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Fig. 1. Given an arbitrary manifold triangle mesh M (not necessarily a Delaunay mesh), our method automatically computes the simplified Delaunay mesh
with the user-specified resolution that has a small Hausdor� distance to M . Error (%) is measured by the two-sided Hausdor� distance between M and
the simplified DMs, with respect to the diagonal length of model’s bounding box. It preserves sharp features well and can deal with models with multiple
connected components, whereas the existing methods o�en fail.

Delaunay meshes (DM) are a special type of manifold triangle meshes —
where the local Delaunay condition holds everywhere — and �nd important
applications in digital geometry processing. This paper addresses the gen-
eral DM simpli�cation problem: given an arbitrary manifold triangle mesh
M with n vertices and the user-speci�ed resolutionm (< n), compute a
Delaunay mesh M⇤ withm vertices that has the least Hausdor� distance
to M . To solve the problem, we abstract the simpli�cation process using a
2D Cartesian grid model, in which each grid point corresponds to triangle
meshes with a certain number of vertices and a simpli�cation process is a
monotonic path on the grid. We develop a novel di�erential-evolution-based
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method to compute a low-cost path, which leads to a high quality Delaunay
mesh. Extensive evaluation shows that our method consistently outper-
forms the existing methods in terms of approximation error. In particular,
our method is highly e�ective for small-scale CAD models and man-made
objects with sharp features but less details. Moreover, our method is fully
automatic and can preserve sharp features well and deal with models with
multiple components, whereas the existing methods often fail.
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1 INTRODUCTION
Delaunay meshes (DM) [Dyer et al. 2007a] are a special type of man-
ifold triangle meshes where the local Delaunay condition is satis�ed:
for each internal edge, the sum of the opposite angles in adjacent
triangles is less than � . DM has proven useful for many geometry
modeling tasks, such as discrete geodesics, manifold harmonics,
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and parameterization [Liu et al. 2015]. Unfortunately, most models
(scanned or manually created) are not Delaunay meshes. There are
two methods [Dyer et al. 2007a; Liu et al. 2015] that are able to
convert arbitrary manifold triangle meshes to Delaunay meshes.
They are theoretically sound and can guarantee the resulting DM
has exactly the same geometry of the input mesh. However, since
both methods add a large number of vertices and edges, the price
to pay is the signi�cantly higher space complexity, which in turn
increases the computational cost for the follow-up applications.
In fact, �nding a good tradeo� between mesh resolution and

approximation error is a common practice in many graphics appli-
cations (e.g., [Hu et al. 2017; Mandad et al. 2015]). In this paper, we
focus on the optimal DM simpli�cation problem: given a manifold
triangle meshM (not necessary a Delaunay mesh) with n vertices and
a user-speci�ed numberm  n, compute a Delaunay meshM

⇤ with
m vertices that has the least Hausdor� distance toM .

Observing that any mesh optimization (in our case, including
Delaunay mesh construction and simpli�cation) can be realized as a
sequence of edge operations, namely, split and collapse [Hoppe et al.
1993], we abstract the optimal DM simpli�cation process using a 2D
Cartesian gridmodel: each grid point corresponds to triangle meshes
with a certain number of vertices and each type of edge operation
corresponds to one principal direction. The input mesh is the origin
and all simpli�ed DMs withm vertices lie on the line x �� = n �m.
Two adjacent points are two triangle meshes whose vertex counts
di�er by 1 and their topological realizations can be transformed into
each other by an edge operation. Using this model, we can view
a DM simpli�cation process as a monotonic path in a trapezoidal
subset of the grid. It is worth noting that the existing methods [Dyer
et al. 2007a; Liu et al. 2015] compute two di�erent �xed paths due to
their pre-de�ned strategies. These methods cannot produce optimal
DM due to the �xed, geometry-independent strategies.
Although there are �nite monotonic paths in the trapezium,

the conventional graph traversal or path �nding algorithms (e.g.,
breadth-�rst-search, Dijkstra’s algorithm and A* search, etc.) would
not work. This is because there are O(n2) nodes in the graph and
when visiting a node� , one needs to compute the Hausdor� distance
between the original mesh and the simpli�ed mesh corresponding
to � . The whole process is too computationally expensive even for
small-scale meshes.
In this paper, we develop a simple yet highly e�ective method

to compute a low-cost path. We �rst encode a path in the solution
space (i.e., a sequence of edge split and collapse operations) by a
vector of real values, then formulate the objective function that
measures the Hausdor� distance between the input mesh and the
simpli�ed DM obtained from the vector. Next, we apply di�erential
evolution (DE) [Das and Suganthan 2011] for �nding a solution with
a small objective function value.
Our method is fully automatic and can preserve sharp features

well. Computational results on a wide range of 3D meshes show that
our method consistently outperforms the existing methods [Dyer
et al. 2007a; Liu et al. 2015] in terms of approximation error. In
particular, our method is highly e�ective for small-scale1 CAD mod-
els and man-made objects that have sharp features but less details.

1Our method does not scale to large models due to its high computational cost.

Moreover, thanks to the two-sided Hausdor� distance metric used
in our method, it can deal with models with multiple connected
components, whereas the other methods often fail.

We make the following contributions in this paper:

• A novel computational framework that formulates the prob-
lem as optimal path-�nding in a 2D Cartesian grid and ex-
plains that the existing methods [Dyer et al. 2007a; Liu et al.
2015], based on pre-de�ned strategies, compute two �xed
paths; and

• A novel stochastic algorithm to compute a low-cost path
in the entire solution space. We observe that our method
consistently outperforms the existing methods.

