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Abstract: We introduce the dynamical sine-Gordon equation in two space dimensions
with parameter β, which is the natural dynamic associated to the usual quantum sine-
Gordon model. It is shown that when β2 ∈ (0, 16π

3 ) the Wick renormalised equation
is well-posed. In the regime β2 ∈ (0, 4π), the Da Prato–Debussche method [J Funct
Anal 196(1):180–210, 2002; Ann Probab 31(4):1900–1916, 2003] applies, while for
β2 ∈ [4π, 16π

3 ), the solution theory is provided via the theory of regularity structures
[Hairer, Invent Math 198(2):269–504, 2014]. We also show that this model arises nat-
urally from a class of 2 + 1-dimensional equilibrium interface fluctuation models with
periodic nonlinearities. The main mathematical difficulty arises in the construction of
the model for the associated regularity structure where the role of the noise is played
by a non-Gaussian random distribution similar to the complex multiplicative Gaussian
chaos recently analysed in Lacoin et al. [Commun Math Phys 337(2):569–632, 2015].
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1. Introduction

The aim of this work is to provide a solution theory for the stochastic PDE

∂t u = 1

2
�u + c sin

(
βu + θ

)
+ ξ, (1.1)
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where c, β, θ are real valued constants, ξ denotes space–time white noise, and the spatial
dimension is fixed to be 2.

The model (1.1) is interesting for a number of reasons. First and foremost, it is
of purely mathematical interest as a very nice testbed for renormalisation techniques.
Indeed, even though we work with fixed spatial dimension 2, this model exhibits many
features comparable to those of various models arising in constructive quantum field
theory (QFT) and/or statistical mechanics, but with the dimension d of those models
being a function of the parameter β.

More precisely, at least at a heuristic level, Eq. (1.1) is comparable to �3
d Euclidean

QFT with d = 2 + β2

2π , �4
d Euclidean QFT with d = 2 + β2

4π , or the KPZ equation in

dimension d = β2

4π . In particular, one encounters divergencies when trying to define
solutions to (1.1) or any of the models just mentioned as soon as β is non-zero. (In
the case of the KPZ equation recall that, via the Cole–Hopf transform it is equivalent
to the stochastic heat equation. In dimension 0, this reduces to the SDE du = u dW
which is analytically ill-posed if W is a Wiener process but is well-posed as soon as
it is replaced by something more regular, say fractional Brownian motion with Hurst
parameter greater than 1/2.)

These divergencies can however be cured in all of these models byWick renormalisa-
tion as long as β2 < 4π . At β2 = 4π (corresponding to �3

4, �
4
3, and KPZ in dimension

1), Wick renormalisation breaks down and higher order renormalisation schemes need
to be introduced. One still expects the theory to be renormalisable until β2 = 8π , which
corresponds to�3

6,�
4
4 and KPZ in dimension 2, at which point renormalisability breaks

down. This suggests that the value β2 = 8π is critical for (1.1) and that there is no
hope to give it any non-trivial meaning beyond that, see for example [DH00,Fal12]
and, in a slightly different context [LRV13]. This heuristic (including the fact that Wick
renormalisability breaks down at β2 = 4π ) is well-known and has been demonstrated
in [Frö76,BGN82,Nic83,NRS86,DH00] at the level of the behaviour of the partition
function for the corresponding lattice model.

From a more physical perspective, an interesting feature of (1.1) is that it is closely
related to models of a globally neutral gas of interacting charges. With this interpre-
tation, the gas forms a plasma at high temperature (low β) and the various threshold
values for β could be interpreted as threshold of formation of macroscopic fractions of
dipoles/quadrupoles/etc. The critical value β2 = 8π can be interpreted as the critical in-
verse temperature at which total collapse takes place, giving rise to aKosterlitz–Thouless
phase transition [KT73,FS81]. Finally, themodel (1.1) has also been proposed as amodel
for the dynamic of crystal-vapour interfaces at the roughening transition [CW78,Neu83]
and as a model of crystal surface fluctuations in equilibrium [KP93,KP94]. To conclude
this short literature survey let us remark that, in the spirit of stochastic quantisation à la
Parisi andWu [PW81], there is a direct link between (1.1) and the quantum sine-Gordon
model in that the probability measure describing the Euclidean quantum field theory is
precisely the invariant measure for (1.1), at least at the discrete level.

In order to give a non-trivial meaning to (1.1), we first replace ξ by a smoothened
version ξε which has a correlation length of order ε > 0 and then study the limit
ε → 0. Since we are working in two space dimensions, one expects the solution to
become singular (distribution-valued) as ε→ 0. As a consequence, there will be some
“averaging effect” so that one expects to have sin(βuε) → 0 in some weak sense
as ε → 0. It therefore seems intuitively clear that if we wish to obtain a non-trivial
limit, we should simultaneously send the constant c to +∞. This is indeed the case, see
Theorem 1.1 below.
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We also study a class of 2 + 1-dimensional equilibrium interface fluctuation models
with more general periodic nonlinearities:

∂t uε = 1

2
�uε + cε Fβ(uε) + ξε, (1.2)

where Fβ is a trigonometric polynomial of the form

Fβ(u) =
Z∑

k=1
ζk sin

(
kβu + θk

)
(Z ∈ N), (1.3)

and ζk , β and θk are real-valued constants. One may expect that the “averaging effect”
of sin(kβuε + θk) is stronger for larger values of k. This is indeed the case and, as a
consequence of this, we will see that provided the constant cε → ∞ at a proper rate,
the limiting process obtained as ε→ 0 only depends on Fβ via the values β, θ1, and ζ1.
In this sense, the Eq. (1.1) also arises as the limit of the models (1.2).

The main result of this article can be formulated as follows. (See Sect. 1.2 below for
a definition of the spaces appearing in the statement; T2 denotes the two-dimensional
torus, and D′ denotes the space of distributions.)

Theorem 1.1. Let 0 < β2 < 16π
3 and η ∈ (− 1

3 , 0). For u
(0) ∈ Cη(T2) fixed, consider

the solution uε to

∂t uε = 1

2
�uε + C�ε−β2/4π Fβ(uε) + ξε, u(0, ·) = u(0),

where Fβ is defined in (1.3), ξε = �ε ∗ ξ with �ε(t, x) = ε−4�(ε−2t, ε−1x) for some
smooth and compactly supported function � integrating to 1. Then there exists a constant
C� (depending only on β and the mollifier �) such that the sequence uε converges in
probability to a limiting distributional process u which is independent of �.

More precisely, there exist random variables τ > 0 and u ∈ D′(R+ × T2) such
that, for every T ′ > T > 0, the natural restriction of u to D′((0, T ) × T2) belongs to
XT,η = C([0, T ], Cη(T2)) on the set {τ ≥ T ′}. Furthermore, on the same set, one has
uε → u in probability in the topology of XT,η.

Finally, one has limt→τ ‖u(t, ·)‖Cη(T2) = ∞ on the set {τ < ∞}. The limiting
process u depends on the numerical values β, ζ1 and θ1, but it depends neither on the
choice of mollifier �, nor on the numerical values ζk and θk for k ≥ 2.

Remark 1.2. As already mentioned, one expects the boundary β2 = 16π
3 to be artificial

and a similar result is expected to hold for any β2 ∈ (0, 8π). In fact, 8π is the natural
boundary for the method of proof developed in [Hai14] and employed here. However,
as β2 → 8π , the theory requires proofs of convergence of more and more auxiliary
objects. For β2 ∈ [ 16π3 , 6π), we would for example have to build a number of additional
third-order auxiliary processes, etc. In the current context, we unfortunately do not have a
general convergence result for all of these objects but instead we need to treat all of them
separately “by hand”, which is why we restrict ourselves to β2 < 16π

3 . Furthermore, the
bounds we have on the simplest “second-order” object unfortunately appear to break
down at β2 = 6π .

Remark 1.3. It is interesting to note that for β2 ∈ (0, 4π), we only need to construct
one auxiliary process, and this construction does indeed involve a careful tracking of
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cancellations due to the grouping of terms into “dipoles”, while for β2 ∈ [4π, 16π
3 ), we

need to build a second auxiliary process which requires keeping track of cancellations
obtained by considering “quadrupoles”. See Sects. 3 and 4 below for more details.

Remark 1.4. The limiting process u is a continuous function of time, taking values in a
suitable space of spatial distributions. See Remark 2.6 below for more details. Regarding
the right hand side of the equation however, it only makes sense as a random distribution
at fixed timewhenβ2 < 4π . Forβ2 ≥ 4π however, it exists only as a random space–time
distribution.

Remark 1.5. The article [AHR01] appears in principle to cover (1.1) as part of a larger
class of nonlinearities. It is however unclear what the meaning of the solutions con-
structed there is and how they relate to the construction given in the present article. The
interpretation of the solutions in [AHR01] is that of a random Colombeau generalised
function and it is not clear at all whether this generalised function represents an actual
distribution. In particular, the construction given there is completely impervious to the
presence of the Kosterlitz–Thouless transition and the collapse of multipoles, which
clearly transpire in our analysis.

Remark 1.6. We could also equivalently apply the theory developed by Gubinelli et
al. [GIP14] which requires very similar assumptions as our Assumption A below, but
seems to genuinely break at β2 = 16π

3 . Alternatively, Kupiainen recently developed
a renormalisation group method in [Kup14], and one could probably obtain a similar
result using that method, at least for some range of the parameter β.

1.1. Structure of the article. The rest of this article is organised as follows. In Sect. 2, we
give an overview of the proof of our main result. In particular, we reduce it to the proof
of convergence of a finite number of processes �k

ε , �
kl
ε , and �kl̄

ε (see (2.2), (2.4), (4.3),
(4.4) and Remark 4.2 below) to a limit in a suitable topology. In Sect. 3, we then prove
Theorem 3.2, which gives bounds on arbitrary moments of the first order processes �k

ε .
When combined with a simple second moment estimate, these bounds imply suitable
convergence of the first order processes�k

ε , so that Theorem 2.1 is established, which in
particular impliesTheorem1.1 forβ2 < 4π . Themain ingredient in provingTheorem3.2
is an inductive procedure, resulting in the bounds in Proposition 3.5, which greatly
simplifies the expressions of the moments.

The last two sections of the article are devoted to the proof of Theorem 4.3, which
gives bounds on arbitrary moments of second order processes �kl

ε and �kl̄
ε , as well

as their convergence. It turns out that the proofs for the special case k = l are quite
different from the proofs for k �= l. Section 4 only treats the former case, which is
already sufficient to obtain Theorem 1.1 in the particular case when Z = 1 in (1.3). The
case k �= l is then finally covered in Sect. 5. In particular, among these second order
processes, only �kk̄

ε requires some renormalisations terms. The convergence proof for
these processes relies again on the procedure of Sect. 3, but we have to incorporate into
it additional cancellations created by the renormalisation constants.

1.2. Some notations. Throughout the article, we choose the scaling for our space–time
R3 to be the parabolic scaling s = (2, 1, 1), and thus the scaling dimension of space–time
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is |s| = 4. (See the conventions in [Hai14].) This scaling defines a distance ‖x − y‖s
on R3 by

‖x‖4s def= |x0|2 + |x1|4 + |x2|4.
Recall from [Hai14, Def. 3.7] that for α < 0, r = −
α�, D ⊆ R3, we say that a
distribution ξ ∈ S ′(D) belongs to Cα

s (D) if it belongs to the dual of Cr (D), and for
every compact set R ⊆ D, there exists a constant C such that

〈
ξ,Sδ

s,xη
〉 ≤ Cδα holds

for all δ ≤ 1, all x ∈ R, and all η ∈ Cr with ‖η‖Cr ≤ 1 and supported on the unit
ds-ball centred at the origin. Here, the rescaled test function is given by Sδ

s,xη(y) =
δ−|s|η(δ−s0(y0 − x0), . . . , δ−s2(y2 − x2)).

2. Method of Proof

Let K : R × R2 → R be a compactly supported function which agrees with the heat
kernel exp(−|x |2/2t)/(2π t) in a ball of radius 1 around the origin, is smooth every-
where except at the origin, satisfies K (t, x) = 0 for t < 0, and has the property that∫
K (t, x)Q(t, x) dt dx = 0 for every polynomial Q of degree 2. We then define

�ε = K ∗ ξε, (2.1)

where “∗” denotes space–time convolution, so that Rε
def= ∂t�ε − 1

2��ε − ξε is a
smooth function that converges as ε → 0 to a smooth limit R. The main reason for
considering convolutionwith K insteadof the actual heat kernel is thatwe avoid problems
of convergence at infinity. It also allows us to fitmore easily into the framework of [Hai14,
Sec. 5].

Let now �k
ε be defined by

�k
ε = C�ε−β2/4π exp(ikβ�ε), (2.2)

and write �k
ε = �c,k

ε + i�s,k
ε for its real and imaginary parts. Since the case k = 1 is

special, we furthermore use the convention that �ε = �1
ε and similarly for �c

ε and �s
ε .

Using the same trick as in [DPD02,DPD03], we set uε = vε + �ε, so that

∂tvε = 1

2
�vε +

Z∑

k=1
ζk

(
sin(kβvε + θk)�c,k

ε + cos(kβvε + θk)�s,k
ε

)
+ Rε.

At this stage, we note that the PDE

∂tv = 1

2
�v + fc(v)�c + fs(v)�s + R, (2.3)

is locally well-posed for any continuous space–time function R, any continuous initial
condition, any smooth functions fc and fs , and any �c, �s ∈ C−γ

s (R+ × T2) provided
that γ < 1. Furthermore, in this case, the solution v belongs to C2−γ

s and it is stable with
respect to perturbations of �c, �s and R. The only potential problem are the products
fc(v)�c and fs(v)�s , but the product map turns out to be continuous from C2−γ

s times
C−γ
s into C−γ

s as soon as the “scaling dimension” γ satisfies γ < 1. (See for example
[Tri83, Sec. 2] or [BCD11, Thm 2.52].) In our case, one has γ > β2/(4π), which shows
that β2 = 4π is the first non-trivial hurdle in any well-posedness analysis of (1.1).

With this in mind, our first result is as follows:
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Theorem 2.1. Assume that β2 ∈ (0, 8π). Let �ε be as in (2.2) and let γ > β2/(4π).
Then, there exists a constant C� and a C−γ

s (R+ × T2,C)-valued random variable �

independent of � such that, for every T > 0, one has �ε → � and �k
ε → 0 for all

k ≥ 2 in probability in C−γ
s ([0, T ] × T2,C).

Remark 2.2. This is essentially a consequence of [LRV13, Thm 3.1] in the special case
γ = 0. (Which is actually the simplest of the cases treated there.) Due to a difference
in normalisation (compare [LRV13, Eq. 1.2] to (3.27) below) our values of β2 differ by
a factor 2π , so that the boundary β2 = 8π appearing here corresponds to β2 = 4 in
the notations of [LRV13]. This is consistent with the fact that parabolic space–time with
two space dimensions actually has Hausdorff dimension 4. We will provide a full proof
of Theorem 2.1 in Sect. 3 for a number of reasons. First, we require a much stronger
notion of convergence than that given in [LRV13] and our sequence of approximations
is different than the one given there (in particular it has no martingale structure in ε). We
also require optimal bounds in the parabolic scaling which are not given by that article.
Finally, several ingredients of our proof are reused in later parts of the article.

Given the above discussion, Theorem 1.1 is an immediate consequence of Theo-
rem 2.1 for the range β2 ∈ (0, 4π), if the initial data u(0) is equal to �(0) plus a
continuous function. The proof of Theorem 1.1 for general initial data u(0) ∈ Cη(T2)

with η ∈ (− 1
3 , 0) can be obtained in a way similar to that of Theorem 2.5 below. At

β2 = 4π however, this appears to break down completely. Indeed, it is a fact that the so-
lutions to (2.3) are unstablewith respect to perturbations of�s and�c in C−1s . However,
it turns out that if we keep track of suitable higher order information, then continuity is
restored. More precisely, for each 1 ≤ k ≤ Z , let �s,k

ε and �c,k
ε be two sequences of

continuous space–time functions and let C (k)
ε be a sequence of real numbers. Then, for

any two space–time points z = (t, x) and z̄ = (t̄, x̄) and any two indices a, b ∈ {s, c},
we consider the functions

�ab,kl
ε (z, z̄) = �a,k

ε (z̄)
((

K ∗�b,l
ε )(z̄)− (

K ∗�b,l
ε )(z)

))− 1

2
C (k)

ε δa,bδk,l . (2.4)

In the sequel, we consider �ab,kl
ε as functions of their first argument, taking values in

the space of space–time distributions, corresponding to their second argument. We also
use the convention that �ab

ε
def= �ab,11

ε for simplicity.
Given a test function ϕ : R × R2 → R, a point z as before and a value λ > 0, we

write
ϕλ
z (z̄) = λ−4ϕ

(
λ−2(t̄ − t), λ−1(x̄ − x)

)
. (2.5)

We then impose the following assumption, which will later be justified in Theorem 2.8.

Assumption A. We assume that there exist distributions �a and distribution-valued
functions �ab(z, ·) such that �a

ε → �a and �ab
ε → �ab, as well as �a,k

ε → 0 for
k ≥ 2 and �ab,kl

ε → 0 for (k, l) �= (1, 1), in the following sense. For some γ ∈ (1, 4
3 ),

one has

λγ |�a(ϕλ
z )| � 1, λγ |(�a

ε −�a)(ϕλ
z )| → 0, (2.6a)

λ2γ−2|�ab(z, ϕλ
z )| � 1, λ2γ−2|(�ab

ε −�ab)(z, ϕλ
z )| → 0, (2.6b)

λγ |�a,k(ϕλ
z )| → 0, λ2γ−2|�ab,kl

ε (z, ϕλ
z )| → 0, (2.6c)
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for all k ≥ 2 on the left and all (k, l) �= (1, 1) on the right, where the limits on the right
(as ε→ 0) and the bounds on the left are both assumed to be uniform over all λ ∈ (0, 1],
all smooth test functions ϕ that are supported in the centred ball of radius 1 and with
their C2 norm bounded by 1, as well as all z ∈ [−T, T ] × T2 for any fixed T > 0.

Remark 2.3. The structure of (2.3) is essentially the same as that of (PAMg) in [Hai14,
Secs. 1.5, 10.4]. To make the link between the bounds (2.6) in Assumption A and
[Hai14, Sec. 10.4] more precise, one could have used the notations of [Hai14, Sec. 8]
and introduced 2Z abstract symbols �k

c and �k
s of homogeneity −γ , as well as an

abstract integration operator I. One then has the following correspondence with [Hai14,
Sec. 8]:

�z�
k
a = �a,k, �z�

k
aI(�l

b) = �ab,kl(z, ·). (2.7)

The fact that the notion of convergence given in Assumption A is equivalent to the
convergence of admissible models of [Hai14, Sec. 2.3] is an immediate consequence of
[Hai14, Thm 5.14], see also [Hai14, Thm 10.7].

Remark 2.4. There exists an analogue to Kolmogorov’s continuity test in this context,
see [Hai14, Thm 10.7]. In our notations, it states that if there exists γ̄ < γ such that, for
every p ≥ 1, the bounds

Eλpγ̄ |�a(ϕλ
z )|p � 1, Eλpγ̄ |(�a

ε −�a)(ϕλ
z )|p → 0, Eλpγ̄ |�a,k≥2(ϕλ

z )|p → 0,

hold uniformly over λ, ϕ and z as before, and similarly for�ab,kl
ε ,�ab,kl , then Assump-

tion A holds in probability.

One then has the following result. Note that the functions in vε that are multiplied
with�s,k

ε ,�c,k
ε can bemore general functions, as in the case of (PAMg); in the statement

of the theorem belowwe allow them to be trigonometric polynomials. We call a function
a trigonometric polynomial if it is a finite linear combination of sin(νk · +θk) for some
constants νk and θk .

Theorem 2.5. Assume that the space–time functions �a,k
ε and �ab,kl

ε with a, b ∈ {s, c},
1 ≤ k, l ≤ Z, are related by (2.4) and that Assumption A holds for some γ ∈ (1, 4

3 ).
Let vε be the solution to

∂tvε = �vε +
Z∑

k=1

(
fc,k(vε)�c,k

ε + fs,k(vε)�s,k
ε

)

−
Z∑

k=1
C (k)

ε

(
fc,k(vε) f

′
c,k(vε) + fs,k(vε) f

′
s,k(vε)

)
+ Rε,

vε(0, ·) = v(0), (2.8)

where Rε is a sequence of continuous functions converging locally uniformly to a limit
R and v(0) ∈ Cη(T2) for some η > − 1

3 . Assume furthermore that for every k, the
functions fc,k and fs,k are trigonometric polynomials. Then the sequence vε converges
in probability and locally uniformly as ε→ 0 to a limiting process v.

