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Abstract: We define a planar para algebra, which arises naturally from combining
planar algebras with the idea of ZN para symmetry in physics. A subfactor planar para
algebra is a Hilbert space representation of planar tangles with parafermionic defects
that are invariant under para isotopy. For each ZN , we construct a family of subfactor
planar para algebras that play the role of Temperley–Lieb–Jones planar algebras. The
first example in this family is the parafermion planar para algebra (PAPPA). Based
on this example, we introduce parafermion Pauli matrices, quaternion relations, and
braided relations for parafermion algebras, which one can use in the study of quantum
information. An important ingredient in planar para algebra theory is the string Fourier
transform (SFT), which we use on the matrix algebra generated by the Pauli matrices.
Two different reflections play an important role in the theory of planar para algebras.
One is the adjoint operator; the other is the modular conjugation in Tomita–Takesaki
theory. We use the latter one to define the double algebra and to introduce reflection
positivity. We give a new and geometric proof of reflection positivity by relating the two
reflections through the string Fourier transform.
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1. Introduction

We introduce the notion of a planar para algebra (PPA),which generalizes the concept of
a planar algebra introduced by Jones [Jon98]. The idea arises naturally from considering
a grading with planar algebras. In physics a Z2 grading (charge) arises from fermions,
and a ZN grading from parafermions, a generalization of fermions. One might think of
planar para algebras as a topological quantum field theory with parafermionic defects
[Ati88,Wit88]. In place of isotopy, PPA satisfy a para isotopy relation.

PPA is a natural algebraic object to study. But the applications of PPA enhance
their value. As they relate to the physics of parafermions, it is natural to expect that
PPA have application in physics. We encounter some of these relations in Pauli X,Y, Z
matrices and in the property of reflection positivity. But shortly after writing the original
version of this paper, we were surprised to find that PPA are also relevant in the field of
quantum information. Sowehave rewritten this paper andwe elaborate on this interesting
and newly-discovered connection that we treat in detail elsewhere; see Sect. 1.5 for an
overview.
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1.1. Fundamental properties of PPA. The partition function of a planar para algebra is
a representation of planar tangles with parafermionic defects on a vector space invariant
under isotopy. Usually we require that those tangles without boundary are presented by a
scalar multiple of the vacuum vector, defined by the empty diagram. When the partition
function has the standard positivity property in planar algebra theory with respect to the
vertical reflection, we call the planar para algebra a subfactor planar para algebra; those
planar para algebras are closely related to subfactor theory.

The fundamental planar algebra is known as the Temperley–Lieb–Jones planar alge-
bra. The positivity condition for the Temperley–Lieb–Jones planar algebra was proved
by Jones’ remarkable result on the rigidity of indices [Jon83]. In Theorem 2.29, we show
that for each group ZN one can construct a planar para algebra that plays the role of the
Temperley–Lieb–Jones planar algebra in the theory of planar para algebras. We prove a
similar rigidity result for the positivity condition in Theorem 10.1 and thereby obtain a
family of subfactor planar para algebras.

For each ZN , the subfactor planar algebra in the family that has the smallest index is
called a parafermion planar para algebra (PAPPA), since it is algebraically isomorphic
to the parafermion algebra in physics, with infinitely many generators. We explore other
properties of PAPPAs in Sects. 4, 5, 6, and 8. In the first two of these sections we discuss
local properties of the algebras. In the later sections we discuss global properties.

There are two different natural states on a PAPPA. One is the Markov trace, usually
used in subfactor theory. We can realize the underlying Hilbert spaces by the Gelfand–
Naimark–Segal construction, and this gives a braid-group representation andwell-known
knot invariants.

The other natural state is the expectation in the zero-particle vector state, arising
from a standard Fock-space construction. See for example [CO14]. The corresponding
GNS representation is different, and this state is especially suitable for applications in
quantum information, see Sect. 1.5. The PAPPA not only gives a pictorial representation
of a parafermion algebra, but it also gives a picture of the underlying Hilbert space.

Furthermore, in Sect. 8 we extend the isotopy to the three-dimensional space by
introducing braids. We prove that parafermion planar para algebras are half-braided.
The diagrammatic representation of the underlying Hilbert space is compatible with the
braided isotopy.

1.2. Pauli matrices X,Y, Z. These unitary matrices are important in physics. We define
the matrices algebraically in Sect. 4. In Sect. 5 we give a variety of diagrammatic
representations of the “parafermion Pauli matrices” X,Y, Z of dimension N . These
diagrams illustrate the origin of models of X,Y, Z that are quadratic in parafermions.
They show that certain quadratic models have a special advantage, namely models of
X,Y, Z , which are neutral and therefore yield matrices that preserve charge.

With Fourier transform and theGaussian, thematrices X,Y, Z generate an interesting
projective, linear groupZ

2
N ×SL(2, ZN ). This group is the normalizer group of the Pauli

matrices, and it is usually called the Clifford group; see Sect. 9.

1.3. The stringFourier transform. Theactionof rotationonvarious defects are described
by the para degree. For usual planar algebras, a 2π rotation equals the identity. In the
case of planar fermion algebras, the 2π rotation on a fermion has the eigenvalue −1. In
the general case of planar para algebras, the 2π rotation of a ZN parafermion has the

eigenvalue e
2π i
N .
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In terms of planar para algebras, we define the string Fourier transform (SFT) Fs
on parafermion algebras as a (one-string) rotation of the diagrams. Acting on two-box
diagrams, the SFT amounts to a rotation by π

2 . It turns an ordinary product of diagrams
into a convolution product of diagrams.
• We give an elementary proof in Proposition 6.2 that in the case of zero-graded

two-string diagrams, the SFT reduces to the usual Fourier transform on ZN .

1.4. Reflection positivity. The graded commutant of the parafermion algebra on the
GNS representation can be represented pictorially in the parafermion planar algebra.
The modular conjugation � in Tomita–Takisaki theory turns out to be a horizontal
reflection. In Sect. 7 we study reflection-doubled algebras, leading to the study of the
reflection-positivity property [OS73a,OS73b]. This property is quite important in the
context of particle physics and statistical physics, where it has wide use in establishing
existence results in quantum field theory, as well as in the study of phase transitions.
Reflection positivity of parafermion algebras had been proved in a different context
[JP15b,JJ16a,JJ16b], where one finds further references to other papers on reflection
positivity. However, here we apply our diagrammatic picture to give a geometric inter-
pretation to the twisted product used in these proofs, as an intermediate state in “para-
isotopy”. This product is also invariant under a horizontal reflection homomorphism
�.

In Theorem 7.1 we give a new and geometric proof of reflection positivity that applies
to parafermion algebras as a special case, and in general to subfactor planar para algebras.
In particular, we relate the two notions of positivity mentioned above: C∗ positivity and
reflection positivity. We show that reflection positivity of a Hamiltonian in a subfactor
planar para algebra is a consequence of the C∗ positivity of the string Fourier transform
of the Hamiltonian.

The underlying mechanism that leads to reflection positivity relies on the relation
between two different reflections, one is the rotation of the other. In the planar para alge-
bra, a horizontal reflection � defines the double. On the other hand a vertical reflection
defines the adjoint ∗. These two reflections are related by a π

2 rotation, which is how
the string Fourier transform enters. We combine rotation and reflection with the isotopy
invariance of the partition function, in order to obtain the reflection positivity property.
For parafermion algebras, we show in Theorem 7.4 that reflection positivity is equivalent
to the positivity of the coupling constant matrix J 0 of the Hamiltonian for interaction
across the reflection plane.

1.5. Quantum information. We mention briefly the surprising connections that we dis-
covered linking PAPPA with quantum information. We have explored this relation in
detail in related works. The overlap with quantum information is based on the use of
diagrams arising in PAPPA. We call this work holographic software, since we present
a dictionary to translate between quantum information protocols and PAPPA diagrams
[JLW16b]. In fact central concepts in PAPPA map onto central concepts in protocols for
communication; this includes the diagrammatic representation of the resource state in
addition to diagrammatic protocols.
• The resource state is central in quantum information as a means to enable entangle-

ment between different parties. We find that the SFT yields a maximally-entangled
resource state by acting on the zero-particle state of a quantum system [JLW16b].
This state has maximal entanglement entropy.
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Fig. 1. Holographic protocol for teleportation of qudit φA
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Fig. 2. CT Protocol for teleportation of compressed transformations

• Previously, entanglement had been thought to be engendered by the topological prop-
erties of the braid.As a consequence of the relationship between quantum information
and PAPPA, we believe that it is more natural to think of the resource state as arising
from the SFT.

• Our diagram for the teleportation protocol in quantum information is extremely intu-
itive, conveying the idea of transporting the qudit φA, see Fig. 1.

Motivated by insights arising from PAPPA, we introduced compressed transforma-
tions in quantum information [JLW16a]. We also found a new, more efficient, and more
general protocol for teleportation that allows for multiple parties, each withmultiple per-
sons [JLW16a]. We illustrate this example in Fig. 2. In the special case of two persons,
this protocol covers many known protocols.
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Fig. 3. A regular planar 3-tangle

2. Planar Para Algebras

2.1. Planar tangles. Our definition of planar para algebras involves planar tangles.
These tangles are similar to the planar tangles in Jones’ original definition of planar
algebras [Jon12]. However, for readers who are not familiar with planar algebras, we
give the definitions here, indicating some main distinctive features in color or boldface.1

A planar k-tangle T will consist of a smooth closed output disc D0 inC together with
a finite (possibly empty) set D = DT of disjoint smooth input discs in the interior of
D0. Each input disc D ∈ D and the output disc D0, will have an even number 2kD ≥ 0
of marked points on its boundary with k = kD0 . Inside D0, but outside the interiors of
the D ∈ D, there is also a finite set of disjoint smoothly embedded curves called strings,
which are either closed curves, or the end points of the strings are different marked points
of D0 or of the D’s inD. Each marked point is the end-point of some string, which meets
the boundary of the corresponding disc transversally.

