20. This idea can be similarly ap-

plied to other minimally invasive surgery.

—Archeology: One can form the probing device using LineUp

and send it inside the target (e.g., sealed tomb) through a tiny

hole. After that, it can be transformed into a probing device.

—Aerospace: To send equipment to a space station, it is highly

demanded to pack it in a compact form so that it can fit into

a small capsule of the launch vehicle. LineUp can also help to

generate ideal forms.

More demonstrations can be found in the accompanying video.

9 CONCLUSIONS & FUTURE WORK

We propose the LineUp algorithm that can physically transform

3D models into a chain structure, thereby allowing then-ary trans-

formation between 3D models with different shape and topology.

Our technical contributions include (1) a novel method to convert

voxel-based void-free solid into a simple path that goes through

most of the voxels and (2) a collision-free motion planning method

that can fold/unfold the model physically. Our methods are the-

oretically sound and computationally efficient. We demonstrated

the efficacy of our method via both computer simulation and 3D

printing.

Shape orientation plays a critical role in LineUp. This is mainly

because the Reeb graph is sensitive to orientation. Obviously, dif-

ferent orientations can lead to different traversing paths of the

Reeb graph, which, in turn, produces different MSP and MSC

decompositions. We experience that the fewer number of MSCs

in a shape, the easier the physical transformation can be achieved.

In our current implementation, the upright orientation is specified

by the user. In the future work, we will formulate an optimization

framework to find the optimal orientation. Our main objective of

this work is to develop a general approach to enable transform-

ing between a wide range of 3D models via line configurations.

Therefore, we adopt the voxel-based representation, which sacri-

fices the visual appearance of models. A naïve way to improve the

visual appearance is to increase the resolution with the additional

cost of computing and manufacturing. Another possible improve-

ment to balance the cost and visual appeal is to compute a shell of

each object with varying thickness (Musialski et al. 2015). These

alternatives will be explored in our future work.
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