More precisely, there exists a stopping time τ > 0 and a random variable v ∈
D′(R+ × T2) such that, for every η ∈ (− 1

3 , 0) and every T ′ > T > 0, the natural
restriction of v toD′((0, T )×T2) belongs toXT,η = C([0, T ], Cη(T2))∩C((0, T ]×T2)



940 M. Hairer, H. Shen

on the set {τ ≥ T ′}. Furthermore, on the same set, one has vε → v in probability in the
topology of XT,η. Finally, one has limt→τ ‖v(t, ·)‖Cη(T2) = ∞ on the set {τ <∞}. The
limiting process v depends on fs,1, fc,1 and β, but it depends neither on the choice of
mollifier �, nor on the functions fs,k , fc,k for k ≥ 2.

Proof. The theorem would be a straightforward consequence of [Hai14, Thm 7.8] and
Remark 2.3 if we allowed v(0) to have positive regularity. However, we would like
to allow for negative regularity of the initial condition in order to be able to deduce
Theorem 1.1 from this result. The reason why negative regularity of the initial condition
is a natural requirement in the context of Theorem 1.1 is that solutions at positive times
necessarily have negative regularity, whatever the initial condition.

In order to allow initial data of negative regularity, we perform the transformation
vε = Gv(0) + wε, where Gv(0) denotes the solution to the heat equation with initial
condition v(0). As a consequence of trigonometric identities, wε then solves

∂twε = �wε +
∑

a,k

(
ga,k,v(0) (wε)�a,k

ε − C (k)
ε ga,k,v(0) (wε) g

′
a,k,v(0) (wε)

)
+ Rε, (2.9)

with initial condition wε(0, ·) = 0. Here, the functions ga,k,v(0) (wε) are finite linear
combinations of terms of the type

sin(ν Gv(0) + θ) sin(ν̃wε + θ̃ ), (2.10)

for some ν, ν̃, θ, θ̃ ∈ R, and g′
a,k,v(0) denotes the derivative of ga,k,v(0) with respect to

its argument wε.
In order to show that wε → w as ε → 0, we make use of the theory developed in

[Hai14]. (We could also equivalently have used the theory developed in [GIP14] which
requires very similar assumptions.) We note that (2.9) is of the same type as the class
of equations treated in [Hai14, Secs. 9.1, 9.3], one difference being that the single noise
ξε is replaced by a collection of noises �a,k

ε . As a consequence, the relevant algebraic
structure in our context is built in exactly the same way as in [Hai14, Sec. 8], but with the
single abstract symbol� replaced by a collection of symbols�k

a representing�a,k
ε , each

of themof homogeneity−γ with γ as inAssumptionA. Ifwe denote byP the integration
operator corresponding to convolution with the heat kernel (see [Hai14, Sec. 5]), Eq.
(2.9) can be described by the following fixed point problem:

W = P1t>0

(
Rε +

∑

a,k

ga,k,v(0) (W )�k
a

)
. (2.11)

Indeed, as already noted in Remark 2.3, the condition γ < 4/3 guarantees that any
model (�,�) for the corresponding regularity structure is uniquely determined by the
action of � onto the symbols �k

a and �k
aI(�l

b), and Assumption A precisely states that
sequence of models (�ε, �ε) given by (2.7) but with � replaced by �ε converges to
a limiting model (�,�). Furthermore, it follows in exactly the same way as [Hai14,
Prop. 9.4] that if W solves (2.11) for the model given by (2.7), but with � replaced
by �ε and satisfying the relation (2.4), then RW (where R denotes the corresponding
reconstruction operator, which in this case simply discards the higher order information
encoded in W ) solves (2.9).

It therefore remains to show that (2.11) admits a unique (local) solution for every
admissible model, and that this solution depends continuously on the model in question.
In view of [Hai14, Thm 7.8], this is the case if we can show that the map

W �→ sin(ν Gv(0) + θ) sin(ν̃W + θ̃ )�k
a, (2.12)
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is locally Lipschitz from Dμ,0 into Dμ−α,−α for some μ > α and some α ∈ (0, 2). (See
[Hai14, Def. 6.2] for the definition of the spaces Dγ,η.)

At this stage, we claim that as long as μ ∈ (0, 2] and v(0) ∈ Cη(T2) for some
η ∈ (−1/3, 0), then g = sin(ν Gv(0) + θ) can be interpreted as an element in Dμ,2η(T̄ )

where T̄ is the space of abstract Taylor polynomials (if only Taylor polynomials are
involved, these are just suitably weighted Hölder spaces). Indeed, we have the bounds

|g(t, x)| � 1 � (t ∧ 1)η/2 � (t ∧ 1)η,

|∂x g(t, x)| � |∂xG(v(0))| � (t ∧ 1)(η−1)/2 � (t ∧ 1)η−1/2,
|∂2x g(t, x)| + |∂t g(t, x)| � |∂xG(v(0))|2 + |∂2x G(v(0))| + |∂tG(v(0))|

� (t ∧ 1)η−1 + (t ∧ 1)(η−2)/2 � (t ∧ 1)η−1,

from which the fact that g ∈ Dμ,2η follows similarly to [Hai14, Lemma 7.5].
It furthermore follows from [Hai14, Prop. 6.13] that the map W �→ sin(ν̃W + θ̃ )

is locally Lipschitz from Dμ,0 into itself. Combining this with the fact that g ∈ Dμ,2η

as mentioned above and that �k
a is of homogeneity −γ , we conclude from [Hai14,

Prop. 6.12] that the map (2.12) is indeed locally Lipschitz continuous from Dμ,0 into
Dμ−γ,2η−γ . Since 2η − γ + 2 > − 2

3 − 4
3 + 2 = 0 and μ− γ + 2 > μ, these exponents

do satisfy the required inequalities, thus concluding the proof. ��
Remark 2.6. In fact, the limiting process v belongs to C

(
(0, T ],C (2−γ )∨0(T2)

)
for every

γ > β2/4π , as soon as the random variable τ is strictly greater than T . Since the
Gaussian process � belongs to C

(
(0, T ], C−δ(T2)

)
for every δ > 0, the solution to the

original equation (1.1) is continuous in time for positive times, with values in C−δ(T2)

for every δ > 0.

Remark 2.7. The condition γ < 4
3 (corresponding to β2 < 16π

3 via the correspondence
γ > β2/4π which we have seen in Theorem 2.1) comes from the fact that we restrict
ourselves to second-order processes in Assumption A. If we were to consider suitable
additional third-order processes as well, this threshold would increase to β2 < 6π .
In principle, by obtaining convergence of the corresponding (suitably renormalised)
processes of arbitrarily high order, the threshold could be increased all the way up to
β2 < 8π , but this is highly non-trivial. At β2 = 8π , one loses local subcriticality in the
sense of [Hai14, Assumption 8.3] and the theory breaks down.

At this stage, we note that in our specific situation fc,k(v) = ζk sin(kβv + θk) and
fs,k(v) = ζk cos(kβv + θk), so that one has the identity fc,k f ′c,k + fs,k f ′s,k = 0 for each
k. As a consequence, the “renormalised” Eq. (2.8) is identical to the “original” Eq. (2.3)!
It is now clear that Theorem 1.1 follows from the following result, which is the main
technical result of this article.

Theorem 2.8. Assume thatβ2 ∈ [4π, 16π
3 ). Let�k

ε = �c,k
ε +i�s,k

ε be defined as in (2.2),
and �ab,kl

ε for a, b ∈ {s, c} be defined as in (2.4). Then there exist choices of constants

C (k)
ε depending only on β and the mollifier �, and distributions �a and distribution-

valued functions �ab(z, ·) where a, b ∈ {s, c}, which are independent of the mollifier �,
such that Assumption A holds.

Theorem 2.8 is proved in Sect. 4. As discussed in Remark 4.2, this theorem is an
immediate consequence of Lemma 4.1 and Theorem 4.3.
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At this stage one might wonder if, in view of [Hai14, Sec. 10] and [HQ15], there
is anything non-trivial left to prove at all. The reason why Theorem 2.8 is not covered
by these results is that, in view of (2.2), the stochastic processes �a,k

ε are obviously
not Gaussian. Worse, they do not belong to any Wiener chaos of fixed order. As a
consequence, we have no automatic way of obtaining equivalence of moments and
Wick’s formula does not hold, which is the source of considerable complication.

3. Convergence of the First-Order Process

In this section, we prove Theorem 2.1 and we will retain the notations from the intro-
duction. This time however, we define �ε somewhat more indirectly by

�ε = :eiβ�ε : def= eiβ�ε+
β2

2 Qε(0), �k
ε

def= eikβ�ε+
β2

2 Qε(0) (k ≥ 2), (3.1)

where Qε denotes the covariance function of the Gaussian process �ε. Using the defi-
nition (2.1), one has the identity

Qε = (K ∗ �ε) ∗ T (K ∗ �ε), (3.2)

where T denotes the reflection operator given by (T F)(z) = F(−z). The link between
this definition and (2.2) is given by the following result, the proof of which is postponed
to the end of this section.

Lemma 3.1. There exists a constant Ĉ� depending only on the mollifier � and such that

Qε(0) = − 1

2π
log ε + Ĉ� + O(ε2).

In particular, if Theorem 2.1 holds for �ε defined as in (3.1), then it also holds for �ε

defined as in (2.2).

Our first main result is then the following:

Theorem 3.2. Let 0 < β2 < 8π . There exists a stationary random complex distribution-
valued process � independent of the mollifier � such that �ε → � in probability.
Furthermore, for every κ > 0 sufficiently small, one has

E|〈ϕλ
x , �ε〉|p � λ−

β2 p
4π , E|〈ϕλ

x , �ε −�〉|p � εκλ−
β2 p
4π −κ , (3.3)

E|〈ϕλ
x , �

k
ε 〉|p � ε pκλ−

β2 p
4π −pκ (k ≥ 2), (3.4)

uniformly over all test functions ϕ supported in the unit ball and bounded by 1, all
λ ∈ (0, 1], and locally uniformly over space–time points x.

Remark 3.3. Throughout this paper we write 〈ϕλ
x , �〉 def= ∫

R3 ϕλ
x (x̄)�(x̄) dx̄ when � is

function of one space–time variable. In the following, we will also write 〈ϕλ
x , �〉 def=∫

R3 ϕλ
x (x̄)�(x, x̄) dx̄ if � is function of two space–time variables such as the functions

defined in (2.4).

Proof. We first obtain the a priori bound stated in the theorem for finite values of ε.
Denote
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Jε(z) = exp(−β2Qε(z)), (3.5)

where Qε was defined in (3.2). We note that, as a consequence of the commutativity of
convolution and the fact that T ( f ∗ g) = T f ∗ T g, (3.2) can be rewritten as

Qε = Q ∗ (�ε ∗ T �ε), Q = K ∗ T K .

In particular, setting �̄ = � ∗ T �, one has

Qε = Q ∗ �̄ε, (3.6)

and this is the expression that we are going to make use of here.
Then, by Corollary 3.10 below, we have the bounds

(‖z‖s + ε)
β2

2π � Jε(z) � (‖z‖s + ε)
β2

2π , for 0 ≤ ‖z‖s ≤ 1, (3.7)

where the notation � hides proportionality constants independent of ε. We will also use
the notation J −ε (z) = J −1ε (z) = 1/Jε(z). With this notation at hand, one verifies that

E|〈ϕλ
x , �ε〉|2N =

∫∫ ∏
i, j ϕ

λ
x (zi )ϕ

λ
x (y j )J −ε (zi − y j )

∏
�<m J −ε (z� − zm)

∏
n<o J −ε (yn − yo)

dz dy,

where both integrations are performed over (R3)N and each zi and yi is an element of
R3 (space–time). In a very similar context, a quantity of this type was already bounded
in [Frö76, Thm 3.4]. However, the proof given there relies on an exact identity which
does not seem to have an obvious analogue in our context. Furthermore, the construction
given in this section will then also be useful when bounding the second order processes.

By translation invariance, the above quantity is independent of x . Furthermore, the
functionJε is positive, so we can bound this integral by the “worst case scenario” where
ϕ is the indicator function of the unit ball. This yields the bound

E|〈ϕλ
x , �ε〉|2N � λ−8N

∫

�2N

∏
�<m Jε(z� − zm)

∏
n<o Jε(yn − yo)∏

i, j Jε(zi − y j )
dz dy, (3.8)

where� denotes the parabolic ball of radius λ. At this stage, we remark that the integrand
of this expression consists of N (N − 1) factors in the numerator and N 2 factors in the
denominator. One would hope that some cancellations take place, allowing this to be
bounded by a similar expression, but with only N terms, all in the denominator.

This is precisely the case and is the content of Corollary 3.6 below with J chosen to
be our function Jε defined in (3.5), which allows us to obtain the bound

E|〈ϕλ
x , �ε〉|2N � λ−8N

∣∣∣
∫

�2
J −ε (x − y) dx dy

∣∣∣
N
. (3.9)

Taking such a bound for granted for the moment, we see that as a consequence of (3.7),
one has the bound ∣∣∣

∫

�2
J −ε (x − y) dx dy

∣∣∣ ≤ λ8−
β2

2π ,

uniformly in ε ∈ (0, 1], provided that β2 < 8π . (Otherwise J −ε is no longer uniformly
integrable as ε→ 0.) It follows immediately that

E|〈ϕλ
x , �ε〉|2N � λ−

β2N
2π ,

which is the first of the two claimed bounds in (3.3).
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For k ≥ 2 we proceed analogously. Indeed, it is straightforward to check that

E|〈ϕλ
x , �

k
ε 〉|2N is bounded by the right hand side of (3.8) multiplied by ε

(k2−1)β2N
2π , and

with Jε replaced by J k2
ε . Since J k2

ε still satisfies (3.13), Corollary 3.6 still applies.
Therefore, together with (3.7), one has

E|〈ϕλ
x , �

k
ε 〉|2N � λ−8N

∣∣∣
∫

�2
ε

(k2−1)β2
2π

(
ε + ‖x − y‖s

)− k2β2

2π
dx dy

∣∣∣
N
.

Since β2 < 8π and k ≥ 2, one can choose κ > 0 sufficiently small so that

(ε + ‖x − y‖s)− k2β2

2π � ‖x − y‖−
β2

2π −2κ
s ε−

(k2−1)β2
2π +2κ ,

which is still integrable at short scales. Therefore,

E|〈ϕλ
x , �

k
ε 〉|2N � ε2κNλ−(

β2

2π +2κ)N ,

which is precisely the bound (3.4).
In order to obtain the second bound of (3.3), we first show that the sequence 〈ϕλ

x , �ε〉
is Cauchy in L2(�) for every sufficiently regular test function ϕ and every space–time
point x . For this, we will also need a notation for

Qε,ε̄(z)
def= E�ε(0)�ε̄(z) =

(
Q ∗ (�ε ∗ T �ε̄)

)
(z), (3.10)

and we set analogously to (3.5) Jε,ε̄ = exp(−β2Qε,ε̄). Note that Qε,ε̄ = Qε̄,ε. With
this notation, a straightforward calculation yields

E|〈ϕλ
x , �ε −�ε̄〉|2 =

∫∫
ϕλ
x (y)ϕ

λ
x (y + z)

(
J −ε (z) + J −ε̄ (z)− 2J −ε,ε̄(z)

)
dy dz

� λ−4
∫

�

∣∣J −ε (z) + J −ε̄ (z)− 2J −ε,ε̄(z)
∣∣ dz, (3.11)

where � now denotes a parabolic ball of radius 2λ centred around the origin. At this
stage we note that, thanks to (3.10), the function Qε,ε̄ also falls within the scope of
Lemma 3.7 since one can write

�ε ∗ T �ε̄ = �̂ε∨ε̄,

for a function �̂ which in general depends on ε and ε̄ but is bounded (and has bounded
support) independently of them. As a consequence of Lemma 3.7, we can thus write
J −ε = J − exp(Mε) and J −ε,ε̄ = J − exp(Mε,ε̄) where, assuming without loss of
generality that ε̄ ≤ ε, the functions Mε and Mε,ε̄ are bounded by

|Mε(z)| + |Mε,ε̄(z)| � ε

‖z‖s
for all space–time points z with ‖z‖s ≥ ε. Since, as a consequence of the first part of
Lemma 3.7, one can furthermore bound J −ε̄ (z) and J −ε,ε̄(z) by a suitable multiple of

‖z‖−β2/2π
s , it follows immediately that one has the global bound

∣
∣J −ε (z) + J −ε̄ (z)− 2J −ε,ε̄(z)

∣
∣ � ‖z‖−

β2

2π
s

( ε

‖z‖s ∧ 1
)
.
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Inserting this bound into (3.11) and integrating over � eventually yields

E|〈ϕλ
x , �ε −�ε̄〉|2 �

⎧
⎪⎪⎨

⎪⎪⎩

(ε ∧ λ)4−
β2

2π λ−4 for β2 ∈ (6π, 8π),

(ε ∧ λ)λ−4
(
1 ∨ log(λ/ε)

)
for β2 = 6π ,

(ε ∧ λ)λ−1−
β2

2π for β2 ∈ (0, 6π).

Since the bound
(
1∨log(λ/ε)

)
� λα(ε∧λ)−α holds for everyα > 0, one can summarise

these bounds by

E|〈ϕλ
x , �ε −�ε̄〉|2 � ε2κλ−2κ−

β2

2π , (3.12)

for some (sufficiently small depending on β) value of κ . Note that these bounds are
independent of ε̄ as long as ε̄ ≤ ε. The existence of limiting random variables 〈ϕλ

x , �〉
follows immediately. The second bound in (3.3) is then a consequence of the first by
combining it with (3.12) and using the Cauchy–Schwarz inequality.

Let �
�
ε ,�

�̄
ε be the processes defined via two mollifiers �, �̄ respectively, then one

has

E|〈ϕλ
x , �

�
ε −��̄

ε 〉|2 =
∫∫

ϕλ
x (y)ϕ

λ
x (y + z)

(
J −ε,�(z) + J −ε,�̄(z)− 2J −ε,�,�̄(z)

)
dy dz

where Jε,�,�̄ = exp(−β2Qε,�,�̄) and Qε,�,�̄(z) = (
Q ∗ �̂ε

)
(z) with �̂ε = (�ε ∗ T �̄ε).

Then it follows in the sameway as above that all themoments of 〈ϕλ
x , �

�
ε −�

�̄
ε 〉 converge

to zero as ε → 0. Therefore the limit process � is independent of the mollifier � as
claimed. ��

As an almost immediate corollary we obtain the

Proof of Theorem 2.1. It only remains to show that the bounds of Theorem 3.2 do imply

convergence in probability in C−γ
s for every γ >

β2

4π . This is an easy consequence of

the characterisation of the space C−γ
s in terms of wavelet coefficients (see [Mey92]

in the Euclidean case and [Hai14, Prop. 3.20] for the parabolic case considered here),
combined with the same argument as in the standard proofs of Kolmogorov’s continuity
test [RY91], see also the proof of [Hai14, Thm 10.7]. ��

The proof of Theorem 3.2 is completed once we show that (3.7) holds and that
(3.8) does indeed imply the bound (3.9). For this, we consider the following general
situation. We are given N points xi ∈ Rd as well as corresponding signs σi ∈ {±1},
so that each point can be interpreted as a “charge” (either positive or negative). We are
furthermore given a “potential” function J : Rd → R+ with the following property. For
every positive constant c > 0 there exists a constant C > 0 such that the implication

‖x‖s ≤ c‖x̄‖s⇒ J (x) ≤ CJ (x̄), (3.13)

holds for all x, x̄ . Here, the scaling s of Rd is fixed throughout. In our case, one has
d = 3 (space–time) and the scaling is the usual parabolic scaling. As before, we use
the notation J −(x) = 1/J (x). Note that if there exists one point such that J (x) �= 0
(which is something we will always assume), then one necessarily has J (x) �= 0 for
every x �= 0 as a consequence of (3.13).
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We then aim at bounding integrals of the type

I =
∫

�

· · ·
∫

�

N∏

i �= j=1
J σiσ j (xi − x j ) dx1 . . . dxN ,

for some fixed domain � ⊂ Rd . This is exactly the situation of the right hand side in
(3.8) by taking for the xi the union of the yi and the zi and assigning one sign to the
yi and the opposite sign to the zi . Assuming that there are k indices with σi = 1 (and
therefore N − k indices with σi = −1) and assuming without loss of generality that
k ≤ N/2 (so that k ≤ N − k), we claim that

|I| �
∣∣∣
∫

�2
J −1(x − y) dx dy

∣∣∣
k
J̄ (N−2k2 )|�|N−2k, (3.14)

where J̄ = sup‖x‖s≤diam� J (x), |�| denotes the volume of �, and the symbol �
hides a proportionality constant depending only on N and on the constants appearing in
(3.13). As a matter of fact, we will obtain a stronger pointwise bound on the integrand
of (3.13) from which (3.14) then follows trivially. Let us first give a brief reality check
of (3.14). In the case when J = 1 (which does indeed satisfy (3.13)), both I and (3.14)
are equal to |�|N . Furthermore, if we multiply J by an arbitrary constant K (which
does not change the bound (3.13)), then both I and (3.14) are multiplied by Kq with
q = 2k(k − N ) + N (N − 1)/2.