The connected components of the complement of the strings in
◦
D0\⋃

D∈D D are
called regions. The connected component of the boundary of a disc, minus its marked
points, will be called the intervals of that disc. Regions of the tangle are shaded (say in
gray), or they are unshaded (say in white). Shading is done in a way that regions whose
boundaries meet have different shading. Intervals have a unique shading, as only one
side of any interval lies in a region. The shading will be considered to extend to the
intervals which are part of the boundary of a region.

To each disc in a tangle there is a distinguished point on its boundary that is not an
end point of a string. The distinguished point is marked by a dollar sign $, placed to the
left of the input disc, or to the right of the output disc. This distinguished point defines
a distinguished interval for each disc.

We denote the set of all planar k-tangles for k ≥ 0 by Tk , and let T = ∪kTk . If the
distinguished interval of D0 for T ∈ T is unshaded, T will be called positive; if it is
shaded, T will be called negative. Thus Tk is the disjoint union of sets of positive and
negative planar tangles: Tk = Tk,+ ∪ Tk,−.

Definition 2.1. A planar tangle will be called regular if the distinguished point of each
disc is on the left, and the distinguished points of the input discs are ordered vertically,
as illustrated in Fig. 3. Let RT denote the set of regular planar tangles.

1 A main difference between planar and planar para algebras is that we mark a distinguished point on the
boundary of each disc, within a distinguished interval. This change is necessary, in order to describe the precise
height of Jones’ symbol $. This height is significant in the definition of para isotopy and the twisted tensor
product.
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This means that the x coordinate of each disc is the smallest one among all points on
the boundary of the disc, and the y coordinates of the input discs are pairwise different.
Let y(D) denote the y coordinate of the distinguished point of an input disc D.

In certain situations one can compose two tangles T and S to obtain a tangle T ◦D S ∈
RT. Tomake this possible, the output disc of S ∈RTmust be identical to one input disc D
of a T ∈ RT. Furthermore D must be lower than all the $’s above the $ of D, and it must
be higher than the $’s under the $ of D. Thismakes it possible to find a diffeomorphism of
the plane that moves each disc in T , other than D, to be completely higher or lower than
D. Using this representative of the planar tangle D, one can then define the composition
T ◦D S in the usual way: match the intervals and points of D in S with those of T . Also
replace any closed, contractible string formed in this composition by a scalar δ, which
we denote as the circle parameter.

2.2. Planar para algebras. Let G be a finite abelian group and χ be a bicharacter of G.

Definition 2.2. A (shaded) (G, χ) planar para algebra P• will be a family of Z/2Z-
graded vector spaces indexed by the set N ∪ {0}, having the following properties:

• Let Pn,± denote the ± graded space indexed by n.
• To each regular planar n-tangle T for n ≥ 0 and DT non-empty input discs, there
will be a multilinear map

ZT : ×i∈DTPDi → PD0 , (2.1)

wherePD is the vector space indexed by half the number of marked boundary points
of i .
• The Z2 grading of each Pi is taken to be + if the distinguished interval of Di is
unshaded, or − if it is shaded, and similarly for PD0 .

Definition 2.3. The map ZT is called the “partition function” of T and is subject to the
following five requirements:

(i) (RT isotopy invariance) If ϕ is a continuousmap from [0, 1] to orientation preserving
diffeomorphisms of C, such that ϕ0 is the identity map and ϕt (T ) ∈ RT, then

ZT = Zϕ1(T ),

where the sets of internal discs of T and ϕt (T ) are identified using ϕt , for t ∈ [0, 1].
(ii) (Naturality) If T ◦D S exists and DS is non-empty

ZT ◦DS = ZT ◦D ZS

where D is an internal disc in T .
(iii) (Grading) Each vector space Pn,± is G graded,

Pn,± = ⊕g∈GPn,±,g, and ZT : ⊗i∈DTPi,gi → PD0,
∑

i gi
.

(iv) (Para isotopy) Take Pg = ⊕n,±Pn,±,g for g ∈ G. We have

for any x ∈ Pg and y ∈ Ph
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(v) (Rotation) The clockwise 2π rotation of any g graded vector x is χ(g, g)x , i.e.,

Remark 2.4. “Planar algebras” satisfying conditions (i) and (ii) have their own interests.
Conditions (iii), (iv) and (v) are motivated by the discussion of parafermion algebras in
[JP15b,JJ16a,JJ16b].

Remark 2.5. One can remove the condition that the $ is on the left, and introduce the
rotation isotopy for arbitrary angle, not only 2π . However, this makes the definition and
computation more complicated. For convenience, we choose a representative of planar
tangles in the isotopy class by fixing the $ sign on the left.

Remark 2.6. When χ is the constant 1, the planar para algebra is a planar algebra. The
zero graded planar para subalgebra is a planar algebra.

Definition 2.7. A vector x in Pg is called homogenous. The grading of x is defined to
be g, denoted by |x |G , or |x |, if it causes no confusion.

Notation 2.8. Furthermore in case it cannot cause confusion, we omit the output disc
and the $ signs. A vector in Pm,± is called an m-box. Usually we put m strings on the
top and m strings on the bottom. Then the m-box spacePm,± forms an algebra, where
we denote the multiplication of x, y ∈ Pm,± diagrammatically by

The identity is given by the diagram with m vertical strings, denoted by Im .

Definition 2.9. We denote the graded tensor product as follows:

If x and y are homogenous, thenwe infer frompara isotopy that x⊗+ y = χ(|x |, |y|) x⊗−
y. Under the multiplication and the graded tensor product ⊗+, one obtains a (G, χ)

graded tensor category. The objects are given by zero graded idempotents and the mor-
phisms are given by maps from idempotents to idempotents. We refer the readers to
[ENO05,MPS10] for the planar algebra case.

Definition 2.10. A planar para algebra is called unital if the empty disc is a vector in
P0,±,0, called the vacuum vector.

Definition 2.11. A unital planar para algebra is called spherical, if dimP0,± = 1 and

for any 1-box x . Both P0,+ and P0,− are identified as the ground field.
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Proposition 2.12. The linear functional on m-boxes is a trace, i.e.,

We call it the (unnormalized) Markov trace.

Proof. It is enough to prove the equation for any homogenous x and y.When the grading
|x | + |y| is not 0 mod N , both sides are zeros. When the grading |x | + |y| is 0 mod N ,
applying the para isotopy and the 2π rotation of x , we obtain the equality. 
�

The normalizedMarkov trace tr onm-boxes is given by δ−m . The inclusion

fromPm,± toPm+1,± by adding one string to the right preserves the normalized trace.

2.3. String Fourier transforms. The string Fourier transform2 Fs is an important ingre-
dient in planar (para) algebras. It behaves as a rotation in planar algebras. The SFT is
defined as the action of the following tangle,

This definition is motivated by the Fourier transform on paragroups introduced by
Ocneanu [Ocn88]. We also use other rotations on the m-box space, which are pow-
ers of the SFT:

• Denote the 2π rotation by ρ2π = F2m
s .

• Denote the π rotation by ρπ = Fm
s , which one also calls the contragredient map.

Note

ρπ(xy) = ρπ(y)ρπ (x), and ρπ(x ⊗ y) = ρπ(y) ⊗ ρπ(x). (2.2)

• For even m, denote the π
2 rotation by ρπ

2
= F

m
2
s . This can also be considered as the

string Fourier transform.

We refer the readers to Section 4 in [Liua] and [JLW16c] on the study of the string
Fourier transform on subfactor planar algebras.

2 We originally called this transformation the “quantum Fourier transform”. Afterwards we realized that in
quantum information one gives this name to usual Fourier series on Zd . So we replace “quantum” by “string”
to reflect the geometric nature of this transformation.
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2.4. Reflections. Two reflections that play distinct roles are reflections about a vertical or
horizontal line. The vertical reflection defines the usual adjoint in a planar para algebra.

Definition 2.13. We say a planar para algebraP• is a *-algebra, if there is an anti-linear
involution ∗ : Pm,±,g → Pm,±,−g , for each m and g ∈ G; and ZT ∗(x∗) = ZT (x)∗,
for any x in the tensor power of Pn,±, where the tangle T ∗ is the vertical reflection of
the tangle T .

Definition 2.14. An anti-linear involution � on the unshaded planar para algebraP• is
called a horizontal reflection, if � : Pm,±,g → Pm,±,−g , for each even m and g ∈ G;
� : Pm,±,g → Pm,∓,−g , for each odd m and g ∈ G; and �(ZT (x)) = Z�(T )(�(x)),
where the tangle �(T ) is the horizontal reflection of the tangle T . In particular, the
reflection � acts as �(x ⊗+ y) = �(y) ⊗− �(x) and �(xy) = �(x)�(y).