2 RELATED WORK
2.1 Intrinsic Delaunay Structures
Rivin [1994] de�ned intrinsic Delaunay triangulation (IDT) of a sim-
plicial surface, and the triangular edges of IDT are geodesic paths.
Bobenko and Sprinborn [2007] proved that the edge �ipping al-
gorithm is guaranteed to terminate after a �nite number of steps,
thereby implying the existence of IDT. They also de�ned Delaunay
tessellation via a global empty circle criterion and proved its exis-
tence and uniqueness. IDT can then be obtained by triangulating
all non-triangular faces in Delaunay tessellation. Boissonnat et al.
[2013] further extended the IDT construction to smooth closed sub-
manifolds of Euclidean spaces. On piecewise linear surfaces, Fisher
et al. [2007] proposed a practical implementation of the edge �ip-
ping algorithm in [Bobenko and Springborn 2007], which is e�cient
for real-world meshes. However, it has no known time complexity
and the resulting IDTs may not be proper, i.e., containing self-loops
and/or faces with only two edges.
Dyer et al. [2008] proposed adaptive sampling criteria based on

the strong convexity radius and the injectivity radius, and show
that in smooth manifolds, if an intrinsic Voronoi diagram satis�es
the closed ball property [Edelsbrunner and Shah 1997], its dual IDT
exists and is proper. However, their Voronoi cells are restricted in a
convex neighborhood, which is an extremely small region around a
point in smooth manifold. Based on the intrinsic property of discrete
geodesics [Mitchell et al. 1987], Liu et al. [2017] developed a practical
algorithm that constructs intrinsic Voronoi diagrams on manifold
triangle meshes satisfying the closed ball property with very few
auxiliary samples and output proper dual IDTs. Their algorithm has
a worst-case theoretical time complexity O(n2 + tn log(n)), where t
is the number of obtuse angles in the input mesh. IDT is compact
and preserves the intrinsic geometry, however it is often di�cult
to use, since the geodesic-path-based edges are incompatible with
conventional mesh data structures.
Delaunay meshes (DMs) are a special triangle mesh whose IDT

is the mesh itself. The term was coined by Dyer et al. [2007b],
who also developed an algorithm to convert an arbitrary manifold
triangle mesh into a DM by edge splitting and re�nement [Dyer
et al. 2007a]. Their algorithm is theoretically sound, however it
often adds too many splitting points which signi�cantly increases
the complexity of the resulting DM. Considering local geometry in
edge re�nement, Liu et al. [2015] proposed a simple yet e�ective
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Fig. 2. Geometry-preserving NLD edge split. (a) Consider an unflippable
NLD edge ee . (b) We can split ee = (a, b) at some point s so that both the
new edges (a, s) and (s, b) are LD. However, the four edges {ei }4i=1 may
become NLD because of the new vertex s . Liu et al. [2015] computed the
optimal position of s so that spli�ing ee at s preserves the most LD edges in
{ei }4i=1.

algorithm for constructing DM with much fewer vertices than Dyer
et al’s method.

2.2 Mesh Simplification
There are three typical ways to simplify triangle meshes: vertex deci-
mation, vertex clustering and edge contraction [Cignoni et al. 1998a;
Luebke 2001]. Compared to the �rst two, the last one is easy to imple-
ment with e�ective measure of approximation errors. The quadric
error metric (QEM), developed by Garland and Heckbert [1997], is
a representative work of this category, which iteratively collapses
edges prioritized by a quadric error. This algorithm is e�cient and
can maintain high �delity to the original model [Heckbert and Gar-
land 1999].

Delaunay mesh simpli�cation is considered as a constrainedmesh
simpli�cation, since it must ensure the Delaunay condition for all
internal edges. Dyer et al. [2007a] adopted the QEM framework
and for each edge collapse, they determined an allowable region to
enclose the resulting vertex so that all the a�ected edges remain
locally Delaunay. Then the optimal position is chosen to minimize
the standard quadric error. This method can collapse edges to op-
timal positions, however, computing this allowed region is time
consuming.
Liu et al.’ method [2015] is also based on the QEM framework,

but it takes a di�erent strategy for edge collapse: it only considers
removable vertices that can be safely removed without violating
local Delaunay condition. This method is two orders of magnitudes
faster than Dyer et al.’s method while maintaining a similar level of
accuracy.

In this paper, we denote the edge collapse operations with Delau-
nay constraints in [Dyer et al. 2007a] and [Liu et al. 2015] as Dyer
QEM and Liu QEM, respectively.

3 PRELIMINARIES
Our optimal DM simpli�cation is motivated by the existing algo-
rithms of DM construction [Dyer et al. 2007a; Liu et al. 2015] and
mesh optimization [Hoppe et al. 1993]. In this section, we brie�y
present the necessary background knowledge.

Denote byM a manifold triangle mesh. We call an internal edge
e 2 M locally Delaunay (LD) if the sum of the two angles facing e
does not exceed � , non-locally Delaunay (NLD) otherwise. An NLD
edge is �ippable if it has zero dihedral angle, i.e., its two incident
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Fig. 3. Collapsing a removable edge (�, � 0). An edge (�, � 0) is removable if
the collapse (�, � 0)! � 0 does not break the local Delaunay condition: for
each edge opposite to � 0 (blue), �i + �i  � ; for each edge incident to � 0

(red), �j1 + �j2  � .
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Fig. 4. Flipping an unflippable NLD edge (a, b) alters the geometry. Dyer
et al. [2007a] showed that the flipped edge (c, d ) must be locally Delaunay.
If the new triangles 4acd and 4bdc intersect other triangular faces, the
NLD edge (a, b) is called physically un�ippable.

faces are coplanar. A boundary edge is NLD if its opposite angle
is greater than �/2. A Delaunay mesh (DM) is a special manifold
triangle mesh, in which all the edges satisfy the local Delaunay
condition.

There are two methods [Dyer et al. 2007a; Liu et al. 2015] to con-
vert an arbitrary meshM into a DMwith exactly the same geometry.
They �rst �ip all the �ippable NLD edges. Then, they split each
un�ippable NLD edgeee followed by geometry-preserving remesh-
ing. Since splitting an edge may turn some neighboring LD edges
into NLD (e.g., see Figure 2), they recursively process NLD edges
until all edges are locally Delaunay. Both methods are guaranteed to
terminate within �nite steps and they di�er in the local re�nement
strategy. Dyer et al.’s strategy is purely combinatorial and does not
consider the local geometry. As a result, it often adds too many
splitting points to the mesh. Liu et al.’s method is shape aware and
the resulting DM has bounded space complexity O(Kn), where K is
a model-dependent constant.
Geometry-preserving algorithms inevitably increase the mesh

complexity due to their upsampling strategies. For highly anisotropic
meshes, the vertex numbers may di�er in two orders of magni-
tudes [Liu et al. 2017], making the DMs unpractical for follow-
up applications. To balance space complexity and accuracy, Liu et
al. [2015] developed an e�cient DM simpli�cation algorithm using
the QEM framework [Garland and Heckbert 1997]. It iteratively
collapses removable edges2 until the mesh resolution reaches the
user-speci�ed target value.