In order to obtain the pointwise bound mentioned above, we consider any configu-
ration of N distinct points {x1, . . . , xN } and we associate to it a decreasing sequence
{An}n∈Z of partitions of {1, . . . , N } in the following way.1 For n small enough so that
2n < mini �= j ‖xi − x j‖s, we take for An the partition consisting only of singletons,
namely

An =
{{1}, {2}, . . . , {N }}. (3.15)

For everyn, we furthermore introduce pairingsSn : An → ℘P(N ), whereP(N )denotes
the set of (unordered) pairs of N elements (we interpret this as the set of subsets of
{1, . . . , N } of cardinality 2) and ℘E is the power set of E , in such a way that

• If {i, j} ∈ Sn(A), then {i, j} ⊂ A. In other words, for every A ∈ An , Sn(A) is a
subset of the possible pairs constructed by using only elements contained in A.
• If {i, j} ∈ Sn(A), then σi �= σ j , so only pairings of points with opposite signs occur.
• If p1, p2 ∈ Sn(A), then either p1 = p2 or p1 ∩ p2 = ∅, so only disjoint pairings

occur.
• For any A ∈ An , if {i, j} ⊂ A\⋃ Sn(A), then σi = σ j . In other words, indices of

A that do not belong to any pairing all correspond to the same sign. The number of
such indices will play an important role in the sequel, so we introduce the notation
Tn(A) = ∣∣A\⋃ Sn(A)

∣∣. We furthermore denote by �n(A) ∈ {±1} the sign of those
indices in A that do not belong to any pairing. (If all indices belong to some pairing,
we can use the irrelevant convention �n(A) = 1.)

For values of n sufficiently small so that An is given by (3.15), we have no choice
but to set Sn(A) = ∅ for every A ∈ An .

1 The sequence is decreasing in the sense thatAn+1 is a coarsening (or equal to)An . For n small enough,
An consists of all singletons and is therefore as fine as possible, while for n large enough An is the coarsest
possible partition consisting only of the whole set.
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For larger values of n, we then define An and Sn inductively in the following way.
Given An−1, we define an equivalence relation ∼n between elements of An−1 to be the
smallest equivalence relation such that if A, Ā ∈ An−1 are such that there exist x ∈ A
and x̄ ∈ Ā with ‖x − x̄‖s ≤ 2n , then A ∼n Ā. The partition An is then defined by
merging all∼n-equivalence classes ofAn−1. In other words,An is the smallest partition
with the property that for any A, Ā ∈ An−1 with A ∼n Ā, there exists B ∈ An with
A ∪ Ā ⊂ B.

The pairing Sn is then defined to be any pairing satisfying the above properties that
is furthermore compatible with Sn−1 in the sense that if A ∈ An−1 and Ā ∈ An are
such that A ⊂ Ā, then Sn−1(A) ⊂ Sn( Ā). Loosely speaking, we keep the pairings of
An−1 and, in any situation where a merger creates a set in our partition containing both
positive and negative indices, we pair up as many of them as possible in an arbitrary
way.

Remark 3.4. Our construction is such that there exists n0 such that for n ≥ n0 the
partition An necessarily consists of a single set. At this stage, the only information of
the construction that we will actually use is the pairing Sn0 .

With this construction in mind, our main result is then the following, recalling that
Tn(A) = ∣∣A\⋃ Sn(A)

∣∣.

Proposition 3.5. Let J be as above, let N > 0, let {x1, . . . , xN } be an arbitrary collec-
tion of distinct points in Rd and let {σ1, . . . , σN } be a collection of signs. Let An and
Sn be defined as above. Then, there exists a constant C depending only on N and on the
constants appearing in (3.13) such that, for every n ∈ Z and every A ∈ An, one has the
pointwise bound

∣∣
∣

∏

i �= j∈A
J σiσ j (xi − x j )

∣∣
∣ ≤ C

( ∏

{i, j}∈Sn(A)

J −1(xi − x j )
)
J̄ Dn(A)
n , (3.16)

where we have set Dn(A) = (Tn(A)
2

)
and J̄n = sup‖x‖s≤2n J (x).

Proof. The proof goes by induction on n. For n sufficiently small so that (3.15) holds,
both sides are empty products so the bound holds trivially.Note first that as a consequence
of (3.13) J̄n is essentially increasing in n (in the sense thatJm ≤ CJn form ≥ n, where
C is independent of both m and n), so that as long as no merger event takes place, the
bound (3.16) gets weaker with increasing n. It therefore remains to show that the bound
still holds if two (or more) sets merge when going from some level n to level n + 1.
Without loss of generality, we assume that only two sets A and Ā merge. We also note
that losing optimality by a multiplicative factor possibly depending on N is harmless
since there can altogether be only at most a fixed number N − 1 of merger events.

Using the inductive hypothesis, we then obtain immediately the bound
∣∣∣

∏

i �= j∈A∪ Ā
J σiσ j (xi − x j )

∣∣∣ �
( ∏

{i, j}∈Sn(A)∪Sn( Ā)

J −1(xi − x j )
)
J̄ Dn(A)+Dn( Ā)
n

×
∏

i∈A, j∈ Ā
J σiσ j (xi − x j ).

(3.17)

At this stage we note that since A and Ā are distinct sets in An , we necessarily have
‖xi − x j‖s ≥ 2n for i ∈ A and j ∈ Ā. On the other hand, since the two sets merged
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A Ā

−
a

+
b

+c

−
d

+e

− f

− g

J −

J −J

J−

J −

Fig. 1. This illustrates a situation where A, Ā ∈ An are merged into A ∪ Ā ∈ An+1, with �n(A) �= �n( Ā).
In this case, Sn(A) = {{a, b}} and Sn( Ā) = {{d, e}}. The factors J− drawn on {a, b} and {d, e} correspond
to the factors J− in the first line of the right hand side of (3.17). The two dashed lines correspond to two
of the factors in the second line of (3.17), and they “almost cancel” each other out since g is far away from
{a, b}. There are many other such cancellations which we didn’t draw. The pair {c, f } ∈ Sn+1 is a new pair
formed at this step but we could just as well have chosen to form {c, g} instead. As for the factors J̄ , we have
Dn(A) = 0, Dn( Ā) = 1, and Dn+1(A ∪ Ā) = 0, which is less than Dn(A) + Dn( Ā) by 1 due to the newly
formed factor J−(xc − x f )

at level n + 1, there exists a constant C (possibly depending on N ) such that one has
‖xi − x j‖s ≤ C2n for any i, j ∈ A ∪ Ā. As a consequence of this and of (3.13), there
exists a constant C̄ such that for any i ∈ A and j ∈ Ā, one has

C̄−1J̄n+1 ≤ J (xi − x j ) ≤ C̄J̄n+1. (3.18)

As a consequence, denote Ap = A\⋃ Sn(A) and similarly for Ā p. Then it follows from
(3.18) that

∏

i∈A, j∈ Ā
J σiσ j (xi − x j ) �

∏

i∈Ap, j∈ Ā p

J σiσ j (xi − x j ), (3.19)

where the proportionality constant depends on C̄ and N in general. This is because if
i ∈ A and j belongs to some pair in Sn( Ā), then the two factors coming from the two
possible values of j cancel each other out. More precisely, if i ∈ A and { j, j ′} ∈ Sn( Ā),
then by the triangle inequality,

‖xi − x j‖s � ‖xi − x j ′ ‖s + ‖x j ′ − x j‖s � ‖xi − x j ′ ‖s,

where the last inequality holds because ‖x j ′ − x j‖s � 2n and ‖xi − x j ′ ‖s � 2n+1. The
same bound holds with j and j ′ interchanged, thus by (3.13) and σiσ j = −σiσ j ′ , one
has the cancellation

J σiσ j (xi − x j )J σiσ j ′ (xi − x j ′) � 1.

(See Fig. 1 for an illustration about the procedure we are following here.)
There are now two cases: either one has �n(A) = �n( Ā), or one has �n(A) �=

�n( Ā). We first consider the case �n(A) = �n( Ā). In this case, one necessarily has
Sn+1(A ∪ Ā) = Sn(A), so that in view of (3.19) we only need to show that

∏

i∈Ap, j∈ Ā p

J σiσ j (xi − x j ) � J̄ Dn+1(A∪ Ā)−Dn(A)−Dn( Ā)
n . (3.20)
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Since each factor in the product on the left is bounded by some multiple of J̄n , this
follows at once from the fact that the number of terms on the left is equal to

|Ap| | Ā p| = |Tn(A)| |Tn( Ā)|.
Writing a = |Tn(A)| and ā = |Tn( Ā)| as a shorthand, the exponent on the right hand
side of (3.20) is equal to

(a + ā)(a + ā − 1)− a(a − 1)− ā(ā − 1)

2
= 2aā

2
.

Since both exponents are the same, the claim follows at once.
We now deal with the case �n(A) �= �n( Ā). Using the same shorthands a, ā as

above, we note that this time Sn(A ∪ Ā) is given by Sn−1(A) ∪ Sn−1( Ā), plus a ∧ ā of
the aā pairs appearing in (3.19). Assuming without loss of generality that a ≤ ā, the
number of remaining factors is given by a(ā − 1). This time furthermore each factor
contributes one negative power of Jn , so it remains to show that

Dn+1(A ∪ Ā)− Dn(A)− Dn( Ā) = −a(ā − 1).

Since this time around

Dn+1(A ∪ Ā) = (ā − a)(ā − a − 1)

2
,

this identity follows at once, thus concluding the proof. ��
Corollary 3.6. The bound (3.14) holds.

Proof. It suffices to note that as soon as 2n > diam�, one has An = {{1, . . . , N }} and
therefore (3.16) implies

∏

i �= j

J σiσ j (xi − x j ) ≤ C
∑

S

( ∏

{i, j}∈S
J −1(xi − x j )

)
J̄ (N−2k2 ),

where the sum runs over all possible ways S of pairing the k indices corresponding
to a positive sign with k of the indices corresponding to a negative sign. Since there
are only finitely many such pairings, the claim follows by integrating both sides of the
inequality. ��

We still have to prove that (3.13) actually holds for ourJε defined in (3.5). In order to
study the behaviour of such kernels we introduce the following notation. For continuous
function f,Q on Rd\{0} we write

Q(z) ∼ f (z) if f (z) + c1 ≤ Q(z) ≤ f (z) + c2, (3.21)

for some constants c1, c2 and for all z ∈ Rd\{0}. We will also sometimes specify that
Q ∼ f on some domain, in which case it is understood that (3.21) is only required to
hold there. Given Q, we define Qε as in (3.6) by

Qε = Q ∗ �̄ε,

where �̄ is a mollifier supported in the ball of radius 1 and ε ∈ (0, 1]. The following
lemma shows that if Q(z) ∼ − 1

2π log ‖z‖s then its regularization Qε also satisfies
suitable upper and lower bounds. Note that if � integrates to 1, then so does �̄ = � ∗T �.
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Lemma 3.7. Assume thatQ is compactly supported, smooth away from 0, and such that
Q(z) ∼ − 1

2π log ‖z‖s. Assume furthermore that �̄ is any continuous function supported
on the unit ball around the origin integrating to 1, and that Qε is as in (3.6). Then, for
‖z‖s ≤ 1, one has the two-sided bound

Qε(z) ∼ − 1

2π
log(‖z‖s + ε). (3.22)

If furthermore Q is of class C1 and there exists a constant C such that |∂iQ(z)| ≤
C/‖z‖sis , then there exists a constant C̄ such that

|Qε(z)−Q(z)| ≤ C̄
( ε

‖z‖s ∧
(
1 +

∣∣∣log
ε

‖z‖s
∣∣∣
))

, (3.23)

for all space–time points z.

Proof. We omit the proof since it is a rather straightforward calculation. ��
It remains to show that the function Q does indeed enjoy the properties we took

for granted in Lemma 3.7. Since these properties are invariant under the addition of a
smooth compactly supported function (as a matter of fact, it only needs to be C1), we
will use the symbol R to denote a generic such function which can possibly change from
one line to the next. Recall that in a distributional sense one has the identity

∂t K − 1

2
�K = δ + R, (3.24)

and that Q is given by

Q(z) =
∫

K (z + z̄)K (z̄) dz̄,

where z = (t, x) and z̄ = (t̄, x̄) are space–time points inR3. As a consequence of (3.24),
we then have the distributional identity

1

2
�Q(z) = 1

2

∫
(�K )(z + z̄)K (z̄) dz̄ =

∫
(∂t K )(z + z̄)K (z̄) dz̄ − K (−z) + R,

where we used the fact that the convolution of R with K is a new function R with the
same properties. On the other hand, making the substitution z̄ �→ z̄ − z we can write

Q(z) =
∫

K (z̄ − z)K (z̄) dz̄,

so that

1

2
�Q(z) = 1

2

∫
(�K )(z̄ − z)K (z̄) dz̄ =

∫
(∂t K )(z̄ − z)K (z̄) dz̄ − K (z) + R

=
∫

(∂t K )(z̄)K (z̄ + z) dz̄ − K (z) + R.

At this stage, we note that

(∂t K )(z + z̄)K (z̄) + (∂t K )(z̄)K (z̄ + z) = ∂t̄
(
K (z + z̄)K (z̄)

)
,
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which integrates to zero. Therefore, summing these two expressions yields the identity

�Q(z) = K (z) + K (−z) + R, (3.25)

for some smooth and compactly supported function R. Let now

K̂ (z) = K (z) + K (−z), G(x) = − 1

2π
log |x |,

for z ∈ R3 and x ∈ R2. Then, one has

Lemma 3.8. One has the identity

Q(t, x) = (
K̂ (t, ·) ∗ G)

(x) + R, (3.26)

for some smooth function R.

Proof. As an immediate consequence of the definition of Q, the properties of K and,
for example, [Hai14, Lemma 10.14], we know that, for any t �= 0, Q(t, ·) is a smooth
compactly supported function. This immediately implies that one has the identity

Q(t, x) = (
�Q(t, ·) ∗ G)

(x), (3.27)

and the claim follows at once from (3.25). ��
Lemma 3.9. The kernel Q can be decomposed as

Q(z) = − 1

2π
log ‖z‖s + R̂

( t

‖z‖2s
,

x

‖z‖s
)
+ R(z),

where both R and R̂ are smooth functions of R3 and z = (t, x) as before. In particular,
it satisfies the assumptions of both parts of Lemma 3.7.

Proof. LetH be theheat kernelH(t, x) = (4π |t |)−1 exp(−|x |2/(4|t |)), and set Q̂(t, x) =
(
H(t, ·)∗G)

(x). Then, as a consequence of Lemma 3.8 and the fact that H and K̂ differ

by a smooth function by definition, Q̂ and Q only differ by a smooth function, so it is
sufficient to show the result for Q̂. For this, note that as a consequence of the scaling
relation H(λ2t, λx) = λ−2 H(t, x), one has the identity

Q̂(λ2t, λx) = − 1

2π

∫

R2
H(λ2t, λx − y) log |y| dy

= − λ2

2π

∫

R2
H(λ2t, λx − λy) log |λy| dy

= − 1

2π

∫

R2
H(t, x − y)

(
log |y| + log λ

)
dy = Q̂(t, x)− 1

2π
log λ.

Here we also used the fact that H(t, ·) integrates to 1 for any fixed t . It follows imme-
diately that if we set

R̂(z) = Q̂(z) +
1

2π
log ‖z‖s,

then R̂ is smooth outside the origin and homogeneous of order 0 in the sense that
R̂(λ2t, λx) = R̂(t, x). The claim then follows at once. ��
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Lemma 3.1 is now an immediate corollary of this fact.

Proof of Lemma 3.1. Using the decomposition of Lemma 3.9, the identity (3.6), and the
fact that �̄ integrates to 1, a straightforward calculation shows that we have the identity

Qε(0) = − 1

2π
log ε + Ĉ� +

∫

R3
�̄ε(z)

(
R(z)− R(0)

)
dz,

with

Ĉ�
def=

∫

R3
�̄(z)

(
R̂(z)− 1

2π
log ‖z‖s

)
dz + R(0).

Since �̄ is necessarily symmetric under z �→ −z, it annihilates linear functions so that∫
R3 �̄ε(z)

(
R(z)− R(0)

)
dz = O(ε2) as claimed. ��

Corollary 3.10. The estimates (3.7) and (3.13) for Jε hold for all ε > 0 with propor-
tional constants independent of ε.

Proof. By Lemmas 3.7 and 3.9, if ‖z‖s ≤ c‖z̄‖s, we obtain the bound

Jε(z) = e−β2Qε(x,t) � e
β2

2π log (‖z‖s+ε) � e
β2

2π log (‖z̄‖s+ε) � Jε(z̄),

thus concluding the proof of (3.13). The estimate (3.7) is just a rewriting of the first
conclusion of Lemma 3.7. ��

4. Second-Order Process Bounds for k = l

In order to provide a solution theory for (1.1) at or beyond β2 = 4π , we have seen in
the introduction that one should construct suitable “second order” objects (2.4). In this
section we consider a closely related second order object

�̃±ε (z, z̄) = �ε(z̄)
(
(K ∗ �̄ε)(z̄)− (K ∗ �̄ε)(z)

)− E
(
�ε(K ∗ �̄ε)

)
.

Generally, we define for 1 ≤ k, l ≤ Z

�̃kl̄
ε (z, z̄)

def= �k
ε (z̄)

(
(K ∗ �̄l

ε)(z̄)− (K ∗ �̄l
ε)(z)

)− δk,lE
(
�k

ε (K ∗ �̄l
ε)

)
, (4.1)

where δk,l = 1 if k = l and equals 0 otherwise (see (4.4) below about the definition of
a variation of the above objects, written as �kl̄

ε ). We also define

�kl
ε (z, z̄)

def= �k
ε (z̄)

(
(K ∗�l

ε)(z̄)− (K ∗�l
ε)(z)

)
. (4.2)

The objects �̃kk̄
ε are the hardest ones to bound, so we will first obtain bounds for them.

The corresponding bounds on �̃kl̄
ε with k �= l and on �kl

ε will then be shown in the very
end of this section.

The last term of (4.1) is a renormalisation constant which, for the case �̃±ε , can also
be expressed as

E
(
�ε(K ∗ �̄ε)

) =
∫

K (x)J −ε (x) dx .
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As a consequence of (3.7) and the behaviour of the heat kernel, this diverges as ε→ 0
as soon as β2 ≥ 4π . When β2 = 4π , this divergence is logarithmic, and it behaves like
ε2−β2/2π for β2 ∈ (4π, 8π). For general �̃kl̄

ε with (k, l) �= (1, 1), one can verify that

E
(
�k

ε (K ∗ �̄l
ε)

) = e
−β2

(
k2+l2

2 −1
)
Qε(0)

∫
K (x)Jε(x)

−kl dx

� ε

(
k2+l2

2 −1
)

β2

2π

∫
K (x)(‖x‖s + ε)

−klβ2
2π dx

� εκ

∫
K (x)‖x‖

(
−kl+ k2+l2

2 −1
)

β2

2π −κ

s dx

(4.3)

for sufficiently small κ > 0, where we used the fact

(‖x‖s + ε)
−klβ2
2π � ‖x‖

(
−kl+ k2+l2

2 −1
)

β2

2π −κ

s ε
−

(
k2+l2

2 −1
)

β2

2π +κ

for (k, l) �= (1, 1). Now we note that if k �= l, this integral is finite for all β2 < 8π as
long as κ > 0 is sufficiently small, so that the above expectation converges to zero as
ε → 0. On the other hand, if k = l, it is easy to check (by the first line of (4.3) and
dividing the integration into ‖x‖s ≤ ε and ‖x‖s > ε) that E

(
�k

ε (K ∗ �̄k
ε )

)
diverges

when ε → 0 for β2 ≥ 4π , with the same rates as in the case (k, l) = (1, 1). This
motivates (4.1), namely that there is only renormalisation in the second order object �̃kl̄

when k = l. For the case of �kl , it will be clear in the end of this section that one does
not need any renormalisation.