Consider the example of the group G = ZN , and the bicharacter χ( j, k) = q jk ,

where q = e
2π i
N . Choose ζ to be a square root of q such that ζ N2 = 1. Then

ζ =
{

−e
π i
N , if N is odd

±e
π i
N , if N is even

. (2.3)

In the odd case with one solution, also ζ N = 1. In the even case one must choose one
of the two solutions throughout, and also ζ N = −1.

Proposition 2.15. Let ζ be a square root of q = e
2π i
N , such that ζ N2 = 1. Define

ω = 1√
N

N−1∑

j=0

ζ j2 . Then |ω| = 1. (2.4)

Remark 2.16. Note that this result differs from the classical Gaussian sum in a non-trivial
way. In particular ζ is a 2N th root of unity, rather than an N th root of unity, when N is
even. This choice of ζ is important as the corresponding braid that we construct in Sect. 8
is the limit of the solution the Yang–Baxter equation in the Fateev–Zamolodchikov
model.

Proof. The Fourier transform F on ZN is

(F f )( j) = 1√
N

N−1∑

i=0

qi j f (i), with inverse (F2 f )(−i) = f (i). (2.5)

Let f (i) = ζ i
2
and g( j) = ζ− j2 . Then

(F f )( j) = 1√
N

N−1∑

i=0

qi j ζ i
2 = 1√

N

N−1∑

i=0

ζ (i+ j)2 ζ− j2 = ω g( j).

In the last equality, we use that ζ N2 = 1, so the sum of ζ (i+ j)2 over i is independent of
j . Similarly (Fg)(i) = ω f (i). But using the Fourier inversion identity of (2.5), as well
as f (−i) = f (i) in our case, we infer |ω|2 = 1. 
�
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Recall that the 2π rotation is not the identity on a (ZN , χ) planar para algebra. Also
recall that for ζ 2N = ζ N2 = 1, the power ζ−|x |2 is well-defined.

Definition 2.17. Define the reflection � = �ζ as an antilinear extension of the operator
on homogeneous elements x given by

�(x) = ζ−|x |2ρπ(x∗). (2.6)

Proposition 2.18. On a (ZN , χ) planar para *-algebra, the map � defined in (2.6) is a
horizontal reflection.

Proof. The horizontal reflection is the composition of an anti-clockwise π rotation, a
vertical reflection and a complex conjugation. Suppose T (x) is a labelled tangle for a
regular planar tangle T and x = ⊗i xi . Assume that the i th label xi is graded by gi . Then
the label �(xi ) in �(x) is graded by −gi , and �(xi ) = ζ−g2i ρπ(xi ). The para isotopy
of each pair of labels contributes a scalar q(−gi )(−g j ). Therefore

Z�(T )(�(x)) =
∏

i

ζ−g2i ×
∏

i,i ′
q−gi gi ′ ρπ(ZT ∗(x∗))

= ζ−|x |2ρπ(ZT (x)∗)
= �(ZT (x))


�

2.5. The twisted tensor product. To introduce reflection positivity, the reflection �(x)
should be the horizontal reflection of x ; it should be represented as a box beside x ,
namely on the same level, with also the $ signs on the same horizontal level. But equal
levels are not permitted in planar para algebras.

In order to avoid this difficulty, we introduce the twisted tensor product, which plays
the same role as the twisted product for parafermion algebras in [JP15a,JJ16b]. For any
homogenous x , we have |�(x)| = −|x |. By para isotopy,

�(x) ⊗+ x = q−|x |2�(x) ⊗− x .

Definition 2.19 (Twisted tensor product). Let the twisted tensor product of �(x) and x
be

�(x) ⊗t x := ζ |x |2�(x) ⊗+ x = ζ−|x |2�(x) ⊗− x, (2.7)

pictorially denoted by putting x and �(x) on the same level,

�(x)

· · ·

· · ·
x

· · ·

· · ·
. (2.8)

Proposition 2.20. For homogenous x and y inSm,±, we have

(�(x) ⊗t x)(�(y) ⊗t y) = �(xy) ⊗t xy.
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Proof. It follows from the equality ζ |x |2ζ |y|2q |x ||y| = ζ (|x |+|y|)2 . 
�
Proposition 2.21. For any homogenous m-box x, we have

Proof. Note that �(x) ⊗t x = ρπ(x∗) ⊗+ x . Applying F−m
s , we obtain the equality by

isotopy. 
�
Definition 2.22 (General twisted tensor product). To define the twisted tensor product
in general, we lift the grading from ZN to Z and define the twisted tensor product based
on the lifted grading. Suppose x and y are homogenous, i, j ∈ Z, such that |x |, |y| are
i, j mod N . We define the twisted tensor product of (x, i) and (y, j) as

(x, i) ⊗t (y, j) := (ζ−i j x ⊗+ y, i + j) = (ζ i j x ⊗− y, i + j). (2.9)

We define � as �((x, i)) = x . Then �((x, i) ⊗t (y, j)) is an interpolation between
x ⊗+ y and x ⊗− y.

Note that when N is odd, the interpolation ζ−i j x ⊗+ y is independent of the choice
of i, j . When N is even, there are two interpolations depending on the choice of i, j .
We use

x, i

· · ·

· · ·
y, j

· · ·

· · ·
, to denote ζ−i j x ⊗+ y. (2.10)

Moreover, we define (x, i)∗ := (x∗,−i) and �((x, i)) := (�(x),−i). We can draw
multiple diagrams on the same vertical level by the following proposition.

Proposition 2.23. For x, y, z inS•, we have

((x, i) ⊗t (y, j)) ⊗t (z, k) = (x, i) ⊗t ((y, j) ⊗t (z, k)). (2.11)

Proof. It follows from the fact that i j + (i + j)k = i( j + k) + jk. 
�
Proposition 2.24. For x, y inSm,±, we have

�(�((x, i)) ⊗t (y, j)) = �((y, j)) ⊗t (x, i), (2.12)

(�((x, i)) ⊗t (y, j))∗ = �((x, i)∗) ⊗t (y, j)∗. (2.13)

Proof. They follow from the definitions of ⊗t ,�, ∗. 
�
Notation 2.25. In the parafermion planar para algebras (PAPPA) (see Sect. 3), if x is a
homogenous 1-box, then (x, i) is determined by i . Thus we simply use i to denote (x, i).
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2.6. Subfactor planar para algebras. The m-box space of a planar para *-algebra has
an inner product tr(x∗y) form-boxes x and y. We use the normalized trace defined after
Proposition 2.12.

Definition 2.26. A subfactor planar para algebra P• will be a spherical planar para
*-algebra with dimPm,± < ∞ for all m, and such that the inner product is positive.

Remark 2.27. We call it a subfactor planar para algebra, because a subfactor planar para
algebra is the graded standard invariant of a G graded subfactor. The general theory will
be discussed in a coming paper. Motivated by the deep work of Popa [Pop90,Pop94], we
conjecture that strongly amenable graded hyperfinite subfactors of type II1 are classified
by subfactor planar para algebras.

When χ = 1, the subfactor planar para algebraP• is a (G graded) subfactor planar
algebra. The zero graded part of a subfactor planar para algebra is a subfactor planar
algebra.

Many notions of subfactor planar algebras are inherited for subfactor planar para
algebras, such as the Jones projections, the basic construction, principal graphs, depths.
We refer the readers to [Jon83,Jon98] for the planar algebra case.

Definition 2.28. A subfactor planar para algebra P• is called irreducible, if
dimP1,±,0 = 1.

2.7. Examples. Skein theory is a presentation theory for planar algebras in terms of
generators and (algebraic and topological) relations. One can study the skein theory for
planar para algebras in a similar way. We refer the reader to [Jon98] for the skein theory
of planar algebras (in Sect. 1) and many interesting examples (in Sect. 2). Also see
[BMPS12,Liub] for the skein-theoretic construction of the extended Haagerup planar
algebra and a new family of planar algebras.

Let us construct a spherical unshaded planar para algebra with the para symmetry
(ZN , χ).We take the same bicharacter that we considered in Sect. 2.4, namely χ( j, k) =
q jk , where q = e

2π i
N and choose ζ to be a square root of q given in (2.3), such that

ζ N2 = 1. This planar para algebra plays the role of the Temperley–Lieb–Jones planar
algebra among planar para algebras with para symmetry (ZN , χ).

We now consider the value δ of the circle parameter as a variable. Let P• be the
unshaded planar algebra over the field C(δ) generated by a 1-box c, graded by 1, and
satisfying the following relations:

(1)

(2) =0, for 1 ≤ k ≤ N − 1, = δ, for k = 0,

(3) , namely Fourier-parafermion relation,

where δ is the circle parameter and denotes a through string with k labels c.
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c
c

c
c

c

Fig. 4. A regular planar 6-tangle labelled by c

Precisely, the vectors inPm are linear sums of regular planarm-tangles labelled by c
modulo the relations, see Fig. 4. The para isotopy can also be viewed as relations (2.14),

(2.14)

Regular planar tangles act on labelled regular planar tangles by gluing the diagrams.
The planar para algebra is called evaluable by the relations, if dim(Pm) < ∞, and

dim(P0) ≤ 1, i.e., any regular labelled planar 0-tangle can be reduced to an element of
the ground field.

The relations are called consistent, if dim(P0) = 1, i.e., different processes of
evaluating a regular labelled planar 0-tangle give the same value in the ground field. In
this case, the map from regular labelled planar 0-tangles to the ground field is called the
partition function, denoted by Z .

Theorem 2.29. The above relations of the generator c are consistent and the unshaded
planar para algebra P• is evaluable and spherical over the field C(δ).