Dyer et al. [2007a] also proposed a geometry-altering algorithm
for constructing DM. Unlike the above-mentioned geometry preserv-
ing algorithms that �ip only the �ippable NLD edges, this algorithm
�ips all NLD edges, thereby the resulting DM alters the geometry
of M (Figure 4). Throughout the paper, we use Dyer GA and Dyer
GP to distinguish Dyer et al’s geometry-altering and geometry-
preserving3 algorithms, respectively.
2An internal edge e = (�i , �j ) is called removable if it has an incident vertex, say
�i , satisfying that the contraction (�i , �j )! �j does not violate the local Delaunay
condition (Figure 3).
3Dyer QEM is followed if the number of mesh vertices is reduced.
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To ease reading, we list the main notations in Table 1.

Table 1. Main notations.

M input triangle mesh (not necessarily a DM)
M
⇤ optimal Delaunay mesheM DM generated by Liu et al’s method

n number of vertices ofM
m number of vertices ofM⇤

en number of vertices of eM
� , �i , �j , · · · vertices

e , ei j edges
D(, ) Hausdor� distance
Ec edge collapse operation
Es edge split operation

S = (· · · ,Ei , · · · ) sequence of edge operations Ei 2 {Ec ,Es }
MS resulting mesh after applying S toM

QNLD priority queue of NLD edges
QREM priority queue of removable edges

d maximal length of the sequence
X 2 Rd real vector
T (X ) integer vector after directly rounding X
S(X ) sequence of edge operations corresponding to X
Mi applying the i-th operation toMi�1,M0 = M

Xk k-th population
Xk, j j-th agent of Xk
Np population size

F 2 (0, 1) di�erential weight
Cr 2 [0, 1] crossover probability

X
0
k, j mutative agent

X
00
k, j competitor

f (X ) objective function
rand[0, 1] random number between 0 and 1

4 GENERAL DELAUNAY MESH SIMPLIFICATION
4.1 Problem Statement
Given two 3D models A and B, we can quantitatively measure their
di�erence using two-sided Hausdor� distance, de�ned as the mean
distance between them:

D(A,B) = max
⇢
max
p2A

d(p,B),max
p0 2B

d(p0,A)
�

(1)

whered(p,M) = minp0 2M d(p,p0) is the shortest distance from point
p to meshM and d(p,p0) is the Euclidean distance between points p
and p0.

The general Delaunay mesh simpli�cation problem is as follows:

P������ 1. Given a 2-manifold triangle meshM (unnecessarily a
Delaunay mesh) of n vertices and a user-speci�ed target vertex number
m (< n), �nd a Delaunay mesh M

⇤ withm vertices that minimizes
the two-sided Hausdor� distance,

M
⇤ = argmin

M 0
D(M,M 0). (2)

Note that the existing methods [Dyer et al. 2007a; Liu et al. 2015]
can produce simpli�ed DMswith the user-speci�ed resolution. How-
ever, since the global approximation error is not taken into consid-
eration, they do not solve the optimal DM simpli�cation problem.

4.2 Solution Space
To convert a triangle meshM into a DM, we must process all NLD
edges using one of the three edge operations: split Es , collapse Ec
and �ip Ef . Hoppe et al. [1993] showed that given any two manifold
triangle meshes A and B with the same topology, the topological
realization of B can be obtained fromA by a �nite sequence of these
three operations, and vice versa. This means the topological realiza-
tions of all possible DMs can be obtained fromM by a �nite sequence
of edge operations. Since an edge �ip is equivalent to an edge split
followed by an edge collapse, Es and Ec are the most fundamental
operations in mesh optimization and simpli�cation [Heckbert and
Garland 1999; Hoppe 1996; Hoppe et al. 1993].
Let S be the set of all possible �nite sequences consisting of

Es and Ec , which can be applied to the input mesh M . For any
sequence S 2 S, we denoteMS the mesh obtained by applying S to
M . To solve the optimal DM simpli�cation problem, we compute an
optimal sequence S⇤ 2 SDM , such that

MS⇤ = arg min
S 2SDM

D(M,MS ) (3)

where the subset SDM ⇢ S satis�es that for any sequence S 2 SDM ,
MS is a DM ofm vertices.

We propose a novel 2D Cartesian grid model to characterize the
solution space SDM . Then �nding the optimal sequence of edge
operations equals to �nding an optimal path in SDM .

Notice that edge split Es can be applied to any un�ippable4 NLD
edges, and edge collapse Ec can be applied to any removable edges in
M . To reduce the search space, we sort all NLD edges and removable
edges in two priority queues QNLD and QREM , respectively.
NLD edges ee are assigned with a key de�ned by the discrete

Laplacian (i.e., the sum of cotangent of the opposite angles of ee),
which is a simple measure of the local Delaunay condition. The
smaller the key, the farther the edgeee is away from local Delaunay.
As the �rst rule of thumb, when an edge split operation is necessary,
we always apply it to the NLD edge eemin with the smallest key.
After splittingeemin , we locally re�ne the mesh and update the keys
for its neighboring edges.
Removable edgesbe are assigned with a key which measures the

approximation error by collapsing be . We compute this key using
the classic quadratic error metric [Garland and Heckbert 1997]. The
smaller the key, the smaller the error, and the better approximation
we obtain. As the second rule of thumb, when we apply an Ec oper-
ation, we extract the removable edgebemin with smallest key value
from QREM and apply Ec tobemin . After collapsingbemin , QREM is
locally updated to re�ect the local geometry change aroundbemin .
Based on the above-mentioned rules, a �nite sequence of oper-

ations Es and Ec applied to M is deterministic, which is denoted
by

S = (E1,E2, · · · ,Ei , · · · ), Ei 2 {Es ,Ec } (4)

4If an NLD edge is �ippable, we simply �ip it and no further operations are required.
Therefore, we assume that all NLD edges are un�ippable.
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Fig. 5. 2D Cartesian grid model G(V , E) is a non-negative integer grid (x, �) in R2, x � 0 and � � 0. Any finite sequence of Es and Ec applied to the input
mesh M can be mapped to a monotonic path in G . All the meshes withm vertices lie on the line L : x � � = n �m (red dashed line in the le�). Both Liu et
al.’s method and Dyer et al.’ method (Dyer GP) start from the origin (0, 0), first go up (along +� direction) to the node (0, en � n), where en is the number of
vertices in constructed geometry-preserving DM from M , and then go horizontally (along +x direction) to the node (en �m, en � n) (solid red line in the le�).
Dyer GA method corresponds to the zigzag path shown in blue lines in the middle. Our restricted solution space eG(V , E) is shown in the red shaded region
(bounded by red lines) in the right; see text for details.