Instead of considering �̃kl̄
ε , it turns out to be more convenient to consider the process

�kl̄
ε given by

�kl̄
ε (z, z̄) =

∫
(K (z̄ − w)− K (z − w))

×
(
�k

ε (z̄)�̄l
ε(w)− δk,lE

(
�k

ε (z̄)�̄l
ε(w)

))
dw, (4.4)

where
E

(
�k

ε (z̄)�̄k
ε (w)

)
= e−β2

(
k2−1)Qε(0)Jε(z̄ − w)−k2 ,

which is simply equal toJ −ε (z̄−w)when k = 1.With this notation, one has the identity

�̃kl̄
ε (z, z̄) = �kl̄

ε (z, z̄)− δk,l F
(k)
ε (z̄ − z),

where F (k)
ε is given by

F (k)
ε

def= e−β2
(
k2−1)Qε(0)T K ∗ J −k2ε .

For k = 1, we simply write Fε
def= F (1)

ε = T K ∗ J −ε . Regarding the functions F (k)
ε , we

have the following lemma.

Lemma 4.1. Let β2 ∈ [4π, 8π) and let F (k)
ε be defined as above. Then, for every suffi-

ciently small κ > 0, the bounds
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|Fε(z)| � ‖z‖2−
β2

2π −κ
s , |Fε(z)− Fε̄(z)| � εκ ‖z‖2−

β2

2π −κ
s ,

and, for k ≥ 2,

|F (k)
ε (z)| � εκ‖z‖2−

β2

2π −κ
s ,

hold uniformly over z and over 0 < ε̄ < ε < 1.

Proof. In view of Corollary 3.10, the first bound is an immediate corollary of [Hai14,
Lemma 10.14]. For the second bound, as in the proof of Theorem 3.2, one has

|J −ε − J −ε̄ | � ‖z‖
− β2

2π
s

( ε

‖z‖s ∧ 1
)
.

Since ε
‖z‖s ∧ 1 ≤ εκ‖z‖−κ for every sufficiently small κ > 0, the second bound follows

again by [Hai14, Lemma 10.14].
For the cases k ≥ 2, one has the bound

Jε(z)
−k2 � ε−

(
k2−1) β2

2π +κ‖z‖−
β2

2π −κ
s ,

and the bound for F (k)
ε follows immediately again from [Hai14, Lemma 10.14]. ��

Remark 4.2. As an immediate corollary, we conclude that if the bounds (2.6b) hold for
�kl̄

ε defined in (4.4) and for �kl
ε defined in (4.2), then they also hold for �ab,kl

ε defined
in (2.4), with

C (k)
ε =

∫
K (z)E

(
�k

ε (0)�̄k
ε (z)

)
dz.

The main technical result of this article is as follows, where we write �± as a
shorthand for �11̄ and �⊕ as a shorthand for �11.

Theorem 4.3. Assume that β2 ∈ [4π, 6π). There exist stationary random complex
distribution-valued processes �± and �⊕, such that

�±ε → �±, �⊕ε → �⊕, �kl̄
ε → 0, �kl

ε → 0

for all (k, l) �= (1, 1) in probability. Furthermore, for every δ, κ > 0 sufficiently small
and m ∈ Z+, one has

E|〈ϕλ
z , �

a
ε 〉|m � λ(2− β2

2π −δ)m, E|〈ϕλ
z , �

a
ε −�a〉|m � εκλ(2− β2

2π −δ)m−κ ,

where a ∈ {±,⊕}, and

E|〈ϕλ
z , �

kl̄
ε 〉|m � εκλ(2− β2

2π −δ)m−κ , E|〈ϕλ
z , �

kl
ε 〉|m � εκλ(2− β2

2π −δ)m−κ , (4.5)

for (k, l) �= (1, 1), uniformly over all test functions ϕ supported in the unit ball and
bounded by 1, all λ ∈ (0, 1], and all space–time points z.
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We remark that the complex conjugates of these processes of course also have the
corresponding bounds and convergence results. The remainder of this article is devoted
to the proof of Theorem 4.3. We will treat separately the cases kk, kk̄, kl, and kl̄ for
k �= l. The first two cases are all that is required for the treatment of (1.1), and these
form the remainder of this section. The last section is then devoted to the proof of the
above bounds for the last two cases.

Remark 4.4. We actually expect that the above bounds hold for all β2 ∈ [4π, 8π). The
second order object could in principle be constructed below 8π , and 6π would just be
a threshold where it becomes necessary to construct even higher order objects in order
to study our equation. The reason that we assume β2 < 6π here is because the analysis
in the following will be not as sharp as possible, see Remark 4.13 below. We choose
to do so for simplicity since we are here only interested in solving the equation for
β2 < 16π/3 < 6π anyway.

As a corollary (see Remark 2.4), the bounds (2.6b) hold for �±ε , �⊕ε , and the bounds

(2.6c) hold for �kl̄
ε ,�kl

ε for (k, l) �= (1, 1), therefore Assumption A is justified. The rest
of this section devoted to the proof of Theorem 4.3. By translation invariance, we only
need to show the above bounds for z = 0.

4.1. Moments of �kk̄
ε : renormalisations. Let us start from the most important case: the

moments for �kl̄
ε with k = l. By definition in (4.4), the m-th moment with m = 2N an

even integer can be expressed as

E|〈ϕλ
0 , �kk̄

ε 〉|m = E
[∣∣∣

∫∫
ϕλ
0 (x) (K (x − y)− K (−y))

×
(
�k

ε (x)�̄k
ε (y)− E

[
�k

ε (x)�̄k
ε (y)

])
dxdy

∣∣
∣
2N]

. (4.6)

We will rewrite this expression as an integral over 4N variables. Observe that half of
these 4N variables will be arguments of �k

ε , and the other half will be arguments of
�̄k

ε . Also, these 4N variables appear as arguments of K (x − y) − K (−y) by pairs, in
such a way that the roles played by x and y are not symmetric. Based on these simple
observations we introduce the following terminologies and notations.

• Fix two integers 1 ≤ k, l ≤ Z .Wewill say thatwe are given a finite number 2m = 4N
of charges (where N ∈ Z), by which we mean points in R3 endowed with a sign,
as well as an index h ∈ {k, l}. We impose that exactly 2N of these charges have a
positive sign (corresponding to the arguments of �k

ε ), and the other 2N charges have
a negative sign (corresponding to the arguments of �̄k

ε ).• We denote by M a set of labels with cardinality 2m and, given j ∈ M , we write
x j ∈ R3 for the location of the corresponding charge, σ j for its sign, and h j for its
index. In this section, we will only consider the case k = l, namely all the charges
have the same index k. We therefore do not make any reference to this index anymore
until Sect. 5.
• These 4N charges are furthermore partitioned into 2N distinct oriented pairs with
each pair consisting of one positive and one negative charge. Here, an oriented pair
consists of two charges, with one of them called the outgoing point and the other one
called the incoming point. Given two charges i and j , we write i → j for the oriented
pair with outgoing point i and incoming point j . We denote this set of oriented pairs
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byR and we impose thatR is such that exactly N pairs are oriented from the positive
to the negative charge and N pairs are oriented the other way around.2

• Generally, given an arbitrary oriented pair of charges e, we say that it is renormalised
if e ∈ R. Given a pair e ∈ R, we write e+ (resp. e−) for the point in e with positive
(resp. negative) charge, and e↑ (reps. e↓) for the outgoing point (resp. incoming point)
of e, in other words e = e↑ → e↓.

Remark 4.5. In order to shorten our expressions, we will sometimes identify a charge i
with the corresponding coordinate xi ∈ R3. For example, if J is a function defined on
R3 and we write J (e+ − e−), this is a shorthand for J (xe+ − xe−).

For any oriented pair e ∈ R, we use the shorthand notation

K (e)
def= K (e↓ − e↑)− K (−e↑).

Then, using the notations introduced above, one can rewrite the right hand side of (4.6)
as
∫

(R3)M
E

[ ∏

e∈R

(
�k

ε (e+)�̄k
ε (e−)− E

[
�k

ε (e+)�̄k
ε (e−)

])] ∏

e∈R

(
ϕλ
0 (e↓)K (e)

)
dx . (4.7)

We will now expand the first product over e ∈ R, which amounts to assignment of
a subset P ⊂ R to the second term and R\P to the first term. This motivates us to
further introduce the following notations. For any subset P ⊂ R, we write P ′ = ⋃

P
for the set of all charges appearing in the pairs in P . Given subsets A ⊂ M , we write
E(A) for the set of all pairs {i, j} with i, j ∈ A. Here, the pairs are not oriented, and the
two charges in any such pair are not necessarily of opposite signs. Finally, for any pair
e = {i, j} and a symmetric function J : R3→ R+, we write

Je
def= J (xi − x j ), Ĵe

def= J (xi − x j )
σiσ j . (4.8)

Note that for this particular notation it does not matter whether an orientation is specified
for e since J is symmetric.

Given again a functionJ as above and any subset P ⊂ R, we then define the quantity

HP (x;J ) =
(∏

e∈P
Ĵe

)( ∏

f ∈E(M\P ′)
Ĵ f

)
, (4.9)

where x ∈ (R3)M . Note that in the first product above, every e is a pair of opposite
charges {e+, e−}, so all the factors J (e+ − e−) are powered by −1; in the second
product, the factors J (xi − x j ) for f = {i, j} could appear in either the numerator or
the denominator, depending on whether i, j having the same sign or not. We also write

H(x;J ) =
∑

P⊂R
(−1)|P|HP (x;J ),

With all these notations at hand, the first product over e ∈ R in the expression (4.7)
is then written as

∑

P⊂R
(−1)|P|

( ∏

e∈P
E

[
�k

ε (e+)�̄
k
ε (e−)

])
E

[ ∏

f ∈E(M\P ′)
�k

ε ( f+)�̄
k
ε ( f−)

]

= e−β2m
(
k2−1)Qε(0) H

(
x;J k2

ε

)
.

2 This is a reflection of the fact that, in (4.6), half of the factors involve the complex conjugate.
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Therefore, for m = 2N and the function Jε defined in (3.5), we have the identity

E|〈ϕλ
0 , �kk̄

ε 〉|m = e−β2m
(
k2−1)Qε(0)

∫

(R3)M
H

(
x;J k2

ε

)( ∏

e∈R
ϕλ
0 (e↓)K (e)

)
dx . (4.10)

Similarly to before, we aim to obtain suitable bounds on the function H that are
uniform over ε ∈ (0, 1] and such that we can bound the small-λ behaviour of this
integral. The most important case would be k = 1 for which H = H(x;Jε), since only
�11̄

ε converges to a nontrivial limit.
Given J as above, we define for any two “dipoles” e �= f ∈ R the quantity

�
f
e (J ) = Je+ f +Je− f −

Je+ f −Je− f +
− 1. (4.11)

This quantity plays an important role in this section because it is small if either e+ ≈ e−
or f + ≈ f −. As a consequence, being able to extract sufficiently many factors of this
type fromH(x;Jε)will enable us to compensate enough of the divergence of the kernel
K in the expression for E|〈ϕλ

0 , �kk̄
ε 〉|m .

We also define for A ⊂ R and e /∈ A the quantity

�A
e (J ) =

∏

f ∈A
�

f
e (J ).

Finally, suppose that we are given a subset A ⊂ R as well as a map B : A→ ℘R\{∅}3
associating to each pair e ∈ A a non-empty subset Be of R. Then, provided that A �= ∅,
we define the quantity

�B
A(J ) =

∏

e∈A
�Be

e (J ).

In the special case A = ∅ so that the above product is empty, we use the usual convention
that�B

A(J ) = 1.This definition alsomakes sense ifB is definedon a larger set containing
A. We also write

UB
A = A ∪

⋃

e∈A
Be.

The following identity, which can easily be proved by induction, will be used:

( n∏

i=1
ai

)
− 1 =

∑

∅�=P⊆{1,...,n}

∏

i∈P
(ai − 1). (4.12)

In order to rewrite H in a way that makes some of the cancellations more explicit,
we will make use of the following notations. Assume that we are given an ordering
of R so that R = {e1, . . . , em}, as well as a subset A ⊂ R. We set R0 = ∅ and
R�

def= {e1, . . . , e�} for 0 < � ≤ m, as well as A� = A ∩R�. For any � ∈ {0, . . . ,m}
and A ⊂ R�, we then write M�(A) for the set of all maps B : A → ℘R\{∅} which
furthermore satisfy the following two properties:

• If ek ∈ A, then Bek ⊂ R\Ak .
• For every k ≤ �, one has ek ∈ A if and only if ek �∈ UB

Ak−1 .

3 Given a set E , we write ℘E for its power set.
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We have the following very useful recursive characterisation of the sets M�(A):

Lemma 4.6. Let � ≥ 1 and A ⊂ R�. Then B ∈ M�(A) if and only if B restricted to
A�−1 belongs to M�−1(A�−1) and exactly one of the following two statements holds:

• One has e� ∈ A, e� �∈ UB
A�−1 , and Be� ⊂ R\A.

• One has e� �∈ A and e� ∈ UB
A�−1 .

Proof. This follows immediately from the definitions. ��
Remark 4.7. For � > 0, the second of these properties cannot be satisfied unless e1 ∈ A.
In particular, this shows thatM�(∅) = ∅. For � = 0 however, both properties are empty
so that M0(∅) consists of one element, which is the trivial map.

Proposition 4.8. Fix an arbitrary ordering of R as above. Then, for any given function
J , and for every 0 ≤ � ≤ m, one has the identity

H(x;J ) =
∑

A⊆R�

∑

B∈M�(A)

�B
A(J )H(A,B; x;J ) (4.13)

where we made use of the notation

H(A,B; x;J )
def=

∑

P⊆R\UB
A

(−1)|P|HA∪P (x;J ), (4.14)

for any set A ⊆ R. Here, HA∪P (x;J ) is as in (4.9).

Remark 4.9. The factor �B
A appearing in this expression does of course also depend on

the specific configuration x of the charges. We drop this dependence in the notations in
order not to overburden them. Figure 2 provides a pictorial representation of an example
of term H(A,B) appearing in the statement, the reader is encouraged to read the proof
with this example in mind.

+ −

+ −

+ −

+ −

−

+ −

+ −

+ −

+ −

−

+ −

+ −

+ −

+ −

+

+ −

+ −

+ −

+ −

Fig. 2. Pictorial representation of H(A,B) in the case A = {e1} ⊆ R1 and Be1 = {e2} with m = 4. The

four horizontal pairs are, from top to bottom, e1, e2, e3 and e4. By definition, UB
A = {e1, e2}, and therefore

P in (4.14) runs over all subsets of {e3, e4}: the four terms above correspond toHA∪P with P being ∅, {e3},
{e4}, and {e3, e4}, respectively. Each HA∪P is a product of J ’s (drawn in dashed lines) or J−’s (drawn in
solid lines). Pairs in A ∪ P are a bit thicker since they stand for the J−’s in the first product of (4.9)
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Proof. In this proof, we hide the argument J in all the H functions for simplicity of
notations. The proof of the result now goes by induction over �. For � = 0, A = ∅,
M0(∅) consists of one element which is the trivial map for which, by convention,
�B

A = 1 so that the statement is precisely the definition ofH. Assuming that the statement
holds for �−1, we now show that it also holds for �. We rewrite the induction hypothesis
as

H =
∑

A⊆R�−1

∑

B∈M�−1(A)

(
1e�∈UB

A
+ 1e� /∈UB

A

)
�B

A H(A,B), (4.15)

and we consider the resulting two terms separately.
Consider first the case e� /∈ UB

A . Writing Ā = A∪{e�}, one can then rewriteH(A,B)

as

H(A,B) =
∑

P⊆R\(UB
A ∪{e�})

(−1)|P|
(
HA∪P −H Ā∪P

)

=
∑

P⊆R\(UB
A ∪{e�})

(−1)|P|H Ā∪P
( ∏

f ∈R\( Ā∪P)

J f +e+�
J f −e−�

J f +e−�
J f −e+�

− 1

)
.

Using the identity (4.12), this can be rewritten as

H(A,B) =
∑

P⊆R\(UB
A ∪{e�})

(−1)|P|H Ā∪P
∑

∅�=Q⊆R\( Ā∪P)

�Q
e�

=
∑

∅�=Q⊆R\ Ā
�Q

e�

∑

P⊆R\(UB
A ∪Q∪{e�})

(−1)|P|H Ā∪P .

GivenB ∈M�−1(A) and a non-empty set Q ⊂ R\ Ā as above,we then define amap B̄ ∈
M�( Ā) by B̄(e) = B(e) for all e ∈ A and B̄(e�) = Q. As a consequence of Lemma 4.6,
we see that all maps in M�( Ā) arise in this way. One then has UB

A ∪ Q ∪ {el} = U B̄̄
A

and thus ∑

P⊆R\(UB
A ∪Q∪{e�})

(−1)|P|H Ā∪P = H( Ā, B̄).

Making use of the identity �B
A�

Q
e� = �B̄̄

A
, we conclude that

∑

A⊆R�−1

∑

B∈M�−1(A)

1e� /∈UB
A
�B

AH(A,B) =
∑

Ā⊆R�
e�∈ Ā

∑

B̄∈M�( Ā)

�B̄̄
A
H( Ā, B̄).

Concerning the term in (4.15)with e� ∈ UB
A , we use the fact that, again byLemma4.6,

if e� �∈ A but e� ∈ UB
A , then M�−1(A) =M�(A), so that

∑

A⊆R�−1

∑

B∈M�−1(A)

1e�∈UB
A
�B

AH(A,B) =
∑

Ā⊆R�
e� /∈ Ā

∑

B̄∈M�( Ā)

�B̄̄
A
H( Ā, B̄).

Adding both identities concludes the proof of (4.13). ��
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The most important point of Proposition 4.8 is that at an arbitrary step �, all the
renormalised pairs in R� are contained in the set UB

A , as imposed by the definition of
M�(A). The quantity �B

A then generates factors of positive homogeneities for the pairs
in UB

A (see the remarks after (4.11)). In order to make this statement more precise, it is
convenient to introduce the quantity

Ae f
def= ‖xe+ − xe−‖s‖x f+ − x f−‖s‖xe+ − x f−‖−1s ‖x f+ − xe−‖−1s , (4.16)

for any two dipoles e and f .

Lemma 4.10. Suppose that e+, e−, f +, f − ∈ R3 are four distinct points, and that

‖e+ − e−‖s ∧ ‖ f + − f −‖s ≤ ‖e+ − f −‖s ∧ ‖e− − f +‖s. (4.17)

Then, one has the inequality

‖e+ − e−‖s‖ f + − f −‖s � ‖e+ − f −‖s‖e− − f +‖s. (4.18)

In terms of the quantity Ae f defined in (4.16), we can also write this more succinctly as
Ae f � 1.

Proof. Since the statement is symmetric under e ↔ f , we can assume without loss of
generality that one has

‖e+ − e−‖s � ‖e+ − f −‖s∧ ‖e− − f +‖s.
Then, by the triangular inequality,

‖ f + − f −‖s � ‖e+ − e−‖s + ‖e+ − f −‖s + ‖e− − f +‖s
� ‖e+ − f −‖s∨ ‖e− − f +‖s.

The bound (4.18) follows by combining these two inequalities. ��
The following lemma will be used in the proof of Proposition 4.15 below.

Lemma 4.11. The final pairing S selected by the procedure in Sect. 3 maximizes (up to
a multiplicative constant depending only on m but not on the specific configuration of
points x) the quantity �S

def=∏
{i, j}∈S J −i j .

Proof. Let S be the pairing selected by the procedure in Sect. 3 and let S̄ �= S be a
different pairing.Without loss of generality, we assume that in the procedure to construct
An and Sn in Sect. 3, at each step n only two sets merge together. Let n be the smallest
number such that there exist A ∈ An with e ∈ Sn(A) but e /∈ S̄ . Then, there exist a set
B ∈ An−1 containing e+ and B̄ ∈ An−1 containing e− and B �= B̄.