Proof. See Appendix A. 
�
When δ is a real number, we introduce the vertical reflection on P• mapping c to

c−1(= cN−1). Note that the involution preserves the relations of c, thus it is well-defined
on the planar para algebraP•. SoP• is a planar para *-algebra over C. We will prove
that the partition function Z is positive semi-definite with respect to * in Sects. 3 and 10
and construct subfactor planar para algebras by taking a proper quotient.

Note that the 1-box space of a (G, χ) planar para algebra forms a finite dimensional
G graded algebra with a G graded trace. (Here a G graded trace means that the trace
of any non-zero graded vector is zero.) On the other hand, given an Abelian group G, a
bicharacter χ ofG, and any finite dimensionalG graded algebra Awith aG graded trace
τ , we can construct a shaded (G, χ) planar para algebraP(A)with the circle parameter δ

over the fieldC(δ). The generators ofP(A) are 1-boxes , for all x ∈ A. The grading

of the a generator is defined as its grading in A, when the generator is homogenous in
A. The relations are given by
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(1)

(2)

for any x, y ∈ A.

Remark 2.30. The (G, χ) para isotopy and the 2π rotation of the generators follow from
definitions, so they can be considered as trivial relations.

Theorem 2.31. The above relations are consistent and the shaded (G, χ) planar para
algebra P(A) is evaluable and spherical over the field C(δ).

Proof. The proof is similar to that of Theorem 2.29. 
�
In the case of PAPPA, theZN graded algebra A is given by the N dimensional algebra

generated by c and cN = 1. TheG graded trace is given by τ(ck) = 0, for 1 ≤ k ≤ N−1,
and tr(1) = 1.

Remark 2.32. The shading is necessary in the above construction. It is a non-trivial fact
that we can lift the shading of PAPPA.

3. Parafermion Planar Para Algebras

In this section, we take δ = √
N and study the planar para algebra P• over the field

C. Recall that P• is a planar para *-algebra with the vertical reflection * defined as an
extension of c∗ = c−1.

The kernel of the partition function ker(Z) = ⋃
m,±{x ∈ Pm,±|Z(tr(xy)) =

0,∀y ∈ Pm,±} is an ideal of U (P), in the sense that any fully labelled regular planar
tangle with a label in ker(Z) is in ker(Z). Thus action of regular planar tangles is well
defined on the quotient P/ ker(Z).

We prove that the following relation holds in P/ ker(Z):

(3.1)

Recall that the twisted tensor product is defined as

By relation 3.1, any fully labelled regular planar tangle is a linear sum of labelled regular
planar tangles with only labelled vertical strings. The algebra generated by labelled
vertical strings is a parafermion algebra, see Sect. 6.1 for the definition of parafermion
algebras. Therefore we call the planar para algebra P/ ker(Z) the parafermion planar
para algebra (PAPPA), denoted by PF•. We prove that PF• is a subfactor planar para
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algebra. We use this C∗ positivity condition to prove reflection positivity in Sect. 7. We
give some interesting properties of the parafermion planar para algebra in Sects. 4 and
6. Further applications in quantum information of these topological isotopy and braided
relations in Sect. 8 are discussed in [JLW16b].

Notation 3.1. Take

Then it is easy to check that v
j
i v

l
k = δ j,kv

l
i , and (v

j
i )

∗ = vij . In particular, {vii } are
pairwise orthogonal idempotents.

Lemma 3.2. The vector I2 − ∑
i∈ZN

vii is in the kernel of the partition function ofP•.

Proof. The 2-box space has a generating set

Take x = I2 − ∑
i∈ZN

vii ∈ ker(Z). It is easy to check that tr(xy) = 0 for any 2-box y.
By the spherical property, we have that any 0-tangle labelled by x is isotopic to tr(xy)
for some 2-box y. So x is in the kernel of the partition function. 
�

Thus we have the relation I2 = ∑
g∈G vg in the quotient (P/ ker Z)•, i.e.,

(3.2)

Take the string Fourier transform Fs on both sides, i.e., the π
2 rotation. We obtain (3.1).

Lemma 3.3. The vectors ci1 ⊗+ ci2 · · · ⊗+ cim , i.e.,

iii

form an orthonormal basis of (P/ ker Z)m.

Proof. Any m-box is a linear sum of labelled Temperley–Lieb diagrams. Applying
the relation 3.1, any labelled Temperley–Lieb diagram is a linear sum of the vectors
cn1 ⊗+cn2 · · ·⊗+cnm , 0 ≤ n1, n2, . . . , nm ≤ N−1. Thus these vectors form a generating
set of P/ ker Z•. It is easy to check that these vectors form an orthonormal basis with
respect to the Markov trace. 
�
Theorem 3.4. When δ = √

N, the kernel of the partition function ker Z is generated by
id − ∑

i∈ZN
vii , and P/ ker Z is a subfactor planar para algebra.

Proof. The proof is a consequence of Lemmas 3.2 and 3.3. 
�



Planar Para Algebras, Reflection Positivity 111

4. Parafermion Pauli Matrices

We define unitary N × N matrices X,Y, Z that play the role in the parafermion algebra
of the 2 × 2 Pauli matrices σx , σy, σz for fermions. We call the matrices X,Y, Z the
parafermion Pauli matrices. They act on an N -dimensional Hilbert space with basis
vectors indexed by ZN . In Sect. 4.2 we define these matrices and determine some of
their properties.

In Sect. 4.3 we give different ways to represent X,Y, Z as quadratic functions of
parafermions, acting on a larger space. Each matrix X,Y, Z is defined as a particle-anti
particle pair, namely a twisted product of one parafermion and the inverse of another.
Restricted to a subspace γ = 1, with γ defined in (4.15), we obtain a representation of
the matrices X,Y, Z .

4.1. Parafermion Pauli matrices: version q. Let us use Dirac notation for vectors, and
take the ortho-normal basis for an N -dimensional Hilbert space: { |k〉 | k ∈ ZN }. Choose
q = e

2π i
N and its square root ζ such that ζ N2 = 1, as in (2.3). Define the Pauli matrices

X,Y, Z by their action on the basis,

X |k〉 = |k + 1〉 , Y |k〉 = ζ 1−2k |k − 1〉 , and Z |k〉 = qk |k〉 . (4.1)

Clearly X,Y, Z are unitary. For any N ∈ N, these matrices satisfy a first set of
parafermion Pauli matrix relations,

XN = Y N = ZN = 1, XY = q Y X, Y Z = q ZY, and Z X = q X Z . (4.2)

They also satisfy a second set of parafermion Pauli matrix relations that involve ζ ,

XY Z = Y Z X = Z XY = ζ. (4.3)

In case N = 2, the choices

ζ = i, |0〉 =
(
1
0

)

, and |1〉 =
(
0
1

)

, (4.4)

yield the standard representation of the Pauli matrices; the choice ζ = −i yields the
complex conjugate of the usual representation.

4.1.1. Quaternion relations: version q. One has a parafermion quaternion algebra
related to the matrices X,Y, Z . These are N × N matrices i , j , k which satisfy the
parafermion quaternion relations:

iN = j N = kN = −1, i j = q−1 j i, j k = q−1 k j ,

ki = q−1 i k, and i j k = −1. (4.5)

This algebra arises from the three unitary transformations i , j , k by

i = −ζY, j = −ζ X, k = −ζ−1Z . (4.6)

The desired relations (4.11) are a consequence of (−ζ±1)N = −1. The matrices i , j , k
generate the algebra of N × N matrices.
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4.2. Parafermion Pauli matrices: version q−1 . As in version I, take the ortho-normal

basis for an N -dimensional Hilbert space: { |k〉 | k ∈ ZN }. Choose q = e
2π i
N and its

square root ζ such that ζ N2 = 1, as in (2.3). Define the Pauli matrices X,Y, Z by their
action on the basis,

X |k〉 = |k − 1〉 , Y |k〉 = ζ−2k−1 |k + 1〉 , and Z |k〉 = qk |k〉 . (4.7)

Clearly X,Y, Z are unitary. For any N ∈ N, these matrices satisfy a first set of
parafermion Pauli matrix relations,

XN = Y N = ZN = 1, XY = q−1 Y X, Y Z = q−1 ZY, and Z X = q−1 X Z .

(4.8)

They also satisfy a second set of parafermion Pauli matrix relations that involve ζ ,

XY Z = Y Z X = Z XY = ζ−1. (4.9)

In case N = 2, the choices

ζ = −i, |0〉 =
(
1
0

)

, and |1〉 =
(
0
1

)

, (4.10)

yield the standard representation of the Pauli matrices; the choice ζ = i yields the
complex conjugate of the usual representation.

4.2.1. Quaternion relations: version q−1. One has a parafermion quaternion algebra
related to the matrices X,Y, Z . These are N × N matrices i , j , k which satisfy the
parafermion quaternion relations:

iN = jN = kN = −1, i j = q j i, j k = q k j , ki = q i k, and i j k = −1.

(4.11)

This algebra arises from the three unitary transformations i , j , k by

i = −ζ−1Y, j = −ζ−1X, k = −ζ Z . (4.12)

As in version q, we use (−ζ±1)N = −1. Again, the matrices i , j , k generate the algebra
of N × N matrices.

4.3. Quadratic representations by parafermions. In this subsection we introduce the
representation of X,Y, Z by quadratic expressions in four parafermion operators. How-
ever these operators may satisfy different relations with respect to q, an N th root of unity
and ζ = q1/2. We introduce a common grading transformation γ that is shared among
the different subcases discussed in the following sub subsections.