To characterize the solution space, we map a sequence S into a
2D Cartesian grid (Figure 5):

(1) The horizontal and vertical axes represent edge collapse and
split, respectively.

(2) Every grid node (x ,�) maps to triangle meshesM(x,�) with a
�xed vertex count. Except for the originM(0,0) , M , such a
mapping is one to many.

(3) Two adjacent nodes are linked by an edge operation. For
example, applying Ec (resp. Es ) toM(x,�) producesM(x+1,�)
(resp.M(x,�+1)).

Using the Cartesian grid model, any sequence of edge operations
is a monotonic5 path. Therefore, simplifying DM is equivalent to
computing a monotonic path in the grid. Although the solution
space is in�nite, we have the following observations to reduce the
size of solution space.

(1) Increasing x (or �) by 1 removes (or adds) a vertex. There-
fore, all the meshes with m vertices must lie on the line
L , {(x ,�)|x � � = n �m} (the red dashed line in Figure
5 left).

(2) Any simpli�cation process transformingM to a DM ofm ver-
tices is simply a monotonic path from the origin to a node on
L. In particular, each of the existing methods corresponds to a
special path. Liu et al’s method [2015] and Dyer et al’s method
[2007a] (Dyer GP) �rst compute a geometry-preserving DM
by upsampling (edge split) and then simplify the mesh by
edge collapse. Therefore, it �rst travels along the y-axis and
then goes horizontally until reaching L (the red line in Figure
5 left). Dyer et al’s method [2007a] (Dyer GA) alternatively
splits and collapses edges and its path is hereby zigzag (the
blue line in Figure 5 middle).

(3) Once a mesh becomes a DM, there is no need to keep upsam-
pling it, since these split edges will soon be collapsed by the
downsampling process. Therefore, we set an upper bound6 of
the number of split edges to be en � n, where en is the number

5A path is monotonic if it always goes upward and rightward.
6Note that each edge split operation increases the vertex count by one.

of vertices in the geometry-preserving DM generated by Liu
et al’s method.

(4) Any monotonic path that passes through line L is not an op-
timal path. This is because the nodes on the right side of L
correspond to meshes with less thanm vertices. A path goes
through L means some intermediate meshes have resolution
lower than the targetm. For non-planar models, the fewer
the vertices, the larger the approximation error.

Putting it all together, we de�ne the solution space as a trapezium,
bounded by� = en�n, x �� = n�m,� = 0 and x = 0 (the red shaded
region in Figure 5 right). The top-right corner of the trapezium
corresponds to a Delaunay mesh, which is the output of Liu et al’s
method.

5 ALGORITHM
The trapezoidal solution space can be naturally viewed as a re-
stricted graph model eG = (V ,E) and each valid solution corre-
sponds to a monotonic path. Given a k ⇥ l Cartesian grid, there are
O( (k+l )!k !l ! ) monotonic paths. Therefore, it is not feasible (even for
low-resolution meshes) to enumerate all the possible paths and then
compare their costs. A slightly better solution is to adopt graph tra-
versal or path �nding algorithms, such as breadth-�rst search (BFS)
and A⇤ search. The former traverses all the graph edges, hereby is
time consuming. The latter, guided by a problem-speci�c heuris-
tic function that estimates the cost of the cheapest path from the
current node to the goal, sweeps only a subset of the graph edges.
However, it is not easy to �nd such a heuristic in our problem.

Rather than solving the optimal path problem from a combinato-
rial optimization standpoint, we consider it from a numerical opti-
mization perspective, which itself is a well-studied �eld and many
e�cient and powerful computational tools are available [Horst et al.
2000; Spall 2003]. We propose a novel method (Section 5.1) to map a
monotonic path (i.e., a sequence of edge operations) to a �xed-length
array so that the objective function can be written as a real-valued
function. Then we minimize it by di�erential evolution (DE) [Das
and Suganthan 2011], which is one of the state-of-the-art global
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Fig. 6. Illustration of one iteration in di�erential evolution (DE). Our algorithm maps a real-vector X 2 Rd to a sequence of edge operations, which in turn
corresponds to a monotonic path in the solution space eG . Then using the canonical DE/rand/1/bin form of DE, our method iteratively evolves the population
Xk = {Xk, j }

Np
j=1, k = 1, 2, · · · , where Xk, j is the j-th vector (agent), until the termination condition is met; see text for details.

optimization algorithm (Section 5.2). We illustrate our algorithmic
pipeline in Figure 6 and present the pseudo code in Algorithm 1.

5.1 Mapping Scheme
We denote the sets of all real numbers, non-negative real numbers,
integers, non-negative integers and positive integers as R, R�0, Z,
Z�0 and Z+, respectively.

Since DE optimizes real-valued functions with real variables, we
need to encode the monotonic paths in eG into real-vectors X 2 Rd
and vice versa. Since the paths have varying lengths, we need to
map them to a d-variate function where d 2 Z is a constant. We
adopt the run-length coding by partitioning an arbitrary operation
sequence {· · · ,Ei , · · · }, Ei 2 {Es ,Ec }, into segments, where all
operations are of the same type in each segment. Without loss of
generality, we assume that the sequence begins with an Es and
represent it as (n1,n2,n3, · · · ), where ni is number of operations in
the i-th segment and n1 2 Z�0 and ni 2 Z+, i � 2. For example, the
sequence (Ec ,Ec ,Ec ,Es ,Es ) is simply encoded as (0, 3, 2).
Observe that the shortest7 sequence is (en � n,en �m) and the

longest8 sequence is (1, · · · , 1,n �m + 1). So we set the maximal
length

d = 2(en � n) (5)
For any sequence shorter than d , we append zeros to its end.
For any real vector X 2 Rd�0, we round each element in X to

the closest integer and denote the resulting vector by T (X ) 2 Zd+.
7The shortest sequence corresponds to Liu et al’s method.
8The longest sequence corresponds to Dyer GA method.

Lampinen and Zelinka [1999] showed that this rounding operation
can be intuitively viewed as building leveled regions into a land-
scape (akin to 1D step functions) and di�erential evolution with
self-adaptive reproduction (see Section 5.2) can move across these
regions.