Suppose that {e+, f−}, {e−, f+} ∈ S̄. One has f− /∈ B (otherwise there would be
already a pair with both charges in B which belongs to S but not S̄ , thus contradicting
the minimality assumption on n), and f+ /∈ B̄, so

‖xe+ − x f−‖s � 2n, ‖xe− − x f+‖s � 2n .

By ‖xe+ − xe−‖s � 2n and Lemma 4.10, one has

‖xe+ − xe−‖s‖x f+ − x f−‖s � ‖xe+ − x f−‖s‖x f+ − xe−‖s.
If we define S̃ by keeping all the parings in S̄ except that {e+, f−}, {e−, f+} are replaced
by {e+, e−}, { f+, f−}, we have �S̄ � �S̃ . Note that e ∈ S̃. We can then iterate the
above procedure to consequently increase � until we obtain the pairing S. ��
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Lemma 4.12. Assume that we are given a function Q(z) ∼ − 1
2π log ‖z‖s, that �̄ is any

continuous function supported on the unit ball around the origin integrating to 1, and that
Qε is as in (3.6). Given α ≥ 2, let J (z) = e−2παQ(z) and Jε(z) = e−2παQε(z). Assume
furthermore that Q is of class C2 and there exists a constant C such that |∇kQ(z)| ≤
C/‖z‖|k|ss for |k| ≤ 2. Let e+, e−, f +, f − ∈ R3 be four distinct points such that

‖e+ − e−‖s ∧ ‖ f + − f −‖s ≤ ‖e+ − f −‖s∧ ‖e− − f +‖s, (4.19)

and write e = {e+, e−}, f = { f +, f −}. One then has the bound
∣∣∣∣
Jε(e+ − f +)Jε(e− − f −)

Jε(e+ − f −)Jε(e− − f +)
− 1

∣∣∣∣ � Ae f , (4.20)

uniformly for all ε ≥ 0, where Ae f is as in (4.16).

In particular, for k ≥ 1, the function�
f
e (J k2

ε )withJε defined in (3.5) satisfies (4.20)
on the set (4.19) by choosing α = k2β2/(2π).

Proof. As a consequence of the symmetries e ↔ f and (e+, f +) ↔ (e−, f −) we can
assume without loss of generality that

‖e+ − e−‖s ≤ ‖ f + − f −‖s, (4.21a)

‖ f + − e−‖s ≤ ‖e+ − f −‖s. (4.21b)

First of all, we consider the “easier” case, that is

‖e+ − f +‖s ≤ 5‖e+ − e−‖s.
In this case, by the triangular inequality one has ‖ f +− e−‖s ≤ 6‖e+− e−‖s and, using
the triangle inequality together with (4.21a), one also has ‖e+− f −‖s ≤ 6‖ f +− f −‖s,
so that Ae f ≥ 1/36. Furthermore, by the triangle inequality, Eqs. (4.19) and (4.21a),
one has ‖e+ − f +‖s � ‖ f + − e−‖s and ‖e− − f −‖s � ‖e+ − f −‖s. Therefore the left
hand side of (4.20) is bounded by some constant independent of ε, and (4.20) follows.

If ‖e−− f −‖s ≤ 5‖e+−e−‖s then the bound (4.20) holds in a similar way. Therefore
it remains to consider the situation where

‖e− − f −‖s∧ ‖e+ − f +‖s ≥ 5‖e+ − e−‖s,
which in particular implies that

4‖e+ − e−‖s ≤ ‖e± − f ±‖s, (4.22)

for any of the four choices of signs that can appear on the right hand side. Define a
function F depending on e+, f + and ε by

F(ze, z f )
def= Jε(e

+ − f +)Jε(ze − z f )− Jε(e
+ − z f )Jε( f

+ − ze).

Since Jε is assumed to be symmetric, one has F(ze, z f ) = 0 whenever ze = e+ or
z f = f +. In particular ∂kze F(ze, f +) = ∂kz f F(e+, z f ) = 0 for all k ≥ 0. We will show
that under the assumptions of the lemma, one has the bound

|F(e−, f −)| � Jε(e
+ − f −)Jε( f

+ − e−)Ae f , (4.23)

which then immediately concludes the proof of the lemma.
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e+

e−

f+

f−

γe

γf

Fig. 3. Construction of the paths γe and γ f . The “exclusion zone” Z is shaded in light grey

To show (4.23), let γe : [0, 1] → R3 be the piecewise linear path from e+ to e− which
is made up from three pieces, each of them parallel to one of the coordinate axes. Then,
since F(e+, f −) = 0, one has

|F(e−, f −)| �
2∑

i=0
|γ (i)

e | sup
ze∈γe
|∇(i)

ze F(ze, f −)|, (4.24)

where∇(i)
z denotes the derivative with respect to the i th component of the variable z and

|γ (i)
e | denotes the total (Euclidean!) length of the pieces of the path γe that are parallel

to the i th coordinate axis. Note that one has |γ (i)
e | ≤ ‖e+ − e−‖sis .

Similarly, let γ f : [0, 1] → R3 be a piecewise linear path from f + to f −, again with
each piece parallel to one of the coordinate axes, but this time with possibly more than
three pieces. We claim that one can furthermore choose γ f in such a way that each of
its pieces has parabolic length at most ‖ f + − f −‖s and such that the bounds

‖ f + − e−‖s � ‖ze − z f ‖s � ‖e+ − f −‖s, (4.25)

hold uniformly over ze ∈ γe and z f ∈ γ f . Here, the upper bound is a simple consequence
of the triangle inequality and the fact that (4.21) and (4.22) imply that ‖e+ − f +‖s +
‖e+ − e−‖s + ‖ f − − f +‖s � ‖e+ − f −‖s.

In order to enforce the lower bound, more care has to be taken. Define an “exclusion
zone” Z ⊂ R3 as the convex hull of {z : ‖z − z̄‖s ≥ ‖ f + − e−‖s/4 ∀z̄ ∈ γe}. It then
follows from (4.22) that both f ± are located outside of Z , so it suffices to choose γ f in
such a way that it does not intersect Z . A typical situation with Z draw in light grey is
depicted in Fig. 3.

Since F(ze, f +) = 0 for every ze and thus ∇ze F(ze, f +) = 0, we can apply the

gradient theorem to |∇(i)
ze F(ze, f −)|, yielding

|F(e−, f −)| �
2∑

i, j=0
|γ (i)

e ||γ ( j)
f | sup

ze∈γe
sup
z f ∈γ f

|∇(i)
ze ∇( j)

z f F(ze, z f )|. (4.26)

Write now ‖z‖s,ε def= ‖z‖s + ε so that Jε(z) is bounded from above and below by
some fixed multiple of ‖z‖αs,ε and note that |∇kQε(z)| � ‖z‖−|k|ss,ε as a consequence of
our assumptions and of [Hai14, Lemma 10.17]. As a consequence, one has the bound
|∇kJε(z)| � ‖z‖α−|k|ss,ε so that one has

|∇(i)
ze ∇( j)

z f F(ze, z f )| � ‖e+ − f +‖αs,ε · ‖ze − z f ‖α−si−sj
s,ε

+ ‖e+ − z f ‖α−sj
s,ε · ‖ f + − ze‖α−si

s,ε .
(4.27)
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Combining the triangle inequality with (4.19), (4.21a), and (4.25), the factors appearing
in the right hand side of (4.27) are bounded as follows (here we use the fact that α ≥ 2
so that α − s j is guaranteed to be positive):

‖e+ − z f ‖α−sjs,ε � ‖e+ − f −‖α−sjs,ε ,

‖ f + − ze‖α−sis,ε � ‖ f + − e−‖α−sis,ε ,

‖ze − z f ‖α−si−sjs,ε � ‖e+ − f −‖α−sjs,ε ‖ f + − e−‖−sis,ε ,

‖e+ − f +‖αs,ε � ‖ f + − e−‖α−sis,ε ‖ f + − e−‖sis,ε.
Inserting these bounds into (4.27), we conclude that

|∇(i)
ze ∇( j)

z f F(ze, z f )| � Jε(e
+ − f −)Jε( f

+ − e−)‖e+ − f −‖−sjs,ε ‖ f + − e−‖−sis,ε ,

uniformly for ze, f ∈ γe, f . Finally, we observe that

|w(i)
1 | � ‖e+ − e−‖s ‖ f + − e−‖si−1s , |w( j)

2 | � ‖ f + − f −‖s ‖e+ − f −‖sj−1s ,

so that the claim (4.23) follows from (4.26). ��
Remark 4.13. The analysis we are following here is not as sharp as possible. In the
above proof, we essentially performed a first order Taylor expansion of �

f
e (viewed as

a function of e−) around e+, which allowed us to gain a factor ‖e+ − e−‖s. This factor,
when multiplied by K (e)J −e , is integrable as long as β2 < 6π . However, the linear term
e− − e+ is an odd function, while all other functions (K ,J etc.) are even in their spatial
coordinates, so that the integration over e− in a neighborhood of e+ essentially vanishes.
As a consequence, we believe that it should be possible to gain a factor ‖e+ − e−‖2s,
thus allowing to control the second-order objects for all β2 < 8π . This would however
require us to change our strategy, which is to obtain bounds on the absolute value of H
that are sufficiently sharp to guarantee that (4.10) has the correct order of magnitude.

Before we proceed, we introduce the following definition, where S is assumed to be
a pairing constructed as in Sect. 3, while R is a fixed set of renormalised pairs as before.

Definition 4.14. We say that e ∈ R ∩ S is a bad pair if there exists an f ∈ R such that
the condition (4.17) of Lemma 4.10 is not satisfied, namely

‖e+ − f −‖s∧ ‖e− − f +‖s ≥ ‖e+ − e−‖s ∧ ‖ f + − f −‖s. (4.28)

If such an f exists, one must have f ∈ R\S since the construction of S guarantees that
any two pairs e, f ∈ S do satisfy (4.17). We say that e ∈ R ∩ S is a good pair if it is
not a bad pair. We denote by D ⊆ R∩S the set of good pairs and by Dc def= (R∩S)\D
the set of bad pairs.

If we were to do the expansion (4.12) for a “bad pair”, the conditions of Lemmas 4.10
and 4.12 would be violated. Therefore we will only do the expansion for “good pairs”.
The next important proposition shows that one can boundH(x;J ) by

∏
{i, j}∈S J −i j with

a paring S, multiplied by some factors Ae f , in such a way that there appear additional
factors ‖e+ − e−‖s taming the non-integrable divergence of the function K (e)J −(e),
for every e ∈ D. Furthermore, these factors Ae f are all bounded, so that we will have
freedom to erase some of them for convenience of the integrations over all the space–
time points in Sect. 4.2. One may worry that K (e)J −(e) would still be non-integrable
for a bad pair e, but in fact we will see later that one can just insert a factor Ae f for these
pairs “for free” (see the proof of Proposition 4.16 below).
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Proposition 4.15. Assume that J ∈ {J k2
ε ,J k2}. Let S be the pairing selected by the

procedure in Sect. 3 and let D be the set of good pairs. One has the bound

H(x;J ) �
( ∏

{i, j}∈S
J −i j

) ∑

P⊂R2

′ ∏

(e, f )∈P
Ae f , (4.29)

where the sum
∑′ is restricted to those sets P such that

• for every e ∈ D, there exists at least one f ∈ R, f �= e with (e, f ) ∈ P,
• for every (e, f ) ∈ P, one has e ∈ D or f ∈ D,
• for every (e, f ) ∈ P, one has Ae f � 1.

Proof. The following bound will turn out to be useful for our calculation. For any set
A ⊂ R, one has ( ∏

e∈A
Ĵe

)( ∏

f ∈E(M\A′)
Ĵ f

)
�

∏

{i, j}∈S
J −i j . (4.30)

Recall here that A′ denotes the set of all charges covered by A, i.e. A′ =⋃
A. In order

to show this, we apply Proposition 3.5 to the collection of points M\A′, which allows
us to bound the left hand side of (4.30) by the expression

∏
{i, j}∈S̄ J −i j for some pairing

S̄. By Lemma 4.11, the latter is bounded by the same expression with S̄ replaced by S.
Combining this bound with Proposition 4.8, where we choose the ordering of R in

such a way that D = {e1, . . . , e�} for some � ≥ 0, we obtain

H(x;J ) ≤
∑

A⊆D

∑

B∈M�(A)

|�B
A(J )| H(A,B; x;J )

�
( ∑

A⊆D

∑

B∈M�(A)

|�B
A(J )|

)( ∏

{i, j}∈S
J −i j

)
, (4.31)

where we used the fact that H(A,B) is nothing but an alternating sum of terms of the
type appearing in the left hand side of (4.30), but with different choices of A. We recall
that �B

A is, by definition, given by

�B
A =

∏

e∈A

( ∏

f ∈Be

�
f
e

)
. (4.32)

At this stage, we observe that since A ⊆ D, every e ∈ A is a good pair and therefore
for each of the quadrupoles (e, f ) appearing in (4.32), the shortest distance between
‖xe+ − xe−‖s, ‖x f+ − x f−‖s, ‖x f+ − xe−‖s and ‖xe+ − x f−‖s is always one of the first
two, at least up to a constant multiple depending only onm. Then, we can apply Lemma
4.12 to obtain the following bound

H(x;J ) �
( ∑

A⊆D

∑

B∈M�(A)

∏

e∈A

∏

f ∈Be

Ae f

)( ∏

{i, j}∈S
J −i j

)
. (4.33)

By the definition of M�(A), for every A,B in the above summation, one has D ⊆ UB
A ,

in other words for every e ∈ D, there exists at least one f �= e such that the factor
Ae f (or possibly A f e, but these are identical) appears in (4.33). Since A ⊂ D it is also
the case that for every factor Ae f appearing in (4.33), one has either e ∈ D or f ∈ D.
Finally, the definition of “good pairs” implies that for every factor Ae f appearing in
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(4.33) the bound (4.17) holds and thus Ae f � 1. Therefore we can indeed bound the
right hand side of (4.33) by a multiple of

( ∏

{i, j}∈S
J −i j

) ∑

P⊂R2

′ ∏

(e, f )∈P
Ae f ,

where the sum
∑′ is restricted to those sets P satisfying all the conditions described in

the statement. ��

4.2. Moments of �kk̄
ε : integrations. The bound given in Proposition 4.15 turns out not

to be very convenient to use when one tries to actually perform the final integration
over the positions of the charges, so we will first derive a slightly weaker bound which
has a “nicer” form. We start with some definitions. Suppose that we are given a graph
G = (V, E) with vertices V and edges E . For a subset of vertices V ′ ⊆ V , we then define
a subgraph GV ′ = (V ′, E ′), with E ′ consisting of the edges in E with both ends in V ′.

We can also define a graph GV ′ by identifying all the vertices in V ′ as one vertex
called v, so that the set of vertices of GV ′ is given by (V\V ′)� {v}. Regarding the edges
of GV ′ , we postulate that (x, y) is an edge of GV ′ if and only if either v /∈ {x, y} and
(x, y) ∈ E , or x = v, y �= v, and there exists z ∈ V ′ such that (z, y) ∈ E . The set of
edges of GV ′ can be identified canonically with the set E\{edges with both ends in V ′}.
If the original graph G is directed, both GV ′ and GV ′ inherit its direction in the obvious
way.

Given a vertex set V , we define the set of admissible graphs GV to be the set of all
directed graphs over V such that every vertex has degree at least 1 and there exists a
partitioning V = VL � VT of V with the following properties:

• Each connected component of GVL is a tree. The connected component containing
the distinguished vertex v is considered as a rooted tree with root v and all other
connected components should contain at least two vertices.
• Each connected component of GVL is a directed loop.

Here, a directed loop is a connected graphwith at least two vertices such that every vertex
is of degree 2 and has exactly one directed edge going into it and the other directed edge
going out of it. A tree is a non-empty connected graphwithout loops.Given an admissible
graph G, we furthermore write EL for the edges connecting two vertices in VL and ET
for the remaining edges. We also remark that if G is admissible, then the decomposition
V = VL � VT is unique. See Fig. 4 for a generic admissible graph.

Now let R be the set of renormalised pairs as above, which is going to be our vertex
set. To every G ∈ GR, we associate a pairing SG of the 2m charges as follows. If
e ∈ VT , then {e+, e−} ∈ SG . If e ∈ VL , and therefore there exist f, g ∈ VL such that
( f, e) is an edge pointing from f to e and (e, g) is an edge pointing from e to g, then
{ f +, e−} ∈ SG and {e+, g−} ∈ SG . In particular, we only care about the orientation of
the edges connecting vertices in VL . With this notation at hand, we can reformulate our
bound on H(x,J ) as follows.

Proposition 4.16. Assume that J ∈ {J k2
ε ,J k2}. One has the bound

H(x;J ) �
∑

G∈GR

( ∏

{i, j}∈SG

J −i j
)( ∏

(e, f )∈ET
Ae f

)
. (4.34)
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=⇒

Fig. 4. An admissible graph G (left) and the corresponding graph GVL (right). The admissible graph consists
of four connected components. Elements of VL are shown as little circles ◦, elements of VT are shown as
black dots •, edges in EL are shown as solid lines with arrows, while edges in ET are shown as dashed lines

+

−− +

+ − + −

− +

+

−

Fig. 5. Generic situation for the construction of EL : pairs in R are drawn as thick lines and pairs in S are
drawn as dotted lines. The arrows show the edges belonging to EL

Proof. Given a pairing S (in practice we take the specific pairing selected in Sect. 3)
and a set P ⊂ R2 satisfying the conditions listed in Proposition 4.15, we construct an
admissible graph G ∈ GR as follows.

First, we define a set of oriented edges EL by setting

EL = {(e, f ) : {e+, f −} ∈ S\R}.
This set of edges has the property that if (e, f ) ∈ EL , then we necessarily have {e, f } ⊂
R\S. Furthermore, one can see that the graph (R, EL) consists of loops of length at
least two, as well as of singletons, with the singletons consisting of R ∩ S, see Fig. 5.
(If we had only imposed that {e+, f −} ∈ S, the graph would consist of loops with every
vertex belonging to exactly one loop, but some loops could consist of only one vertex.)
We therefore define at this stage VL = R\S.

We now consider the graph GP = (R,P). Here, we note that by the constraints on P
given in Proposition 4.15, every edge in P contains at least one element of R ∩ S (the
“singletons” of the first step) so that the reduced graph GVL

P contains the same edges as

GP. We then select an arbitrary spanning forest E (1)
T ⊂ P for GVL

P . In other words, ET is

such that the connected components of (R, T )VL are the same as those of GVL
P , but each

such component is a tree. (Here, the orientation of these edges is irrelevant.)
Finally, let R(0) ⊂ R be those vertices in R ∩ S that are not in P′. Because of the

first condition on P, any e ∈ R(0) necessarily belongs to Dc, i.e. it is a “bad pair”.
Therefore, for every such e, there exists an fe ∈ R\S such that (4.28) holds. We then
define E (0)

T = {(e, fe) : e ∈ R(0)}.
With all of these definitions at hand, we now set G = (R, EL ∪ ET ) with ET =

E (0)
T ∪ E (1)

T , which is indeed an admissible graph with decomposition VL = R\S and
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VT = R∩S. Furthermore, our construction and the definition of SG guarantee that one
actually has SG = S. Finally, we claim that one has

∏

(e, f )∈P
Ae f �

∏

(e, f )∈ET
Ae f . (4.35)

Indeed, since E (1)
T ⊂ P by construction and, for every (e, f ) ∈ P\ET , one has Ae f � 1

by the last condition on P, this bound holds with ET replaced by E (1)
T . On the other

hand, for every (e, f ) ∈ E (0)
T , one has Ae f � 1 by combining the definition of a bad

pair with Lemma 4.10, so that (4.35) does hold. The claim now follows by applying the
above inequality to the right hand side of (4.29) and then bounding it by the sum over
all possible admissible graphs. ��

The bound (4.34) has two major advantages: first, it does not make any reference to
the special pairingS anymore, so that we now have one single boundwhich holds for any
configuration of charges x . Second, the tree structure given by the notion of “admissible
graph” will make it possible to bound the integral (4.10) by inductively integrating over
the variables corresponding to the “leaves” until we are only left with the “loops” which
can then be handled separately. Now we have all the elements in place to give the proof
to Theorem 4.3. For a simpler notation, from now on we will write

β̄
def= β2

2π
.