Let c1, c2, c3, c4 denote four parafermion operators that satisfy the relations

ci c j = q c j ci , for i < j, and cNi = 1, where q = e
2π i
N . (4.13)

Let

ζ = q1/2, with ζ N2 = 1. (4.14)

Define the grading operator as

γ = qc1c
−1
2 c3c

−1
4 = (qc−1

1 c2c
−1
3 c4)

−1. (4.15)
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4.3.1. Model (q, 1). This model comes from X,Y, Z sharing c1, and taking

X̂ = ζ c1c
−1
4 , Ŷ = ζ c−1

1 c3, Ẑ = ζ c1c
−1
4 . (4.16)

These matrices have the property that they satisfy the first set of parafermion Pauli
relations given in (4.2) for X,Y, Z , namely

X̂ N = Ŷ N = Ẑ N = 1, X̂ Ŷ = q Ŷ X̂ , Ŷ Ẑ = q Ẑ Ŷ , Ẑ X̂ = q X̂ Ẑ . (4.17)

In this case one also finds that

X̂ Ŷ Ẑ = Ŷ Ẑ X̂ = Ẑ X̂ Ŷ = ζγ, (4.18)

with γ given in (4.15). This shows that γ commutes with X̂ , Ŷ , and Ẑ . Thus one achieves
the desired Pauli relation X̂ Ŷ Ẑ = ζ representing (4.3) on the subspace for which the
unitary γ = 1.

4.3.2. Model (q−1, 4). In this model q−1 replaces q, and the matrices share c4. Define

X̂ = ζ c−1
1 c4, Ŷ = ζ c2c

−1
4 , Ẑ = ζ c−1

3 c4. (4.19)

These matrices have the property that they satisfy the first set of parafermion Pauli
relations given in (4.8) for X,Y, Z , namely

X̂ N = Ŷ N = Ẑ N = 1, X̂ Ŷ = q−1 Ŷ X̂ , Ŷ Ẑ = q−1 Ẑ Ŷ , Ẑ X̂ = q−1 X̂ Ẑ .

(4.20)

Furthermore the product X̂ Ŷ Ẑ has the form

X̂ Ŷ Ẑ = Ŷ Ẑ X̂ = Ẑ X̂ Ŷ = ζ−1γ −1. (4.21)

This relation shows that γ commutes with X̂ , Ŷ , and Ẑ . So the product X̂ Ŷ Ẑ = ζ−1

gives the desired (4.9), on the eigenspace for which the unitary operator γ = 1.

4.3.3. Model (q, 4). Here we have q in the parafermion relation and X,Y, Z share c4.
Define

X̂ = ζ c−1
3 c4, Ŷ = ζ c2c

−1
4 , Ẑ = ζ c−1

1 c4. (4.22)

These operators satisfy

X̂ N = Ŷ N = Ẑ N = 1, X̂ Ŷ = q Ŷ X̂ , Ŷ Ẑ = q Ẑ Ŷ , Ẑ X̂ = q X̂ Ẑ . (4.23)

Furthermore

X̂ Ŷ Ẑ = Ŷ Ẑ X̂ = Ẑ X̂ Ŷ = ζγ −1, (4.24)

with the same γ as in (4.15). Again γ commutes with X,Y, Z and the relationship (4.27)
reduces to the desired X̂ Ŷ Ẑ = ζ in (4.3) on the eigenspace γ = 1.
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4.3.4. Model (q−1, 1). This model has q−1 and X,Y, Z share c1. Take

X̂ = ζ c−1
1 c2, Ŷ = ζ c1c

−1
3 , Ẑ = ζ c−1

1 c4. (4.25)

Then these operators represent (4.8), namely

X̂ N = Ŷ N = Ẑ N = 1, X̂ Ŷ = q−1 Ŷ X̂ , Ŷ Ẑ = q−1 Ẑ Ŷ , Ẑ X̂ = q−1 X̂ Ẑ .

(4.26)

In this case one also finds that

X̂ Ŷ Ẑ = Ŷ Ẑ X̂ = Ẑ X̂ Ŷ = ζ−1γ −1, (4.27)

with γ as in (4.15). Again γ commutes with X,Y, Z . So the relationship represents the
desired X̂ Ŷ Ẑ = ζ−1 in (4.9) on the eigenspace γ = 1.

5. Pictorial Representations of Parafermion Pauli Matrices

Here we give several different diagrammatic representations for the matrices X,Y, Z
introduced in Sect. 4.We give alternative representations as different ones can be helpful
in different situations. We call these two string and four string models, as the transfor-
mations X,Y, Z are given by diagrams with two strings or four strings respectively. We
number the subsections here to correspond, as well as possible, to the numbering of
subsections in Sect. 4.

In the two-string models, we represent X,Y, Z as N × N matrices. In the four-string
models, we represent X̂ , Ŷ , Ẑ as N 2 × N 2 matrices. They are zero-graded, reflecting
their definition as particle-anti particle products in Sect. 4. Hence they leave invariant
subspaces of dimension N which have fixed grading. On the zero-graded subspace, the
matrices X̂ , Ŷ , Ẑ represent the matrices X,Y, Z .

The diagrams give a simple interpretation to the matrices X̂ , Ŷ , Ẑ in the four-string
models, and show how they leave the appropriate subspace invariant. Throughout this
section take δ = √

N .
We call these the different types of four string models the QI Model and the OA

Model. They correspond naturally to the representations that arise from the zero-particle
state (vectors as two caps) and the Markov trace (vectors as nested caps), mentioned in
the introduction. These representations are especially suitable for quantum information
(QI) and operator algebras (OA), respectively. The second model is a generalization
of the well-known representation for Pauli matrices by Majoranas, commonly used in
condensed-matter physics. The first model is different. In both cases the Pauli matrices
are products of parafermion particle operators with their anti-particle operators.

5.1. The two-string model version q. In this model, we deal with the X,Y, Z directly.
We represent the vector |k〉 by the cap diagram

|k〉 = N− 1
4 k . (5.1)

The vertical reflection gives the adjoint, or dual vector 〈k|, which we represent as the
cup diagram

〈k| = N− 1
4 −k , (5.2)

so that
〈
k, k′〉 = 〈k ∣

∣k′〉 = δkk′ .
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The parafermion Pauli matrices X , Y and Z act on these vectors. We represent them
as

X = 1 , Y = −1 , Z = −11 . (5.3)

In the diagram for Z , we place the labels on the same vertical level, using the notation
for the twisted tensor product in Sect. 2.5. From the diagrams it is clear that

XY Z = ζ. (5.4)

If we represent the basis in the n-fold tensor product |k〉 = |k1, k2, . . . , kn〉 as

|k〉 = 1

dn/4

k1
k2

kn· · · , (5.5)

then we obtain the Jordan–Wigner transformation as:

1 ⊗ · · · ⊗ 1 ⊗ X ⊗ 1 ⊗ · · · ⊗ 1 = 1 · · ·-1 1 -1 1· · · , (5.6)

1 ⊗ · · · ⊗ 1 ⊗ Y ⊗ 1 ⊗ · · · ⊗ 1 = -1 · · ·1 -1 1 -1· · · , (5.7)

1 ⊗ · · · ⊗ 1 ⊗ Z ⊗ 1 ⊗ · · · ⊗ 1 = 1 -1 · · ·· · · . (5.8)

If we represent the basis in the n-fold tensor product |k〉 = |k1, k2, . . . , kn〉 as

|k〉 = 1

dn/4 k1
k2

kn

· · · , (5.9)

then we obtain the Jordan–Wigner transformation as:

1 ⊗ · · · ⊗ 1 ⊗ X ⊗ 1 ⊗ · · · ⊗ 1 = 1· · · -11-11 · · · , (5.10)

1 ⊗ · · · ⊗ 1 ⊗ Y ⊗ 1 ⊗ · · · ⊗ 1 = -1· · · 1-11-1 · · · , (5.11)

1 ⊗ · · · ⊗ 1 ⊗ Z ⊗ 1 ⊗ · · · ⊗ 1 = -11· · · · · · . (5.12)
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5.2. The two-string model version q−1. In this model, we deal with the X,Y, Z directly.
We represent the vector |k〉 by the cap diagram

|k〉 = N− 1
4 k . (5.13)

The vertical reflection gives the adjoint, or dual vector 〈k|, which we represent as the
cup diagram

〈k| = N− 1
4 −k , (5.14)

so that
〈
k, k′〉 = 〈k ∣

∣k′〉 = δkk′ .
The parafermion Pauli matrices X , Y and Z act on these vectors. We represent them

as

X = −1 , Y = 1 , Z = −11 . (5.15)

From the diagrams it is clear that

XY Z = ζ−1. (5.16)

We have the Jordan–Wigner transformation similarly.

5.3. Four-string models. We have the diagram yielding the zero-particle state used in
quantum information (QI),

|k〉 = N− 1
2 . (5.17)

We also have the diagram yielding the Markov tracial state used in operator algebra
theory (OA),

|k〉 = N− 1
2 . (5.18)

Also we have the diagram for the grading operator

γ = -11-11 . (5.19)

We call γ the grading operator, since it detects the grading when acting on the underling
vectors.

j
i

-11-11 = qi+ j
j

i

. (5.20)

Hence the eigenspace γ = 1 defines the zero-graded subspace.
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5.3.1. The (QI,q) four string model. This model corresponds to the X̂ , Ŷ and Ẑ with q
and with the shared first string. This corresponds to the algebraic model of Sect. 4.3.1
with the shared operator c1. Here we use the quantum information (QI) representation
for vectors.