Denote byT (X ) = {Ii }di=1, Ii 2 Z�0, the integer vector after direct
rounding. LetM0 , M be the input mesh and denote byMi (i � 1)
the mesh after applying the Ii operations of Ec or Es (depending
on the parity of i) toMi�1. We de�ne a dummy sequence, Sdumm� ,
and any sequence that cannot turnM into a DM ofm vertices will
be set to Sdumm� . See Figure 7 for an example.

We apply the following rules to convert T (X ) to a sequence S(X )
of edge operations:

• Rule 1. If after or during processing Ii the meshMi becomes
DM, i , d , then only removable edge collapse (Ec ) is applied
toMi until it becomes a DM ofm vertices; i.e., the elements
{Ii+1, · · · , Id } are skipped (seeM3 in Figure 7b for an exam-
ple).

• Rule 2. During processing Ii (i.e., only ni operations are pro-
cessed, ni  Ii ), the meshMi reaches the upper boundary ofeG (i.e., the line � = en � n, which is upper red line in Figure
5 left) and still is not a DM, then this sequence is assigned
to Sdumm� (see Figure 7c for an example); if the mesh Mi

reaches the right boundary of eG (i.e., the line x � � = n �m,
which is the right dashed red line in Figure 5 left and middle)
and still is not DM, continue to process Ii+1, i.e. the remaining
(Ii � ni )Ec operations are skipped.
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(a) Input mesh                                                       (b) Apply the sequence of edge operations T1 to M0                                                 (c) Apply T2 to M0             (d) Apply T3 to M0

Non-DM M0                          Non-DM M1                         Non-DM M2                            DM M3                 Optimal simplified DM M4              Non-DM M’                              DM M’’

(100)                                      (100, 50)                               (100, 50, 110)              T1 = (100, 50, 110, 200, …)         T2 = (220, 10, 230, …)           T3 = (90, 70, 110, 130, …)

The sequences of 

edge operations in 

solution space

3 4

Fig. 7. Illustration of the mapping scheme using a toy model. (a) The input non-DM mesh M0 is going through three sequences of edge operations T1, T2
and T3, respectively. (b) The mapping process of applying T1 = (100, 50, 110, 200, · · · ) to M0. M1 (apply 100 Es to M0) and M2 (apply 50 Ec to M1) are still
non-DMs. When applying 110 Es toM2, we obtain a DM a�er 19 edge splits, and thus, skip the remaining Es operations (dashed lines). When applying 200 Ec
to M3, we obtain the DM M4 with the desired number of vertices a�er 102 Ec . (c) The sequence T2 = (220, 10, 230, · · · ) is invalid and assigned to Sdumm� ,
since during processing I3 = 230 Es , the mesh M 03 reaches the upper bound � = 286, however it is not a DM yet. (d) The sequence T3 = (90, 70, 110, 130, · · · )
is also invalid: when processing I4 = 130 Ec , both QREM and QNLD become empty, however the vertex number of M 004 does not reach the targetm.

ALGORITHM 1: Delaunay mesh simpli�cation using DE
Input: A 2-manifold triangle mesh M of n vertices, a user-speci�ed target

vertex numberm, the population size Np
Output: A high-quality simpli�ed DM M⇤ ofm vertices

1 Initialize the �rst population X0 of Np agents, initialize D0 as the set of
initial objective function values of Np agents

2 k  0
3 while the termination conditions are not met do
4 Xk+1  ;, Dk+1  ;
5 foreach agent Xk, j 2 Xk do
6 Generate a mutative agent X 0k, j by mutation
7 Generate a trial agent X 00k, j by crossover
8 Compute the mapped sequence S (X 00k, j ) and the candidate mesh

MS (X 00k, j )
(see Algorithm 2)

9 if D(M, MS (X 00k, j )
) < Dk, j then

10 Xk+1  Xk+1 [ {X 00k, j }
11 Dk+1  Dk+1 [ {D(M, MS (X 00k, j )

)}
12 else
13 Xk+1  Xk+1 [ {Xk, j }
14 Dk+1  Dk+1 [ {Dk, j }
15 end
16 k  k + 1
17 end
18 end
19 Find the minimum element Dk, j 2 Dk and its corresponding agent Xk, j
20 Output the simpli�ed DM M⇤ = MS (Xk, j )

• Rule 3. During processing Ii , if QREM becomes empty,
– if QNLD is empty at the same time, failure will be caused
and the sequence is assigned to Sdumm� (see Figure 7d for
an example);

– otherwise, continue to process Ii+1 (edge split afterwards
may create more removable edges to �ll QREM ).

To raise the success rate, we require Iodd 2 [0,en �n] and Ie�en 2
[0,en � m]. Algorithm 2 presents the pseudo-code of mapping a
real vector X 2 Rd�0 into a sequence of edge operations and then
computing the corresponding simpli�ed DM.We denote the mapped
sequence by S(X ).

5.2 Di�erential Evolution
Stochastic methods have been widely studied for solving global opti-
mization problems [Spall 2003]. Among them, di�erential evolution
(DE) is a popular evolutionary computing method for optimizing
multi-variate real-valued functions without using the function’s gra-
dient. Compared with other evolutionary algorithms, DE is arguably
competitive due to its simplicity, robustness and better convergence
rate [Vesterstrom and Thomsen 2004]. Although the probabilistic
convergence and global optimality of DE are proven only for a re-
stricted class of objective functions (i.e., real-valued second-order
continuous functions that possess a unique global optimum) [Ghosh
et al. 2012], DE has been recognized as a a highly e�ective tool
for a wide range of optimization problems, including constrained,
multi-objective, multi-modal and dynamic optimization even with
non-di�erentiable functions [Das et al. 2016; Das and Suganthan
2011]. Many of these problems do not satisfy the above-mentioned
convergence condition, DE still outperforms the other global opti-
mizers. In this paper, we adopt DE to look for a global solution to
the general DM simpli�cation problem.
DE starts from a randomly chosen population that samples the

searching space eG , then iteratively evolves the population for search-
ing the global optimal solution in eG [Das et al. 2016; Das and Sugan-
than 2011]. In each iteration, it creates new candidates by performing
simple mutation, crossover and selection operations, and the one
with the best score or �tness is kept in the population. In addition to
its great success in real-parameter, large-scale global optimization,
DE has also proven e�ective in geometric modeling [Liu et al. 2016].