We now have everything in place for the proof of Theorem 4.3. We first give the proof
of the bounds and convergence statements for �kk̄

ε . In Sect. 4.4 below, we then bound
the objects �kk

ε , while the bounds on �kk
ε and �kk

ε with k �= � are postponed to Sect. 5.

4.3. Moments of �kk̄
ε .

Proof of Theorem 4.3 for �kk̄
ε . We first prove the statements for�±ε which is the harder

case. The modifications required to obtain the analogous statements for �kk̄
ε with k > 1

will be indicated at the end of the proof. Recall from (4.10) that for m = 2N , one has

E|〈ϕλ
0 , �±ε 〉|m =

∫
H(x;Jε)

∏

e∈R

(
ϕλ
0 (e↓)K (e)

)
dx .

As a consequence of Proposition 4.16, we can bound this expression by

E|〈ϕλ
0 , �±ε 〉|m �

∑

G∈GR

∫ ( ∏

{i, j}∈SG

J −i j,ε
∏

(e, f )∈ET
Ae f

) ∏

e∈R

(
|ϕλ

0 (e↓)| |K (e)|
)
dx .

The proof of Theorem 4.3 now goes by induction over m. Suppose that for every
m̄ < m and every δ > 0, the bound

∫ ( ∏

{i, j}∈SḠ

J −i j,ε
∏

(e, f )∈ĒT
Ae f

)( ∏

e∈R̄
|ϕλ

0 (e↓)| |K (e)|
)
dx � λ(2−β̄−δ)m̄, (4.36)
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holds uniformly over λ ∈ (0, 1] for every admissible graph Ḡ ∈ GR̄ over the set R̄ of
cardinality m̄. Here we are not assuming any more that exactly half of the pairs in R̄ are
oriented from the positive to the negative and the other half of the pairs the other way.
We aim to prove that in this case the analogous bound also holds for every admissible
graph G ∈ GR over R of cardinality m.

Tomake the calculationsmore clear and visual, we introduce somegraphical notation.

A line x yα with a label α represents the function ‖x − y‖αs . A dashed line

with an arrow x y represents the function K (x → y) = K (x − y)− K (x).
A gray dot ◦means that the point is integrated out, while a black dot • simply stands for
a point without integration. We then distinguish between the following two cases.
Case 1. In this case, we assume that VT �= ∅, where VT is associated to the admissible
graph G as above. Since GVL is a union of disjoint trees, one can always find a vertex
e such that the degree of e is one (namely, e is a leaf.) Let f be the unique pair in R
such that (e, f ) ∈ ET . There are then two possible situations. The first situation is that
f ∈ VT and f is also a leaf (see the bottom-right connected component of the graph in
Fig. 4). In this situation, the integration over e± and f ± factors out and is either of the
form

I1
def=

∫
|ϕλ

0 (e+)||ϕλ
0 ( f −)| |K (e− → e+)K ( f +→ f −)| ĴeĴ f Ae f de

±d f ±, (4.37)

where the integration is over (R3)4, or of the form

I2
def=

∫
|ϕλ

0 (e+)||ϕλ
0 ( f +)| |K (e− → e+)K ( f − → f +)| ĴeĴ f Ae f de

±d f ±. (4.38)

Of course, it could also be (4.37) or (4.38) with all the signs flipped, but these can be
reduced to the above two cases by symmetry. Leaving aside the test functions ϕλ

0 , the
integrands in I1 and I2, are depicted by

f+f−

e+ e−

1− β̄

1− β̄

−1−1

f+f−

e+ e−

1− β̄

1− β̄

−1−1

respectively. By Lemma 4.18 we have

|I1| + |I2| � λ2 (2−β̄−δ), (4.39)

for every sufficiently small δ > 0, so that the statement follows from the induction
hypothesis with m̄ = m − 2 and R̄ = R\{e, f }.

The second situation is that when either f /∈ VT or f ∈ VT but has degree greater
than one. In this situation, the integration over e± again factors out and has the form

I3
def=

∫
ϕλ
0 (e+)|K (e− → e+)| ĴeAe f de

+de−, (4.40)
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or the same expression with all the signs flipped. Graphically, ignoring again the test
function, the integrand is given by

f+f−

e+ e−

1

1− β̄

−1−1

Note now that the integrand in the full expression (4.36) necessarily contains either a
factor |ϕλ

0 ( f +)| or a factor |ϕλ
0 ( f −)|. Therefore, we can restrict the integral to those

configurations for which ‖ f +‖s ∧ ‖ f −‖s ≤ λ, which allows us to apply Lemma 4.17
below, thus yielding the bound |I3| � λ2−β̄−δ , for every δ > 0. The required bound now
follows by using the induction assumption with m̄ = m − 1, R̄ = R\{e}.
Case 2.Wenow turn to the casewhenVT = ∅ (which in particular implies that ET = ∅),
and therefore EL �= ∅. In this case, the integral (4.36) factors according to the connected
components of the graph G, which consist of loops. The integral for a loop of size n
linking vertices {ei }ni=1 ⊂ R is given by

IL =
∫ n∏

i=1

(
ϕλ
0 (ei,↓) |K (ei )|J −e−i e+i+1

) n∏

i=1

(
de+i de

−
i

)
, (4.41)

where we made the identification en+1
def= e1. Furthermore, each ei ∈ R comes with an

arbitrary orientation which appears in the definition of K (ei ). Integrals of this type are
bounded in Lemma 4.20 below, which yields

|IL | � λ(2−β̄−δ)n, (4.42)

thus again allowing us to invoke the induction hypothesis with m̄ = m − n and R̄ =
R\{e1, . . . , en}.

We now turn to prove the convergence statement of the theorem. Define for e =
(e+, e−), f = ( f +, f −) ∈ R3 × R3

Hε,ε̄(e, f )
def= Jε,ε̄(e+ − f +)Jε,ε̄(e− − f −)

Jε(e+ − e−)Jε̄( f + − f −)Jε,ε̄(e+ − f −)Jε,ε̄(e− − f +)
− Ĵe,εĴ f,ε̄

where Jε,ε̄ is defined in the proof of Theorem 3.2. Then one has

E|〈ϕλ
0 , �±ε −�±ε̄ 〉|2 =

∫
(Hε(e, f ) + Hε̄(e, f )− 2Hε,ε̄(e, f ))

×
(
ϕλ
0 (e+)ϕλ

0 ( f −)K (e− → e+)K ( f +→ f −)
)
de±d f ±.

Assumewithout loss of generality that ε̄ ≤ ε. As in the proof of Theorem 3.2, one has
J −ε = J − exp(Mε) andJ −ε,ε̄ = J − exp(Mε,ε̄)where the functionsMε andMε,ε̄ are
bounded by |Mε(z)| + |Mε,ε̄(z)| � ε/‖z‖s for all space–time points z with ‖z‖s ≥ ε,
and, the function J −ε,ε̄ also falls within the scope of Lemma 4.12 and therefore satisfies
the bound (4.20).

For our collection of four charges e±, f ±, there are only two possible admissible
graphs: the first one is VL = {e, f } (i.e. e and f form a loop), and the second one is
VT = {e, f } (i.e. e and f form a tree). It is then straightforward to show that
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|Hε(e, f ) + Hε̄(e, f )− 2Hε,ε̄(e, f )|
� ‖e+ − f −‖−β̄

s ‖e− − f +‖−β̄
s

∑

x �=y∈{e±, f ±}

( ε

‖x − y‖s ∧ 1
)

+ ‖e+ − e−‖−β̄
s ‖ f + − f −‖−β̄

s Ae f

( ε

‖e+ − e−‖s ∧ 1 +
ε

‖ f + − f −‖s ∧ 1
)

for all e±, f ± ∈ R3.
Now to perform the integrations over e±, f ±, one needs the following fact: suppose

that |DkK1(x)| � ( ε
‖x‖s ∧ 1)‖x‖ζ1−|k|ss , and K2 is of order ζ2, then

|Dk(K1 ∗ K2)(x)| � εκ‖x‖ζ̄−|k|s−κ
s

(4.43)

for sufficiently small κ > 0where ζ̄ = ζ1+ζ2−|s| /∈ N and k is such that ζ̄−|k|s < 0. To
prove (4.43), observe that if ‖x‖s < 2ε, then one just bounds |DkK1(x)| by ‖x‖ζ1−|k|ss
and then uses ‖x‖κs � εκ to obtain the desired bound.

If ‖x‖s ≥ 2ε on the other hand, writing (K1 ∗ K2)(x) as
∫
K1(y)K2(x − y)dy, we

distinguish three cases as in the proof of [Hai14, Lemma 10.14]. The first case is that
‖y‖s < ‖x‖s/2: we bound ‖x − y‖s by ‖x‖s, and integrate K1(y) following the steps
above (3.12). The second case is that ‖y − x‖s < ‖x‖s/2 and therefore ε/‖y‖s < 1,
we can bound K1(y) by εκ‖x‖ζ1−κ

s . The third case is the complement of the above two
regions, where one still has ε/‖y‖s < 1, following the same arguments as in the proof
of [Hai14, Lemma 10.14] one obtains the desired bound.

We can then integrate over e±, f ± analogously as in the proof of Lemmas 4.17 and
4.20. One has

E|〈ϕλ
0 , �ε −�ε̄〉|2 � ε2κλ−2κ+2(2−β̄−δ),

so the second bound stated by the theorem follows by Cauchy–Schwarz inequality.
We now prove the bounds for �kk̄

ε with k > 1. One has

E|〈ϕλ
0 , �kk̄

ε 〉|m = e−β2m
(
k2−1)Qε(0)

∫
H(x;J k2

ε )
∏

e∈R

(
ϕλ
0 (e)K (e)

)
dx .

By Proposition 4.16, one has

E|〈ϕλ
0 , �kk̄

ε 〉|m � ε
β2

2π m
(
k2−1) ∑

G∈GR

∫ ( ∏

{i, j}∈SG

J −k2i j,ε

∏

(e, f )∈ET
Ae f

)

×
∏

e∈R

(
ϕλ
0 (e)|K (e)|

)
dx .

In the above expression, there arem of factors J −k2ε . In fact, for some sufficiently small
parameter κ > 0, one has

ε
β2

2π

(
k2−1)Jε(xi − x j )

−k2 � εκ‖xi − x j‖
−β2

2π −κ
s .

Then, the required bounds follow in the same way as the case of�±ε , except that εκ → 0
as ε→ 0. ��
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Now we proceed to prove the bounds for all the integrals in the proof of the previous
theorem. Notice that the entire integral comes with a test function ϕλ

0 ( f +) or ϕλ
0 ( f −),

which justifies the assumption of the following lemma.

Lemma 4.17. Let I3 be given by (4.40). Then the bound |I3| � λ2−β̄−δ holds uniformly
over all f ± such that ‖ f +‖s ∧ ‖ f −‖s ≤ λ and ‖ f +‖s ∨ ‖ f −‖s � 1.

Proof. By the gradient theorem, one has

|K (e− → e+)| � ∣∣K (e+ − e−)− K (e−)
∣∣

� ‖e+‖3−β̄−δ
s

(
‖e−‖β̄−5+δ

s + ‖e+ − e−‖β̄−5+δ
s

)

for every δ > 0 sufficiently small, where we used the fact 3 − β̄ ∈ (0, 1]. By our
definitions, the left hand side of (4.40) is bounded by λ−4‖ f − − f +‖s (T1 + T2), where

T1 =

0

f+f−

e+ e−−4 + δ

−1−1

3− β̄ − δ

T2 =

0

f+f−

e+ e−1− β̄

−1−1

3− β̄ − δ β̄ − 5 + δ

and the thick lines indicate that the corresponding (parabolic) distance is restricted to
taking values less than λ.

We bound the first term T1. Integrating e− using [Hai14, Lemma 10.14], one has

T1 �
∫

�

‖e+ − f −‖−1s ‖e+ − f +‖−1+δ
s ‖e+‖3−β̄−δ

s de+, (4.44)

where� denotes the ball of radius λ. We now distinguish two cases. If ‖ f +‖s ≥ 2λ, then
one must have ‖ f −‖s ≤ λ which together with ‖e+‖s ≤ λ implies ‖e+ − f +‖−1+δ

s �
‖ f − − f +‖−1+δ

s . Inserting this bound into (4.44) and integrating over e+, one obtains

T1 � λ6−β̄−δ ‖ f − − f +‖−1+δ
s . (4.45)

If on the other hand ‖ f +‖s ≤ 2λ, then one has ‖e+ − f +‖s � λ and therefore ‖e+ −
f +‖−1+δ

s � λ3‖e+ − f +‖−4+δ
s , so that

T1 � λ6−β̄−δ

∫

R3
‖e+ − f −‖−1s ‖e+ − f +‖−4+δ

s de+.

Integrating over e+, one again obtains (4.45), which yields the required bound on this
term.

Next, we bound the term T2. Define the quantity

S(e+, f +)
def=

∫
‖e− − f +‖−1s ‖e+ − e−‖−β̄+1

s ‖e−‖β̄−5+δ
s de−,
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so that T2 can be rewritten as

T2 =
∫

�

‖e+ − f −‖−1s ‖e+‖3−β̄−δ
s S(e+, f +) de+. (4.46)

We estimate S(e+, f +) using Holder’s inequality

S(e+, f +) =
∫ (
‖e−‖β̄−

7
2 +

δ
2

s ‖e+ − e−‖−β̄+2− δ
2

s

)(
‖e−‖−

3
2 +

δ
2

s ‖ f + − e−‖−
δ
2

s

)

×
(
‖e+ − e−‖−1+

δ
2

s ‖ f + − e−‖−1+
δ
2

s

)
de−

�
∥∥∥‖e−‖β̄−

7
2 +

δ
2

s ‖e+ − e−‖−β̄+2− δ
2

s

∥∥∥
L

8
3

∥∥∥‖e−‖−
3
2 +

δ
2

s ‖ f + − e−‖−
δ
2

s

∥∥∥
L

8
3

×
∥∥∥‖e+ − e−‖−1+

δ
2

s ‖ f + − e−‖−1+
δ
2

s

∥∥∥
L4

� ‖e+ − f +‖−1+δ
s

where all the L p norms are defined on functions in the variable e−. In fact the two L
8
3

norms are both bounded by constants. We are now back to the same situation as (4.44)
for T1, so that the claim follows. ��

In the sequel, we will make repeated use of the inequality

‖z‖−α
s ‖z̄‖−β

s � ‖z‖−α−β
s + ‖z̄‖−α−β

s , (4.47)

which holds for every z, z̄ in R4 and any two exponents α, β > 0.

Lemma 4.18. The bound (4.39) holds for I1 and I2 given by (4.37) and (4.38).

Proof. Wefirst show the bound for I1. Define a function (which also depends on e+, f −)

F(z, w)
def=

∫
‖e+ − e−‖−β̄+1

s K (e− − z)‖e− − f +‖−1s
× ‖ f + − f −‖−β̄+1

s K ( f + − w) de−d f +

for every z, w ∈ R3. Then

|I1| �
∫ ∣∣∣F(e+, f −)− F(0, f −)− F(e+, 0) + F(0, 0)

∣∣∣

× ϕλ
0 (e+)ϕλ

0 ( f −)‖e+ − f −‖−1s de+d f −.

Since 3 − β̄ ∈ (0, 1], applying gradient theorem to K (e− → e+) as in the proof of
Lemma 4.17, one has

|F(e+, f −)− F(0, f −)| � H1 + H2 � H1 + H3

where Hi are defined as follows, and in the last inequality (4.47) has been applied to

‖e−‖β̄−5+δ
s · ‖e+ − e−‖1−β̄

s .
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H1

0

f+ f−

e+
ϕ

e−

−β̄ − 1

−4 + δ

−1

3− β̄ − δ

H2

0

f+ f−

e+
ϕ

e−

−β̄ − 1

1− β̄

−1

3− β̄ − δ β̄ − 5 + δ

H3

0

f+ f−

e+
ϕ

e−

−β̄ − 1

−1

3− β̄ − δ −4 + δ

Performing the convolutions in e−, and then bounding ‖ f +‖−1+δ
s by ‖ f +‖−1−δ

s for H3

and bounding ‖e− − f +‖−1+δ
s by ‖e− − f +‖−1−δ

s for H1, and finally integrating f +, we
obtain

|F(e+, f −)− F(0, f −)| � ‖e+‖3−β̄−δ
s

(
‖ f −‖2−β̄−δ

s + ‖ f − − e+‖2−β̄−δ
s

)
.

In the similar way, applying gradient theorem to K (e− → e+) again as above, one
obtains that |F(e+, 0)− F(0, 0)| is bounded by the sum of the following two terms

0

f+ f−

e+
ϕ

e−

1− β̄

−2

−4 + δ

−1

3− β̄ − δ

0

f+ f−

e+
ϕ

e−

1− β̄

−2

1− β̄

−1

3− β̄ − δ
β̄ − 5 + δ

Applying (4.47) to ‖e−‖β̄−5+δ
s · ‖e+ − e−‖1−β̄

s , and to ‖ f + − f −‖−β̄+1
s · ‖ f +‖−2s , it is

then straightforward to obtain the bound

|F(e+, 0)− F(0, 0)| � ‖e+‖3−β̄−δ
s

(
‖ f −‖2−β̄+δ

s + ‖e+‖2−β̄+δ
s + ‖ f − − e+‖2−β̄+δ

s

)
.

Then the integrations over e+, f − are straightforward; this concludes the proof for the
desired bound on I1.

The bound for I2 follows simply by expanding K+(e)K+( f ) into four terms accord-
ing to the definitions and then bounding the integral with each term separately, using
(4.47). ��

The bound (4.42) holds as a consequence of the following result for integrating
general “cycles” or “chains”. Before stating the result we introduce a notation.

We denote by K ϕ
i (x, y) functions that are given by either ϕλ

0 (y)K (x → y) or
ϕλ
0 (x)K (y → x). Given real numbers {α1, . . . , αn, α

′, ᾱ′}, we aim to bound the in-
tegration of the following functions

FL = FL
(
{x}ni=1, {y}ni=1

)
def=

n∏

i=1

(∣∣K ϕ
i (xi , yi )

∣∣ · ‖yi − xi+1‖αis
)
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(with n ≥ 2) where xn+1 is identified with x1; and FC = FC
({x}ni=1, {y}ni=1, z, z̄

)
with

FC
def= g(x1, z) ḡ(yn, z̄)

n−1∏

i=1

(∣∣K ϕ
i (xi , yi )

∣∣ · ‖yi − xi+1‖αis
)
K ϕ
n (xn, yn)

(with n ≥ 1) where
g(x1, z)

def= ‖x1 − z‖α′s ϕλ
0 (z)

and ḡ is defined in the same way with change of roles x1 ↔ yn , z ↔ z̄ and α′ ↔ ᾱ′.

Remark 4.19. By inspection, one can realise that FL corresponds to a cycle shaped graph
L: (x1 − y1 − · · · − xn − yn − x1), and, FC corresponds to a chain shaped graph C:
(z − x1 − y1 − · · · − xn − yn − z̄). All the variables xi , yi and z, z̄ will be integrated.
For the case of FC , we will allow α′ (the same discussion applies to ᾱ′) to be zero,
which means g(x1, z) = 2ϕλ

0 (z) will be factored out and the integral of it over z gives a
constant; in other words one can simply think of the chain as ending with the function
K (x1, y1). Our notation is just in order to treat the chain in a unified way no matter it
ends with a function K or g.

Lemma 4.20. In the setting above, suppose that n ≥ 2 and that αi ∈ (−4,−2] for
i ∈ {1, . . . , n}. Then one has

∫
FL dx dy � λh(L)−δ, (4.48)

for any δ > 0 arbitrarily small, where h(L)
def= 2n +

∑n
i=1 αi , and the integration is over

x = {xi }ni=1 ∈ (R3)n, y = {yi }ni=1 ∈ (R3)n.
Suppose additionally that α′, ᾱ′ ∈ (−4,−2] ∪ {0}, and if α′ = 0 (resp. ᾱ′ = 0) then

x1 (resp. yn) is an incoming point. Then, for every n ≥ 1, one has
∫

FC dx dy dz dz̄ � λh(C)−δ, (4.49)

for any δ > 0 arbitrarily small, where h(C)
def= 2n+

∑n−1
i=1 αi +α′+ ᾱ′ and the integration

is over x = {xi }ni=1 ∈ (R3)n, y = {yi }ni=1 ∈ (R3)n, and z, z̄ ∈ R3.