The basis states |k〉 belong to the zero-graded part of the tensor product of two copies
of the two-string model. We represent the vector |k〉 and its adjoint by

|k〉 = N− 1
2 −kk , and 〈k| = N− 1

2 k−k . (5.21)

Furthermore the parafermion Pauli matrices X̂ , Ŷ and Ẑ are

X̂ = -11 , Ŷ = 1-1 , Ẑ = -11 . (5.22)

Note that here the labels are at the same vertical level, so they correspond to the twisted
tensor product of Sect. 2.5. Multiplying these representations, we see

X̂ Ŷ Ẑ = ζγ,

with γ in (5.19). Hence γ = 1 on the zero-graded subspace on which the matrices X̂ ,
Ŷ , and Ẑ satisfy the correct algebraic relations. The diagrams show that X̂ , Ŷ , and Ẑ
preserve the grading and that they commute with γ .

5.3.2. The (QI, q−1) four-string model. This model corresponds to the parafermion

representation of X̂ , Ŷ and Ẑ given in Sect. 4.3.2 with q−1 and a shared fourth string.
Again we use the quantum information (QI) representation for vectors.

The vectors |k〉 belong to the zero-graded part of the tensor product of two copies of
the two-string model. We represent the vector |k〉 and its adjoint by

|k〉 = N− 1
2 −kk , and 〈k| = N− 1

2 k−k . (5.23)

The parafermion Pauli matrices X̂ , Ŷ and Ẑ

X̂ = 1-1 , Ŷ = -11 , Ẑ = 1-1 . (5.24)

Also

γ −1 = ζ X̂ Ŷ Ẑ = 1-11-1 .

This acts on vectors as

j
i

1-11-1 = q−i− j

j
i

. (5.25)
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5.3.3. The (OA, q) four-string model. This model corresponds to the parafermion rep-

resentation of X̂ , Ŷ and Ẑ given in Sect. 4.3.3 with q and a shared fourth string. Here
we use the operator algebra (OA) representation for vectors.

We represent the vector |k〉 and its dual 〈k| by

|k〉 = N− 1
2

k −k
, and 〈k| = N− 1

2

−k k
. (5.26)

The Pauli matrices X , Y and Z are represented by

X̂ = -1 1 , Ŷ = -11 , Ẑ = 1-1 . (5.27)

The grading operator that occurs is represented by

γ −1 = ζ−1 X̂ Ŷ Ẑ = 1-11-1 . (5.28)

5.3.4. The (OA, q−1) four-string model. This model corresponds to the parafermion

representation of X̂ , Ŷ and Ẑ given in Sect. 4.3.4 with q−1 and a shared first string. Here
we use the operator algebra (OA) representation for vectors.

We represent the vector |k〉 and its dual 〈k| by

|k〉 = N− 1
2

k −k
, and 〈k| = N− 1

2

−k k
. (5.29)

The Pauli matrices X , Y and Z are presented by

X̂ = -1 1 , Ŷ = -11 , Ẑ = 1-1 . (5.30)

The grading operator γ is represented by

γ −1 = ζ X̂ Ŷ Ẑ = 1-11-1 . (5.31)

6. A Pictorial Interpretation of Parafermion Algebras

6.1. Parafermion algebras. The parafermion algebra is defined by generators: ci , i =
1, 2, . . . and relations,

cNi = 1, ci c j = q c j ci , for i < j, with q = e
2π i
N . (6.1)

Denote the parafermion algebra generated by ci , 1 ≤ i ≤ m as PFm . It has a basis
CI = ci11 c

i2
2 · · · cimm , for 0 ≤ i1, i2, . . . , im ≤ N − 1. The expectation on PFm is defined

as tr(1) = 1, tr(CI ) = 0, if CI �= 1. It is a tracial state. The inclusion from PFm to
PFm+1 is trace preserving.
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Remark 6.1. If we apply the Gelfand–Naimark–Segal construction to the inductive limit
limm→∞ PFm with respect to the tracial state, then we obtain a hyperfinite factorR of
type II1. The Bernoulli shift ci → ci+1 is an endomorphism ρ of the factorR. We claim
that the graded standard invariant of the corresponding subfactor R ⊃ ρ(R) is exactly
the subfactor planar para algebra for parafermions with δ = √

N . The details will appear
in the coming paper mentioned in Remark 2.27.

6.2. Actions of planar tangles on parafermion algebras. In planar para algebras, the

labelled regular planarm-tangle is presented by the vector ci11 c
i2
2 · · · cimm in PFm .

The Markov trace is the expectation on PFm in Proposition 2.12,

The multiplication tangle gives the usual multiplication on PFm given in notation
2.8.

The tangle is the trace preserving inclusion from PFm to PFm+1.

The tangle is the trace preserving conditional expectation from PFm to

PFm−1.
We also have the graded tensor products from PFm⊗̂PFn to PFm+n given by Defi-

nition 2.9.

6.3. Temperley–Lieb subalgebras. Take

Ei = 1√
N

N−1∑

k=0

q
k2
2 cki c

−k
i+1 = 1√

N

N−1∑

k=0

q− k2
2 c−k

i+1 c
k
i .

From Equation (3.1), we infer that Ei is presented by The Ei satisfy the fol-

lowing relations and generate a Temperley–Lieb subalgebra in the parafermion algebra:

(1) Ei = E∗
i = 1√

N
E2
i .

(2) Ei E j = E j Ei , for |i − j | ≥ 2.
(3) Ei Ei±1 Ei = Ei .

One can check the following joint relations for Ei and ci algebraically,

Ei c
k
i = q− k2

2 Ei c
k
i+1,

cki Ei = q
12
2 cki+1Ei .

They can also be derived from the relation .
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6.4. String Fourier transform. The string Fourier transform is an important ingredient in
subfactor planar (para) algebras. Since the parafermion algebra forms a subfactor planar
para algebra, we can introduce the string Fourier transform on parafermion algebras.
Its algebraic definition is complicated, but its topological definition is simply a rotation.
The string Fourier transform Fs is given by the action of the following tangle,

Algebraically the string Fourier transform on PFm is defined as follows: We first
embed PFm in PFm+1 by mapping ci to ci+1. The inclusion is denoted by ιl . Let �r
be the trace preserving conditional expectation from PFm+1 to the subalgebra PFm
generated by c1, c2, . . . , cm . Then the string Fourier transform of x ∈ PFm is defined
as Fs(x) = √

N�r (EmEm−1 · · · E1ιl(x)).
In particular, the zero graded part of the 2-box space has a basis

Moreover, the basis forms the group ZN :

Proposition 6.2. The restriction of the string Fourier transform on the zero graded part
of 2-box space is the discrete Fourier transform on the group ZN :

(6.2)

Proof. Diagrammatically,

by Proposition 2.21,

by Equation 3.1,

by para isotopy. 
�

Note that the 2-box space forms an N by N matrix algebra. Thus we can extend the
Fourier transform on the group ZN to the string Fourier transform on N × N matrices.
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6.5. Matrix units. With the help of the pictures, we constructmatrix units of parafermion
algebras. The matrix units of PF2m are given by

,

for 0 ≤ i1, i ′1, i2, i ′2, . . . , im, i ′m ≤ N−1. Note that PF1 is the group algebra forZN . The

N minimal projections of PF1 are given by Qi = 1

N

∑N−1

j=0
qi j c j1 , for 0 ≤ i ≤ N − 1.

The matrix units of PF2m+1 are given by

for 0 ≤ i, i1, i ′1, i2, i ′2, · · · , im, i ′m ≤ N − 1. If we apply the relation 3.1, then the matrix

units can be expressed in terms of the usual basis of the parafermion algebra

PFm .

7. Reflection Positivity

In this section, we will apply the string Fourier transform on subfactor planar para
algebras to prove the reflection positivity.

7.1. General case. Suppose S is a (ZN , χ) subfactor planar para *-algebra, where

χ(i, j) = qi j , q = e
2π i
N . Recall that ζ is a square root of q and ζ N2 = 1. Then ζ |x |2 is

well-defined for any homogenous x . By Proposition 2.18, themap�(x) = ζ−|x |2ρπ(x∗)
extends anti-linearly to a horizontal reflection on a subfactor planar para algebra.

In Proposition 2.21, we proved that

for any homogenous m-box x . Note that the lower half of is the adjoint of the

upper half. Thus
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as an operator in theC∗ algebraS2m,±. Reflection positivity is related to theC∗ positivity
by the string Fourier transform F−m

s , the anti-clockwise
π

2
rotation.

Theorem 7.1 (Reflection positivity: general case). Consider a subfactor planar para
algebra S , and a Hamiltonian H ∈ S2m,±,0. Let F−m

s (−H) be a positive operator in
S2m,±. Then H has reflection positivity on Sm,±, for all β ≥ 0. That is

tr(e−βH (�(x) ⊗t x)) ≥ 0,

for any homogenous x ∈ Sm,±.

Proof. If F−m
s (−H) is positive, then we take its square root T = T ∗ = (F−m

s (−H))
1
2 .

For any homogenous x ∈ Sm,±, �(x) ⊗t x is zero graded. Applying anti-clockwise
π

2
rotation, we have

(7.1)
The last inequality holds, since the lower half is adjoint of the upper half. Algebraically,
for any k ≥ 0,

δ2mtr((−H)k�(x) ⊗t x) ≥ 0.