ACM Trans. Graph., Vol. 37, No. 6, Article 263. Publication date: November 2018.



263:8 • Ran Yi, Yong-Jin Liu, and Ying He

ALGORITHM 2: Generating simpli�ed DM from a given real vector

Input: The mesh M of n vertices and a real vector X 2 Rd�0
Output: The DM after applying the edge operations S (X )

1 Round each element Xi in X to the closest integer Ii 2 Z�0, 1  i  d
2 S (X ) ;;
3 M0  M ;
4 foreach operation Ii 2 T (X ) do
5 Set E = Es if i is odd, Ec otherwise
6 Apply Ii operations of E to Mi�1
7 if During processing Ii operations of E , DM is reached orm vertices is

reached then
8 Skip the remaining operations of E ;
9 end

10 if During processing Ii operations of E , upper boundary of eG is reached
but still is not a DM then

11 Skip the remaining operations of E ;
12 Set S (X ) = Sdumm� and return ;;
13 end
14 if During processing Ii operations of E , both QREM and QNLD become

empty then
15 Skip the remaining operations of E ;
16 Set S (X ) = Sdumm� and return ;;
17 end
18 Set the obtained mesh after processing Ii as Mi ;
19 Append edge operations applied to Mi�1 to the end of S (X );
20 if Mi is a DM then
21 Apply Ec to Mi until it becomes a DM ofm vertices;
22 Append edge operations applied to Mi to the end of S (X );
23 Return Mi ;
24 end
25 end
26 Return ;.

Let f (X ) : � ⇢ Rd ! R be a real-valued objective function,
X = (x1,x2, · · · ,xd ) the variable, xi 2 R, and the search domain� is
non-empty and bounded in Rd . With the aid of the mapping scheme
presented in Section 5.1, we apply the canonical DE/rand/1/bin form
of DE [Das and Suganthan 2011].
Consider a non-negative real-valued objective function

f (X ) = D(M,MS (X )), X 2 Rd�0, (6)

where D(, ) is de�ned in Eq.(1). If S(X ) is dummy, f (X ) = 1.
Denote the k-th population by Xk = {Xk, j }

Np
j=1, where Xk, j =

{xk, j,i }di=1 is the j-th vector (agent). We present the details of our
algorithm as follows.

5.2.1 Initialization. We begin with a randomly initialized pop-
ulation X0 = {X0, j }

Np
j=1, where each initial agent X0, j is sampled

in a bounded space �. We still use the de�nition Ymax = en � n,
and Xmax = en �m, which specify maximum continuous edge split
number and edge collapse number, respectively. Then the bounded
space � is represented as:

� =

⇢
{xi }di=1

���� 0  xi  Ymax , if i is odd
0  xi  Xmax , otherwise

, xi 2 R
�
. (7)

The initial populationX0 can be generated by producing random val-
ues uniformly distributed on closed interval [0,Ymax ] or [0,Xmax ],
denoted as

x0, j,i =

⇢
randj,i [0, 1] · Ymax , if i is odd
randj,i [0, 1] · Xmax , otherwise

, (8)

i = 1, 2, ...,d, j = 1, 2, ...,Np

where randj,i [0, 1] generates a uniformly distributed random num-
ber in [0, 1] and is instantiated independently for each (j, i).

5.2.2 Mutation. It generates new candidate solutions by adding
an agent with scaled di�erence of two randomly selected agents. In
the k-th iteration, for each agent Xk, j , three other agents Xk,rand1,
Xk,rand2 andXk,rand3 are randomly chosen fromXk , where rand1,
rand2, rand3 are distinct integers and not equal to j. A mutative
agent X̄ 0k, j against Xk, j is generated as

X̄
0
k, j = Xk,rand1 + F (Xk,rand2 � Xk,rand3) (9)

where F is a scalar factor in the range (0, 1). Since X̄ 0k, j should belong
to space � de�ned in Eq.(7), it is further processed by

x̄k, j,i = max(x̄ 0k, j,i , 0)

x
0
k, j,i =

⇢
min(x̄k, j,i ,Ymax ), if i is odd
min(x̄k, j,i ,Xmax ), otherwise

(10)

5.2.3 Crossover. A binomial crossover builds a trial agent X 00k, j
by copying elements from either mutative agent X 0k, j or original
agent Xk, j :

x
00
k, j,i =

(
x
0
k, j,i , if (randk, j,i [0, 1]  Cr or i = irand )

xk, j,i , otherwise
(11)

where Cr 2 [0, 1] is the crossover rate, with higher Cr indicating
more elements in the original agent are replaced by new elements,
and irand is a random index in [1,d] to ensure that the trial agent
get at least one element from the mutative agent.

5.2.4 Selection. Because our problem is a minimization problem,
selection chooses the one with lower objective value from the trial
agent X 00k, j and original agent Xk, j , and sets it to be the j-th agent
of next generation:

Xk+1, j =

(
X
00
k, j , if f (X

00
k, j )  f (Xk, j )

Xk, j , otherwise
(12)

where f (Xk, j ) and f (X 00k, j )) is computed as f (X ) = D(M,MS (X )).
5.2.5 Termination conditions. The algorithm terminates when

one of the following conditions is met: (1) the iteration number
exceeds a user-speci�ed iteration number niter ; (2) the relative
change fk�fk+1

fk
does not exceed a threshold � in consecutive nc

iterations, where fk is the minimum objective function value in
the kth population.In all our experiments, we use �xed parameters
niter = 100, � = 1.0e�4 and nc = 5.

6 EXPERIMENTAL RESULTS & DISCUSSIONS
We implemented our algorithm in C++ and compared its perfor-
mance with state of the art in terms of running time and accuracy.
Timing was measured on an Intel Xeon E5-2698 v3 CPU 2.30 GHz.
The accuracy was measured by the approximation error, which is
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Fig. 8. Both approximation error � and running time closely depend on the population size. We use the Octaflower model for an example. The 3-tuple below
each 3D chart is (Np, �max , �mean ), where Np is the population size, �max and �mean are the maximal and the mean approximation errors. In each 3D
chart, the vertical axis is the approximation error � and the two horizontal axes are the crossover rate Cr and the mutation parameter F . The curve plot shows
that (1) the approximation error decreases when Np increases and (2) the average time is linearly proportional to Np .