Proof. The integrand FL, ignoring the test functions, can be depicted graphically by the
left picture below

x6

y6

x1

y1

x2

y2
x3

y3

x4

y4

x5

y5
α6

α1

α2
α3

α4

α5

y6

x1

x2

y3

y4

x5

x4
x3

x6
y5 y1

y2

α6

2 + α1

4 + α2
2 + α3

α4

4 + α5
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The picture illustrates the generic situation (with n = 6) showing that the orienta-
tions of {xi , yi } are arbitrary. We will first integrate out all the outgoing points (see the
definitions of outgoing/incoming points of oriented pairs in the beginning of Sect. 4.1).
We claim that after these integrations, one has the bound

∣
∣∣
∫

FL dxdy
∣
∣∣ �

∫ n∏

i=1

(
ϕλ
0 (zi ) Gli (zi , zi+1)

)
dz (4.50)

where the integration is over z = {zi }ni=1 ∈ (R3)n , and zn+1 = z1, li ∈ (−4, 2),∑n
i=1 li = h(L)− δ and

Gli (x, y) =

⎧
⎪⎨

⎪⎩

‖x − y‖lis li ∈ (−4,−2],
‖x − y‖lis + ‖x‖lis + ‖y‖lis li ∈ (−2, 0],
‖x‖lis + ‖y‖lis li ∈ (0, 2].

(4.51)

The integrand of (4.50), ignoring the test functions, is drawn as the right picture above
(where only the subscripts ofG are drawn; and the dummy z-variables are still written as
x or y-variables to make a clearer comparison with the left picture and the variables that
have been integrated out are still indicated in light gray). We substitute the definition of
Gk into (4.50) and expand, and obtain a sumwhere each summand falls into the scope of
(4.54) of Lemma 4.21 below [in fact αi > −4 implies 2n+

∑n
i=1 αi > −2n ≥ −4(n−1)

for n ≥ 2, so the assumption of (4.54) of Lemma 4.21 is satisfied]. Therefore the bound
(4.48) follows.

To show the claim (4.50), one needs to show the following bounds.

• The case of integrating out a single point when its two neighboring points are both
incoming points (e.g. the y1 in the picture): for any α ∈ (−4,−2],

∫
|K (y→ x)| · ‖y − z‖αs dy � ‖z − x‖2+α−δ

s + ‖z‖2+α−δ
s .

• The case of two incoming points are adjacent so “nothing has to be integrated” (e.g.
in the picture, the successive charges y4 and x5 are both incoming points, so neither
of them need to be integrated now).
• The case of integrating out two adjacent outgoing points (e.g. in the picture, the
successive charges y2 and x3 are both outgoing points, so both of them have to be
integrated now): for any α ∈ (−4,−2],

∫∫
|K (y→ x ′)| · ‖y − x‖αs · |K (x → y′)| dxdy � G4+α−δ(x

′ − y′). (4.52)

The first bound follows from [Hai14, Lemma 10.14]. The second case is trivial. To show
the last bound, one writes

Q(x ′ − y′) def=
∫

K (x ′ − y) · ‖x − y‖αs · K (y′ − y) dxdy.

Then, the left hand side of (4.52) is given by

|Q(x ′ − y′)− Q(x ′)− Q(y′) + Q(0, 0)| = |Q̂(x ′ − y′)− Q̂(x ′)− Q̂(y′)|
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where
Q̂(x)

def= Q(x)− Q(0)− x · ∇Q(0).

It is then straightforward to show that |Q̂(x)| � ‖x‖4+α−δ
s . Therefore (4.52) follows and

we obtain (4.50). This completes the proof of the bound for integration of FL.
The integration of FC can be bounded analogously. Note first that FC can not simply

be a function K , since if n = 1 by assumption of the lemma one has α′ ∧ ᾱ′ < 0. In fact,
there exist li ∈ (−4, 2) for 0 ≤ i ≤ n + 1, and

∑n+1
i=0 li = h(C)− δ, such that one has

∣
∣∣
∫

FC dxdydzdz̄
∣
∣∣ �

∫ n+1∏

i=0
ϕλ
0 (zi )

n∏

i=0
Gli (zi , zi+1) dz (4.53)

where Gli are defined in (4.51) and the integration is over z0, . . . , zn+1. The integration
variables z0, zn+1 correspond to z, z̄ respectively, and z1, . . . , zn correspond to the in-
coming points, i.e. the points that have not been integrated. To show (4.53), we integrate
out all the outgoing points in the same way as above, except that we only need to treat
the two ends of the chain separately. Since the chain is symmetric under reflection we
only consider the end at the function g. If α′ = 0, by assumption x1 is an incoming
point, so we simply take l0 = 0; the factored function ϕλ

0 (z0) can be simply integrated
out over z0 which gives a constant. If α′ < 0, then arguing as above we can have the
bound (4.53) with l0 = α′ ∈ (−4,−2] if y1→ x1, or l0 = α′ + 2 ∈ (−2, 0] if x1→ y1.

As before we can then expand the right hand side and obtain a sum in which each
summand falls into the scope of (4.55) of Lemma 4.21 below. ��
Lemma 4.21. Given n real numbers {αi }ni=1, let gαi (x, y) be one of the three functions:
‖x − y‖αis with αi > −4, or, ‖x‖αis or ‖y‖αis with αi > −2. Let ᾱ =∑n

i=1 αi . Then:

1. Assuming n ≥ 2 and ᾱ > −4(n − 1), with zn+1 identified with z1, the following
bound hold ∫

(R3)n

n∏

i=1
gαi (zi , zi+1)

n∏

i=1

(
ϕλ
0 (zi ) dzi

)
� λᾱ. (4.54)

2. Assuming n ≥ 1, the following bound hold

∫

(R3)n+1

n∏

i=1
gαi (zi , zi+1)

n+1∏

i=1

(
ϕλ
0 (zi ) dzi

)
� λᾱ. (4.55)

Proof. First of all we bound all the functions ϕλ
0 (z) by λ−4 times the characteristic

function for the set � = {z : ‖z‖s ≤ λ}. We can therefore bound every gαi (zi , zi+1)
with positive αi by λαi and restrict the integration of all the zk over �. The integral then
factorises into integrations of the form

∫ �−1∏

i=k
‖zi − zi+1‖αis dz

where 1 ≤ k ≤ � ≤ n with αk, . . . , α�−1 < 0, and the integration is one of the following
cases

• an integration over zk, . . . , z�;
• an integration over zk, . . . , z�−1 with z� ≡ 0; or its “symmetric” case: an integration

over zk+1, . . . , z� with zk ≡ 0;
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• an integration over zk+1, . . . , z�−1, where zk = z� ≡ 0;
• an integration over z1, . . . , zn , with zn+1 identified with z1.

In the first case, one can successively integrate the variables using the assumption αi >

−4, for instance
∫

�

�−1∏

i=k
‖zi − zi+1‖αis dzk � λαk+4

�−1∏

i=k+1
‖zi − zi+1‖αis .

The second case follows in a similar way by starting to integrate from zk or zl that is not
the one fixed to be 0.

For the third case, we can integrate zk+1:
∫

�

‖zk+1‖αks ‖zk+1 − zk+2‖αk+1s dzk+1 � ‖zk+2‖ᾱk+1s

where ᾱk+1
def= αk + αk+1 + 4. If ᾱk+1 ≥ 0, then we bound the right hand side above by

λᾱk+1 , and the rest of the integral falls into the second case. If ᾱk+1 < 0, then note that by
the assumption of the lemma, ᾱk+1 > −2− 4 + 4 = −2, and therefore we can proceed
to integrate zk+2 in the same way as zk+1. We iterate this procedure until either it reduces
to the second case, or k + 2 = �− 1, namely zk+2 is the last integration variable and we
are left with ∫

�

‖z�−1‖ᾱ�−2
s ‖z�−1‖α�−1

s dz�−1

where ᾱ�−2 =∑�−2
i=k αi + 4(�− k − 2). Then since ᾱ�−2 + α�−1 > −2− 2 = −4, it is

integrable and bounded by λ
∑�−1

i=k αi+4(�−k−1). Since there is an overall factor λ−4(�−k−1)
from all the functions ϕλ

0 , one obtains the desired bound.
The last case happens only when gαi (x, y) = ‖x − y‖αis for every i ∈ {1, . . . , n}, so

that we are in a situation of a whole cycle consisting of n points. We can integrate the
variables one by one from z1 to zn−2 as in the third case, and the condition αi > −4
guarantees integrability. Then we are left with an integration of ‖zn−1 − zn‖ᾱ+4(n−2)s ,
and by the assumption on ᾱ one has ᾱ + 4(n − 2) > −4, so we can integrate zn−1, zn
over � to get a factor λᾱ+4n . With the overall factor λ−4n from test functions we obtain
the desired bound. ��

4.4. Moments of �kk
ε . We now turn to consider the objects defined in (4.2), whose mth

moment, with m = 2N , can be expressed as

E|〈ϕλ
0 , �kl

ε 〉|m=E
[∣∣∣

∫∫
ϕλ
0 (x) (K (x− y)−K (−y))�k

ε (x)�l
ε(y) dx dy

∣∣∣
2N]

. (4.56)

In this subsection we show the required bounds for the case k = l.
Similarly as in Sect. 4.1, we would like to rewrite the 2N th power of the integral

as an integral over 4N variables, which again leads us to a situation with 2m = 4N
charges, and we denote by M a set of cardinality 2m indexing them. Again, each charge
i ∈ M comes with a sign σi ∈ {±}, an index hi ≡ k, and a location xi ∈ R3. There
are again m positive charges (corresponding to the arguments of �k

ε ) and m negative
charges (corresponding to the arguments of �̄k

ε ).
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Observe that in (4.56), x and y are both arguments of �k
ε , rather than one for �k

ε

and the other for �̄k
ε as in the discussion for �kk̄

ε in Sect. 4.1. Due to this difference, we
abandon the notationR defined in Sect. 4.1, and consider in this subsection the situation
where the 2m charges are partitioned into a set R′ of m disjoint oriented pairs such that
there are N pairs containing two positive charges and N pairs containing two negative
charges.

Proof of Theorem 4.3 for �kk
ε . Recall our notation that for any pair e = {i, j} (not

necessarily in R′), we define a quantity Ĵ (ε)
e by

Ĵε,e
def= Jε(xi − x j )

σiσ j .

It is straightforward to check that

E|〈ϕλ
0 , �kk

ε 〉|m = e−β2m
(
k2−1)Qε(0)

∫

(R3)M

( ∏

e∈R′
ϕλ
0 (e↓)K (e)

)( ∏

e∈E(M)

Ĵ k2
ε,e

)
dx .

By the procedure in Sect. 3, with J chosen to be J k2
ε which certainly satisfies (3.13),

one obtains a pairing S for each configuration of the 2m charges. Therefore,

E|〈ϕλ
0 , �kk

ε 〉|m � ε
β2

2π m(k2−1) ∑

S

∫ ( ∏

e∈R′
ϕλ
0 (e↓)

∣∣K (e)
∣∣
)( ∏

f ∈S
Ĵ k2

ε, f

)
dx,

where the sum runs over all possible positive-negative pairings of the 2m charges. Note
that this time, for every factor K (e) appearing in the integrand, the two charges in e have
the same sign, while in every factor Ĵε, f appearing above, the two charges of the pair
f have opposite signs. In other words, we have

S ∩R′ = ∅,

for every S in the summation. This makes the construction of the objects �kk much
easier. One can then bound the integral for each S. When k = 1, the integration falls
into the scope of Lemma 4.20 and the required bound for �⊕ε follows immediately. The
bounds for �⊕ε −�⊕ε̄ and the independence of mollifiers can be shown analogously as

before. When k > 1, the arguments are the same as for the case of�kk̄
ε and the moments

converge to zero due to the factors ε. ��

5. Second-Order Process Bounds for k �D l

This final section contains the proof of Theorem 4.3 for �kl̄
ε and �kl

ε with k �= l. These
are only required for the full proof of Theorem 1.1, but are not needed for the actual
definition of the limiting process loosely described by (1.1).

We now prove Theorem 4.3 for�kl̄
ε and�kl

ε where k �= l. As before, themth moment
can be expressed as integrals over 2m variables. Thereforewe are now again in a situation
with 2m = 4N charges, and we still denote by M the set of cardinality 2m. Each charge
i ∈ M comes with a sign σi ∈ {±}, an index hi ∈ {k, l}, and a location xi ∈ R3. There
are exactly m positive charges and m negative charges.

The current situation differs from that of Sect. 4.1 or 4.4 since indices of charges
vary. Therefore we should define new sets of pairs in place of R and R′ above.
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• For the case of �kl̄
ε (resp. �kl

ε ), the 2m charges are partitioned into m disjoint (ori-
ented) pairs, and we call this set of pairsR1 (resp.R2), such that: there are exactly N
pairs in R1 of the type (−; l)→ (+; k),4 and the other N pairs in R1 are of the type
(+; l) → (−; k); also, there are exactly N pairs in R2 of the type (+; l) → (+; k),
and the other N pairs in R2 are of the type (−; l)→ (−; k).

Proof of Theorem 4.3 for �kl
ε and �kl̄

ε with k �= l. For any pair e = {i, j} (not neces-
sarily in R1,2), we can define the quantity

J̃ (ε)
e

def= Jε(xi − x j )
σiσ j hi h j . (5.1)

It is then straightforward to check that

E|〈ϕλ
0 , �kl̄

ε 〉|m = e
β2

2 m
(
k2+l2−2)Qε(0)

∫

(R3)M

( ∏

e∈R1

ϕλ
0 (e↓)K (e)

) ∏

e∈E(M)

J̃ (ε)
e dx,

(5.2)
and �kl

ε satisfies the same identity with R1 replaced by R2.
Our current situation is different frombefore andwe can’t directly apply the procedure

inSect. 3, because there is not a unique functionwhichplays the role ofJ in the procedure
of Sect. 3 any more (we have instead multiple ones J hh′

ε with h, h′ ∈ {k, l}). In fact,
when two charges of opposite signs become close, the cancellations such as (3.19) in that
procedure do not necessarily hold anymore since these two charges could have different
indices.

Given such a configuration of indexed 2m charges, we construct a new configuration
of un-indexed m(k + l) charges, in other words the charges all have index 1. The new
configuration is simply defined as follows. For each of the 2m charges, assuming that
it has a sign σ and an index h ∈ {k, l}, one regards it as h distinct charges, all having
the sign σ and the same location. More formally, we denote by M a set of cardinality
m(k+l) and we fix amap π :M→ M with the property that |π−1(i)| = hi . For a ∈M
we will make an abuse of notation and write again xa for xπ(a) and σa for σπ(a). We
remark that we do not mean to integrate over these “m(k + l) space–time points”: at the
end we will still integrate over only 2m space–time points. We claim that the following
bound holds

E|〈ϕλ
0 , �kl̄

ε 〉|m � ε
β̄m
2 (k+l−2)

∫

(R3)M

( ∏

e∈R1

ϕλ
0 (e↓)|K (e)|

) ∏

{i, j}∈E(M)

Jε(xi − x j )
σiσ j dx

(5.3)
where the integration is still over x ∈ (R3)2m , but the second product is now over pairs of
un-indexed charges in M. The function �kl

ε satisfies the same bound with R1 replaced
by R2.

Remark 5.1. From now on we write R as a shorthand for either R1 or R2, depending
on whether we are considering the bound for �kl̄

ε or for �kl
ε .

To see that (5.3) holds, note that for every i ∈ M with index h ∈ {k, l}, a new factor

Jε(xi − xi )
1
2 h(h−1) appeared in the integrand when compared to (5.2). In fact, the factor

in front of the integral in (5.2) is bounded by ε
β̄
2m(k2+l2−2). For each i ∈ M with index

4 In other words the outgoing point is negative and indexed by l, and the incoming point is positive and
indexed by k.



980 M. Hairer, H. Shen

h ∈ {k, l}, we associate to it a factor ε
β̄
2 h(h−1) � Jε(xi − xi )

1
2 h(h−1). There are then a

total of β̄m
2 (k(k − 1) + l(l − 1)) factors of ε that are turned into the new factors Jε(0)

in this way. We are left with a power of ε which is precisely the factor in front of the
integral in (5.3).

The above product of Jε’s now falls again into the setting of Sect. 3 with the “po-
tential” function J simply being Jε, except that the points indexed by M are not all
distinct. This does not matter because one can just start for n sufficiently small so that

An =
{
A1, A2, . . . , A2m

}

where each of Ap contains k or l un-indexed charges with the same sign at the same

location. The bound
∣∣∣
∏

i �= j∈A J σiσ j (xi − x j )
∣∣∣ ≤ CJ̄ Dn(A)

n then holds trivially for each

A ∈ An defined above and we can start the recursive construction of Sect. 3 from there.
That procedure then provides a pairing S∗ for M and, writing

Iε
def= ε

β̄m
2 (k+l−2) ∏

{i, j}∈E(M)

Jε(xi − x j )
σiσ j

as a shorthand, one has the bound

Iε � ε
β̄m
2 (k+l−2) ∏

{i, j}∈S∗
J −ε (xi − x j ). (5.4)

Note that on the right hand side, the total number of factors J −ε is m
2 (k + l), and the

total number of factors εβ̄ is m
2 (k + l − 2). In the following, we will use the fact that

εβ̄ � Jε to “cancel” some of the factors J −ε with the factors εβ̄ . We remark that after
such cancellations the number of factors J −ε will always be more bym than the number

of factors εβ̄ .
Given the pairing S∗, one can associate to it a graph G with vertex set M and edges

E in such way that {i, j} ∈ E if and only if there exist a ∈ π−1(i) and b ∈ π−1( j)
such that {a, b} ∈ S∗. Of course, one then automatically has σiσ j = −1, i.e. the vertices
correspond to charges with opposite signs. Using the bound εβ̄J −ε � 1, we immediately
obtain from (5.4) the bound

Iε � εβ̄(|E |−m)
∏

{i, j}∈E
J −ε (xi − x j ). (5.5)

Since S� is a pairing ofM, every vertex in G has degree at least one, so that in particular
|E | ≥ m, but G is not necessarily connected.

The set of edges E interplays with the set R in the following way. In the case of
�kl̄

ε , every element in R = R1 is a pair of charges having opposite signs. On the other
hand, for the case �kl

ε , every element in R = R2 is a pair of charges having the same
sign. In both cases, every edge in E connects two points of opposite signs, therefore
E ∩R2 = ∅, while E ∩R1 may not be empty.

We now proceed to simplify the graphG in such a way that the bound (5.5) still holds
at each stage of the simplification. Since εβ̄J −ε � 1, we are allowed to simply erase
edges, but we want to do this in such a way that there are at least m edges left at the end
(so that the prefactor contains a positive power of ε) and so that the resulting graph is
as “simple” as possible. This simplification step is slightly different between the bound
on �kl̄

ε and that on �kl
ε .
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For the case �kl
ε , let FG be a spanning forest of G. For each connected component

TG (which is a tree) of FG , let i be a leaf of TG , and j be the unique vertex connected
to i . We erase all edges of the form { j, k} where k is a vertex but not a leaf of TG . We
obtain in this way a connected component which is a star (consisting of at least two
points) centred at j . Iterating this procedure, we can reduce ourselves to the case where
every connected component of G is a star with at least two vertices. Denote the resulting
graph by G1. Note that the condition that every vertex has degree at least one still holds
for G1, so that there are indeed still at least m edges left.

In the case �kl̄
ε , we encounter one additional difficulty: since E ∩ R may be non-

empty in this case, the procedure described above may create a graph in which one of
the connected components is given by a single edge e which also happens to belong to
R. Going back to (5.3), this implies that the right hand side is bounded by a quantity
that containing a factor

∫
|K (x → y)|J −ε (x − y)ϕλ

0 (y) dx dy.

Unfortunately, this quantity diverges as ε→ 0, so we should avoid such a situation. The
key observation is that since k �= l, there does not exist any connected component of the
original graph G consisting of only one edge in R, so we tweak the procedure described
above in order to avoid creating one.