For any β > 0, we have that

tr(e−βH (�(x) ⊗t x)) =
∞∑

k=0

βk tr((−H)k�(x) ⊗t x) ≥ 0

and H has reflection positivity. 
�
Remark 7.2. The string Fourier transform as the anti-clockwise π

2 rotation changes the
trace to vacuum state, the multiplication to the convolution. The positivity of the con-
volution positive operators is known as the Schur product theorem, proved in [Liua]
for subfactor planar algebras. For the parafermion algebra case, the Schur product of
F−m
s (−H) corresponds to the Hadamard product of the coupling constant matrix of H .

7.2. Quantized vectors. The homogenous condition for x in Theorem 7.1 is not nec-
essary. Recall that we can lift the grading and the twisted tensor product in general in
Definition 2.22.

Suppose x =
∑N−1

i=0
xi and y =

∑N−1

i=0
yi , and xi , yi are graded by i . Let i → i ′

be a lift of the grading to Z and we define x̂ =
∑N−1

i=0
(xi , i

′) and ŷ =
∑N−1

i=0
(yi , i

′).
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For a Hamiltonian H ∈ S2m,± , we define the inner product

〈x, y〉� = tr(e−βH�(�(x̂) ⊗t ŷ)),

for x, y ∈ Sm,±. Then

〈x, y〉� =
N−1∑

i=0

tr(e−βH ζ i
2
�(xi ) ⊗+ yi ),

which is independent of the choice of the lift.
If H has reflection positivity, then Sm,± forms a Hilbert space with respect to the

inner product 〈·, ·〉�, called the quantized space. The image of x in the quantized space
is denoted by x̂ . We give a presentation of the quantized vector x̂ in the subfactor planar
para algebra S .

Theorem 7.3. Suppose F−m
s (−H) is positive, and T is its square root. We construct the

quantized vector

(There are k copies of T in the diagram.) Then

〈x, x〉� = x̂∗ x̂ ≥ 0.

Proof. Suppose x =
∑N−1

i=0
xi and xi is graded by i . Then 〈xi , xi 〉� = x̂i

∗ x̂i by Eq.

(7.1). Since
〈
xi , x j

〉
�
and x̂i

∗ x̂ j are graded by j − i , we infer that they are zero if i �= j .
Therefore

〈x, x〉� =
N−1∑

i=0

〈xi , xi 〉 =
N−1∑

i=0

x̂i
∗ x̂i = x̂∗ x̂ ≥ 0.


�

7.3. Parafermion algebras. Recall that the basis of PFm is given by ci11 c
i2
2 · · · cimm , 0 ≤

i1, i2 · · · im ≤ N − 1.
Let A+ be the sub algebra of PF2m that consists of Im ⊗ x , for x ∈ PFm . Let A− be

the sub algebra of PF2m that consists of y ⊗ Im , for y ∈ PFm . Then the graded tensor
product A = A−⊗̂A+ is PF2m .

Note that�(c) = ζF−1
s (c∗) = c−1. The reflection� from A± ∼= PFm to A∓ ∼= PFm

is the anti-linear extension of �(ci1 ⊗+ ci2 · · · ⊗+ cim ) = c−im ⊗− · · · ⊗− c−i2 ⊗− c−i1 .
Therefore A = θ(A+)⊗̂A+. We call the graded tensor product A the double algebra of
A+.

Take the Hamiltonian H in PFm . In terms of the basis CI , we have

−H =
∑

I,I ′
J I ′
I �(CI ) ⊗t CI ′
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for some coupling constants J I ′
I . The Hamiltonian H is called reflection invariant, if

�(H) = H , or equivalently J I ′
I = J I

I ′ for all I , I ′, or equivalently J is a Hermitian
matrix.

Let J0 be the sub matrix of J , whose coordinates I and I ′ are both non-empty, i.e.,
the matrix of coupling constants crossing the reflection plane. The following theorem is
formulated and proved in [JJ16b] by a different method. Here we give a diagrammatic
interpretation that gives special insight and understanding.

Theorem 7.4 (Reflection Positivity for Parafermions). Suppose the Hamiltonian H is
reflection invariant and |H |+ = 0. Then H has reflection positivity, i.e.,

tr(e−βH (�(x) ⊗t x)) ≥ 0,

for any x ∈ PFm, for all β ≥ 0, if and only if J0 ≥ 0.

Proof. Take

Then v I ′
I are matrix units acting on the Hilbert space

By Proposition 2.21,

F−m
s (−H) = N

m
2

∑

I,I ′
J I ′
I v I ′

I . (7.2)

Note that e−β(H+r I2m ) = e−βr e−βH , so the scalar r will not affect the reflection
positivity condition of H . Without loss of generality, we assume that J∅

∅ = 0.
When J0 ≥ 0, for any s > 0, take

−H(s) = −H + s
∑

I,I ′ �=∅
J∅
I J

I ′
∅ �(CI ) ⊗t CI ′) + s−1 I2m .

Since J is Hermitian, we have

F−m
s (−H(s)) = N

m
2

∑

I �=∅,I ′ �=∅
J I ′
I v I ′

I + N
m
2 s−1(v∅

∅ + s
∑

I �=∅
J∅
I v∅

I )(v
∅
∅ + s

∑

I �=∅
J∅
I v∅

I )
∗

≥ 0

By Theorem 7.3, H(s) has reflection positivity,

tr(e−βH(s)(�(x) ⊗t x)) ≥ 0,

so does H(s) − s−1 I2m . Take s → 0. This shows that H has reflection positivity,

tr(e−βH (�(x) ⊗t x)) ≥ 0.
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On the other hand, if H has reflection positivity for all β ≥ 0, then for any homoge-
nous x in PFm orthogonal to Im , we have

tr(e−βH (�(x) ⊗t x)) ≥ 0,

and the equality holds when β = 0. Take the first derivative with respect to β. Then we
have

tr(−H(�(x) ⊗t x)) ≥ 0. (7.3)

Apply the anti-clockwise π
2 rotation to Eq. 7.3, and use Eq. 7.2. This shows that we have

for any m-box x orthogonal to Im . Therefore the matrix J0 as the restriction of J on the

subspace is positive. 
�

8. Braid Relations

In this section, we construct braids for parafermion algebras which behave well in a
diagrammatic way, so that the strings can act over the parafermion planar para algebra
PF• in the 3-dimensional space.

Take ω = 1√
N

∑N−1
i=0 ζ i

2
, so |ω| = 1 by Proposition 2.15. Let ω

1
2 be a square root

of ω. Let us construct the braids as

(8.1)

(8.2)

(8.3)

(8.4)
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Since ζ i
2 = ζ (−i)2 , the two braids behave well under the vertical reflection ∗ and also

under the horizontal reflection �:

(8.5)

Proposition 8.1. With the above notion of ω
1
2 , the two braids behave well under π

2 rota-
tion:

(8.6)

Proof. The computation has been done in the proof of Proposition 2.15. 
�

Recall that Thus

(8.7)

(8.8)

Therefore the braids are unitary and we have the Reidemeister move of type II:

(8.9)

Moreover, we have the following Reidemeister moves of type I:

The Reidemeister move of type III is also known as the Yang–Baxter equation:

This is a consequence of:



Planar Para Algebras, Reflection Positivity 127

Theorem 8.2 (Braid-parafermion relation). We have the relation:

(8.10)

Proof. By Eq. (8.3),

Here we translate the sum in ZN . 
�
The braid-parafermion relation 8.10 says that the generator c can move under the

string. Combining this with the Reidemeister move of type II in (8.9), any m-box x can
move under the string:

(8.11)

Therefore the strings can be lifted to the three dimensional space acting over the planar
para algebra. We call this property of the parafermion planar para algebra PF• the half-
braided property. We call a planar algebra braided, if the string acts both over and under
it.

Definition 8.3. An unshaded planar (para) algebra is called half braided, if there are
(zero-graded) 2-boxes

and , such that Equations (8.6), (8.9) hold, and for any m-box x Eq. (8.11) holds.

Furthermore, it is called braided, if Eq. (8.11) holds while switching to

Remark 8.4. After remembering the alternating shading, the zero graded part of the
PAPPA PF• is the group ZN subfactor planar algebra PZN . It is generated by 2-boxes

which form the groupZN . The bosonic generator is decomposed

as the twisted tensor product of the parafermion ci and its antiparticle�(ci ).We interpret
the decomposition as the parasymmetry of the parafermion planar para algebra PF•.
The proof the Yang–Baxter equation takes advantage of the parasymmetry.

Theorem 8.5. The string moves under the zero-graded planar subalgebra PZN of PF•
as a Z2 flip:
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Proof. By Eq. (8.4),

Substitute i, j by i + 1, j + 1 in the above equation. Then we have that


�
Corollary 8.6. The Z2 fixed point planar subalgebra of PZN is braided.

Corollary 8.7. Any element x in PZN can move above double strings.