Table 2. Comparison of Liu, Dyer GA, Dyer GP and our method on models of three categories. Time is measured in seconds, n andm are the vertex numbers
of input mesh and output simplified DM, respectively. Err and Err* are approximation errors and Err/Err* is the error ratio compared to our method. Itr no is
the iteration number.

Category Model n m Liu Dyer GA Dyer GP Ours
Err (%) Err/Err* Time (s) Err (%) Err/Err* Time (s) Err (%) Err/Err* Time (s) Err* (%) Time (s) Itr no

CAD

Joint 221 200 4.54 14.18 0.5 5.47 17.08 51.2 2.49 7.76 54.8 0.32 6.4 6
Headst 571 500 2.01 2.41 10.9 12.2 14.62 636.1 1.64 1.97 1288.7 0.83 252.6 10
Fandisk 850 800 0.21 1.88 0.4 4.55 41.48 1.8 1.23 11.21 87.9 0.11 22.2 8
Casting 5,096 4,000 0.29 3.89 0.8 0.28 3.80 29.3 0.19 2.53 170.2 0.07 261.0 17

Octa�ower 7,919 500 1.48 2.49 0.8 1.57 2.64 121.6 1.37 2.30 164.5 0.59 70.1 9
Sharpsphere 10,443 500 3.57 2.74 3.4 2.54 1.95 184.2 2.28 1.75 416.4 1.30 190.2 14

Man-made
Chair 324 200 3.60 2.61 0.1 5.63 4.08 8.1 4.62 3.35 36.7 1.38 4.2 6
Bench 2,707 1,500 1.28 2.21 7.6 0.90 1.56 296.1 0.95 1.63 1094.5 0.58 363.4 12
Desk 3,472 3,000 0.32 2.34 6.6 0.61 4.53 112.7 0.27 2.00 644.0 0.14 127.1 6

Graphics

Teapot 22,162 10,000 0.06 1.33 5.5 0.31 7.10 244.2 0.26 5.99 1554.8 0.04 358.0 7
Kitten 70,442 25000 0.04 1.35 16.2 0.05 1.76 625.8 0.26 9.89 6209.1 0.03 1385.9 11
Bunny 98,996 50,000 0.03 1.28 25.4 0.09 4.18 1017.3 0.06 2.89 9144.8 0.02 1228.4 6

Gargoyle 111,137 50,000 0.07 1.17 27.8 0.14 2.30 1149.9 0.20 3.45 8686.4 0.06 2501.5 15
Lucy 155,814 50,000 0.07 1.09 42.7 0.11 1.75 2025.5 0.22 3.54 12491.7 0.06 1161.9 6

de�ned as the two-sided Hausdor� distance between the input mesh
M and the output simpli�ed DM, normalized by the diagonal length
of model’s bounding box. The Metro tool [Cignoni et al. 1998b] was
chosen to quickly compute the approximate two-sided Hausdor�
distance. We evaluated and compared di�erent methods on a wide
range of 3D models, including 1,000 CAD and man-made models
collected from the Thingi10K9 3D dataset [Zhou and Jacobson 2016].

6.1 Time complexity
The running time of our DE-based
method is linearly proportional
to the product of QEM time com-
plexity (n logn), population size
and iteration count. To generate
a simpli�ed DM in each agent,
we check the result of every valid
path-mapped vector X by execut-
ing its corresponding edge operations S(X ). Since we only maintain
two priority queues for adding or deleting vertices, this operation
takes O(n logn) time. The right inset shows the timings for exam-
ining a vector with respect to the vertex number. Our algorithm
terminates, when either the energy does not decrease or the iter-
ation number reaches a prescribed value. We observe for almost

9https://ten-thousand-models.appspot.com/

all experiments, our algorithm terminates due to convergence of
energy function (see the last column in Table 2).
6.2 Parameter Se�ing
The DE algorithm (Agorithm 1) has three main parameters: the
population sizeNp , the crossover rateCr in Eq. (11) and themutation
parameter F in Eq. (9). We observe that the approximation error
closely depends on the population size Np : the larger the population
size, the more samples in the search space and the higher probability
to reach the global optimum. Meanwhile, the running time is also
linearly proportional to Np and is very time-consuming when Np
becomes large. In our experiment, we observe that our algorithm
is robust and highly consistent when Np 2 [100, 200]; see Figure 8
for some summarized results. Then we set Np = 100 for a tradeo�
between approximation errors and computational cost.

When the population size is �xed, we observe that low cross rate
Cr leads to large approximation error. The reason is that low Cr
makes the crossover process pick most elements from original agent,
and hereby lowers population diversity. We also observe that both
too high and too low mutation rate F lead to large approximation
error (see Np = 100 in Figure 8). The reason is that (1) too high
F results in too much disturbance and low search e�ciency, and
(2) too low F lowers population diversity. In our experiments, we
set Cr = 0.9 and F = 0.5 to increase population diversity while
avoiding too much disturbance.
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Fig. 10. The approximation error plots of three representative models with respect to di�erent target vertex numbers. Our method (black curves) consistently
outperforms all other methods.

Fig. 9. Convergence plots of four representative models. See also the ac-
companying video.

Given the above parameter settings, ourmethod converges quickly.
Four representative examples are shown in Figure 9.
6.3 Performance and Comparisons.
We compare our DE solutionwith three state-of-the-artmethods: Liu
et al.’s method (Liu) [Liu et al. 2015], Dyer GA and Dyer GP in [Dyer
et al. 2007a]. We experiment on CAD, man-made and graphics mod-
els with representative target vertex number, and Table 2 shows the
statics. We further conduct experiments on models with varying
target vertex numbers, and show three representative results in
Figure 10. We observe that our method consistently outperforms
other methods, and is particularly e�ective on CAD and man-made
models. Figure 1 and 12 show the visual comparison of four meth-
ods (see also the accompanying video). Thanks to the two-sided
Hausdor� distance that is used in error measure, our method can
preserve sharp features well and deal with models with multiple
connected components, and thus produces visually better results
than the other three methods on models with sharp features.
We note that there are advanced algorithms to automatically

detect sharp features and then preserve them in downstream ap-
plications. However, these methods require parameters and their
results are sensitive to the parameter settings. For example, in [Lévy
and Liu 2010] sharp features are detected by a normal anisotropy
de�ned by a symmetric tensor �eld that penalizes the vertices far
away from the tangent plane of the surface, and this metric contains

(a) Toys (b) Gadget and tool

(c) Household (d) Art and fashion

Fig. 11. Comparison between our method and Liu et al’s method. The
histograms show the error ratio �ours /�Liu on the 1000 CAD and man-
made objects, selected from Thingi10K dataset with labels in four categories:
Toys, Gadget and tool, Household and Art and fashion.

an importance parameter. For complex models with feature sizes
spanning di�erent scales, it is tedious (and sometimes not even
possible) to tune the optimal parameters to �t all scales. In sharp
contrast, our method adopts the Hausdor� distance to measure
the shape distortion, which intrinsically encodes and preserves the
sharp features. As a result, it is completely parameter-free (and thus
very robust) and fully automatic.