As before, we consider a spanning forest FG of G, and we denote by E(FG) the set
of edges of FG . This time, we furthermore let G1 be the graph defined by contracting
all the edges in E(FG)∩R. More precisely, define an equivalence relation∼ on M by:
i ∼ j if and only if {i, j} ∈ E(FG) ∩ R. Obviously each equivalence class consists
of either one or two points of M . For every i ∈ M , write [i] for its equivalence class.
The contracted graph F̄G has the set of equivalence classes as its set of vertices. for
[i ′] �= [ j ′] ∈ F̄G , {[i ′], [ j ′]} is an edge of F̄G if and only if there exist i ∈ [i ′], j ∈ [ j ′]
and {i, j} is an edge of FG . Self loops of the form {[i], [i]} are not considered as edges
of F̄G . Note that F̄G is necessarily a forest, with every tree component consisting of at
least 2 points.

We then erase edges of the forest F̄G according to the same procedure as in the case
�kl

ε and denote by Ē1 ⊂ E(F̄G) the set of erased edges. This procedure turns F̄G into
a graph Ḡ1 consisting of disjoint stars, with each star consisting of at least two points.
Each edge e ∈ Ē1 has an obvious counterpart in E(FG), and we denote by G1 ⊂ FG
the graph obtained from FG by erasing these. (In particular, Ḡ1 is obtained from G1 via
the contraction given by ∼.) This graph has the following properties:

• E(G1) ∩R = E(FG) ∩R, where E(G1) is the set of edges of G1.
• Every connected component T of G1 is a tree, and contracting edges in E(T ) ∩R
turns T into a star.

The two pictures below illustrates two possible configurations of such a connected com-
ponent T , where solid lines stand for edges in E(T ) and dashed lines stand for edges in
R.

iT

i

j
k k

i i
(5.6)
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Every connected component T ⊂ G1 correspondes to a connected component T̄ of Ḡ1,
which is a star by construction. Denote by [i] the centre of that star, choosing any of its
two vertices if it only consists of one edge. If [i] = {i, i ′} ∈ E(T )∩R1, then at least one
of i and i ′ necessarily have degree strictly larger than 1 in G1, for otherwise T̄ would
consist of only one point. If both have degree strictly larger than 1 (as in the right hand
figure above), then we erase the edge {i, i ′} and obtain two connected components, both
consisting of stars having at least two points. In this way, we can reduce ourselves to the
case when either [i] = {i}, or [i] = {i, i ′} and i ′ is of degree 1 in G1. In either case, we
call i the root of the connected component T and we denote it by iT .

By construction, the root iT may connect to three types of edges:

• an edge {iT , i ′} ∈ R such that i ′ has degree 1 - call it an edge of type i ′;
• an edge {iT , j} /∈ R such that j has degree 1 - call it an edge of type j ;
• an edge {iT , k} /∈ R such that k has degree 2, and there exists k′ ∈ T such that
{k, k′} ∈ E(T ) ∩R - call it an edge of type k.

See the left hand figure in (5.6) for an example showing each type of edge. Furthermore,
it follows from the construction that iT is connected to at most one edge of type i ′ and
to at least one edge of type j or k. Lemma 5.2 below then allows us to integrate out all
edges of type k. More precisely, if there exist edges of the type j connected to iT , then
we apply the first bound of Lemma 5.2 to integrate over the variables corresponding to
the vertices k and k′ of all the edges of type k connected to iT . After performing such
an integration, the bound (5.3) still holds, but with m lowered by 1 and the graph G1
replaced by the new graph where the vertices k and k′, as well as the edges {iT , k} and
{k, k′} have been erased. Since the number of edges is reduced by 2 and m is lowered
by 1, we should indeed “use” one power of εβ̄ , as required by Lemma 5.2. Note also
that the bound λ2−β̄ appearing in the right hand side of Lemma 5.2 is consistent with
the bound (4.5) we are aiming for.

If on the other hand there is no edge of type j connected to iT , then we integrate out
all edges of type k except for one. If there then still remains an edge of type i ′ we apply
the second bound of Lemma 5.2 to integrate the entire connected component. Again,
this preserves the bound (5.3) provided that we decrease m by 2 and remove the entire
connected components (now consisting of 3 edges and 4 vertices) from G1.

Lemma 5.2. Let K ϕ(x, y) be a function that is given by either ϕλ
0 (y)K (x → y) or

ϕλ
0 (x)K (y→ x). Then,

εβ̄

∫
J −ε (x − y)

(
|K ϕ(y, z)|J −ε (y − z)

)
dydz � λ2−β̄ ,

εβ̄

∫
J −ε (x − y)

(
|K ϕ(w, x)|J −ε (w − x)

)(
|K ϕ(y, z)|J −ε (y − z)

)
� λ4−2β̄

where the second integral is over x, y, z and w. Both bounds hold with proportionality
constants that are uniform over ε, λ ∈ (0, 1], and the first bound is furthermore uniform
over x ∈ R3.

Proof. For the first bound, assume that K ϕ(y, z) = ϕλ
0 (z)(K (y − z) − K (y)). We

bound the integral involving the two K terms separately. For the term with K (y − z), it
suffices to bound εβ̄J −ε (y − z) � 1, then integrate over y, and finally use the fact that
∫ ‖x− z‖2−β̄

s ϕλ
0 (z) dz � λ2−β̄ . The latter bound is obtained by discussing the two cases
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‖x‖s < 3λ and ‖x‖s ≥ 3λ separately. For the termwith K (y), bound εβ̄J −ε (x− y) � 1,
then integrate over y and follow the same estimate as above. Assume on the other hand
that K ϕ(y, z) = ϕλ

0 (y)(K (z− y)− K (z)). For the term with K (z− y), integrating over

z yields a factor ε2−β̄ which, when multiplied by εβ̄J −ε (x − y), can be bounded by

‖x − y‖2−β̄
s . It then remains to integrate over y in the same way as above. For the term

with K (z), we bound εβ̄J −ε (x − y) � 1 and then integrate over z and y similarly as
above.

For the second bound, integrating out y, z in the same way as above would result
in a non-integrable function J −ε K of w − x . Instead, we first integrate out the point in

{x, w} at which ϕλ
0 is not evaluated making use of a factor ε

β̄
2 . Since the techniques are

analogous with that used above we only give the result:

ε
β̄
2

∫
ϕλ
0 (x ′)

(
‖x ′ − y‖2−

3
2 β̄

s + ‖y‖2−
3
2 β̄

s

)(
|K ϕ(y, z)|J −ε (y − z)

)
dx ′ dy dz,

where x ′ is the variable in {w, x} that is not integrated. This integral can be bounded in
the analogous way as the first bound above. ��

In this way we obtain a graph G1 such that (5.5) still holds, and such that every
connected component of G1 is a star, which is the same situation as in the case �kl

ε .

For both cases of �kl
ε and �kl̄

ε , if one of these stars consists of more than three points
(i.e. has more than two leaves), we can perform an additional simplification as follows.
Denote by j the centre of the star and by X the set of its leaves. Among all the distances
‖xi − x j‖s for i ∈ X , let k be such that ‖xk − x j‖s is the shortest one, and pick an
i ∈ X\{k} such that {i, k} /∈ R, which is always possible since one has at least two
distinct choices for i . We then use the bound J −ε (xi − x j ) � J −ε (xi − xk) to change
the edge {i, j} into the edge {i, k} and erase the edge { j, k} without violating the bound
(5.5). Since in the case of �kl̄

ε , i and k necessarily have the same sign, the newly formed
edge is such that {i, k} /∈ R.

The following picture shows an example of this operation, where each solid line
stands for an edge in the star, i.e. a factor J −ε .

j

k

i

⇒

j

k

i

(5.7)

Repeating this operation, we can reduce each star to disconnected components, where
each component has either two or three vertices. Again, the condition that every vertex
has degree at least one still holds, so that there are still at least m edges left.

Summarising this discussion, we have just demonstrated that one can always build
a graph G� consisting of disconnected components, where each component is a star
having either two or three vertices, and such that (5.5) holds. Furthermore, G� can
be chosen in such a way that its edges E� = E(G�) satisfy E� ∩ R = ∅. In order
to deal with the components with three vertices, we define the function Tε(x, y; z) def=
J −ε (x − z)J −ε (y − z). Let τ be the total number of appearances of the factor Tε in
(5.5), i.e. the number of connected components of the type in G�. Note that τ



984 M. Hairer, H. Shen

is necessarily an even number since the total number of charges is even and each such
component involves three of them.

The total number of edges in the graph G� is equal to m + τ
2 , so that the prefactor

appearing in (5.5) is given by εβ̄τ/2. In other words, (5.5) contains exactly one factor
J −ε for each connected component of the type and one factor εβ̄/2Tε for each
connected component of the type .

We now return to the task of actually estimating the full right hand side of (5.3). We
can depict this by also drawing a dashed arrow for every occurrence of K (e),
i.e. for every edge in R. Consider now the graph Ĝ whose edges are the union of the
“plain” edges in G� and the “dashed” edges in R. If τ = 0, then the topology of Ĝ is
very simple: since the edges of G� are disjoint from those of R and since both sets of
edges form a pairing of the vertex set M , it simply consists of a finite number of cycles
which alternate between plain and dashed edges, so that we are in the situation of (4.48)
of Lemma 4.20 with all the αi given by −β̄ ∈ (−4,−2]. Furthermore, each of these
cycles involves at least four vertices as required by the definition of FL there, so that the
assumptions of Lemma 4.20 are satisfied and do yield the required bound.

We therefore now consider all the possible ways in which the factors Tε(x, y; z)
can interplay with the kernels K in the graph Ĝ. The presence of these factors can
either create connections between cycles or it can terminate them and create “ends”. For
i = 1, . . . , 6, denote by Vi = Vi (x, y, z, x̄, ȳ, z̄) the following functions describing all
possible ways of creating a connection, where a plain line connecting two variables x
and y denotes a factor (‖y− x‖s+ ε)−β̄ , which is an upper bound for J −ε (x − y), and a
dashed arrow connecting x to y denotes a factor |K (x → y)|. We ignore the presence of
the test functions ϕλ

0 in (5.3) at this stage, but we will restrict ourselves to the situation
where the corresponding variables (i.e. the variables located at the tip of a dashed arrow)
are of parabolic norm less than λ.
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For example, one has

V1 = |K (x̄ → x)K (ȳ→ y)K (z→ z̄)| (‖z − x‖s + ε)−β̄ (‖z − y‖s + ε)−β̄ ,

and similarly for the other Vi . Using the same graphical notation, the different possible
ways of creating an “ending” are described by the following functions Ei with i ∈
{1, 2, 3, 4}:

These are viewed as functions of x, y, z and w. Note that E3 and E4 only differ by the
direction of an arrow between x and w, while for E1 and E2 the direction of that arrow
is not important when bounding them.

In order to bound the contributions coming from these factors, we integrate them
over those variables that are depicted by a circle (as opposed to a black dot) in the
above pictorial representations. Note that these integration variables are never located
at the tip of a dashed arrow, so we do not need to take into account the presence of the
test functions ϕλ

0 when we integrate them out. We further introduce the notation V (x)

as a shorthand for the function
∫
V1(x, y, z, x̄, ȳ, z̄) dx , where we integrated out the x

variable, V (x,y) for the function obtained from V by integrating out both the x and the
y variable, etc.

With this notation, we then have the following bounds:

Lemma 5.3. Let Vi and Ei be defined as above and assume that the variables located at
the tip of a dashed arrow are bounded by λ. Then, for β̄ ∈ [2, 8/3), one has the bound

ε
β̄
2 V1 � |K (x̄ → x)| |K (ȳ→ y)|

(
‖x − z‖−

3
2 β̄

s + ‖y − z‖−
3
2 β̄

s

)
|K (z→ z̄)|,

uniformly over ε, λ ∈ (0, 1], and ε
β̄
2 V2 is boundedby the same expressionwith K (z→ z̄)

replaced by K (z̄→ z). We furthermore have the bounds

ε
β̄
2 V (y)

3 � λ2−
β̄
2 |K (x̄ → x)| ‖x − z‖−β̄

s |K (z̄→ z)|,
ε

β̄
2 V (y,z)

4 ∨ ε
β̄
2 V (y,z)

5 � λ4−
3
2 β̄ |K (x̄ → x)|, ε

β̄
2 V (x,y,z)

6 � λ6−
3
2 β̄ ,

ε
β̄
2 E (y)

1 ∨ ε
β̄
2 E (y)

2 � λ2−
β̄
2 ‖x − z‖−β̄

s |K (x, w)|, ε
β̄
2 E (x,z)

3 � λ4−
3
2 β̄ ,

ε
β̄
2 E (z)

4 � λ2−
β̄
2

(
‖y − x‖−β̄

s + ‖y‖−β̄
s

)
|K (w→ x)|.

Proof. In the proof [Hai14, Lemma 10.14] will be repeatedly applied without explicitly
mentioning it every time. The bound for V1 is then obtained using (4.47) and the uniform
bound

εβ̄/2(‖x‖s + ε)−β̄ � ‖x‖−β̄/2
s . (5.8)

The bound for V2 follows in the same way.
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The bound for V3 is obtained by using again (5.8), then integrating over y:
∫
‖y − z‖−

β̄
2

s |K (ȳ − y)− K (−y)| dy � ‖ȳ‖2−
β̄
2

s � λ2−
β̄
2 ,

where the last inequality uses the fact that ȳ is a variable located at the tip of a dashed
arrow (and therefore eventually arising as an argument ofϕλ

0 ), so thatwe assumed ‖ȳ‖s ≤
λ. Regarding the bound for V4, integrating over y results in a factor ‖ȳ−z‖2−β̄

s +‖z‖2−β̄
s .

Then one uses again (5.8) and applies (4.47), integrates over z, and finally observes that
4− 3

2 β̄ > 0 and x, ȳ, z̄ all have norms bounded by λ by assumption.
To obtain the bound for V5, one uses the bound

εβ̄/4(‖x − z‖s + ε)−β̄ � ‖x − z‖−3β̄/4
s , (5.9)

integrates out x using the fact that the function K arises as a difference, and 2 − 3
4 β̄ ∈

(0, 1), and finally observe that x̄, ȳ, z are all within a distance λ from the origin. Then
one treats y in the same way as x .

To obtain the bound for V6, one uses again (5.9), then use gradient theorem for
K (x → x̄) to obtain a factor ‖x̄‖s � λ times a function of x and x̄ of homogeneity
−3. Then integrate out x and obtain a function of homogeneity 1 − 3

4 β̄ < 0. One
then treats y in the same way as x , and apply (4.47) to get a function of homogeneity
2− 3

2 β̄ < 0. Finally, we integrate out z using that K arises as a difference, and obtain a
power 4− 3

2 β̄ ∈ (0, 1] of λ.
To obtain the bound for E1, we simply note that if we set ȳ = x in V3 divided by

K (x̄ → x), then the resulting function is equal to E1 after an obvious relabeling of
variables, except that z̄ → z in V3 while the corresponding arrow between x, w in E1
can be pointing to either direction.

Since the bound we obtained on V (y)
3 is independent of ȳ and its proof did not use

the fact that z is the tip of an arrow, it immediately implies the required bound on E1.
The bound for E2 can be obtained analogously as that for E1 by taking ȳ = z now

in V3, and noting that the proof of the bound for V3 did not use the fact that x is the tip
of an arrow. The bound for E3 can be shown by setting z̄ = x in V4.

Regarding the bound for E4, note that one has

|K (y − z)− K (−z)| � ‖y‖2−
β̄
2−δ

s

(
‖y − z‖

β̄
2−4+δ
s + ‖z‖

β̄
2−4+δ
s

)

for any small δ > 0. The integration over z involving the first term above is performed by

applying (5.8) to y− z to get a factor ‖y− z‖−β̄/2
s , followed by a convolution. Regarding

the second term above, apply (5.8) to x − z to get a factor ‖x − z‖−β̄/2
s , then bound

‖x − z‖−β̄/2
s ‖z‖

β̄
2−4+δ
s � ‖x − z‖−4+δ

s + ‖z‖−4+δ
s , and finally integrate over z. Noting

that ‖y‖s � λ, we obtain the desired bound. ��
Remark 5.4. The bounds obtained in Lemma 5.3 all preserve the natural homogeneities
associated to each of the expressions appearing there in the following way. The natural
homogeneity associated to εβ̄/2Vi is −6− 3β̄/2, since K has a singularity of order −2
at the origin. Furthermore, the scaling dimension of parabolic space–time is 4, so that
each integration should increase the homogeneity by 4. For example, εβ̄/2V (y,z)

4 then

has natural homogeneity 2− 3β̄/2, which is also the case for λ4−3β̄/2K .
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For each of the Vi , the bound of Lemma 5.3 greatly simplifies the dependency struc-
ture of the resulting integrand. In the case of V1–V3, the “triple junction” is replaced by
a “double junction” and an “endpoint”, while it is replaced by three “endpoints” in the
case of V4–V6. After applying the bounds of Lemma 5.3 to each occurrence of Tε, one
may obtain “singletons”, i.e., a factor of the type

∫
ϕλ
0 (x) dx . This happens for instance

in the situation where the oriented edge x → x̄ of one instance of V6 is the same as the
oriented edge x̄ → x of one instance of V4. In this case, the bounds in Lemma 5.3 yield
a factor

∫
ϕλ
0 (y) dy, where y is the integration variable depicted by the vertex located at

the end of that oriented edge. Since ϕλ
0 integrates to a constant independent of λ, such

“singletons” can simply be discarded.
As a consequence, we are left with only cycles and chains consisting of functions

with known homogeneities and ϕλ
0 · K ’s in an alternative way (one ϕλ

0 (x)K (y → x)
followed by such a homogeneous function, then followed by another ϕλ

0 · K etc.) Here,
a function in a cycle, or in a chain but not at the two ends of the chain, can be one of the
following three functions

ϕλ
0 (x)K (y → x), ‖x − y‖−β̄

s , ‖x − y‖−
3
2 β̄

s .

A function at an end of a chain can be one of the two functions

ϕλ
0 (x) K (y → x), ϕλ

0 (x) ‖x − y‖−β̄
s ,

where, in both cases, the variable x is the one that terminates the chain. Note that the

bound for E4 gives a term λ2−
β̄
2 ‖y‖−β̄

s |K (w → x)|, and since there is a test function
ϕλ
0 (y), we simply integrate over y and obtain an end of chain of the first type.
Let us recapitulate now the situation so far. Recall that our aim is to prove that the

bound (4.5) holds, where the right hand side is given by λ to the power (2− β̄)m. The
left hand side on the other hand is given by (5.3), which is also naturally associated with
the homogeneity (2− β̄)m, provided that one associates homogeneity 1 to each power
of ε, homogeneity −2 to each factor K , 4 to each space–time integration variable, −4
to each factor ϕλ

0 , and β̄ to each factor Jε, noting that the total homogeneity contributed

from the product of factors Jε is − β̄m
2 (k + l).

All of the subsequent simplifications (applying the procedure in Sect. 3; applying the
bound εβ̄J −ε � 1, applying Lemma 5.2, applying the bound (5.7), and finally applying
Lemma 5.3) retain this homogeneity. At this point, as a consequence of the right hand
sides of the bounds appearing in Lemma 5.3, our bound does not contain any factor ε

anymore. Summarising, the right hand side of (5.3) is bounded by a sum such that each
summand is of the type λγ (for some γ ≥ 0), multiplied by a product of terms that
have precisely the form of the left hand sides of (4.48) and/or (4.49). The sum of the
natural homogeneities (counted in the same way as above) of these factors is precisely
equal to λ(2−β̄)m−γ , so that the claim follows if we can guarantee that the assumptions
of Lemma 4.20 are satisfied for each factor. This is because the powers h(L), h(C) of λ

appearing in Lemma 4.20 are indeed equal to the natural homogeneities associated with
the corresponding integrals counted in the same way as above.

Since we are considering the regime β̄ ∈ [2, 8
3 ), we have in particular 2 ≤ β̄ <

3β̄
2 <

4, which shows that the exponents αi appearing in the formulation of Lemma 4.20 do
indeed belong to (−4,−2] as required. Also, each cycle resulting from the formation
of “double junction” after applying Lemma 5.3 to V1, V2, V3 obviously has at least 4
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points, so that the assumptions of Lemma 4.20 are indeed satisfied. This immediately
yields the required bound (4.5) with κ = 0. To conclude, we note that just as in the
bound for �kk̄

ε for k > 1, one can gain a factor εδ for a sufficiently small δ > 0 by
“pretending” that the homogeneity of Jε is slightly worse than what it really is, so that
the required moments of �kl̄

ε and �kl
ε actually converge to zero as ε → 0. The same

argument also covers the borderline case β̄ = 2. ��
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