Therefore the even, zero-graded part of PF• can move both above and under double
strings, and we recover the braided tensor category Rep(ZN ). The simple objects are

given by projections The morphisms are given by zero-graded ele-

ments of PF•. The braids are derived from given in (8.4). The multiplication and

the tensor product are given by the action of corresponding tangles in Sect. 2.2.
One can compute that the S matrix is given by Si j = 1√

N
q−2i j . It is invertible if and

only if N is odd. In this case the braided tensor category is modular.
Moreover, PF• turns out to be amodule category over the braided tensor category.We

refer the readers to [LR95,Xu98,BE98,Ocn02,Ost03] on the general theory of module
categories over braided tensor categories.
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One can relate our braid (8.4) to the solution [FZ82] with parameter λ in the limit

λ → −i∞, by taking ζ = −e
π i
N . Thus this braid can be “Baxterized” in the sense of

Jones [Jon91]. The braid has been studied previously in [GJ89]. In the case N = 2, the
braid gives the Jones polynomial associated with the index-two subfactor [Jon85]. The
case N = 5 was studied extensively in [Jon89]. The braid gives a Kauffman polynomial
[Kau90], that is associated with a certain Birman–Wenzl–Murakami algebra [BW89,
Mur87]. We refer the reader to a recent survey of related work in [AYP16].

In anotherwork,we discuss applications of the braid relations (8.1)–(8.4) for arbitrary
N to quantum information [JLW16b].

9. Clifford Group

In the (QI, q) four string model of Sect. 5.3.1, the basis vector |k〉 is represented by a
pair of caps with opposite grading. By Proposition 6.2, the SFT Fs acting on the pair of
caps is the discrete fourier transform F

F |k〉 = 1√
N

N−1∑

i=0

qkl |l〉 . (9.1)

The SFT on one cap gives the Gaussian G,

G |k〉 = ζ k2 |k〉 . (9.2)

We use the notation for Pauli X , Y , Z defined in this model. Then X,Y, Z , F,G satisfy
the following relations:

XN = Y N = ZN = 1, (9.3)

XY = q Y X, Y Z = q ZY, Z X = q X Z , (9.4)

XY Z = ζ ; (9.5)

FXF−1 = Z , FZF−1 = X−1, (9.6)

GXG−1 = Y−1(= ζ X Z),GZG−1 = Z ; (9.7)

(FG)3 = ω, (9.8)

F4 = 1, (9.9)

G2N = 1, (9.10)

F2G = GF2. (9.11)

The Pauli matrices X,Y, Z generate a projective linear group (ZN )2. The Clifford
group is defined to be the normalizer group of Pauli matrices. If we express the element

Xi Z j in (ZN )2 as a vector

(
j
i

)

, then AdF = S =
[
0 −1
1 0

]

, and AdG = T =
[
1 1
0 1

]

.

Suppose a unitaryU is in the Clifford group. If AdU fixes X and Z projectively, then
one can show thatU = Xi Z j projectively by a simple computation in N × N matrices.
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In general, AdU acts as an element in GL(2, ZN ). Note that AdF , AdG generate

SL(2, ZN ). One can prove that

[
1 0
0 −1

]

can not be realized as AdU by a simple com-

putation in N × N matrices. Therefore, we have the following proposition:

Proposition 9.1. The projective linear group generated by X,Y, Z , F,G is the Clifford
group. This group is (ZN )2 � SL(2, ZN ).

As a consequence, the above relations for X,Y, Z , F,G are complete.

10. Positivity for the General Circle Parameter

We constructed the planar para algebra P• over the field C(δ) in Sect. 2.7. The m-box
space has a sub algebra generated by labelled tangles with only vertical strings which is
isomorphic to the parafermion algebra PFm .

Similar to the Temperley–Lieb–Jones planar algebra case, we can construct matrix
units ofPm over the field C(δ) inductively by the matrix units of parafermion algebras
constructed in Sect. 6, the basic construction and the general Wenzl’s formula [Wen87,
Liub]. If a labelled tangle is not in the basic construction ideal, then it is in the parafermion
algebra. Therefore, the principal graph of the planar para algebraP• is the same as the
Bratteli diagram of parafermion algebras, i.e.,

assuming the quantum dimensions of vertices in the principal graph are non-zero. This
assumption can be avoided by the bi-induction argument in [Liub]. Moreover, we obtain
the formula of the quantum dimensions of these vertices. There is one depth 2m vertex.
Its quantum dimension is

√
N [2m]. There are N depth 2m + 1 vertices. Any of them

has quantum dimension
√
N
N [2m + 1]. Here [m] is the quantum number qm−q−m

q−q−1 , and

δ = √
N [2].

Jones’ remarkable rigidity theorem [Jon83] says that all possible values of the circle
parameter of a subfactor planar algebra are given by

{2 cos π

n
|n = 3, 4, . . .} ∪ [2,∞).

These values are realized by Temperley–Lieb–Jones subfactor planar algebras.
To obtain the positivity for the planar para algebra P•, δ has to be positive. In this

case, we can define the (unique) vertical reflection ∗ on the planar algebra induced by
c∗ = c−1.

Theorem 10.1. The planar para algebra P• has positivity if and only if δ√
N
is in

{2 cos π

k
|k = 3, 4, . . .} ∪ [2,∞).

Proof. The matrix units of Pm are constructed over the field C(δ). When δ is a scalar,
the matrix units of Pm are well-defined by Wenzl’s formula, if the Markov trace is
non-degenerate on Pm−1.
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If 2 cos π
k−1 < δ√

N
< 2 cos π

k , then [i] > 0 for all i < k. Thus the matrix units of

Pk are still well-defined. Since [k] < 0, the positivity fails.
If δ√

N
= 2 cos π

k , then [i] > 0 for all i < k. Thus thematrix units ofPk are still well-
defined. Since [k] = 0, any minimal idempotent orthogonal to the basic construction
ideal has trace 0. Thus it is in the kernel of the partition function. Therefore,P• modulo
the kernel of the partition function is a depth k − 1 subfactor planar para algebra. It has
the following principal graph for k = 3, 4, 5, . . .

If δ√
N

≥ 2, then [i] > 0 for all i . Thus the matrix units of P• are still well-defined.
Moreover, P• is a subfactor planar para algebra with the following principal graph


�
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Appendix A. The Construction of Planar Para Algebras for Parafermions

Since the generators are 1-boxes, any labelled 0-tangle is a disjoint union of closed
strings labelled by generators. For an innermost closed string, we can use isotopy to
move all its labels toward one point. Then we can reduce the labelled closed string to
a scalar by the relations given by the multiplication and the trace. Note that only the
zero graded part on the closed string is evaluated as a non-zero scalar, since the trace
is graded. The para isotopy and the 2π rotation reduce to the usual isotopy of planar
algebras on zero-graded part. Thus the evaluation of different labelled closed strings are
independent modulo para isotopy. Essentially we only need the consistency condition
on a single labelled closed string which indicates the associativity of the multiplication
and the tracial condition of the expectation.

The above argument can be formalized by themethod in Section 5 in [Liub]whichwas
motivated by the work of Kauffman [Kau90]. The idea is first constructing the planar
algebras generated by the generators without relations, namely the universal planar
algebra. Then one can define a partition function on the universal planar para algebra
as the average of complexity reducing evaluations and prove that the relations are in the
kernel of the partition function.

Proof of Theorem 2.29 For the group ZN and a bicharacter χ(i, j) = qi j , q = e
2π i
N ,

first let us construct a shaded (ZN , χ) planar para algebra generated by the 1-box c with

grading 1 and relations cN = 1, , for 1 ≤ k ≤ N − 1. The para isotopy

and the 2π rotation for the generator c can also be viewed as relations of c.
LetU be the (ZN , χ) universal planar para algebra generated by c. Let us define the

partition function Z inductively by the number of labelled circles of labelled 0-tangles
as follows.



132 A. Jaffe, Z. Liu

The partition function of the empty diagram is 1.We assume that the partition function
for diagrams with at most n − 1 labelled circles is defined. Let us define the partition
function of a labelled 0-tangle T with n labelled circles. Let IC be the set of innermost
(labelled) circles of T . Take one circle L in IC , let us define Z(T, L).

If L has no label c, then Z(T, L) := δZ(T \L). If the number of labels of L is not
divisible by N , then Z(T, L) := 0. If L has Nk labels, we count the labels in L anti-
clockwise starting from the top label c, denoted by ci , 0 ≤ i ≤ Nk − 1. Let us move
ci clockwise to c0 one by one by RT isotopy and para isotopy. While applying the para
isotopy to ci and another label, we obtain a scalar q or q−1 each time. While moving
ci to c0, if ci is rotated clockwise by 2kiπ , then we obtain a scalar qki . Let qL be the
multiplication of all these scalars. Then Z(T, L) := qLδZ(T \L).
Let us define

Z(T ) = 1

|IC |
∑

L∈IC
Z(T, L).

By an inductive argument and the fact that qN = 1, it is easy to check that Z(T ) is
well-defined on the universal planar para algebra. The most complex case is to show the
Z(T, L) is well-defined while applying the para isotopy to c0 and c1. Under this isotopy,
the top label becomes c1. In this case, we need to move c0 clockwise along L . We obtain
Nk − 1 scalars q from the para isotopy, and one scalar q from the 2π rotation of c0.
Their multiplication is 1. So Z(T, L) does not change.

Moreover, it is easy to check that all the relations are in the kernal of the partition
function Z . Therefore the relations are consistent. The identity is the only 0 graded
1-box, soP/I is a spherical planar para algebra.

Take ζ to be a square root of q such that ζ N2 = 1. Note that ζFs(c) satisfies the
relations as c. Therefore, we can lift the shading ofP/I and by introducing the relation
Fs(c) = ζc. Then P/I is an unshaded planar algebra. 
�
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