We further compare our method with Liu et al.’s method in terms
of error ratio on the 1,000 CAD and man-made objects, organized
in four categories. Figure 11 shows the results summarized in his-
tograms. Again, our method e�ectively reduces the approximation
errors and consistently outperforms Liu’s method for all categories.
6.4 Dyer QEM vs. Liu QEM
Both Dyer GP method and Liu et al.’ method upsample the input
mesh to make it a DM in a geometry-preserving way. These two
methods di�er in the succedent edge collapse operations, i.e., Dyer
QEM and Liu QEM. Our method also adopts Liu QEM, which only
collapse a removable edge into one of its vertices. As a comparison,
for every edge collapse, Dyer QEM allows to optimize the position

ACM Trans. Graph., Vol. 37, No. 6, Article 263. Publication date: November 2018.



Delaunay Mesh Simplification with Di�erential Evolution • 263:11

Input non-DM mesh                        Liu’s method                            Dyer GA method                        Dyer GP method                             Our method

10,443 vertices                  500 vertices, 3.57% error           500 vertices, 2.54% error            500 vertices, 2.28% error          500 vertices, 1.30% error

571 vertices                    500 vertices, 2.01% error          500 vertices, 12.20% error           500 vertices, 1.64% error         500 vertices, 0.83% error

22,162 vertices                10,000 vertices, 0.06% error       10,000 vertices, 0.31% error     10,000 vertices, 0.26% error      10,000 vertices, 0.04% error

2,707 vertices                   1,500 vertices, 1.28% error         1,500 vertices, 0.90% error          1,500 vertices, 0.95% error      1,500 vertices, 0.58% error

Fig. 12. Results and visual comparison. The bench model has multiple connected components and all models (except for the last one) have sharp features. Our
method can deal with sharp features be�er than other methods. The last model is smooth without sharp feature. Although our result still has smaller Hausdor�
distance than that of Liu et al’s method, the visual di�erence is not significant. Images are rendered in high resolution, allowing zoom-in examination.

of target vertex in an allowable region, and thus, is more �exible
than Liu QEM. However, the statistics in Table 2 and visual results
in Figure 1 and 12 all show that our method is better than Dyer GP
method, con�rming that the global stochastic searching strategy
plays a more important role than the optimal local edge operation.
6.5 Comparison with globally optimal solution
Our DE-based method can e�ectively �nd a global solution. To ver-
ify this property, one possible way is to compare the DE solution
with the global optimization solution, which can be obtained by enu-
merating all possible monotonic paths in solution space. We design
a 9-vertex irregular mesh by adding a vertex into a parallelepipedon
and simplify it into a tetrahedron (Figure 13). For this toy model,
brute force searching takes 3157.21 seconds to compute the globally

optimal solution, while our DE-based method computes exactly the
same solution in only 0.284 seconds. We note that, as discussed in
Section 5, for meshes with even dozens of vertices, the number of
all possible paths is exponential and thus intractable. A naïve ap-
proximation to this enumeration-based global solution is bread-�rst
search (BFS) and at each grid node, the best mesh with smallest
approximation error is selected and propagated. Unfortunately, this
naïve BFS solution is still very time consuming and is only available
to meshes with small vertex number. In Table 3, we compare our
DE solution and BFS solution. The results show that (1) the error of
our method is close to and still slightly better than the error of BFS,
and (2) the time of our method is far less than BFS. Therefore, our
DE solution is an e�ective global solution in search space.
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(a) 9-vertex input mesh (b) 4-vertex output DM
Fig. 13. Given the 9-vertex mesh (a) as input, the globally optimal simplifi-
cation of 4-vertex DM (b) can be found by exhaustive enumeration which
takes 3157.21 seconds. Our DE-based method computes exactly the same
solution in only 0.284 seconds.

Table 3. Comparison of our method and BFS method. n and m are the
vertex numbers of input mesh and output simplified DM, respectively. Err
is approximation errors and time is measured in seconds.

Model n m BFS method Our method
Err (%) Time (s) Err (%) Time (s)

Kitten 1,370 1,000 0.048 13,624 0.038 52.4
Armadillo 1,500 1,000 0.871 64,146 0.777 18.6
Fandisk 850 800 0.148 221,753 0.110 22.2

6.6 Limitations
Our method can only work with 2-manifold meshes. For smooth
models without sharp features, our results still have smaller Haus-
dor� distances than those of Liu et al’s method; however, we observe
that the visual di�erences are not signi�cant (see the last model
in Figure 12). Due to its global nature, our method is 10 � 100⇥
slower than Liu et al.’s method. Nevertheless, due to computational
intractability to obtain ground truth of global optimization, our
method can serve as a practical baseline for comparing the accu-
racy of other methods. For extremely large graphics models, we can
pre-simplify these models using QEM, Liu et al’s method or Dyer
et al.’s method, and then our method can be tailored to �t di�erent
time and quality requirement.

7 CONCLUSION & FUTURE WORK
This paper presents the optimal DM simpli�cation problem and
formulates it by a 2D Cartesian grid model. We develop a novel
DE-based method to compute an e�ective global solution. Extensive
evaluation shows that our method consistently outperforms the
existing methods in terms of approximation error. In particular, our
method is highly e�ective for CAD models and man-made objects
with sharp features but less details. Moreover, our method is fully
automatic and can preserve sharp features and deal with models
with multiple connected components.

From the application point of view, it is desired to develop a part-
aware optimal DM where the parts are given di�erent weights so
that parts with higher weights are processed with higher priority.
We also believe the DE-based path �nding algorithm is a general
computational framework that can be extended to solve other global
optimal path problem, which is worth further investigation.
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